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Abstract

Dynamical models involving systems of numerous differential equations are com-

monly used to describe meteorological behavior. Approximations to such systems are

often desired, particularly for inversion problems when the model’s adjoint is unavail-

able. A method for approximating a general, nonlinear system is explored here. The

method is particularly useful for inverse problems. An application to a complex mul-

tivariate dynamic model for Southern California air quality is given and the method

is shown to provide satisfactory estimates of vehicle emission rate inputs using ozone

concentration estimates for the Los Angeles basin.
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1. Introduction

For decades, the Los Angeles basin in Southern California has been the site of some

of the nation’s most severe air pollution (Lu et al., 1997b). In order to model, simulate, and

predict levels of ozone and other pollutants, a multivariate dynamic modeling system called

the Surface Meteorolgy and Ozone Generation (SMOG) model was introduced by Lu (1994)

and Jacobson (1994), and its properties investigated by Jacobson et al. (1996) and Lu et al.

(1997a, 1997b).

The inputs to the SMOG model consist of information related to numerous urban, me-

teorological and climatological variables including temperature, wind speed and direction,

emission rates of various gases from automobiles and other sources, and background concen-

trations of several pollutants (Lu et al., 1997b). Using this input, which is updated hourly,

the model predicts concentrations of various gases at a grid of points in space and time. The

SMOG model, which includes multiple components of ozone generation including advection,

chemistry, aerosol microphysics, and radiative transfer, is shown by Lu et al. (1997a) to

provide an adequate summary of the relationship among certain urban and meteorological

variables. However, one problem raised by Lu et al. (1997b) is that of adjusting or cali-

brating the vehicle emission input data, which are thought to be unreliable and significantly

underestimated (Ingalls et al., 1989; Pierson et al., 1992). That is, the chief deficiency in the

SMOG model’s simulations is thought to be the relatively poor quality of the input emis-

sions. In other words: garbage in, garbage out, no matter how good the intervening model is.
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Assuming the SMOG model to be correct, one could in principle obtain estimates of

these inputs using data on the output variables such as pollutant concentrations, essentially

by inverting the model. One technique most commonly used for deriving such an inverse

involves obtaining an adjoint of the nonlinear model (Hall and Cacuci, 1983; Zou et al.,

1993). In this case, the highly nonlinear dynamical SMOG system is based on dozens of

differential equations, and obtaining its adjoint is not a trivial task. Moreover, even after a

complex adjoint model is obtained, its implementation in inverse problems involves minimiz-

ing an error cost function through numerous successive iterations, which may be extremely

computationally intensive (Pu et al., 1997). It is thus desirable to obtain a more efficient

means of inverting a complex dynamical model such as the SMOG model.

Local linear filter estimation is a way of providing a computationally efficient approxima-

tion to a dynamical system, which may readily be used for input adjustment and sensitivity

analysis. The procedure involves obtaining a simple approximation which captures key fea-

tures of the dynamical model. Berk et al. (2000) have illustrated important uses of data

analytic methods, including linear regression, in approximating and evaluating complex non-

linear systems. The present paper, which uses a similar method as a tool for inverting such

a system, is an extension of Berk et al. (2000).

The structure of this paper is as follows. In Section 2 local linear filter estimation is in-

troduced as a simple means of approximating a complex nonlinear system such as the SMOG
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model. Results of the application of a local linear filter to the SMOG model inversion prob-

lem are presented in Section 3. Section 4 contains a summary of the proposed procedure

and conclusions are given in Section 5. A simplified numerical example of local linear filter

estimation is contained in the Appendix.

2. Approximation via local linear filters

A simplified version of a complex dynamical system such as the SMOG model may be

obtained by finding a local linear filter which best approximates the model. The advantage

of the local linear filter approximation over the SMOG model itself is that the former may

readily be used for inverse problems and sensitivity analysis, as shown in Section 3 below.

