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We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework
of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate
setup of the initial partons’ transverse momenta. We derive a new result for medium modified heavy quark
fragmentation functions in deeply inelastic scattering. It is consistent with the previous calculation of light
quark energy loss in the massless limit, but leads to a new correction term in the heavy quark case, which
vanishes in the soft gluon radiation limit. We show numerically the significance of the new correction term
in the calculation of heavy quark energy loss as compared to previous studies and with soft gluon radiation
approximation.

DOI: 10.1103/PhysRevD.98.054015

I. INTRODUCTION

In the past decade, tremendous progress has beenmade in
understanding the jet quenching phenomena via various
observables in high-energy nucleus-nucleus collisions
[1–3]. Within perturbative-QCD-based theoretical frame-
works for multiple parton scattering and parton energy loss
in a nuclear medium, one is able to use the experimental data
on jet quenching to probe the fundamental properties of the
cold nuclei and the hot densemediumcreated in high-energy
heavy-ion collisions [4–7]. One seminal study is the
systematic extraction of jet quenching parameter, q̂, by
the JET Collaboration [8], in which a global fitting to the
experimental data on single inclusive hadron production at
the Relativistic Heavy-Ion Collider and the Large Hadron

Collider has been performed based on several jet quenching
models formultiple parton scattering and parton energy loss.
Several of the successful jet quenching models in

explaining the experimental data on hadron or jet produc-
tion are based on the high-twist expansion approach [9–12],
where contributions from multiple scattering between a
propagating jet and medium partons can be effectively
factorized as higher twist corrections to the vacuum
fragmentation functions. These models utilize the gener-
alized twist-4 factorization formalism developed by Qiu
and Sterman [13,14]. The first calculation within this
framework is performed in the process of semi-inclusive
electron-nucleus deep inelastic scattering (SIDIS), where
the light quark energy loss is encoded into the medium
modified quark fragmentation functions [9,10]. This cal-
culation has been further improved by going beyond the
helicity amplitude approximation [11] and including multi-
ple scattering [12] and double quark scattering [15]. The
same techniques were also applied to evaluate heavy quark
energy loss in SIDIS by considering charged-current
interaction [16,17]. Similarly, one can also study the effect
of initial state parton energy loss within the same frame-
work, which has been evaluated in Drell-Yan dilepton
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production in proton-nucleus collisions. In analogy to the
calculation in SIDIS, the effect of initial state parton energy
loss in the Drell-Yan process is encoded in the medium
modified beam quark distribution function [18]. In all these
calculations, the main goal is to investigate the effect of
parton energy loss in nuclear medium from either final state
or initial statemultiple scatterings.Therefore, only a subset of
Feynamn diagrams at next-to-leading order (NLO) are
considered to simplify the calculation by choosing appro-
priate physical gauge for the radiated gluon. However,
without the inclusion of the complete NLO Feynman dia-
grams, a consistent check of gauge invariance is impossible.
The first complete NLO calculation at twist 4 has been

carried out for the transverse momentum weighted differ-
ential cross section in SIDIS [19,20], and later extended to
Drell-Yan lepton pair production in proton-nucleus collisions
[21]. The calculated observable is directly related to the
transverse momentum broadening in SIDIS off nuclear
targets and heavy-ion collisions. In these two calculations,
the authors have included all Feynman diagrams whose
contributions are enhanced by the nuclear size. One technical
aspect of these twist-4 NLO calculations is that appropriate
initial partons’ transversemomenta flow has to be assigned to
ensure the gauge invariance during the course of collinear
expansion. This is of particular importance for the subprocess
of interference between soft and hard rescatterings. The
calculation of symmetric subprocesses (soft-soft and hard-
hard double scattering) is less ambiguous; one can use either
way to reach a gauge invariant result.
In this paper, we apply the newly developed twist-

expansion technique to recalculate the effect of final state
parton energy loss in SIDIS. In particular, we focus on the
channel of charged-current interaction. This allows us to
study light quark and heavy quark radiative energy loss on
the same footing. We compare our results with the previous
studies for both the light quark and heavy quark.
The rest of this paper is organized as follows. In Sec. II,

we introduce our notations, and review the generalized
factorization formalism at twist 4. In Sec. III, we present the
details of our calculation at twist 4 by including both the
quark-gluon double scattering and the interference between
single and triple scatterings. We show how the principle of
gauge invariance guides the transverse momentum flow of
the four initial partons from the nuclear target. In Sec. IV,
we give the final result of medium modified heavy quark
fragmentation functions. In Sec. V, we illustrate numeri-
cally the importance of our gauge invariant result for heavy
quark energy loss by comparing with the previous study
and in the soft limit. A summary is given in Sec. VI.

