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Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management
of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typi-
cally performed in two steps: transforming a planned MLC aperture in response to patient motion
and refitting the leaves to the newly generated aperture. One of the challenges of this approach
is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an
optimization-based framework with which to solve this leaf-fitting problem in real-time.
Methods: This optimization framework is designed to facilitate the determination of leaf positions
in real-time while accounting for the trade-off between coverage of the PTV and avoidance of
organs at risk (OARs). Derived within this framework, an algorithm is presented that can account
for general linear transformations of the planned MLC aperture, particularly 3D translations and
in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Manage-
ment of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys.
35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and
Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from
eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces
acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed
at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in
terms of quality-of-fit and computation time.
Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in
0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and
Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the
Sawant et al. approach, while performing comparably to Ruan and Keall.
Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without
sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting
strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4938586]
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1. INTRODUCTION

The objective of external-beam radiotherapy is to deliver an
ablative dose to the tumor target while attempting to minimize
the dose delivered to healthy tissues and organs at risk (OARs).
In thoracic and abdominal radiotherapy, motion of internal
structures within the patient inevitably results in geometric
misalignment between the planned and the delivered beams.
One approach for handling such discrepancies is to follow or
“track” the motion of the tumor target in real-time and relo-
calize the beam accordingly. This approach, termed as real-
time tracking, has been implemented using various clinical
and investigational strategies. Clinically deployed strategies
include the Cyberknife system (Accuray, Sunnyvale, CA)
which is comprised of a light-weight 6 MV Linac mounted on a

robotic arm, and the Vero system (Mitsubishi, Japan, marketed
in the US by Brainlab) which utilizes a gimbal-mounted
Linac.1–4 Investigational systems are based on moving the
treatment couch5 or a dynamic multileaf collimator (MLC) to
perform continuous aperture adaptation in real-time.6–11 In the
MLC tracking approach, an independent patient monitoring
system provides real-time position information to the Linac
control system at a sufficiently high temporal frequency (typi-
cally 10–40 Hz). Based on this information, the control system
transforms the treatment aperture in order to compensate for
motion-induced deviations from the planned state. The MLC
leaves are then refitted to the newly obtained aperture to
approximately reproduce the desired fluence described by the
initial planned aperture and finally passed on to the machine
for delivery.
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The process of refitting is simple when only rigid transla-
tions in the direction of MLC leaf travel are assumed.7,12 How-
ever, the complexity of the refitting process increases progres-
sively, particularly for highly modulated intensity modulated
radiotherapy (IMRT) fields, when accounting for motion
perpendicular to leaf travel, higher-order motion (e.g., rota-
tions), the relative motion of the target with respect to OARs
(e.g., spinal cord and heart), or relative motion of multiple
tumor targets. In such situations, faithfully reproducing the
transformed aperture is nontrivial. For example, Fig. 1(a)
depicts two square apertures. These are transformed from
their original shapes due to motion-induced translations and
in-plane rotations, as illustrated in Fig. 1(b). In this case,
refitting the MLC leaves to the transformed apertures will
inevitably result in regions of underdose to the tumor target
and/or overdose to normal tissue and organs at risk. While such
underdose/overdose can rarely be completely eliminated, it is
nevertheless useful to explore real-time leaf-fitting techniques
that attempt to minimize these errors in the presence of com-
plex motion.

Leaf-fitting algorithms can easily grow computationally
intensive and therefore contribute nontrivially to the overall
system latency, the time between observed motion and the
hardware response. System latencies have been reported to
be between 100 and 220 ms for tracking systems based on
commercially available hardware.10,11,13 In order to account
for this latency, one must introduce position estimation algo-
rithms. These algorithms are inherently limited in their capa-
bilities as they have but a finite amount of noisy informa-
tion on which to base their predictions. As the look-ahead
time for prediction decreases, the computational and predictive
performance of such algorithms tends to improve.14 By imple-
menting fast leaf-fitting algorithms, without sacrificing fitting
accuracy, the system latency may be reduced, thus improving
prediction and overall system performance.

