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Abstract

Neural Network Antisymmetries for Quantum Many-Body Simulation

by

Jeffmin Lin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lin Lin, Chair

This work is concerned with the accurate numerical simulation of the many-electron
problem, which involves the modeling of the electron wavefunction, from which
all of the properties of a chemical or condensed matter system can, in principle,
be computed. This problem poses a number of challenges, including the effective
parametrization of the wavefunction space. The combination of neural networks and
quantum Monte Carlo methods has arisen as a promising path forward for highly
accurate electronic structure calculations. Previous proposals have combined equiv-
ariant neural network layers with a final antisymmetric layer in order to satisfy the
antisymmetry requirements of the electronic wavefunction. However, to date it is
unclear if one can represent arbitrary antisymmetric functions of physical interest,
and it is difficult to precisely measure the expressiveness of the antisymmetric layer.

In the first chapter of this dissertation, we begin by introducing the electronic struc-
ture problem and the variational nature of finding the lowest energy wavefunction,
or ground state. We describe Metropolis Monte Carlo sampling techniques, as well
as a simplifying reduction to the number of degrees of freedom. We conclude the first
chapter with a brief discussion of some optimization techniques used to address the
variational ground state problem once a trial parametrization has been established.

In the next chapter, we then introduce the form of some modern neural-network
based trial wavefunctions. We attempt to investigate the expressiveness of the anti-
symmetric layers by proposing explicitly antisymmetrized universal neural network
layers. This approach has a computational cost which increases factorially with re-
spect to the system size, but we are nonetheless able to apply it to small systems
to better understand how the structure of the antisymmetric layer affects its perfor-
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mance. We first introduce a generic antisymmetric (GA) neural network layer, which
we use to replace the entire antisymmetric layer of the highly accurate ansatz known
as the FermiNet. We also consider a factorized antisymmetric (FA) layer which more
directly generalizes the FermiNet by replacing the products of determinants with
products of antisymmetrized neural networks.

We next investigate the numerical performance of these explicitly antisymmetrized
ansatzes. We demonstrate that the FermiNet-GA architecture can yield effectively
the exact ground state energy for small atoms and molecules. We find, interestingly,
that the resulting FermiNet-FA architecture does not outperform the FermiNet. This
strongly suggests that the sum of products of antisymmetries is a key limiting aspect
of the FermiNet architecture. To explore this further, we also investigate a slight
modification of the FermiNet, called the full determinant mode, which replaces each
product of determinants with a single combined determinant. We find that the
full single-determinant FermiNet closes a large part of the gap between the stan-
dard single-determinant FermiNet and FermiNet-GA on small atomic and molecular
problems. Surprisingly, on the nitrogen molecule at a dissociating bond length of 4.0
Bohr, the full single-determinant FermiNet can significantly outperform the largest
standard FermiNet calculation with 64 determinants, yielding an energy within 0.4
kcal/mol of the best available computational benchmark.

In the final chapter, we introduce the VMCNet repository, which was used to im-
plement the numerical experiments previously described. VMCNet is intended to be
a flexible, general purpose VMC framework which interfaces natively with the JAX
library for rapid prototyping, performance benefits due to just-in-time XLA compi-
lation, and easy dispatch to multiple GPU systems. We describe both the Python
API, intended for more complex use-cases that require customization of finer details
of the VMC loop, and the command-line interface, which provides a more stream-
lined and encapsulated way to run variational Monte Carlo experiments, including
those described in this dissertation.
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Preface

The highly accurate simulation of many-electron quantum physics is an enterprise
with far-reaching impact in the physical sciences. Efficient numerical simulation of
the quantum many-body problem has the potential to provide both quantitative and
qualitative information on entire families of chemical and condensed matter systems
which can be otherwise prohibitively expensive or even completely impractical to
obtain by experiment. This dissertation focuses on the accurate modeling of electron
behavior in molecular systems.

A fundamental challenge in modeling the behavior of electrons in the many-
body Schrödinger equation is that the electronic wavefunction must be antisymmetric
with respect to particle exchange. When the number of electrons grows, effective
parametrization of the space of such wavefunctions becomes difficult. Deep learning
techniques have recently impacted ab initio quantum chemistry by providing a new
approach to the problem of tractable parameterization of high dimensional function
spaces in quantum many-body problems. Over the past few years, a growing number
of works [9, 45, 14, 43, 41, 23, 66, 28, 47, 13, 55] have demonstrated the use of neural
networks in wavefunction approximation, with an increasing amount of importance
placed on building symmetry constraints into models. In particular, several works
[41, 23, 28, 47, 55] have recently applied neural networks to model antisymmetric
wavefunctions.

In Chapter 1, we provide an abridged introduction to the parts of the many-
electron problem which are salient to the variational Monte Carlo (VMC) [19, 22,
61, 5] technique. In particular, we discuss the variational nature of the ground state
problem. We provide some simple pedagogical examples to give the reader a concrete
foothold, and we revisit one of these examples in Chapter 4 during our overview of
VMCNet [39], a general purpose VMC framework built on the JAX library [6]. We
discuss the Monte Carlo and optimization techniques used to make the variational
problem tractable.

In Chapter 2, we discuss the trial wavefunctions that we explore. We begin by
describing the simplest ansatz for representing antisymmetric electronic wavefunc-
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tions, known as a Slater determinant. The optimization of this ansatz is the core of
the Hartree-Fock (HF) method [59]. Conventionally, the representation power of the
Slater determinant has been improved by including multiplicative Jastrow factors
and transforming the particle coordinates via a so-called backflow transformation
[18, 60], resulting in the Slater–Jastrow–backflow ansatz. While the Hartree Fock
problem can be solved efficiently for a wide range of systems of interest using ma-
trix diagonalization methods, the Slater–Jastrow and the Slater–Jastrow–backflow
ansatzes are significantly more complicated and can in practice only be optimized
using quantum Monte Carlo (QMC) techniques. For strongly correlated quantum
systems, and even weakly correlated quantum systems when high accuracy is re-
quired, a linear combination of either a large number of Slater determinants1 or a
number of Slater–Jastrow–backflow ansatzes is needed to yield a sufficiently low, and
therefore accurate, energy estimate.

Recently, these considerations have led to an active interest in leveraging neural
networks to improve the construction of the backflow [41, 28, 47], the antisymmetry
[23, 47], and the Jastrow factor [28] of these ansatzes. PauliNet [28] uses relatively
small permutation equivariant neural networks for the backflow and invariant neural
networks for the Jastrow factor. The backflow transformation in PauliNet is applied
multiplicatively to the Hartree-Fock orbitals before the determinant layer is applied.
The FermiNet work [47, 53], revealed around the same time as PauliNet, uses a more
sophisticated equivariant backflow transformation with many more parameters. An-
other interesting and surprising feature of the FermiNet is that it eschews the Jastrow
factor entirely. For a given system, the FermiNet often achieves lower energies than
PauliNet [53]. Our discussion in Chapter 2 will focus on the FermiNet architecture.

While there has been some progress [24, 52, 33, 29, 3] in analyzing the expressive-
ness of the permutation equivariant mappings used in the backflow construction [67],
the understanding of the effectiveness of the antisymmetric neural network layers re-
mains limited [24, 29, 34]. Interestingly, Refs. [41, 47, 29] propose that a single
FermiNet determinant could in theory achieve a universal representation of anti-
symmetric functions. However, these constructions are based on either a sorting
process [41, 47] or an equivariant mapping that essentially encodes the entire wave-
function [29]. Both constructions yield discontinuous feature mappings when the
ambient space dimension is larger than 1 or the number of particles is greater than
2, as opposed to the continuous neural network layers used in all works in the liter-
ature so far. Furthermore, in practice, the success of both PauliNet and FermiNet
depends crucially on the quality of the permutation equivariant backflow. Therefore

1When these determinants are constructed from so-called excitations of a single reference de-
terminant, this is called the configuration interaction (CI) method.
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when the VMC energy is higher than the exact ground state energy, it is difficult to
pin down the source of the error.

To address this issue, we consider wavefunction ansatzes which replace parts of
the antisymmetric layer of FermiNet with explicitly antisymmetrized universal neural
networks. The obvious drawback of this approach is that its computational cost
increases factorially with respect to the number of electrons, and it can therefore
only be applied to very small atoms and molecules. However, the use of explicit
antisymmetrization can still allow us to better understand how the structure of the
antisymmetric layer affects the overall performance.

We first consider a generic antisymmetric (GA) layer, which replaces the entire
sum of products of determinants structure in FermiNet with an explicitly antisym-
metrized feed forward neural network. When combined with the FermiNet backflow,
the resulting FermiNet-GA architecture can achieve a universal representation of
antisymmetric functions by construction.

In Chapter 3, we investigate the empirical performance of these neural network
ansatzes. We find that the FermiNet-GA structure is empirically a highly expressive
ansatz. For all systems studied, the error of the correlation energy is less than
1%, and is well below chemical accuracy (1 kcal/mol ≈ 1.6 × 10−3 a.u.). On the
other hand, at least from a practical perspective, we find that the so-called single-
determinant FermiNet, which is in fact computed as a product of two determinants,
is not expressive enough to represent electronic wavefunctions of interest.

To investigate further, we replace the product of determinants in the single-
determinant FermiNet with a product of explicitly antisymmetrized feed forward
neural networks, yielding the factorized antisymmetric neural network layer of rank
1 (FA-1). We find that FA-1 is not able to outperform single-determinant FermiNet,
which suggests that the ineffectiveness of the single-determinant FermiNet is closely
related to its product structure. To explore this further, we define a factorized anti-
symmetric neural network layer of rank K (FA-K), which generalizes the structure
of K-determinant FermiNet. We find that FermiNet-FA-K does not outperform K-
determinant FermiNet, which indicates that the sum-of-products structure is a key
limiting feature of both architectures.

These results suggest that removing this sum-of-products structure may be a
promising avenue towards developing an efficient antisymmetric layer that is more
expressive than the original FermiNet architecture. We thus study a variant of the
FermiNet called full determinant mode which replaces the products of determinants
used in the FermiNet with single combined determinants. The full determinant con-
struction is implemented in the JAX branch of the FermiNet repository [53], and is
also mentioned in passing in the original FermiNet paper [47], but to our knowledge
its performance has not been reported in the literature. We specifically investigate
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the full single-determinant FermiNet, which replaces the product of two determinants
used in single-determinant FermiNet with a single combined determinant. Our nu-
merical results show that full single-determinant FermiNet can close a large part of
the gap between standard single-determinant FermiNet and the true ground state en-
ergy on small atomic and molecular problems. We further evaluate the performance
of full single-determinant FermiNet on the nitrogen molecule at a dissociating bond
length of 4.0 Bohr, a challenging strongly correlated system where the standard Fer-
miNet architecture is not able to yield accurate results even with 64 determinants.
To our great surprise, we find that the full single-determinant FermiNet can out-
perform the standard 64-determinant FermiNet on this system, and the error of the
energy can be as small as 0.4 kcal/mol compared to the best available computational
benchmark.

An important limitation of our numerical work is that for the multiple-determinant
FermiNet, especially when pretraining is not used to initialize our training runs, we
observed some run-to-run variance, where separate optimization runs would seem-
ingly converge to differing final energy levels. In these cases we present the lowest
energy attained, which represents the lowest energy wavefunction which we were able
to obtain and reproduce from a small number of independent runs. While we unfor-
tunately have only a very preliminary understanding of the optimization landscape
for any given neural network architecture, a good characterization of the effects of
statistical uncertainty due to the optimization is important for a careful application
of quantum Monte Carlo techniques in any study of energy differences between dif-
ferent molecular geometries. If this uncertainty is affected by the geometry of the
system in consideration, then the resulting physical predictions may be negatively
affected.

In Chapter 4, we describe the repository underlying all of the numerical results
discussed in this dissertation. We walk the reader through some of the structure
and capabilities of the VMCNet [39] repository for enabling complex variational
Monte Carlo calculations. We provide some involved examples of custom model
construction and the flexibility of the VMCNet Python API for prototyping a full
VMC calculation. We additionally demonstrate that results obtained using VMCNet
are comparable to those published by [47, 53] using the FermiNet repository.

The reader should note that much of this dissertation, especially this Preface, the
later sections of Chapter 1, most of Chapters 2 and 3, and the benchmarking section
of Chapter 4, are closely derived in content and organization from a joint work with
Gil Goldshlager and Lin Lin [38].
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Chapter 1

Variational Monte Carlo

In this chapter, we introduce the many-body electronic structure problem and discuss
some basic pedagogical examples. We explore how Monte Carlo techniques are used
to estimate values of the high dimensional integrals that arise from the calculation of
expectation of observable quantities, and derive the reduction of the full electronic
wavefunction problem to an equivalent problem involving a spatial wavefunction. We
conclude with a brief discussion of optimization techniques used to find the ground
state.

Put together with a parametrization of the electronic wavefunction space, these
techniques are used to find the ground state in a method known as variational
Monte Carlo (VMC) (see Fig. 1.1). A number of excellent references, should the
reader desire a more traditional and in-depth discussion of the topic, are available
at [19, 22, 61, 5].

1.1 The Schrödinger equation

In non-relativistic quantummechanics, one studies the time-dependent Schrödinger
equation. For a particular choice of unit length and a symmetric1 operator Ĥ, this
is given by the partial differential equation

i
∂Ψ

∂t
(X, t) = ĤΨ(X, t). (1.1)

Here X is generally a mixture of continuous and discrete degrees of freedom, such as
spatial degrees of freedom (e.g. a copy of R3 for each particle being modeled) and

1Here the term symmetric is being used in the typical functional analysis sense, i.e. (Φ, ĤΨ) =
(ĤΦ,Ψ). Physicists use the term Hermitian, which encompasses both symmetric and self-adjoint
(and essentially self-adjoint) operators, and aligns with the finite dimensional terminology.
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sample
wavefunction
distribution

compute
energy gradient

update parameters

Figure 1.1: A simplified overview of the variational Monte Carlo method.

spin degrees of freedom (e.g. {↑, ↓} for electron spin). The object Ψ is a member of
a Hilbert space with inner product

(Φ,Ψ) =

∫
Φ(X)∗Ψ(X) dX. (1.2)

The regularity properties of admissible Ψ are generally determined by the choice of
Ĥ, known as the Hamiltonian. Quantum mechanics postulates that such a vector
Ψ, known as a wavefunction, is to be interpreted as the (sometimes unnormalized2)
square root of a probability density p = |Ψ|2/ ∥Ψ∥2.

