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A B S T R A C T

Crosshole ground-penetrating radar (GPR) is a widely used measurement technique to help inspect the
structural integrity of man-made underground structures, yet the resulting waveform and travel-time data
can be difficult, complex and challenging to interpret. Here, we introduce the elements of a Bayesian inver-
sion method for analyzing crosshole GPR data to guide detection of defects (weakness zones) in underground
concrete structures. This framework uses as main building blocks the two-dimensional finite-difference
time-domain (FDTD) simulator, the discrete cosine transform (DCT) method, and the DREAM(ZS) algorithm
to reconstruct the relative permittivity field of an underground concrete structure from full-waveform GPR
inversion. The FDTD simulator solves numerically Maxwell’s equations in the time and space domain of
the crosshole GPR experiment and simulates iteratively the electromagnetic (EM) waveforms. The DCT
algorithm transforms the Cartesian parameterization to the frequency domain and reduces drastically the
dimensionality of the parameter space by retaining only the low-frequency DCT-coefficients. Markov chain
Monte Carlo (MCMC) simulation with the DREAM(ZS) algorithm is used to estimate the posterior distribu-
tion of the DCT-coefficients. The usefulness and applicability of the FDTD−DCT−DREAM(ZS) framework is
demonstrated on a synthetic test example involving a unit square concrete structure with a small defect. Our
results demonstrate that the proposed method successfully detects and locates defects in concrete struc-
tures. The inversion results appear rather insensitive to the noise level of the measured GPR waveforms, and
the amount of data used (number of receiving antenna positions), as long as a sufficient number of measure-
ments is available. The more DCT-coefficients that are used to characterize the concrete structure, the more
accurate the results, yet the larger the posterior uncertainty of the reconstructed permittivity fields.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ground-penetrating radar (GPR) is a geophysical method that
uses radar pulses to image the subsurface. This nondestructive
method uses electromagnetic (EM) radiation in the microwave
band (UHF/VHF frequencies) of the radio spectrum, and detects the
reflected signals from subsurface structures. GPR can have appli-
cations in a variety of media, including rock, soil, ice, fresh water,
pavements and has found widespread application and use in civil
engineering to detect subsurface objects, changes in material prop-
erties, and voids and cracks [1]. Yet, for large civil structures such as
giant dams, large pile foundations, and deep diaphragm walls, the EM

* Corresponding author.
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waves emitted by surface GPR may not penetrate sufficiently deep
to warrant an accurate detection and description of underground
structures [2,3]. Indeed, the high EM frequencies required for spa-
tial resolution are subject to severe attenuation in the underground.
Defects of underground structures such as cracks, voids, and weak-
ness zones may not only jeopardize structural integrity and quality,
but also be hazardous and affect safety.

Crosshole GPR has been developed within the field of hydro-
geophysics to image rapidly the electrical properties viz. dielec-
tric permittivity and electrical conductivity of the shallow subsur-
face as proxy for the distribution and amount of soil water [4,5].
This method uses a transmitting and receiving antenna which are
placed next to each other in two adjacent boreholes several meters
spaced apart [6]. The transmitting antenna emits high-frequency
radio waves in the range of 10 MHz to 1 GHz which are received
by the antenna in the adjacent borehole. When the transmitted

http://dx.doi.org/10.1016/j.autcon.2016.03.011
0926-5805/© 2016 Elsevier B.V. All rights reserved.
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electromagnetic wave encounters a diffractor (e.g. buried object) or
a boundary between two materials with contrasting dielectric prop-
erties, it will be reflected, refracted or scattered back. This signal
(waveform) that arrives at the receiving antenna thus stores impor-
tant information about the structure and properties of the subsurface
in-between the two antennas. By using multiple different vertical
positions of the transmitter and receiver antennas a crosshole GPR
data set is obtained which much better characterizes the subsurface
than waveforms measured with surface GPR.

In the (hydro)geophysics literature two different methods are
used for crosshole GPR profiling. In fixed-offset crosshole GPR the
vertical movement of the transmitter and receiver is synchronized
and both move at the same time from one depth to the next, pro-
viding a rapid yet more qualitative investigation of the subsurface. In
multi-offset crosshole GPR the antennas move independently from
each other, offering numerous GPR profiles of different angles for
quantitative analysis of the volume between boreholes [7], but at the
expense of additional operator training, equipment cost, field and
analysis time, and CPU-requirements.

Here, we use multi-offset crosshole GPR to help detect defects in
underground concrete structures. Such defects often turn into flow
paths of water with dielectric permittivity that differs substantially
from its surrounding area. These differences in permittivity are mea-
sured indirectly by the EM waves recorded by the receiving antenna,
and this data is used herein to locate defects (voids, cracks) in under-
ground concrete structures. The conductivity of the concrete can be
estimated jointly as well but as this constitutes a fundamentally dif-
ferent material property it does not necessarily help us to extract
information from the experimental data and guide the detection of
structure defects. What is more, it would require increasing further
the dimensionality of the parameter space.

The EM signals measured by the receiving antenna is not neces-
sarily easy to interpret. Indeed, this signal requires numerical inter-
pretation to determine the size, location, and shape of the defects in
the concrete. This constitutes an inverse problem and reconstructs
from the measured EM waves a map of the dielectric permittivity of
the structure (subsurface). Commonly used inversion methods pro-
vide only a single realization (image) of the structure of interest
[8–10]. This realization exhibits the closest match between the
observed and simulated EM waves but does not appropriately com-
municate measurement and modeling uncertainties [11]. Indeed,
this “best” image derived from deterministic inversion methods con-
stitutes just one realization of an infinite space of solutions deemed
feasible if modeling and data uncertainties are explicitly consid-
ered [12]. Probabilistic inversion methods allow for the treatment
of different sources of error and return to the user an ensemble
of solutions deemed statistically acceptable. Such methods can be
formulated using either a measure theoretic or random variable
approach, the first being the most formal and axiomatic definition
of probability and preferred by theoreticians, and the latter more
easy and practical to use and therefore favored by practitioners.
Among these methods, Bayesian inference coupled with Markov
chain Monte Carlo (MCMC) simulation has found widespread appli-
cation and use in GPR inversion [6,13–20]. This approach results
in a posterior parameter distribution and quantifies the uncertainty
in the modeling results emerging from the model, observed data,
likelihood function and prior distribution.

