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ABSTRACT: Energetically efficient electrocatalysts with high
product selectivity are desirable targets for sustainable chemical
fuel generation using renewable electricity. Recycling CO2 by
reduction to more energy dense products would support a
carbon-neutral cycle that mitigates the intermittency of
renewable energy sources. Conversion of CO2 to more
saturated products typically requires proton equivalents.
Complications with product selectivity stem from competitive
reactions between H+ or CO2 at shared intermediates. We
describe generalized catalytic cycles for H2, CO, and HCO2

−

formation that are commonly proposed in inorganic molecular
catalysts. Thermodynamic considerations and trends for the
reactions of H+ or CO2 at key intermediates are outlined. A
quantitative understanding of intermediate catalytic steps is key to designing systems that display high selectivity while
promoting energetically efficient catalysis by minimizing the overall energy landscape. For CO2 reduction to CO, we describe
how an enzymatic active site motif facilitates efficient and selective catalysis and highlight relevant examples from synthetic
systems.

The electrocatalytic reduction of CO2 is a direct route to
sustainable fuel production from renewable electricity.1−3

Although protons are required to convert CO2 to chemical
fuels, direct proton reduction to H2 siphons electrons away
from CO2 reduction, decreasing the Faradaic yield of carbon-
containing products.4,5

Nonselective reduction is commonly the result of the
competitive reactions with either H+ or CO2 at key
intermediates that ultimately lead to divergent pathways and
products (Scheme 1). Some of the earliest work investigating
the mechanism of molecular electrocatalysts for CO2 reduction
suggested differential reactivity at common intermediates.6

Additional studies quantified the relative reactivity of H+ and

CO2 at these proposed electrocatalytic intermediates.7−16 With
the resurgence of interest in CO2 reduction over the past
decade, new mechanistic studies and catalysts have generated
fresh insights into the varying factors that contribute to
product selectivity.3,17−29

Our analysis is focused on the thermodynamic consid-
erations for key steps in the most commonly proposed catalytic
cycles for the hydrogen evolution reaction (HER) and carbon
dioxide reduction reaction (CO2RR) to formate (HCO2

−) and
carbon monoxide (CO) by inorganic molecular electro-
catalysts. Our evaluation includes general trends in catalyst
properties and their broad impact on reactivity. We examine
free energy considerations for the reaction of H+ and CO2 with
proposed catalyst intermediates and the potential barriers for
product release. These considerations provide guidelines for
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Scheme 1

Nonselective reduction is com-
monly the result of the compet-
itive reactions with either H+ or
CO2 at key intermediates that
ultimately leads to divergent

pathways and products.
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achieving selectivity at divergent reaction paths and are also
essential for improving catalytic activity. Although our
discussion is not focused on kinetic considerations, we note
that intermediate steps in catalysis with high or low free
energies intrinsically contribute to kinetic barriers in addition
to the overall energetic efficiency (expressed in the over-
potential). Thus, a quantitative understanding of the free
energy contributions of each step is necessary to flatten the
energy landscape and optimize activity.
We note that our analysis utilizes reported catalysts as

examples but is not intended to be a complete description of
the field. Instead, we refer the reader to more comprehensive
reviews of molecular electrocatalysts for CO2 reduction that
have recently been published.30−32

Overall Reaction Scheme. A generalized scheme for the
catalytic reduction of H+ and CO2 to H2, HCO2

−, and CO is
shown in Scheme 1. Although other catalytic routes are
possible, Scheme 1 represents the most frequently cited
mechanisms. Upon electron transfer at a certain redox
potential {E1/2}, the reduced intermediate can either protonate
to form a metal hydride or directly activate CO2. In the
protonation-f irst pathway (red), a metal hydride is formed
which can react either with a second proton to form H2, or
with CO2 to produce formate (green). Conversely, CO is
typically the product in a CO2-activation-f irst pathway (blue).
Each of these possibilities will be described separately.
Metal Hydride Formation. The protonation-f irst pathway

requires the ability to form a stable metal hydride upon
protonation. The free energy of protonation is the difference in
pKa between the proton acceptor ({pKa1}, or that of the
targeted