When the operator Ĥ is constant in time, then the solutions to the time-dependent
Schrödinger equation are determined by the solutions to the time-independent
Schrödinger equation, which is the eigenvalue problem

ĤΨ(X) = EΨ(X), (1.3)

2The physical states themselves are postulated to be rays, or members of a projective Hilbert
space arising from the equivalence classes of a separable complex Hilbert space which contains the
objects Ψ. Topological separability gives the mathematical convenience of a countable basis.



CHAPTER 1. VARIATIONAL MONTE CARLO 3

for eigenvalue (energy) E. The solutions to this equation give the stationary states
of the time-dependent Schrödinger equation. The state coresponding to the lowest
eigenvalue E is known as the ground state, and the other states are known as
the excited states. Understanding the properties of these eigenstates is key to
understanding chemical and physical properties of a quantum system.

To extend the above definition of energy to all wavefunctions Ψ, the above eigen-
value problem can be understood variationally in terms of the Rayleigh quotient:

E(Ψ) :=
(Ψ, ĤΨ)

∥Ψ∥2
. (1.4)

In terms of the Rayleigh quotient E(Ψ), the ground state is the variational minimizer
among the admissible non-zero wavefunctions. The variational formulation allows us
to understand the problem of finding the ground state as risk minimization (in the
language of statistical machine learning). Importantly, E(Ψ) is always an upper
bound to the exact ground state energy.

More generally, given a symmetric operator Ô on the Hilbert space of wavefunc-
tions, one can define the expectation ⟨Ô⟩ as

⟨Ô⟩ = (Ψ, ÔΨ)

∥Ψ∥2
. (1.5)

If a {Ψ0,Ψ1, . . .} is an orthonormal eigenbasis corresponding to a discrete spectrum
{E0, E1, . . .} of Ô, then a normalized wavefunction

Ψ =
1√∑
i |ci|2

∑
i

ciΨi (1.6)

defines a probability mass function p(Ei) = |ci|2/
∑

i |ci|2. In this sense ⟨Ô⟩ can be
understood as a usual statistical expectation:

⟨Ô⟩ =
∑
i

Ei p(Ei). (1.7)

In Section 1.3 we will discuss how in some cases ⟨Ô⟩ can be understood as an expec-
tation of a local observable over a continuous probability density.

Single-particle physics

A useful prototypical problem is to consider a single quantum particle in space3 with
coordinates r ∈ Rd and corresponding wavefunction Ψ(r), subject to the following

3Usually, the dimension d of interest to condensed-matter physicists or chemists is 1, 2, or 3.
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Hamiltonian (for a particular choice of units):

ĤΨ(r) = −1

2
∆rΨ(r) + V (r)Ψ(r), (1.8)

where V (r) is a potential field.

Example 1. A classic introductory example to single-particle quantum physics is
that of the d = 1 quantum harmonic oscillator, described by the potential

V (r) =
1

2
ω2r2 (1.9)

for some constant ω. By using a standard analytic method like the Frobenius method
or a spectral decomposition, one can find that the eigenfunctions of Ĥ are given by

Ψn(r) ∝ e−
1
2
ωr2Hn(

√
ωr), (1.10)

where Hn is the Hermite polynomial

Hn(x) = (−1)nex
2 dn

dxn

(
e−x2

)
. (1.11)

The corresponding energies are given by

En = ω

(
n+

1

2

)
. (1.12)

These eigenfunctions are depicted in Fig. 1.2.

Example 2. For d > 1, another interesting single-particle system of note is that of
the hydrogen-like atom. The potential is given by the Coulomb potential

V (r) = − Z

|r|
, (1.13)

where Z > 0 is a constant and |r| denotes the euclidean distance of r from the origin.
For this problem, the ground state wavefunction is given by

Ψ0(r) ∝ exp

(
−2Z|r|
d− 1

)
. (1.14)

One can compute the ground state energy to be

E0 = −2

(
Z

d− 1

)2

. (1.15)

In the special case of d = 3 (the hydrogen atom), this gives the ground state wave-
function Ψ0(r) ∝ exp (−Z|r|) with energy E0 = −Z2/2.
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Ψ0

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

V (r)

Figure 1.2: Eigenfunctions of the quantum harmonic oscillator (Ψn has been plotted
at height En).

Non-interacting identical particles

When a quantum system has more than one particle, there are often non-spatial
degrees of freedom which are relevant in order to describe the behavior of the system
(often discrete rather than continuous, e.g. electron spin). Thus, for example, the
many-body wavefunction may have inputs X ≡ (x1, . . . ,xN), where xi ≡ (ri, σi) for
σi ∈ {↑, ↓}. However, the kinetic energy due to the particles only depends on the
derivatives with respect to the spatial coordinates R ≡ (r1, . . . , rN).

If these particles are subject to identical potentials, one can construct a system
of independent identical particles by simply adding up single-particle terms of the
form Eq. (1.8), resulting in a Hamiltonian such as

ĤΨ(X) = −1

2
∆RΨ(X) +

N∑
i=1

V (ri)Ψ(X). (1.16)

Without any additional constraints (e.g. symmetry requirements) on the wave-
function space, the resulting ground state is simply the N -fold product of the single-
particle ground state. However, as we will discuss in the next section, the electronic
wavefunction does not take this form due to the presence of antisymmetry constraints.
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1.2 Ab-initio quantum chemistry

In chemistry, a typical model used to study the (zero-temperature) bonding behav-
ior of molecules of interest is to fix the nuclei as points which provide a classical
Coulomb potential as a term in the Hamiltonian. In this regime, known as the
Born-Oppenheimer approximation, one is interested in the many-body elec-
tronic wavefunction, or the electronic structure of the system. This approxima-
tion can then be used to compute the potential energy surface of a system, which
is the ground state energy surface as a function of the nuclear positions.

To define the electronic structure problem, it remains to specify the form of the
operator Ĥ. The electronic wavefunctions of a fixed number of electrons N are func-
tions of electron position and spin, xi = (ri, σi) ∈ R3 × {↑, ↓} for electron index
1 ≤ i ≤ N . Many-body electron wavefunctions are postulated to be antisymmet-
ric4 with respect to the electron particle index. This means that for a wavefunction
of N electrons, specified by Ψ(x1, . . . ,xN) ∈ C, we require that

Ψ(xπ(1), . . . ,xπ(N)) = sgn(π)Ψ(x1, . . . ,xN), (1.17)

where π is a member of the permutation group on N elements (SN). The function
sgn(π) ∈ {1,−1} is the sign, signature, or parity of π, given by the alternating
character or sign representation of the symmetric group. The representation sgn
partitions SN into even (sgn(π) = 1) and odd (sgn(π) = −1) permutations.

The electronic Hamiltonian under consideration is an operator on the antisym-
metric states with the form

Ĥ = T̂ + V̂ , (1.18)

where T̂ is a kinetic part and V̂ is a potential part. The exact form of the kinetic
and potential part depend on the application. In ab-initio chemical applications the
systems of interest are often described by a Hamiltonian whose kinetic part is simply
proportional to the Laplacian operator, and whose potential part is determined by
a classical local Coulomb potential field given by point charges which are fixed at
the locations of atomic nuclei, known as the Born-Oppenheimer approximation.
If the atomic nuclei are at {R(a)

I } and the electron positions are at {ri}, then (in
atomic units) the Born-Oppenheimer Hamiltonian is given by:

H = T̂ + V̂ei + V̂ee + EII, (1.19)

4More accurately, only particles with symmetric (bosonic) and antisymmetric (fermionic)
wavefunctions have been experimentally observed, and the statistical behavior of electrons is con-
sistent with that of the antisymmetric wavefunctions.
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H

H

O

Figure 1.3: A diagram of a water molecule. There are three atomic nuclei, each mod-
eled as a point charge. By varying the bond angle and bond length and computing
the resulting ground state energy, one can find a lowest energy configuration.

where the Hamiltonian is partitioned into the kinetic, electron-ion potential, electron-
electron, and ion-ion interaction, respectively:

T̂ =
N∑
i=1

−1

2
∆ri , V̂ei = −

N∑
i=1

M∑
I=1

ZI∣∣∣ri −R
(a)
I

∣∣∣ ,
V̂ee =

N∑
i<j

1

|ri − rj|
, EII =

M∑
I<J

ZIZJ∣∣∣R(a)
I −R

(a)
J

∣∣∣ .
(1.20)

For a given atomic configuration, the ion-ion interaction simply adds a constant shift
to the Hamiltonian.

Example 3. Consider the example of a water molecule (Fig. 1.3). Under the Born-
Oppenheimer approximation, this corresponds to N = 10 electrons subject to the
potentials created by the charges Z1 = Z2 = 1 and Z3 = 8. We furthermore consider
only configurations in which the two hydrogen nuclei are equidistant from the oxygen
nucleus, i.e.

bond length =
∣∣∣R(a)

1 −R
(a)
3

∣∣∣ = ∣∣∣R(a)
2 −R

(a)
3

∣∣∣ , and

bond angle = arccos


(
R

(a)
1 −R

(a)
3

)
·
(
R

(a)
2 −R

(a)
3

)
∣∣∣R(a)

1 −R
(a)
3

∣∣∣ ∣∣∣R(a)
2 −R

(a)
3

∣∣∣
 .

(1.21)
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Figure 1.4: Estimated potential energy surface of a water molecule with varying
bond angle and length.

Given a way to compute accurate ground state energies of this molecule for various
configurations, one can compute a potential energy surface as a function of the
bond angle and bond length. Using coupled-cluster methods5, we can estimate the
potential energy surface as in Fig. 1.4.

1.3 Monte Carlo integration

Directly computing the Rayleigh quotient in Eq. (1.4) for the Born-Oppenheimer Ĥ
requires computing two expectations which are integrals over the positions in R3N

and sums over the permutations of the spin configuration. As N grows, the growing
dimensionality of these expectations renders practical use of any traditional quadra-
ture method essentially impossible. Instead, one can estimate ⟨Ô⟩ by appealing to
Monte Carlo integration techniques. This is done by defining a notion of a local
observable for which the expected value under the distribution p(X) ∝ |Ψ(X)|2 is

5In this case, we used the CCSD(T) method via the PySCF package in the cc-pVTZ orbital
basis.
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precisely ⟨Ô⟩. Indeed, let the local observable be given by

ÔL(X) ≡ ÔΨ(X)

Ψ(X)
. (1.22)

Then ∫
ÔL(X)p(X) dX =

∫
ÔL(X)

|Ψ(X)|2

∥Ψ(X)∥2
dX = ⟨Ô⟩. (1.23)

If we draw a set of n ≫ 1 independent and identically distributed samples ξ from
p(X), then following the law of large numbers, the integral in Eq. (1.23) can be
estimated as

⟨Ô⟩ ≈ 1

n

∑
X∈ξ

ÔL(X). (1.24)

If ÔL has a finite second moment, then we may additionally appeal to the central
limit theorem: as the number of samples n grows, we expect the distribution of
the estimated mean to approach a normal distribution with variance equal to the
variance of ÔL divided by

√
n.

In particular, the local energy,

EL(X) =
ĤΨ(X)

Ψ(X)
, (1.25)

can be understood as a loss function for the ground state problem. By definition the
local energy will be constant inX when Ψ is an eigenfunction of Ĥ. It follows that the
variance of the local energy goes to zero as Ψ approaches an eigenfunction6, known
as the zero-variance principle [15]. This principle is a key feature of variational
approaches to the ground state search problem, as it promises that the statistical
quality of the energy estimation via expectation of the local energy improves as Ψ
approaches the ground state wavefunction.

Importantly, the local energy (and other local observables) can be computed even
when the wavefunction Ψ is unnormalized. Thus to compute the estimated expecta-
tion, it remains to acquire samples ξ from the distribution p(X) ∝ |Ψ(X)|2. In order
to sample from an unnormalized distribution, a common technique is Metropolis-
Hastings Monte Carlo7. The two ingredients for Metropolis-Hastings Monte Carlo

6Here “approaches” is used a bit freely – some regularity is generally needed for this to hold,
as the Laplacian is unbounded when the domain contains all square-integrable functions.

7This is a special case of the general Markov chain Monte Carlo technique, a powerful
class of algorithms that create a Markov chain which has the target distribution as its stationary
distribution.
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are: a proposal distribution g(X′ | X) which gives the conditional probability of
proposing X′ given X, and a target distribution p(X). Given these two ingredients,
one defines the (Metropolis-Hastings) acceptance ratio (or acceptance probability):

A(X′,X) = min

(
p(X′)g(X | X′)

p(X)g(X′ | X)
, 1

)
. (1.26)

In the special case when g is a symmetric proposal, i.e. g(X′ | X) = g(X | X′) for
all X,X′, then the acceptance ratio is particularly simple:

A(X′,X) = min

(
p(X′)

p(X)
, 1

)
. (1.27)

Then the algorithm proceeds as follows: starting from an initial state X0, one com-
putes Xn from Xn−1 by proposing a new state X′

n−1 under the conditional distribu-
tion g(X′

n−1 | Xn−1) and accepting the move with probability A(X′
n−1,Xn−1). That

is, we make the transition Xn = Xn−1 with probability 1 − A(X′
n−1,Xn−1) and we

instead make the transition Xn = X′
n−1 with probability A(X′

n−1,Xn−1). The result
of the Metropolis-Hastings algorithm is to create a Markov chain X0,X1, . . . which
converges to the stationary distribution p(X).