The measurement resolution and density and choice of forward
model are of crucial importance in the inversion of crosshole GPR
data. Underground structures tend to be resistive for EM waves, and
the propagation velocity of GPR signals depends primarily on the
dielectric permittivity of the medium [15,21]. Consequently, first-
arrival travel times and a ray-based forward simulator are most often
used to reconstruct the structure through inference of the model
parameters [22]. This approach is computationally appealing (CPU-
efficient) and enjoys widespread use due to its affordable modeling

errors. Despite this progress made, this method suffers several criti-
cal deficiencies [23]. First-arrival travel times summarize only a por-
tion of the information contained in the measured GPR radiograms,
and discard thereby potentially important details of the surface
structure corrupting unnecessarily the uncertainty of the inversion
results. What is more, the use of a ray-based model simplifies the
EM wave propagation to straight or curved rays, which may bias the
inversion results [19]. With continuous advances in digital comput-
ing, it is now possible to use wave-based models and full-waveform
inversion. This approach much better extracts the information of
the measured GPR data and can much more accurately simulate EM
wave propagation, boundary conditions and antenna properties. This
approach was first used in seismic inversion [24,25], then introduced
to crosshole GPR inversion [26,27], and is an enormous improvement
over ray-based inversion [5,6,28–35].

In this paper, we present a probabilistic inversion method to
determine the relative permittivity distribution of underground
structures from crosshole GPR waveform data. We use herein a two-
dimensional finite-difference time-domain (FDTD) model to simu-
late the EM wave propagation for a 2D permittivity distribution
characterized sparsely using the discrete cosine transform (DCT). The
posterior distribution of the DCT-parameters is determined by fitting
the FDTD model against the observed GPR traces using MCMC simu-
lation with DREAM(ZS) method [17,36–38]. The DREAM(ZS) algorithm
automatically tunes the scale and orientation of the proposal dis-
tribution during evolution of the Markov chains to their limiting
distribution and therefore leads to high sampling efficiencies and
a rapid convergence. We are especially concerned herein with the
impact of the amount of GPR data, their measurement errors, and
the number of retained DCT-coefficients on the inversion results.
The results of our stochastic inversion with DREAM(ZS) are bench-
marked against those derived from deterministic inversion. This
paper concludes with a summary of the main findings.

2. Methodology

In this section we describe the methodology used herein to
simulate the crosshole GPR waveforms and determine the relative
permittivity distribution of the underground structure of inter-
est using stochastic inversion. We first describe the different ele-
ments of our Bayesian inversion methodology, then discuss the
DREAM(ZS) algorithm for statistical inference of the DCT-parameters
that describe the permittivity distribution, followed by a description
of the FDTD forward simulator, and conclude this section with an
introduction to the DCT methodology.

2.1. Bayesian inversion framework

The inspection of the crosshole GPR method can be described
with the following (process)-equation

d̃ = f (m, ũ) + e, (1)

where d̃ is a vector with measured GPR data, f( • ) is a (non)linear
function (model) that describes (simulates) the physical relation
between the model parameters, m and model input, ũ and mea-
sured data, and e signifies a vector of measurement data errors. The
model parameters in this study define the two-dimensional distribu-
tion of relative dielectric permittivities of the underground structure,
and the model input is a set of EM signals emitted by the GPR
transmitting antenna. The measured data consists of the measured
waveforms recorded by the receiving antenna, and are used to deter-
mine the parameters m. The physical relation, f( • ) is determined
by Maxwell’s equations which are solved for our concrete structure
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using a two-dimensional FDTD simulator [39]. The tilde operator,
~ is used to denote measured entities.

The FDTD parameters, m can generally not be derived from
closed-form analytic solutions and inverse methods are required
to determine their values from the measured GPR waveforms. In
the Bayesian framework [40], model parameters are represented by
probability density functions whose posterior distribution p(m|d̃)
can be derived from the data d̃ using Bayes’ law

p(m|d̃) =
p(m)p(d̃|m)

p(d̃)
, (2)

where p(m) denotes the prior distribution of m, L(m|d̃) ≡ p(d̃|m)
denotes the likelihood function, and p(d̃) is a normalizing constant
(probability density of d̃) that ensures that the posterior parameter
distribution integrates to unity. We can discard probability den-
sity of d̃ or p(d̃) from Eq. (2) as all our inferences about the model
parameters can be made from the unnormalized density

p(m|d̃) ∝ p(m)L(m|d̃). (3)

The prior probability density, p(m) describes, in a probabilistic
sense, all our knowledge of the model parameters before collecting
the experimental data, d̃. In most investigations the spatial distribu-
tion of the dielectric permittivity of the medium under consideration
is unknown and a uniform (noninformative/flat) prior distribution
is used [41]. The main problem now resides in the formulation of
the likelihood function, L(m|d̃) used to summarize, in probabilis-
tic terms, the level of agreement between the observed and FDTD
simulated waveforms. If we conveniently assume the measurement
errors, e to be independent and normally distributed with constant
variance, e

D∼ N (0, ŝ2) then the likelihood function is given by

L(m|d̃, ũ, ŝ2) =
1

(
√

2ps)N
exp

(
− 1

2

N∑
i=1

(fi(m, ũ) − d̃i)2

s2

)
, (4)

where ŝ2 is the variance of the measurement data error, and N
denotes the number of GPR observations, also called data points.
For reasons of numerical stability and algebraic simplicity it is often
convenient to work with the log-likelihood, L(m|d̃, ũ, ŝ2) instead

L(m|d̃, ũ, ŝ2) = − N
2

ln(2p) − N
2

ln(ŝ2) − 1
2
ŝ−2SSE(m|d̃, ũ) (5)

where SSE signifies the commonly used sum of squared errors

SSE(m|d̃, ũ) =
N∑

i=1

(
fi(m) − d̃i

)2
. (6)

in fitting (non)linear functions to data. The SSE term measures the
difference between the observed and simulated GPR waveforms, and
thus evaluates the performance of the model for given parameter
values. The smaller the value of the SSE, the larger the value of the
log-likelihood function, and thus the better the FDTD model fits the
observed data. Note, we focus our attention herein on the relative
permittivity of the concrete underground structure as this variable
is sufficient to mimic the measured waveforms. The conductivity of
the concrete can be estimated jointly as well but as this constitutes
a fundamentally different material property it does not necessarily
help us to extract information from the experimental data and guide
the detection of structure defects. Also, it would require increasing
further the dimensionality of the parameter vector.