This work presents a method for rapidly and optimally
fitting MLC leaf configurations to transformed apertures in

the beam’s-eye-view (BEV). The introduction of a generalized
cost-density function over the treatment field is proposed. The
leaf configuration can then be determined from the density
function via an optimization principle. This approach is based
on the work of Ruan,15 henceforth referred to as Ruan 2011,
but generalizes to allow for arbitrarily complex fitting criteria
thus admitting Ruan 2011 as a special case. The problem is
restricted to the special case of homogeneous cost-density over
each 2D region of interest (ROI) in the isocentric plane as seen
from the BEV with polygonal apertures assumed. The asso-
ciated algorithm, referred to as piecewise, together with two
comparison algorithms Ruan 2011 and midleaf,7 is presented.
Each algorithm was evaluated in terms of computation time
and quality-of-fit of the resulting “treatment aperture” dur-
ing tracking simulations based on eight patient-derived lung
traces, each exhibiting six degree-of-freedom (6DoF) motion,
and eight lung IMRT plans.

2. METHODS

This work focuses on the construction of leaf configurations
that attempt to reproduce the fluence of a planned aperture
f in the presence of some anatomical motion T from the
BEV perspective. In principle, one would obtain the motion-
compensated aperture as the composition of the planned aper-
ture with the motion f ◦T . However, this is often unobtainable
due to hardware constraints such as finite leaf widths and leaf-
motion trajectories. The objective is thus to obtain an optimal
leaf configuration subject to all hardware constraints.

Assume that there are N leaf-pairs with widths {∆i}Ni=1, and
that the coordinate system is oriented so that the y-direction
is aligned with the direction of leaf motion and the x-direction
runs perpendicularly from the BEV perspective, as illustrated
in Fig. 2. Let {xi}Ni=1 denote the x-coordinate of the left edges
of the leaf-pairs so that xi+1 = xi +∆i and the full aperture
is covered by the N leaf pairs. The aim is to find the leaf

F. 1. Rotational motion makes it impossible, except in exceptional circumstances, to faithfully fit MLC leaves to the transformed aperture. (a) Two planned
shapes (green) that can be perfectly reproduced by the MLC leaves. (b) Same two shapes under relative motion (in-plane rotations and translations). Note the
regions of overdose (red, outside of the shape) and underdose (blue, inside the shape) in (b).
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F. 2. The x- and y-axes are chosen to run parallel with and perpendicular
to the leaf motion, respectively. The axes and examples of leaf-indices,
leaf-widths, and leaf positions are depicted.

positions A = {αi, βi}Ni=1 that deliver a fluence closest to the
ideal aperture f ◦T , where αi and βi are positions of the top
and bottom leaf of the ith pair, respectively. It is assumed that
0 ≤ αi ≤ βi ≤ h, where h is the maximum leaf position as
specified by the hardware.

2.A. Generic formulation

We express the problem as an optimization. We define at
each point (x,y) in the BEV plane two positive values,σu(x,y)
and σo(x,y), respectively, representing the cost of underdos-
ing or overdosing that point. Refer to σu (σo) as the underdose
(overdose) cost-density function. The objective function over
the leaf pairs is then defined as

Φ(A)=
N
i=1

Φi (αi, βi)=
N
i=1

(Φu, i (αi, βi)+Φo, i (αi, βi)), (1)

where Φ is the total cost, Φi is the leaf cost, and Φu, i (Φo, i) is
the underdose (overdose) cost of fitting the ith leaf pair. The
underdose and overdose costs are defined as follows:

Φu, i (α,β)=
( α

0
dy+

 h

β

dy
) xi+1

xi

dxσu(x,y), (2)

Φo, i (α,β)=
 β

α

dy
 xi+1

xi

dxσo(x,y). (3)

One can intuitively understand Φu, i (Φo, i) as the area ob-
structed (unobstructed) by the ith leaf, weighted by the local
underdose (overdose) cost-density. Due to the independent
nature of the leaf pairs, it is reasonable to assume that there are
no constraints between any two given pairs. For that reason,
optimization of Φ amounts to optimizing each Φi indepen-
dently.