One must be careful when using Metropolis-Hastings Monte Carlo to take into
account that the resulting chain is autocorrelated, which must be quantified in order
to compute an accurate estimate of the standard error when using the samples for
numerical integration. Specifically, if M chains of length n are obtained (usually by
running many Markov chains in parallel), and ρt,m gives the autocorrelation estimate
at lag t for chain m, then we follow the Stan package [54] to combine the autocor-
relation at lag t into a multi-chain estimate ρ̂t and compute an effective sample size
of

neffective =
M · n
τ̂

, (1.28)

where τ̂ is the integrated autocorrelation

τ̂ = 1 + 2

2Mcutoff+1∑
t=1

ρ̂t (1.29)

for some cutoff point Mcutoff chosen following Geyer’s initial monotone sequence
criterion [21]. We refer the reader to the Stan reference manual [54] and the VMCNet
package [39] for details on how ρ̂t is computed and how Mcutoff is chosen.
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Spin-independent observables

The molecular Hamiltonian does not depend explicitly on electron spin, and so if
N↑ and N↓ are fixed (i.e. Ψ(X) = 0 for any electron configuration with a different
number of spin-up or spin-down electrons), the antisymmetry constraint in Eq. (1.17)
over the spatial-spin electron configuration can be rewritten using a spin-independent
wavefunction Ψ(R), which reduces the number of degrees of freedom in the wave-
function and improves the efficiency in the resulting Monte Carlo calculations [19].
Below, we derive this equivalence between the eigenstate problem for the complete
wavefunction Ψ(X) and a spatial wavefunction Ψ(R).

Derivation. Let Ô be any totally symmetric spin-independent operator (e.g. electron
density, Hamiltonian), and assume we are interested in expectation values of Ô with
respect to the many body wavefunction Ψ(X):

⟨Ô⟩ =
∑

σ

∫
Ψ∗(X)Ô(R)Ψ(X) dR∑
σ

∫
Ψ∗(X)Ψ(X) dR

. (1.30)

For each spin-configuration σ = (σ1, . . . , σN), we can always permute the particle
index 1, . . . , N so that the spin-up indices appear in front of the spin-down indices.
The integrals in the numerator and denominator of Eq. (1.30) are independent of
such a permutation operation. Therefore we may define the spatial wavefunction

Ψ(R) = Ψ((r1, ↑), . . . , (rN↑ , ↑), (rN↑+1, ↓), . . . , (rN↑+N↓ , ↓)). (1.31)

By renaming the integration variables,

⟨Ô⟩ =
∑

σ

∫
Ψ∗(R)Ô(R)Ψ(R) dR∑
σ

∫
Ψ∗(R)Ψ(R) dR

=

∫
Ψ∗(R)Ô(R)Ψ(R) dR∫

Ψ∗(R)Ψ(R) dR
.

We further introduce the notation R↑ ≡ (r↑1, . . . , r
↑
N↑
) ≡ (r1, . . . , rN↑) and R↓ ≡

(r↓1, . . . , r
↓
N↓
) ≡ (rN↑+1, . . . , rN↑+N↓). Then the constraint that Ψ(X) is antisymmetric

with respect to the action of SN is equivalent to the requirement that

Ψ(R) := Ψ(R↑,R↓) (1.32)

is an antisymmetric function with respect to R↑ and R↓ separately, but not neces-
sarily antisymmetric across the spin-up and spin-down indices. We can thus work
with Ψ(R) instead of Ψ(X) as long as we enforce this symmetry. The expectation
over p(X) instead becomes an expectation of ÔL(R) over the continuous density
p(R) ∝ |Ψ(R)|2.
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If needed, the original antisymmetric function Ψ(X) can be recovered by anti-
symmetrizing the following spin-dependent function:

Ψ(X) = A(Ψ(R)δσ1,↑ . . . δσN↑ ,↑δσN↑+1,↓ · · · δσN ,↓), (1.33)

where δσ,ρ is the Kronecker delta function on the spin components given by

δσ,ρ =

{
1 σ = ρ

0 σ ̸= ρ
. (1.34)

The antisymmetrization operator A simply enforces the complete antisymmetry with
respect to the particle index, by summing over all permutations of the particle index:

A(F (X)) ≡ 1

N !

∑
π∈SN

sgn(π)F (π(X)), (1.35)

where π(X) is the usual representation π(X) = (xπ(1), . . . ,xπ(N)). Because the an-
tisymmetry in F (X) = Ψ(R)δσ1,↑ . . . δσN↑ ,↑δσN↑+1,↓ · · · δσN ,↓ is already enforced for

permutations in SN↑ × SN↓ , only N choose N↑ permutations of spin configurations
need to be considered when recovering Ψ(X) from Ψ(R).

1.4 Optimization

When carrying out the variational Monte Carlo (VMC) algorithm, the strategy for
solving the molecular many-body problem is to parametrize a family of wavefunctions
Ψθ ∈ L2 on some parameter domain (usually Rm, where m is the number of param-
eters) and combine the parameterization with the previously described Monte Carlo
estimation. This gives a parametrization of the Rayleigh quotient objective func-
tion of the resulting approximate eigenproblem, and then techniques from stochastic
optimization are used to minimize the objective in the parameter space. Explicitly,
this is done by drawing a set of samples ξθ from pθ(R) using Markov chain Monte
Carlo and estimating the expected loss (risk) as

L(θ) = E(Ψθ) ≈
1

|ξθ|
∑
R∈ξθ

EL(R; θ) = L̃(θ), (1.36)

where we have defined the objective function L(θ) and its stochastic estimate L̃.
In statistical machine learning parlance, L̃ is known as the empirical risk, and L is
known as the true or population risk.

The capacity of the trial wavefunction family Ψθ to approximate the true ground
state is key to the success of the variational algorithm. The discussion of the trial
wavefunction form is left to Chapter 2.
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Gradient calculation

When computing parameter updates, estimating the gradient of L(θ) by directly
differentiating the empirical risk L̃(θ) defined in Eq. (1.36) using an automatic dif-
ferentiation framework is generally difficult due to the dependence of the Monte
Carlo sampling on the parameters θ. However, the following standard unbiased esti-
mate of the gradient of the true expected energy E(Ψθ) ≡ L(θ) is available for real
wavefunctions [7]:

∂θL(θ) =
∫
2(∂θ log |Ψθ|)(EL(R; θ)− L(θ)) |Ψθ|2 dR∫

|Ψθ|2 dR

≈ 1

|ξθ|
∑
R∈ξθ

2(∂θ log |Ψθ|)(EL(R; θ)− L̃(θ))
(1.37)

where ξθ are a set of samples from the density pθ(R) = |Ψθ(R)|2/
∫
|Ψθ|2 dR. The

derivation is as follows:

Derivation. Recall that the expected energy is given by

L(θ) =
∫
EL(R; θ) |Ψθ|2 dR∫

|Ψθ|2 dR
. (1.38)

For the purposes of the following derivation, we will let θ be a real number represent-
ing any parameter. The derivative of the integrand in the denominator with respect
to θ is

∂θ |Ψθ|2 = (∂θΨθ)Ψ
∗
θ +Ψθ(∂θΨ

∗
θ) =

(
∂θΨθ

Ψθ

+
∂θΨ

∗
θ

Ψ∗
θ

)
|Ψθ|2 , (1.39)

and the derivative of the integrand in the numerator with respect to θ is

∂θ
[
EL(R; θ) |Ψθ|2

]
= ∂θ [Ψ

∗
θHΨθ]

= ∂θΨ
∗
θHΨθ +Ψ∗

θH∂θΨθ

=
∂θΨ

∗
θ

Ψ∗
θ

EL(R; θ) |Ψθ|2 +Ψ∗
θH∂θΨθ

(1.40)

To treat the latter term in the last expression above, we also take advantage of the
following identity, which uses the essential self-adjointness of the Born-Oppenheimer
Hamiltonian H [49]:∫

Ψ∗
θ(H∂θΨθ) dR =

∫
∂θΨθ(HΨ∗

θ) dR =

∫
∂θΨθ

Ψθ

EL(R; θ)∗ |Ψθ|2 dR (1.41)
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Using these facts, the following calculation gives the derivative of the expected energy
L with respect to θ:

∂θL(θ) = ∂θ

∫
EL(R; θ) |Ψθ|2 dR∫

|Ψθ|2 dR

=
∂θ
∫
EL(R; θ) |Ψθ|2 dR∫

|Ψθ|2 dR
−
∫
EL(R; θ) |Ψθ|2 dR∫

|Ψθ|2 dR

∂θ
∫
|Ψθ|2 dR∫

|Ψθ|2 dR

=

∫
((∂θΨ

∗
θ/Ψ

∗
θ)EL(R; θ) + (∂θΨθ/Ψθ)EL(R; θ)∗) |Ψθ|2 dR∫

|Ψθ|2 dR

−
∫
EL(R; θ) |Ψθ|2 dR∫

|Ψθ|2 dR

∫
(∂θΨ

∗
θ/Ψ

∗
θ + ∂θΨθ/Ψθ) |Ψθ|2 dR∫

|Ψθ|2 dR

=

∫
[(∂θΨ

∗
θ/Ψ

∗
θ)(EL(R; θ)− L(θ)) + (∂θΨθ/Ψθ)(EL(R; θ)∗ − L(θ))] |Ψθ|2 dR∫

|Ψθ|2 dR
.

(1.42)

When the wavefunction is real, we may simplify this to

∂θL(θ) =
∫
2(∂θΨθ/Ψθ)(EL(R; θ)− L(θ)) |Ψθ|2 dR∫

|Ψθ|2 dR
. (1.43)

We may then use Monte Carlo sampling to estimate the gradient as

∂θL(θ) ≈
1

|ξθ|
∑
R∈ξθ

2(∂θ log |Ψθ|)(EL(R; θ)− L̃(θ)) (1.44)

where ξθ are a set of samples from the density pθ(R) = |Ψθ(R)|2/
∫
|Ψθ(R)|2 dR.

The zero-variance principle can also make the variance of the local energy an
attractive target for minimization. Indeed, variance minimization has an extensive
history in the quantum Monte Carlo space [64, 32, 62]. Nonetheless, in Chapter 3 we
follow the work of FermiNet [47, 53] and only use energy minimization to optimize
our wavefunctions.

Optimizer

The choice of efficient optimization algorithms for parameter updates in variational
Monte Carlo has historically been a complex issue and is still under active debate
(see e.g. [65, 44, 46, 5, 9, 51, 55, 47]). Among these works, Ref. [47] provided evidence
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that the use of the Kronecker Factorized Approximate Curvature (KFAC) method
[42] can be advantageous when compared to standard stochastic gradient descent-
like methods used in the machine learning community such as Adam [35]. KFAC is
a method for approximating natural gradient descent efficiently by preconditioning
the gradient with an approximate inverse of the Fisher information matrix. Both
the overall structure of KFAC and the extra steps required to apply KFAC to an
unnormalized wavefunction are described succinctly in [47]. For the convenience of
the reader we reproduce here an overview of these topics.

In the exact natural gradient descent method, the gradient of the loss function is
multiplied by the inverse of the Fisher information matrix before using the gradient
to make a parameter update [1]. This has the effect of taking the path of steepest de-
scent not in Euclidean parameter space, but in the space of probability distributions
defined by the model, with distance measured by the KL-divergence [2]. Concretely,
updates in natural gradient descent take the form

θ′ = θ − ηF−1∇θL(θ). (1.45)

Here η ∈ R is the learning rate and F is the Fisher information matrix defined as

Fij = Ep(R)

[
∂ log p(R)

∂θi

∂ log p(R)

∂θj

]
. (1.46)

Note that in our case p(R) ∝ |Ψθ(R)|2, though the two are not equal as Ψ is not
necessarily normalized. In fact, obtaining the Fisher information matrix requires a
slightly different calculation in an unnormalized setting, which is usually referred to
as stochastic reconfiguration [5]:

Fij ∝ Ep(R)

[(
Oi − Ep(R) [Oi]

) (
Oj − Ep(R) [Oj]

)]
, (1.47)

where Oi = ∂ log |Ψθ(R)| /∂θi. The equivalence of this formulation is proved in
Appendix C of [47]. In the setting of quantum information geometry, the Fisher
information matrix is proportional to, and perhaps more accurately viewed as, the
Fubini-Study metric tensor or quantum geometric tensor [56].

Directly inverting the Fisher information matrix is infeasible for large models, as
the matrix dimensions scale directly with number of parameters. KFAC solves this
problem by making two approximations to the Fisher matrix to allow its efficient
inversion. The first is to assume that the Fisher entries for weights in different
layers of the network are zero. This assumption reduces the Fisher matrix to a
block diagonal form, so that inverting the remaining matrix only requires inverting
each block independently. The second is based on the observation that the block
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corresponding to each layer of the network can be written as the mean-centered
covariance of a Kronecker product of two vectors, one consisting of neuron activation
values for the inputs to the layer and the other consisting of gradients of the loss
with respect to the outputs of the layer. KFAC replaces this with the Kronecker
product of the mean-centered covariance of the same vectors. As discussed in [42],
this is a significant and theoretically unsupported approximation, but seems to work
well in practice, at least in some use cases.
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Chapter 2

Neural Network Antisymmetries

In this chapter, we describe the wavefunction parametrizations that we explore. We
first briefly describe a collection of conventional VMC ansatzes, from the Slater
determinant to the inclusion of Jastrow factors and backflow. We then discuss the
FermiNet architecture [47, 53], which consists of a (generalized) neural network back-
flow that produces permutation equivariant features, followed by a determinant layer
to compute the wavefunction amplitude. Finally, we describe the explicitly anti-
symmetrized layers we explore, which are all composed with the same generalized
backflow transformation used in the FermiNet.

Symmetries of interest

It will be convenient for us to first define the notion of group covariance of a function
f : X → Y with respect to a group G. We say f is G-covariant with respect to
actions of G on X and Y if for all g ∈ G and x ∈ X, f(g(x)) = g(f(x)). For our
purposes, X = (Rd)N↑+N↓ and G = SN↑ × SN↓ . Recall the notation

R↑ ≡ (r↑1, . . . , r
↑
N↑
) ≡ (r1, . . . , rN↑)

R↓ ≡ (r↓1, . . . , r
↓
N↓
) ≡ (rN↑+1, . . . , rN↑+N↓)

(2.1)

defined in Section 1.3. The action of G on X is given by the product of the canonical
permutation representations of SN↑ and SN↓ , defined by the action

(π ⊗ ρ)(R↑,R↓) = (π(R↑), ρ(R↓)) = (r↑π(1), . . . , r
↑
π(N↑)

, r↓ρ(1), . . . , r
↓
ρ(N↓)

). (2.2)

Given this action of G on X, there are three special cases of covariance which we
discuss:
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(a) SN↑ × SN↓ invariant: Y = R, and the action of G on Y is the trivial one, i.e.