Eq. (5) is rather simplistic in that it assumes a-priori that the error
residuals are uncorrelated and Gaussian distributed with a constant

variance. This assumption might not be particularly realistic for the
GPR waveform data. Errors in the FDTD model formulation and input
data will corrupt the ability of the model to describe accurately the
observed data, and introduce residuals errors that deviate consider-
ably from normality. If the error residuals, e(m) = d̃ − f (m, ũ) =
{e1(m, ũ), . . . , en(m, ũ)} exhibit temporal (or spatial) correlation then
one can try to take explicit account of this in the derivation of the
log-likelihood function. For instance, first-order correlation can be
incorporated easily and leads to the following formulation of the
log-likelihood function

L(m|d̃, ũ,0, ŝ2) = − N
2

log(2p) +
1
2

log(1 − 02)

− 1
2

(1 − 02)ŝ−2e1(m, ũ)2 − (N − 1)log(ŝ) (7)

− 1
2
ŝ−2

n∑
i=2

(
et(m, ũ) − 0et−1(m, ũ)

)2,

where |0| < 1 signifies the first-order autoregressive coefficient,
and the nuisance variables {0,s} are subject to inference with the
model parameters, m using the observed data, d̃. Alternative formu-
lations of the likelihood function have been derived in the literature
and can be used in cases where the error residuals are non-Gaussian
with varying degrees of kurtosis and skewness. Latent variables
can also be used to augment likelihood functions and take better
consideration of forcing data and model structural error.

Once the prior distribution and likelihood function have been
defined, what is left in Bayesian analysis is to summarize the pos-
terior distribution, for example by the mean, the covariance or per-
centiles of individual parameters and/or nuisance variables. Unfortu-
nately, the s0imulated waveforms of the FDTD model are dependent
in a complex and nonlinear way on the prescribed permittivity dis-
tribution and EM waves emitted by the transmitter antenna, and
this task cannot be carried out by analytical means nor by analytical
approximation. Confidence intervals construed from a classical first-
order approximation around the values of m derived from deter-
ministic inversion methods can then only provide an approximate
estimate of the posterior distribution. We therefore resort to MCMC
simulation with the DREAM(ZS) algorithm to generate a sample of the
posterior distribution.

2.2. Markov chain Monte Carlo simulation: DREAM(ZS)

The basis of MCMC simulation is a Markov chain that gener-
ates a random walk through the search space and successively
visits solutions with stable frequencies stemming from a station-
ary distribution, p̄( • ). To explore the target distribution, p̄( • ), a
MCMC algorithm generates trial moves from the current state of
the Markov chain mt−1 to a new state mp. The earliest and most
general MCMC approach is the random walk Metropolis (RWM)
algorithm [42]. Assuming that a random walk has already sampled
points {m0, . . . , mt−1} this algorithm proceeds in the following three
steps. First, a candidate point mp is sampled from a proposal dis-
tribution q( • ) that is symmetric, q(mt−1, mp) = q(mp, mt−1) and
may depend on the present location, mt−1. Next, the candidate
point is either accepted or rejected using the Metropolis acceptance
probability[42].

pacc(mt−1 → mp) = min
[

1,
p(mp)

p(mt−1)

]
, (8)

where p( • ) denote the density of the target distribution (equivalent
to Eq. (4)). If the proposal is accepted the chain moves to mt = mp

otherwise the chain remains at its current location, mt = mt−1.
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The DREAM(ZS) algorithm is a MCMC algorithm that has it roots
within the DREAM [36,38] and DE–MC [36,43] algorithm and uses an
adaptive proposal distribution, q( • ) which automatically tunes scale
and orientation and therefore leads to high sampling efficiencies and
a rapid convergence. In DREAM(ZS), K different Markov chains are run
simultaneously in parallel. If the state of a single chain is given by the
n-vector m, then at each generation t − 1 the K chains in DREAM(ZS)
define a population, M which corresponds to a K × n matrix, with
each chain as a row. If A is a subset of n∗-dimensions of the original
parameter space, Rn∗ ⊆ R

n, then a jump, dMi in the ith chain, i =
{1, . . . , K} at iteration t = {2, . . . , T} is calculated from a matrix Z of
size l × d with thinned history of the K chains, Z = {z1, . . . , zl} using
differential evolution [44,45]

dMi
A = fn∗ + (1n∗ + kn∗ )c(d,n∗)

d∑
j=1

(
Z

aj
A − Z

bj
A

)

dMi
	=A = 0, (9)

where c = 2.38/
√

2dn∗ is the jump rate, d denotes the number of
chain pairs used to generate the jump, and a and b are vectors con-
sisting of 2dK integers drawn without replacement from {1, . . . , l}.
The values of k and f are sampled independently from Ud∗ (−c, c) and
Nn∗ (0, c∗), the multivariate uniform and normal distribution with,
typically, c = 0.1 and c* small compared to the width of the target
distribution, c* = 10−6 say. The candidate point of chain i at iteration
t then becomes

Mi
p = Mi + dMi, (10)

and the Metropolis ratio of Eq. (8) is used to determine whether to
accept this proposal or not. If pacc(Mi → Mi

p) ≥ U(0, 1) the candidate
point is accepted and the ith chain moves to the new position, that is
mi

t = Mi
p, otherwise mi

t = mi
t−1. The default equation for c should,

for Gaussian and Student target distribution, result in optimal accep-
tance rates close to 0.44 for n = 1, 0.28 for n = 5, and 0.23 for large
n.