II. GENERAL FRAMEWORK

For simplicity, we consider the following process of
heavy quark production via the charged-current interaction
in deep inelastic scattering (DIS) off a large nucleus A,

Lðl1Þ þ AðpÞ → νLðl2Þ þHðlHÞ þ X; ð1Þ

where l1 and l2 are the momenta of the incoming lepton
and the outgoing neutrino, p ¼ ½pþ; 0; 0⊥� is the momen-
tum per nucleon of the target nucleus with atomic number
A, and lH is the observed final state heavy meson (H)
momentum. In the channel of charged-current interaction,
the momentum transfer via the exchange of a W� boson is
given by q ¼ l1 − l2 with the invariant mass q2 ¼ −Q2

and Q2 ≪ M2
W is assumed. Notice that both the heavy

quark flavor and the momentum scale of the exchanged
vector boson are labeled as Q in this work.
The differential cross section for single inclusive heavy

meson production can be written as

E2EH
dσH

d3l2d3lH
¼ G2

F

ð4πÞ3s LμνEH
dWμν

d3lH
; ð2Þ

where s ¼ ðpþ l1Þ2 is the lepton-nucleon collision energy
and GF stands for the four-fermion coupling constant. The
charged-current leptonic tensor reads

Lμν ¼
1

2
Tr½=l1γμð1 − γ5Þ=l2ð1þ γ5Þγν�: ð3Þ

The semi-inclusive hadronic tensor is defined by

EH
dWμν

d3lH
¼ 1

2

X
X

hAjJμjX;HihX;HjJν†jAi

× 2πδ4ðqþ p − pX − lHÞ; ð4Þ

where
P

X sums over all possible final states, Jμ ¼P
fψ̄fγ

μVψf is the hadronic charged current, and V ¼
ð1 − γ5ÞVij with Vij stands for the Cabibbo-Kobayashi-
Maskawa flavor mixing matrix [22].
The above mechanism of single inclusive heavy meson

production in DIS can be illustrated in Fig. 1(a): a W�
boson is radiated from the projectile lepton and collides
with a light quark from the nuclear target, a heavy quark Q
with mass M and momentum lQ is produced and then
fragments into a heavy meson in the final state. In fixed
order calculation, there is no collinear divergence for final
state gluon radiation, because of the finite heavy quark
mass that naturally serves as a regulator. However, in the
case when the momentum scale Q is much larger than the
heavy quark mass M, Q2 ≫ M2, one encounters large
logarithms, lnðQ2=M2Þ, which spoil the perturbative con-
vergence. In this case, an all order resummation of such
large logarithms has to be performed in the calculation.
Such a resummation is normally done by solving the
renormalization equation of final state heavy quark frag-
mentation functions [23]. Therefore, the hadronic tensor at
leading twist can be factorized into the convolution of
nuclear quark distributions fAq , heavy flavor fragmentation
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functions DQ→H, and the partonic cross section
Hμν

W�þq→QþX
,

dWμν;S

dzH
¼ fAqðx; μ2I Þ ⊗ Hμν

W�þq→QþX
ðx; zH; p; q;M; μI; μFÞ

⊗ DQ→HðzH; μ2FÞ; ð5Þ

where the superscript S stands for single scattering, the sum
over initial state quark flavors is suppressed for simplicity,
and μI and μF represent initial and final state factorization
scale, respectively.
At leading twist, the hard partonic part at lowest order is

Hð0Þ
μν ðx; p; q;MÞ

¼ 1

2
jVijj2Tr½=pγμð1 − γ5Þð=qþ x=pþMÞð1þ γ5Þγν�

×
2π

2p · q
δðx − xB − xMÞ; ð6Þ

where the Lorentz invariant variables are defined as

xM ¼ M2

2p · q
; xB ¼ Q2

2p · q
;

z ¼ p · lQ

p · q
; zH ¼ p · lH

p · q
: ð7Þ

Inside a large nucleus, the propagating heavy quark
encounters additional scatterings with the nuclear target
remnants as shown in Fig. 1(b), which lead to nontrivial
medium modifications to heavy quark production. In this
paper, we focus on the radiative energy loss due to the
medium induced gluon radiations with 4-momenta l. This
effect in general is a nuclear enhanced power correction to
final state heavy quark fragmentation functions [16,17].
Such a power correction can be computed within the high-
twist expansion formalism developed by Qiu and Sterman
[13,14]. Within this framework, the collinear QCD dynam-
ics of multiple parton interaction are contained in the
medium modified splitting functions that are perturbatively
calculable, while the medium property is contained in the
high-twist nonperturbative multiparton correlation func-
tions. Recently, the QCD evolution equation for the
renormalized twist-4 quark-gluon correlation function
was derived [19]. In this paper, we aim to derive the
perturbative medium modified splitting functions through
NLO computations.
We apply the recently improved twist-4 collinear fac-

torization technique [20] to calculate the medium induced
gluon radiation of the heavy quark in DIS. The leading
contribution from double scattering processes can be
obtained by taking collinear expansion of the hard partonic
cross section with respect to the transverse momenta of
initial partons

dWD
μν

dzH
¼

X
q

Z
1

zH

dz
z
DQ→HðzH=zÞ

Z
dy−

2π
dy−1 dy

−
2

1

2
hAjψ̄qð0ÞγþFσ

þðy−2 ÞFþσðy−1 Þψqðy−ÞjAi

×

�
−
1

2
gαβ

�� ∂2

∂kα2T∂kβ3T
H̄D

μνðy−; y−1 ; y−2 ; k2T; k3T; p; q;M; zÞ
�����

k2T¼0
k3T¼0

; ð8Þ

where the superscript D stands for double scattering, and k2T and k3T are the relative transverse momenta carried by gluons
from the nucleus in the double scattering (see the next section for their definitions). The hard partonic part of central-cut
diagrams can be written in the following general form:

