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Abstract. When pulsed photothermal radiometry (PPTR) is used for depth profiling of
hypervascular lesions in human skin, melanin absorption also heats the most superficial skin layer
(epidermis). Determination of lesion depth may be difficult when it lies close to the epidermal–
dermal junction, due to PPTR’s limited spatial resolution. To overcome this problem, we have
developed an approximation technique, which uses two excitation wavelengths (585 and 600 nm)
to separate the vascular and epidermal components of the PPTR signal. This technique permits
a noninvasive determination of lesion depth and epidermal thickness in vivo, even when the two
layers are in close physical proximity to each other. Such information provides the physician with
guidance in selecting the optimal parameters for laser therapy on an individual patient basis.

1. Introduction

Time-resolved measurement of infrared (IR) radiant emission following pulsed laser
irradiation, known as pulsed photothermal radiometry (PPTR), can be used to assess the
longitudinal temperature profile induced in a layered sample (Tam and Sullivan 1983).
Knowing the absorption properties of the sample chromophores, their depth distribution may
then be determined (Long et al 1987, Crostack et al 1989). Such a PPTR technique was
recently introduced for in vivo depth profiling of hypervascular lesions in human skin, such as
port-wine stain (PWS) birthmarks (Jacques et al 1993, Milner et al 1995).

PWS consists of an excess of ectatic blood vessels, usually fully contained within the
most superficial millimetre of the dermis. PWS depth varies on an individual patient basis, but
on average, the highest fractional blood content is found between 200 and 400 µm below the
epidermal–dermal junction (Barsky et al 1980).

The ability of PPTR to correctly determine the depth of sub-surface chromophores in
turbid media has been demonstrated previously by profiling layered tissue phantoms (Vitkin
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et al 1995, Milner et al 1996), and comparison with histological assessment of PWS depths
(Milner et al 1996). However, when a visible laser pulse is used to increase the temperature of
PWS blood vessels for the purpose of PPTR profiling in vivo, melanin absorption heats also the
epidermis (50–150 µm thick superficial layer of skin). When the PWS lies in close proximity
to the epidermis, determination of lesion depth may be difficult due to the inherently limited
spatial resolution of PPTR (Milner et al 1995, Smithies et al 1998). To overcome this problem,
we present an approximation technique that achieves improved selectivity by utilizing two
excitation wavelengths. Such an approach enables in vivo determination of both PWS depth
and epidermal thickness, which is required for optimization of laser therapy involving cryogen
spray cooling on an individual patient basis (Anvari et al 1995a, b, Verkruysse et al 2000).

2. Method

2.1. Experimental setup and theory

A PWS lesion on the arm of a volunteer patient was irradiated with two 1.5 ms duration pulses
at 585 and 600 nm, delivered sequentially from a ScleroPLUS pulsed dye laser (Candela,
Wayland, MA). At both wavelengths, the energy density at the centre of a 6 mm diameter
laser spot was approximately 5 J cm−2. The transient increase in IR radiant emission from the
central 1.9 × 1.9 mm2 area was recorded with an InSb focal-plane-array camera (Raytheon,
Dallas, TX; detection band 3–5 µm) at a rate of 200 frames per second. After calibrating
the response of the 64 × 64 array detector elements with a temperature stabilized blackbody,
averaging over the array and subtracting the radiant emission level before the pulsed laser
exposure, signals s585(t) and s600(t) were obtained (figure 1). These signals represent the
radiometric temperature increase induced by pulsed exposure at 585 and 600 nm, respectively.
The radiometric temperatures are given in degrees Celsius of the blackbody temperature
increase. (Note, however, that they do not represent the skin surface temperature, due to
the finite penetration depth of the detected IR radiation.)
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Figure 1. PPTR signals obtained from the same spot in a PWS lesion in vivo using excitation
wavelengths of 585 nm (curve A), and 600 nm (B).

