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Abstract 

 
Applications of Artificial Intelligence (AI) Techniques on Remote Sensing Data for 

Ground Failure Detection, Mobility Assessment, and Infrastructure Monitoring 

by 

Jhih-Rou Huang 

 
Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

University of California, Berkeley  

Professor Dimitrios Zekkos, Chair  
 

This dissertation incorporates artificial intelligence (AI) techniques on remote-

sensing data for ground failure detection, mobility assessment, and infrastructure 

monitoring. First, the use of AI for landslide detection is investigated. Although an 

increasing body of work is observed on this topic, a systematic investigation of the 

factors (input and algorithms) that affect the accuracy of the machine-learning co-

seismic landslide detection model has not been attempted. This study leverages the 

state-of-the-art detailed 3D inventory of more than 700 landslides triggered by the 

Mw 6.5 Lefkada earthquake on November 17, 2015. The result highlights that feature 

selection is the most essential factor for successful landslide detection, but the number 

of features needed is not particularly high. The geospatial distribution and size of the 

training sample are also important. Input data resolution and machine learning 

algorithms are the secondary factors that influence detection accuracy. Geospatial 

distribution affects the training sample size needed to create an accurate landslide 

detection model, and a wider geospatial distribution of training samples generates a 

more precise landslide detection model. The work is expanded to consider the 

generality of the above results for two additional co-seismic landslide events, namely 

the 2016 Kaikōura earthquake and the 2021 Nippes earthquake, with the goal to 

identify the commonalities and differences in the success of the machine learning-

based landslide detection model. It is found that although feature selection is the most 

vital factor in the landslide detection model, both topographic and spectral features 

are useful, with spectral features being most significant in two of the study areas due 

to their geologic and climatic setting. The input data resolution and training sample 

size similarly influence the model performance for the three earthquake events, but 

the importance of segmentation and machine learning algorithms varies across events. 

Next, a simple mechanistic-model that is based on the Voellmy friction law as 

incorporated in Rapid Mass Movement Simulation Debris Flow (RAMMS-DF) is 

tested against statistically significant observations of landslide runout for hundreds of 

mapped rock avalanches triggered by the Mw 6.5 Lefkada earthquake on November 

17, 2015. It is found that the dry-Coulomb friction (μ) controls the simulation's 

performance, whereas the simulation is less sensitive to viscous-turbulent friction (ξ), 
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especially for large values of ξ. The simulation's accuracy positively correlates with 

landslide source area, height, and 3D travel distance. The model does not match very 

well landslides with small source areas (<4,000 m2), but in these cases, it 

systematically overestimates landslide runout, i.e., it is inherently conservative. The 

fourth part of this dissertation leverages lessons learned from the damage observed 

along Highway 1 during the January 2021 atmospheric river event. A remote sensing-

based methodology is developed for system-level monitoring and assessment 

following natural disasters. It is shown that remote sensing indicators of vegetation 

loss can detect the occurrence of debris flows and ground failure and indicate the 

severity of highway damage. Damage severity is correlated to increasingly broader 

distribution and a lower minimum value of the vegetation loss curve. The last part of 

this dissertation aims to develop a methodology for fully autonomous remote-sensing-

based monitoring of mines. Specifically, the detection of mining instability using 

high-resolution satellite imagery for eight recent failure cases is considered: the 2022 

Jagersfontein tailings dam failure, the 2022 Pau Branco iron ore mine landslide, the 

2020 Carmen copper mine landslide, the 2020 Singrauli fly ash dam breach, the 2019 

Córrego De Feijão tailings dam failure, the 2018 Cadia gold mine tailings dam failure, 

the 2014 Mount Polley mine tailing dam failure, and the 2013 Bingham Canyon 

copper mine landslide. The results show that remote sensing indexes can successfully 

detect mining failure. In summary, this dissertation demonstrates that new approaches 

that leverage Artificial Intelligence (AI) and remote-sensing data can be valuable for 

ground instability detection following natural hazards and can set the stage for fully-

autonomous infrastructure monitoring in an expedited and efficient manner. 
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Chapter 1 Introduction 

 

1.1 Background and Motivation 

Natural hazards are detrimental events that occur beyond our control and are often 

indirectly made worse by human interventions (Alimohammadlou et al., 2013). 

Natural hazards have given rise to over 1.6 million fatalities globally since 1990 and 

have led to estimated economic losses at an average of around USD 260-310 billion 

annually (Ward et al., 2020). Landslides can lead to substantial economic losses and 

casualties and are the seventh largest killer among natural disasters (Herath and Wang, 

2009; Kjekstad and Highland, 2009; Dai et al., 2002). In the United States, landslides 

lead to an estimated annual economic loss that ranges between 1 and 3.6 billion dollars 

and an average death rate of 25-50 people (Highland et al., 1998). Evaluating landslide 

risk at the global scale is challenging because the spatial extent of individual landslides 

is typically small, and the diversity of parameters affecting the landslide hazard 

susceptibility, such as topography, triggering factors, and material properties, is high 

(Ward et al., 2020). Once a landslide is triggered, it can have significant effects 

downhill. Thus, runout analyses are the key component of landslide risk assessment 

and mitigation. Natural disasters provide the opportunity to observe and document the 

occurrence and runout of landslides, and the observations can be used to calibrate 

simple empirical or mechanistic runout models, providing valuable site-specific 

insights. 

Natural hazards and the instability of human-made infrastructure, such as 

mining facilities and highways, can result in significant economic loss and casualties. 

Resilient infrastructure is essential in maintaining community access and supporting 

economic activities, and it needs to be designed to resist human-induced and natural 

hazards over their lifetime (Little, 2002; Dong et al., 2022). Infrastructure is more 

vulnerable to natural hazards in a changing climate (Mühlhofer et al., 2023). Natural 

hazards such as earthquakes, landslides, and storms pose a massive risk to 

infrastructure systems (Little, 2002). Infrastructure failure can lead to enormous 

disruption of economic activity and economic loss (Kelly, 2015). Transportation 

infrastructures and road networks are essential to assure accessibility and social and 
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economic development of a country (Maltinti et al. 2012). The disruption of the 

transportation system significantly impacts the economy and society because of the 

interdependency and interconnectivity of the economic sectors (Sohouenou et al., 

2020). System-level monitoring and assessment can improve the transportation 

system's operations and significantly reduce the cost of emergency repair by early 

detection and prioritization of the most impacted locations along the transportation 

system. Mining facilities such as tailings dams are some of the largest earth structures, 

and historical and recent tailings dam failures are reminders that these facilities remain 

vulnerable and are prone to catastrophic failures. (Azam and Li, 2010). Mining 

facilities' failure significantly negatively impacts people's lives, the economy, and 

surrounding properties (Draves and Fox, 1998; Lyu et al., 2020). Analyzing historical 

events, prediction methods, and forecasting approaches can enhance infrastructures' 

ability to withstand natural hazards and failure (Little, 2002).  

The recently observed rapid proliferation of data and the increase in 

computational capabilities that can handle large data volumes allow the wide 

application of artificial intelligence (AI) theory (Guikema, 2020). Applying the AI 

method to natural hazards promises to enhance predictive accuracy and reduce the 

computational burden compared to more traditional engineering-based and physics-

based approaches (Guikema, 2020). Wang et al. (2021a) presented a framework for 

the machine learning-based regional scale intelligent modeling of building information 

for natural hazard risk management. Pourghasemi et al. (2020) used machine learning 

to assess multi-hazard susceptibility. Yousefi et al. (2020) presented a machine-

learning framework for multi-hazards modeling and mapping in a mountainous area. 

Accurate methods to efficiently detect landslides are needed to generate landslide 

inventories following natural disasters, such as earthquakes. Machine learning 

techniques are becoming popular in landslide mapping, detection, and spatial 

forecasting (Tehrani et al., 2022). However, the large dataset is critical to the success 

of the AI method, and acquiring a representative and sufficiently large set of training 

data for natural hazards is challenging, especially for rare events (Guikema, 2020).  

Remote sensing gathers information about an environment from a distance, so 

remote sensing tools do not need human contact with the target and can be space-borne, 

air-borne, or ground-based (Whitehead and Hugenholtz, 2014; Casagli et al., 2023). 

The complex and widespread nature of hazards requires accurate measurement with 

extensive spatial coverage and high acquisition frequency to catch the considerable 

change in hazards (Casagli et al., 2023). Remote sensing can provide synoptic, 

systematic, and cost-effective data covering the entire world over a short period of 

time. Thus, it is well suited to managing natural disasters and infrastructure failures in 

a timely manner (Krishnamoorthi, 2016). Remote sensing has been deployed to 

support natural disaster mitigation, preparedness, response, and recovery including 

early warning systems, damage assessment, and resource allocation to monitor and 

predict natural hazards, evaluate their impact, and facilitate efficient response and 

recovery efforts (Twigg, 2004; Kucharczyk and Hugenholtz, 2021; Krichen et al., 

2023; Alipouri et al., 2024; Mantovani et al., 1996). Satellite data has been utilized in 

natural hazard and infrastructure monitoring because of the advancement of algorithms 
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and the launch of satellites with higher data spatial resolution and acquisition 

frequency (Crosetto et al., 2016; Mondini et al., 2021; Casagli et al., 2017; Gagliardi 

et al., 2023; Huang and Zekkos, 2023b). Remote sensing data can be utilized to monitor 

the condition of infrastructure such as highways and operational and abandoned 

mining sites remotely and regularly. 

1.2 Main Contributions 

The main contribution of this dissertation is the implementation of AI techniques on 

remote sensing data to detect landslides, assess landslide mobility, and monitor ground 

instability that impacts infrastructure. First, although progress has been made in recent 

years in implementing AI in landslide detection, a more systematic assessment of the 

factors that affect the detection of landslides using machine learning algorithms is 

lacking. Thus, three different study areas at different geologic, climatic, and 

topographic settings where landslides have occurred during earthquakes are used to 

investigate systematically the influence of various factors (input and associated 

algorithms) that affect the results. The large data collected on co-seismic landslides is 

also used to develop landslide mobility prediction models that are mechanistic-based 

but are also grounded against field observations. Then, two examples of remote 

sensing-based frameworks for monitoring infrastructure are presented. The first case 

is the performance of a remote sensing-based monitoring system for Highway 1 during 

the January 2021 atmospheric rivers. The second case is developing a framework of 

an autonomous methodology for mining instability monitoring using remote sensing 

data. 

The novel contributions of this dissertation are summarized as follows:  

(a) It quantifies and ranks factors that affect the accuracy of machine learning 

algorithms in detecting co-seismic landslides in three different settings. 

(b) It calibrates a physics-based model against quantified field observations to derive 

statistically-significant calibrated input parameters for hundreds of rock avalanches. 

(c) It proposes a remote sensing-based monitoring system that can continuously track 

roadway infrastructure conditions on a large scale and follow natural hazards, such as 

storms and earthquakes.  

(d) It presents a framework for an autonomous monitoring system to detect mining 

instability using high-resolution satellite imagery by evaluating the performance of 

different remote sensing indexes when failures occur. 
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1.3 Organization of the Dissertation  

This dissertation has seven chapters and is organized below: 

⚫ This chapter (Chapter 1) presents this dissertation's background, motivation, 

contribution, and organization.  

⚫ Chapter 2 quantifies the influence of machine learning algorithms, the selection 

of features, the size and geospatial distribution of training samples, the 

resolution of input data, segmentation parameters, the spatial distance between 

non-landslide and landslide training samples, and the geometry of the training 

sample using the detailed 3D inventory of more than 700 landslides that 

occurred during the Mw 6.5 Lefkada earthquake on November 17, 2015.  

⚫ Chapter 3 expands on the work from Chapter 2 to assess the machine learning-

based landslide detection model for the 2015 Lefkada earthquake, the 2016 

Kaikōura earthquake, and the 2021 Nippes earthquake event to generate more 

generalized lessons about the importance of each factor in a range of settings.  

⚫ Chapter 4 deploys a Voellmy friction model and calibrates its model parameters 

against hundreds of mapped rock avalanches triggered by the Mw 6.5 Lefkada 

earthquake on November 17, 2015, to generate statistically significant 

observations of landslide runout. 

⚫ Chapter 5 classifies the damage observed along Highway 1, a scenic route along 

the California coastline system, from the January 2021 atmospheric river and 

develops a remote-sensing-based methodology for system-level monitoring and 

assessment following natural disasters. 

⚫ Chapter 6 presents an autonomous mining instability monitoring methodology 

by evaluating the performance of different remote sensing indexes from high-

resolution satellite imagery and examines eight recent failure cases: the 2022 

Jagersfontein tailings dam failure, the 2022 Pau Branco iron ore mine landslide, 

the 2020 Carmen copper mine landslide, the 2020 Singrauli fly ash dam breach, 

the 2019 Córrego De Feijão tailings dam failure, the 2018 Cadia gold mine 

tailings dam failure, the 2014 Mount Polley mine tailing dam failure, and the 

2013 Bingham Canyon copper mine landslide. 

⚫ Chapter 7 summarizes the conclusions and future work of this dissertation.  
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Chapter 2 Factors Affecting 
Machine Learning-based 
Landslide Detection for the 2015 
Lefkada Earthquake 

  

2.1 Introduction 

Landslides remain among the most hazardous natural disasters. Between 1998 and 

2017, landslides affected an estimated 4.8 million people and killed more than 18,000 

individuals (Petrucci, 2022). Landslides result in an estimated economic loss of $20 

billion annually (Klose, 2016). The 2017 Hurricane Maria triggered more than 70,000 

landslides and damaged 90 % of roads in Puerto Rico, leaving millions of people 

without access to electricity, water, and emergency services (Lindley et al., 2023). The 

catastrophic landslides triggered by the 2008 Sichuan Earthquake caused 1381 

fatalities, and the 2005 Kashmir earthquake-triggered landslides led to 600 deaths 

(Gomez et al., 2023). Strategies for landslide monitoring, prediction, and mitigation 

could mitigate the consequences of landslides (Sim et al., 2022). The creation of 

landslide inventories is essential for hazard and risk management (Galli et al., 2008). 

Presently, landslide mapping often relies mainly on visual interpretation, expert 

knowledge, and field surveys (Guzzetti et al., 2012). Visual interpretation of landslides 

is time-consuming and resource-intensive for large mapping areas. Also, landslide 

mapping is subjective and prone to human errors, especially when resources and time 

are constrained. 

Remote sensing techniques such as optical and multispectral imagery, laser 

scanning, and ground-based interferometry can be utilized for the management of 

landslide risks (Casagli et al., 2023). Machine learning-based landslide detection using 

satellite imagery that integrates expert knowledge is expected to be particularly well 

suited for developing objective landslide inventories in a scalable and timely manner 

(Barlow et al., 2006; Martha et al., 2010). Nowadays, the availability of remote sensing 
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data, especially satellite imagery, can support monthly or even daily data collection 

with global coverage. Machine learning-based landslide detection has the potential to 

quickly produce a landslide inventory that, although not entirely accurate, can, at a 

minimum, assist as the first screening step for rapid disaster assessment and mitigation, 

as well as to improve more detailed mapping efficiency and accuracy.  

Machine learning and deep learning algorithms have been applied to landslide 

detection. Table 2.1 shows some studies implementing ML on satellite imagery for 

landslide detection. Tehrani et al. (2021) successfully applied a random forest model 

for landslide detection. Piralilou et al. (2019) showed that the stacking method 

outperformed single machine learning algorithms such as logistic regression, neural 

networks, and random forest. Dou et al. (2020) showed that the support vector 

machine-boosting model outperformed the support vector machine-bagging model and 

support vector machine-stacking model. Ghorbanzadeh et al. (2022) concluded that 

the integration of Residual U-Net with the object-based image analysis can produce a 

better landslide detection model than pixel-based Residual U-Net. Wang et al. (2021b) 

pointed out that convolutional neural networks outperformed logistic regression, 

support vector machine, random forest, and boosting methods because of their strength 

in multi-dimensional data processing and feature extraction. Meena et al. (2022) 

showed that the U-Net model can detect landslides slightly better than the support 

vector machine, k-nearest neighbor, and random forest. However, the U-Net model's 

performance depends on the model's architecture and the complexity of geographical 

features in the imagery. Ghorbanzadeh et al. (2019) pointed out that deep-learning 

convolution neural networks do not always outperform support vector machine and 

random forests because their performance strongly depends on their network 

architecture design, such as layer depth, the size of the input window, and training 

strategies. A deep learning algorithm requires a large number of training samples to 

generate accurate results. A small training sample size is a significant drawback and 

limitation of the deep learning algorithm (Liu et al., 2020; Qi et al., 2020). 

Manual landslide inventories can be used as training and testing samples in 

supervised machine learning (ML)-based landslide detection with the intent to train 

the ML model and assess accuracy (Feizizadeh et al., 2014). Training samples 

significantly impact landslide detection results, and the deficiencies in manual 

landslide inventory are the leading cause of errors in landslide detection (Pawluszek-

Filipiak et al., 2020; Rodriguez-Galiano et al., 2012). The training sample size should 

be large enough to cover the variability of landslide conditioning factors (Heckmann 

et al. 2014). Most studies use a training-testing split ratio of 70/30, which is common 

in ML approaches (Chen et al., 2018; Hong et al., 2015; Huang et al., 2020; Tien Bui 

et al., 2016), but an investigation of the influence of the split ratio is not often 

conducted. Mohan et al. (2020) emphasized that the assessment of the model's 

performance with various training-testing sample ratios must be examined and 

explored further. 