It is desirable to find a simpler form for Φi. First, the
expression [Eq. (2)] can be written more suggestively as

Φu, i (α,β)=
( h

0
dy−

 β

α

dy
) xi+1

xi

dxσu(x,y). (4)

Note that the total cost for the ith leaf can be expressed as

Φi (α,β) =
 β

α

dy
 xi+1

xi

dx [σo(x,y)−σu(x,y)]

+

 h

0
dy

 xi+1

xi

dxσu(x,y). (5)

Since the second term is constant in α and β and does not affect
the optimization, it is possible to drop it all together and take
the total cost to be

Φi (α,β)=
 β

α

dy
 xi+1

xi

dx [σo(x,y)−σu(x,y)]. (6)

Define the net cost-density function σ(x,y) ≡ σo(x,y)
−σu(x,y) so that the leafwise objective function takes the final
form,

Φi (α,β)=
 β

α

dy
 xi+1

xi

dxσ(x,y)=
 β

α

dyλi(y). (7)

It is evident that at points where the underdose cost is greater
than the overdose cost, σ takes a negative value and is either
positive or zero otherwise. Knowing this, one can see that
Φi (α,β) represents the cost of dosing the region y ∈ [α,β] such
that if that underdose cost outweighs the overdose cost, the net
cost is negative. In this way, it is easy to represent the trade-off
between dosing the target and dosing an OAR—regions with
high underdose and overdose penalties, respectively.

The optimal upper and lower positions for the ith leaf-pair
arise as solutions to

λi (y)= 0,
dλi

dy
> 0, (8)

where the former condition ensures that the solution is an
extremum while the latter distinguishes the solution as a min-
imum.

Without knowing the precise form of σ, and hence λi, it is
not possible to show whether or not a minimum will exist at
all much less that there is a global minimum. However, given
that the MLC leaf positions are limited in resolution, there
are finitely many leaf configurations, and thus, at least one
minimum exists in this discrete limit. In the event that multiple
minima exist, then any selection criteria may be used to choose
among them.

2.B. Quasi-homogeneous cost-density

There is no single objective mechanism for selecting the
cost-density function σ. The decision will depend on the
physician, based on patient characteristics, disease state, and
the tissue types involved. For illustration purposes, this work
aims to provide one method of defining σ over the treatment
field wherein the motion of each ROI is monitored and has
a prespecified homogeneous cost-density over its area. Note
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that, in the present context, the term ROI is used to mean 2D
regions in the isocentric plane from the BEV.

For the remainder of this section, suppose that there are M
ROIs, Ωi for i = 1. . .M , each with homogeneous cost-density
σi over its volume. Targets are considered to be ROIs that
receive fluence and are defined with σi < 0 while OARs are
considered as ROIs that should be avoided and carry σi > 0. It
is also assumed that the background tissue (e.g., healthy lung)
carries a constant cost-density of σ0 ≥ 0. To define the total
cost-density function, it is convenient to define ROI-supported
cost-density functions: σi (x,y)=σigi(x,y), where

gi (x,y)=



1, (x,y) ∈Ωi

0, otherwise
(9)

with i indexing the ROI. Piecing the ROI-supported cost-
densities together gives the full cost-density function

σ(x,y)=σ0+

M
i=1

σigi(x,y). (10)

In the event that only one ROI exists, namely, the target, this
density function gives rise to the same objective function as
Ruan15 with homogeneous dose coefficients related asσ0= λo,
σ1=−(λu+λo).

Performing the optimization on Eq. (7) with Eq. (10) gives

σ0∆i =−
M
j=1

σ jλi j, (11)

where, for future brevity, λi j is defined as

λi j =

 xi+1

xi

dxgj(x,y). (12)

2.C. Algorithmic formulation

The results of Secs. 2.A and 2.B yield a path toward imple-
menting an efficient leaf-fitting strategy which, in principle,

can adapt to highly complex dosimetric requirements. How-
ever, the greatest limitation to performance comes from the
computation of the integral [Eq. (12)]. The following three
observations provide us with the necessary simplifications to
make this approach viable:

• The shapes generated during planning, due to the use of
MLC configurations, are polygons.

• At present, the only types of motion that can be reliably
monitored with clinically available motion monitoring
systems are 3D translations and 3D rotations.

• Rotations out of the isocentric plane can be considered as
deformations from the BEV perspective. Tracking such
motion is outside the scope of our present discussion
because current treatment planning and motion monitor-
ing systems do not explicitly provide adequate informa-
tion about the dosimetric impact of such complex motion
in real-time.