(a) (b)

FIG. 1. The general diagrams for single inclusive heavy meson production in SIDIS off a nuclear target: (a) single scattering and
(b) heavy-quark-gluon double scattering. The thick lines represent heavy quarks.
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H̄D
Cμνðy−; y−1 ; y−2 ; k2T; k3T; p; q;M; zÞ ¼

Z
dx

dx1
2π

dx2
2π

eix1p
þy−þix2pþy−

1
þiðx−x1−x2Þpþy−

2

Z
d4l
ð2πÞ4

×
1

2
Tr½p · γγμVpσpρĤσρV†γν�2πδþðl2Þδ

�
1 − z −

l−

q−

�
: ð9Þ

We apply collinear approximation to simplify the evaluation of the trace of γ matrices,

pσĤσρpρ ≈
ðγ · lQ þMÞ

4l−
Q

Tr½γ−pσĤσρpρ�: ð10Þ

After integrating out x; x1; x2, and l� with the help of contour integration and δ-functions from final state phase space, the

partonic hard part at twist-4 can be factorized into the product of leading-order hard part for V þ quark Hð0Þ
μν ðx; p; q;MÞ at

leading twist as shown in Eq. (6) and the heavy-quark-gluon rescattering part H̄D,

H̄D
μνðy−; y−1 ; y−2 ; k2T; k3T; p; q;M; zÞ ¼

Z
dxHð0Þ

μν ðx; p; q;MÞH̄Dðy−; y−1 ; y−2 ; k2T; k3T; p; q;M; zÞ: ð11Þ

Hence in the following we only show the rescattering
part H̄D. Notice that we have verified that the same result
can be obtained by going beyond the collinear approxi-
mation, i.e., through exact calculation by contracting the
hadronic tensor Wμν with the so-called “metric” contribu-
tion proportional to gμν in the charged-current leptonic
tensor Lμν in Eq. (3) [20].

III. MEDIUM INDUCED GLUON RADIATION
AT TWIST 4

In this section we present the details of the calculation of
the twist-4 contribution to heavy meson production in DIS.
A complete twist-4 calculation at NLO contains contribu-
tions involving both quark-gluon and gluon-gluon twist-4
matrix elements. In this paper, we neglect contribution from
gluon-gluon double scattering as it is irrelevant to the
power correction to final state heavy quark fragmentation,
which is the main focus of this paper. There are four
different kinds of subprocesses in quark-gluon double
scattering with real gluon radiation in the final state:
soft-soft double scattering, hard-hard double scattering,
and the interferences between them, referred as soft-hard
and hard-soft double scattering.1 This classification is
based on whether the momenta of the exchanged gluons
(i.e., kg and k0g on the amplitude and complex conjugate of
the amplitude, respectively) have 0 or finite momenta in the
collinear limit k2T ¼ k3T ¼ 0.
The computation of heavy quark energy loss in DIS has

already been performed in Ref. [17] by setting the same
transverse momentum for the rescattered gluons from the
nucleus. This setting has been shown to be valid, in the case
of light hadron production, for symmetric double scattering

subprocesses, such as hard-hard and soft-soft double
scatterings [20]. We have verified explicitly that this
statement also holds for heavy flavor meson production.
Therefore we do not present exhaustive calculations of the
subprocesses for hard-hard and soft-soft double scattering,
but instead concentrate on the asymmetric subprocesses,
i.e., the interference between soft and hard rescatterings. In
order to ensure gauge invariant results at twist-4, on-shell
conditions for the initial partons (associated with the 2 → 2
hard scattering) have to be satisfied up to Oðk2TÞ and
Oðk3TÞ as specified in Ref. [20] for light hadron produc-
tion, which is also true for heavy meson production as
explained below. This requirement is fulfilled, as proposed
in Ref. [20], by a delicate assignment of the transverse
momenta for the initial partons from the nuclear target. We
apply the same assignment in the calculation of interference
subprocesses for heavy meson production in DIS.
To simplify the calculation by means of less Feynman

diagram evaluation, we use the following polarization
tensor for the final state radiated gluon in light-cone gauge
(n · A ¼ 0),

εμνðkÞ ¼ −gμν þ
kμnν þ nμkν

k · n
; ð12Þ

where a particular reference vector n ¼ ½1; 0−; 0⃗⊥� has to be
implemented. In principle, the final result is gauge inde-
pendent if one considers all Feynman diagrams. In this
paper, we aim to extract the large logarithmic term,
lnðQ2=M2Þ, which is only related to final state gluon
radiation. Thus we only consider Feynman diagrams with
gluon radiated from the final state heavy quark. This
simplification is realized by choosing an appropriate
light-cone reference vector as specified above. With this
particular gauge choice, all Feynman diagrams with gluon
radiated from the initial state light quark, as well as the

1We follow the terminologies in Ref. [20], which are different
from those in Ref. [17].

DU, HE, WANG, XING, and ZONG PHYS. REV. D 98, 054015 (2018)

054015-4



interference between initial and final state gluon radiations,
contribute to collinear divergence (in q2T ≪ Q2 limit)
related to the renormalization of initial state multiparton
correlation function, which is not the focus of this paper.