G RT K K2.303 (p p )a(ext) a1Δ = − − (1)

metal hydride intermediate) and proton donor ({pKa(ext)}, or
external acid source) as expressed in eq 1. We intuitively
expect more electron-rich metal centers to have more negative
reduction potentials and be more Brønsted basic (higher metal
hydride pKa values).
The measured pKa values of metal hydrides with reported

reduction potentials {E1/2} in acetonitrile are plotted in Figure
1.33−53 The series represents a broad span of metal hydrides in
different ligand environments (see Tables S1−S3 in the
Supporting Information). Following the expected trend, more
reducing metal centers are also stronger Brønsted bases. Since
pKa is a metric of heterolytic M−H bond free energy, Figure 1

also depicts the linear free energy relationship between redox
potential and the bond dissociation free energy of the M−H
bond.
R. H. Morris recently reported a valuable empirical model

for calculating metal hydride pKa values based on ligand acidity
constants.54,55 A review also compiled experimentally meas-
ured and calculated pKa values for a broad range of metal
hydrides (as well as dihydrogen complexes).56 Additionally, he
notes that since M−H bond dissociation free energies are
typically ∼60 kcal/mol,33−37,57,58 the pKa values of metal
hydrides are expected to correlate with the redox potential of
the conjugate base as seen in Figure 1.54

H2/HCO2
− Formation. Upon metal hydride formation, it

can react with either another proton or CO2. M. R. Dubois and
D. L. Dubois first described how the free energy for the
reactions of a metal hydride with H+ or CO2 at a metal hydride
is determined by the hydricity (ΔGH

−, eq 2) of the metal
hydride.59,60 The hydricity is dependent on the two-electron
reduction potential and pKa of the transition metal hydride
along with the reduction potential for H+/H− in the respective
solvent.48,61,62 As a result, hydricity values correlate with the
average two-electron reduction potential of the metal (Figure
S1).
The free energy for protonation of a metal hydride to evolve

H2 (ΔG(H2)) is shown in eq 3; it is dependent on its hydricity
(ΔGH

−), the pKa of the external proton donor, and the
heterolytic cleavage energy of H2 (CH2, a solvent-dependent
constant). The free energy to reduce CO2 to formate (eq 4) is
dependent on the hydricity of the metal hydride “donor”
(ΔGH

−) and the hydricity of formate (ΔGH
−(HCO2

−)), the
“acceptor”. The free energy of hydride transfer (ΔG(HCO2

−))
relates directly to {Keq1(CO2)} in Scheme 1. Several recent
perspectives have discussed these relationships in depth.61−63

The pKa2 in Scheme 1 delineates the proton activity in which
ΔG(H2) is close to zero, or ergoneutral. Using external acids
with a lower pKa than pKa2 will result in H2 evolution

G

MH M H

(hydricity)

n n 1

H

[ ] → [ ] +

Δ

+ −

− (2)
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whereas the metal hydride will be stable to protonation with
acids of a higher pKa.

64−66 Since minimization of free energy
leads to efficient catalysis, eq 3 was applied to optimize a class
of catalysts for H2 evolution.67 A characteristic of a catalyst
with a flattened energetic landscape is reversible reactivity (i.e.,
hydrogen evolution and oxidation), which was also illustrated
in this class.68−70

An interesting aspect of eqs 3 and 4 is that the free energy of
protonation of a metal hydride is dependent on the pKa of the
proton donor, while the reaction with CO2 is not. As a result,
there are conditions in which the reaction of a metal hydride
with CO2 is exergonic while protonation to form H2 is
endergonic. In these cases, if the pKa of the proton donor is
sufficiently low enough to form the metal hydride, selective
CO2 reduction can be accessed via thermodynamic consid-

Figure 1. pKa values of metal hydrides plotted versus the reduction
potential required to access their conjugate bases. Blue triangles,
orange circles, and green diamonds represent d4, d6, and d8 metal
hydrides, respectively. Compiled from refs 33−53.
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erations alone. These conditions exist because CO2 reduction
to formate is a 1H+, 2e− process above the pKa of formic acid,
while H+ reduction to H2 is a 2H

+, 2e− process across all pKa
values. As a result, the thermodynamic potential for each
reaction has a differential dependence on proton activity. We
recently published a more detailed description on this topic.64

We also note the thermodynamic values in eqs 2 and 4 are
solvent-dependent, but do not quantitatively change to the
same magnitude in different solvents.41,61,71−76 For example,
while the hydricity for metal hydrides and formate decreases
from organic solvents to water (or become better donors),
formate’s hydricity decreases to a lesser extent. As a result,
some metal hydrides that are insufficiently hydridic to reduce
CO2 in organic solvents will do so in water.71,72,77