The quality and quantity of the manual landslide inventory are essential in the 

supervised machine learning-based landslide detection model. Piralilou et al. (2019) 

used the landslide inventory developed from GPS data and Planet satellite imagery. 
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Tehrani et al. (2021) collected landslide events from online resources, social media, 

and the Global Landslide Catalog (GLC) of NASA Goddard Space Flight Center. Dou 

et al. (2020) utilized the landslide inventory interpreted from post-disaster aerial 

photography provided by the Geospatial Information Authority of Japan. 

Ghorbanzadeh et al. (2022) mapped landslide inventory based on Sentinel-2 imagery. 

Stumpf and Kerle (2011) used the landslide inventory based on fieldwork and visual 

interpretation of aerial photography and satellite imagery. Tien Bui et al. (2018) used 

the landslide inventory generated based on satellite imagery, digital elevation model, 

aerial photos, and fieldwork. Meena et al. (2022) mapped landslides from RapidEye 

satellite imagery and field observations. Ghorbanzadeh et al. (2019) used the landslide 

inventory created based on GPS data from the field survey and satellite imagery.  

The implementation of different steps in the ML procedures and data input 

affects the landslide detection model's performance. Piralilou et al. (2019), Tehrani et 

al. (2021), Dou et al. (2020), Ghorbanzadeh et al. (2022), Wang et al. (2021b), Meena 

et al. (2022), and Ghorbanzadeh et al. (2019) compared different machine learning 

models. Tehrani et al. (2021), Dou et al. (2020), and Stumpf and Kerle (2011) assessed 

the feature importance and selection. Piralilou et al. (2019), Tehrani et al. (2021), and 

Stumpf and Kerle (2011) evaluated the influence of segmentation. Stumpf and Kerle 

(2011) tested the landslide detection model with various sample datasets, including 

Quickbird, IKONOS, Geoeye-1, and aerial photographs. However, the study that 

comprehensively evaluates the effect of various procedures and data input in the ML 

landslide detection model is missing.    

This study leverages a complete, fully three-dimensional, high-quality landslide 

inventory for the 2015 Lefkada Earthquake, developed by Zekkos and Clark (2020). 

The landslide inventory was manually mapped carefully based on high-resolution 

satellite imagery and three-dimensional models created by Unmanned Aerial Vehicles 

(UAVs), as shown in Figure 2.1. The inventory dataset includes the area, location, and 

volume of 716 landslides and separates the source and full area for each landslide. 

Leveraging this high-quality inventory as the "truth," a comprehensive evaluation of 

various machine learning algorithms, the features used, and the inputs are conducted 

with the intent to rank the importance and provide guidance on the factors that matter 

the most in the development of an ML methodology for landslide detection. In 

addition, this study explores the effect of the geospatial distribution of training 

samples, which has not been addressed in the literature. 
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2.2 Study Area 

A Mw 6.5 earthquake occurred on November 17, 2015, in Lefkada, Greece, as shown 

in Figure 2.2, and triggered nearly 700 landslides along the island's west coast. 

Unmanned Aerial Vehicle (UAVs) equipped with ultra-high resolution optical cameras 

as well as satellite imagery were utilized to develop a detailed mapping that includes 

digital elevation models that were used in interpreting the geometric characteristics of 

landslides, such as area, height, and volume and separating the amalgamated landslides 

(Zekkos et al., 2017). Zekkos and Clark (2020) developed the landslide inventory 

triggered by the 2015 Lefkada earthquake according to the three-dimensional models 

and high-resolution satellite imagery. The landslide inventory has information on the 

location, area, and volume of 716 landslides, and the source and entire area for each 

landslide are generated separately.     
 

 

 

Table 2.1: Machine learning algorithms applied in landslide detection 

Machine Learning Algorithms Reference 

Neural network 

Piralilou et al. (2019); Wang et al. (2021b); 

Ghorbanzadeh et al. (2019); Kumar et al. (2024); 

Qin et al. (2024); Wang et al. (2023) 

Logistic regression Piralilou et al. (2019); Wang et al. (2023) 

Random forest 

Piralilou et al. (2019); Tehrani et al. (2021); Stumpf 

and Kerle (2011); Wang et al. (2021b); Meena et al. 

(2022); Ghorbanzadeh et al. (2019); Wang et al. 

(2023) 

K-means clustering Tehrani et al. (2021); Meena et al. (2022) 

Support vector machine 

Dou et al. (2020); Tien Bui et al. (2018); Wang et 

al. (2021b); Meena et al. (2022); Ghorbanzadeh et 

al. (2019); Wang et al. (2023) 

U-Net 

Ghorbanzadeh et al. (2022); Yu et al. (2020); 

Meena et al. (2022); Das et al. (2023); Lu et al. 

(2023) 

Boosting method Wang et al. (2021b) 

Stacking method Piralilou et al. (2019); Dou et al. (2020) 

FCN, U-net, DeeplabV3+, and MFFENet Xu et al. (2024) 
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2.3 Methodology 

Landslide detection is broadly a process involving extracting and classifying raster 

datasets. Success in landslide detection is affected by the following: (a) classification 

method and algorithm, (b) input data, (c) training and testing samples, and (d) metrics 

used for accuracy assessment. In this study, landslide detection is conducted using the 

image classification toolbox available in ArcGIS Pro 2.9.1 (Esri Inc., 2021), and the 

Semi-Automatic Landslide Detection (SALaD) system is used to evaluate the 

performance of different machine learning algorithms. 

 

 

  
Figure 2.1: Satellite Imagery (a) before the 2015 Lefkada earthquake (b) after the 2015 

Lefkada earthquake 

 



CHAPTER 2.  FACTORS AFFECTING MACHINE LEARNING-BASED LANDSLIDE DETECTION  

FOR THE 2015 LEFKADA EARTHQUAKE 

10 

 

 
Figure 2.2: Location of study area 

 

2.3.1 Classification Method and ML Algorithms 

Object-based image analysis (OBIA) and pixel-based image analysis (PBIA) are the 

two main image classification approaches. PBIA does not consider neighboring pixels 

and classifies each pixel into individual classes. OBIA groups adjacent pixels with 

similar characteristics into objects through a segmentation process. The segmentation 

process integrates neighboring pixels' spectral, spatial, and textural information 

(Blaschke et al., 2014). In OBIA, landslides are ensembles of pixels instead of 

individual spatially unrelated pixels. Thus, OBIA eliminates the salt-and-pepper effect 

that is often observed in PBIA (Guzzetti et al., 2012; Lu et al., 2011) and allows for 

the extraction of landslide characteristics such as landslide count and size. In this study, 

OBIA, as implemented in ArcGIS Pro 2.9.1, considers spectral details, spatial detail, 

and minimum segment size in pixels. These three parameters define how pixels in the 

imagery are segmented into objects. Spectral detail and spatial detail range from 1 to 

20. Spectral detail represents the importance of spectral differences between pixels, 

and spatial detail represents the proximity of pixels. Higher values of spectral detail 

provide better discrimination of different classes when pixels have similar 

characteristics. In contrast, a lower value contributes to smoothing results with less 

detail. A higher spatial value is more suitable if pixels of interest are clustered and 

small. A lower spatial value results in a spatially smoother result. Segments smaller 

than the minimum segment size in pixels are merged with best-fitting adjacent 

segments (Esri Inc., 2021). In this study, spectral details, spatial details, and minimum 

segment sizes have been parameterized to assess the parameters that produce the best 

landslide detection model.  
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The Semi-Automatic Landslide Detection (SALaD) system is an open-source 

landslide detection model in a Python environment developed by Amatya et al. (2021) 

using OBIA and random forests (RF). This study modifies the SALaD system with 

supervised machine learning (ML) models from the Python Scikit-learn packages 

(Pedregosa et al., 2011) to examine the performance of the following ML algorithms: 

random forests (RF), AdaBoost (AB), gradient boosting (GB), support vector machine 

(SVM), nearest centroid (NC), naive Bayes (NB), maximum likelihood (MLE). RF is 

an ensemble machine learning method comprised of multiple decision trees developed 

by Breiman (2001). For a single decision tree, a small change in training would cause 

high variance and lead to low accuracy (Breiman, 1996). RF lets each decision tree 

decide which class the data belongs to and assigns a class based on the majority of the 

class from decision trees, so RF is less susceptible to overfitting problems in a complex 

dataset than decision trees (Stumpf and Kerle, 2011; Ghorbanzadeh et al., 2019). 

Furthermore, RF can handle missing values and resist outliers (Youssef et al., 2016). 

AB is an iterative ensemble boosting classifier that combines multiple weak classifiers 

and sets modified weights to incorrectly classified instances to improve the model's 

performance (Freund and Schapire, 1997). GB is an ensemble classifier that combines 

weak classifiers and optimizes the classifiers' weights based on the errors of previous 

iterations to minimize the bias error and enhance the model's accuracy (Friedman, 

2001). SVM is a binary classifier based on statistical learning theory (Vapnik, 1999). 

SVM aims to find the optimal hyperplane by maximizing the margin between two 

classes (Kavzoglu et al., 2014). SVM can reduce model complexity and works 

effectively with high-dimensional and non-separable datasets (Mountrakis et al., 

2011). NC is a simple classifier in which data is classified into the class with the nearest 

centroid (Levner, 2005). NB is one of the most simple and effective classifiers based 

on Bayes's theorem (Murphy, 2006). MLE is a parametric classification relying on the 

statistical probability density function (Paola et al., 1995). MLE assumes each class 

has a statistically significant number of normally distributed data and builds a 

probability density function for each class (Sun et al., 2013). Each data point is 

assigned to a specific class according to the relative likelihood of that data in the 

probability density function for each class (Hagner et al., 2007).   

2.3.2 Data 

The occurrence of landslides can be observed from several features, including 

topographic and surface texture characteristics, as well as their change before and after 

a landslide. In this study, Worldview© satellite imagery that has a panchromatic band 

of 30 to 50 centimeters and multispectral bands of 1.84 m resolution is used. 

Considering the cloud coverage and imagery quality, the pre-event Worldview© 

satellite imagery on January 15, 2015, and the post-event Worldview© satellite 

imagery on December 28, 2015, are collected. The multispectral Worldview© satellite 

imagery has eight bands: coastal blue, blue, green, yellow, red, red edge, near-infrared 

(NIR), and near-infrared2 (NIR2). The Worldview© imagery is the same imagery used 
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for the manual mapping developed by Zekkos and Clark (2020). 

The eight bands in Worldview© satellite imagery are used to calculate indexes 

such as the Red-Edge Normalized Difference Vegetation Index (NDVIre), Red-Edge 

Chlorophyll Index (CIre), Red-Edge Triangulated Vegetation Index (RTVICore), 

Global Environmental Monitoring Index (GEMI), Green Chlorophyll Index (CIg), 

Green Normalized Difference Vegetation Index (GNDVI), Visible Atmospherically 

Resistant Index (VARI), Modified Soil Adjusted Vegetation Index (MSAVI), Simple 

Ratio (SR), Red-Edge Simple Ratio (SRre), Modified Triangular Vegetation Index 

(MTVI2), Enhanced Vegetation Index (EVI), Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI), Iron Oxide (IO), and 

mean brightness.  

NDVIre, CIre, RTVICore, GEMI, CIg, GNDVI, VARI, MSAVI, SR, SRre, 

MTVI2, EVI, and NDVI are vegetation indexes. NDVIre calculated from Equation 2.1 

considers NIR and red edge band and is effective in estimating crop health (Dong et 

al., 2019). CIre in Equation 2.2 uses the ratio of NIR and red edge band to estimate the 

chlorophyll content in leaves (Clevers et al., 2013). RTVICore, in Equation 2.3, 

estimates the biomass and leaf area utilizing NIR, red edge, and green bands (Dong et 

al., 2019). GEMI in Equation 2.4 is a nonlinear vegetation index less sensitive to 

atmospheric effects (Pinty et al., 1992). CIg, as shown in Equation 2.5, estimates 

chlorophyll content in leaves using NIR and green band (Wu et al., 2012). GNDVI 

estimates photosynthetic activity in the plant, as shown in Equation 2.6 (Wang et al., 

2007a). VARI in Equation 2.7 utilizes visible spectrum, red, green, and blue bands to 

estimate vegetation (Stow et al., 2005). MSAVI in Equation 2.8 was developed to 

reduce the effect of bare soil on the vegetation index (Qi et al., 1994). SR in Equation 

2.9 and SRre in Equation 2.10 can minimize the influence of topography and 

atmosphere on the estimation of vegetation (Chen, 1996). MTVI2 in Equation 2.11 

uses red, green, and NIR bands to estimate the leaf chlorophyll content (Nguy-

Robertson, 2013). EVI in Equation 2.12 uses NIR, red, and blue bands to evaluate 

vegetation and is less sensitive to background noise (Matsushita et al., 2007). NDVI 

in Equation 2.13 is computed from the red and NIR bands (Huang et al., 2021). NDWI 

in Equation 2.14 is a remote sensing index monitoring the change in surface water 

content (McFeeters, 1996). IO in Equation 2.15 is the red and blue band ratio because 

the limonitic iron oxide and limonitic-bearing phyllosilicates can lead to the 

reflectance of the red band and absorption in the blue band (Segal, 1982). Mean 

brightness is the average value of the red, green, and blue bands. 

A 2-m digital elevation model (DEM) before November 17, 2015, is used as 

the pre-event DEM, and a 2-m DEM on December 28, 2015, is used as the post-event 

DEM. Both pre-event and post-event DEM are derived from the UAV and satellite 

imagery. The pre-event and post-event DEM are used to extrapolate terrain 

characteristics, such as slope inclination, curvature, aspect, flow direction, and 

hillshade. The slope inclination represents the steepness of the surface, which is the 

angle between each surface and the horizontal reference point (Yilmaz et al., 2012; 

Dehnavi et al., 2015). Curvature describes the shape of the slope. A positive curvature 

value means the surface is upwardly convex, and a negative value indicates the surface 
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is upwardly concave at that cell. A zero value means the surface is flat (Constantin et 

al., 2011). Aspect describes the direction of the slope surface (Teillet et al., 1982). 

Flow direction is created using the D8 flow method from each cell to its neighbors 

(Tarboton, D. G., 1997). Hillshade visualizes the terrain surface by the slope, aspect 

of the elevation surface, and light source (Eeckhaut et al., 2005).  

The feature difference between the pre-event and post-event values is also 

calculated and may indicate the change caused by the 2015 Lefkada earthquake or 

other non-earthquake-related changes that may have occurred between the dates that 

the data is collected. The differences associated with spectral and terrain features are 

calculated using Equation 2.16. The pre-event value, post-event value, and feature 

difference value for each feature are analyzed separately in an effort to quantify the 

significance of each feature. Additionally, features are composited together, and the 

performance of multi-feature models is evaluated. 

The influence of various satellite imagery is also assessed by considering two 

more satellite imagery datasets. RapidEye Orthorectified imagery (REOrtho) has five 

bands (blue, green, red, red edge, and NIR) with a resolution of 3.125 m. The pre-event 

REOrtho imagery on November 11, 2015, and post-event REOrtho imagery on May 

13, 2016, are collected. Landsat 8 has eleven bands (coastal aerosol, blue, green, red, 

NIR, swir1, swir2, pan, cirrus, tir1, and tir2) with a resolution of 30 m. The pre-event 

Landsat 8 imagery on November 12, 2015, and post-event Landsat 8 imagery on April 

4, 2016, are collected. The imagery difference that subtracts the pre-event imagery 

from the post-event imagery for Worldview©, REOrtho, and Landsat 8 imagery is 

utilized to examine the effect of datasets in the landslide detection model. 

 NDVIre =  
NIR− Red Edge

NIR + Red Edge
 (2.1) 

 

 CIre = (
NIR

Red Edge
− 1) (2.2) 

 

 RTVICore = (100(NIR − Red Edge) − 10(NIR − Green)) (2.3) 

 

 GEMI = eta (1 − 0.25 eta) − (
Red−0.125

1−Red
)  (2.4) 

where eta =
2(NIR2−Red2)+1.5NIR+0.5Red

NIR+Red+0.5
 

 CIg = (
NIR

Green
) − 1   (2.5) 

 

 GNDVI =
NIR−Green

NIR+Green
 (2.6) 
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 VARI =
Green−Red

Green+Red−Blue
 (2.7) 

 

 MSAVI =
1

2
(2(NIR + 1) − √(2NIR + 1)2 − 8(NIR − Red)) (2.8) 

 

 SR =
NIR

Red
  (2.9) 

 

 SRre =
NIR

Red Edge 
   (2.10) 

 

MTVI2 = 1.5(1.2(NIR − Green) − 2.5(Red − Green))√(2NIR + 1)2 − (6NIR − 5√Red) − 0.5   (2.11) 

 

 

 EVI =
2.5(NIR−Red)

(NIR+6Red−7.5Blue+1)
   (2.12) 

 

 NDVI =
NIR−Red

NIR+Red
   (2.13) 

 

 NDWI =
Green−NIR

Green+NIR
    (2.14) 

 

 IO =
Red

Blue
    (2.15) 

 

 Feature Difference = Feature post−event −    Feature pre−event    (2.16) 
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2.3.3 Training and Testing Samples 

All supervised machine learning algorithms require training samples to train the 

algorithm and testing samples to assess the model's accuracy. The landslide detection 

model in the current study is a binary classification with two classes: landslide and 

non-landslide. The manually developed landslide inventory is divided into training and 

testing samples, and landslides and non-landslide samples are created accordingly. 