The n∗-members of the subset A are sampled from the entries
{1, . . . , n} (without replacement) and define the dimensions of the
parameter space to be sampled by the proposal. This subspace
spanned by A is construed in DREAM(ZS) with the help of a crossover
operator. To enhance the diversity of the proposals created by
DREAM(ZS), the algorithm includes a mix of parallel direction and
snooker jumps [36]. This snooker jump is depicted schematically in
Fig. 14 of [46] and uses an adaptive step size. Details of the DREAM(ZS)
algorithm have appeared in [17,36,38,46] and interested readers are
referred to these publications for further details. It suffices here to
say that the DREAM(ZS) has been benchmarked on many different
test problems and its ability to automatically tune the scale and
orientation of the proposal distribution leads to an excellent perfor-
mance [19,20,47]. Unless stated differently, in all our calculations of
DREAM(ZS) presented herein we use default values of the algorithmic
variables.

2.3. Forward simulation

The propagation of EM waves through some medium is governed
by the well-known Maxwell’s equations that describe how electric
and magnetic fields are generated and altered by each other and by
charges and currents. In crosshole GPR surveys, the transmitting and
receiving antennas are placed vertically in adjacent boreholes and
the vertical component of the electric field is measured. The trans-
verse magnetic (TM) mode of Maxwell’s equations therefore suffices

to describe the GPR experiment [48–50] and these coupled partial
differential equations are given by

∂Ez

∂t
=

1
e

(
∂Hy

∂x
− ∂Hx

∂y
− sEz

)
(11)

∂Hx

∂t
= − 1

l

(
∂Ez

∂y
+ s∗Hx

)
(12)

∂Hy

∂t
=

1
l

(
∂Ez

∂x
− s∗Hy

)
, (13)

where Ez (Volts/m) is the z component of the electric field E, Hx

(Amperes/m) and Hy (Amperes/m) are the x and y components of the
magnetic field H, e (Farads/m) signifies the dielectric permittivity,
l (Henries/m) denotes the magnetic permeability, s (Siemens/m) is
the conductivity, and s∗ (Ohms/m) represents the magnetic loss. For
simplicity, we usually solve for the relative dielectric permittivity, er,
which is the dielectric permittivity, e, expressed as a ratio relative to
the permittivity of vacuum, e0 (≈8.85 × 10−12 Farads/m).

Analytical solution of Eqs. (11)–(13) is very difficult, if not impos-
sible, for most practical situations [51,52] and we therefore resort
to 2D numerical simulation using the FDTD simulator developed by
[53]. This simulator discretizes the partial derivatives of Maxwell’s
equations in space (2D Cartesian representation) and time using cen-
tral differencing. The numerical solution is then obtained by solving
in a leapfrog manner the resulting finite-difference equations [39]
and this provides a simulated EM field for the geometry, physical
parameters, boundary conditions, time step, excitation, and trans-
mitter and receiver positions of our crosshole GPR experiment. The
time-lapse values of Ez at each receiver position and time are sub-
sequently derived from the FDTD model output (simulated wave-
forms).

2.4. Model parameter dimensionality reduction

Numerical solution of the FDTD model for our GPR experiment
requires definition of the relative permittivity, er for each discretized
grid cell of our structure. These values define the simulated EM field
and are subject to inference using the observed GPR data. In princi-
ple, we could treat each grid cell as a parameter with a different value
of er. This Cartesian parameterization would involve the inference
of many thousands of unknowns, an inversion problem that is pro-
hibitively difficult and CPU-demanding to solve with the DREAM(ZS)
algorithm. We therefore use a much more efficient parameterization
and describe the value of the relative permittivity, er of each grid
cell using the discrete cosine transform [54]. This transformation,
hereafter referred to as DCT, is defined as follows

Rab = aaab

S−1∑
s=0

W−1∑
w=0

Qswcos
(

a(2s + 1)p
2S

)
cos

(
b(2w + 1)p

2W

)
, (14)

where a and b denote the row and column number of the DCT
coefficient-matrix, R and the S × W matrix Q stores a map of dis-
cretized values of the relative permittivity of the spatial domain of
interest and

aa =

⎧⎨
⎩

1√
S

if a = 0√
2
S if 1 ≤ a ≤ S − 1

ab =

⎧⎨
⎩

1√
W

if b = 0√
2
W if 1 ≤ b ≤ W − 1.

(15)

Closer inspection of Eq. (14) demonstrates that the size of matrix
R is exactly similar to that of Q, and thus the standard DCT operation
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does not reduce parameter dimensionality. Indeed, each coordi-
nate of the matrix Q with values of er has its own DCT-coefficient.
We can transform the matrix Q from the space domain to the
frequency domain using the DCT-coefficients stored in R. The infor-
mation of this transformation is concentrated in the lower-frequency
DCT-coefficients. We can thus safely discard the higher-frequency
DCT-coefficients without losing significant information about the
spatial pattern of relative permittivity values. Those lower-frequency
DCT-coefficients are retained and define the FDTD model parame-
ters that will be estimated during inversion using the DREAM(ZS)
algorithm. This approach significantly reduces the dimensionality of
the search space [19,20,55] and has desirable advantages for stochas-
tic inversion, in that (i) the resolution and separation of scales is
explicitly defined, (ii) the transformation is orthogonal and close
to the optimal Karhunen-Loève transform, (iii) the computational
efficiency is high, (iv) the basis vectors depend only on the dimen-
sionality of the model, and (v) the transformation is linear and
operates with real parameter values [19].