We consider a dynamical meteorological model, such as the SMOG model of Lu (1994)

and Jacobson (1994), which takes a multivariate series of inputs Xs,t, observed over a grid of

locations (s) and times (t), and returns a multivariate series of outputs Ys,t, over the same

spatial-temporal grid. For instance, the inputs of the SMOG model (e.g. temperature, wind

speed, wind direction, vehicle emission rates, ambient concentrations of various gases, etc.)

are recorded each hour and interpolated over a rectangular grid of spatial locations covering

an area of approximately 167 km by 230 km. The gridpoints are separated by 4.6 km in

longitude and 5.0 km in latitude. Similarly, the output variables (concentrations of gases

such as ozone, nitrous oxide, carbon dioxide, etc.) are produced at 1-hour intervals over

the same rectangular grid. It is worth noting that the SMOG model is used as a module of
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larger, more comprehensive atmospheric models, and that some of the input variables are

based on outputs of other models rather than actual instrument recordings.

Among the input variables X, of special interest are the emission rates of non-methane

hydrocarbons (NMHC), from vehicles and other sources. In the SMOG model, the emissions

of NMHCs are represented using the emission rates of about ten organic compounds and

lumped surrogates. In our analysis the total emission rates of all these reactive organic gases

is regarded as the input, which we seek to adjust using the SMOG model M and observations

of the output variables Y . In particular, the output variable of main concern here, and which

we use in our adjustment of NMHC, is ozone concentration.

Both inputs (NMHC emission rates) and outputs (ozone concentration) of the SMOG

model are recorded over the identical spatial-temporal grid described above. An illustration

of the output at one hour is depicted in Figure 1. Figure 1 displays ozone concentration

estimates, in units of parts per ten million by volume (pptmv), produced by the SMOG

model at noon on August 27, 1987, using the SMOG model inputs of the analysis of Lu et

al. (1997b).

The SMOG model M relates X and Y according to various differential equations, mo-

tivated by theoretical results from atmospheric chemistry and physics (Lu et al., 1997a).

Given M , we seek to construct a simplified approximation M̂ which will enable us to obtain

estimates of one of the input variables, X. Berk et al. (2000) discuss linear regression as an
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initial means of approximating a complex computer model; thus as a first approximation of

such a model, linear regression, e.g. of Ys,t on Xs,t, may be investigated. (Note that in Berk

et al., 2000, the functional relationship between inputs and outputs was ultimately deter-

mined to be nonlinear.) Ozone concentrations and NMHC emissions are plotted in Figure 2

along with the regression line which is summarized in Table 1.

Approximating the SMOG model via a simple univariate linear regression model is not

satisfactory here, for three reasons. First, the SMOG model is known to be non-linear. Thus,

although it may be sensible to approximate the system as locally linear, a regression model

in which X and Y are linearly related globally is clearly not appropriate. Second, the model

explains hardly any (just two percent) of the variance in Y . This is largely because, accord-

ing to the SMOG model, ozone at time t does not depend strongly on vehicle emissions at

time t. Because it takes several hours for the gases produced by vehicles to be converted

into ozone through chemical reactions (Lu et al., 1997a), ozone concentrations at time t

depend more importantly on vehicle emissions at times t − 1, t − 2, etc. During this time,

these ozone precursors could travel with winds across space. Third, as noted by Berk et al.

(2000), inference based on linear regression is difficult to interpret in the context of approxi-

mating computer models. Since the SMOG model is entirely deterministic, there is no sense

in which replication of the same inputs could have produced a different set of outputs at

random. Thus interpretation of standard error estimates (given in parentheses in Table 1)

and corresponding t-statistics is problematic, and there is little theoretical justification for

the optimality of least squares estimates in this deterministic setting.
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The first of these problems may be remedied by considering small perturbations to the

inputs X, and modeling the relationship between these local perturbations ∆X and the

changes ∆Y they induce in the output. Since even highly non-linear systems may be locally

nearly linear, one may consider fitting a linear model, e.g. via regression of ∆Y on ∆X.

The second problem described above may be alleviated somewhat by introducing lagged

terms, such as ∆Xs,t−1, ∆Xs,t−2, etc. into the regression. Further, because advection of gases

due to wind is an important feature in the SMOG model (Lu et al., 1997a), much improve-

ment may be achieved by including as covariates vehicle emission rates nearby s rather than

at location s. The problem of determining how many times and locations to include in the

regression predicting Ys,t then arises. If too many predictors are used, overfitting may result

in high sensitivity of the outputs to particular input variables. A different approximation

procedure is employed here.