The first point allows us to consider shapes simply in terms
of the boundaries: sequences of line segments. The second and
third points together require that the problem be restricted,
for now, to 3D translations and in-plane rotations, and thus
ensure that the shapes will remain polygons after accounting
for motion.

Since the shapes are polygons with finitely many vertices,
the y-axis can be broken into regions within which no vertex
appears. We will refer to this process as segmenting and the
regions as segments. Each segment then has two bounding y-
values and the expression [Eq. (12)] is linear in y for each
0 ≤ i < N and 1 ≤ j < M . An example of this is demonstrated
in Fig. 3.

The piecewise algorithm for computing the optimal leaf
configuration is then straightforward (Fig. 4). Solve Eq. (11)
for each segment (and each leaf) taking the solutions as trial
leaf positions. If no solution is found for a given segment or the
solution lies outside of the segment, save the boundaries of the
segment as trial solutions. Once this process has been carried

F. 3. Process of segmenting and reshaping the target aperture within a single leaf path. The dotted lines represent the segment boundaries. Note that this
reshaping process ensures that the integral along the horizontal axis does not change and makes value of the integral evident from the linear form of the
boundary. All three shapes (a)–(c) produce the same optimal leaf positions; however, (b) is more conducive to fast computation.
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F. 4. The piecewise algorithm for optimally fitting MLC leaves to fields
with multiple ROIs each weighted homogeneously. For each leaf pair, the
shapes are segmented as in Fig. 3 and then the expression for the boundary is
used to compute trial solutions.

out for each segment, it loops over all admissible combinations
of top- and bottom-leaf positions and computes the cost for
each. The final solution is the pair of positions corresponding
to the lowest cost.

The midleaf approach determines leaf positions as positions
at which the shape-edge and the leaf-edge intersect at the
midpoint of the leaf, hence “Mid-Leaf.” In the event that mul-
tiple solutions are found, the lower and upper leaf positions are
chosen as the smallest and largest solutions, respectively. See
Fig. 5(a) for details. It is important to note that this algorithm
is only clearly defined if there is one ROI. This approach is
computationally similar to our proposed algorithm, Fig. 4, in
its selection of trial solutions, but the two algorithms differ in
the selection of the final solution.

The Ruan 2011 algorithm is closer in spirit to the proposed
approach, yet the two differ in both the method of computation
and the assumptions made regarding treatment preferences. In
this approach, underdose and overdose cost-densities,σu(x,y)
and σo(x,y), respectively, are selected. The cost of fitting the
ith leaf is then given by

Ψi (αi, βi)=
 βi

αi

dy
�
co, i (y)−cu, i (y)�, (13a)

cu, i =
 xi+1

xi

dxσu(x,y)h(x,y), (13b)

co, i =
 xi+1

xi

dxσo(x,y)[1−h(x,y)], (13c)

with

h(x,y)=



1, (x,y) ∈ transformed plan aperture opening
0, otherwise

.

(14)

Ruan et al. showed that finding the extrema of Eq. (13a)
amounted to computing the sets,

Cα
i = {y |I (ci (y+δ))I (−ci (y−δ))= 1}, (15a)

Cβ
i = {y |I (ci (y−δ))I (−ci (y+δ))= 1}, (15b)

with δ small, ci = cu, i − co, i, and I (x) = 1, x > 0
0, otherwise. Essen-

tially, the Ruan algorithm explicitly computes the derivatives
of Eq. (13a) enforcing convexity at each solution. The com-
plete algorithm is illustrated in Fig. 5(b). There are three
points of note regarding the Ruan approach. First, the nota-
tion used is highly compact and represents a large amount
of computation—at each value of y , a numeric derivative
ci (y) is computed, not to mention the actual value of ci(y).
Second, the objective function [Eq. (13a)] is similar to the
objective function used in our proposed algorithm [Eq. (7)].
In fact, when there is only one ROI, and the cost density
used in the proposed approach is chosen as in Eq. (11), the
two algorithms functionally coincide. However, computation-
ally, the approaches differ substantially. In particular, the time
complexity of our proposed approach runs linearly with the
number of shape segments while Ruan 2011 varies with the
total number of potential leaf positions. To give some concept
of scale, the number of shape edges will typically be ∼10,
while the total number of potential leaf positions in the case
of the Elekta Agility 160 MLC is on the order of 40 000.
Third, because of the inclusion of h(x,y) in Eqs. (13a) and
(13b), Ruan 2011 will always attempt to faithfully reproduce
the aperture regardless of what critical structures may come
into the irradiation field.