Reconstruction of the initial temperature profile from the PPTR signals is a severely ill
posed inverse problem (Milner et al 1995, Prahl 1996). In our case, it is solved by a dedicated
iterative algorithm using a nonnegative-constrained conjugate-gradient method (Milner et al
1995). As an example, consider the longitudinal temperature profile immediately after 585 nm
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excitation computed from signal s585(t) (figure 1), presented in figure 2(a). The three curves
shown are iterative solutions, obtained with different degrees of regularization. In accordance
with the discrepancy principle (Groetsch 1984), the iterative algorithm runs until the Euclidian
norm of the residue reaches a level defined by a preset signal-to-error ratio (SER). At low
values of SER, we obtain under-iterated solutions, which are blurred images of the actual
temperature profile. By increasing SER, near optimal solutions that show more detail are
obtained, eventually followed by over-iterated results. As discussed previously by Milner
et al (1995), the latter often oscillate, as the algorithm attempts to fit mismatches between
the experimental and theoretically predicted signals (dotted line). In this study, we avoid the
issue of optimal regularization by presenting a series of iterative solutions for each example
discussed. Since at high SER settings (SER = 50 in figures 2(a), (b)) the above criterion for
terminating the iteration cannot be met, the iteration run is stopped after an arbitrarily chosen
high number of iteration steps (n = 100, compared to n = 6 reached at SER = 30). Clearly,
in the presented example, the temperature profile in the PWS layer cannot be resolved from
the heated epidermis.

2.2. Combining two excitation wavelengths

The calibrated PPTR signals s(t) are linear functions of the longitudinal temperature
distribution immediately following pulsed laser exposure (Milner et al 1995). Therefore,
the superposition principle can be applied to express signal s585(t) as a sum of two signal
components, originating from the heated PWS (x(t)), and epidermis (y(t)):

s585(t) = x(t) + y(t). (1)

At 600 nm, the absorption and scattering properties of the epidermis and dermis are essentially
equivalent to those at 585 nm (Wan et al 1981). As a result, the temperature profile in the
epidermis and, consequently, the corresponding signal component, are nearly equal at both
excitation wavelengths. In contrast, absorption by blood is significantly weaker at 600 nm than
at 585 nm (van Kampen and Zijlstra 1965; see table 1). This results in a smaller contribution
from the PWS to the PPTR signal obtained with 600 nm excitation. The latter can therefore
be approximated by

s600(t) = αx(t) + βy(t) (2)

α and β are unknown positive constants. Based on the above described spectral properties of
the tissue components, we expect their values to be α < 1 and β ≈ 1.

Table 1. Absorption coefficients of oxygenated and deoxygenated human blood (hematocrit 40)
at 585 nm, 600 nm, and the ratio of the two (from van Kampen and Zijlstra 1965).

Oxygenation level (%) µ(585 nm) (mm−1) µ(600 nm) (mm−1) µ(600 nm)/µ(585 nm)

100 18.0 ± 0.9 2.0 ± 0.2 0.11 ± 0.02
0 16.9 ± 0.6 7.0 ± 0.3 0.41 ± 0.03

Due to the difference in blood absorption, 600 nm laser radiation may penetrate deeper
into the PWS compared to 585 nm. Consequently, the PWS temperature profiles induced by
the 600 and 585 nm laser pulses are in general not exactly proportional. Nevertheless, the
proportionality assumed in equation (2) is valid at least in a thin top layer of the PWS, where
both temperature profiles can be linearized. The first-order approximation made in equation (2)
is thus appropriate for reconstruction of the epidermal profile and top boundary of the PWS,
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Figure 2. Longitudinal temperature profiles immediately after pulsed laser exposure, as
reconstructed from PPTR signals in figure 1 using the inversion algorithm. The three curves
shown for each example are iterative solutions obtained with different degrees of regularization
(see text). (a) Excitation wavelength 585 nm, (b) excitation wavelength 600 nm.

as required for optimization of therapy, but can be expected to deteriorate at deeper depths.
We discuss the limitations of such an approach in more detail in section 4.

From equations (1) and (2), the PWS and epidermal components of s585(t) can be derived
as:

x(t) = βs585(t) − s600(t)

(β − α)
(3a)

y(t) = s600(t) − αs585(t)

(β − α)
. (3b)

By applying our reconstruction algorithm to each of these components separately, the initial
temperature profiles in the PWS and epidermis can be obtained independently. Since the values
of α and β are not known, we estimate them as follows.

First, we use the fact that the radiometric signal immediately following pulsed laser
exposure results predominantly from the temperature rise within a few penetration depths
of the detected IR radiation (40–50 µm) from the skin surface. Since the blood vessels are
located deeper (>100 µm) in the skin, we require that the PWS signal component starts
from x(t = 0) = 0, yielding β = s600(t = 0)/s585(t = 0). A signal, proportional to the
PWS contribution x(t), can then be calculated as βs585(t) − s600(t) (see equation (3a)). The
temperature profile reconstructed therefrom is proportional to the temperature increase in the
PWS induced by 585 nm excitation.