(π ⊗ ρ)(y) = y (2.3)

for all y ∈ Y .

(b) SN↑ × SN↓ antisymmetric: Y = R, and the action of G on Y is given by the
product of the sign representations of SN↑ and SN↓ , i.e.

(π ⊗ ρ)(y) = (−1)π(−1)ρy (2.4)

for all y ∈ Y .

(c) SN↑ × SN↓ equivariant: Y = (Rd′)N↑+N↓ , and the action of G on y ∈ Y is the
same as that on R ∈ X:

(π ⊗ ρ)(y↑,y↓) = (π(y↑), ρ(y↓)) = (y↑
π(1), . . . ,y

↑
π(N↑)

,y↓
ρ(1), . . . ,y

↓
ρ(N↓)

). (2.5)

As discussed in Chapter 1, our trial wavefunctions must be SN↑ × SN↓ antisym-
metric. We begin by briefly reviewing the simplest of the antisymmetric ansatzes
and how their representation capacity can be modified with invariant and equivariant
components.

2.1 The Slater Determinant

Without the antisymmetry requirement for electronic wavefunctions, one might imag-
ine the “simplest” many-body wavefunction ansatz to be a product, known as a
Hartree product, of single-particle wavefunctions known as orbitals:

ΨHartree(R) = φ1(r1) · · ·φN(rN)

=
(
φ↑
1(r

↑
1) · · ·φ

↑
N↑
(r↑N↑

)
)(

φ↓
1(r

↓
1) · · ·φ

↓
N↓
(r↓N↓

)
)
.

(2.6)

This ansatz is simple in the sense that the electrons are completely uncorrelated ; the
corresponding probability density is a product of N independent densities:

p(R) ∝ |φ1(r1)|2 · · · |φN(rN)|2 (2.7)

However, even if the Hamiltonian includes no electron-electron interaction, the Hartree
product cannot describe the electronic wavefunction, as it treats the electrons as dis-
tinguishable. Recall that we require our spatial wavefunctions to be SN↑ × SN↓ an-
tisymmetric, i.e. antisymmetric with respect to the spin-up and spin-down electron
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positions separately. To introduce the correct symmetry to the Hartree product, let
us define the antisymmetrization operator on spin σ as

Aσ[f ](R) ≡
∑

πσ∈SNσ

(−1)πσf(πσ(R)), (2.8)

where SNσ is the symmetric group on {1, . . . , Nσ}. Applying A↑ and A↓ to the
Hartree product and following the Leibniz formula for the determinant, we arrive at
the following ansatz, known as a Slater determinant1:

ΨSlater(R) = A↑A↓[ΨHartree](R)

=
∑

π↑∈SN↑

∑
π↓∈SN↓

(−1)π↑(−1)π↓
(
φ↑
1(r

↑
π↑(1)

) · · ·φ↑
N↑
(r↑π↑(N↑)

)
)(

φ↓
1(r

↓
π↓(1)

) · · ·φ↓
N↓
(r↓π↓(N↓)

)
)

=
∑

π↑∈SN↑

(−1)π↑φ↑
1(r

↑
π↑(1)

) · · ·φ↑
N↑
(r↑π↑(N↑)

)
∑

π↓∈SN↓

(−1)π↓φ↓
1(r

↓
π↓(1)

) · · ·φ↓
N↓
(r↓π↓(N↓)

)

= detΦ↑(R↑) detΦ↓(R↓),

(2.9)

where we have defined the orbital matrices

Φσ(Rσ) =

 φσ
1 (r

σ
1 ) · · · φσ

1 (r
σ
Nσ

)
...

. . .
...

φσ
Nσ

(rσ1 ) · · · φσ
Nσ

(rσNσ
)

 , (2.10)

and the orbitals φσ
i (r) are optimized to obtain the lowest variational energy. The

optimization of this ansatz is the core of the Hartree-Fock (HF) method [59]. Typ-
ically, the orbitals are parametrized by linear combinations of fixed basis functions
which are usually chosen specific to the component atoms (referred to as atomic
orbitals). The Hartree-Fock problem can be solved efficiently for a wide range of
systems of interest using matrix diagonalization methods2, and the solution is some-
times known as themean-field solution, as each orbital only accounts for interaction

1The word determinant is used in the singular sense, as the full spatial-spin wavefunction can
be described by a single determinant of single-particle orbitals.

2Plugging the Slater determinant into a mean-field non-interacting Hamiltonian which approx-
imates the many-body Hamiltonian gives a generalized eigenvalue problem involving the so-called
Fock matrix (which depends on the orbitals) and an orbital-orbital overlap matrix. The solu-
tions to this problem give another set of orbitals, and this procedure is iterated until the change
in expected energy between ansatzes falls below a desired tolerance. The result is a set of orbitals
which are consistent with the Fock matrix they generate. Thus this algorithm is also called the
self-consistent field iteration.
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with other electrons in an average way. Due to the product structure between the
spin-up and spin-down terms, the only explicit electron correlation included in a
single Slater determinant is the antisymmetry between electrons of like-spin. This
type of interaction, present even in this simple ansatz, is known as the exchange
interaction.

Because the Slater determinant is only able to account for the electron-electron
Coulomb interaction in a mean-field way, the difference in energy between the Hartree-
Fock energy and the true ground state energy is known as the correlation energy3.

To improve the representation power of the trial wavefunction, sums of multiple
determinants may be used, of the form

Ψ(R) =
K∑
k=1

ck detΦ
k↑(R↑) detΦk↓(R↓). (2.11)

However, for larger systems which exhibit non-trivial electron correlation, it becomes
rapidly impractical to use the many determinants required to reach a sufficiently
accurate energy. This consideration has led to considerable interest in designing
modifications to the Slater determinant-based wavefunction, such as Jastrow factors
or backflow, which we describe below.

Jastrow factors

A standard way to incorporate additional electronic correlation into the wavefunction
ansatz is to include a multiplicative factor of the form exp(J), where J is known as
the Jastrow factor [22]. In order to preserve the antisymmetry within like-spin
positions, the function J must be invariant with respect to the action of SN↑ × SN↓ .
One choice of Jastrow form [16] which explicitly handles electron-nuclei, electron-

3A number of different Hartree-Fock variants are used in practice: when N↑ = N↓ = N/2 (a

closed-shell molecule) and the orbitals are restricted so that φ↑
i ≡ φ↓

i for 1 ≤ i ≤ N/2, the method
is known as the restricted Hartree-Fock (RHF) method. When N↑ ̸= N↓ (an open-shell
molecule) but the first min(N↑, N↓) orbitals are restricted to match across the spins, the method is
known as the restricted open-shell Hartree-Fock (ROHF) method. Finally, when the orbitals
are not restricted across the spins, the method is known as the unrestricted Hartree-Fock (UHF)
method.
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electron, and electron-electron-nuclei terms is given by

J(R;R(a)) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

χI

(∣∣∣rαi −R
(a)
I

∣∣∣)+ ∑
α∈{↑,↓}

∑
β∈{↑,↓}

Nα∑
i=1

Nβ∑
j=1

uαβ
(∣∣∣rαi − rβj

∣∣∣)

+
∑

α∈{↑,↓}

∑
β∈{↑,↓}

Nα∑
i=1

Nβ∑
j=1

∑
I

fαβ
I

(∣∣∣rαi − rβj

∣∣∣ , ∣∣∣rαi −R
(a)
I

∣∣∣ , ∣∣∣rβj −R
(a)
I

∣∣∣) ,
(2.12)

where the functions {χI}, {uαβ}, and {fαβ
I } are optimized along with the Slater

orbitals. The resulting wavefunction has the form

ΨSlater-Jastrow(R) = D(R) exp(J(R)), (2.13)

where D(R) is the sum of one or more Slater determinant terms.

Backflow

Adding a multiplicative Jastrow factor cannot improve the nodal surface of the trial
wavefunction. A different way of incorporating electronic correlation which does have
the ability to modify the wavefunction nodes is known as backflow, which replaces
the coordinates R in the Slater determinant with a set of transformed coordinates
Y(R), which generalizes the original proposal of “backflow” by Feynman and Cohen
[18]. In order to preserve the SN↑ × SN↓ antisymmetry, the transformation Y must
be SN↑ × SN↓ equivariant. One possible form of the backflow transformation [40] is
given by

yi(R) = ri + ξi(R), (2.14)

where ξi can include electron-nuclei, electron-electron, and electron-electron-nuclei
terms:

ξi(R) =
∑
j ̸=i

η (|rij|) rij +
∑
I

µ (|riI |) riI

+
∑
j ̸=i

∑
I

Φ (|rij| , |riI | , |rjI |) rij +Θ(|rij| , |riI | , |rjI |) riI ,
(2.15)

where we use the notation rij = ri − rj and riI = ri − R
(a)
I . Together with the

Jastrow factor J , the resulting wavefunction has the form

ΨSlater-Jastrow-backflow(R) = D(Y(R)) exp(J(R)), (2.16)

where D(R) is the sum of one or more Slater determinant terms.
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2.2 FermiNet: The Generalized Slater

Determinant

The overall structure of the FermiNet may be described as a composition of a general
SN↑ ×SN↓ equivariant feature map Y(R) ≡ (Y↑(R),Y↓(R)), with an antisymmetric
layer constructed as a sum of products of determinants of orbital matrices Φkσ:

Ψ(R) =
K∑
k=1

detΦk↑(Y↑(R)) detΦk↓(Y↓(R)). (2.17)

We describe the equivariant feature map and the orbital-determinant layer separately
below.

Permutation equivariant features in FermiNet

The FermiNet backflow Y is a map from particle positions R ∈ RN×d to generalized
coordinates Y ∈ RN×d′ . While d = 3 is the dimension of the physical space, d′ is the
number of features and can be chosen arbitrarily, which generalizes the form of the
backflow transformation in Eq. (2.14).

Recall that the FermiNet map Y must be SN↑ × SN↓ equivariant. To ensure
that Y is equivariant with respect to elements of SN↑ × SN↓ while incorporating
information about the two-electron distances, the basic layer involves two streams:
a “one-electron stream” that starts with the electron positions R = (r1, . . . rN),
and a “two-electron stream” that starts with the electron-electron displacements
rij ≡ ri − rj. The streams are averaged over the electrons, concatenated onto the
one-electron stream, and a dense layer followed by a nonlinear activation function
such as tanh is applied. Residual connections [25] are also used between layers of the
same shape for both streams.

More precisely, if hlα
i and hlαβ

ij are the outputs of the one- and two- electron
streams at layer l with spins α, β ∈ {↑, ↓}, then the concatenated vector for index i
and spin α is

f lαi =

hlα
i ,

1

N↑

N↑∑
j=1

hl↑
j ,

1

N↓

N↓∑
j=1

hl↓
j ,

1

N↑

N↑∑
j=1

hlα↑
ij ,

1

N↓

N↓∑
j=1

hlα↓
ij

 (2.18)

and the output of layer l + 1 is given by the two streams

h
(l+1)α
i = tanh

(
V lf lαi + bl

)
+ hlα

i ,

h
(l+1)αβ
ij = tanh

(
W lhlαβ

ij + bl
)
+ hlαβ

ij .
(2.19)
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As an initial pre-processing step, the electron positions R are converted to “atomic
coordinates” as

h0α
i =

(
rαi −R

(a)
1 ,
∣∣∣rαi −R

(a)
1

∣∣∣ , . . . , rαi −R
(a)
M ,
∣∣∣rαi −R

(a)
M

∣∣∣) , (2.20)

h0αβ
ij =

(
rαi − rβj ,

∣∣∣rαi − rβj

∣∣∣) , (2.21)

which are invariant with respect to a simultaneous translation of the entire system.
The explicit dependence on the absolute values enables the network to efficiently
represent the derivative discontinuity due to the electron-nuclei cusp and electron-
electron cusp, respectively [31, 47].

Each map (hl↑,hl↓) 7→ (h(l+1)↑,h(l+1)↓) is SN↑×SN↓ equivariant due to the averag-
ing procedure [67] in Eq. (2.18), and the map R 7→ h0 is parallel in the particle index
i and thus equivariant as well. Therefore the map R 7→ Y ≡ (Y↑,Y↓) ≡ (hL↑,hL↓),
where L is the total number of one-electron layers, is also SN↑ × SN↓ equivariant.

Note that bothY↑ andY↓ depend on the positions of all electrons. The index α in
the notationYα does not denote a dependence ofY only on the corresponding α-spin
inputs Rα, but rather denotes the symmetry constraint of Yα as equivariant with
respect to the action of SNα on Rα and invariant with respect to the action of SNβ

on
Rβ. Hence in this paper, we shall refer to the index {↑, ↓} in the expression (Y↑,Y↓)
as the pseudospin index. It has been shown constructively, though without explicit
error bounds, that a simplified version of this construction [29] can approximate all
and only the equivariant continuous functions.

Antisymmetric layer in FermiNet

Once the equivariant feature maps Y = (Y↑,Y↓) are generated, they are then used
to generate K pairs of orbital matrices (Φk↑(Y↑),Φk↓(Y↓)). These orbital matrices
are constructed using a set of per-pseudospin single particle orbitals φkσ

i (σ ∈ {↑, ↓}),
which are defined by applying a simple dense layer to the equivariant features and
multiplying by an exponential envelope function:

φkσ
i (yσ

j ) = (wkσ
i · yσ

j + bkσ
i )
∑
I

dkσi,I exp
(
−
∣∣∣Σkσ

i,I(rj −R
(a)
I )
∣∣∣) . (2.22)

Here wkσ
i ∈ Rm and bkσi ∈ R are the weights and biases of the dense layer, where

m is the number of dimensions in the equivariant features yσ
i , which is chosen to be

constant for all i, σ. The exponential envelopes are parameterized by dkσi,I ∈ R and a
matrix Σkσ

i,I ∈ Rd×d, which can also be set to a scaled identity matrix to simplify the
ansatz. The parameters w,b,Σ,d are trainable and dependent on the pseudospin
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index σ. The exponential term ensures that the wavefunction is normalizable and
that the support of each orbital does not extend too far away into the vacuum. While
the orbital functions φkσ

i are applied only to single feature vectors yj, the ansatz can
express complex correlations because the feature vectors themselves depend on all of
the particles in a complex way.