A. Heavy-quark-gluon double scattering

With the light-cone gauge choice for the radiated gluon
as shown in Eq. (12), half of the diagrams that we need to
consider in the process of interference between soft and
hard gluon rescattering are shown in Fig. 2. All the relevant
double scattering diagrams can be found in Refs. [10,17].
The soft rescattering subprocess at amplitude level can be
viewed as two factorized scatterings: the first V þ q →
Qþ g hard scattering, and the second soft rescattering
Qþ g → Q by exchanging a soft gluon. To ensure gauge
invariance, the initial quark associated with the first
scattering is required to be on its mass shell, i.e., k21 ¼ 0
[24], while no on-shell requirement is needed for the initial
gluon in the second soft scattering since it is essentially a
leading-order QCD interaction. On the other hand, the hard
rescattering subprocess can be factorized as the first vector
boson-quark hard scattering V þ q → Q and the second
hard rescattering Qþ g → Qþ g. In this case, to ensure
gauge invariance for the second Qþ g → Qþ g process,
the exchanged gluon is required to be on its mass shell
(k2g ¼ 0) up to the order in which we perform collinear
expansion, and no requirement is needed for the initial
quark associated with the first scattering. In addition, to
avoid complications from the “minus” components of the
momenta for both exchanged gluons in the amplitude and
its complex conjugate, we could simply set the momenta of
the two exchanged gluons as kg ¼ x3pþ k3T and
k0g ¼ x2pþ k2T . To preserve momentum conservation on
both sides of the cut line, we have to assign a transverse
momentum of k3T − k2T to the initial quark associated with
the leading-order V þ q → Q hard scattering.

We take soft-hard double scattering as an example to
outline the essential steps in the calculation of twist-4
contributions, and all the other subprocesses could be
evaluated in the same manner. In this subprocess as shown
in Fig. 2, based on the analysis specified above, we can
assign the momenta for the initial partons as k1 ¼ xp; k2 ¼
x1pþ k3T − k2T; kg ¼ x3pþ k3T and k0g ¼ x2pþ k2T [see
Fig. 1(b)]. The two on-shell propagators labeled by the
short bar and cross mark that lead to soft and hard initial
gluons can be expressed as follows:

1

ðlQ−kgÞ2−M2þ iϵ
¼ 1

2pþq−zðx−xL−xB−xM=zÞþ iϵ
;

ð13Þ

1

ðk2 þ qÞ2 −M2 − iϵ
¼ 1

2pþq−ðx1 − xB − xF − xMÞ − iϵ
:

ð14Þ

On the other hand, the on-shell condition for the final state
quark gives

δþðl2
Q−M2Þ¼ 1

2pþq−z
δðx1þx2−xL−xD−xB−xM=zÞ;

ð15Þ

where xM and xB are defined in Eq. (7), and

xL ¼ l⃗2
T

2pþq−zð1 − zÞ ; xD ¼ k⃗23T − 2k⃗3T · l⃗T

2pþq−z
;

xF ¼ ðk⃗3T − k⃗2TÞ2
2pþq−

: ð16Þ

One can then integrate over x; x1, and x2,

Z
dx

dx1
2π

dx2
2π

eix1p
þy−þix2pþy−

1
þiðx−x1−x2Þpþy−

2
1

x − xL − xB − xM=zþ iϵ
δðx1 þ x2 − xL − xD − xB − xM=zÞ

x1 − xB − xF − xM − iϵ

¼ eiðxBþxLþxM=zÞpþy−eixDp
þðy−

1
−y−

2
Þθð−y−2 Þθðy− − y−1 Þe−iðxLþð1−zÞxM=z−xFÞpþðy−−y−

1
Þ; ð17Þ

where two of the integrations are carried out by contour integrations, and the last one is fixed by the δ function from final
state on-shell condition. Then the initial state partons’ momentum fractions are fixed as follows,

H
H

FIG. 2. Left: The central-cut diagrams for soft-hard double scatterings in SIDIS. The short bar and cross mark indicate the propagator
where the soft pole and hard pole arise. Right: explicit diagrams for the “H”-blob representing the Qþ g → Qþ g process.
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x ¼ xL þ xB þ xM=z; x1 ¼ xB þ xF þ xM; x2 ¼ xL þ xD þ ð1 − zÞxM=z − xF; x3 ¼ xD: ð18Þ

It is clear that in the collinear limit k2T ¼ k3T ¼ 0, the momentum fraction for the initial gluon on the left- and right-hand
side of the cut line becomes 0 and remains finite, respectively. This explains why we refer to this process as soft-hard double
scattering.
The key point in high-twist calculation is to perform collinear expansion. With the fixed momentum fractions for soft-

hard double scattering as shown in Eq. (18), we have

∂2H̄D
C−sh

∂kα2T∂kβ3T

����k2T¼0
k3T¼0

¼
Z

dl⃗2
T
αs
2π

1þ z2

1 − z
2CAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�4

eiðxþxLþð1−zÞxM=zÞpþy− 2παs
Nc

θð−y−2 Þθðy− − y−1 ÞH̃D
C−sh; ð19Þ

where

H̃D
C−sh ¼

�
−1þ ð1 − zÞ

2
þ 2ð1 − zÞ3zð1þ zÞ

1þ z2
M2

l⃗2
T

−
ð1 − zÞ4ð3z3 − 5z2 þ 7z − 1Þ

2ð1þ z2Þ
M4

l⃗4
T

−
2CF

CA

�
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ4
1þ z2

M2

l⃗2
T

�
e−iðxLþð1−zÞxM=zÞpþðy−−y−

1
Þ: ð20Þ

Notice that we have neglected contributions that are power suppressed, such as the derivative terms on the twist-4 quark-
gluon correlation functions, and that all the momentum fractions (x’s) appearing in the phase factor here and below have
been shifted to xB þ xM as Eq. (6) requires.
Now, let us compare our result to the one in Ref. [17], which is derived from the naive setup k2T ¼ k3T .