A regression model in which perturbations of the explanatory variables are spatially-

temporally lagged may conveniently be viewed as a local linear filter and estimated readily

by running the deterministic model under investigation after perturbing the inputs. We may

approximate the SMOG model M for example by a system that is linear in the perturbation

variable ∆X: a model M̂ such that

M̂(a∆X{1} + b∆X{2}) = aM̂(∆X{1}) + bM̂(∆X{2}), (1)

for any series of small input perturbations ∆X{1} and ∆X{2} and any constants a and b.

8



Equation (??) defines a localized version of a linear filter (Fuller, 1976; Chatfield, 1996). In

particular, the approximating model prescribes that if the input perturbations of interest are

doubled at all locations and times, then the changes in outputs are doubled as well. A first

approximation using local linear filters consists of constructing a local linear filter which is

space/time-invariant (Brillinger, 1981); i.e. where the relationship between the input per-

turbations and the changes in output does not depend on the location or time of day.

For the purposes of model inversion and sensitivity analysis explored in this paper, we

consider estimation of M via the local linear filter approximation in (??). Although the

model M may be highly non-linear, M may be locally well-approximated by M̂ near the

values X which were observed, and in such cases the approximation M̂ may be adequate.

Methods of checking the appropriateness of such an approximation are discussed below.

Brockwell and Davis (1988) discuss the estimation of linear filters for the case where the

inputs may be viewed as white noise and a single realization of inputs and outputs is avail-

able. Generalization to the case where inputs are autocorrelated is discussed by Hannan and

Deistler (1998). Here, however, we are interested in the situation where the distribution of

the inputs (e.g. NMHC emission rates) is unknown, and furthermore where the dynamical

system M (the SMOG model) is available and may be run repeatedly using different inputs

X. In such cases, the approximating system M̂ may readily be obtained by examining the

behavior of the model M when the inputs X are perturbed. For instance, suppose the input

variables Xs,t are all unchanged, at all locations s and times t, except at one particular loca-
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tion and time where the input is increased by some small amount ∆Xs,t. Such a perturbation

is called an impulse, and the change in output hs,t which results is called an impulse-response

(Chatfield, 1996). Since any linear, space/time invariant filter is uniquely characterized by

its impulse-response function (Chatfield, 1996), to a convenient way to obtain an estimate

of M is simply to pass an impulse through M and observe its impulse-response.

A somewhat related method used to invert dynamic models is via a tangent linear model

(TLM). This method is used by Pu et al. (1997) to approximate the National Centers for

Environmental Prediction (NCEP) global spectral atmospheric model. Both the TLM and

the local linear filter model are easily inverted and require the assumptions of local linearity

and space-time invariance. However, there are two important distinctions between the two

approaches. First, the TLM, as used by Pu et al. (1997), approximately inverts a system

by running the TLM ‘’backward in time”. In their procedure, measurements at one partic-

ular time are used to adjust measurements one time unit prior, and the process continues

on backwards in time until the measurements at the initial time are adjusted. In essence,

outputs at merely one time are used to adjust any particular set of inputs at one time. By

contrast, the method employed here simultaneously uses the outputs at many future times

in the adjustment of the inputs at the initial time. With the local linear filter approach, one

observes how a perturbation impulse at the initial time translates into perturbed outputs

at future times, then uses information on all relevant outputs to adjust initial inputs. Thus

one may expect the TLM to be more useful when initial inputs are to be adjusted based on

outputs at just one time point in the future, and linear filters to be preferable when inputs
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are to be adjusted using outputs at various times.

Second, use of the TLM requires knowledge of the exact equations governing the under-

lying system being approximated. Computation of the TLM requires approximate lineariza-

tion of the model equations, using e.g. Taylor expansions (Pu et al., 1997). The linear filter

method used here, on the other hand, approximates the system based on observations of the

system’s output in response to various inputs, but not on explicit knowledge of the equations

governing the system. The approach here is to treat the underlying system essentially as a

black box and approximate the system purely based on observations of its input and output.

Consequently the method employed here may be especially useful when the equations of the

underlying model are unavailable.

Figure 3 displays a portion of the impulse-response corresponding to the SMOG model.