The orbital matrices follow naturally from these single particle orbitals as

Φkσ(Yσ) =

φkσ
1 (yσ

1 ) · · · φkσ
1 (yσ

Nσ
)

...
. . .

...
φkσ
Nσ

(yσ
1 ) · · · φkσ

Nσ
(yσ

Nσ
)

 . (2.23)

Once these orbital matrices are constructed, FermiNet creates an antisymmetric
wavefunction using a sum of products of determinants:

Ψ(R) =
∑
k

detΦk↑ detΦk↓ (2.24)

These determinants are similar to Slater determinants except that their orbitals
are general equivariant functions of all of the input particles rather than simple
single particle orbitals. Such determinants are thus referred to as generalized Slater
determinants. In fact, the original FermiNet architecture [47] used a weighted sum of
products of generalized Slater determinants by adding in a set of trainable parameters
wk and letting

Ψ(R) =
∑
k

wk detΦ
k↑ detΦk↓. (2.25)

However, these trainable weights were removed by the original authors in their follow-
up work [53], as they do not add extra expressiveness on top of the ability to tune
the scale of the orbital matrices themselves. We follow the simplified construction.

Full determinant FermiNet

We also explore a variant of the FermiNet called full determinant mode which, like
the GA layer, does not assume a factorized form over the two pseudospins. In the full
determinant mode, the single particle orbitals take exactly the same form as those
used in the regular FermiNet architecture. The difference is that instead of using Nσ

orbitals for each spin σ, we use N orbitals for both spins, where N = N↑ +N↓. The
up- and down-pseudospin orbital matrices are then concatenated into a square N×N
matrix before taking the determinant. The new formula for the orbital matrices is
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Φkσ
full(Y

σ) =

φkσ
1 (yσ

1 ) · · · φkσ
1 (yσ

Nσ
)

...
. . .

...
φkσ
N (yσ

1 ) · · · φkσ
N (yσ

Nσ
)

 , (2.26)

where the only difference from Eq. (2.23) is the change of the maximum orbital index
from the pseudospin-specific Nσ to the total particle count N . Therefore Φkσ

full(Y
σ)

is a matrix of size N × Nσ. The final ansatz is then generated as the sum of the
determinants of the concatenated orbital matrices:

ΨFermiNet,full(R) =
K∑
k=1

det
[
Φk↑

full, Φ
k↓
full

]
. (2.27)

The idea behind this construction is to provide a more flexible way to treat the
interactions between the two pseudospin components. Importantly, because Y is
only equivariant with respect to permutations which exchange particles of the same
spin, the concatenated determinant does not enforce an antisymmetry constraint
between particles of opposite spins. We also note that it is possible to reconstruct the
original FermiNet ansatz as a special case of the full determinant ansatz, by setting
φkσ
i (yσ

j ) = 0 whenever σ = ↑ and i > N↑ or σ = ↓ and i ≤ N↑. In that case the full
matrix becomes block-diagonal and the determinant factors into a simple product of
pseudospin determinants [47]. We are particularly interested in the evaluating the
performance of this full determinant mode when K = 1, which we refer to as the full
single-determinant FermiNet.

2.3 Explicit Antisymmetrization

Generic antisymmetric neural network layer

In order to assess the effectiveness of the antisymmetric layer of the FermiNet, we
can replace the product of pseudospin determinant terms with a truly universal anti-
symmetric neural network layer. Following the Leibniz formula for the determinant,
the antisymmetric structure for the standard single-determinant FermiNet can be
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y↑
1

y↑
2

...

y↑
N↑

y↑
π(1)

y↑
π(2)

...

y↑
π(N↑)

π

y↓
1

y↓
2

...

y↓
N↓

y↓
ρ(1)

y↓
ρ(2)

...

y↓
ρ(N↓)

ρ
ΞFFNN(π(Y

↑), ρ(Y↓))
FFNN

×sgn(π) sgn(ρ)

Fπ,ρ(Y)

Y

Fπ1,ρ1(Y)

Fπ1,ρ2(Y)

...

Fπ2,ρ1(Y)

Fπ2,ρ2(Y)

...
FπN↑!,ρN↓!

(Y)

+ Ψ

Figure 2.1: The architecture for the generic antisymmetric layer. Left: calculation of
the wavefunction contribution from a single pair of permutations π and ρ, denoted
by Fπ,ρ(Y). Right: combination of contributions for all permutations π and ρ. This
is implemented as a batch calculation over all pairs of permutations, but we show
separate arrows for each pair of permutations to emphasize the factorial complexity
of the operation.

written as

Ψ(R) = detΦ↑(Y↑(R)) · detΦ↓(Y↓(R))

=
∏

σ∈{↑,↓}

 ∑
πσ∈SNσ

(−1)πσφσ
1 (y

σ
πσ(1)) · · ·φ

σ
Nσ

(yσ
πσ(Nσ))

 ,

≡
∏

σ∈{↑,↓}

Aσ[Ξ
σ
FermiNet](Y

σ),

(2.28)

where we have defined the orbital product function Ξσ
FermiNet(Y

σ) =
∏Nσ

i=1 φ
σ
i (y

σ
i , θ

σ
i ).

However, we can treat the interaction between pseudospins in a more universal
way by considering just a single function f(R↑,R↓) of all electron positions and anti-
symmetrizing f with respect to only the subsets of the input indices that correspond
to the two spins:

A↑A↓[f ](R
↑,R↓) =

∑
π↑∈SN↑

∑
π↓∈SN↓

(−1)π↑(−1)π↓f(π↑(R
↑), π↓(R

↓)). (2.29)
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The standard FermiNet can be written as the doubly antisymmetrized product of
orbitals over all particles

ΨFermiNet(R) = A↑A↓ [ΞFermiNet] (Y
↑,Y↓), (2.30)

where we define the product over all orbitals

ΞFermiNet(Y
↑,Y↓) = φ↑

1(y
↑
1) · · ·φ

↑
N↑
(y↑

N↑
)φ↓

1(y
↓
2) · · ·φ

↓
N↓
(y↓

N↓
). (2.31)

If we replace this all-particle product with a single feed-forward neural network
(FFNN) denoted by ΞFFNN(Y

↑,Y↓), we arrive at an architecture that we refer to
as the generic antisymmetric layer (GA):

ΨGA(R) = A↑A↓[ΞFFNN](Y
↑,Y↓). (2.32)

This ansatz can be evaluated explicitly with N↑!N↓! evaluations of ΞFFNN. Impor-
tantly, due to the equivariance property of Y, we do not need to antisymmetrize
the composed function ΞFFNN ◦ Y, but only the comparatively small ΞFFNN. We
have found that we can achieve sufficient expressiveness with a very simple choice of
ΞFFNN, further reducing the computational cost. In our experiments, we use a single
hidden layer with NFFNN = 64 nodes and a single application of the tanh activation
function, followed by a linear combination operation. The cost of a single evaluation
of ΞFFNN with a single hidden layer with NFFNN nodes is O(d(N↑ + N↓)NFFNN), re-
sulting in an overall cost of O(d(N↑+N↓)N↑!N↓!NFFNN). We depict the construction
of the GA layer in Fig. 2.1.

This construction is a universal replacement for the antisymmetry layer in the
original FermiNet, due to the universality of neural networks to approximate func-
tions of various desired smoothness classes with an appropriate choice of activation
function [4, 48, 50, 17]. In fact, the multiplication of two numbers can be approx-
imated to arbitrary accuracy with just four neurons [37], and following equations
(2.22) and (2.28), the FermiNet determinant is simply an antisymmetrized product
of simple linear and exponential terms. In this work we choose ΞFFNN to be a one-
hidden-layer feed-forward neural network for simplicity and efficiency, but one can
choose any universal function class, e.g. residual neural networks.

Factorized antisymmetric neural network layer

Instead of replacing the entire antisymmetric layer of the FermiNet, we can consider
replacing each product function Ξσ

FermiNet in Eq. (2.28) with a feed-forward neural
network, arriving at the ansatz

Ψ(R) =
∏

σ∈{↑,↓}

Aσ[Ξ
σ
FFNN](Y

σ). (2.33)
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yσ
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π(2)

...
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Ξσ
FFNN(π(Y

σ))
FFNN

sgn(π)

× F σ
π (Y

σ)

Y↑

F ↑
π1
(Y↑)

F ↑
π2
(Y↑)

...

F ↑
πN↑!

(Y↑)

+ A↑[Ξ
↑
FFNN](Y

↑)

Y↓

F ↓
π1
(Y↓)

F ↓
π2
(Y↓)

...

F ↓
πN↓!

(Y↓)

+ A↓[Ξ
↓
FFNN](Y

↓)

× Ψ

Figure 2.2: The architecture for the factorized antisymmetric of rank 1 (FA-1). Top:
calculation of the wavefunction contribution from a single pseudospin σ and permu-
tation π, denoted by F σ

π (Y
σ). Bottom: combination of contributions for all per-

mutations π for both up and down pseudospin components. This is implemented
as a batch calculation for each pseudospin, but we show separate arrows for each
permutation to emphasize the factorial complexity of the operation. For FA-K this
entire computation would be copied K times, with a different feed-forward-neural
network in each copy, and the results would be added together.
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We can relate this ansatz to the generic antisymmetric layer by assuming that ΞFFNN

admits a functional low rank decomposition

ΞFFNN(Y
↑(R),Y↓(R)) ≈

K∑
k=1

Ξk↑
FFNN(Y

↑(R))Ξk↓
FFNN(Y

↓(R)). (2.34)

This is called the factorized antisymmetric layer of rank-K (FA-K). When K = 1,
we recover the ansatz in Eq. (2.33). We treat this FA-1 layer, also depicted in
Fig. 2.2, as an especially interesting case given the conjecture of [29] that a single
generalized Slater determinant may be universal. We note that much like in the
FermiNet pseudospin determinant terms, the electron positions of different spins do
interact with each other in each FA pseudospin term due to the construction of the
backflow (2.18).

We can evaluate the FA-1 layer using Nσ! evaluations of Ξσ
FFNN for each pseu-

dospin. The cost of a single evaluation of Ξσ
FFNN is O(dNσNFFNN) operations for the

matrix-vector multiplication, and the total cost of the explicit antisymmetrization
for FA-1 is O(d(N↑N↑! +N↓N↓!)NFFNN).

It is worth noting that both the factorized and the generic antisymmetric ansatzes
have addtional drawbacks beyond the obviously prohibitive factorial scaling. In our
experiments with these ansatzes, we observed a great deal of numerical instability
due to the massive numerical sign cancellation of the generally non-zero terms in
the summations over the symmetric groups. We partially ameliorated this issue
by performing the wavefunction evaluation in double precision instead of the more
standard single precision (or even half precision) for modern deep learning, but even
with this adjustment the numerical stability properties are far too unfavorable to
scale these ansatzes as N↑ and N↓ grow large. Thus these ansatzes are certainly
not intended to be used to directly approximate the ground state wavefunction of
heavy atoms or large molecules, but are instead used in this paper as a diagnostic
tool for better understanding the empirical performance of the FermiNet backflow
and antisymmetry layers. More details about the practical effects of the numerical
instabilities on our experiments are available in Section 3.1.

Jastrow factors

Although the GA architecture can represent general antisymmetric functions on com-
pact domains, we have found that without some mechanism of confining the support
size of the wavefunction, the Monte Carlo sampling procedure often becomes unsta-
ble. In the standard FermiNet orbitals, this decay is handled by the simple expo-
nential envelope terms in Eq. (2.22). In our generic antisymmetric layer, however,
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we have not directly included exponential decay terms in the antisymmetric part, so
we require the presence of an additional decay term in the form of a Jastrow factor.
We found that including an expressive Jastrow factor greatly increased the stability
and accuracy of the ansatz, which suggests that the size of the wavefunction sup-
port and the behavior of the tails are of practical importance to the quality of the
approximation.

Recall that we may implement a Jastrow factor by multiplying an antisymmetric
wavefunction ansatz by exp

(
J
(
R↑,R↓;R(a)

))
, where the Jastrow factor J is a func-

tion of the electron positions R and the nuclei locations R(a). In order for J(R) to
capture the decay of the wavefunction, it will need to satisfy J → −∞ as |R| → ∞.
One possibility is to use a simple one-body Jastrow from the first term in Eq. (2.12)
and let χI represent multiplication by a fixed constant for each nucleus, so that
χI(r) = −aIr, with aI > 0. Then we have

J(R;R(a)) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

χI

(∣∣∣Rα
i −R

(a)
I

∣∣∣) =
∑

α∈{↑,↓}

Nα∑
i=1

M∑
I=1

−aI

∣∣∣Rα
i −R

(a)
I

∣∣∣ ,
(2.35)

Similarly, one could use the first two terms in Eq. (2.12) to form a simple two-body
Jastrow, with a similar choice for the electron-electron interaction which is identical
for the two spin species, i.e. uαβ(r) = −γr, with γ > 0. These approaches control
the support size of the wavefunction, but do not allow much flexibility in the shape
of the wavefunction tails outside of the asymptotic regime, where the wavefunction
decay is known to be a simple isotropic exponential decay.

To build a more general Jastrow factor, we may leverage the generality of the
FermiNet backflow construction to form the backflow-based Jastrow

J(R;R(a)) = − 1

N

∑
α∈{↑,↓}

Nα∑
i=1

∣∣Yα
Jastrow,i(R)

∣∣ . (2.36)

For our numerical results involving the GA and FA-K architectures, we use this
general Jastrow expression. The Jastrow factor needs to be able to grow small
as the electron positions move far from the nuclei, which suggests the use of an
unbounded activation function. To achieve this in practice, we simply swap out the
tanh activation in Eq. (2.19) for an approximate GeLU activation [27],

GeLU(x) = 0.5x

(
1 + tanh

(√
2

π

(
x+ 0.044715x3

)))
(2.37)

which, like the hyperbolic tangent function, has the desirable property of being
smooth everywhere.
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Chapter 3

Numerical experiments

In this chapter, we compare the previously described architectures on small atomic
and molecular systems. We used A100 GPUs on the Google Cloud Platform (GCP)
for any calculations that required double precision, and GTX 2080TI GPUs with
the Berkeley Research Computing (BRC) program for all other calculations. In our
experiments, we rely on the JAX implementation of KFAC provided by the work
of [47]. In using this implementation, we register all dense layers in our networks
with KFAC, including those within the feed-forward neural networks of our generic
antisymmetric and factorized antisymmetric layers. This ensures that we use the
Kronecker product approximation of the Fisher matrix for all layers in the network,
rather than defaulting to a simpler diagonal approximation.