Equalized stratified random sampling is used in this study to ensure enough 

representation of each class and reduce the variability issue in random sampling 

(Acharya et al., 2013). Equalized stratified random sampling is a sampling method 

when samples are randomly distributed within each class, and each class has the same 

amount of samples (Dhakal et al. 2000). Class imbalance and overlap can also 

adversely affect the results (Stumpf and Kerle 2011), and thus, balanced and non-

overlapping training samples are built to be randomly distributed in each class to 

prevent bias. In assessing the effect of factors such as segmentation parameters, feature 

selection, and different satellite imagery, the commonly used training-testing splitting 

ratio of 70/30 is used. For the evaluation of the influence of the geospatial distribution 

and size of the training sample, various sizes of manual landslide inventory at different 

locations are set up as training samples. This study defines the training-testing ratio as 

the percentage of training and testing samples over the entire manual landslide 

inventory. As such, a metric is more meaningful in understanding the training and 

testing needed to achieve specific results for an entire inventory. However, often 

following a natural disaster, a complete landslide inventory is not available for 

extended periods of time, especially right after the event. Therefore, expressing the 

training and testing samples as a percentage of an entire raster dataset is a more 

practical definition that can be applied anytime after a landslide event.  

For sampling, the inventory polygons of the landslides are used, and they are 

also converted into circles around the landslide centroid to compare the impact of the 

sampling shape on the results, as shown in Figure 2.1b. The effect of the spatial 

distance between the landslide and the non-landslide training samples is also assessed.  
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2.3.4 Accuracy Assessment 

In reporting landslide detection results, a positive result means landslides, and a 

negative means non-landslide. True indicates the result is correct, but false means the 

result is wrong. Positive predictive value (PPV) in Equation 2.17 quantifies the 

proportion of true positive samples among all predictive positive samples, while 

negative predictive value (NPV) evaluates the fraction of true negative samples among 

all predictive negative samples in Equation 2.18. True positive rate (TPR) measures 

the proportion of true positive samples among all actual positive samples in Equation 

2.19. True negative rate (TNR) is the ratio of actual negatives, which are correctly 

classified in Equation 2.20. Accuracy and F1 score have been extensively used to 

evaluate binary classification performance. Accuracy is defined as the ratio between 

the number of correctly classified samples and the entire number of samples in 

Equation 2.21 (Wang et al., 2007b). F1 score focuses on one class only and is 

independent of samples correctly classified as negative (Powers 2015) in Equation 

2.22. The F1 score ranges from 0 to 1 and takes increasing values for improving results. 

However, accuracy and F1 scores are biased by the majority class and are unreliable 

as the dataset is imbalanced (Bekkar et al., 2013). Matthews correlation coefficient 

(MCC) can overcome the class imbalance problem. MCC considers positive and 

negative samples, as shown in Equation 2.23, and ranges between -1 and 1. MCC value 

of 1 means the perfect classification, 0 represents the classification is no better than 

random, and -1 represents a complete disagreement between classification and ground 

truth. MCC has high scores only if all four confusion matrix categories (true positive, 

false negative, true negative, and false positive) are correctly classified (Chicco and 

Jurman 2020). The accuracy, F1 score, and MCC are all proportional to the model 

performance, so in this study, a combined index, overall accuracy (OA), is used to 

quantify the model's overall performance, as displayed in Equation 2.24. The minimum 

accuracy, F1 score, and MCC values are 0 %, 0, and -1, respectively. The maximum 

accuracy, F1 score, and MCC values are 100 %, 1, and 1, respectively. A random 

classifier has a value of accuracy of 50 %, an F1 score of 0.5, and an MCC of 0. The 

minimum value of OA is -33.33 %, and the maximum value of OA is 100 %. The 

random classifier has an OA of 33.33 %, calculated in Equation 2.24.   

 Positive Predictive Value (PPV) =
TP

TP+FP
 (2.17) 

 

 Negative Predictive Value (NPV) =
TN

TN+FN
 (2.18) 

 

 True Positive Rate (TPR) =
TP

TP+FN
     (2.19) 

 

 True Negative Rate (TNR) =
TN

TN+FP
 (2.20) 
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 Accuracy =
TP+TN

TP+FP+TN+FN
 (%)   (2.21) 

 

 F1 score =
TP

TP+
1

2
(FP+FN)

 (2.22) 

 

 Matthews correlation coefficient (MCC) =
TP⋅TN−FP⋅FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 (2.23) 

 

 Overall Accuracy (OA) = (
Accuracy

100
+ F1 score + MCC) x 

100

3
 (%) (2.24) 

where TP=Ture Positive, TN=True Negative, FP=False Positive, FN=False Negative 
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2.4 Results and Discussion 

2.4.1 Feature Importance 

A total of 92 features, listed in Table 2.2, that capture topographic as well as spectral 

aspects of the landslides are considered as input in a Random Forest (RF) model. As 

discussed subsequently, RF is shown to have the best results compared to the other 

machine learning (ML) models and is thus used in the majority of this study. For each 

feature, the pre-event, post-event, and the difference between the post-event and pre-

event values are used as input in the landslide detection model. Classification results 

using a single feature are shown in Table 2.2. In Table 2.2, topographic features are 

highlighted in gray, and spectral features are highlighted in white. Among all features, 

the most important features are the post-slope and pre-slope, and have the highest 

overall accuracy (OA), around 80 %, followed by pre-event vegetation indexes, pre-

NDVI, pre-NDVIre, pre-CIre, and pre-RTVICore. Post-elevation, pre-elevation, 

aspect difference, curvature difference, and GEMI difference have the lowest OA 

(between 13 % and 19 %). Figure 2.3a is the histogram of post-slope for the landslide 

and non-landslide areas in the training samples. Figure 2.3b is the histogram of 

curvature difference value for the landslide and non-landslide areas in the training 

samples. Figure 2.3a shows that the post-slope values of landslide and non-landslide in 

training samples are significantly different. Non-landslide training samples have a 

mode of post-slope value around 16o, while landslide training samples have a mode of 

post-slope value around 36o. Non-landslide training samples tend to have a lower post-

slope than the landslide training samples. In contrast, landslide and non-landslide 

training samples have similar curvature differences. Both landslide and non-landslide 

training samples have a mode of curvature difference value around zero, which is why 

the curvature difference is not a vital feature in helping the model detect landslides and 

non-landslides. 

 Results improve if multiple features are used, which is expected. Thus, using 

multiple features for landslide detection is advantageous compared to any model that 

is based on a single feature listed in Table 2.2. This is shown in Figure 2.4, where the 

performance of multi-feature models using the top 5, 10, 20, 30, 40, 50, 60, 70, and 80 

features with best performance in Table 2.2 is shown. The top 5 features are post-slope, 

pre-slope, pre-NDVI, pre-NDVIre, and pre-CIre. Two of the top 5 features are 

topographic features, and three of the top 5 features are spectral features. The top 10 

features are post-slope, pre-slope, pre-NDVI, pre-NDVIre, pre-CIre, pre-RTVICore, 

NDVI difference, post-flow direction, pre-CIg, and post-GEMI. Three of the top 10 

features are topographic features, and seven of the top 10 features are spectral features. 

This shows that both topographic and spectral features play an important role in the 

successful detection of the Lefkada landslides.  
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Table 2.2: Feature importance 

Ranking Feature 
OA 

(%) 
Ranking Feature 

OA 

(%) 
Ranking Feature 

OA 

(%) 

1 Post Slope 79.9 41 EVI Difference 50.6 81 Post NDVIre 31.9 

2 Pre Slope 79.3 42 
Iron Oxide 

Difference 
49.9 82 Pre SR 28.6 

3 Pre NDVI 73.8 43 MSAVI Difference 49.9 83 
NIR2 band 

Difference 
27.4 

4 Pre NDVIre 70.6 44 Post NIR 49.0 84 Pre SRre 25.4 

5 Pre CIre 70.0 45 Post NIR2 band 48.9 85 Post Iron Oxide 24.2 

6 Pre RTVICore 69.1 46 NDWI Difference 48.8 86 Post SR 22.8 

7 NDVI Difference 68.5 47 CIre Difference 47.2 87 
Post Coastal 

band 
21.5 

8 Post Flowdirection 66.9 48 Pre MSAVI 47.0 88 Post DEM 19.3 

9 Pre CIg 66.4 49 Pre MTVI2 46.9 89 Pre DEM 18.7 

10 Post GEMI 66.3 50 Pre Flowdirection 46.4 90 
Aspect 

Difference 
16.8 

11 Post Aspect 66.2 51 Pre Aspect 46.2 91 
Curvature 

Difference 
16.2 

12 Pre Yellow band 65.4 52 Post CIre 45.7 92 
GEMI 

Difference 
12.9 

13 CIg Difference 64.8 53 Post CIg 45.6 

 

14 Post NDVI 64.6 54 Post SRre 45.2 

15 Post NDWI 64.2 55 NIR Difference 45.0 

16 Pre NIR 63.4 56 Pre VARI 44.2 

17 Pre NDWI 63.1 57 Pre Blue band 44.1 

18 GNDVI Difference 62.6 58 VARI Difference 43.8 

19 Pre GEMI 61.6 59 Pre Iron Oxide 43.7 

20 Post VARI 60.6 60 
Pre Mean 

Brightness 
43.6 

21 Post Red band 60.5 61 
RTVICore 

Difference 
43.3 

22 Post Hillshade 59.7 62 NDVIre Difference 42.2 

23 Pre GNDVI 59.3 63 Post Green band 42.0 

24 Pre Red band 59.2 64 Post RTVICore 41.3 

25 Post Yellow band 58.2 65 
Hill Shade 

Difference 
41.1 

26 Pre RedEdge band 58.0 66 MTVI2 Difference 40.8 

27 Pre Green band 57.6 67 Post RedEdge band 40.7 

28 Post Mean brightness 55.5 68 Pre Hillshade 40.1 

29 
Coastal band 

Difference 
55.5 69 Pre Coastal band 39.8 

30 
Mean Brightness 

Difference 
55.3 70 Post EVI 39.3 

31 SR Difference 55.0 71 NDVI Difference 39.1 

32 Post MTVI2 54.9 72 
Yellow band 

Difference 
38.4 

33 Pre NIR2 band 53.7 73 NDWI Difference 37.3 

34 Blue band Difference 52.2 74 
Green band 

Difference 
37.2 

35 Red band Difference 51.7 75 SRre Difference 37.1 

36 
Flow Direction 

Difference 
51.3 76 Post GNDVI 35.9 

37 Post MSAVI 51.2 77 Post Curvature 35.0 

38 
RedEdge band 

Difference 
50.8 78 Slope Difference 34.8 

39 Post Blue band 50.7 79 Pre Curvature 32.7 

40 Pre EVI 50.6 80 DEM Difference 32.4 
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(a) Post Slope 

 
(b) Curvature Difference 

Figure 2.3: Histogram of feature 
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The OA is 83.4 % with the top 5 features and increases to 89 % for the top 10 

features. As shown in Figure 2.4, the single-feature models have OA between 12.9 % 

and 79.9 %. However, the multiple-feature model with the top 5 features has an OA of 

83.4 %, and the model performance remains generally the same when additional 

features are included. The models with the top 20, 30, 40, 50, 60, 70, 80, and 92 

features all have OA near 90 %, indicating no benefit of incorporating many additional 

features. Thus, in subsequent analyses to assess the influence of sample size and spatial 

distribution, the top 10 features are included in the model. Figure 2.5 shows that the 

model with the 10 best features can reveal the landslide location well, as highlighted 

in true positive. However, the result is overestimated compared to the landslide 

inventory, as shown in false positives. A few landslide areas are detected as non-

landslides, as demonstrated by false negatives. 
 

 
Figure 2.4: The performance of single and multi-feature models 
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Figure 2.5: The landslide detection result with the 10 best features 

 

2.4.2 Effect of Geospatial Distribution and Size of 
Training Sample 

As mentioned earlier, the 2015 Lefkada earthquake triggered nearly 700 landslides 

concentrated on the steep western coastline of the Lefkada island. The landslide 

inventory is divided geographically into the north, center, and south regions of the 

coastline in Figure 2.2, and the different number of landslides from each region is 

considered as training samples to assess the impact of the size and geospatial 

distribution of the training sample. The results are compared against a testing sample 

that is evenly distributed along the entire coastline.  

First, the landslide detection model's performance improves significantly as the 

training sample size increases from 1 % to approximately 20 %, as shown in Figure 

2.6a-d for the accuracy, MCC, F1 score, and OA, respectively. Small improvements 

are observed beyond 20 %, but no significant model improvement is observed when 

the training sample size exceeds 40 %.  

Figure 2.7 illustrates radar plots based on PPV, NPV, TPR, and TNR. The 

polygon in the radar plot becomes bigger as the PPV, NPV, TPR, and TNR have higher 

values, indicating better model performance. In Figure 2.7a, the training samples are 

selected from the entire coastline and have the best performance, as illustrated by the 

largest polygon. The model's performance worsens for regionally concentrated training 
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samples, specifically samples restricted to the north, south, and center, with only 3 % 

of the landslide inventory as the training sample. When the training sample size 

increases to 20 %, the training samples in the north, south, and entire coastline lead to 

similar performance, as shown in Figure 2.7b. The model has the worst performance 

when the training samples are in the center of the coastline only, even when 20 % of 

the landslide inventory is used as training samples. In short, selecting landslides and 

non-landslide samples from the entire coastline contributes to the best landslide 

detection ability, even for the small amount of training samples (<3 %) of the landslide 

inventory. In contrast, training samples from the center of the coastline only do not 

produce a comparably good landslide detection result, even with 20 % of inventory as 

training samples. When the training sample size reaches 40 percent of the inventory, 

the geospatial distribution of training samples does not affect the model performance. 

As displayed in Figure 2.7c, training samples in the center and the entire coastline have 

a value of 90 for PPV, NPV, TPR, and TNR. PPV, NPV, TPR, and TNR remain 

constant when the training sample size increases from 40 % to 80 % with the 

distribution of training samples over the entire coastline. 
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(a) 

   
(b) 

(c) (d) 

Figure 2.6: Model performance- geospatial distribution and size of training sample 
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(a) 

 
(b) 

 
(c) 

Figure 2.7: Model performance- training sample size (a) 3 % (b) 20 % (c) 40 %, 60 % 

and 80 % of landslide inventory 
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Mohan et al. (2020) concluded that the small training sample size is a major 

drawback in landslide detection. Pawluszek-Filipiak et al. (2020) and Rogan et al. 

(2008) also showed that the landslide detection ability decreases as the training sample 

size decreases, as a small training sample may not be enough to capture the spatial 

variability of features. The landslide detection model results become more reliable as 

the training sample size increases. However, the large training sample size may affect 

the model's independent classification. 70/30 is the most commonly used training-

testing splitting ratio in the supervised landslide detection and susceptibility model 

(Chen et al., 2018; Hong et al., 2015; Huang et al., 2020; Tien Bui et al., 2016), but 

evaluation of the effect of the different split ratios, as done in this study, is lacking.  

Shirzadi et al. (2019) indicated that 60/40 and 70/30 splitting ratios provided 

the highest prediction accuracy in 10 m resolution data, and 80/20 and 90/10 splitting 

ratios had the best prediction accuracy in 20 m resolution raster data in the landslide 

susceptibility model. In the current study, the performance of the landslide detection 

model is significantly improved when the training sample size increases from 0 to 20 

percent of landslide inventory, as shown in Figure 2.6. As the amount of training 

sample achieves 40 percent or above, the model performance remains stable.  

This study highlights that the geospatial distribution of training samples is 

essential in landslide detection. Training samples throughout the event area can capture 

the characteristics of the entire dataset well and provide the best landslide detection 

result compared to training samples restricted in geographic regions such as the north, 

center, and south of the coastline. Even with a small training sample size, training 

samples covering the entire event area can still produce reliable landslide detection 

results. As training samples are distributed across the entire coastline, the model's 

accuracy can reach 75 % even with only 1 % of landslide inventory as training samples 

in Figure 2.6a. When the size of training samples reaches 10 % of the landslide 

inventory all over the entire coastline, the model accuracy reaches 90 %. The model is 

stable and has reached its accuracy limit as the size of training samples increases above 

10 % of inventory over the entire coastline. The landslide detection model with training 

samples from localized regions such as the coastline's north, center, and south parts 

needs a larger amount of training samples to generate an accurate model.  

As shown in Figure 2.6a, the training samples from the north, center, or south 

part of the coastline individually can result in 50 % to 70 % accuracy, with the training 

samples size below 5 % of the landslide inventory. When the training sample size 

reaches 10 percent or above, the accuracy can be 70 % or above, even if the training 

samples are in a localized area. Among the north, center, and south parts of the 

coastline, the training samples in the center have the worst performance, especially 

with a small training sample size. The reason is that the 2015 Lefkada earthquake 

triggered new landslides, mainly in the north and south of the Lefkada coastline. 

Zekkos et al. (2017) showed that most landslides in the center of the Lefkada coastline 

are re-activated, which already failed on the August 14, 2003 earthquake and failed 

again in 2015. So, using landslides in the center of the coastline as training samples 

results in the worse detection performance, possibly because re-activated landslides 

are misclassified as new landslides. The small size of training samples from a localized 
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part of the event area may provide biased information and generate an unreliable 

landslide detection model. This has implications for mapping: manual mapping should 

start from landslides with a sparse but wide geospatial distribution throughout the 

entire dataset rather than densely concentrated landslides in a localized event area to 

efficiently get an accurate landslide detection model. 