The input variable of interest is NMHC vehicle emission rate, which is given a .13% impulse

perturbation in the 4.6 km by 5.0 km grid centered in dowtown Los Angeles (at longitude

118.2, latitude 34.1), from 8:00 to 9:00 am. All other input variables (emissions of other

gases, wind speed, wind direction, temperature, etc.) are left unchanged. Call this impulse

A. Figure 3 presents the change in ozone output at noon, in units of parts per trillion by

volume (pptv), resulting from impulse A. One readily sees how, after four hours, the small

increase in NMHC results in a diffuse patch of increased ozone. Note that in principle the

impulse-response is a function not only of space but also of time; thus Figure 3 displays a

one-hour slice of the entire impulse-response.
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The impulse-response, a portion of which is displayed in Figure 3, completely character-

izes the local linear filter used to approximate the SMOG model, and may be used readily

to approximate the inversion of the SMOG model as shown in Section 3. However, the local

linear filter M̂ in approximating M may be unrealistic, since the relationships prescribed

in M between inputs and ouputs may be highly nonlinear even locally, and may depend

on time and space. To investigate this, we recommend observing the output of M when

different impulses are used as inputs. Sample results are shown in Figures 4, 5, and 6. Fig-

ure 4 displays the output resulting from using impulses of different sizes. In Figure 4, the

impulse-responses, summed over all locations, are displayed over time. The solid line shows

the response to impulse A. The dashed line is the response to impulse B, which is identical to

A except that the perturbation is doubled in size, i.e. the NMHC emission rate in downtown

Los Angeles is increased by .26%. The dotted line shows one-half the response to impulse

B. If the model M were exactly locally linear, then the solid and dotted lines would overlap

exactly. Although this is not the case, one sees in Figure 4 that these two curves agree quite

closely. Thus the local linearity property appears approximately to hold, at least for input

perturbations on the order of .13 to .26%.

Figures 5 and 6 display marginals of the responses to a series of impulses. Figure 5 shows

impulse-responses, summed over all times and latitudes in the grid, versus longitude. In Fig-

ure 6, the same impulse-responses are summed over all times and longitudes and displayed

versus latitude. The solid curve is the result of impulse A and the dotted curve is the re-
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sponse to impulse B. One sees again from Figures 5 and 6 that the curves look approximately

proportional to one another, which supports the local linearity hypothesis. Also included

in these figures is the response to impulse C, a .12% perturbation in Long Beach (dashed

curve). It is seen that the impulse in Long Beach seems to have a relatively small effect

compared to an impulse in downtown Los Angeles.

Some meteorological interpretations may be derived directly from the impulse-responses

in Figures 4 through 6. For instance, from Figure 4 one sees that, according to the SMOG

model, a perturbation in NMHC has maximal impact on ozone 6 to 8 hours later. From

Figures 5 and 6 one can similarly deduce that NMHC tends to have the greatest effect on

ozone production about -.2 to -.4 degrees longitude and .1 to .2 degrees latitude from the

source of NMHC emissions, according to the SMOG model output of 8/27/87.

Figure 7 displays another means of characterizing the extent to which the local linearity

condition appears to hold for the SMOG model. In Figure 7, the response to impulse B is

graphed versus the response to impulse A. Each point corresponds to a location in the grid,

though many of the points overlap. The line Y = 2X is overlaid; if the model were exactly

locally linear, the points would all fall on this line. It is evident from Figure 7 that the points

follow the line quite closely; the RMS error about the line is just .27 parts per trillion by

volume, and the R
2 is .62.

3. Inversion of the SMOG model
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One advantage of approximating dynamical systems such as the SMOG model with

local linear filters is the ease with which one may obtain an approximate inverse of the

model. This may be useful for a variety of problems including sensitivity analysis and input

adjustment. The latter problem is emphasized here. As indicated by Lu et al. (1997a), the

vehicle emission rate data used as inputs by the SMOG model are thought to be inaccurate

and the correction of these inputs is a problem of considerable importance.

Given the impulse-response h corresponding to a linear filter, and observations of the

perturbed outputs ∆Y , one may obtain estimates of the perturbations ∆X in the inputs as

follows. The relationship between h, ∆X, and ∆Y may be summarized by

∆Ys,t =
�

i,j

hi,j∆Xs−i,t−j, (2)

i.e.