2 The difference
from soft-hard double scattering is

ΔH̃D
C−sh ¼ H̃D

C−sh − H̃D;Ref: ½17�
C−sh

¼ −
�
z −

1

2
þ CF

CA
ð1 − zÞ2

��
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

e−iðxLþð1−zÞxM=zÞpþðy−−y−
1
Þ: ð21Þ

As one can see the difference is proportional to ð1 − zÞ2M2, which vanishes in the soft limit z → 1 or massless
limit M ¼ 0.
Following the same logic, one can assign initial state parton momenta k1 ¼ xpþ k2T − k3T; k2 ¼ x1p; kg ¼ x3pþ k3T

and k0g ¼ x2pþ k2T in the process of hard-soft double scattering. The final result can be obtained from the soft-hard double
scattering via the replacement e−iðxLþð1−zÞxM=zÞpþðy−−y−

1
Þ → e−iðxLþð1−zÞxM=zÞpþy−

2 in Eq. (20). Thus the difference to Ref. [17]
in hard-soft double scattering is

ΔH̃D
C−hs ¼ −

�
z −

1

2
þ CF

CA
ð1 − zÞ2

��
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

e−iðxLþð1−zÞxM=zÞpþy−
2 ; ð22Þ

which, again, vanishes in the soft or massless limit.
For soft-soft and hard-hard double scattering subprocesses, one can use the same assignments of the initial partons’

transverse momentum flow as in Ref. [17], and we obtain the same results, namely,

ΔH̃D
C−ss ¼ ΔH̃D

C−hh ¼ 0: ð23Þ
For hard-hard double scattering, we have checked that three different settings of the transverse momenta for initial state
partons reach exactly the same result.
By combining all contributions from quark-gluon double scattering with a central cut together, we obtain the final result

∂2H̄D
C

∂kα2T∂kβ3T

����
k2T¼0
k3T¼0

¼
Z

dl⃗2
T
αs
2π

1þ z2

1 − z
2CAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�4

eiðxþxLþð1−zÞxM=zÞpþy− 2παs
Nc

θð−y−2 Þθðy− − y−1 ÞH̃D
C ; ð24Þ

where

2There are some typos in Ref. [17]; the correct final results can be obtained from Eqs. (20)–(25) and (28)–(31).
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H̃D
C ¼

�
1þ ð1 − zÞ2ð1 − 6zþ z2Þ

1þ z2
M2

l⃗2
T

þ 2ð1 − zÞ4z
1þ z2

M4

l⃗4
T

�

þ
�
1 − ð1 − zÞ þ CF

CA
ð1 − zÞ2

��
1þ 2ð1 − zÞ4

1þ z2
M2

l⃗2
T

þ ð1 − zÞ4M
4

l⃗4
T

�
e−iðxLþð1−zÞxM=zÞpþðy−−y−

1
þy−

2
Þ

þ
�
−1þ ð1 − zÞ

2
þ 2ð1 − zÞ3zð1þ zÞ

1þ z2
M2

l⃗2
T

−
ð1 − zÞ4ð3z3 − 5z2 þ 7z − 1Þ

2ð1þ z2Þ
M4

l⃗4
T

−
2CF

CA

�
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ4
1þ z2

M2

l⃗2
T

�
½e−iðxLþð1−zÞxM=zÞpþðy−−y−

1
Þ þ e−iðxLþð1−zÞxM=zÞpþy−

2 �: ð25Þ

The first two terms on the right-hand side of Eq. (25) represent the contributions from the soft-soft and hard-hard
subprocesses, respectively, which remain the same as in Ref. [17]. The third term represents the contributions from their
interferences, which give different quark mass dependence as compared to previous calculations in Ref. [17]. It is worth
noting that a factor 1=2 is needed when they are compared with Eq. (26) in Ref. [17].