To estimate energy values accurately after training, we ran pure MCMC for a large
number of iterations without performing parameter updates, collecting samples every
10 iterations. We also estimated the integrated autocorrelation of the local energy
during these evaluation runs in order to get a robust estimate of the standard error
of our energy estimates as described in Section 1.3.

Throughout this chapter, we use the following conventions to present our nu-
merical results: all units are atomic units (a.u.) unless otherwise specified. The
estimator of the energy used is the sample mean followed by, in parentheses, the
standard error in the last digit(s) of the estimate. For example, -54.58868(4) means
a sample mean of -54.58868 a.u. with a standard error of approximately 4 × 10−5

a.u., and -75.06314(13) means a sample mean of -75.06314 a.u. with a standard
error of approximately 1.3× 10−4 a.u.. The error of the energy is also measured by
the percentage of the correlation energy recovered. As defined in Section 2.1, the
correlation energy is defined to be the difference between the Hartree-Fock energy
and the exact ground state energy, so that recovering 0% of the correlation energy
means that the calculation produces the Hartree-Fock energy, and recovering 100%
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means the calculation is exact. The correlation energy itself only contributes a tiny
amount, usually less than 1%, to the ground state total energy, but capturing the
correlation energy accurately is extremely important in chemistry.

Sampling and gradient clipping

We use an adaptive step width Metropolis-Hastings algorithm to sample electron
configurations from the distribution defined by Ψ(R). We use a gaussian proposal
function with an isotropic step width, which we dynamically update throughout the
optimization in order to keep the average acceptance ratio near a target value, for
which we use 0.5. We maintain this ratio through a simple adaptive scheme that
increases the step width by a small amount if the acceptance ratio strays too far
above the target, and similarly decreases it by a small amount if the ratio strays
too far below the target. We perform such updates every 100 moves, averaging the
acceptance ratio over the previous hundred steps in order to avoid overzealously
updating the step width due to noise in the acceptance ratio.

In order to reduce the amount of correlation between the samples used for subse-
quent parameter updates, we take 10 walker steps between each gradient calculation
and parameter update. While skipping steps theoretically does not produce a higher
effective sample size than simply using every step, it is practically beneficial to skip
steps because the local energy calculation required for a parameter update is signifi-
cantly more computationally expensive than the wave function amplitude calculation
required for each move. This means we can take a number of intermediate steps in
order to produce significantly less correlated samples with a small computational
overhead.

As is common in quantum Monte Carlo [63], in order to reduce the noise in the
training process, we additionally clip the local energies calculated in each batch of
samples to be closer to some estimator of the energy intended to reduce the effect of
outliers in the gradient. Specifically, given a batch of local energies E1, E2, . . . , En,
we calculate the median or mean local energy EM and then calculate the average
deviation from the EM (total variation) as

TV =
1

n

∑
i

|Ei − EM | . (3.1)

We then replace Ei with EM whenever |Ei − EM | > 5 · TV . For our atomic ex-
periments and the H4 model, we chose EM to be the median local energy. In the
case of the N2 molecule, we found that choosing EM to be the mean local energy
(equal to the expected energy estimate) was more stable. In practice, we have found
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Figure 3.1: Comparison of methods on atomic systems. FA stands for factorized
antisymmetric layer, and GA stands for generic antisymmetric layer, as discussed
in section 2. The 16 determinant FermiNet numbers are taken from Ref. [47]. The
GA result on the oxygen atom uses the more restrictive one-body Jastrow, and
the parameters may not be fully optimized due to the limitations of our resources.
Dashed line indicates 1% of the error in correlation energy.

that the local energy clipping produces a less noisy and more effective optimization
process than including all of the unclipped local energies. During the final Monte
Carlo evaluation of the energy after training, no local energy clipping is performed
in order to avoid bias in the energy estimate.

3.1 Performance: atomic systems

We test our generic and factorized antisymmetric architectures on a few small atoms
with nuclear charge from five to eight and compare these results to the results of Fer-
miNet with 1 determinant, FermiNet with 1 full determinant, and FermiNet with 16
determinants. In Table 3.1, we compare the attained energies on these architectures
after training with KFAC. These results are depicted as well in Figure 3.1.
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We find that the generic antisymmetric layer attains highly accurate energies
when paired with the backflow-based Jastrow, achieving greater than 99.7% of the
correlation energy. For the smallest systems, i.e. boron and carbon, the FermiNet-
GA ansatz does at least as well as many-determinant FermiNet. For the larger
systems, the performance of FermiNet-GA in our implementation began to suffer
noticeably as we hit the limitations of our computational resources. For example,
our result on oxygen for the generic antisymmetric architecture used only the simple
one-body Jastrow in Eq. (2.35) and may not have reached the lowest energy that
could be attained with additional training. We provide further discussion of the
challenges with numerical stability and computational cost in Section 3.1.

Factorized antisymmetric layer of rank K versus
K-determinant FermiNet

Interestingly, we do not see a gap in the attained energy between the factorized an-
tisymmetric layer of rank 1 and single-determinant FermiNet for any system except
for boron. To explore this trend further, we compare in Figure 3.2 the factorized
antisymmetric layers of rank 1 through 4 against the FermiNet with 1 through 4
determinants, all on the nitrogen atom. We find that FA-K performs approximately
equivalently to k-determinant FermiNet in all cases, and in most cases it performs
slightly worse. This comparison is telling since replacing each generalized Slater de-
terminant in the K-determinant FermiNet with an explicitly antisymmetrized feed-
forward neural network yields exactly the FA-K architecture. The fact that this
does not yield a performance improvement suggests that the reason K-determinant
FermiNet is not fully general is not due to the structure of the individual generalized
Slater determinants, but rather due to the sum of products structure that is used to
combine the generalized Slater determinants together. This appears to be true even
though the sum of products is only taken with respect to the pseudospin components
generated by the backflow rather than the original spins.

We record the numerical results comparing FermiNet-FA-K to the standard K-
determinant FermiNet in Table 3.2, also shown in Figure 3.2. Due to the limits of
our computational resources, we did not compute the K = 3, 4 results for FA-K with
the backflow-based Jastrow.

Hyperparameters and optimizer choice

In Table 3.3 we list the hyperparameters used in our runs for the KFAC optimizer.
We also provide additional evidence in favor of the claim in [47] that KFAC

provides an advantage over Adam when optimizing FermiNet-like architectures for
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Figure 3.2: Comparison of factorized antisymmetric layer of rank K with K-
determinant FermiNet for K = 1, 2, 3, 4 on the nitrogen atom. Data for FA-K is
presented with both the simple one-body Jastrow and the more expressive backflow
based Jastrow, though results for the backflow Jastrow are limited to K ≤ 2 due to
numerical stability issues and computational resource constraints. Data for multi-
determinant FermiNet represent the best of several runs to account for run-to-run
variance.

(a) Generic antisymmetry
(b) Factorized antisymmetric layer of
rank 1

Figure 3.3: Adam versus KFAC for the optimization of the generic and factorized
antisymmetry architectures on the carbon atom. The proposed updates prior to the
application of the learning rate may have different scales for the two optimizers, so we
choose the largest stable initial learning rate for each from a coarse sweep of learning
rates α with log10 α ∈ [−4,−1]. At each epoch, rolling averages of the previous 10%
of training epochs are shown here for clarity. One epoch is one parameter update.
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Table 3.3: Table of hyperparameters for KFAC used during training.

Hyperparameter Value

Dense nodes per layer in antisymmetrized part 64
Layers per ResNet in antisymmetrized part 2

One-electron stream width 256
Two-electron stream width 16

Number of layers in equivariant part 4
Kernel initializers for dense layers orthogonal
Bias initializers for dense layers random normal
Backflow activation function tanh

ResNet antisymmetry activation function tanh
Jastrow (backflow) activation function gelu

Number of walkers 2000
Learning rate 5 · 10−2/(1 + 10−4t)
Optimizer KFAC

Threshold constant for local energy clipping 5.0
MCMC steps between updates 10

Training iterations (number of parameter updates) 2e5
Evaluation iterations (samples collected every 10) 2e5

small atoms and molecules. In Figure 3.3 we provide a log-log plot of the correlation
energy error during training of the generic and factorized antisymmetric architectures
on the carbon atom. In this figure, the learning rate schedule for KFAC was chosen to
be 5 ·10−2/(1+10−4t). The learning rate schedule differed slightly for Adam, chosen
instead to be 10−4/(1+10−4t). To determine the initial learning rate for both Adam
and KFAC, we coarsely swept over a range of initial learning rates between 1e-4 and
1e-1 on the Carbon atom and picked the learning rate which resulted in the lowest
final energies without encountering numerical instability or NaNs. The difference in
the learning rates which we found were best for the two optimizers may be due to
the different scale of the updates prior to the learning rate scaling. Figure 3.4 shows
that the choice of learning rate is quite important, and we generally found that in
our experiments, using the highest consistently stable initial learning rate resulted
in the lowest energies overall. When the learning rate is chosen in this way, KFAC
reaches similar energy levels to Adam with as many as two orders of magnitude fewer
epochs.
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(a) Generic antisymmetry
(b) Factorized antisymmetric layer of
rank 1

Figure 3.4: KFAC at a few learning rates α for the optimization of the generic and
factorized antisymmetry architectures on the carbon atom. At each epoch, rolling
averages of the previous 10% of training epochs are shown here for clarity. One
epoch is one parameter update. There is occasionally some initial instability within
the first 10 or so epochs.

Numerical stability and computational cost of the
antisymmetric layer

One challenge we faced when training the generic antisymmetric architecture was the
numerical sign cancellation near the nodal hypersurface. When computing FermiNet-
GA in single precision, we invariably encounted NaNs (not-a-number). Some inves-
tigation revealed that the computation of Ψ could yield slightly different results
depending on whether it was calculated during a simple forward pass evaluation
or a gradient calculation involving a forward and backward pass. Due to this nu-
merical inconsistency, the Metropolis-Hastings procedure would sometimes sample
points on or extremely close to the nodal hypersurface. To contend with this in our
experiments, we used double precision end-to-end, i.e. converted all arrays to dou-
ble precision. It is possible that a more efficient implementation might use double
precision only in the antisymmetric layer or only when evaluating the local energy.
The use of double precision led us to use A100 GPUs, which have significantly better
performance for these higher precision calculations than consumer GTX GPUs. We
used GTX 2080TI GPUs for our experiments which did not require double precision.
Despite these powerful GPUs, the unfavorable scaling of the brute-force antisymme-
try meant that we reached the limits of our group’s resources with the calculations on
the oxygen atom. On 4 A100 GPUs, training the FermiNet-GA architecture with the
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Figure 3.5: Wall clock hours elapsed during training for the generic antisymmetry
and the factorized antisymmetrized of rank 1 with the backflow-based Jastrow for
the boron, carbon, and nitrogen atoms. The training was performed for 2 × 105

epochs on 2 A100 GPUs.

H H

HH

a

Figure 3.6: Atomic configuration for the square H4 model. The side length is a.

simplified Jastrow on the oxygen atom took 137 hours. In Figure 3.5, we show the
wall clock time used to train the generic and factorized antisymmetric architectures
for boron through nitrogen.

3.2 Performance: square H4 model

The square H4 model (Fig. 3.6) provides an interesting case study as a prototypi-
cal strongly correlated system [30]. Unlike the atomic case, the simple product of
a pseudospin-up and pseudospin-down antisymmetry is inadequate to capture the
ground state within a few percent of the correlation energy. In Fig. 3.7, we see
that in both FA-1 and the standard single-determinant FermiNet, the energy at-
tained was significantly higher than that of any of the other neural network ansatzes
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(a) a = 1.0 Bohr (b) a = 4.0 Bohr

Figure 3.7: Error of the total energy attained by various VMC ansatzes on the square
H4 model of different bond lengths.

tested here. We find excellent agreement between multiple-determinant FermiNet,
full single-determinant FermiNet, and FermiNet-GA, agreeing within the estimated
Monte-Carlo error. The failure of FA-1 to capture more of the ground-state en-
ergy than the standard single-determinant FermiNet again suggests that, at least for
the small atomic and molecular systems modeled here, the FermiNet architecture is
already very expressive for each pseudospin antisymmetry, even without an explicit
Jastrow factor. The fact that even the addition of the general backflow-based Jastrow
to the FA-1 architecture does not yield better results than FermiNet suggests that
the lack of expressiveness of these simple “rank-one” product wavefunction ansatzes
has to do with their nodal structure.

Basis set extrapolation

The Hartree-Fock (HF) and full configuration interaction (FCI) values for the square
H4 model were extrapolated to the complete basis limit using cc-pvXz basis sets using
PySCF [57, 58]. For completeness, we reproduce the details of the extrapolation here.

The complete basis set Hartree-Fock energies were obtained by a fit to the function

EHF(X) = EHF(CBS) + a exp(−bX), (3.2)

where EHF(X) is the Hartree-Fock energy computed with cc-pvXz and the parame-
ters EHF(CBS), a, and b are determined with a non-linear least-squares fit. Similarly,
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the complete basis set correlation energies are obtained by a fit to the function

Ecorr(X) = Ecorr(CBS) + aX−3, (3.3)

where Ecorr(X) is the difference between the FCI and Hartree-Fock energies on the
cc-pvXz basis and the parameters Ecorr(CBS) and a are determined with a non-linear
least-squares fit.