Second, we know that reconstruction of a pure epidermal component should not contain
any temperature increase deeper than 200 µm below the skin surface. Therefore, we calculate
signals y(t) according to equation (3b) with increasing values of α, starting from 0, and
reconstruct the corresponding temperature profile from each of these signals. This is repeated
until the temperature increase deeper than 200 µm below the skin surface drops to zero. The
value of α at which this happens is taken as the best estimate, and is used to normalize the
amplitude of the previously obtained PWS temperature profile (by simply dividing it by (β−α),
in accordance with equation (3a)).
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Figure 3. (a) PPTR signal proportional to the PWS contribution x(t), calculated from experimental
signals in figure 1 (as βs585(t) − s600(t)). (b) Non-normalized temperature profile in the PWS, as
calculated from the signal in figure 3(a).
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Figure 4. (a) PPTR signals y(t), calculated from signals in figure 1 using equation (3b) with
increasing values of α: 0 (A), 0.20 (B), 0.40 (C), 0.45 (D), and 0.50 (E). (b) Temperature profiles
reconstructed from these signals.

3. Results

Figures 2(a) and 2(b) present temperature profiles for a PWS birthmark in vivo (on a patient’s
forearm), as reconstructed from PPTR signals s585(t) and s600(t) in figure 1, respectively.
Without knowing the actual temperature profile, it is certainly somewhat ambiguous whether
the solution with SER = 30 (solid line) is closer to optimal than that obtained with SER = 10
(dashed). Irrespective of that, these results convincingly demonstrate how, in the presented
example, neither the PWS depth nor epidermal thickness can be assessed by reconstruction from
a single PPTR signal. In addition, they illustrate the previously discussed absorption properties
of melanin and blood by indicating a similar average temperature increase in the superficial
layer (epidermis, containing melanin) but considerably lower temperature rise deeper in the
skin with 600 nm excitation (figure 2(b)), compared to 585 nm (figure 2(a)).

Figure 3(a) presents a signal proportional to the PWS component x(t), calculated from the
experimental PPTR signals as βs585(t)−s600(t). As described in the previous section, the value
of β is adjusted to bring the first point of this signal to 0 (β = 1.06 for the presented example).
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Figure 5. Initial temperature profiles in the PWS, as obtained after normalization of the result in
figure 3(b) (solid line), and in the epidermis (dashed). Both solutions are correct only at depths up
to 0.2 mm (α = 0.45).

The reconstructed temperature profile (figure 3(b)) is proportional to the temperature increase
in the PWS layer, and clearly shows its top boundary. The solution obtained with SER = 30
can be disregarded as over-iterated based on its oscillatory shape, which is in agreement with
the lower signal-to-noise ratio in the subtracted signal (figure 3(a)) compared to the original
single-wavelength PPTR signals (see figure 1). The SER = 20 solution is thus considered as
the closest available estimate of the initial temperature profile (solid line).

The signals y(t) calculated according to equation (3b) with α increasing from 0 to 0.50
(curves A–E) are presented in figure 4(a). Temperature profiles reconstructed from these signals
(figure 4(b); SER = 50) show steadily decreasing temperatures at depths below 150–200 µm,
with values of α increasing up to 0.40. At α = 0.45, the PWS contribution to the temperature
profile practically disappears. In the most superficial 150 µm (epidermis), the temperature
profile varies little from α = 0.20 to 0.45, indicating that this part of the solution is insensitive
to small variations of α. While the PWS contribution is completely absent from the solution
at α = 0.50, the abrupt change in width and height of the epidermal profile indicate that this
value is most likely too high. A further discussion on determining the best choice of α is given
in section 4.

Figure 5 presents the final result, showing separately the temperature profiles in the PWS
and epidermis (using α = 0.45), which are evidently in close proximity to each other. In fact,
our result indicates an overlap of the two profiles, which could result from the uneven shape of
the epidermal–dermal junction, but also from broadening of one or both profiles by the limited
spatial resolution of the reconstruction algorithm.