In accordance to the Sabatier principle, the interactions
between the catalyst and substrate/product are also important.
A significant interaction between the catalyst resting state and
formate would make a favorable (negative) contribution to the
free energy in eq 4, permitting CO2 reduction with weaker
hydride donors. However, the interaction will also inhibit
product release and catalyst turnover. Most putative hydride
intermediates in successful CO2 reduction catalysts are
composed of electron-rich mid or late transition met-
als18,26,64,78−81 which only weakly bind formate, so product
release is not rate-limiting.
CO Production. The CO2-activation-f irst pathway (blue in

Scheme 1) requires CO2 activation to outcompete protonation
at the reduced metal center. While very little quantitative data
exists on CO2 binding constants {Keq2(CO2)} at reduced metal
centers, a small but instructive data set exists for Co(I)
tetraaminemacrocycles.82 In the absence of ligand steric effects,
log{Keq2(CO2)} correlates with the Co(II/I) redox potential
(Figure 2).82−84 The relationship is also intuitive, where more
electron-rich (reducing) metal centers activate CO2 more
strongly. In fact, no single transition metal site is known to
react with CO2 at potentials positive of −1.2 V vs
Fe(C5H5)2

+/0 in organic solvents.30−32

The negative potentials required to activate CO2 have
several undesirable side effects for overall catalyst selectivity,
efficiency, and rate. As illustrated in Figure 1, more reducing
metal sites are also more Brønsted basic (with the caveat that
protonation to form a metal hydride requires two-electron
oxidation of the complex, which is not always accessible).
Thus, more reducing metal centers favor both the CO2-
activation-f irst and the protonation-f irst pathways.
Another complicating factor is that in organic solvents the

product, CO, is often a better ligand than CO2. Thus,
increasing the electron density of the metal for CO2 activation
often results in a more stable M−CO complex later in the
catalytic cycle, inhibiting turnover. CO release has been shown
to be rate-limiting in several known catalysts.84−88 (We note
that this is not always the case; an earlier study found CO2 and
CO equilibrium binding constants to cobalt macrocycles were
competitive in water.)14

As a result, catalyst design for optimal CO2 reduction to CO
requires an intimate understanding of how CO2, CO, and H+

interact with reduced metal centers. The importance of these
parameters was delineated by Schneider, Fujita, and co-
workers in 2012 based on their experimental work with cobalt
macrocycles.82,84,87 Their analysis inspired our study on a
series of isostructural cobalt pincer complexes, the results of
which are summarized in Table 1.89 Cobalt complexes with

more electron-donating ligands result in more negative
reduction potentials and greater reactivity toward CO2 (see
Table 1). We were unable to obtain accurate rate constants,
but the overall trend is similar to that observed in the cobalt
macrocycles (Figure 2). The Co−(CO) bond strength,
measured by the vibrational stretch (ν) of the CO bond by
infrared spectroscopy, also increased with decreasing reduction
potential.
The free energy relationships for metals and their association

with CO2, CO, and H+ are comparable to scaling relationships
more commonly used for analyzing heterogeneous catalysts. In
this case, we find the general trends that relate redox potential
with reactivity for the three key substrates follow opposing

if the pKa of the proton donor is
sufficiently low enough to form
the metal hydride, selective CO2
reduction can be accessed via
thermodynamic considerations

alone

Figure 2. Relationship between {E1/2} of Co(I) macrocyclic
complexes and thermodynamic (log{Keq2}) and kinetic (log k)
reactivity with CO2. Data from ref 82.

Table 1. Interaction of CO2, CO, and H+ for an Isostructural
Series of Cobalt Pincer Complexes (Data from Ref 89)

L PCNCP PNNNP PONOP

E1/2, LCo(II/I)
a −1.03 V −0.88 V −0.61 V

k[CO2] (s
−1), [LCo]b 102−3 102−3 no reaction

[LCo(CO)]+, ν (cm−1) 1911 1923 1936
pKa,

c [LCo] 28 32
avs Fe(C5H5)2

+/0 in CH3CN.
bReactivity with CO2 occurs upon

reduction of the Co(I) complex, which is electrochemically
irreversible. E1/2 for the reversible Co(II/I) couple is provided to
illustrate the electronic trend. cCalculated for corresponding
protonated complex.
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directions for catalyst optimization. Similar trends were also
described for heterogeneous electrocatalysts.90

