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The Role of the Invariant Line in the Search

for an Optimum Interphase Boundary by O-Lattice Theory

(1)

In a recent publication "/, Plichta and Aaronson (PA) analysed Lhe

crystallography of the B —> ¢ massive transformation in Ag~Al alloys.
OUne of the findings of this excellent study was that the Burgers orien-
tation relationship (OR) (fig. 1) was preferred by almost all of the

hep ¢ ograins nucleated from the bee B matrix. Most of the interphase
boundaries were faceted and found to be partially coherent. The authors

(2)

then used Bollmann's O-lattice theory to determine the optimum inter-

face and the corresponding orientation relationship in a manner similar

(3)

to the classical analysis by Bollmann and Nissen. The predictions
of the O-lattice theory agreed very well with the experimental results.
These predictions were based on the assumption that the optimum inter-
face was partially coherent with two sets of dislocations accommodating
the mismatch. The two Burgers vectors of these two sets of disloca-
tions were selgpcted from the ten shortest lattice translations of the
hep lattice. An energy perameter P was then calculated for the different
interfeces corresponding to each pair of Burgers vectors. All the
different combinations gave 45 possible interphase boundaries. The
boundary with the smallest energy parameter P was found to be an inter-
face described directly by the Burgers OR (fig. 1). Even though there
was good agreement with the experiments, PA added a further refinement
to their calculations by testing the stability of this minimum under
small rotations. Without these additional rotations, the two lattices,

Fay
hep and beco,were related by a transformation matrix A whose form was



determined by their choice of two pseudo-primitive unit cells. While
this choice did not eliminate the need for an additional shuffle to
produce the correct atomic positions, its advantage over the more con-

(5)

ventional choice of orthogonal unit cells was that it created one

lattice from the other in the exact Burgers OR (fig. 1) as experimen-
tally observed. (Orthogonal unit cells lead to the Pitsch/Schrader UR(é)
shown in fig. 2). Thus the rotations around three mutually ortho-
gonal axes were designed to determine whether the Burgers orientation
relationship did indeed provide the lowest energy boundary. With the
aid of a computer program, the energy parameter P was calculated as a
function of these rotations for each of the 45 possible boundaries.
Again it was found that the same interface had the lowest energy but,
interestingly, it was noted that this boundary had its absolute minimum
at an OR rotated about 0.05° around [UODlj away from the exact Burgers
OR. In view of this small deviation, the authors therefore concluded
carrectly that "the Burgers OR appears to follov directly from minimi-
zation of the interphase boundary energy”. They also pointed cut that
an OR is established during nucleation rather than during growth, all
interfaces being fully coherent during nucleation. However, they then
stated that "the smaller the Pij value of an interface, the less the
strain enerqgy required to achieve full coherency", implying that the
optimum boundary is the same for coherent and incoherent precipitates,
a fact which does not necessarily follow. The purpose of the

present communication is threefold:

~to demonstrate that the interphase boundary determined by PA can be
shown analytically to have the lowest energy parameter P of all pos-

sible O-lattice boundaries.



~-to explain the significance of the calculated 0.05° rotation around
FDUDlj and its relationship to the more general principle of an invariant
line.

~to show that the optimum interphase boundaries are generally quite
different for coherent and semicoherent precipitates having the same OR
with the matrix.

The derivation of the 0-~lattice is based on the generalization of the
principle of coincidence site lattices. The idea can be summarized
shortly as follows. Two lattices may be related by a linear homo-

. A . . . v
geneous transformation A which takes any point x, in lattice 1 to a

.
new position X in lattice 2:
\
Fal
X = Ax,.
2 ol

. . ) . . . o
The new point Xo in lattice 2 is an O-lattice point %~ if it is

separated from its original position X4 by a translation vector b

“\
of lattice 1.
0
X = X = X, + b
N2 Y AR
A
O s A0
Y\ o o
Y A 1 0
(T - A X" = b (1)
This is the well-known basic equation of O-lattice theorya(2> I
det|1 - Awll Z 0, the equation can be solved for éO
A o~
L= 1 -ah (2)
A “

Every one of the translation vectors Qi of lattice 1 has a corresponding

O~1attice vector X;. Every two O-lattice vectors define a possible interface

a3



- b -

between lattice 1 and lattice 2. For n different translation vectors

@j and hence n different O-lattice vectors ,éjg there are N = )ﬁ (n-1)