B. Interference from single and triple scatterings

To complete the calculation, we also need to consider the asymmetric-cut diagrams (left cut and right cut), which
represent interferences between single and triple scatterings. All the possible interference diagrams can be found in
Ref. [10]. We can obtain the rescattering part H̄D

RðLÞ of all those asymmetric-cut diagrams in the guidance of the gauge
invariance as demonstrated above. The calculation techniques follow exactly the same as those in the double scattering
process presented in the previous subsection. Thus we neglect the details and list the final results below,

∂2H̄D
L

∂kα2T∂kβ3T

����
k2T¼0
k3T¼0

¼
Z

dl⃗2
T
αs
2π

1þ z2

1 − z
2CAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�4

eiðxþxLþð1−zÞxM=zÞpþy− 2παs
Nc

θðy− − y−1 Þθðy−1 − y−2 ÞH̃D
L ; ð26Þ

∂2H̄D
R

∂kα2T∂kβ3T

����
k2T¼0
k3T¼0

¼
Z

dl⃗2
T
αs
2π

1þ z2

1 − z
2CAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�4

eiðxþxLþð1−zÞxM=zÞpþy− 2παs
Nc

θð−y−2 Þθðy−2 − y−1 ÞH̃D
R ; ð27Þ

where

H̃D
L ¼ −2

�
CF

CA
ð1 − zÞ2 þ z

��
ð1þ zÞ2 þ ð1 − zÞ4 M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

× ½1 − e−iðxLþð1−zÞxM=zÞpþðy−−y−
1
Þ�; ð28Þ

H̃D
R ¼ −2

�
CF

CA
ð1 − zÞ2 þ z

��
ð1þ zÞ2 þ ð1 − zÞ4 M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

× ½1 − e−iðxLþð1−zÞxM=zÞpþy−
2 �: ð29Þ

Comparing to the results in Ref. [17], one can see that the gauge invariant collinear expansion also leads to additional
terms,

ΔH̃D
L ¼ −

�
z −

1

2
þ CF

CA
ð1 − zÞ2

��
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

× ½2 − e−iðxLþð1−zÞxM=zÞpþðy−−y−
1
Þ − e−iðxLþð1−zÞxM=zÞpþðy−−y−

2
Þ�; ð30Þ

ΔH̃D
R ¼ −

�
z −

1

2
þ CF

CA
ð1 − zÞ2

��
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

× ½2 − e−iðxLþð1−zÞxM=zÞpþy−
2 − e−iðxLþð1−zÞxM=zÞpþy−

1 �: ð31Þ

Again, the new correction terms vanish in the soft or massless limit.
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IV. MODIFIED FRAGMENTATION FUNCTION

Substituting the summation of Eqs. (24), (26), and (27) into Eqs. (11) and (8) and including the gluon fragmentation
processes along with virtual corrections, which can be obtained with the help of the unitarity requirement similarly as in
Ref. [10], one can derive the semi-inclusive hadronic tensor from quark-gluon double scattering and interference between
single and triple scatterings,

dWD
μν

dzH
¼

X
q

Z
dxHð0Þ

μν ðx; p; q;MÞ
Z

1

zH

dz
z
DQ→H

�
zH
z

�
αs
2π

1þ z2

1 − z

Z
dl⃗2

T
CAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�4

×
2παs
Nc

TA;Q
qg ðx; xL;M2Þ þ ðg − fragmentationÞ þ ðvirtual correctionsÞ; ð32Þ

where

TA;Q
qg ðx; xL;M2Þ≡ TA;C

qg ðx; xL;M2Þ þ TA;L
qg ðx; xL;M2Þ þ TA;R

qg ðx; xL;M2Þ; ð33Þ

TA;C
qg ðx; xL;M2Þ ¼

Z
dy−

2π
dy−1 dy

−
2 H̃

D
Ce

iðxþxLþð1−zÞxM=zÞpþy− 1

2
hAjψ̄qð0ÞγþFσ

þðy−2 ÞFþσðy−1 Þψqðy−ÞjAiθð−y−2 Þθðy− − y−1 Þ;

ð34Þ

TA;L
qg ðx; xL;M2Þ ¼

Z
dy−

2π
dy−1 dy

−
2 H̃

D
Le

iðxþxLþð1−zÞxM=zÞpþy− 1

2
hAjψ̄qð0ÞγþFσ

þðy−2 ÞFþσðy−1 Þψqðy−ÞjAiθðy− − y−1 Þθðy−1 − y−2 Þ;

ð35Þ

TA;R
qg ðx; xL;M2Þ ¼

Z
dy−

2π
dy−1 dy

−
2 H̃

D
Re

iðxþxLþð1−zÞxM=zÞpþy− 1

2
hAjψ̄qð0ÞγþFσ

þðy−2 ÞFþσðy−1 Þψqðy−ÞjAiθð−y−2 Þθðy−2 − y−1 Þ:

ð36Þ

In the course of collinear expansion, we have kept l⃗T

finite when taking the limit k⃗T → 0. Consequently, in the
soft rescattering, the gluon field in the twist-4 parton matrix
elements in part of Eqs. (34)–(36) carries zero momentum.
However, in QCD, the gluon distribution function xfgðxÞ is
not defined at x ¼ 0. As argued in Refs. [9,10], this issue is
owed to the lack of higher order contributions in the
collinear expansion. As a remedy, one can resum a subset
of the higher-twist terms in the collinear expansion to

restore the phase factors in the form as expðixTpþyÞ, where
xT ≡ hk⃗2Ti=2pþqz is related to the intrinsic transverse
momentum of the initial gluons; namely, the soft gluon
fields in the twist-4 matrix elements carry a resulting
fractional momentum xT .
Combined with the single scattering contribution, the

semi-inclusive tensor can be rewritten in terms of amodified
heavy quark fragmentation function D̃Q→HðzH; μ2Þ,

dWμν

dzH
¼

X
q

Z
dxf̃Aqðx; μ2I ÞHð0Þ

μν ðx; p; q;MÞD̃Q→HðzH; μ2Þ þ � � � ; ð37Þ

where f̃Aqðx; μ2I Þ is the nuclear quark distribution function that, in principle, should also include the higher-twist contribution
from the initial state scattering. In this study, we focus on the effect of final state multiple scattering and neglect the initial
state multiple scattering, and thus f̃Aqðx; μ2I Þ ≈ fAqðx; μ2I Þ with fAqðx; μ2I Þ being the standard leading twist nuclear quark
distribution function. The modified effective heavy quark fragmentation function is defined as