To provide a better understanding of how the DCT method oper-
ates in practice, please consider Fig. 1a which shows the relative
permittivity of a synthetic unit square structure with grid size of 0.02
m in the x and z directions. This model has a square-shaped defect
(weakness zone) that has a significantly larger value of the relative
permittivity, er = 12 compared to the surrounding concrete struc-
ture, er = 9. If all grid cells were treated as an unknown parameter,
then the inversion would involve the estimation of 2500 (50 × 50)
different relative permittivity values. We now reconstruct this field
using the DCT. We store the values of each grid cell in the matrix Q
and derive the S × W matrix R consisting of P DCT-coefficients using
Eq. (14). This matrix R is plotted in Fig. 1b and demonstrates that
the information of the frequency domain reconstruction is stored in
the DCT-coefficients in the upper-left corner. In the plots Figs. 1d–
f we now demonstrate what happens to the reconstructed field if
an increasing number of DCT-coefficients [Fig. 1d (P = 36); Fig. 1e

(P = 78); Fig. 1f (P = 136)] is used for reconstruction of the orig-
inal relative permittivity field. Discarded DCT-coefficients are set to
zero. The �2-norm (Euclidean distance between reconstructed field
and true model) of each parameterization is plotted with a square in
Fig. 1c.

The more DCT-coefficients are used, the lower the �2-norm and
the better the reconstruction of the true field of er values. Indeed,
the information of the original permittivity field is stored in just
a few DCT-coefficients in the frequency domain. About 100 DCT-
coefficients appear sufficient to characterize with high fidelity and
accuracy the original permittivity field. This amounts to only 4%
of the original parameter dimensionality if a standard Cartesian
parameterization were used with individual values for each grid cell.

3. Deterministic inversion results

We now use the synthetic field of Fig. 1a and illustrate the results
of a classic deterministic inversion algorithm. This method uses a
straight ray-based forward model [22], and implements the simul-
taneous iterative reconstruction technique (SIRT) [56] to minimize
the error residuals of the observed and simulated first-arrival travel
times. As we are particularly interested in the effect of the number
of data points and their measurement error on the inversion results,
we use multi-offset profiling with 11 × 11 (top row), 11 × 26 (middle
row), and 11 × 51 (bottom row) transmitter–receiver antenna pairs,
respectively. The antenna setup of the first measurement approach
(11 × 11) is depicted graphically in Fig. 1a using red dots (left) and
black triangles (right) for the eleven vertical positions of the trans-
mitter and receiving antennas, respectively. The different columns
of Fig. 2 display the results for noise-free data, ŝ = 0 (left column:
Figs. 2a, d, g), white noise with ŝ = 0.5 (middle column: Figs. 2b, e,
h) and ŝ = 1 nanosecond (right column: Figs. 2c, f, i).

The deterministic inversion method correctly resolves the loca-
tion and shape of the defect if the measurement data are observed
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Fig. 1. Reconstruction of a synthetic relative permittivity field using the DCT: (a) true relatively permittivity field, (b) 50 × 50 matrix R consisting of P = 2500 DCT-coefficients,
(c) �2-norm of reconstructed field for a different number of retained DCT-coefficients, P, and (d—f) realizations of the relative permittivity field using (d) P = 36, (e) P = 78, and
(f) P = 136 DCT-coefficients. The red dots and black triangles mark the vertical positions of the transmitter and receiving antennas, respectively as used in subsequent analysis.



H. Qin, X. Xie, J. Vrugt, K. Zeng, G. Hong / Automation in Construction 68 (2016) 156–169 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Deterministic inversion of synthetic unit square field of relative permittivity values. The three different rows plot the results for a different number of data points used
in the inversion and involve 11 × 11 (top), 11 × 26 (middle), and 11 × 51 (bottom) antenna pairs. The three different columns depict the results for different white noise levels
including ŝ = 0 (left), ŝ = 0.5 (middle) and ŝ = 1 (right) nanosecond.

with relatively little or no noise, ŝ ≤ 0.5 (left and middle column).
For larger values of the measurement data error, deterministic inver-
sion can no longer pinpoint exactly the defect and instead incorrectly
describes large parts of the domain as structurally weak. The inver-
sion results are not particularly influenced by the number of data
points (first-arrival travel times) as the three different panels appear
very similar to each other.

4. Bayesian inversion results

In this section, we use MCMC simulation with DREAM(ZS) to esti-
mate the posterior distribution of relative dielectric permittivity
values used observations of synthetic waveforms. We specifically
investigate the influence of the number of DCT-coefficients (model
parameters), amount of data and their measurement error on the
inversion results.

4.1. Full waveform forward modeling

We take the synthetic relative permittivity model of Fig. 1a as
our benchmark. Two boreholes separated 1 m apart and located at
the left and right hand side of the unit square are used to create
a synthetic record of GPR waveforms with the FDTD simulator. A
total of eleven transmitting antennas (marked with red dots) are
used in the left borehole, and J receiving antennas (black triangles)
are placed in the adjacent borehole to the right to collect the GPR
waveform data. Both antennas are varied over a distance of 1 m with

equidistant intervals of 10 cm. The EM source in our model, stored
in the input variable, ũ (see Eq. (1)) is a Ricker wavelet with a cen-
tral frequency of 500 MHz [57]. The EM pulses are emitted from
the transmitting antenna and observed at positions where receiving
antennas are placed. For each transmitter-receiver antenna pair, a
20 ns GPR trace is recorded with sampling interval of 0.047 ns. Thus,
the observed data are comprised of 11 × J waveform traces with
each trace consisting of 424 data points. We employ the GPRMAX2D
implementation of the FDTD model [53] to carry out our forward
simulations. To consider explicitly the effect of data uncertainty, we
corrupt the observed GPR-waveform with a Gaussian measurement
error using a fixed signal-to-noise ratio (SNR) to stabilize the noise
level.

4.2. Prior distributions of DCT-coefficients

MCMC simulation with the DREAM(ZS) algorithm will resolve for
the posterior distribution of the P retained DCT-coefficients. We sam-
ple the their in the log-transformed space and use a Jeffreys prior [58]
for each DCT-coefficient to reflect a lack of knowledge of their appro-
priate values. The feasible range of the relative dielectric permittivity
values is assumed to be [8–13] and models with one or more per-
mittivity values outside this range are assigned a zero likelihood.
We purposely adopt a relatively narrow range of relative permit-
tivity values to accelerate convergence to the target distribution.
Preliminary trials with DREAM(ZS) with a much larger initial range of
permittivity values (1-81) converged successfully to the target distri-
bution but at the expense of a significantly increased computational
cost.
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Fig. 3. Evolution of the R̂-convergence diagnostic for three calibration cases involving (a) P = 36, (b) P = 78, and (c) P = 136 DCT-coefficients. Each parameter is coded with a
different color. The red horizontal line depicts the default threshold used to diagnose convergence to a limiting distribution, whereas the dotted black line (vertical) marks the
number of FDTD model evaluations required to reach convergence.