In order to establish a direct correlation between our two-wavelength approximation
algorithm and single-wavelength PPTR profiling, which has been thoroughly tested before
(Vitkin et al 1995, Milner et al 1996), we present in figure 6(a) a similar analysis of another
PWS lesion (located on a finger of the same patient). In the PPTR signal obtained with 585 nm
excitation (curve A in figure 6(a)), the initial spike, resulting from the heated superficial layer,
and the delayed contribution from the deeper lying PWS can be easily distinguished. This
indicates that in this specific example, the PWS vascular cluster is spatially separated from
the epidermis, which is confirmed by the initial temperature profiles reconstructed from this
signal (figure 6(b)). The signals in figure 6(a) also illustrate how the initial spike, resulting
from epidermal heating, is reproduced in the signal obtained with 600 nm exposure (curve B),
whereas the delayed contribution from subsurface PWS is considerably diminished.
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Figure 6. (a) PPTR signals s585(t) (curve A) and s600(t) (B) obtained from another PWS lesion in
vivo, and the component proportional to the PWS contribution x(t), calculated as βs585(t)−s600(t)

(C). (b) Longitudinal temperature profile immediately after the laser exposure, as reconstructed from
signal s585(t) in figure 6(a). (c) Temperature profiles as reconstructed from signals y(t), calculated
using increasing values of α. (d) Initial temperature profiles in the PWS (solid line) and in the
epidermis (dashed; α = 0.40). The result closely matches the profile in figure 6(b) up to a depth
of ∼0.40 mm.

Figure 6(c) illustrates the next step of the corresponding two-wavelength analysis in which
the value of α = 0.40 is determined. The final result of this analysis is presented in figure 6(d).
The temperature profiles in the epidermis (SER = 30) as well as PWS (SER = 20) replicate
very closely the ones determined by standard, single-wavelength PPTR profiling (figure 6(b)),
up to a depth of ∼400 µm. The two heated layers are separated by approximately 60 µm,
which enables the reconstruction algorithm to differentiate their contributions to the 585 nm
signal, in contrast to the previous example (figure 2(a)).

4. Discussion

The presented method is based on the principle of superposition, which relies on the linear
relationship between the PPTR signals following laser exposure s(t > 0) and the induced
temperature distribution �T (z, t = 0) (equation (5) in Milner et al 1995). This linearity,
which is to the best of our knowledge used in all related work thus far, arises from a power
series expansion of the emitted infrared radiation intensity (Planck’s law) around the starting
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temperature, of which only the linear term is preserved. The emitted radiation is therefore
linear in the temperature distribution only for small temperature increases. For the discussed
experiment, by taking into account the acquisition wavelength band of 3–5 µm and initial
skin temperature of 35 ◦C, the actual intensity of the emitted radiation deviates from the
corresponding linear approximation by 3.8% for a homogeneous temperature increase of 10 ◦C.
It is very important to note, however, that the amplitudes of the PPTR signals used in the
presented analysis have been calibrated by comparison with infrared radiation levels emitted
from a homogeneously heated black body, which eliminates most, if not all, of this nonlinearity.

As previously mentioned, equation (2) is a first order approximation, which holds in
the epidermis and most superficial layer of the PWS. At deeper depths, the validity of this
approximation may deteriorate, depending on differences between the temperature profiles
induced in the PWS with 585 versus 600 nm irradiation. The latter likely penetrates deeper into
the lesion, since, according to published data on blood vessel size distribution in PWS (Barsky
et al 1980) and absorption properties of blood (van Kampen and Zijlstra 1965), most vessels
can be expected to behave as optically thin (Lucassen et al 1996). This is reflected in the lower
PWS temperature increase observed with 600 nm, compared to 585 nm excitation (figure 2).

As a result, signal y(t) calculated using equation (3b) in general contains some contribution
from deeper blood vessels, which can be expected to show up in the reconstructed temperature
profiles. The ‘epidermal’ profile deeper than 200 µm in figure 5, is in our opinion such an
artifact of the approximation method, and should not be interpreted as a melanin-mediated tem-
perature increase. For the same reason, the presented PWS temperature profile (reconstructed
from x(t) differs from the actual temperature profile induced in the PWS by 585 nm excitation
at depths beyond ∼200 µm. The same effect can be observed by comparing the results in
figures 6(b) and 6(d), which differ at depths beyond ∼400 µm. Nevertheless, as equation (2)
is valid for shallow skin depths, down to the most superficial layer of the PWS, we can conclude
that the temperature profiles reconstructed from x(t) and y(t) are representative for determi-
nation of PWS depth and epidermal thickness, respectively, as required to guide laser therapy.