2.D. Performance evaluation

Each of the three algorithms was directly implemented in
++ and integrated into an in-house MLC tracking platform.
Eight step-and-shoot lung IMRT plans using the Agility 160
MLC (Elekta, Crawley, United Kingdom) were taken from
the  (Ref. 3) treatment planning system (Philips,
the Netherlands) and used to generate a set of 5832 target
apertures. To generate the apertures, each plan was subjected
to eight 6DoF motion traces during a tracking simulation.
These traces were extracted offline via kilovoltage intrafrac-
tion monitoring (KIM) system for three lung cancer patients at
Northern Sydney Cancer Centre, Royal North Shore Hospital,
Sydney, Australia.16 A set of three combinations of under-
dose/overdose costs were chosen for evaluation, {(σu,σo)}
= {(0.75,0.25),(0.25,0.75),(0.5,0.5)}, representing prefer-
ence toward treating the PTV, sparing healthy tissue and
equal balance, respectively. Using these sets of apertures and
weights, each algorithm was employed to generate a treatment

Medical Physics, Vol. 43, No. 1, January 2016
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F. 5. The two leaf fitting algorithms used for comparison against the algorithm presented in Fig. 4. (a) The midleaf algorithm which is only defined for a
single ROI and returns only the selected leaf positions. (b) The Ruan 2011 algorithm which computes optimal leaf positions by explicitly calculating derivatives
of the cost function Ψi [Eq. (13a)] and returns the leaf positions and computed cost value.

aperture, 17 496 apertures in total. The performance of each
algorithm was quantified in terms of two metrics: computation
time—measured with a software timer—and quality-of-fit.

The quality-of-fit of a treatment aperture was computed by
determining the areas of underdose and overdose—compared
to the ideal aperture ( f ◦T)—and combining them as a
weighted sum using the underdose/overdose costs as weights
as in Eq. (1). This was carried out independently of the fitting
algorithm in question to ensure that the results were directly
comparable. In comparing qualities-of-fit, it is important to
note that different implementation details can result in small
differences in leaf positions—on the order of 10 µm—that
produce small variations in the final quality of fit. For this
reason, two quality-of-fit scores were considered equivalent
if they were within 1.0%.

3. RESULTS

The computation time statistics are summarized in Table I
which presents the minimum, average, and maximum time
observed per aperture fitting. The piecewise algorithm per-
formed comparably to the midleaf algorithm. Note that the
performance of the piecewise and Ruan 2011 approaches was
independent of the underdose/overdose cost used.

T I. The time clock-time used by each algorithm to perform a full
aperture fitting.

Time per fitting (ms)

Algorithm Minimum Average Maximum

Midleaf 0.020 0.082 0.195
Piecewise 0.063 0.226 0.527
Ruan 2011 52.1 64.2 86.3

For each underdose/overdose cost value and pair of algo-
rithms, the quality-of-fit scores for each of the 5832 treat-
ment apertures were determined and compared (see Table II).
When the underdose and overdose costs differ significantly, the
piecewise and Ruan 2011 algorithms produced significantly
improved fitting over the midleaf approach while performing
comparably to one another in terms of this metric. In the case
that the underdose and overdose costs were equal, all three
algorithms performed similarly.

As a final comparison, the quality-of-fit averaged over the
entire treatment simulation for each algorithm and under-
dose/overdose cost was computed. This average was compared
to the average of the midleaf quality-of-fit, see Table III.

As expected from Fig. 5, piecewise and Ruan 2011 produce
approximately the same average quality-of-fit regardless of
underdose/overdose costs and perform significantly better than
the midleaf approach when the underdose/overdose costs are
not balanced.

T II. The quality-of-fit was compared for each pair of algorithms. The
percent of fittings (out of a total of 5832) that were better, equivalent (up to
a 1% difference), and worse are presented. Note the similarity between the
performance of the piecewise and Ruan 2011 approaches.