A generalized energy landscape for a single-site activation of
CO2 to CO is depicted in black in Figure 3. A strongly

reducing (and thus higher energy) metal site (intermediate A)
is utilized to activate the electrophilic carbon in CO2. CO2 can
bind to metals in a few different orientations. The η1

coordination is unstable in synthetic transition metal
complexes91,92 (although if there is another vacant coordina-
tion site, it can bind η2).93−96 The highly nucleophilic oxygen
atoms on unstable metal carboxylates (intermediate B) can
promote ligand decomposition97 or disproportionation with
another equivalent of CO2 to give CO and CO3

2−.20,98−103 A
characteristic of an unstable metal carboxylate is extreme
Brønsted basicity (high {pKa3}), which has been observed in
some catalytic systems that scavenge protons from adventitious
water or electrolyte.104−107 If protonation and reduction of the
metal carboxylate (intermediate B) is successful in cleaving a
C−O bond, more electron-rich metals will result in a greater
energetic barrier for CO release (intermediate C).
Given these factors, it is clear that activation of CO2 at more

positive potentials confers several benefits. In addition to
catalysis at a milder potential, it inhibits the protonation-f irst
pathway by lowering the Brønsted basicity of the metal while
favoring product release.
Perhaps it is not surprising that a strategy for activating CO2

at mild potentials can be found in nature, where efficient redox
catalysis for energy transduction is a matter of survival. The
electrocatalytic activity of Ni-CODH I, a carbon monoxide
dehydrogenase of the anaerobic Carboxydothermus hydro-
genoformans (Ch), displays reversible electrocatalysis of CO2
to CO at high rates at the thermodynamic potential (no
overpotential), or −520 mV vs SHE at pH 7.108 The X-ray
crystallographic structure of the enzyme under reducing
conditions in the presence of CO2 suggests cooperative
binding by Ni and Fe, shown in Figure 4.109 Electrophilic
activation of CO2 occurs at the redox active and Lewis basic
reduced Ni0, while the adjacent Fe2+ participates in nonredox
substrate activation. Thus, the active site capitalizes on a

secondary interaction to cooperatively bind CO2 instead of a
single metal site, contributing to its high rate and low
overpotential.32,109−111

An energetic analysis of a cooperative CO2 activation
mechanism is shown in blue in Figure 3. Cooperative
activation stabilizes the carboxylate intermediate, making a
favorable free energy contribution to CO2 activation. This
results in reactivity at more positive potentials, which also
destabilizes the subsequent metal carbonyl product, facilitating
product release. Not represented in Figure 3 is the protonation-
f irst pathway, but we would expect it to be less favorable as the
Brønsted basicity of the reduced metal decreases, contributing
to enhanced selectivity.
There is evidence that several synthetic catalysts coopera-

tively activate CO2, which benefits their rate and/or selectivity.
Bimetallic activation of CO2 is proposed in a synthetic
dipalladium system.30 Single-site palladium complexes with a
triphosphine ligand display a linear free energy relationship
(LFER) between Keq(CO2) and redox potential.67 Addition of
a hydrogen-bonding interaction or a second metal disrupted
the LFER, leading to faster catalytic CO2 reduction at a milder
potential. Optimization of the cooperative interaction
increased the rate of CO2 to CO catalysis by 3 orders of
magnitude compared to the monomer while lowering the
overpotential almost 200 mV.59,112−115 Additionally, the
Faradaic efficiency improved from 10:90 CO:H2 to 85:15
CO:H2 upon introduction of the second metal center.113,115

However, the two symmetric homobimetallic sites have
similar reduction potentials, which results in unproductive
metal−metal bond formation, deactivating the catalyst. By
using two different metals, the [NiFe] center of Ch Ni-CODH,
promotes selective redox chemistry at the Ni site. Several other
synthetic transition metal CO2 reduction catalysts have shown
substantial evidence for bimetallic CO2 activation.