Figure 2.8 compares the landslide area in the detection result to the landslide 

area in the inventory. As the training sample size increases, the detected landslide area 

approaches the mapped landslide inventory. Note that the entire mapped landslide area 

is 2.29 km2 out of the event area of 26 km2, i.e., it represents a small part of the entire 

area. When the training sample size is below 10 % of the landslide inventory, the ratio 

of the detected landslide area to the mapped landslide area ranges between 3 and 11, 

i.e., the model over-predicts significantly the landslides. When the training sample size 

is above 30 %, the ratio of detected landslides to the mapped landslides decreases to 

2.5 and becomes stable. This indicates that even in the best model predictions, the 

detected landslides are greater than the mapped landslides. This is not surprising and 

has been shown by others (Ghorbanzadeh et al., 2022; Stumpf and Kerle, 2011). This 

is due to several factors such as input resolution, data quality, etc., but most 

importantly, landslides are always a very small part of an affected area.  

The effort is also made not only to analyze landslides in terms of area coverage 

but also in terms of the amount and the size of individual landslide in the detection 

model. Landslide amalgamation represents a challenge in this case, as clusters may 

include more than one landslide. Flow direction is introduced to separate amalgamated 

landslides better in the detection result. This effort shows that the model 

overestimation is particularly due to the over-prediction of small landslides. The 

resolution of the input raster in this study is 2 m, so landslides smaller than 4 m2 are 

considered unreliable predictions and are ignored. Figure 2.9 shows that the landslide 

detection model detects around 47,000 landslides with the landslide area < 5000 m2, 

and the landslide inventory has around 590 landslides with the landslide area < 5000 

m2. The landslide detection result has a similar amount of landslides with the landslide 

area > 5000 m2 to the landslide inventory. So, the landslide detection model captures 

larger landslides better than smaller landslides. The OA for landslides larger than 1600 

m2 is 1 % higher than those larger than 36 m2. 
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Figure 2.8: Comparison between detected landslide area and manual landslide inventory 

 

 
Figure 2.9: Histogram of landslide area in the landslide detection result and inventory 
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2.4.3 Effect of Machine Learning Models 

A number of machine learning algorithms are also investigated, specifically random 

forests (RF), AdaBoost (AB), gradient boosting (GB), support vector machine (SVM), 

nearest centroid (NC), naive Bayes (NB), and maximum likelihood (MLE). It is found 

that the OA for RF, AB, GB, SVM, NC, NB, and MLE is 82.9 %, 78.3 %, 79.1 %, 

71.2 %, 67.6 %, 68.4 %, and 66.2 %, respectively. Ensemble methods (RF, AB, and 

GB) generate the best detection result among all machine learning algorithms. RF, in 

particular, has the highest OA in the landslide detection model for the 2015 Lefkada 

earthquake event. This is because RF is able to learn complicated geospatial 

characteristics, and an ensemble model can improve machine learning performance 

(Chen et al., 2018). MLE has the lowest OA because MLE is sensitive to the number 

of samples and needs a statistically significant number of samples to create a reliable 

classification (Belgiu et al., 2016). MLE is suitable for unimodal data but not for multi-

modal data since the MLE classifier assumes the data is normally distributed (Liu et 

al., 2011), which is not the case for some input data. For this reason, RF is used to 

investigate the influence of input data and sampling strategies in the landslide detection 

model.   

2.4.4 Effect of Satellite Imagery 

The imagery difference of Worldview©, REOrtho, and Landsat 8 imagery has an OA 

of 77.11 %, 75.39 %, and 63.49 %, respectively. Worldview©, REOrtho, and Landsat 

8 have several differences, including the different number of bands, the timing of 

available pre-event and post-event imagery, and imagery resolution. Worldview© 

imagery has eight bands with a resolution of 1.84 m, REOrtho imagery has five bands 

with a resolution of 3.125 m, and Landsat 8 imagery has eleven bands with a resolution 

of 30 m. The pre-event Worldview© imagery, REOrtho imagery, and Landsat 8 are 

collected on January 15, 2015, November 11, 2015, and November 12, 2015, 

respectively, and the post-event Worldview© imagery, REOrtho imagery, and Landsat 

8 are collected on December 28, 2015, May 13, 2016, and April 4, 2016, respectively. 

Among the three imagery datasets, the Worldview© imagery generates the best 

landslide detection model, and the REOrtho imagery also leads to a good detection 

model. Worldview© imagery contributes to a more accurate landslide detection model 

than REOrtho and Landsat 8 imagery because the landslide inventory developed by 

Zekkos and Clark (2020) was mapped on the Worldview© imagery. However, the 

REOrtho imagery can still generate a good landslide detection model with a similar 

performance as the Worldview© imagery.  
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2.4.5 Effect of Data Resolution 

The raster data composited of the 10 best features in Table 2.2 is resampled into 5 m, 

10 m, 30 m, and 50 m resolutions to examine the effect of data resolution, excluding 

other factors such as the number of bands, the date of pre-event and post-event imagery 

from different satellite imagery datasets. Figure 2.10 shows that the finer resolution 

contributes to a better detection model. The OA difference between the 5 m raster and 

50 m raster data is 21.14 %.  

 
Figure 2.10: Model performance- data resolution 
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2.4.6 Effect of Spatial Distance Between Landslide 
and Non-Landslide Training Samples 

The influence of the spatial distance between landslide and non-landslide training 

samples is also investigated to determine the best strategy for generating non-landslide 

training samples. For this investigation, the commonly used training-testing sample 

ratio of 70/30 is utilized, and the same number of non-landslide samples with different 

distances from landslides is developed accordingly. Non-landslide training samples 

are selected to be located within 18 m, between 70 m and 100 m, and more than 100 

m from landslides, as well as completely random distribution, and the results are 

compared. OA varied from 75.8 % to 89.3 %. The random distribution of non-landslide 

training samples has the best landslide detection performance, indicating that the 

location of non-landslide training samples does affect the landslide detection 

performance. Besides random distribution, OA increases as the non-landslide training 

samples are further away from the landslide area, as shown in Figure 2.11.   

 
Figure 2.11: Model performance- the spatial distance between non-landslide samples and 

landslide samples 

The sampling strategy is vital in the landslide detection model. Lin et al. (2022) 

showed that the landslide susceptibility model with non-landslide samples in the 

mountainous area outperformed the non-landslide samples in the entire event area and 

concluded that the spatial extent of non-landslide samples influences the landslide 

susceptibility model. This study shows that distances between landslides and non-

landslide training samples affect the performance of landslide detection with non-

landslide samples randomly distributed throughout the event area, giving the best 
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classification result. However, non-landslide training samples further away from the 

landslide area have better detection results than the closer-distance ones.   

2.4.7 Effect of Segmentation 

Segmentation is known to influence the performance of OBIA (Piralilou et al., 2019; 

Tehrani et al., 2021; Stumpf and Kerle, 2011; Huang and Zekkos, 2023a). In this study, 

three parameters, spectral detail, spatial detail, and minimum segment size in pixels, 

are applied to group neighboring pixels into objects. The spectral detail and spatial 

detail range between 1 and 20. The spectral detail and spatial detail values of 1, 10, 

and 20 are tested to see the influence of spectral detail and spatial detail on the model. 

The model with the spectral detail of 1, 10, and 20 has an OA of 87.4 %, 89.6 %, and 

92.2 %, respectively. The model with the spatial detail of 1, 10, and 20 has an OA of 

91.6 %, 89.6 %, and 90.4 %, respectively. Varying the minimum segment size in pixels 

from 1 to 10, then 20, resulted in similar OA (OA was 89.2 %, 89.6 %, and 89.6 % 

respectively). The results show that higher spectral details can yield a better landslide 

detection model. However, the variation in spatial detail and the minimum segment 

size in pixels does not significantly affect the model's performance.  

2.4.8 Summary Ranking of Importance for 
Different Factors in Landslide Detection 

Since a machine learning-based landslide detection process includes many algorithm 

steps and inputs, an effort is made to objectively quantify the importance of each of 

the parts for the 2015 Lefkada earthquake event. One way to quantify the importance 

of each step of the process is to calculate the difference in OA for the best and worst 

results when that process is evaluated. The results are summarized in Table 2.3. Among 

all factors, feature selection governs the landslide detection performance the most. For 

example, the post-slope feature can produce the landslide detection model with an OA 

of 79.9 %, but the GEMI Difference feature can only generate the model with an OA 

of 12.9 %. This results in a difference in OA of 67 %.   

The size and geospatial distribution of the training sample are the second 

essential factors in the detection model. The OA difference is 51.82 % between the 

training sample size, 3 %, and 70 %. When the size of the training samples is 20 % of 

the landslide inventory, the OA difference is 33.05 % between the center of the 

coastline and the entire coastline.  

The data resolution affects the model's performance. The OA difference 

between the 5 m raster and 50 m raster data is 21.14 %. The OA difference generated 

by different algorithms is 16.69 %, which is significantly lower than the previous 

factors. RF achieves the best performance, but MLE has the lowest OA. Satellite 

imagery and the spatial distance between non-landslide and landslide training samples 

similarly influence the detection result. The OA difference between the Worldview© 
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and the Landsat 8 is 13.62 %. Different spatial distances between landslide and non-

landslide training samples can lead to an OA difference of 13.51 %. Segmentation 

parameters, the geometry of the training sample, and landslide size have the minimum 

effect with an OA difference of around or less than 10 %. Segmentation affects the 

OBIA performance, and the difference between the minimum and maximum OA 

caused by different segment parameters is 10.07 %. The OA difference between using 

landslide inventory polygons as training samples and circles buffering from centroids 

of landslides is 1.62 %. The landslide detection model detects larger landslides better 

than smaller landslides and can lead to an OA difference of 1 %.    

 

Table 2.3: Ranking of importance for different factors in landslide detection 

  

OA Difference %  

(Maximum OA - Minimum OA) 

Feature 67 

Size of Training Sample 51.82 

Geospatial Distribution of Training Sample 33.05 

Data Resolution 21.14 

Machine Learning Algorithm 16.69 

Satellite Imagery 13.62 

Spatial Distance Between Landslide and Non-

Landslide Training Samples 
13.51 

Segmentation Parameters 10.07 

Geometry of Training Sample 1.62 

Size of Landslides 1 
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2.5 Conclusions 

This study investigates and quantifies the importance of different settings and inputs 

of the machine learning-based landslide detection model for the 2015 Lefkada 

earthquake event. The type of features used, their geospatial distribution, and the size 

of training samples are the most essential factors in detecting landslides. Both 

topographic and spectral features are important, but just using the top 10 features is 

similar in detection success to using 91 features. The geospatial distribution of training 

samples matters. A wider geospatial distribution of training samples can better capture 

the data characteristics and generate a more reliable detection model, especially when 

a small training sample is used. Data resolution and the type of machine learning 

algorithms also affect the results, but not as much as the previous factors. Segmentation 

parameters, the geometry of the training sample, and landslide size are less critical.   
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Chapter 3 Lessons Learned on the 
Efficacy of Machine Learning-
based Landslide Detection 
Following Three Recent 
Earthquake Events  

 

3.1 Introduction 

Landslides represent a major geologic hazard and can cause damage to natural and 

social environments (Pardeshi et al., 2013). Hundreds to thousands of landslides can 

be triggered by earthquakes or storm events (Keefer, 2002). Manual mapping requires 

a high degree of skill and experience in visual interpretation, has limitations in 

reproducibility, and is time and resource-intensive (Ramli et al., 2010). The application 

of Machine learning (ML) or deep learning algorithms using remote sensing data to 

detect landslides semi-automatically or automatically has been the focus of several 

studies in recent years (Ghorbanzadeh et al., 2019; Ullo et al., 2021; Ghorbanzadeh et 

al., 2022a; Ye et al.,  2019; Nava et al., 2021; Meena et al., 2022; Sameen et al., 2019; 

Cai et al., 2021). Ghorbanzadeh et al. (2019) evaluated the performance of the artificial 

neural network, support vector machine, random forest, and deep-learning convolution 

neural networks with Rapid Eye satellite imagery and topographic factors for the 

landslide detection in the Rasuwa district in Nepal. They concluded that the deep 

learning convolution neural networks do not outperform other algorithms because of 

the network architecture design and data fusion. Ullo et al. (2021) reported that the 

ResNet-101 can produce an accurate model with few landslide photographs as training 

samples. Ghorbanzadeh et al. (2022a) integrated the pixel-based deep learning model, 

ResU-Net, with the object-based image analysis (OBIA) to detect landslides triggered 

by the 2009 Morakot typhoon in Taiwan and showed that the ResU-Net-OBIA has 

better performance than ResU-Net. On the other hand, Ye et al. (2019) used the deep 
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learning framework with constraints to detect landslides in Sichuan, China, and 

showed that deep learning can generate more accurate models than machine learning 

models. Nava et al. (2021) used the deep learning convolutional neural networks to 

compare the performance of the landslide detection model using optical images from 

Sentinel-2 and synthetic aperture radar (SAR) images from Sentinel-1 for the 

coseismic landslides triggered by the 2018 Hokkaido earthquake in Japan and revealed 

that SAR data might help the landslide detection task during storms or under dense 

cloud cover. Meena et al. (2022) evaluated the performance of U-Net, support vector 

machine, k-nearest neighbor, and the random forest to detect landslides in Nepal using 

RapidEye satellite imagery and Advanced Land Observing Satellite Phased Array type 

L-band Synthetic Aperture Radar (ALOS-PALSAR) derived topographical data and 

revealed that the digital elevation model could help the model differentiate human 

settlement area and river sand bars. Sameen et al. (2019) used the residual networks 

(ResNet) with spectral and topographic information to detect landslides in Cameron 

Highlands, Malaysia, and found that ResNet can generate faster and better models. Cai 

et al. (2021) used the dense convolutional networks (DenseNets) with satellite 

imagery, geological, topographic, hydrological, and land cover factors to detect 

landslides in the Gorges reservoir area in China. They showed that environmental 

factors and DenseNets can improve the model's accuracy.  

Landslides in different locations or from different events occur in various 

climates and have different characteristics, such as vegetation conditions, geology, and 

topography. Most studies (Ghorbanzadeh et al., 2019; Ullo et al., 2021; Ghorbanzadeh 

et al., 2022a; Ye et al.,  2019; Nava et al., 2021; Meena et al., 2022; Sameen et al., 

2019; Cai et al., 2021; Huang and Zekkos, 2023) focus on evaluating the performance 

of various ML algorithms in the landslide detection model for a single event. Fewer 

studies used three to four landslide cases to validate their landslide detection model 

(Stumpf and Kerle, 2011; Ghorbanzadeh et al., 2022b). Specifically, Stumpf and Kerle 

(2011) used object-based image analysis with the random forest algorithm to map the 

landslides in Haiti, Italy, China, and France and showed that feature selection affects 

the model performance. Ghorbanzadeh et al. (2022b) evaluated eleven deep learning 

models: U-Net, ResU-Net, PSPNet, ContextNet, DeepLab-v2, DeepLab-v3+, FCN-8s, 

LinkNet, FRRN-A, FRRN-B, and SQNet with Sentinel-2 satellite imagery and digital 

elevation model and slope from ALOS-PALSAR for four landslide cases in Iburi, 

Kodagu, Gorkha, and Taiwan and revealed that ResU-Net outperformed other models 

in the landslide detection. However, a more systematic assessment of the importance 

of each factor for several events is still lacking.  

This study aims to evaluate the importance of various factors included in the 

process of the landslide detection model for three recent seismic events that caused 

landslides. Specifically, the importance of features, training sample size, machine 

learning algorithms, segmentation parameters, and the resolution of the input data are 

quantified for each event, and similarities and differences in results are compared to 

provide improved guidance on which factors play more critical roles in a particular 

environment and need to be prioritized during the model development.     
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3.2 Study Areas & Seismic Events 

The three different events considered are recent earthquake events that caused 

extensive landslides. Specifically, the 2015 Lefkada earthquake, the 2016 Kaikōura 

earthquake, and the 2021 Nippes earthquake are considered.  

The Mw 6.5 Lefkada earthquake occurred on November 17, 2015, in Greece 

and triggered around 700 landslides along the west coast of Lefkada island (Zekkos 

and Clark, 2020). The Mw 7.8 Kaikōura earthquake occurred on November 14, 2016, 

in Kaikōura, New Zealand, and triggered approximately 29,000 landslides (Massey et 

al., 2020). On August 14, 2021, a Mw 7.2 earthquake hit the Tiburon Peninsula of 

western Haiti and triggered around 14,000 landslides (Amatya et al., 2023). As shown 

in Table 3.1, the climate of the Lefkada is Mediterranean, the climate of Kaikōura is 

subtropical, and the climate of Nippes is tropical. Figure 3.1 shows the satellite imagery 

for the three events, and Figure 3.2 shows the histogram of NDVI before the 

earthquake. Figure 3.2 shows the minimum, maximum, standard deviation, mean, and 

mode values of NDVI for the Lefkada, which are -0.98, 0.972, 0.248, 0.04, and 0.27, 

respectively. The minimum, maximum, standard deviation, and mean values of NDVI 

for the Kaikōura are -0.843, 0.624, 0.226, and 0.03, respectively. The NDVI density 

curve for the 2016 Kaikōura earthquake has two peaks: one is at -0.18, and the other 

is at 0.28. The minimum, maximum, standard deviation, mean, and mode values of 

NDVI for the Nippes are -0.258, 0.972, 0.113, 0.753, and 0.84, respectively. Nippes 

has the highest mean value of NDVI. Kaikōura and Lefkada have similar mean values 

of NDVI, but Lefkada has a lower minimum value of NDVI than Kaikōura. As 

indicated by the NDVI values and shown in the satellite imagery in Figure 3.1, the 

Nippes is the most vegetated case among the three cases.   