∆Y = H∆X. (3)

In equation (??), X and Y are vectors of length ST , where S and T are the numbers of

locations and times, respectively, at which the data are recorded. H is an ST -by-ST matrix

such that the inner product of row i of H with X yields the ith element of Y , as in equation

(??). Note that an impulse at time t as input to the SMOG model does not affect the SMOG

model outputs at previous times t− 1, t− 2, etc. Thus all elements hi,j of H for j < 0 may

be set to zero.
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The Appendix contains an illustration of how to construct the matrix H given the

impulse-response hs,t. Splus computer code for obtaining and inverting a local linear filter

approximation is available at http://www.stat.ucla.edu/∼frederic/papers/ozone2000. With

the matrix H constructed, the linear filter may readily be inverted using the relation

∆X = H
−1∆Y, (4)

assuming the matrix H is invertible, as is generally the case and is true in our applications

here.

To evaluate the effectiveness of the method, we examine the results of inverting the

SMOG model via local linear filter approximation, using output (ozone) data from a sub-

sequent day. The ozone data used for this assessment are the outputs for the Los Angeles

basin from the SMOG model on August 28, 1987.

If the local linear filter provides a good approximation of the SMOG model, then the

inversion should produce vehicle emission rate estimates X which resemble the actual vehicle

emission data from August 28, 1987, used as inputs to the SMOG model. Although these

emissions data are suspect (Lu et al., 1997b), they may suitably be used here as a benchmark

since these are the input data actually used to obtain the SMOG model outputs on August

28, 1987.

Figure 8 displays the NMHC emission rate input data between 8:00 to 9:00 AM in Los

Angeles on August 28, 1987, and the corresponding estimated inputs obtained by inverting
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the SMOG model using a local linear filter. It is evident that the local linear filter inversion

technique, using only the outputs from 8/28/87 and none of the inputs, does a satisfactory

job of approximating the inputs actually used by the SMOG model. Both the shapes and

scales of the two images appear very similar. In Figure 9, the estimated NMHC emission

rates of 8/28/87 are plotted versus the actual input rates. Again, the agreement appears to

be quite close; the points largely fall near the line Y = X, and the corresponding R
2 is .78,

indicating very good agreement. However, the local linear filter model seems generally to

underestimate the largest NMHC inputs and to overestimate the smallest inputs.

4. Summary of the proposed method

The procedure we propose may be summarized as follows:

• Pass an impulse through the model M and record the perturbed output series,

h. Record h as a vector of length ST , where S is the number of spatial coordinates and T the

number of temporal coordinates observed. In this step it may be useful to select a convenient

numbering of the coordinates of the spatial-temporal grid (see the Appendix for an example).

• To check if M may be approximated by a linear space-time invariant filter, use

other perturbation impulses, and combinations of impulses, as inputs to M and see if the

outputs resemble rescaled versions of h. At present, other than examination of correlations

and plots such as Figures 4-7, we know of no statistical method for automatically determin-
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ing if this is approximately so, nor any satisfactory computational means for quantifying the

extent that these outputs appear similar (though scaled differently). Thus at present we

propose graphical inspection in this step. Development of tests to identify departures from

local linearity automatically are a subject of ongoing research.

• Because the series h may be very large, in order to facilitate computation, set

all values of h that are sufficiently small to zero. The choice of which values of h to truncate

is somewhat arbitrary at this point, although it appears that most reasonable choices will

yield largely similar results.

• Construct the ST -by-ST matrix H, such that the uv-element of H is the value

hv−u, where u and v are each numbers between 1 and ST . Thus the uv-element of H dictates

how much the output at the spatial-temporal gridpoint u depends on the perturbed input

at gridpoint v. Note that H will generally be a very large matrix consisting mostly of zeros

away from the diagonal.

• To obtain an approximate inverse of the model M given an observed series of

perturbed outputs ∆Y , record ∆Y as a vector of length ST as in the first step and obtain

approximate perturbed inputs ∆X via the relation ∆X = H
−1∆Y . In case the product

ST is so large that obtaining the inverse H
−1 is impractical, note that some computational

simplification may be achieved (see Appendix). In addition, some manipulation of H may

be necessary in order for its inverse to be estimated stably. These issues will not be dis-
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cussed here; the reader may see http://www.stat.ucla.edu/∼frederic/papers/ozone2000 for

such compuational details.

• If possible, compare the approximate inputs to actual inputs used by the model.

We recommend graphical comparisons in addition to numerical summaries for this purpose,

as such simple numerical summaries of graphical data as mean-squared-error may often hide

useful information (Berk et al., 2000).