For RHF/UHF at bond length 1.0, we used X = 2, 3, 4, 5, as the orbital overlap
matrix became too ill-conditioned for larger X. For RHF/UHF at bond length
4.0, we used X = 5, 6, 8. The FCI calculations were done using restricted Hartree-
Fock (RHF) as the initial reference, and the correlation energy was computed as the
difference between the FCI and RHF energies. For the extrapolation of the RHF-FCI
correlation energy we used X = 3, 4. Due to the relative unreliability of the data
points from the small double-zeta basis set and the cost of the quintuple-zeta basis
set, these points were not included in the extrapolation for the correlation energy.
Judging simply from the square root of the variance of the parameter fit, the basis
set extrapolation error is at least two orders of magnitude larger than that of the
Monte Carlo error in the estimates of the VMC-derived energies, so fewer significant
digits are reported for the RHF/UHF/FCI results.

3.3 Comparison of nodal surfaces

Given a sufficiently general Jastrow correlation factor, the essential difficulty in the
expressiveness of trial wavefunctions for quantum Monte Carlo methods lies in the
accurate modeling of the nodal hypersurface [10]. We thus explore the nodal hyper-
surfaces generated by several of our ansatzes in Figures 3.8 and 3.9, taking inspiration
from [10]. In these figures, we fix the locations of all but one electron in the lithium
and beryllium atoms and plot the nodal surface of the resulting one-body functions
in the final electron position for four of our ansatzes: standard single-determinant
FermiNet, FA-1, full single-determinant FermiNet, and GA. This plotted nodal sur-
face is thus a 3-dimensional cross-section of the full (3N − 1)-dimensional nodal
hypersurface of the many-body wavefunction, where for example for the beryllium
atom 3N − 1 = 11.

The nodal surface of the lithium wavefunction is essentially described by the
two-particle antisymmetry between the two electrons of the same spin. In this two-
particle regime, Ref. [29] shows the universality of the single generalized Slater de-
terminant. Indeed, a generic antisymmetry of two particles can be exactly written
as a single two-particle determinant with an appropriately general backflow, and so
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Figure 3.8: Nodal surface cross-sections of various ansatzes on the lithium atom
during training. The locations of two electrons are fixed, with one spin-up (same
spin) electron in blue and one spin-down (opposite spin) electron in red. The fixed
electrons are in random locations. The surfaces shown are produced by evaluating
the sign of the wavefunction on the position of the remaining (spin-up) electron in
the box [−5, 5]3 on 150 points in each direction and using the Isosurface graph object
of the Plotly python graphing library.
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Figure 3.9: Nodal surface cross-sections of various ansatzes on the beryliium atom
during training. The locations of three electrons are fixed, with one spin-up (same
spin) electron in blue and two spin-down (opposite spin) electron in red. The fixed
spin-up electron is placed at (2, 1, 0), and the two spin-down electrons are placed at
(0,±2, 0). The surfaces shown are produced by evaluating the sign of the wavefunc-
tion on the position of the remaining (spin-up) electron in the box [−5, 5]3 on 150
points in each direction and using the Isosurface graph object of the Plotly python
graphing library.
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the architectures compared here are functionally equivalent in terms of their repre-
sentation power. We see good agreement between the nodal surface cross-sections as
early as epoch 2500 (Figure 3.8).

However, in beryllium, we observe qualitative differences between the nodal sur-
face cross-sections between the different architectures. If we choose random locations
for the three fixed electron positions, we find that the nodal surface cross-sections
look much like the smooth spheres in the lithium figure for all architectures. However,
in Figure 3.9 we choose the two opposite-spin electrons to be placed at (0,±2, 0), and
we see that the nodal surface cross-sections for FermiNet and FA-1 (Figure 3.9) ap-
pear to be the union of two smooth surfaces. We were able to confirm that these two
surfaces originate from the product structure of the pseudospin terms by removing
a psuedospin term and replotting the resulting nodal surface. On the other hand,
the nodal surface cross-section obtained from GA and the full single-determinant
FermiNet appear to consist of only one smooth surface. This difference aligns with
our assertion that the product structure of FermiNet and FA-1 may limit their abil-
ity to represent the true nodal surface of the ground state wavefunction. A video
is available with rotating views of the final cross-sections for all four wavefunction
ansatzes 1.

Our study of the nodal surfaces in this section is importantly limited by the fact
that we can only observe a 3-dimensional cross-section of the full nodal surface, so
we are not able to directly draw conclusions about the global structure of the nodal
surface when using only a single cross-section. Ideally, we could benchmark these
plots against the ground truth of the nodal surface generated by the FCI wavefunction
for this system. We found, however, that even the qualitative shape of the FCI nodal
surface (not depicted here) depends strongly on the choice of the finite sized basis set,
and is thus difficult to compare systematically to the VMC-derived wavefunctions.

3.4 Nitrogen molecule: Performance of the full

determinant FermiNet

We finally provide a comparison of a few different FermiNet architectures on the
stretched nitrogen molecule, which is a challenging strongly correlated system. For
our N2 experiments, to replicate the results reported by Ref. [47] as closely as possible,
4000 walkers were used instead of 2000, a two-electron stream width of 32 was used
instead of 16, pretraining was also used for 1000 iterations as it provided additional
stability to the training process.

1https://youtu.be/67SQXEUCYyY

https://youtu.be/67SQXEUCYyY
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Figure 3.10: Visual comparison of different FermiNet architectures on the nitrogen
molecule with bond length stretched to 4.0 Bohr. Energies shown are the absolute
energy difference (in Hartrees) between the attained energy and the r12-MR-ACPF
computational reference [20]. The UCCSD(T) and the Pfau et al. energies were ex-
tracted from Figure 5 in reference [47]. The dashed line indicates chemical accuracy.
Note that some run-to-run variance was observed, especially in the 16 determinant
result, and so the result reported is the lowest energy attained from a few indepen-
dent training runs.
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Table 3.5: Comparison of FermiNet architectures on the nitrogen molecule with bond
length stretched to 4.0. The experimental result is computed from the MLR4(6, 8)
fitted potential curve recommended by the authors of [36]. Note that some run-to-
run variance was observed, especially in the 16 determinant result, and so the result
reported is the lowest energy attained from a few independent training runs.

energy

RHF -108.3101

FermiNet, 1 det -109.1827
FermiNet, 16 dets -109.1891
FermiNet, 16 dets (Pfau et al. [47]) -109.1903
FermiNet, 32 dets (Pfau et al. [47]) -109.1913
FermiNet, 64 dets (Pfau et al. [47]) -109.1908
FermiNet, 1 full det -109.1940

UCCSD(T) (Pfau et al. [47]) -109.1898
r12-MR-ACPF [20] -109.1947

experiment [36] -109.2021

Pfau et al. [47] demonstrate that the standard FermiNet architecture is relatively
inaccurate (compared to the same architecture at equilibrium and complete dissoci-
ation) around the dissociating bond length of 4.0 Bohr. We corroborate this finding
using 1 and 16 determinants, with results reported in Figure 3.10 and in Table 3.5.
Because pretraining with the Hartree-Fock wavefunction as a target has not be im-
plemented in VMCNet as of this writing, the parameters were pretrained on the
FermiNet repository, and then reloaded and trained using the VMCNet repository.
The UCCSD(T) and Pfau et al. results were extracted from Figure 5 in [47].

At bond length 4.0 Bohr, the performance of the standard multiple-determinant
FermiNet is improved somewhat over the standard single-determinant FermiNet,
but the energy does not approach the best available computational benchmark ob-
tained by the r12-MR-ACPF method [20]. We are unable to test the FA and GA
architectures on this system within the constraints of our computational resources.
However, we find that the full single-determinant FermiNet is able to outperform
the standard 64-determinant FermiNet and come within chemical accuracy of the
computational benchmark value. An important limitation of our experiments is that
we observed a non-trivial amount of run-to-run variance in our results, indicating
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that initialization and optimization methods for FermiNet-like architectures may re-
quire further investigation. As alluded to in the Preface, a careful understanding of
this issue is important for the application of these methods to chemically relevant
problems involving energy differences, especially if this optimization-related uncer-
tainty manifests differently in (for example) different molecular geometries. A more
thorough quantitative analysis of this effect is out of the reach of this dissertation.
Nonetheless, we were able to replicate this result on several distinct optimization
runs, and we verified the energies obtained by doing a pure MCMC evaluation with
rigorous estimates of the multi-chain autocorrelation. This astonishing result implies
the need for further exploration into the potential universality properties of the full
single-determinant FermiNet for strongly correlated problems in quantum chemistry.
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Chapter 4

VMCNet

In this chapter we describe some of the structure of VMCNet [39] and its capabilities.
All numerical experiments presented in Chapter 3 with the factorized and generic
antisymmetric layers are performed using the VMCNet repository, which is based
on the JAX framework [6]. Using JAX allows us to leverage the implementation of
DeepMind’s KFAC repository1, take advantage of the flexibility provided by JAX’s
clean functional style, and enjoy the performance benefits granted by its excellent
out-of-the-box GPU utilization and just-in-time compilation. As of this writing, the
most recent release (and thus the capabilities described here) is VMCNet version
0.1.0, for which the primary contributors were Jeffmin Lin and Gil Goldshlager.

The VMCNet repository was designed to serve two purposes:

(a) Provide a general python application programming interface (API) for varia-
tional Monte Carlo calculations compatible with JAX, with a number of built-in
neural network architectures for ready-use.

(b) Provide a command-line interface exposing a large number of options for more
streamlined (but somewhat less custom) experimentation with architecture/opt-
imization/sampling hyperparameters.

In what follows, we describe a subset of the Python API, the command-line interface,
and finally demonstrate that the VMCNet repository produces results on the Fer-
miNet architecture which are comparable to that of the JAX branch of the FermiNet
repository [53].

1https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha

https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha
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4.1 Python API

The primary routine exposed by this repository which implements the VMC training
loop is the train.vmc.vmc_loop function. This function implements a very generic
unsupervised training loop. A skeleton of a script which performs varational Monte
Carlo is shown in Listing 1.

The two primary ingredients necessary to implement the script in Listing 1 are
walker fn, which handles the MCMC portion and update_param_fn. Within these
functions a number of subroutines are needed, including but not limited to trial
wavefunction evaluation, MCMC routines, estimation of physical quantities, and
interfacing with optimizers. We first discuss the utilities offered by VMCNet to
help construct walker_fn, in vmcnet.mcmc. Next, we discuss the utilities for esti-
mating physics-related quantities (vmcnet.physics) and interfacing with optimizers
(vmcnet.updates). We then discuss some of the trial wavefunctions which have been
implemented in vmcnet.models. Finally, we mention two simple single-parameter
examples in vmcnet.examples (with the full loop implemented in the accompanying
test suite) which can be trained quickly and studied for a sense of how to implement
a custom VMC loop using the above tools. The discussion in this section is not com-
prehensive, and additional reference information is available on the documentation
website2.

Markov chain Monte Carlo: vmcnet.mcmc

Variational Monte Carlo relies on Monte Carlo sampling techniques to ameliorate
the difficulty in estimating the energy and related high dimensional integrals. VM-
CNet provides general utilities and objects to assist with setting up the Metropolis
algorithm, particularly for adaptive step sizes. Because the metropolis step cre-
ated by the factories in the metropolis submodule is a pure function, it can be
just-in-time compiled and dispatched to multiple GPUs in parallel easily using stan-
dard JAX calls to jax.jit and jax.pmap. The PositionAmplitudeData object
in the position_amplitude_core submodule holds both positions and wavefunc-
tion amplitudes, as well as any additional metadata needed. It subclasses Python’s
TypedDict for excellent compatibility with JAX utilities which traverse pytrees3.

VMCNet supports performing the Metropolis sampling on many chains of walkers
in an embarrassingly parallel fashion. A set of utilities are provided by VMCNet in
the statistics submodule to estimate the mean, variance, multi-chain integrated

2https://jeffminlin.github.io/vmcnet/
3https://jax.readthedocs.io/en/latest/pytrees.html

https://jeffminlin.github.io/vmcnet/
https://jeffminlin.github.io/vmcnet/
https://jax.readthedocs.io/en/latest/pytrees.html
https://jax.readthedocs.io/en/latest/pytrees.html
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Listing 1 Example skeleton of a VMC script using the VMCNet Python API.

import jax

import vmcnet.mcmc as mcmc
import vmcnet.train as train

# Training hyperparameters
nchains = ...
nburn = ...
nepochs = ...

seed = ...
logdir = ...
checkpoint_every = ...
checkpoint_dir = ...

# Initialize parameters, data, and optimization state
params = ...
data = ...
optimizer_state = ...

# Walker function (get new data)
def walker_fn(params, data, key):

...
return accept_ratio, data, key

# Define how the parameters are updated
def update_param_fn(params, data, optimizer_state, key):

...
return params, optimizer_state, metrics, key

# (Optionally) burn samples
def burning_step(params, data, key):

...
return data, key

key = jax.random.PRNGKey(seed)
data, key = mcmc.metropolis.burn_data(burning_step, nburn, params, data, key)

# Train!
params, optimizer_state, data, key = train.vmc.vmc_loop(

params,
optimizer_state,
data,
nchains,
nepochs,
walker_fn,
update_param_fn,
key,
logdir,
checkpoint_every=checkpoint_every,
checkpoint_dir=checkpoint_dir,

)
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autocorrelation, and standard error. Geyer’s initial minimum sequence [8, 21, 54] is
used to estimate the integrated autocorrelation.

Physical quantities: vmcnet.physics

Once a set of samples following the trial wavefunction distribution have been ob-
tained and before a parameter update can be determined, gradient-based optimizers
such as stochastic gradient descent and KFAC require an estimate of the gradient
of the expected energy. In VMCNet, the terms of the Born-Oppenheimer Hamilto-
nian have been implemented separately to allow for easy implmentation of custom
Hamiltonians, e.g. lattice Hamiltonians. An energy gradient function is implemented
which by default supports the calculation in Eq. (1.37), and a custom post-processing
function can be applied on the local energies (e.g. a clipping function).

Optimizer interface: vmcnet.updates

After the gradient of the expected energy has been computed, it can be passed to
an optimizer which updates the parameters. VMCNet supports arbitrary optimiz-
ers that map (gradient, parameters, optimizer state, data) to (new parameters, new
optimizer state). In particular, factories to create update functions for the Adam
and Stochastic Gradient Descent optimizers from the optax package have been im-
plemented in the parse_config submodule.