4.3. DREAM(ZS) setup

To maximize computational efficiency, we used distributed com-
puting and evaluate the K = 4 Markov chains generated by
DREAM(ZS) on a different processor. We also increase the number
of crossover values to 20 and use a value of b0 = 1/4 to decrease
the jump rate to 25% of the default value and achieve a higher
acceptance rate of proposals [46]. The R̂-statistic of Gelman and
Rubin [59] is used to monitor convergence of the sampled chain tra-
jectories to a limiting distribution. This diagnostic compares for each
parameter the within-chain and between-chain variance. A value of
R̂j ≤ 1.2 for j = {1, . . . , n} diagnoses convergence to a limiting dis-
tribution, after which the last 50% of successively generated samples
in each of the four chains can be used to approximate the posterior
distribution.

4.4. Inversion results: effect of number of DCT-coefficients

We now illustrate the results of our FDTD−DCT−DREAM(ZS)
inversion approach using a total of P = 36, P = 78, and P = 136
DCT-coefficients. All these three cases reconstruct the original rel-
ative permittivity field from 561 (11 × 51) artificially generated
GPR-waveforms which Gaussian (white noise) measurement error
equivalent to SNR = 10.

Fig. 3 presents trace plots of the R̂-convergence diagnostic for
each of the P model parameters and three cases using the last 50%
of the samples stored in each of the Markov chains. The different

parameters are color coded. Convergence to a stationary distribu-
tion can be declared if the R̂j-statistic of each of the P parameters
drops below the critical value of 1.2. This threshold is indicated with
the horizontal red line, whereas the black dotted vertical line marks
the number of FDTD model evaluations required to officially reach
convergence.

The larger the dimensionality of the parameter space the more
iterations are needed with the DREAM(ZS) algorithm to converge suc-
cessfully to a limiting (posterior) distribution. For the three cases
with (a: top) P = 36, (b: middle) P = 78 and (c: bottom) P = 136
parameters this equates to approximately 22000, 51000, and 83000
FDTD model evaluations.

We now resort our attention to the computational requirements
of our Bayesian inversion method. This cost is determined almost
entirely by the FDTD simulator as the vast majority of the CPU-
time in our algorithm is spent on numerical solution of Maxwell
equations to calculate the simulated waveform of each transmitter–
receiver position for each vector of DCT-coefficients sampled by
DREAM(ZS). As the required CPU-time is hardware (processor) depen-
dent we adopt instead the notion of computational time unit (CTU)
introduced by Laloy and Vrugt [17]. One CTU is equivalent to the
CPU-time required to complete a single FDTD model evaluation.
For the three cases considered herein, the total number of CTUs
is equivalent to 22000, 51000 and 83000, respectively. Yet, as we
run the K = 4 chains in DREAM(ZS) simultaneously in parallel, the
actual number of CTUs is only one-fourth of their listed values for
serial computation. On our computer this equates to a total CPU-
time of 230, 530 and 870 min , respectively for each of the three
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Fig. 4. Reconstructed relatively permittivity fields of the three different calibration cases involving (a,d) P = 36, (b,e) P = 78, and (c,f) P = 136 DCT-coefficients. The top row
plots the relatively permittivity field of the maximum a-posterior (MAP) density solution of the posterior distribution, whereas the middle row displays the results of the posterior
mean DCT-coefficients. The bottom panel plots the corresponding 95% credibility intervals derived from the posterior DCT-samples generated with the DREAM(ZS) algorithm.

case studies, as about 2.5 s are required for a single FDTD model
simulation.

To provide better insights into the results of the different inver-
sion trials, Fig. 4 plots for each of these three cases (as columns) the
relatively permittivity fields of (a–c: top) the maximum a-posteriori
(MAP) density solution and (d–f: middle) the mean solution of the
posterior DCT-coefficient distribution. The bottom row displays the
95% credibility intervals of the posterior mean relatively permittivity
fields.

The reconstructed fields of the MAP and posterior mean solu-
tion appear virtually identical to each other for all three different
cases considered and correctly pinpoint the location and shape of the
defect. In fact, the larger the number of DCT-coefficients that is used
(right column) the more sharp the defect area (highest resolution)
but also the more variation is observed in the relatively permittiv-
ity across the unit square structure. The more DCT-coefficients are
retained the higher the resolution of the reconstructed field but at
the expense of an increased uncertainty of the relatively permittiv-
ity values (bottom row). Thus, there is a trade-off between resolution
and uncertainty.

We now compare the permittivity values of two different cross-
sections of the unit square concrete structure. These cross-sections
are depicted schematically in Fig. 1a and involve the transects A-A
and B-B. Both these cross sections cut across the middle of the defect
area but exhibit a different orientation. The A-A cross section is

horizontal and goes from left to right across the structure and defect.
The B-B transect, on the contrary is vertically oriented. Fig. 5 presents
the measured (red circles) and MAP simulated (blue crosses) relative
permittivity values of the A-A (left column) and B-B (right column)
transects for each of the three different calibration cases involving
(top row) P = 36, (middle row), P = 78 and (bottom row) P = 136
retained DCT-coefficients. The 95% credibility intervals are separately
indicated with the dotted black lines, and the gray region makes up
the confidence intervals of the MAP simulated relatively permittivity
values.