When determining the value of α as described in section 2.2, it is instructive to monitor the
behaviour of the residual norm. In the example presented in figure 4(b), increasing the value
of α from 0.45 to 0.50 results in a 5% higher residual norm, supporting our conclusion that the
latter value is likely too high. An overestimated value of α introduces a negative heat source
at the PWS position, which cannot be accounted for by the positively constrained inversion
algorithm. In the second example presented (figure 6(c)), using a value of α = 0.45 increases
the residual norm by a factor of six, compared to α = 0.40 or 0.35, confirming the value of
0.40 as the best estimate. (In view of the inexact nature of our criteria, we made no attempt to
determine α more accurately than to the closest 0.05.)

In addition, we found that by adding the integrals of the PWS and epidermal temperature
profiles, the integral of the profile obtained using 585 nm excitation alone is matched within a
relatively narrow error margin (3.0% for figure 5 versus 2(a); 1.0% for figure 6(d) versus 6(b),
as required by energy conservation. In both examples, using a larger value of α degraded this
match.

PPTR profiling of four PWS sites on the same patient yielded average values of ᾱ = 0.41
(standard deviation s.d. = 0.07), and β̄ = 1.0 (s.d. = 0.1). The latter indicates that, on
the average, the epidermal contributions to the PPTR signals obtained with 585 and 600 nm
excitation are nearly equal. The occasionally observed differences between the amplitudes of
the initial PPTR signal jump observed with the two excitation wavelengths can be attributed in
part to random variations of the excitation pulse energy. In addition, due to strong scattering in
dermis, the excitation fluence in epidermis may be somewhat affected by absorption in PWS
blood (Verkruysse et al 1993). This effect would diminish the epidermal contribution to the
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PPTR signal following the 585 nm excitation with respect to 600 nm, in particular when the
PWS lies close to the epidermal–dermal junction (as is the case in figure 1).

Although the ratio of PWS temperature increase with 600 versus 585 nm excitation does not
depend exclusively on the blood absorption coefficients at these wavelengths, it is interesting
to note that the obtained value of ᾱ resembles the absorption coefficient ratio for completely
deoxygenated blood (µ600/µ585 = 0.41) as compared to fully oxygenated blood (0.11; see
table 1). This may indicate the effect of PWS blood deoxygenation during laser exposure, as
a result of the impaired oxygen binding capacity of heamoglobin at increased temperatures
(Kelman and Nunn 1966). Note that the temperature increase in the presented one-dimensional
profiles reflects the average value at a given depth, whereas temperature rises in individual blood
vessels are likely several times higher.

A considerable correction to the above rough estimates of the expected values of α

would result from consideration of the absorption in bloodless dermis (µD = 0.22 mm−1;
Verkruysse et al 1993). By assuming the fractional blood content in the superficial part
of the PWS equal to f = 0.06 (Barsky et al 1980), for example, the value of α would
be predicted at (f µ600 + µD)/(f µ585 + µD) = 0.26 for completely oxygenated, and 0.52
for deoxygenated blood. However, in view of the influence of other variable factors and
effects, such as distribution of vessel diameters (Lucassen et al 1996, Verkruysse et al 1997)
scattering in dermis (Verkruysse et al 1997), and dynamical changes in the optical properties
of blood (Verkruysse et al 1998), a much more detailed study—possibly taking into account
the exact three-dimensional geometry of a specific lesion—would be required in order to draw
quantitative conclusions from the experimentally determined values of α.

In conclusion, the presented technique, which combines PPTR signals obtained with two
different excitation wavelengths, enables determination of epidermal thickness and PWS depth
in vivo with an accuracy sufficient to guide laser therapy, even when the two layers are in close
physical proximity to each other. A direct comparison of our approach with standard, single-
wavelength PPTR profiling, shows no significant difference in the epidermal profile nor PWS
depth, when the two layers are separated by ∼60 µm. In ongoing experiments at our institution
(BLIMC), we aim at improving the accuracy of PPTR profiling by using higher acquisition
rates and reduced spectral detection band (Majaron et al 2000). We are also correlating
the temperature profiles determined using the above presented approach with information
obtained from non-invasive imaging techniques, such as optical Doppler tomography (Zhao
et al 2000a, b). However, such comparisons, as well as those involving histological evaluation
of PWS, are practically limited to correlations of epidermal thickness and PWS depth, since
the relation between the geometry of the lesion and the laser-induced temperature profile is
complicated by the nonhomogeneous distribution of the chromophores and strong scattering
of the laser radiation in skin.
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