 

 

Table 3.1: Earthquake events 

 Event 

Year 
Location 

Earthquake 

Moment 

Magnitude 

Climate 
Imagery 

(Resolution) 

Lefkada 

earthquake 
2015 Greece 6.5 Mediterranean 

Worldview© 

(1.84 m) 

Kaikōura 

earthquake 
2016 

New 

Zealand 
7.8 Subtropical 

PSOrthoTile 

(3.125 m) 

Nippes 

earthquake 
2021 Haiti 7.2 Tropical 

PSOrthoTile 

(3.125 m) 

 

 

 

 



CHAPTER 3.  LESSONS LEARNED ON THE EFFICACY OF MACHINE LEARNING-BASED  

LANDSLIDE DETECTION FOLLOWING THREE RECENT EARTHQUAKE EVENTS 

38 

 

            
(a) 2015 Lefkada Earthquake 

 
(b) 2016 Kaikōura Earthquake 

 
(c) 2021 Nippes Earthquake Event 

Figure 3.1: Post-event imagery and landslide inventory 
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Figure 3.2: NDVI density curves before the earthquake 

3.3 Data 

As is often the case, the available data for each event varies. For the 2015 Lefkada 

earthquake event, the pre-event Worldview© satellite imagery on January 15, 2015, 

and the post-event Worldview© satellite imagery on December 28, 2015, are used. 

The multispectral Worldview© satellite imagery has eight bands: coastal blue, blue, 

green, yellow, red, red edge, near-infrared (NIR), and near-infrared2 (NIR2). Also, a 

2-m digital elevation model (DEM) is used as the pre-event DEM, and a 2-m DEM on 

December 28, 2015, is used as the post-event DEM. Both pre-event and post-event 

DEM are derived from the UAV and satellite imagery. The eight bands in Worldview© 

satellite imagery are used to calculate several indexes including the Red-Edge 

Normalized Difference Vegetation Index (NDVIre), Red-Edge Chlorophyll Index 

(CIre), Red-Edge Triangulated Vegetation Index (RTVICore), Global Environmental 

Monitoring Index (GEMI), Green Chlorophyll Index (CIg), Green Normalized 

Difference Vegetation Index (GNDVI), Visible Atmospherically Resistant Index 

(VARI), Modified Soil Adjusted Vegetation Index (MSAVI), Simple Ratio (SR), Red-

Edge Simple Ratio (SRre), Modified Triangular Vegetation Index (MTVI2), Enhanced 

Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Iron Oxide (IO), and mean brightness 

as shown in Equation 2.1-2.15. 

For the 2016 Kaikōura earthquake, the pre-event PSOrthoTile satellite imagery 

on September 10, 2016, and the post-event PSOrthoTile satellite imagery on March 

18, 2017, are collected. A 2-m digital surface model (DSM) before November 14, 

2016, is used as the pre-event DSM, and a 2-m DSM in January 2017 is used as the 



CHAPTER 3.  LESSONS LEARNED ON THE EFFICACY OF MACHINE LEARNING-BASED  

LANDSLIDE DETECTION FOLLOWING THREE RECENT EARTHQUAKE EVENTS 

40 

 
post-event DSM. The DSMs are derived from satellite imagery. For the 2021 Nippes 

Earthquake, the pre-event PSOrthoTile satellite imagery on August 10, 2021, and the 

post-event PSOrthoTile satellite imagery on December 18, 2021, are collected. Also, 

a 1.5-m digital terrain model (DTM) acquired in 2016 (The World Bank, 2021) is used 

as the pre-event topography data. The multispectral PSOrthoTile satellite imagery has 

four bands: blue, green, red, and near-infrared (NIR). The four bands in PSOrthoTile 

satellite imagery are used to calculate indexes, including the Global Environmental 

Monitoring Index (GEMI), Green Chlorophyll Index (CIg), Green Normalized 

Difference Vegetation Index (GNDVI), Visible Atmospherically Resistant Index 

(VARI), Modified Soil Adjusted Vegetation Index (MSAVI), Simple Ratio (SR), 

Modified Triangular Vegetation Index (MTVI2), Enhanced Vegetation Index (EVI), 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 

(NDWI), and Iron Oxide (IO).  

The pre-event and post-event topography data are used to extract terrain 

characteristics: slope inclination, curvature, aspect, flow direction, and hillshade. In 

addition to the pre-event and post-event features, the feature difference between the 

pre-event and post-event values is also calculated. This difference may indicate the 

change caused by the 2015 Lefkada earthquake, 2016 Kaikōura earthquake, 2021 

Nippes earthquake, or other non-earthquake-related changes that may have occurred 

between the dates that the data is collected. The differences associated with spectral 

and terrain features are calculated as shown in Equation 2.16. The pre-event, post-

event, and feature difference values for each feature are analyzed separately to quantify 

each feature's significance. Additionally, features are composited together, and the 

performance of multi-feature models is evaluated.   

3.4 Machine Learning Algorithms and Image 
Segmentation Process 

Three machine learning (ML) algorithms are considered in the analyses: random 

forests (RF), support vector machine (SVM), and maximum likelihood (MLE). Object-

based image analysis (OBIA), as implemented in ArcGIS Pro 2.9.1, is considered in 

this study. A crucial part of OBIA is the imagery segmentation process that defines the 

clusters or objects and considers spectral details, spatial details, and minimum segment 

size in pixels. Spectral detail and spatial detail range from 1 to 20. Segments smaller 

than the minimum segment size in pixels are merged with best-fitting adjacent 

segments (Esri Inc., 2021). In this study, spectral details, spatial details, and minimum 

segment sizes have been parameterized to assess the parameters that produce the best 

landslide detection model.   
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3.5 Training and Testing Samples 

Supervised machine learning algorithms require training samples to train the algorithm 

and testing samples to assess the model's accuracy. The landslide detection models are 

a binary classification with two classes: landslide and non-landslide. The manually 

developed landslide inventory is divided into training and testing samples, and 

landslides and non-landslide samples are created accordingly.  

Zekkos and Clark (2020) used high-resolution satellite imagery and three-

dimensional models to develop the 2015 Lefkada earthquake landslide inventory, 

which contains the location, area, and volume of 716 landslides. Each landslide's 

source and entire area were mapped separately, as shown in Figure 3.1a. Karantanellis 

et al. (2023) developed the landslide inventory containing 1448 landslides for the 2016 

Kaikōura earthquake using the WorldView© imagery and digital surface model, as 

shown in Figure 3.1b. Juang et al. (2019) developed the polygon-based manually 

mapped landslide inventory using satellite imagery from Pléiades, WorldView©, and 

Sentinel-2 for the landslides triggered by the 2021 Nippes earthquake, as shown in 

Figure 3.1c. The landslide inventory has a total number of 14,482 landslides. Both the 

2015 Lefkada earthquake and the 2016 Kaikōura earthquake landslide inventory have 

the area and volume information for landslides, but the 2021 Nippes earthquake 

landslides only have the landslide area information.  

As shown in Figure 3.3, most landslides in the inventory have a landslide area 

<2500 m2 for all three earthquake events. In assessing the effect of factors such as 

segmentation parameters, feature selection, and data resolution, the commonly used 

training-testing splitting ratio of 70/30 is used. The training sample size from each 

manual landslide inventory is also varied to evaluate the influence of training sample 

size on the results.   

 



CHAPTER 3.  LESSONS LEARNED ON THE EFFICACY OF MACHINE LEARNING-BASED  

LANDSLIDE DETECTION FOLLOWING THREE RECENT EARTHQUAKE EVENTS 

42 

 

 
Figure 3.3: The landslide area in the landslide inventory 

3.6 Accuracy Assessment 

In reporting landslide detection results, a positive result means landslides, and a 

negative result means non-landslide. True indicates the result is correct, but false 

means the result is wrong. The overall accuracy (OA), as shown in Equation 2.24, is 

used to assess the model's performance. The minimum value of OA is -33.33%, and 

the maximum value of OA is 100%. The random classifier has an OA of 33.33%. 

3.7 Results and Discussion 

3.7.1 Feature Importance 

Pre-event, post-event, and the feature difference for each feature (when available) are 

utilized as input in the landslide detection model. Random Forest (RF) has the best 

landslide detection performance than other ML models, as discussed subsequently, so 

RF is used to evaluate the influence of the selection of features, training sample size, 

data resolution, and segmentation on the detection model. Tables 2.2, Table 3.2, and 

Table 3.3 list each feature's model performance when considered individually. Terrain 

features are highlighted in gray, and spectral features are highlighted in white. There 

are 92 features for landslides triggered by the 2015 Lefkada earthquake event. The 

2016 Kaikōura earthquake event has 63 features, and the 2021 Nippes earthquake has 

51 features. All three study sites have considered the spectral features, including the 
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GEMI, CIg, GNDVI, VARI, MSAVI, SR, MTVI2, EVI, NDVI, NDWI, and IO. 

Because the 2015 Lefkada earthquake event has the red-edge band from the 

Worldview© satellite imagery, the NDVIre, CIre, RTVICore, and SRre are calculated 

additionally and included as spectral features. The 2015 Lefkada earthquake has the 

pre-event DEM and post-event DEM, the 2016 Kaikōura earthquake has the pre-event 

DSM and post-event DSM, and the 2021 Nippes earthquake has the pre-event DTM. 

The slope inclination, curvature, aspect, flow direction, and hillshade are derived from 

these terrain models and utilized as terrain features.  

For the 2015 Lefkada earthquake event, post-slope and pre-slope have the 

highest OA, around 80 %, followed by pre-event vegetation indexes, pre-NDVI, pre-

NDVIre, pre-CIre, and pre-RTVICore. Post-elevation, pre-elevation, aspect 

difference, curvature difference, and GEMI difference have the lowest OA between 13 

% and 19 %. For the 2016 Kaikōura earthquake event, vegetation index difference, 

NDVI difference, and MSAVI difference individually generated the best two landslide 

detection models, with OA of 66.3 % and 64.7 %, respectively. Post vegetation index, 

post NDVI, SR difference, post MSAVI, post NDWI, and NDWI difference have the 

OA between 60.5 % and 64.2 %. All terrain features, such as post-slope and pre-DSM, 

have an OA of around or below 50 %. The lowest OA, which is 25.9 %, comes from 

post-DSM. For the 2021 Nippes earthquake event, the post-vegetation index, post-CIg, 

and post-SR have the highest OA of 62.1 % and 60.8 %, respectively, followed by pre-

slope. Post-NDVI, GNDVI difference, post-NDWI, post MSAVI, and NDVI 

difference have the OA between 52.3 % and 57 %. The pre-DTM has an OA of 50 %. 

A random classifier has an OA of 33.33 %. EVI Difference, Pre SR, Pre blue band, 

Pre CIg, IO difference, and Pre EVI have worse model performance than a random 

classifier. 

Generally, the pre-slope and post-slope terrain features are the most essential 

features in the landslide detection model for the 2015 Lefkada earthquake event. The 

vegetation index differences, NDVI difference, and MSAVI difference, are the two 

features with the highest OA for the 2016 Kaikōura earthquake event. The post-CIg 

and post-SR, the post vegetation index, are the two most critical features for the 2021 

Nippes earthquake event. As indicated by the NDVI statistics for each area, shown in 

Figure 3.2, the 2021 Nippes earthquake event is in the most vegetated area, and the 

2015 Lefkada earthquake event is in the least vegetated area among the three cases. 

Since Nippes is in a highly vegetated area, as shown in the post-event imagery in Figure 

3.1c, the post-vegetation index plays a dominant role in generating a reliable landslide 

detection result. The vegetation condition of Kaikōura is between Lefkada and Nippes, 

so vegetation index differences, i.e., the difference between the pre-event and post-

event vegetation indexes, are the most essential features. Lefkada is in the least 

vegetated area with overall low vegetation along the slope. Therefore, topographic 

characteristics, especially the slope angle rather than the vegetation index, are critical 

in improving the model's performance.  
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Figure 3.4: Model's performance using multiple features 
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Table 3.2: Kaikōura feature importance 

Ranking Feature OA (%) Ranking Feature OA (%) 

1 NDVI Difference 66.3 41 Red band Difference 38.1 

2 MSAVI Difference 64.7 42 Pre CIg 38.0 

3 Post NDVI 64.2 43 Post Aspect 38.0 

4 SR Difference 62.3 44 Curvature Difference 37.9 

5 Post MSAVI 61.1 45 Post Flow Direction 37.5 

6 Post NDWI 60.7 46 Pre VARI 37.4 

7 NDWI Difference 60.5 47 Pre SR 37.1 

8 Post GNDVI 60.0 48 Pre Aspect 35.9 

9 Green band Difference 59.7 49 Pre Curvature 35.7 

10 GNDVI Difference 58.1 50 Post Curvature 35.0 

11 Mean Brightness Difference 58.1 51 Pre Flow Direction 34.5 

12 Post CIg 56.6 52 Post EVI 34.2 

13 Post GEMI 54.1 53 DSM Difference 33.6 

14 MTVI2 Difference 51.8 54 Aspect Difference 33.3 

15 Post Red band 51.4 55 Hillshade Difference 32.7 

16 Post SR 51.3 56 Slope Difference 32.4 

17 Post Slope 51.2 57 GEMI Difference 31.9 

18 Pre DSM 50.0 58 Pre Red band 31.5 

19 Pre EVI 50.0 59 Pre Mean Brightness 30.6 

20 Pre Iron Oxide 50.0 60 Post Hillshade 29.0 

21 EVI Difference 50.0 61 Flow Direction Difference 27.7 

22 Iron Oxide Difference 50.0 62 Pre GEMI 26.7 

23 Pre Slope 49.1 63 Post DSM 25.9 

24 Post MTVI2 48.6 

 

25 CIg Difference 48.2 

26 Blue band Difference 47.3 

27 VARI Difference 47.0 

28 Pre Hillshade 46.0 

29 Post Green Band 45.6 

30 Pre Blue band 44.5 

31 Post VARI 44.2 

32 Pre GNDVI 44.1 

33 Pre NDWI 43.8 

34 Pre NDVI 42.7 

35 Post Mean Brightness 41.8 

36 Pre MSAVI 41.5 

37 Pre Green band 40.0 

38 Pre MTVI2 39.4 

39 Post Iron Oxide 39.0 

40 Post Blue band 38.6 
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Table 3.3: Nippes feature importance 

Ranking Feature OA (%) Ranking Feature OA (%) 

1 Post CIg 62.1 41 Pre VARI 36.6 

2 Post SR 60.8 42 Pre Flow Direction 35.9 

3 Pre Slope 60.3 43 GEMI Difference 35.8 

4 Post NDVI 57.0 44 NIR band Difference 35.3 

5 GNDVI Difference 56.9 45 Post EVI 34.7 

6 Post NDWI 56.1 46 EVI Difference 30.0 

7 Post MSAVI 53.6 47 Pre SR 28.6 

8 NDVI Difference 52.3 48 Pre Blue band 28.3 

9 Pre Curvature 52.2 49 Pre CIg 21.9 

10 Post GNDVI 51.9 50 Iron Oxide Difference 20.0 

11 Pre DTM 50.0 51 Pre EVI 16.0 

12 Blue band Difference 49.9 

  

13 Pre Aspect 49.4 

14 NDWI Difference 49.3 

15 Pre Hillshade 48.5 

16 MTVI2 Difference 48.1 

17 Post GEMI 48.0 

18 Post VARI 47.4 

19 Pre GNDVI 47.1 

20 Red band Difference 46.4 

21 Green band Difference 45.7 

22 VARI Difference 45.2 

23 Post Red band 44.7 

24 CIg Difference 44.6 

25 Pre MSAVI 44.5 

26 MSAVI Difference 44.4 

27 Pre Green band 44.4 

28 Post Green band 44.1 

29 Pre NDVI 43.4 

30 Pre Iron Oxide 42.7 

31 Post MTVI2 42.7 

32 Post Iron Oxide 41.4 

33 Pre NIR band 41.4 

34 Pre Red band 40.8 

35 Post Blue band 40.5 

36 SR Difference 39.7 

37 Post NIR band 39.4 

38 Pre MTVI2 38.6 

39 Pre NDWI 37.5 

40 Pre GEMI 36.9 
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Utilizing multiple features in the landslide detection model improves the 

model's performance compared to the single feature shown in Tables 2.2, Table 3.2, 

and Table 3.3. Figure 3.4 shows the multi-feature model's performance for the 2015 

Lefkada earthquake event, the 2016 Kaikōura earthquake event, and the 2021 Nippes 

earthquake event using the top 5, 10, 20, 30, 40, 50, 60, 70, and 80 features that has 

the best performance in Tables 2.2, Table 3.2, and Table 3.3. For the 2015 Lefkada 

earthquake event, the top 10 features are post-slope, pre-slope, pre-NDVI, pre-

NDVIre, pre-CIre, pre-RTVICore, NDVI difference, post-flow direction, pre-CIg, and 

post-GEMI. Three of the top 10 features are terrain features, and seven of the top 10 

features are spectral features. For the 2016 Kaikōura earthquake event, the top 10 

features are NDVI difference, MSAVI difference, post-NDVI, SR difference, post M 

SAVI, post-NDWI, NDWI difference, post-GNDVI, green band difference, and 

GNDVI difference. All of the top 10 features are spectral features. For the 2021 Nippes 

earthquake event, the top 10 features are post-CIg, post-SR, pre-slope, post-NDVI, 

GNDVI difference, post-NDWI, post MSAVI, NDVI difference, pre-curvature, and 

post-GNDVI. Two of the top 10 features are terrain features, and eight of the top 10 

features are spectral features. 