86,97,116−124

A dicobalt carboxylate complex was also structurally
characterized from a cobalt macrocyclic catalyst.125 We note
several heterobimetallic systems utilize strong oxophilic Lewis
acids to activate CO2;

116,126 in some cases, the latter can bind
the oxygen too tightly for catalyst turnover.
Other successful catalysts attribute improved activity to

other types of cooperative CO2 activation. Early mechanistic
and computational studies for the catalysts [Ni(cyclam)]+ and
cobalt macrocycles indicate the importance of the protons on
the macrocycle amines for facilitating CO2 binding.9,127

Saveánt and co-workers have also shown that the incorporation
of phenol moieties in the secondary coordination sphere of a
previously investigated iron porphyrin complex results in a 50-
fold rate increase at an overpotential 360 mV lower than the
corresponding anisole substituted system.128 Most recently,
Dey and co-workers reported a low overpotential electro-
catalyst which incorporates a proposed S−H functionality
appropriately positioned to stabilize a metal carboxylate.22 A

Figure 3. Free energy landscape for a single-site catalyst for CO2
reduction to CO (black) and a catalyst that utilizes a cooperative
interaction (blue) to stabilize the metal carboxylate intermediate B.

Figure 4. Active site of reduced Ch Ni-CODH II in the presence of
CO2 characterized by X-ray crystallography (adapted from ref 109).
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key feature of these hydrogen-bonding interactions is that they
are positioned appropriately to facilitate CO2 binding
(interaction with an O atom on the carboxylate) without
enhancing direct proton delivery to the metal, which would
favor the protonation-f irst pathway. Another system with
proximal secondary amines was found to enhance protonation
by generating a local hydrogen-bonding environment, even if
they do not assist in CO2 binding.129 Although we are not
discussing the second protonation event required to liberate
water in detail, another possible route to H2 is direct
protonation of the metal carboxylic acid. Careful positioning
of secondary sphere hydrogen-bonding functionalities is
important for circumventing this possibility.
It has been suggested that cationic functionalities also lower

the energetic requirement to access a metal carboxylate
intermediate. Saveánt and coworkers utilized cationic ammo-
nium substituents to promote CO2 reduction through
electrostatic stabilization of a bound carboxylate species.130

Iron porphyrin complexes featuring o-NMe3
+ substituents

function at 230 mV lower potential than the corresponding
p-NMe3

+ substituted complex, while operating at 100 times the
rate. In contrast, catalyst activity was suppressed when the
cationic amines were replaced with anionic sulfonate moieties,
highlighting the effects of electrostatic interactions on CO2
catalysis.130 Electrostatic interactions have more recently been
utilized for a similar beneficial effect in rhenium bipyridine
systems.131

In addition to increasing the reaction rate and decreasing the
required overpotential for catalysis, CO2 activation involving
cooperative interactions can also affect product selectivity.
Large enhancements in CO selectivity have been observed in
systems featuring hydrogen-bonding,129,132,133 bimetallic,113

and electrostatic interactions.134

Although synthetic catalysts have successfully utilized
cooperative CO2 activation to enhance their activity or
selectivity, they have yet to achieve the lofty catalytic metrics
exhibited by Ni-CODH I. We expect there are more secrets to
be discovered for how the active sites of the carbon monoxide
dehydrogenases (including the less studied MoCu class)
balance key kinetic and thermodynamic factors for efficient,
fast, and selective catalysis.

■ CONCLUSION
Efficiency, rate, and product selectivity are key figures of merit
for electrocatalysts. Intermediate steps with large changes in
free energy pay an energetic and intrinsic kinetic cost. A
quantitative understanding of the free energy of each step in
the catalytic cycle can be applied to minimize these energies.
Thus, elucidating trends in metal−ligand properties is
necessary for guiding catalyst development. The hallmark of
efficient electrocatalysisreversible reactivityrequires a
flattened energy landscape.

Selectivity for CO2 reduction in the presence of protons is a
complex challenge due to multiple possible reaction pathways.
To simplify, we have discussed the most commonly cited

mechanisms, detailing the thermodynamic parameters involved
for each step and how they correlate with redox potential. We
emphasize our generalized approach will not apply to all
catalyst systems. Instead, we believe our analysis provides a
useful framework for thoughtful and creative catalyst design
and optimization. In the case of CO2 reduction to CO, it is
apparent that several key parameters are inversely related for
single-site metals. However, these relationships can be broken
using a secondary interaction, mirroring the approach used by
a natural enzyme. Although it is not specifically discussed in
our analysis, we also believe uncovering strategies for kinetic
inhibition for undesirable reactions presents another fruitful
area for targeted catalyst design.
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