7
ti

igated

o

posslble boundaries; PA chose n = 10 translation vectors and inves

N = 45 boundaries. The energy of each interface is proportional to the

square of the strains and has been written by Bollmann and Nissen 3) as
2 2
YL
vl "2 -
P = + 5 (3)
g2 a2
1 2

where b, and b are two of the translation vectors b.g and d
vl W4 Vi 1

and d2 are the spacings of the corresponding two sels of dislocation
lines in the interface. The spacing di is related to the O-lattice
vectors by

2 1 0 0)2

d z s (X0 XX
1 (x O)Z Al

A2
and dz2 is obtained by an interchange of indices. The energy para-

meter can thus be rewritten as

2 0.2 2 0,2
. (Q/l) (512 )T+ (QZ) (%gl ) ”
- (x 0 < x 0>Z
Al WA

. . . . . 0
Apparently P is a function of the magnitudes of the Qi and X
of the angle between the X and, implicitly, of the OR. It is helpful
C X4
to examine the behavior of P as a function of each of these parameters
separately.
- ) 0 0 .
For a given angle between X and %o and a given OR, the energy

parameter P is actually independent of the magnitudes of the translation

vectors bi' Since the transformation from the g lattice to the 0O-lattice,
"

. R N . :

(I - A7) ", is linear (equ. 2), an n- and m-fold increase in ?l and ?2

) Lo . 0 0 N )
will cause an n- and m-fold increase in X1 and Xo oo Using this in equ. 4



shows that the factors mzﬂzcancel and that P is independent of the mag-
nitudes of the Burgers vectors. According to this resullt, a boundary
containing a network of dislocations %i with spacings di has the same
energy as a boundary with half the number of dislocation lines (spacing
2d1> and twice the Burgers vector, Z%i’ This is, of course, a shortcoming
of the energy parameter since a dependence of the magnitude of the %i
must exist. PA acknowledged this fact indirectly when they listed their
Burgers vectors in order of increasing magnitude (normalized line energy).
The dependence of P on the angle betuween X © and x.° is clear

1 42

. . o} 042 L .. .
from the denominator of equ. 4, (%1 X X5 5. P is a minimum if

0 0.2 0\2, 042 .0 0,2
G x5 QTR - Gy g )
is a maximum. This is the case when %lo is perpendicular to %2De

For the transformation strains of the g - ¢ massive transformation in

are perpen-

the Burgers OR, as used in the work of PA; most %10

0
and x.
Ko

dicular when Q and %2 are perpendicular. Generally this correlation

1
between the U-net and the b-net only holds if the Qi lie in the plane
defined by the corresponding %io. This condition defines an "eigen-
plane" of the transformaltion, il.e. a plane which remains parallel during
the transformation. Hence the minimization of P requires that the two

are approximately normal (exactly normal if they

Burgers vectors Q and Q

1 2
lie in an eigenplane of the transformation). This is the case for the
c-dislocation with one of the a-dislocations in an hep lattice. 0Of the
three a-dislocations only one defines an eigenplane with the c-direction.
With a 0.31% expansion in the a-direction and a 0.04% contraction in the

c-direction (for Ag-Al), the strain in this plane is small and hence

the O-points are widely spaced. This plane therefore minimizes the energy



-6 -

parameter P with respect to the choice of the Qwvectors at a given OR,
in perfect agreement with the computations of PA for the exact Burgers
OR.

In the second step of their analysis, PA sought a further reduc-
tion of the energy parameter by relaxing the condition that the exact
Burgers OR be followed. They changed the OR by superimposing small
rigid body rotations upon the original transformation. For small rotation
angles, a rotation around an arbitrary axis can be approximated by three
separate rotationg around orthogonal axes. The enerqy parameter P of the
minimum energy boundary can be plotted as a function of these three
separate rotations with the aid of @ computer program. Using this

c s (8] .
approach, PA found an absolute minimum of P for a 0.05  rotation around

[0001] :

This may also be readily understood by returning to equ. (3).
IRy |
d,

i
of the 0O-lattice vectors, it can be shown that under certain conditions

Regarding the terms as continuous strains in the directions
one of these strains can be reduced to zero by a rigid body rotation.
This can be visualized as the spacing of the dislocation lines di
going to infinity, or perfect atomic fit in that direction. This
direction is an invariant line of the transformation. In the case
treated by PA, the rotation that produces the invariant

line does not affect the other strain. Thus the dislocation spacing



in the direction of the rotation axis [ODDlJ remalns constant. The
rotation which produces an invariant line therefore defines the OR for
which the boundary enerqgy P has an absolute minimum. The general case
requires a more refined argument which will not be discussed here. It
is easy to calculate the angle of rotation ¢ necessary to produce an