For the 2015 Lefkada earthquake event, the OA is 83.4 % using the top 5 

features in the model and increases to 89 % for the top 10 features. The model's 

performance becomes stable as additional features are included. The models with the 

top 20, 30, 40, 50, 60, 70, and 80 features all have OA near 90%, showing that adding 

more features does not improve the model performance. In subsequent analyses, the 

top 10 features are used to assess the influence of sample size, machine learning 

algorithm, resolution, and segmentation. For the 2016 Kaikōura earthquake event, the 

OA is 64.3 % for the top 5 features and increases to 69.7 % for the top 30 features. The 

models with the top 40, 50, and 60 features all have OA near 70%. Hence, the top 30 

features are used to evaluate the influence of sample size, machine learning algorithm, 

resolution, and segmentation in subsequent analyses. For the 2021 Nippes earthquake 

event, the multiple features model with the top 5 features has an OA of 84.7%, 

increasing to 85% for the top 20 features. The models with the top 40 and 50 features 

all have OA near 85%. As a result, the model with the top 20 features is used in 

subsequent analyses.  

Figure 3.5a-c show that the landslide detection model can reveal the landslide 

location well, as highlighted in true positive. However, some non-landslide areas are 

detected as landslides, as shown in false positives. A few landslide areas are detected 

as non-landslides, as demonstrated by false negatives.  

Flow direction is utilized to separate amalgamated landslides in the detection 

result. Figure 3.6a-c show the histogram of landslide area in the landslide detection 

result for the analysis with the top 10 features for the 2015 Lefkada earthquake event, 

the top 30 features for the 2016 Kaikōura earthquake event, and the top 20 features for 

the 2021 Nippes earthquake event compared to the landslide inventory. As shown in 

Figure 3.6a-c, the model detects small landslides with a landslide area <2500 m2 the 

most but overestimates the number of small landslides for the 2015 Lefkada 

earthquake and 2016 Kaikōura earthquake. 
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(a) 

 
(b) 

 
(c) 

Figure 3.5: Landslide detection result (a) from the top 10 features in the 2015 Lefkada 

earthquake event (b) from the top 30 features in the 2016 Kaikoura earthquake event (c) 

from the top 20 features in the 2021 Nippes earthquake event 
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(a) 

 

(b) 

 

(c) 

Figure 3.6: Histogram of landslide area in the landslide detection result and landslide 

inventory (a) from the top 10 features in the Lefkada earthquake (b) from the top 30 

features in the Kaikoura earthquake (c) from the top 20 features in the Nippes earthquake 
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3.7.2 Effect of Sample Size 

The effect of training sample size on the landslide detection model's performance is 

investigated, and the results are shown in Figure 3.7. This investigation is essential for 

practical cases. Although large training samples are known to be better for detection, 

in a post-disaster assessment stage, we do not know how big the entire inventory is 

yet, and we do not have the opportunity to have very large samples for model training. 

The training sample is geospatially distributed over the entire event area for the 2015 

Lefkada earthquake, 2016 Kaikōura earthquake, and 2021 Nippes earthquake event. 

For the 2015 Lefkada earthquake, the OA is 59.9 % with a very small training sample 

size that is equal to 0.5 % of the inventory and increases to 85.6  % with a training 

sample size of 20 %. The model's performance becomes stable after the training sample 

size achieves 20 %, with an OA near 85 %. As the training sample size reaches 20 % 

and beyond, the larger size of training samples does not improve the model's 

performance. For the 2016 Kaikōura earthquake, the OA is 69.0 % with a training 

sample size equal to 3.3 % of the inventory and increases to 78.5 % for a training 

sample size of 50 %, remaining around 78 % for larger training sample sizes. For the 

2021 Nippes earthquake event, the OA is 84.1 % with the training sample size as 2.5 

% of the inventory and modestly increases to 88.6 % with the training sample size as 

5 %. The model's performance becomes stable after the training sample size achieves 

5 % and beyond. Overall, for the training sample size of about 2-4 % of the inventory 

(specifically 3.02 %, 3.26 %, and 2.5 % for the 2015 Lefkada earthquake, 2016 

Kaikōura earthquake, and 2021 Nippes earthquake, respectively), OA>70 % can be 

achieved, which is valuable for practical purposes. The model's performance is stable 

as the training sample size reaches 20 %, 50 %, and 5 % of the inventory for the 2015 

Lefkada earthquake, 2016 Kaikōura earthquake, and 2021 Nippes earthquake, 

respectively.  
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Figure 3.7: The influence of training sample size on the landslide detection model 

 

3.7.3 Effect of Machine Learning Algorithm 

Figure 3.8 shows the effect of machine learning algorithms on landslide detection 

results. For the 2015 Lefkada earthquake, RF has an OA of 82.9 %, SVM has an OA 

of 71.2 %, and MLE has an OA of 66.2 %. For the 2016 Kaikōura earthquake, RF has 

an OA of 79.6 %, SVM has an OA of 77.2 %, and MLE has an OA of 50.4 %. For the 

2021 Nippes earthquake, RF has an OA of 85.8 %, SVM has an OA of 82.0 %, and 

MLE has an OA of 50 %. For all three study areas, RF outperforms SVM, and MLE 

performs worst for all three events. RF and SVM have more robust and better landslide 

detection results than MLE. 
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Figure 3.8: The influence of machine learning algorithms on the landslide detection 

model 

3.7.4 Effect of Data Resolution 

The top 10 features for the 2015 Lefkada earthquake event, the top 30 features for the 

2016 Kaikōura earthquake event, and the top 20 features for the 2021 Nippes 

earthquake event are composited as the input data with the original data resolution of 

2 m for each event. They are re-run using the same data resampled to different 

resolutions in 5 m, 10 m, 30 m, and 50 m. The RF model is re-trained with different 

data resolutions to access the data resolution effect. The OA of all three models is 

systematically reduced as the data resolution is reduced. As the data resolution changes 

from 2 m to 50 m, OA decreases from 84.8 % to 63.9 % for the 2015 Lefkada 

earthquake event, OA decreases from 75.6 % to 48.8 % for the 2016 Kaikōura 

earthquake event, and OA decreases from 85.8 % to 66.9 % for the 2021 Nippes 

earthquake event as shown in Figure 3.9.   
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Figure 3.9: The effect of data resolution on the landslide detection model 

 

3.7.5 Effect of Segmentation 

The manner by which the objects are defined in the OBIA method is an important 

consideration. For segmentation, three parameters, spectral detail, spatial detail, and 

minimum segment size in pixels, are vital in grouping neighboring pixels into objects. 

The spectral detail and spatial detail range between 1 and 20. The spectral detail and 

spatial detail values of 1, 10, and 20 are tested to see the influence of spectral detail 

and spatial detail on the model. The impact of segmentation on the landslide model is 

shown in Figure 3.10, Figure 3.11, and Figure 3.12.  

As shown in Figure 3.10a-c, Figure 3.11a-c, and Figure 3.12a-c, as the spectral 

detail increases, there are more segments, and the value of OA increases. For the 2015 

Lefkada earthquake event, the model with the spectral detail of 1, 10, and 20 has an 

OA of 87.4 %, 89.6 %, and 92.2 %, respectively. For the 2016 Kaikōura earthquake 

event, the model with the spectral detail of 1, 10, and 20 has an OA of 41.1 %, 53.5 %, 

and 77.8 %, respectively. For the 2021 Nippes earthquake event, the model with the 

spectral detail of 1, 10, and 20 has an OA of 66.8 %, 78.2 %, and 88.3 %, respectively.  

Changes in spatial detail do not affect the results as systematically as spectral 

detail. For the 2015 Lefkada earthquake event, the model with the spatial detail of 1, 

10, and 20 has an OA of 91.6 %, 89.6 %, and 90.4 %, respectively. As shown in Figure 

3.10b, d, and e, the size and shape of segments of the landslide area do not change 
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significantly as the spatial detail increases. For the 2016 Kaikōura earthquake event, 

the model with the spatial detail of 1, 10, and 20 has an OA of 43.7 %, 53.5 %, and 

74.8 %, respectively. When the value of spatial detail increases, the segments become 

smaller, as shown in Figure 3.11b, d, and e. For the 2021 Nippes earthquake event, the 

model with the spatial detail of 1, 10, and 20 has an OA of 70.2 %, 78.2 %, and 45.1 

%, respectively.  

The minimum segment size also has a lesser effect on the results of the analyses. 

For the 2015 Lefkada earthquake event, the values of 1, 10, and 20 of minimum 

segment size in pixels are used, and the OA is 89.2 %, 89.6 %, and 89.6 %, 

respectively. For the 2016 Kaikōura earthquake event, the values of 1, 10, and 20 of 

minimum segment size in pixels are used, and the OA is 73.9 %, 53.5 %, and 56.3 %, 

respectively. As shown in Figure 3.11b, f, and g, the segment size increases as the value 

of minimum segment size in pixels increases. For the 2021 Nippes earthquake event, 

the values of 1, 10, and 20 of minimum segment size in pixels are used, and the OA is 

73.7 %, 78.2 %, and 79.6 %, respectively. 

For all three events, higher spectral details have a higher OA and can produce 

a better landslide detection model. The variation in the value of spatial detail in the 

2015 Lefkada earthquake event does not change the OA significantly. However, the 

higher spatial detail for the 2016 Kaikōura earthquake event has a higher OA. The 

minimum segment size in pixels does not affect the model's performance in the 2015 

Lefkada earthquake event. However, the OA decreases with increasing the minimum 

segment size in pixels for the 2016 Kaikōura earthquake event. The OA increases with 

the increase of the minimum segment size in pixels for the 2021 Nippes earthquake 

event. 

Low spectral detail, low spatial detail, and large minimum segment size in 

pixels result in under-segmentation. Higher spectral detail, high spatial detail, and 

small minimum segment size in pixels cause over-segmentation. Figure 3.6 shows that 

in the inventory, most landslides have a landslide area below 2500 m2 for all three 

cases. In the case of under-segmentation, segments are too coarse to capture the shape 

of small landslides, so under-segmentation has a lower OA. Although over-

segmentation might divide the landslides into small segments, over-segmentation has 

a higher OA because small segments can capture the landslide characteristics for small 

landslides better than large segments. 
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Figure 3.10: The effect of segmentation for the 2015 Lefkada earthquake event 
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Figure 3.11: The effect of segmentation for the 2016 Kaikōura earthquake event 
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Figure 3.12: The effect of segmentation for the 2021 Nippes earthquake event 
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3.7.6 Importance of Different Factors in Landslide 
Detection 

An effort is made to quantify the relative importance of the factors that affect the 

landslide detection model in the three study areas. This may be done by quantifying 

the variation in OA due to changes in a particular factor. The results are summarized 

in Table 3.4, which shows that significant variation in OA (>40 %) can be observed 

due to changes in the factors for all three events. The post-slope is the most critical 

feature, and the GEMI difference is the feature with the lowest OA for the 2015 

Lefkada earthquake event. The OA difference between the best and worst features of 

the 2015 Lefkada earthquake event is 67 %. The NDVI difference has the highest OA, 

and the post-DSM has the lowest OA for the 2016 Kaikōura earthquake event. The 

post-CIg has the highest OA, and the pre-EVI has the lowest OA for the 2021 Nippes 

earthquake event. The OA difference of the feature selection is 47.2 % for the 2016 

Kaikōura earthquake and 46.1 % for the 2021 Nippes earthquake. Overall, the selection 

of the features is overwhelmingly the most important factor, but as discussed earlier, 

it is not the larger number of features that improve the results but the type of features. 

Among the three cases, the Nippes is the most vegetated case, and Lefkada is in the 

least vegetated area, with overall low vegetation along the slope. The vegetation index 

is more important in the highly vegetated case. However, the terrain features are more 

critical in the less vegetated case. 

Data resolution is also important. Data resolution results in an OA difference 

of >20 % for all three events, as shown in Table 3.4. The various ML algorithms result 

in the OA difference of 16.7 %, 29.2 %, and 35.8 % for the 2015 Lefkada earthquake, 

2016 Kaikōura earthquake, and 2021 Nippes earthquake event, respectively. RF and 

SVM have more stable landslide detection results in all three cases. However, the 

performance of MLE varies and can be worse than the other two, with OA ~50 % for 

the 2016 Kaikōura earthquake and 2021 Nippes earthquake event. Therefore, the OA 

difference caused by the ML algorithms for the 2016 Kaikōura earthquake and 2021 

Nippes earthquake event is higher than the 2015 Lefkada earthquake event. The 

influence of segmentation on the landslide detection model's performance varies with 

cases. The 2015 Lefkada earthquake event has an OA difference of 6.5 %, the 2016 

Kaikōura earthquake has an OA difference of 36.7 %, and the 2021 Nippes earthquake 

has an OA difference of 43.3 %. High spectral detail, high spatial detail, and small 

minimum segment size in pixels lead to over-segmentation, and the small segments in 

over-segmentation can distinguish the irregular landslide shape and sizes better. The 

event with a smaller landslide size is more sensitive to segmentation. As shown in 

Figure 3.6, the 2021 Nippes earthquake has the smallest landslides with a landslide area 

of <2500 m2, and the 2015 Lefkada earthquake event has the least landslides with a 

landslide area of <2500 m2 in the landslide inventory. Therefore, the segmentation 

leads to the most significant OA difference in the 2021 Nippes earthquake and the least 

OA difference in the 2015 Lefkada earthquake event. When the training sample is 

distributed over the entire event area, the size of the training sample can generate an 
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OA difference of around 10 % for all three events.   

 
 

Table 3.4: Ranking of importance for different factors in landslide detection 

 

2015 Lefkada 

earthquake 
OA Difference %  

(Maximum OA - Minimum 

OA) 

2016 Kaikōura earthquake 
OA Difference %  

(Maximum OA - Minimum OA) 

2021 Nippes 

earthquake 
OA Difference %  

(Maximum OA - Minimum 

OA) 

Feature 67.0 47.2 46.1 

Resolution 21.1 27.5 28.2 

ML 16.7 29.2 35.8 

Segmentation 6.5 36.7 43.3 

Sample size 12.7 10.7 8.7 

 

 

3.8 Conclusions 

This study evaluates the importance of different factors, the selection of features, data 

resolution, machine learning algorithms, segmentation, and training sample size in the 

landslide detection model for the landslides triggered by the 2015 Lefkada earthquake, 

2016 Kaikōura earthquake, and 2021 Nippes earthquake event. The selection of 

features affects the landslide detection model the most. The vegetation index plays a 

more critical role in the highly vegetated case, but the terrain features are more 

important in the less vegetated case. The importance of data resolution is similar in all 

three cases. The effect of machine learning algorithms and segmentation on landslide 

detection models varies with cases. The impact of training sample size is similar for 

all three cases.  
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Chapter 4 Derivation of Voellmy 
Model Parameters for Landslide 
Runout based on Co-seismic Rock 
Avalanches Inventory  
 

4.1 Introduction 

Landslides can result in severe damage to infrastructure and loss of life. Thus, 

understanding the mechanisms of landslide triggering and mobility is crucial in 

reducing the risk of damage and loss (Zekkos et al., 2019). Landslide mobility is 

particularly critical for landslide risk assessment (Guo et al., 2014), as landslides' 

runout (or travel distance) increases risk to communities. Models for landslide mobility 

prediction are primarily empirical or mechanistic. Empirical landslide mobility models 

are often statistical models derived from case histories and past observations (Liu et 

al., 2021). Table 4.1 lists existing empirical models used in estimating landslide travel 

distance. Most studies (Geo et al., 2021; Zhang et al., 2022a; Legros, 2002; 

Rickenmann, 1999; Zou et al., 2017; Corominas, 1996; Hunter and Fell, 2003; Devoli 

et al., 2009; Hattanji and Moriwaki, 2009; Whittall et al., 2017; Moncayo and Ávila, 

2023; Finlay et al., 1999; Scheidegger, 1973; Wan and Xue, 2023) are based on a 

limited number of landslides caused by a specific triggering event, and thus landslide 

data from different locales and historical events is aggregated in studies (Qiu et al., 

2018; Li et al., 2011; Geo et al., 2014; Qiu et al., 2017). Area-specific landslide runout 

data are preferable to reduce uncertainty associated with runout analyses since the 

geologic setting influences the types of landslides that occur and their runout. 

However, even within a specific area, landslides may be triggered by various factors, 

such as rainfall or earthquakes, and the landslide material may vary depending on the 

subsurface profile.  

Triggering factors, geology, topography, landslide volume, slope angle, 

material, and landslide size are known to affect landslide mobility (Zou et al., 2017; 

Wan and Xue, 2023; Legros, 2002; Qiu et al., 2018; Corominas, 1996; Li et al., 2011; 
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Geo et al., 2014; Crosta et al., 2018; Zhang et al., 2022a; Tsunetaka et al., 2022; 

Roback et al., 2018; Hattanji and Moriwaki, 2009; Qiu et al., 2017; Zhao et al., 2021; 

Moncayo and Ávila, 2023; Whittall et al., 2017; Johnson and Campbell, 2017). Zou et 

al. (2017) pointed out that landslide volume is the controlling predictor in estimating 

landslide runout for loess landslides as well as non-seismic and seismic rockslides. 