D̃Q→HðzH; μ2Þ≡DQ→HðzH; μ2Þ þ
Z

μ2

0

dl⃗2
T

l⃗2
T þ ð1 − zÞ2M2

αs
2π

Z
1

zH

dz
z
ΔγQ→Qgðz; x; xL; l⃗2

T;M2ÞDQ→HðzH=z; μ2Þ

þ
Z

μ2

0

dl⃗2
T

l⃗2
T þ z2M2

αs
2π

Z
1

zH

dz
z
ΔγQ→gQðz; x; xL; l⃗2

T;M2ÞDg→HðzH=z; μ2Þ; ð38Þ

where DQ→HðzH; μ2Þ and Dg→HðzH; μ2Þ are the heavy quark and gluon fragmentation functions at leading twist,
respectively. The modified splitting functions are defined as
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ΔγQ→Qgðz; x; xL; l⃗2
T;M2Þ ¼

�
1þ z2

ð1 − zÞþ
TA;Q
qg ðx; xL;M2Þ þ δð1 − zÞΔTA;Q

qg ðx; l⃗2
T;M2Þ

�
2παsCAl⃗

4
T

½l⃗2
T þ ð1 − zÞ2M2�3NcfAqðx; μ2I Þ

;

ð39Þ

ΔγQ→gQðz; x; xL; l⃗2
T;M2Þ ¼ ΔγQ→Qgð1 − z; x; xL; l⃗

2
T;M2Þ; ð40Þ

where

ΔTA;Q
qg ðx; l⃗2

T;M2Þ≡
Z

1

0

dz
1

1 − z
½2TA;Q

qg ðx; xL;M2Þjz¼1 − ð1þ z2ÞTA;Q
qg ðx; xL;M2Þ�: ð41Þ

V. HEAVY QUARK ENERGY LOSS

As shown in Eqs. (21), (22), (30), and (31), the new
correction terms in this calculation are all proportional to
ð1 − zÞ2M2, which vanish in the soft or massless limit.
Therefore, for light quark energy loss calculation as shown
in Refs. [9–11], the final result is gauge invariant, and the
phenomenological applications based on this result remain
the same. The heavy quark energy loss as calculated in
Refs. [16,17] is complete and gauge invariant only in the
soft gluon radiation limit, which has been employed in
phenomenological study of heavy meson production in
heavy-ion collisions [25–27]. For a more complete phe-
nomenological investigation of heavy quark energy loss
beyond soft gluon limit, one should consider the issue of
gauge invariance and the results obtained in this study
should be used instead.
In order to quantitatively estimate the new correction

terms in heavy quark energy loss, we consider the leading

contribution in the limit of a large nuclear size, which is
proportional to A2=3 due to non-Abelian Laudau-
Pomeranchuk-Migdal (LPM) interference in the twist-4
contributions. Following the same ansatz as in
Refs. [16,17] for the nonperturbative twist-4 parton matrix
element, we assume a factorized form in the limit xL ≪ x,

TA;C
qg ðx;xL;M2Þ≈ C̃

xA
fAqðxÞð1−e−x̃

2
L=x

2
AÞaðz;M2=l⃗2

TÞ; ð42Þ

where x̃L ¼ xL þ zxM=ð1 − zÞ, xA ≡ 1=mNRA, and the
coefficient C̃ is proportional to the gluon distribution inside
a nucleon, whose value can be taken as C̃ ¼ 0.0060 as
determined by fitting to data on light hadron production in
DIS off nuclear targets according to Ref. [4]. The sup-
pression factor 1 − e−x̃

2
L=x

2
A due to the LPM interference

arises from the phase factor in Eq. (25) integrated with a
Gaussian nuclear distribution of a radius RA. In Eq. (42),

aðz;M2=l⃗2
TÞ ¼

ð1þ zÞ
2

−
2ð1 − zÞ3zð1þ zÞ

1þ z2
M2

l⃗2
T

þ ð1 − zÞ4ð3z3 − 5z2 þ 7z − 1Þ
2ð1þ z2Þ

M4

l⃗4
T

þ 2CF

CA

�
ð1þ zÞ2 þ ð1 − zÞ4M

2

l⃗2
T

� ð1 − zÞ4
1þ z2

M2

l⃗2
T

; ð43Þ

which differs from Ref. [17] by

Δa≡ a − aRef: ½17� ¼
�
z −

1

2
þ CF

CA
ð1 − zÞ2

��
ð1þ zÞ2 þ ð1 − zÞ4 M

2

l⃗2
T

� ð1 − zÞ2
1þ z2

M2

l⃗2
T

: ð44Þ

In massless limit M ¼ 0, a reduces to ð1þ zÞ=2 and reproduces the result in Ref. [11].
With the parametrized form of the twist-4 matrix element as in Eq. (42), one can then estimate the averaged heavy quark