Percent of fittings

Underdose/overdose Algorithm Better Within 1% Worse

0.75/0.25 Piecewise vs midleaf 64.7 35.1 0.223
Piecewise vs Ruan 2011 5.01 95 0.034
Ruan 2011 vs midleaf 60.9 36.4 2.78

0.50/0.50 Piecewise vs midleaf 4.12 95.6 0.24
Piecewise vs Ruan 2011 0.89 99 0.137
Ruan 2011 vs midleaf 4.18 94.9 0.943

0.25/0.75 Piecewise vs midleaf 68.5 31.5 0
Piecewise vs Ruan 2011 1.41 98.6 0
Ruan 2011 vs midleaf 64.7 35.2 0.103

Medical Physics, Vol. 43, No. 1, January 2016
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T III. The average quality-of-fit of the piecewise and Ruan 2011 al-
gorithms with each underdose/overdose cost. The average quality-of-fit is
presented relative to the total cost generated by the midleaf algorithm.

Underdose/overdose cost Algorithm
Average quality-of-fit

relative to midleaf

0.75/0.25 Piecewise 0.878
Ruan 2011 0.879

0.5/0.5 Piecewise 0.985
Ruan 2011 0.985

0.25/0.75 Piecewise 0.834
Ruan 2011 0.834

4. DISCUSSION

The introduction of a generalized cost-density of the treat-
ment field allows for complex fitting criteria ranging from
PTV/OAR trade-off to restricting the treatment to motion
within a predefined spatial window. With a particular choice of
density function, the piecewise approach is equivalent to that
of Ruan 2011. However, by not building the pretreatment aper-
ture into the framework in general, this approach can consider
real-time MLC tracking in situations where the preplanned
aperture does not capture the desired objective.

In addition to the general framework, a particular imple-
mentation in which the motion-adapted pretreatment aperture
and the background tissue each have homogeneous cost was
evaluated. The results described in Sec. 3 suggest that the
piecewise and Ruan 2011 approaches are interchangeable in
terms of quality-of-fit, with both substantially outperforming
the midleaf approach. However, based on computation time,
the midleaf and piecewise algorithms dominated. It is therefore
reasonable to conclude that a strong balance of performance in
terms of both metrics is achieved by the piecewise approach.

Given the observations in Sec. 2.C regarding the func-
tional equivalence of the proposed algorithm piecewise and
Ruan 2011, it is noteworthy to point out that in practice,
they do not perform identically in terms of quality of fit, see
Table II. The underlying cause of this difference is attrib-
uted to the number of floating-point computations performed
in each, specifically there are far fewer in piecewise than
in Ruan 2011. This has two manifestations. First, equality
comparison becomes tenuous at best, hence the concession
that “equality” be defined as a 1% difference or less. Sec-
ond, when there are two open fields in a single leaf path—
which can happen often in IMRT apertures under rotations—
it is possible that one algorithm chooses to block one open
field while the other algorithm blocks the second open field.
This can result in a significant difference (>1%) between
the final qualities of fit when accumulated over all of the
leaves.

4.A. The use of cost-densities
and prospective improvements

It is interesting to consider how the asymmetric under-
dose/overdose weights impact the treatment. To begin with,
assume that there is only a single ROI and the healthy back-

ground. Then, the limits of the ratio κ = σu/σo describe
how piecewise and Ruan 2011 will behave as one favors the
two extremes: κ → 0 yields maximum tissue sparing while
κ→ ∞ produces maximum target coverage. As more ROIs are
introduced, the weighting schemes grow more complex, and
the distinction between the piecewise and Ruan 2011 becomes
apparent.