The three different calibration cases resolve accurately the struc-
ture defect so visible in the actual measured permittivity values (red
circles). The use of P = 36 DCT-coefficients appears sufficient to rea-
sonably locate the location, shape, and size of the defect. The more
DCT-coefficients that are used in the inversion the better the recon-
struction of the permittivity discontinuity induced by the defect.
The better the characterization of this sharp boundary between the
defect and surrounding concrete the more wiggle and deviation from
the measured permittivity values is introduced in the remaining part
of the unit square concrete structure (e: bottom left). This varia-
tion (and error) is far less in the vertical B–B transect (f: bottom
right). Indeed, the inversion accuracy is highest in the vertical direc-
tion. This is explained by the measurement design used to create
the artificial data set of waveform observations, in which GPR sig-
nals are transmitted from left to right, providing more restrictions
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Fig. 5. Comparison of MAP simulated (blue crosses) and observed (red circles) permittivity values for the horizontal A–A (left column) and vertical B–B (right column) transect. The
three different rows consider three different inversions with the DREAM(ZS) algorithm using (top row) P = 36, (middle row), P = 78 and (bottom row) P = 136 DCT-coefficients.
The black dotted lines depict the 95% credibility intervals, and the gray region between the two lines signifies the confidence interval.

vertically than horizontally. To improve the horizontal resolution
we can include in the inversion with DREAM(ZS) surface-to-borehole
data [60], yet this is beyond the scope of the present paper and will
be explored in due course. The 95% credible region include almost all
the observed permittivity values (all three inversion cases) with the
exception of one observation in the bottom left plot when P = 136
DCT-coefficients are used.

4.5. Inversion results: effect of number of observations

In crosshole GPR surveys, the number of observations is often
a trade-off between inversion accuracy and measurement cost. The
larger the number of measurements used during the inversion, gen-
erally the more accurate the DCT-coefficients, and thus the more
reliable the resolved structure and thus geophysical model. As con-
tinuous observation is impossible in geophysical explorations, it
is necessary to determine an appropriate amount of observations,
which satisfies the desired inversion accuracy and measurement
budget.

To better understand how the inversion results depend on the
number of measured GPR waveforms we consider three different
calibration cases involving 11, 26 and 51 receiving antennas and

P = 78 DCT-coefficients (others are set to zero). Prior to the inver-
sions, we perturb the synthetically generated waveforms of the
FDTD model with white noise using SNR = 10. This corrupted GPR
data set then serves as measurement data set in the subsequent
inversions.

Fig. 6 plots for each of these three calibration cases (as columns)
the relatively permittivity fields of (a–c: top) the MAP density
solution and (d–f: middle) the mean solution of the posterior
DCT-coefficient distribution. The bottom row displays the 95%
credibility intervals of the posterior mean relatively permittivity
fields.

As expected, the MAP and posterior mean realizations of the per-
mittivity distribution of the concrete structure are getting better
with an increasing number of measurements used in the inversion
(compare a–c and d–f). The 95% credibility intervals in the bottom
row appear very similar, demonstrating that the number of GPR
waveforms has relatively little effect on the posterior uncertainty of
the DCT-coefficients.

Fig. 7 quantifies the impact of the amount of GPR data on the accu-
racy of the inversion results, and plots the �2-norm of the MAP (blue
square) and posterior mean (red triangle) reconstructed relative
permittivity values and their measured field values.
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Fig. 6. Reconstructed relatively permittivity fields of the three different calibration cases (left to right) involving (a,d) 11 × 11, (b,e) 11 × 26, and (c,f) 11 × 51 waveform
observations. The top row plots the relatively permittivity field of the MAP density solution of the posterior distribution, whereas the middle row displays the results of the
posterior mean DCT-coefficients. The bottom panel plots the corresponding 95% credibility intervals derived from the posterior DCT-samples generated with the DREAM(ZS)

algorithm.

The three different calibration cases are listed along the x-axis
and involve the use of 11, 26 and 51 receiving antennas. The norm
traces of the MAP and posterior mean solution are in close agreement
with each other similar and demonstrate an improved accuracy of
the reconstructed permittivity fields when the number of receiving
antennas (observations) is increased. When the number of receiving
antennas increases from 11 to 26, the �2-norm decreases from 25.1
to 19.1 for the MAP solution, and from 26.0 to 20.9 for the posterior
mean estimates of the DCT-coefficients. In all three cases considered
herein, the MAP estimate is a slightly better predictor of the true
permittivity field than its counterpart derived from the posterior
mean solution sampled with the DREAM(ZS) algorithm.

For convenience, we define a simple metric called indicator or
IND which quantifies the added benefits of one additional receiver
antenna. This metric is easily calculated from the data presented
in Fig. 7 and for the first leg is computed as INDMAP = (25.1 −
19.1)/(26 − 11) = 0.40 for the MAP solution, and INDmean = 0.34
for the posterior mean DCT-coefficients. This value of IND reduces to
INDMAP = 0.07 and INDmean = 0.10 when the number of receiv-
ing antennas is increased further from 26 to 51. This simple analysis
demonstrates that the added benefit of additional waveform data
depends critically on the actual size of the GPR data set. If the GPR
data set is relatively small, then one additional receiving antenna
can enhance considerable the accuracy of the reconstructed permit-
tivity field. The added benefit decreases with increasing number of
receiving antennas being used.

4.6. Inversion results: effect of measurement data errors

Various error sources inside and outside the GPR system con-
tribute to measurement uncertainty of the recorded waveform. For
instance, the internal devise of the GPR may generate noisy signals.
Moreover, environmental EM sources such as FM radios, televisions,
and cellular phones, may enter the GPR system and interfere with
GPR surveys [61,62]. System (systematic) errors can be eliminated in
large part by local calibration, but random errors cannot be resolved
and therefore remain present in the measured waveforms.

To evaluate the effect of GPR data measurement errors on the
accuracy and reliability of the inversion results, we corrupt the FDTD
simulated waveforms with three different (Gausssian) noise levels,
including low-noise (SNR = 15), medium-noise (SNR = 10), and
high-noise (SNR = 5). Fig. 8 displays the effect of this measurement
error corruption on the measured waveform. The top plot (a) sum-
marizes the original noise-free waveform, and the subsequent three
panels plot the waveform with (b) low, (c) medium and (d) high
noise.