energy loss, which is defined as the fractional energy carried by the radiated gluon,

hΔzQg iðxB; μ2Þ ¼
Z

μ2

0

dl⃗2
T

Z
1

0

dz
αs
2π

ð1 − zÞΔγQ→Qgðz; xB; xL; l⃗2
TÞ

l⃗2
T þ ð1 − zÞ2M2

¼ C̃CAα
2
sxB

NcQ2xA

Z
1

0

dz
1þ ð1 − zÞ2
zð1 − zÞ

Z
x̃μ

x̃M

dx̃L
ðx̃L − x̃MÞ2

x̃4L
ð1 − e−x̃

2
L=x

2
AÞaðz;M2=l⃗2

TÞ; ð45Þ

where x̃M ¼ zxM=ð1 − zÞ and x̃μ ¼ μ2=2pþq−zð1 − zÞ þ x̃M ¼ xB=zð1 − zÞ þ x̃M if we choose the factorization scale
μ2 ¼ Q2, and the constraint of x̃L integration comes from the requirement of xL < 1 as in Ref. [17].
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To evaluate heavy quark energy loss numerically, we
choose charm quark massM ¼ 1.5 GeV and xA ¼ 0.04 for
a nucleus with a radius RA ¼ 5 fm. In the left panel of
Fig. 3, we show in the red solid curve the relative difference
between the new result in this study and that in Ref. [17] as
a function of Q2 with fixed xB ¼ 0.1. One can see that the
new correction term due to consideration of gauge invari-
ance leads to significant additional contribution to the
heavy quark energy loss in the small Q2 region. However,
the difference becomes negligible in the large Q2 region.
This is understandable from Eq. (44). The difference is
proportional to M2, and therefore suppressed in the large
Q2 region like any other higher-twist effect. The difference
between our new result and the commonly used soft gluon
radiation limit is shown in the blue dashed curve, which is
as large as 16% in the large Q2 region. It is therefore
important to consider contributions beyond the soft limit in
more precise phenomenological studies of heavy quark
energy loss in heavy-ion collisions. Shown in the right

panel of Fig. 3 is the relative difference between our new
results and the previous calculation in Ref. [17] as a
function of xB for fixed Q2 ¼ 10 GeV2. The difference
becomes significant for large values of xB (small initial
heavy quark energy) as shown in the red solid curve. The
contribution beyond the soft gluon limit is also appreciable
at large xB (small heavy quark energy) as shown in the blue
dashed curve.
In order to discuss the difference between heavy

and light quark energy loss, we show the ratio of charm
quark and light quark energy loss R ¼ hΔzQg iðxB; μ2Þ=
hΔzqgiðxB; μ2Þ in Fig. 4, where the light quark energy loss
hΔzqgiðxB; μ2Þ can be obtained by setting M ¼ 0 in
Eq. (45). In Fig. 4, we show the dependence of R with
Q2 for fixed xB ¼ 0.1 (left panel) and with xB for fixed
Q2 ¼ 10 GeV2 (right panel). We observe the reduction of
heavy quark energy loss due to the effect of the dead cone
in our new result (red solid curve) as compared to that in
Ref. [17] (blue dashed curve). Such a reduction is due to the
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FIG. 3. The Q2 and xB dependence of the relative correction of charm quark energy loss δhΔzQg i=hΔzQg i as compared to that from old
work [17] (red solid) and with soft gluon approximation (blue dashed).
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heavy quark mass and therefore should disappear at high
Q2 and large initial quark energy (small xB). Again,
contributions from beyond the soft gluon limit are shown
to be important by comparing the red solid curve (our new
result) and the green dashed-dotted curve [soft gluon
radiation limit, which is also needed to be taken in light
quark energy loss hΔzqgiðxB; μ2Þ at the same time].

VI. SUMMARY

In this paper, we revisited a series of studies [9–11,16,17]
on quark energy loss induced bymultiple parton scattering in
DIS off a nuclear target, using the recently improved
framework of the generalized factorization formalism for
twist-4 processes. By performing the gauge invariant collin-
ear expansion, we found that the light quark energy loss is not
affected, but new correction terms arise for heavy quark
energy loss beyond the soft gluon limit. The correction terms
come from the interference between soft and hard rescatter-
ings. In the soft gluon limit, the new correction terms can be
safely neglected since they are proportional to ð1 − zÞ2. This
validates the phenomenological implementations of heavy
quark energy loss from high-twist calculations in heavy-ion
collisions as have been presented in Refs. [25–27].
To demonstrate the significance of the correction terms,

we evaluated numerically the heavy quark energy loss and
compared with that in Ref. [17]. We found significant
correction in the small Q2 and large xB (small heavy quark
energy) regions. Our new result was also comparedwith that
with soft gluon approximation. The noticeable difference

between these two suggests the importance of implementing
the complete result (beyond soft limit) for more precise
calculation of heavy flavor jet quenching in heavy-ion
collisions. This also has phenomenological consequences
in precise extraction of the jet transport coefficient from light
and heavy flavor data in heavy-ion collisions.
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