Also, the slope angle of the landslide source affects the runout distance for non-seismic 

rockslides. The 55 historical landslides in their dataset are in colluvium, loess, and 

rock; three different material types. They showed that landslide material significantly 

impacts landslide runout. The triggering factor is also vital in landslide runout; rainfall-

induced rockslides have higher mobility than gravity-induced rockslides, followed by 

earthquake-induced rockslides. Wan and Xue (2023) concluded that the landslide 

source volume and slope angle significantly affect landslide travel distance for rainfall-

induced and earthquake-induced landslides. Legros (2002) proposed that the runout 

distance mainly depends on the volume of landslides for non-volcanic, volcanic, 

Martian, and submarine landslides. Qiu et al. (2018) showed that loess slide volume, 

slope height, and slope angle affect the landslide travel distance, with travel distance 

increasing with the increase in slope height and slide volume. Corominas (1996) stated 

that the angle of reach, the ratio between the vertical drop of landslide and the 

horizontal projection of landslide runout distance, is a suitable indicator of landslide 

mobility, and the angle of reach reduces with volume increase for rockfall, debris flow, 

earthflow, and translational slide. Li et al. (2011) concluded that volume and slope 

angle influence the landslide travel distance, and the logarithmic value of landslide 

volume positively correlated with landslide travel distance in seismic landslides. Geo 

et al. (2014) reported that rock type, landslide source volume, and slope transition 

angle were predominant factors in travel distance for landslides in the 2008 Wenchuan 

earthquake. Crosta et al. (2018) investigated landslide mobility on Mars and concluded 

that the landslide location, landslide typology, the presence of ice, and how ice melts 

affect landslide mobility. Landslide mobility increased with latitude because of the 

presence of ice. Zhang et al. (2022a) observed a linear relationship between landslide 

height and travel distance and concluded that larger landslides have greater mobility. 

Tsunetaka et al. (2022) observed that the tree height around the runout area affects the 

landslide runout for rainfall-induced landslides. Hattanji and Moriwaki (2009) stated 

that the ratio of landslide height and length strongly correlates with the slope angle of 

the landslide source for relict landslides. Qiu et al. (2017) revealed that for the loess 

slides in China, the landslide-affected area increases with the increase in landslide 

volume, and the landslide travel distance increases with landslide height. Zhao et al. 

(2021) showed that the landslide area, slope angle, and peak ground acceleration affect 

landslide mobility for seismic earth flows. Moncayo and Ávila (2023) revealed that 

the landslide volume, height, and slope angle control the landslide travel distance in 

Colombia. Whittall et al. (2017) reported that landslide mobility is strongly sensitive 

to the fall height, slope angle, and material properties in open pit slope failures, but is 

only modestly sensitive to volume. Weathered and saturated rock mass material led to 

the high mobility of the open pit slope. Johnson and Campbell (2017) pointed out that 

the drop height and volume control the landslide mobility on both Earth and Mars. 
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Roback et al. (2018) showed that the landslide size influences the landslide runout 

distance and topography controls landslide mobility and found that in the steep and 

high mountainous terrain of Nepal, co-seismic landslides from the 2015 Gorkha 

earthquake traveled an area that was equal to 10 times the source area. 

Most often, landslide mobility empirical models provide regressions of the 

landslide travel distance using landslide characteristics of the entire landslide (i.e., 

source+runout), such as landslide volume, landslide area, and landslide height (Legros, 

2002; Scheidegger, 1973; Corominas, 1996; Rickenmann, 1999; Qiu et al., 2018; Li et 

al., 2011; Tsunetaka et al., 2022; Zhang et al., 2022a; Devoli et al., 2009; Qiu et al., 

2017; Whittall et al., 2017; Zhao et al., 2021; Moncayo and Ávila, 2023; Finlay et al., 

1999). Table 4.1 is a compilation of many such empirical models. However, from a 

practical perspective, estimating the landslide travel distance from the landslide 

source's characteristics is more valuable than the entire landslide characteristics. 

Tsunetaka et al. (2022) and Zhao et al. (2021) documented more than one hundred 

landslides from a single event, but the source and runout areas of the landslides are not 

separated in the inventories. A few studies (Wan and Xue, 2023; Zou et al., 2017; Geo 

et al., 2014; Hattanji and Moriwaki, 2009) considered landslide characteristics of the 

landslide source in the estimation of landslide travel distance, but considered a limited 

number of landslides from a specific event. Wan and Xue (2023) considered the slope 

angle of the landslide source and landslide source volume for 111 landslides from 

different studies and events. Zou et al. (2017) took account of landslide source height 

and travel distance for 55 historical landslides in China. Geo et al. (2014) examined 

the landslide source volume and area for 54 landslides triggered by the 2008 Wenchuan 

earthquake. Hattanji and Moriwaki (2009) included landslide source area and slope 

angle of landslide source for 338 relic landslides from four different locations: 

Hachimantai, Nagano, Ichinomiya, and Gojo, in Japan. In Table 4.1, the landslide 

travel distance, L (L2D), is defined as the maximum horizontal distance that parallels 

the slide direction between the crown and toe, as shown in Figure 4.1.   
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Figure 4.1: 3D oblique view of landslide travel distance 

Although some studies considered the average slope angle, none of the 

empirical landslide mobility models in Table 4.1 considered the 3-dimensional (3D) 

topography effect in estimating landslide travel distance. The 2D definition allows for 

a simplified equation and provides a reasonable runout estimate, especially given the 

common situation where high-quality, reliable field data is lacking to validate the 

landslide mobility. In reality, the landslide travel path is not a straight line but a more 

complex geometry because of topographic changes along the path, as shown in L3D in 

Figure 4.1.  

Several mechanistic models are also available for landslide runout simulation, 

such as RAMMS-DF (RAMMS User Manual, 2022), FLO-2D (Wu et al., 2013), and 

D-Claw (Barnhart et al., 2021). They have been used for a wide range of runout 

analyses, including debris flow (Mikoš and Bezak, 2021), snow avalanches (Christen 

et al., 2013), and rock avalanches (De Pedrini et al., 2022). 

Barnhart et al. (2021) compared three different 3D continuum models, 

RAMMS-DF, FLO-2D, and D-Claw, and concluded that all three models did well at 

simulating the inundation pattern and peak depths observed in the debris flow runout 

for the 2018 Montecito California, post‐wildfire event if the debris flow volume is 

constrained well. The Rapid Mass Movement Simulation Debris Flow (RAMMS-DF) 

model is one of the most used models. RAMMS-DF is a single-phase model in which 

the material is modeled as a bulk flow and does not distinguish between the fluid and 

solid phases (RAMMS User Manual, 2022). RAMMS is a 3D continuum model using 

a depth-averaged 2D solution to motion law over a 3D topography and depth-

integrated equilibrium equations and makes some assumptions on the flow vertical 

structure (Liu et al., 2021). D-Claw represents fluid and solid fractions as quasi-two-

phase flow and needs a time-dependent solid volume fraction input, hydraulic 
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permeability, basal friction angle, debris' elastic compressibility, and effective shear 

viscosity of the pore fluid. FLO-2D uses five inputs, including three quadratic 

empirical relationship coefficients introduced by O'Brien and Julien (1985), Manning's 

n value, and the flow volume. RAMMS-DF is simpler than D-Claw and FLO-2D and 

requires only three inputs in RAMMS-DF, two Voellmy friction parameters, and the 

landslide source volume.  

RAMMS-DF implements the Voellmy friction law to simulate mass 

movements (RAMMS User Manual, 2022). The biggest challenge in the runout 

simulation is the wide variety of landslide conditions, such as material, triggering 

mechanism, moisture content, runout magnitude, simulation resolution, study location, 

and environment that affect the choice of Voellmy friction parameters (RAMMS User 

Manual, 2022). Since the material is modeled as a bulk flow in RAMMS-DF, the 

Voellmy friction parameters should be calibrated to represent the material for the field 

condition. 

The RAMMS-DF model was initially developed for debris flow runout 

simulation. Debris flow is a rapid mass movement of solid-fluid mixtures (Iverson, 

2005). However, the RAMMS-DF runout simulation is not limited to debris flow. It 

has also been applied to other runout simulations, such as rockslides, rock avalanches 

(De Pedrini et al., 2022), and glacier avalanches (Zhang et al., 2022b; Gilany and Iqbal, 

2019). A rockslide involves a relatively intact rock mass that moves along a distinct 

weak zone, separating the slide material from the more stable underlying material 

(Hungr et al., 2014). Rock avalanche also starts with a relatively initially intact rock 

mass, but moves as masses of fragments in a flow-like manner. It is often associated 

with large-volume (> 1 Mm3) bedrock mass movement (Hungr et al., 2001). Rock-ice 

avalanches are rock and debris avalanches that contain ice or snow from steep glaciers, 

rock-ice walls' failure, or ice entrainment along the propagation path (Schneider et al., 

2011). A glacier avalanche is a vast glacier slope failure leading to a massive portion 

of breaking glacier (with million cubic meters or more) moving through the landscape 

with a velocity of up to 100 m/s (Voight and Pariseau, 1978). 

Table 4.2 lists Voellmy friction parameters for the RAMMS simulation 

available in the literature. Debris flows caused by rainfall have been primarily 

investigated (Schraml et al., 2017; Gan et al., 2019; Zhuang et al., 2021; Peethambaran 

et al., 2023; Kumar et al., 2019). Mikoš and Bezak (2021) explored 35 debris flow 

cases worldwide in alpine environments. Schraml et al. (2015) studied two debris flow 

cases in Austria. Gardezi et al. (2021) analyzed one debris flow in Pakistan. Roy et al. 

(2022) evaluated two debris flows triggered by rainfall in India. De Pedrini et al. (2022) 

performed one rock avalanche simulation for the 1513 Monte Crenone rock avalanche, 

and Zhang et al. (2022b) utilized RAMMS-DF to simulate two rock avalanches in 

China triggered by rainfall.  

As shown in Table 4.2, the range of best-fit μ is between 0.001 and 0.7 (i.e. a 

wide range) and the range of best-fit ξ is between 10 m/s2 and 2000 m/s2 for the debris 

flow simulation in RAMMS-DF (RAMMS User Manual, 2022; Roy et al., 2022; 

Schraml et al., 2017; Gan and Zhang, 2019; Zhuang et al., 2021; Peethambaran et al., 

2023; Kumar et al., 2019; Gardezi et al., 2021; Mikoš and Bezak, 2021; Schraml et al., 
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2015). For the rock avalanches simulation in RAMMS-DF, the range of best-fit μ is 

between 0.12 and 0.7, and the range of best-fit ξ is between 250 m/s2 and 1200 m/s2 

(De Pedrini et al., 2022; Zhang et al., 2022b). Schraml et al. (2015) and Luna et al. 

(2013) collected Voellmy friction parameters from published values using different 

software. They summarized that rock avalanches have similar μ with debris flows, but 

have higher ξ. Rock-ice avalanches have higher ξ and lower μ than debris flows, 

possibly due to the ice and the water generated from the melting ice. For the debris 

flows and rock-ice avalanches, the μ decreases and ξ increases with an increase in 

landslide volume. However, there is no clear trend between Voellmy friction 

parameters and the landslide volume for rock avalanches. 

Mikoš and Bezak (2021) reported that Voellmy friction parameters vary 

widely. No clear pattern and correlation were observed for the frequency of the most 

representative Voellmy friction parameters based on 35 worldwide debris flow cases 

in an alpine environment. Thus, the most suited Voellmy friction parameters depend 

significantly on the local area characteristics, such as topography, geology, and 

hydrology, and model calibration is the most appropriate method for deriving the best-

fit Voellmy friction parameters (RAMMS User Manual, 2022). Pre-event and post-

event field data are needed to correctly calibrate Voellmy friction parameters, and 

according to Mikoš and Bezak (2021), further research is necessary to explore the 

correlation between the Voellmy friction parameters and the landslide characteristics 

and properties. 

In general, Voellmy friction parameters have been calibrated for a single or a 

limited few debris flow or rock avalanche cases in a single event (Roy et al., 2022; 

Schraml et al., 2017; Gan and Zhang, 2019; Zhuang et al., 2021; Peethambaran et al., 

2023; Kumar et al., 2019; Gardezi et al., 2021; Mikoš and Bezak, 2021; Schraml et al., 

2015; De Pedrini et al. 2022; Zhang et al., 2022b). However, the statistical significance 

of these back-analyses is not well established due to the limited number of cases. 

Calibration of Voellmy friction parameters against a large population of debris flows, 

rockslides, or rock avalanches from a specific event may provide statistically 

significant trends and an assessment of variance as well as the bias of the model against 

field observations. To date, some studies have provided Voellmy friction parameters 

for several debris flows. However, similar calibrations for rockslides or rock 

avalanches, especially co-seismic ones, are missing.  

This study's contribution lies in calibrating Voellmy friction parameters based 

on thousands of simulations by leveraging a high-resolution inventory of hundreds of 

landslides. Specifically, the 716 landslides that occurred during the 2015 Lefkada 

earthquake event are compared against thousands of simulations to derive Voellmy 

friction parameters that match each landslide runout. Because the Voellmy friction 

model simulates the runout material as a bulk flow and does not distinguish between 

the fluid and solid phases, it is a simple and efficient model choice for the simulation 

of co-seismic landslides, which do not have a fluidized mass. In doing so, these 

parameters (average and variation) can provide a basis for simulations on these (or 

similar) geologic and topographic environments. In addition, based on a large number 

of simulations, the influence of various factors, such as landslide size and topography, 
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on the calculated Voellmy parameters can be quantified.   

4.2 Methodology 

4.2.1 Numerical Model 

This study considers the Rapid Mass Movement Simulation Debris Flow (RAMMS-

DF) model, which is formulated based on the Voellmy friction law (Salm, 1993). The 

Voellmy friction law considers the resistance of the solid phase, dry-Coulomb friction 

(μ), and the resistance of the turbulent fluid phase, viscous-turbulent friction (ξ), as 

shown in Equation 4.1 (RAMMS User Manual, 2022):   

 

      S = μN +
ρgu2

ξ
 with N = ρhcos(ϕ)   (4.1) 

where S (Pa) is frictional resistance, ρ is density, g is the gravitational acceleration, ϕ is 

the slope angle, h is the flow height, u is the flow velocity, and N is the normal stress. 

The two Voellmy friction parameters define the flow behavior: μ governs when 

the flow is close to the deposition zone, and ξ controls as the flow moves quickly 

(RAMMS User Manual, 2022). The combination of μ and ξ controls the landslide 

runout geometry (Hungr, 2010). Calibrating the Voellmy friction parameters is 

essential in getting a realistic simulation. In this study, the block release simulation is 

used where the release area and release volume are defined based on the landslide 

inventory, and the sliding depth of the release area is calculated accordingly. For each 

landslide, hundreds of analyses are conducted, with μ varying between 0.01 and 1 and 

ξ varying between 50 m/s2 and 10000 m/s2, to identify the best-fit Voellmy friction 

parameters. The best match between the model runout area and the mapped runout area 

is quantified using the F1 score shown in Equation 4.2 (Powers 2015).    

 

      F1 score =
TP

TP+
1

2
(FP+FN)

   (4.2) 

 

where TP=True Positive, TN=True Negative, FP=False Positive, FN=False Negative. 

The comparison is made on a pixel-by-pixel basis. TP occurs when a mapped 

landslide pixel is modeled as a landslide. Otherwise, it is FP. TN occurs when a pixel 

that is not a landslide (i.e., outside the landslide footprint) is modeled to be not a 

landslide. Otherwise, if it is modeled to be a landslide, that is FN. 

4.2.2 Study Area and Landslide Inventory 

A co-seismic landslide inventory from the Mw 6.5 earthquake that occurred on 
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November 17, 2015, on the island of Lefkada in Greece is used in this study. The 

inventory was developed by Zekkos and Clark (2020) and consists of 716 landslides 

on the highly tectonized and brecciated limestone along the west coast of Lefkada 

island (Huang and Zekkos, 2023). Most landslides triggered by the 2015 Lefkada 

earthquake were along Lefkada island's west coast. Once triggered, the landslide debris 

moved at a high velocity, and thus, these landslides would be classified as rock 

avalanches per Hungr et al. (2014). The inventory consists of fully three-dimensional 

landslide polygons derived based on mapping using imagery and digital surface 

models developed using satellite imagery and imagery produced by Unmanned Aerial 

Vehicles (UAVs). Each landslide in the inventory consists of a polygon with a source 

area, runout area, and volume. 

Earlier work by Huang et al. (2024) leveraged the landslide inventory (Zekkos 

and Clark, 2020) and a 2-m digital elevation model (DEM) to derive empirical 

landslide mobility models based on multivariate linear and machine-learning 

regression models. The pre-earthquake 2-m resolution digital elevation model (DEM) 

is used to estimate the landslide travel distance considering the 3D topography. Figure 

4.2 compares landslide travel distances in 3D and 2D. The landslide travel distance in 

3D considers all deviations from a linear (2D) travel path. The 3D path is, as expected, 

higher than the 2D travel distance projected as a straight line and simplified as the 

maximum horizontal distance that parallels the slide direction between the landslide 

crown and toe. The landslide travel distance in 2D, as used in the literature in Table 

4.1, is lower than the landslide travel path influenced by the topography. The influence 

of several parameters on the landslide travel distance was considered, and following 

the analyses, the equations with the most important parameters are presented, as shown 

in Equation 4.3 and Equation 4.4. The height, slope angle, and area of the entire 

landslide or the source-only are the three most significant parameters in estimating 

landslide travel distance, as shown in Equation 4.3 and Equation 4.4, respectively:   

 

      D = 0.981(He)– 2.979(Se) + 0.003(Ae) + 134.93   (4.3) 

 

     D = 2.368(Hs)– 4.074(Ss) + 0.0003(As)– 0.002(Vs) + 216.13   (4.4) 

 

where D = 3D landslide travel distance (m); He = Height, entire (m);  

Se = Slope angle, entire (degree); Ae = Area, entire (m2); Hs = Height, source (m);  

Ss = Slope angle, source (degree); As = Area, source (m2); Vs = Volume loss, source (m3). 