The DREAM(ZS) inversion trials for the three different noise levels
are depicted graphically in Fig. 9 using P = 78 DCT-coefficient and
11×26 antenna pairs. The first two rows plot the relatively permittiv-
ity fields of (a–c: top) the MAP density solution and (d–f: middle) the
mean solution of the posterior DCT-coefficient distribution. The bot-
tom row displays the 95% credibility intervals of the posterior mean
relatively permittivity fields.
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Fig. 7. Information content of GPR waveform data: trace plot of the �2-norm between
the observed and reconstructed relative permittivity fields of the MAP (blue squares)
and posterior mean (red triangles) DCT-coefficients. The dotted black line denotes the
performance of the best attainable permittivity field obtained without truncation of
DCT-coefficient.

The inversion results are hardly affected by the noise level. The
MAP and posterior mean fields are in excellent agreement with the
measured permittivity field and appear very similar to each other
(different columns). The location, shape, and size of the defect is well
resolved in all cases. Whereas the MAP and posterior mean DCT-
solution appear unaffected by noise level, the posterior uncertainty
increases with increasing size of the measurement data error. This is
an expected result — the larger the measurement error, the more flat
the likelihood function and thus the more spread out the probability
mass over the DCT-coefficient space.

These findings confirm the ability of the DREAM(ZS) algorithm
to traverse efficiently high-dimensional parameter spaces in pursuit
of the posterior distribution of the DCT-coefficients. Deterministic
waveform inversion methods use optimization principles to seek
iterative improvement of the initial parameter estimates, and their
performance is therefore strongly controlled by the properties of the
response surface. Their search capabilities will deteriorate rapidly in

(a)

(b)

(c)

(d)

Fig. 8. Effect of measurement data errors on the measured waveform. The FDTD sim-
ulated waveform is corrupted with (a: blue) no-noise, (b: red) low-noise, (c: yellow)
medium-noise, and (d: purple) high-noise.

higher dimensions and lead to premature convergence when con-
fronted with non-smooth search landscapes and local optima. The
search capabilities of the DREAM(ZS) algorithm on the contrary are
not as much affected by the properties of the response surface and
model parameter dimensionality. Indeed, the proposal distribution
of Eq. (10) is highly efficient in that it automatically detects the ori-
entation and scale of the posterior distribution. What is more, the
Metropolis ratio of Eq. (8) allows for the temporary acceptance of
inferior (downhill) solutions, which enables DREAM(ZS) to escape
from local optima.

We conclude our numerical experiments in Fig. 10 with a his-
togram of the posterior root-mean-square error (RMSE) values
derived for the different noise levels. The sampled RMSE values are
in close agreement with the SNR values used to corrupt the synthetic
observations of the GPR waveform. This providence further evi-
dence for the claim that the MAP and posterior mean DCT-solutions
derived from MCMC simulation with the DREAM(ZS) algorithm fit the
observed relatively permittivity field very well.

This concludes our manuscript. Future work will apply the
FDTD−DCT−DREAM(ZS) framework to waveforms measured in real-
world GPR-surveys. This is a necessary next step to validate the suit-
ability and practical applicability of probabilistic inversion to defect
detection in underground structures. Another logical step would be
to extend the present framework to three-dimensional structures.
This will be the subject of our subsequent work and will be reported
in due course.

5. Summary and conclusions

In this paper we have introduced the different elements of
a Bayesian inversion method for detection of defects in two-
dimensional underground structures. This framework uses as main
building blocks the two-dimensional FDTD simulator of Giannopou-
los [53], the DCT method of Ahmed [54] and the DREAM(ZS) algorithm
of ter Braak and Vrugt [17,36–38] to reconstruct the permittivity field
of an underground concrete structure from full-waveform GPR inver-
sion. The FDTD simulator solves numerically Maxwell’s equations in
the time and space domain of the experiment and simulates itera-
tively the GPR-waveforms for a given geometry, experimental setup,
physical parameters, and other input data. The DCT algorithm trans-
forms the Cartesian parameterization to the frequency domain and
reduces drastically the dimensionality of the parameter space by
retaining only the high-frequency DCT-coefficients. MCMC simula-
tion with the DREAM(ZS) algorithm is used to estimate the posterior
distribution of the DCT-coefficients.

The usefulness and applicability of the FDTD−DCT−DREAM(ZS)
framework is demonstrated on a synthetic test example involving a
unit square underground concrete structure with a small defect. A
synthetic data set of GPR waveforms was simulated for this struc-
ture using two adjacent boreholes 1 m apart with a transmitter and
receiver antenna. Several numerical experiments were performed to
benchmark the methodology and determine how the accuracy and
reliability of the inversion results (and reconstructed relative permit-
tivity fields) depends on the amount of GPR-data, their measurement
errors, and the number of DCT-coefficients.

Our results demonstrate that the proposed framework success-
fully resolves the measured permittivity field. The inferred location,
shape and size of the defect is in excellent agreement with its
true properties. The accuracy of the reconstructed permittivity field
increases with the use of more DCT-coefficients in the inversion with
DREAM(ZS). The larger the number of DCT-coefficients that is retained
during the inversion the higher the resolution of the posterior mean
and MAP permittivity field, yet at the expense of an increased pos-
terior uncertainty (larger 95% credibility regions). Inversions with
different signal-to-noise ratios (SNR) demonstrate that larger mea-
surement errors of the GPR-waveform do not affect the accuracy
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Fig. 9. Reconstructed relatively permittivity fields derived from the measured GPR-waveforms with (a,d) low-noise, (b,e) medium-noise, and (c,f) high-noise. The top row plots
the relatively permittivity field of the MAP density solution of the posterior distribution, whereas the middle row displays the results of the posterior mean DCT-coefficients. The
bottom panel plots the corresponding 95% credibility intervals derived from the posterior DCT-samples generated with the DREAM(ZS) algorithm.

and reliability of the reconstructed permittivity fields. A lower SNR
only increases significantly the posterior uncertainty of the DCT-
coefficients and the reconstructed fields. The amount of data has a
significant effect on the inversion results if a relatively small num-
ber of receiver antennas is used, but the added value of new data
diminishes rapidly with increasing size of the GPR-data set.

Future work will apply the FDTD−DCT−DREAM(ZS) framework
to waveforms measured in real-world GPR-surveys and consider

simulation and inference of three-dimensional structures. This work
will be reported in due course.
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