5. Conclusions

The aim of this work has been to present a method for obtaining a simple approxi-

mation of a highly complex dynamical system, in order to enable approximate inversion of

the dynamical model. A method employing a local linear filter appears to do an adequate

job of approximating the SMOG model of Lu (1994) and Jacobson (1994), used to describe

air pollution in the Los Angeles basin.

The local linear filter method appears to be a satisfactory means of estimating the inverse

of the SMOG model and may be useful for adjusting the vehicle emission rate data used

as inputs to the SMOG model, since these data are thought to be inaccurate (Lu et al.,

1997a). The method proposed here is simple, computationally efficient, and requires no de-

tailed knowledge of the mechanisms underscoring the complex system being approximated,

in contrast to existing methods of dynamic model inversion such as adjoint methods (Hall
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and Cacuci, 1983; Zou et al., 1993; Pu et al., 1997). The particular linear filter model em-

ployed here may be useful for rapid approximation of the SMOG model, for examining the

sensitivity of ozone concentrations to NMHC perturbations, for predicting NMHC emissions

given ozone readings in Los Angeles, or for checking if NMHC measurements in Los Angeles

are sensible and in agreement with ozone output.

It must be noted, however, that like other model inversion procedures such as adjoint

methods, the utility of the resulting estimates depends entirely on the validity of the model

whose inverse is being approximated. Therefore, if inputs are adjusted using observed output

data according to such a method, and the dynamical model is subsequently run using the ad-

justed inputs, then the dynamical model outputs will necessarily approximate the observed

outputs. Such a procedure, in which actual outputs are used in the production of model

outputs, is an entirely inappropriate method of model evaluation, since model outputs will

tend to approximate actual outputs even if the model is incorrect. The methods provided

here are useful when the dynamic model (such as the SMOG model) being estimated has

already been accepted a priori as a reasonable approximation of reality.

Further investigation is needed in order to explore the utility of the proposed method for

adjusting SMOG model inputs, using observed ozone outputs. The current paper explores

the use of local linear filters to invert the SMOG model, and thus obtain adjusted inputs.

An important area for future research is the characterization of the pattern of differences

between the adjusted inputs (obtained using local linear filters) and those inputs currently
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used by the SMOG model. Such patterns may suggest ways in which existing inputs may be

improved before the output has been observed; for example, there may be certain locations

and times when the inputs used by the SMOG model appear to be consistently under- or

over-estimated. The inputs may be adjusted accordingly, and the output when using such

adjusted inputs may be more accurate than those currently produced by the SMOG model.

This work may be extended in various other ways. Examination of combinations of local

linear filters is an important line for further research. Such combinations may be especially

useful when the nonlinear model M to be approximated is not well approximated by a single

local linear filter over the entire region of interest, yet may be well-approximated by local

linear filters within spatial-temporal sub-regions. In such cases one may seek to approximate

M via a combination of several local linear filters. Of concern in this regard are methods of

smoothing over boundaries where one filter stops and another is used instead. Extension of

the present methods to the approximation of models where output variables Y are random

rather than deterministically related to inputs is also very important. Such cases may be

particularly relevant when measurement errors of the output variables are significant. Addi-

tionally, further research into tests for nonlinearity and spatial inhomogeneity for local linear

filters is necessary. Finally, further study should be done to determine more precisely for

which dynamical systems local linear filters may provide satisfactory approximations.

Acknowledgements. This research was funded with the support of a grant from the Na-

tional Science Foundation, Program in Integrated Assessment. The authors also wish to

20



thank Grace Peng for numerous helpful remarks.

Appendix: Numerical example

The following is a simplified numerical example of how to construct a local

linear filter approximation from an impulse-response h.

Suppose observations are recorded on a 2×2 grid of spatial locations, and

at only 2 times t1 and t2. Thus a sample impulse ∆Xs,t, i.e. the input to the

impulse-response function, may be:

t1 t2





0 0

1 0









0 0

0 0




.

Suppose the corresponding impulse-response h is:

t1 t2
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.3 .9

.7 .8









2 7

5 6




.

Ordinarily, the observation grid is much larger and centered around the

impulse, and the impulse-response h decays to zero in all directions. In this

simplified example, only a two-by-two grid is observed; essentially in this set-

up we are assuming that ozone spreads up and to the right only.