One possibility is to have a ROI with a high overdose
cost compared to the underdose cost of the target. This is
represented in the piecewise algorithm as σ2+σ1 > 0 with
σ1 < 0 < σ2 such that σ2 is an OAR while σ1 is a target. If this
is the case, in regions where the OAR is in beam line with the
target, the OAR will be blocked by a closed leaf-configuration.
This essentially states that avoiding the OAR is more important
than treating the target in that instance. When the target and
OAR move out of alignment, the leaf configuration will open
to more faithfully reproduce the initial planned aperture. Such
a scheme is not possible in the Ruan 2011 formalism due to the
introduction of the h(x,y) step function described in Sec. 2.C.
An example of this is illustrated in Fig. 6 wherein an underdose
distribution Fig. 6(a) and an overdose distribution Fig. 6(b) are
combined to produce the resulting cost density in Ruan 2011
and piecewise frameworks, Figs. 6(c) and 6(d), respectively.
The target step function h(x,y) results in treatment of the
tumor regardless of transient structures whereas this may not
occur in our approach. Figure 7 exhibits a simulation of track-
ing a target as it transits a high-overdose region using the Ruan
2011 definition of cost density [Figs. 7(a)–7(c)] and our gener-
alized approach [Figs. 7(d)–7(f)] demonstrating that one could
more aggressively spare OARs in principle at the expense
of underdosing regions of the target. This underdose can be
accounted for in principle by employing time-dependent cost-
density functions and would likely result in slightly longer
treatment times. This discussed briefly at the end of Sec. 4.A.
Note that the proposed approach can reproduce that of Ruan
2011, but not vice versa. This follows from the fact that cost
described in Eq. (13a) is a special case of proposed cost Eq. (7).
This suggests that our generalized framework described in
Sec. 2.A admits a richer solution space than the restricted set
proposed in Ruan 2011.

Another point of note is that while piecewise and Ruan 2011
both resemble the approach taken by Tacke et al. in explicitly
weighting relative underdose and overdose,8 unlike Tacke, our
generic approach and Ruan 2011 both readily admit inhomo-
geneous underdose/overdose weighting, and handle nontrans-
lational adaptation by construction. The value in this weight-
ing scheme is that target depth, ROI thickness, etc., could
potentially be incorporated. For example, the cost of treating
an ROI may increase as the (line-of-sight) thickness from the
BEV perspective increases—essentially one can include dose-
related heuristics in the selection of the cost-densities.

On a final note, one may also introduce time-dependent
(or MU-dependent) cost-density functions. This would allow
at least two further accommodations. First, it would admit
the possibility of adjusting the weighting scheme based on
past performance. If a region was underdosed at a previous
time-point, the algorithm may be able to account for this to
overdose at a later time-point. The second possibility is that
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F. 6. An example of combining underdose (a) and overdose (b) cost density distributions in Ruan 2011 (c) and the proposed generalized framework (d). In
the case of the Ruan 2011 solution, regions of the field corresponding to target area always receive a final cost density indicative of a target without regard to
transient OAR. This is indicated by homogeneous cost density within the circular target area in (c). In the proposed framework, this is not necessarily the case.
The cost densities in a region are additive such that the final cost density is representative of the cumulative intent of the plan. This is depicted as the half-circular
region of positive cost density (d) representing a region in which the overdose cost outweighs the underdose cost associated with the circular target.

using this time dependence, one could incorporate motion
trajectories to prospectively adjust the weighting scheme.
For example, if the target is expected to pass in front of
an OAR at a future time-point, then it could be beneficial
to adjust the current cost-density to account for that future
underdose.

4.B. The effects of assumptions on performance

The restriction to polygonal shapes can be relaxed without
much computational cost as long as, at least on the scale of a
leaf-width, the boundary can be expressed in a closed form.
An example of this might be the projection of ROI contours
onto the BEV plan. In this situation, the algorithm presented
herein does not change. The only change in performance will

arise due to the differences in the computational complexity of
solving Eq. (11) without the assumption of linear boundaries.
It is unlikely that would be a significant loss. Recall, however,
that MLC leaves have finite resolution in both coordinate
directions. Because of this, one can always approximate a BEV
projected shape as a polygon at least at the resolution of the
MLC. Alternatively, more robust methods such as splines may
be employed.

With regard to the number of ROIs, it was noted previously
that the complexity of the piecewise algorithm goes as O(N),
with N the number of shape segments in the leaf-path. In a
realistic application, one might expect at most 5 ROIs with
each ROI contributing at most ten segments to a given leaf-
path for a total of N ≃ 50. This would result in full-aperture
computations on the order of milliseconds.
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F. 7. Schematic illustration of the target (red) and an OAR (green) tracked by a MLC aperture. In the case of the Ruan 2011 framework [(a)–(c)], both partial
(b) and complete (c) overlap of the target and OAR results in dose to the OAR (overdose) because the target is always treated. In contrast, the generalized
framework described herein [(d)–(f)] can spare the OAR by closing the leaves in regions of target/OAR overlap [(e) and (f)]. Note that there always exists a
choice of underdose/overdose costs for which the proposed generalized approach reduces to the Ruan 2011 solution.