An experimental stochastic reconfiguration (SR) implementation is available. The
SR implementation uses the approximation to the Fisher/quantum geometric ten-
sor which is available in expectation from the samples collected by the Monte Carlo
portion of the VMC loop, which has rank bounded by the number of samples. De-
pending on the parametrization, the approximate numerical rank of the Fisher may
be much smaller than the number of samples, and so when using the inverse Fisher as
a gradient preconditioner in the stochastic reconfiguration method, a small damping
constant is added to improve the stability of the method. The Fisher is then approx-
imately inverted using the conjugate gradient method implemented in jax.scipy.

In addition to the provided interface with optax optimizers and the SR imple-
mentation, utilities to create parameter update functions which call an instance
of the KFAC optimizer from DeepMind’s KFAC repository4 are provided. The
wavefunctions implemented in vmcnet.models support this use of the DeepMind
KFAC repository, and custom models built from vmcnet.models.core.Dense or

4https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha

https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha
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vmcnet.models.core.SimpleResNet will automatically be compatible in this way
as well.

Trial wavefunctions: vmcnet.models

The models in VMCNet have been built using the open source Flax library [26].
Usage of the Flax library grants flexibility in model architecture, an API similar
to other popular libraries such as Keras [12], and streamlined factories to produce
pure JAX-compatible functions which perform model evaluation and initialization.
As alluded to previously, VMCNet provides custom Dense and SimpleResNet Flax
Modules in the core submodule which are interfaced with the DeepMind KFAC
repository5.

Multiple variants of the FermiNet architecture have been implemented in VMC-
Net, with variations on the backflow, input, and determinant layer. These include
the standard and full determinant modes referenced in Chapter 2. The factorized and
generic antisymmetric layers are also implemented using an underlying ResNet [25]
(results in Chapter 3 use a single hidden layer, so we refer to them as a feed forward
neural network).

VMCNet also makes it straightforward to add a Jastrow factor of a few types,
including a one-body Jastrow (Eq. (2.35)), a two-body Jastrow, and a backflow-
based Jastrow (Eq. (2.36)). In the default model configuration dictionaries, these
are available for the FA and GA models, but they may be added to other models as
well. An involved example of adding a backflow-based Jastrow factor used with the
FA or GA models to the standard FermiNet for the boron atom is shown in Listing 2.

Examples: vmcnet.examples and tests

A couple of simple examples of end-to-end VMC loops which combine parts of pre-
viously discussed components of VMCNet and custom models are available in the
vmcnet.examples module and the integration test suite included in the GitHub
repository [39]. Models and energy functionals for the harmonic oscillator and
hydrogen-like atom examples discussed in Chapter 1 are implemented, and both
a simple stochastic gradient descent and KFAC optimizer are demonstrated in the
integration test suite. In Listings 3.1, 3.2, and 3.3, pieces from the test suite are
combined into a single script which demonstrates a complete VMC example on the
quantum harmonic oscillator with five independent particles.

5https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha

https://github.com/deepmind/deepmind-research/tree/master/kfac_ferminet_alpha
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Listing 2 Adding a backflow-based Jastrow factor to the standard FermiNet.

from typing import Callable

import flax
import jax.numpy as jnp
from ml_collections import ConfigDict

import vmcnet.models as models
import vmcnet.train as train
from vmcnet.utils.typing import Array, ComputeInputStreams, Jastrow, SLArray

class FermiNetJastrow(models.core.Module):
"""FermiNet with a backflow-based Jastrow."""

ferminet_model: Callable[[Array], SLArray]
compute_jastrow_input: ComputeInputStreams
jastrow: Jastrow

@flax.linen.compact
def __call__(self, elec_pos: Array) -> SLArray:

"""Add the log Jastrow output to the log FermiNet output."""
sign_ferminet, log_abs_ferminet = self.ferminet_model(elec_pos)
input_1e, input_2e, _, _ = self.compute_jastrow_input(elec_pos)
jastrow_out = self.jastrow(input_1e, input_2e, None, None, None)
return sign_ferminet, log_abs_ferminet + jastrow_out

# specify the boron atom
nelec = jnp.array([3, 2])
ion_pos, ion_charges = jnp.array([[0.0, 0.0, 0.0]]), jnp.array([5.0])
model_config = ConfigDict(train.default_config.get_default_model_config())

# make the default FermiNet model
ferminet_config = train.default_config.choose_model_type_in_model_config(model_config)
ferminet_model = models.construct.get_model_from_config(

ferminet_config, nelec, ion_pos, ion_charges
)

# get the default backflow-based Jastrow from the explicit antisymmetry models
model_config.type = "explicit_antisym"
antisym_config = train.default_config.choose_model_type_in_model_config(model_config)
compute_jastrow_input = models.construct.get_compute_input_streams_from_config(

antisym_config.input_streams, ion_pos
)
jastrow_config = antisym_config.jastrow
jastrow_backflow = models.construct.get_backflow_from_config(

jastrow_config.backflow_based.backflow, (nelec[0],)
)
jastrow = models.jastrow.BackflowJastrow(backflow=jastrow_backflow)

# combine the models
ferminet_with_jastrow = FermiNetJastrow(ferminet_model, compute_jastrow_input, jastrow)
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Listing 3.1 Harmonic oscillator VMC with five independent particles. (part 1/3)

import logging

import jax
import jax.numpy as jnp
import numpy as np

import vmcnet.examples.harmonic_oscillator as qho
import vmcnet.mcmc as mcmc
import vmcnet.physics as physics
import vmcnet.train as train
import vmcnet.updates as updates
from vmcnet.mcmc.position_amplitude_core import get_position_from_data
from vmcnet.mcmc.simple_position_amplitude import (

make_simple_pos_amp_gaussian_step,
make_simple_position_amplitude_data,

)

def _make_initial_params_and_data(model_omega, nchains):
key = jax.random.PRNGKey(0)
key, subkey = jax.random.split(key)
random_particle_positions = jax.random.normal(subkey, shape=(nchains, 5, 1))

# because there are 5 particles total, the spin split is (3, 2)
log_psi_model = qho.make_harmonic_oscillator_spin_half_model(2, model_omega)

key, subkey = jax.random.split(key)
params = log_psi_model.init(subkey, random_particle_positions)
amplitudes = log_psi_model.apply(params, random_particle_positions)
return log_psi_model, params, random_particle_positions, amplitudes, key
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Listing 3.2 Harmonic oscillator VMC with five independent particles. (part 2/3)

def sgd_vmc_loop_with_logging(
data,
params,
key,
nchains,
nburn,
nepochs,
nsteps_per_param_update,
std_move,
optimizer_state,
log_psi_model,
local_energy_fn,

):
"""Run a VMC test with a very simple SGD optimizer and given model."""
# Setup metropolis step
metrop_step_fn = make_simple_pos_amp_gaussian_step(log_psi_model.apply, std_move)

burning_step = mcmc.metropolis.make_jitted_burning_step(
metrop_step_fn, apply_pmap=False

)
walker_fn = mcmc.metropolis.make_jitted_walker_fn(

nsteps_per_param_update, metrop_step_fn, apply_pmap=False
)

# Define parameter updates
def sgd_apply(grad, params, learning_rate, data):

del data
return (

jax.tree_map(lambda a, b: a - learning_rate * b, params, grad),
learning_rate,

)

energy_data_val_and_grad = physics.core.create_value_and_grad_energy_fn(
log_psi_model.apply, local_energy_fn, nchains

)
update_param_fn = updates.params.create_grad_energy_update_param_fn(

energy_data_val_and_grad, sgd_apply, get_position_from_data, apply_pmap=False
)

# Train!
logging.getLogger().setLevel("INFO")
data, key = mcmc.metropolis.burn_data(burning_step, nburn, params, data, key)
params, optimizer_state, data, key = train.vmc.vmc_loop(

params, optimizer_state, data, nchains, nepochs, walker_fn, update_param_fn, key
)
return data, params, optimizer_state, key
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Listing 3.3 Harmonic oscillator VMC with five independent particles. (part 3/3)

def test_harmonic_oscillator_vmc():
"""Test that the trainable sqrt(omega) converges to the true sqrt(spring constant)."""
# Problem parameters
model_omega = 2.5
spring_constant = 1.5

# Training hyperparameters
nchains = 100 * jax.local_device_count()
nburn = 100
nepochs = 50
nsteps_per_param_update = 5
std_move = 0.25
learning_rate = 1e-2

# Initialize model and chains of walkers
(

log_psi_model,
params,
random_particle_positions,
amplitudes,
key,

) = _make_initial_params_and_data(model_omega, nchains)
data = make_simple_position_amplitude_data(random_particle_positions, amplitudes)

# Local energy function
local_energy_fn = qho.make_harmonic_oscillator_local_energy(

spring_constant, log_psi_model.apply
)

_, params, _, _ = sgd_vmc_loop_with_logging(
data,
params,
key,
nchains,
nburn,
nepochs,
nsteps_per_param_update,
std_move,
learning_rate,
log_psi_model,
local_energy_fn,

)

# Grab the one parameter and make sure it converged to sqrt(spring constant)
np.testing.assert_allclose(

jax.tree_leaves(params)[0], jnp.sqrt(spring_constant), rtol=1e-6
)

if __name__ == "__main__":
test_harmonic_oscillator_vmc()
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Listing 4 Example of a simple command-line call to run VMC on the nitrogen
molecule at bond length 4.0 Bohr.

vmc-molecule \
--config.problem.ion_pos="((0.0, 0.0, -2.0), (0.0, 0.0, 2.0))" \
--config.problem.ion_charges="(7.0, 7.0)" \
--config.problem.nelec="(7, 7)" \
--config.model.ferminet.full_det="True" \
--config.logging_level="INFO"

4.2 Command-line

Alternatively, a command-line interface has been implemented which provides more
streamlined access to subsets of the repository via setting ConfigDict objects. There
are two scripts which have been exposed thus far: vmc-molecule and vmc-statistics.

The primary command vmc-molecule calls train.runners.run_molecule. See
train.default_config.get_default_config() to explore the options which have
been exposed to the command-line. To edit these options at the command-line, use
the ”--config.” prefix. For example, the command in Listing 4 will train the full
single-determinant FermiNet on the nitrogen molecule at dissociating bond length
4.0 Bohr for 2e5 epochs on 2000 walkers (which are distributed across any available
GPUs, if supported by the installation). The user can also reload and evaluate or
continue training from previous checkpoints via the ”--reload.” prefix. Training op-
tions can be seen in train.default_config.get_default_reload_config(). The
reloading will only occur if --reload.logdir is set.

The vmc-statistics command calls train.runners.vmc_statistics. This
simple script is designed to be compatible with the output of an evaluation run
with vmc-molecule, but can accept any path to a file which contains local ener-
gies (a file with nchains x nepochs energies). It computes and saves a json file
containing the average energy, the sample variance, the estimated integrated auto-
correlation, and the estimated standard error. The options can be viewed simply via
vmc-statistics -h.

4.3 Code benchmarking

To demonstrate that our results for the original FermiNet are comparable to those
reported by [47, 53], we show that results obtained using the VMCNet repository
are quantitatively comparable to that of the JAX branch of the FermiNet repository
presented in [53] on several small systems. We compare the behavior on both the
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Table 4.1: Comparison of the VMCNet repository with the FermiNet repository on
the nitrogen atom, with 1, 2, and 4 determinants. Data for 2 and 4 determinants
represent the best of several runs to account for run-to-run variance observed in both
repositories.

Repository 1 det 2 det 4 det

VMCNet -54.5864(1) -54.58739(4) -54.58891(4)
corr % 98.48(8)% 99.02(2)% 99.85(2)%

FermiNet -54.58654(5) -54.58711(6) -54.58870(4)
corr % 98.56(3)% 98.87(3)% 99.73(4)%

Table 4.2: Comparison of the VMCNet repository with the FermiNet repository on
the H4 square, with 1 and 2 determinants.

Repository 1 det 2 det

VMCNet -1.424531(7) -1.438804(5)
FermiNet -1.424429(7) -1.438796(5)

nitrogen atom and the square H4 model (Figure 3.6), using settings corresponding to
the original FermiNet model in both repositories. For the nitrogen atom, we compare
results with 1, 2, and 4 determinants, while for the H4 square we compare results with
just 1 and 2 determinants, since 2 determinants already captures essentially 100%
of the correlation energy. All results presented here come from our own numeri-
cal experiments with either the VMCNet repository or the publicly available JAX
branch of the FermiNet repository. Since VMCNet does not support Hartree-Fock
based pretraining, we turned this feature off in the FermiNet repository to make the
comparison fair. Turning off pretraining reduces the consistency of the FermiNet
optimization on some systems. In particular, when using multiple determinants for
the nitrogen atom, we found that some runs both of our own code and of the Fer-
miNet code without pretraining get stuck in local minima and never reach the lowest
energy possible. This phenomenon may merit further investigation. For now, to
account for this run-to-run variance, we have taken the best of several runs for all
multi-determinant experiments on the nitrogen atom.

Representative training graphs can be found for the nitrogen atom in Figure 4.1
and for the H4 square in Figure 4.2. The values of the final energies obtained are
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(a) 1 determinant (b) 2 determinants

(c) 4 determinants

Figure 4.1: Training runs on VMCNet and FermiNet repositories with the FermiNet
architecture on the nitrogen atom. At each epoch, rolling averages of the previous
10% of training epochs are shown here for clarity. One epoch means one parameter
update. Data for 2 and 4 determinants represent the best of several runs to account
for run-to-run variance observed in both repositories.

presented in Tables 4.1 and 4.2, respectively. On both systems, the results of VM-
CNet are approximately equivalent to the results of FermiNet. The two repositories
behave somewhat differently in the first 1,000 epochs of training, with VMCNet often
optimizing more quickly in this regime. However, the optimization trajectories are
largely indistinguishable by 10,000 epochs and the final energies achieved are within
a small margin of error of each other in all cases.
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(a) 1 determinant (b) 2 determinants

Figure 4.2: Training runs on VMCNet and FermiNet repositories with the FermiNet
architecture on the H4 square. At each epoch, rolling averages of the previous 10% of
training epochs are shown here for clarity. One epoch means one parameter update.
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