In order to obtain the matrix H, a first step is to fix an ordering of the

locations and times so that the input X and the impulse-response h may be

viewed as vectors. For example, we may order the points from left to right,

top to bottom, t1 to t2, setting

X = [0, 0, 1, 0, 0, 0, 0, 0] ,

h = [.3, .9, .7, .8, 2, 7, 5, 6] .

Thus with this ordering, the impulse is at position 3.

The next step is to constuct H. From equation (??), the diagonal elements
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of H will all be equal to the value of h at the location and time of the impulse,

which in this example is .7. Similarly, any entry Hi,j will equal the value of

h at position i if the impulse were at position j, or zero if no such value of h

exists. In this illustration,

H =





.7 0 .3 0 0 0 0 0

.8 .7 .9 .3 0 0 0 0

0 0 .7 0 0 0 0 0

0 0 .8 .7 0 0 0 0

5 0 2 0 .7 0 .3 0

6 5 7 2 .8 .7 .9 .3

0 0 5 0 0 0 .7 0

0 0 6 5 0 0 .8 .7





.

For example, consider H2,4. If the impulse were at location 4 (i.e. if the

impulse were moved one position to the right of its current position), then

position 2 would be right on top of the impulse, and at the same time t1.

From h we observe that the position right on top of the impulse at the same
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time t1 (position 1) obtains a response of .3. Therefore H2,4 = .3.

In order to use the linear filter to obtain approximate inputs X using

observed outputs Y , the inverse of H is required in view of equation (??).

The matrix H may readily be inverted using any standard statistical or linear

algebraic software package. In the present example,

H
−1 ≈





1.4 0 −.6 0 0 0 0 0

−1.6 1.4 −.4 −.6 0 0 0 0

0 0 1.4 0 0 0 0 0

0 0 −1.6 1.4 0 0 0 0

−10 0 4.7 0 1.4 0 −.6 0

11 −10 1.8 4.7 −1.6 1.4 −.4 −.6

0 0 −10 0 0 0 1.4 0

0 0 11 −10 0 0 −1.6 1.4





.

Using H
−1 and observed outputs Y , approximate inputs may immediately

be obtained via equation (??).
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In certain applications, the ST -by-ST matrix H is too large for its inverse

H
−1 to be calculated readily. However, as noted above, in practice most of

the off-diagonal elements of H are zeros. In such cases it may be useful to

partition the matrix H and invert portions of H separately. That is, one may

find a subset S of spatial-temporal lags such that hu is significantly different

from zero for u in S and invert just this portion of H to obtain H̃
−1. The

entire matrix H
−1 may be constructed by iterating lagged copies of H̃

−1, and

more importantly for a vector of outputs Y , the product H
−1

Y may be com-

puted via piecewise application of H̃
−1 to portions of Y . The reader may see

http://www.stat.ucla.edu/∼frederic/papers/ozone2000 for further details.
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Table 1. Univariate Linear Regression of Ozone on Vehicle Emission Rate

intercept slope R
2

.57 (.002) .0002 (.0027) 1.2 ×10−7
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Figure 1: Ozone concentrations (in pptmv), noon, 8/27/87, output by SMOG

model.

Figure 2: Ozone concentration outputs (in pptmv) versus NMHC emission rate

inputs (in Mg/hr), 8/27/87.

Figure 3: Ozone impulse-response (in pptv), noon 8/27/87, resulting from a .13%

impulse in NMHC at 8am-9am.

Figure 4: Ozone impulse-response (in pptv) versus time. Solid line corresponds

to impulse A; dashed to impulse B; dotted line is halved response to impulse

B.

Figure 5: Ozone impulse-response (in pptv) versus longitude. Solid line corre-

sponds to impulse A; dotted to impulse B; dashed to impulse C.

Figure 6: Ozone impulse-response (in pptv) versus latitude. Solid line corre-

sponds to impulse A; dotted to impulse B; dashed to impulse C.
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Figure 7: Response (in pptv) to impulse B versus response (in pptv) to impulse

A. The line Y = 2X is overlaid.

Figure 8: Estimated and actual NMHC inputs for 8/28/87, 8am-9am, in Mg/hr

Figure 9: Estimated versus actual NMHC inputs for 8/28/87, 8am-9am, in

Mg/hr
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