A final concern is whether the number of leaves involved
in the aperture fitting impacts performance. In this work,
the computations were performed for all leaves regardless of
whether they could reasonably contribute to the final open
field. One should expect that by skipping leaves that are clearly
not involved in the aperture formation, Ruan 2011 would
show a greater performance improvement than either midleaf
or piecewise. This follows from the fact that in midleaf and
piecewise, the performance of computing the positions of an
uninvolved leaf is comparable to testing for leaf-involvement,
while for Ruan 2011, computing leaf positions of such leaves
is much more complex. There are many improvements that
can be made to the Ruan 2011 algorithm to decrease the
work required in computing the set Cα and Cβ. However, this

work was focused on both the generalized framework used
to construct piecewise as well as the relative performance
between naïve implementations of the various algorithms.

4.C. Prospects and future development

The prospects for this approach are varied. It has already
been noted that improved runtime performance may result in
a reduction in prediction errors by decreasing the end-to-end
system latency.14 However, if the current level of prediction
error is acceptable, one option is to exchange this improvement
in prediction for more complex real-time processing, e.g.,
on-the-fly dose calculations. While the additional processing
may increase the system latency, the debt is paid for by the

Medical Physics, Vol. 43, No. 1, January 2016



474 Moore, Ruan, and Sawant: Optimization-base leaf-fitting framework for real-time MLC tracking 474

improved leaf-fitting performance. Such improvements open
the window for more advanced tracking techniques that would
have otherwise been infeasible due to hardware and predictive
constraints.

An avenue of improvement that both piecewise and Ruan
2011 readily support, as mentioned by Ruan,15 is the addition
of leaf-velocity constraints. The idea is to maintain two sets
of trial solutions, Σα and Σβ, one for the lower leaf and one
for the upper leaf. Trial solutions are appended to these sets
in accordance with what is achievable based on the current
leaf positions and the maximum admissible leaf velocities. The
algorithm then proceeds in much the same way as in Fig. 4,
distinguishing between lower and upper trial leaf positions.
When considering leaf-velocities, one must decide how to
handle situations in which the leaves cannot achieve fitting
that is as good as what might be possible with infinitely fast
leaves. In this approach, the mechanism for handling such a
case could be to introduce a threshold value for the quality-of-
fit (or fitting cost)—normalized in some way—such that if a
fitting fails to meet that threshold value, the treatment beam is
paused. The advantage of this approach is that if only a small
number of leaves fail to reach their desired positions, they may
not significantly impact the overall quality of fit and, therefore,
the treatment need not be paused.

Additionally, it is conceivable that one may incorporate
“generalized leaves,” moving components such as the Agility
160 MLC’s diaphragms which must also be considered when
generating optimal MLC configurations. It would be prudent
to also consider alternative mechanisms for defining the cost-
density function in the isocentric plane from the BEV perspec-
tive, possibly from dosimetric considerations in the patient
volume.

To summarize, this approach admits a wealth of possible
strategies to leaf-fitting that potentially allow for indirect con-
trol of the quality of MLC tracking in real-time, and admits, in
most clinically relevant situations, a fast, efficient, and high-
quality implementation.

5. CONCLUSION

A framework for constructing real-time MLC leaf-fitting
algorithms that explicitly optimize for underdose/overdose
regions was described, and a particular implementation was
presented for the use case of multiple targets and OARs,
each with uniform underdose weighting. The resulting algo-
rithm was compared to two standard algorithms: midleaf
and Ruan 2011. Our approach was found to perform leaf-
fittings for apertures with 80 leaf pairs in an average of
0.226 ms while accounting for both 3D translations and in-
plane rotations. This performance was comparable to that of
the midleaf approach (0.082 ms) but was roughly two orders of
magnitude faster than the naïve implementation of Ruan 2011
(64.2 ms). At the same time, the piecewise algorithm generates
leaf configurations with qualities-of-fit comparable to those
from Ruan 2011, thereby showing significant improvement
over the midleaf approach when underdose and overdose
are unequally weighted.In this way, we improve upon the

quality of the midleaf, but do so without sacrificing run-time
performance.
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