invariant line. As shown in more detail in a separate publication9(7>

this angle 1s given by

wvhere a and b are the orthogonal components of the pure deformation
creating one lattice from the other in the plane of rotationg 5.264°
is the difference between the Pitsch/Schrader OR used in the derivation
of 6(7> and the Burgers OR used by PA. For the case of the g > ¢

transformation of PA, the orthogonal deformations are

a = 0.8B69 b = 1.064
and hence A@ is calculated as
8 = 0.079°

This agrees well with the value of approximately 0.05° caleulated by
computer program in the study of PA. While the present approach adds
little to the accuracy of the OR, it is simpler than the computerized
approach and brings to light another property of the lowest energy
boundary. Due to the invariant line, the O~lattice becomes a line

(2)

lattice as originally pointed out by Bollmann. An invariant line

is defined as that vector x/which remains unstretched and unrotated by



the transformation A.

Eas ~ }
Ax = X or x = A Tx
o A A A
A /\m‘]
Hence (I - A ”)% = 0 which means that
det|T - A7 = 0
IS ,Q‘ml - .
and (I - A7) has no inverse. Fq. (1) can therefore not be solved

for %O, In the vicinity of the critical rotation 6, however, the
A A

inverse of (I - A_l) does exist and (1) can be solved by (2) as

in the calculations of PA,

Relationship of the optimum O-lattice to interfaces of a

coherent nucleus. Based on the analysis of PA and the arguments presen-

ted in the preceding paragraphs, the optimum interface contains a
single set of dislocations parallel to the invariant line and requires
that the OR be rotated slightly away from the ideal Burgers OR. PA
concluded that this interface must also be an optimum interface for
a coherent nucleus; according to nucleation theory, a slight advantage
in the coherency strain enerqy leads to a great increase in nuclea-
tion rvate for nuclei with the calculated OR and interface. While the
latter part of this argument is correct, the former part needs closer
examination. Assume that the OR is the same for a coherent and a
semicoherent precipitate. Then lattices 1 and 2 are related by a
~

corresponding transformation matrix A. To minimize coherency stresses,
the interfaces of a coherent nucleus with the matrix must be planes of

0y o . . e o A
minimum distortion. Because of the continuous nature of A, the
coherent interfaces are completely independent of the periodicity

of the lattice. This is



different for semicoherent interfaces which are governed by the require-
ment that in the interface the continuous strains are periodically
eliminated. Wherever the continuous strains amount to a perfect lattice
translation, the match is perfect and a point of no strain or an
O-lattice point, is established. Hence semicoherent interfaces are
dominated by both, minimum strain and lattice periodicity. In the
interface, the continuous strains always lie in the direction of the
Burgers vectors of the misfit dislocations. However, in general, the

(2)

Burgers vectors do not have to lie in the interface 1.0,

defines a plane which is usually not parallel to x x x.,.

b, x b, 0
Al WA

Tl (WA

Hence semicoherent boundaries are not simply restricted to planes
) . . : . .
wvhich suffer the smallest distortion during the transformation A.
- . 3 . . ',\
Ihese considerations hold for any OR given by the matrix A.
In the particular case of an OR producing an invariant line, both
optimum boundaries, coherent and semicoherent should contain that line.
This is because the invariant line fulfills the conditions for both
boundaries; minimum strain and no change in direction. tence the two
boundary planes will intersect in the invariant line,

Summary and conclusions.

Using the example of a recent study by Plichta and Aaronson
(PA)(j) their results on the optimum O-lattice interface and corres-
ponding orientation relationship (OR) were generalized. In particular,
it was shown that
~for any OR, the minimum energy interface is based on dislocations

in a (nearly) orthogonal network (%1Q ° X, = min).

0
Nz
~an absolute minimum in interface energy occurs at an OR which

provides an invariant line.



-the optimum boundary contains a single set of dislocations parallel to
the invariant line.

~the OR, determined during nucleation, depends on the minimum energy
coherent interfaces which are generally different from their semi-
coherent counterparts.

-if an invariant line exists, it is the line of intersection of the
optimum coherent and semicoherent interfaces.

Ihe results are in full agreement with those of PA. A more complete
account of the general gignificance of the invariant line in phase

(7)

transformations is in preparation .
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Figure Captions
Fig. 1. Burgers orientation relationship between bece laltice (3-index
poles) and hep lattice (4-index poles). Coincident poles

are marked.

N
@

Fig. Pitsch/Schrader orientation relationship, rotated 5.26°
from the Burgers relationship in Fig. 1. (Note its higher

symmetry. )
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