Despite the ease of use of such empirical models, due to the range of factors 

affecting landslide mobility discussed earlier, it is practically difficult to assess the 

conditions for which such a regression model is valid. Thus, the empirical landslide 

mobility models are often used in regions with similar geological and 

geomorphological environments (Geo et al., 2014). On the other hand, mechanistic 

models provide a mathematical function based on the underlying physics, such as 



CHAPTER 4.  DERIVATION OF VOELLMY MODEL PARAMETERS FOR LANDSLIDE RUNOUT  

BASED ON CO-SEISMIC ROCK AVALANCHES INVENTORY 

68 

 
landslide size, velocity, and material properties that provide a basis for making 

decisions on input variables. Compared to the empirical model, such as the one derived 

by Huang et al. (2024) for this event, the calibrated mechanistic model presented in 

this study has the advantage that it can potentially be more broadly applicable in 

changing topographies and can also provide helpful intuition on how the model 

parameters may change due to changing conditions.  

 

 
Figure 4.2: Comparison of landslide travel distance in 2D and 3D 

4.3 Results and Discussion 

Subsurface conditions vary geospatially and temporally due to variations in moisture 

content. Variations in subsurface conditions should affect the landslide characteristics 

and the input parameters of the runout model. Model calibration against numerous 

landslides can provide representative Voellmy friction parameters that are statistically 

significant and represent the conditions at the time of landsliding (RAMMS User 

Manual, 2022). Figure 4.3 shows an example of a landslide mobility simulation for one 

of the landslides triggered by the 2015 Lefkada earthquake, compared to the mapped 

landslide. The source area and the volume of the landslide source are assigned to the 

source polygon based on the volume calculated from the inventory, and the sliding 

depth of the landslide source is calculated accordingly. For the simulation example of 

Figure 4.3a, the landslide source volume of 151,543 m3 has an average depth of 3.45 

m. Figure 4.3b displays the maximum flow height in the simulation result. The colored 

area represents the modeled runout area. The purple color means the flow height is 

near 0 m, dark blue is around 4 m, green is ~13 m, yellow is ~22 m, and red is ~26 m. 

Figure 4.3b reveals that the landslide travels along the topography, and the landslide 

arrests when the landslide material reaches the flat coastline. By comparing the entire 

landslide area and landslide travel path between the inventory and simulation results 

using the F1 score, the pair of landslide runout properties, i.e., dry-Coulomb friction 
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(μ) and viscous-turbulent friction (ξ) that best match the field observations, is 

identified.   

 

 

 

(a) 

 
(b) 

Figure 4.3: Landslide simulation example in RAMMS-DF (a) landslide source specified 

based on inventory (b) simulated landslide travel path based on topography 
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Table 4.1: Empirical landslide mobility model in the literature 

Empirical Equation 

Data Size, 

number of 

landslides 

Type of Event Reference Note 

logL=0.0277+0.0963 logV+0.9468 logH  

11,622 

Rainfall-induced landslides 

in Hong Kong during the 

period 1984-2013 

Geo et al. 

(2021) 
Historical events  

H/L=0.81-0.11 logA 12,110 

Historical landslides in 

Lvliang City, Shanxi 

Province in China 

Zhang et al. 

(2022a) 
Historical events  

H/L=0.16V-0.15 

203 

Non-volcanic landslides 

Legros (2002) Several events in the literature 
H/L=0.11V-0.19 Volcanic landslides 

H/L=0.42V-0.19 Martian landslides 

H/L=0.03V-0.09 Submarine landslides 

L=1.9V0.16H0.83 232 
Debris flow from different 

events 

Rickenmann 

(1999) 
Several events in the literature 

H/L=3.5033-0.623 logV 

55 

Loess landslide 
Zou et al. 

(2017) 
Different events in China H/L=0.7233-0.0686 logV +0.0725 H0/L0 Non-seismic rockslide 

H/L=1.2241-0.1226 logV Seismic rockslide 

log (H/L)= -0.109 logV+0.210 

204 

Rockfall 

Corominas 

(1996) 
Several events in the literature 

log (H/L)= -0.105 logV-0.012 Debris flow 

log (H/L)= -0.070 logV-0.214 Earth flow 

log (H/L)= -0.068 logV-0.159 Translational slide 

H/L=0.54 tanα +0.16 350 Debris flow 
Hunter and 

Fell (2003) 
Several events in the literature 

L=0.8653 logH +0.5085 13 Rockfall 

Devoli et al. 

(2009) 
Several events in the literature 

L=1.1172 logH +0.228 81 Slide 

L= -3000 ln(1-H/1600) 256 Debris flow 

log (H/L)= -0.0916 logV-0.041 527 International data 

H/L=-0.1047 log V-0.0253 33 Central American data 

H/L =0.77 tanθr+0.040 73 
Relict landslides- 

Hachimantai 
Hattanji and 

Moriwaki 

(2009) 

338 relict landslides in the four 

mountainous areas in Japan 

H/L =0.82 tanθr+0.034 92 Relict landslides- Nagano 

H/L =0.91 tanθr+0.035 93 Relict landslides- Gojo 

H/L =0.83 tanθr+0.055 80 
Relict landslides- 

Ichinomiya 

H/L= 0.488 tanθ+0.117 105 Open pit slope failure 
Whittall et al. 

(2017) 
Cases from different mines 

logL=0.286+0.159 logV+0.563 logH-0.618 

log tanθ 
123 - 

Moncayo and 

Ávila (2023) 

Landslides that occurred from 

the beginning of the twentieth 

century to the present in the 

Andean region of Colombia 

logL=0.109+1.010 logH-0.506 log tanθ 515 Cut slope 

Finlay et al. 

(1999) 

Landslides in man-modified 

slopes in Hong Kong for the 

period 1984-1993 

logDT=0.678+0.695D+0.0537H 68 Fill slope 

logL=0.178+0.587 logH+0.309 log V/W 50 Retaining wall 

logL=0.253+0.703 logH-0.417+log tanθ 61 Boulder fall 

log (H/L)=-0.15666 logV+0.62419 33 - 
Scheidegger 

(1973) 
Several events in the literature 

L=0.6350V0.2466H0.5355(tanθ)-0.2154 84 
Loess slide on the Loess 

Plateau in China 

Qiu et al. 

(2018) 
 

logL=-0.0785 logV+1.2347 log(H/tanθ) 46 

Seismic landslides triggered 

by the 2008 Wenchuan 

earthquake 

Li et al. 

(2011) 
 

logL=0.136RT+0.159 logV+0.529 sinϐ+1.497 54 

Seismic landslides triggered 

by the 2008 Wenchuan 

earthquake 

Geo et al. 

(2014) 
 

H/L=2.2061+V-0.0926 

69 

Landslide in Loess 
Qiu et al. 

(2017) 
Loess slides in China H/L=7.0109+V-0.2245 Red clay contact landslide 

H/L=3.1442+V-0.1448 Bedrock contact landslide 

L=1.57A0.75; L=8.11V0.43 366 

Rainfall-induced landslides 

triggered by Typhoon 

Prapiroon in Japan in 2018 

Tsunetaka et 

al. (2022) 
 

H/L=1.46-0.24 log A; H/L= 0.013θ+0.03 7058 

Seismic earthflow induced 

by the 2018 Eastern Iburi 

earthquake in Japan 

Zhao et al. 

(2021) 
 

where L (m) is the landslide travel distance, H (m) is the entire landslide height, V (m3) is the entire landslide volume, A (m2) is the entire 

landslide area,  H0 is the height of the landslide source, L0 is the landslide travel distance of landslide source,  α is the travel distance angle, tanθr is 

the slope angle of the landslide source, θ is the slope angle of the entire landslide, DT is the depth of debris at the toe of the slope, D is the 

maximum landslide depths for the entire landslide, W is the landslide width for the entire landslide, RT is rock type, and ϐ is the slope transition 

angle, the angle change between the landslide source which is the upper slope and the lower slope.   
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Table 4.2: RAMMS-DF Voellmy friction parameters available in the literature 

Dry-Coulomb 

friction 

Viscous-

turbulent 

friction (m/s2) Numerical 

model 

  

Number 

of 

Cases 

  

Location 

  

Triggering 

factor 

  

Type, 

failure 

mode 

  

Reference 

  

min max min max 

0.001 0.7 10 2000 

RAMMS-DF 

Cases 

from 35 

papers  

Worldwide  

Alpine 

Environment 

  

Debris 

flow 

Mikoš and 

Bezak (2021) 

0.07 0.11 200 300 2 Austria   
Schraml et al. 

(2015) 

0.1 200 1 Pakistan   
Gardezi et al. 

(2021) 

0.21 0.29 100 200 2 India 
Heavy 

rainfall 

Roy et al. 

(2022) 

0.1 200 1 
Nepalese 

Himalayas 

Earthquake 

+ monsoon 

Schraml et al. 

(2017) 

0.07 1500 1 

Luzhuang 

Gully in 

China 

Rainfall 
Gan et al. 

(2019) 

0.2 0.32 200 850 1 China 

Heavy 

rainfall-

induced 

Zhuang et al. 

(2021) 

0.06   1450   1 India Rainfall 
Peethambaran 

et al. (2023) 

0.1 500 1 India Rainfall 
Kumar et al. 

(2019) 

0.4 0.7 250 600 1 Switzerland   

Rock 

avalanche 

De Pedrini et 

al. (2022) 

0.12 1200 2  China 

Gravity, 

rainfall, 

weather 

changes 

Zhang et al. 

(2022b) 
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Overall, 248 landslides have an F1 score >60 %, as shown in Figure 4.4. Figure 

4.5 presents the relationship between the F1 score and the landslide source area, 

landslide source height, and landslide 3D travel distance. Figure 4.7 illustrates the 

back-calculated values of μ and ξ for landslides with F1 score >60 %. In the 2015 

Lefkada earthquake event, 248 landslides have F1 scores >60 %, with the remaining 

having lower F1 scores. The mean, mode, and standard deviation of ξ are 4264 m/s2, 

3000 m/s2, and 3314 m/s2, respectively, as shown in Figure 4.7a. The mean, mode, and 

standard deviation of μ are 0.8, 0.9, and 0.28, respectively, as shown in Figure 4.7b. 

Figure 4.7c shows that the mode of density plot has ξ =3000 m/s2 and μ =0.9. 

Figure 4.8 displays an example of the influence of μ on the simulation results 

with the same ξ value of 1689 m/s2. Figure 4.8a shows that the F1 score increases 

significantly from 19 % to 76.7 % when the μ increases from 0.05 to 0.81. Figure 4.8b 

shows that as μ increases from 0.05 to 0.81, the landslide area in the simulation result 

becomes similar to the landslide area from the inventory. Figure 4.9 displays the 

influence ξ on the simulation results with the same μ value of 0.81. Figure 4.9a shows 

that the F1 score increases modestly from 61.83 % to 73.12 % when the ξ increases 

from 50 m/s2 to 378 m/s2. After the ξ reaches around 1000 m/s2, the F1 score becomes 

stable around 76 %. Figure 4.9b shows that as the ξ increases from 50 m/s2 to 378 m/s2, 

the landslide area in the simulation result becomes similar to the landslide area from 

the inventory. Interestingly, after ξ reaches 1000 m/s2, the F1-score becomes stable, 

and the change of ξ does not significantly impact the simulation result. Although the 

mode of ξ for rock avalanches triggered by the 2015 Lefkada earthquake is around 

3000 m/s2, the best-fit value of ξ can be between 1000 m/s2 and 3000 m/s2. Figure 4.8 

and Figure 4.9 reveal that the change of μ can lead to a significant increase in the F1 

score by 60 %, and the change of ξ can cause an increase in the F1 score by 11 %. In 

general, the F1 score (i.e., the metric used to quantify the similarity of the simulation 

result to the inventory) is more sensitive to μ than ξ. The change of μ governs the 

accuracy of RAMMS-DF simulation. The F1 score positively correlates with the 

landslide source area, as shown in Figure 4.5a. Landslides with small source areas tend 

to have an F1 score <40 %, and landslides with source areas >10,000 m2 achieve an 

F1 score >50 %. Figure 4.5b shows the same trend expressed in terms of source height, 

which is commonly used in empirical methods); landslides with larger source heights 

are more accurately simulated. Similarly, Figure 4.5c reveals that landslides with 

longer 3D travel distances have a higher F1 score. Overall, landslides with larger 

source areas, larger landslide source height, and longer 3D landslide travel distances 

are more accurately simulated and have a higher F1 score.  

Although the simulation becomes less accurate for smaller landslides, the 

model bias is always towards overpredicting the runout. Recognizing model bias is 

important, and this bias may appeal to a number of scenarios. For example, in risk 

assessment studies, it may be preferable to have a model that over-predicts runout and 

thus has an inherent conservatism. Figure 4.6 illustrates that when simulation results 

are inaccurate (lower F1 scores), they are conservative as they predict a larger landslide 

area than the inventory. When the F1 score drops below 20 %, the modeled landslide 

area may be significantly larger (5-30 times) than the inventory area. As the F1 score 
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increases, the ratio between the landslide area in the simulation and the inventory 

decreases and is closer to one. When the F1 score reaches 60 %, the modeled landslide 

area is approximately equal to 1-3 times the landslide area in the inventory. Landslides 

with an F1 score >60 % have approximately the same mapped and modeled area.  

Luna et al. (2013) summarized 270 past events in different geologic settings 

and environments. They concluded that the best-fit μ for the debris flow is between 0 

and 0.5, and for the rock avalanche is between 0 and 0.6. Also, the best-fit ξ for the 

debris flow is between 0 m/s2 and 1000 m/s2, and for the rock avalanche is between 0 

m/s2 and 3000 m/s2. Schaub and Cochachin (2016) reported that μ affects the runout 

distance, and μ can represent the tangent of the average slope angle at the deposition 

zone. Rock avalanches triggered by the 2015 Lefkada earthquake are on steep slopes 

along the coastline and were very dry when the earthquake occurred. This is possibly 

the reason that the mode of the best-fit value of μ of 0.9 for the co-seismic rock 

avalanches triggered by the 2015 Lefkada earthquake is higher than the best-fit μ 

debris flow and rock avalanche database in Luna et al. (2013). ξ influences the flow 

velocity (Schaub and Cochachin, 2016). De Pedrini et al. (2022) mentioned that the 

higher value of ξ suggests a quick-running flow of rock avalanches caused by the high 

interaction of fragmented rocks. The mode of the best-fit value of ξ is equal to 3000 

m/s2 for the co-seismic rock avalanches triggered by the 2015 Lefkada earthquake, 

which is higher than the best-fit ξ debris flow database and similar to the values for 

rock avalanches that represent the quick movement of rock avalanches triggered by 

the earthquake. 

 

 
Figure 4.4: F1 score in the simulation result 
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(a) F1 score versus landslide 

source area 

(b) F1 score versus landslide 

source height 

(c) F1 score versus landslide 

3D travel distance 

Figure 4.5: The influence of landslide source area, height, and 3D travel distance on F1 

score 

 

 

 

 
Figure 4.6: F1 score versus the ratio of landslide area in RAMMS-DF simulation result 

and the inventory 
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(a) The histogram of viscous-turbulent 

friction, ξ 

(b) The histogram of dry-Coulomb 

friction, μ 

 
(c) Density plot for dry-Coulomb friction, μ, and viscous-turbulent friction, ξ 

Figure 4.7: The histogram of viscous-turbulent friction (ξ) and dry-Coulomb friction (μ) 

for landslides with F1 score >60 % 
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(a) F1 score versus μ 

 
(b) Landslide area with different μ 

Figure 4.8: The influence of μ on the RAMMS simulation 
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(a) F1 score versus ξ 

 
(b) Landslide area with different ξ 

Figure 4.9: The influence of ξ on the RAMMS simulation 

 

 

 

 

0 500 1000 1500 2000 2500 3000

0

10

20

30

40

50

60

70

80

90

100

F
1
 s

c
o

re
 (

%
)

Viscous-turbulent friction (m/s2) 



CHAPTER 4.  DERIVATION OF VOELLMY MODEL PARAMETERS FOR LANDSLIDE RUNOUT  

BASED ON CO-SEISMIC ROCK AVALANCHES INVENTORY 

78 

 
Figure 4.10a-d show the relationship of the landslide source volume, landslide 

source height, landslide source area, and landslide 3D travel distance with ξ. 

Landslides with ξ >3000 m/s2 (i.e., 4000 m/s2 and 10000 m/s2) are all small landslides 

with small source volume, source height, small landslide source area, and short 

landslide 3D travel distance. As shown in the example of Figure 4.9, ξ values that are 

greater than 1000 m/s2 produce similar landslide areas and travel paths in the 

simulation result. Thus, large ξ values do not represent the landslide population, but 

better approximate only small landslides, resulting in longer runout distances than 

those observed in the inventory. 

Figure 4.11a-d show the relationship between the best-fit μ and the landslide 

source volume, landslide source height, landslide source area, and landslide 3D travel 

distance, respectively. The mean, mode, and standard deviation of the best-fit value of 

μ are 0.8, 0.9, and 0.28, respectively. Landslides with lower values of μ (<0.5) and 

higher values μ (>1.5) are small landslides with small source volume, source height, 

small landslide source area, and short landslide 3D travel distances. As shown in Figure 

4.5, the simulation for the small landslide tends to have low F1 scores, so the best-fit 

value of μ for small landslides is not representative.   

  

  
Figure 4.10: Relationship between back-calculated viscous-turbulent friction (ξ) and (a) 

landslide source volume, (b) landslide source height, (c) landslide source area, and (d) 

landslide 3D travel distance 
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For the landslides of the 2015 Lefkada earthquake event, a value of μ between 

0.6 and 1 is observed. Smaller landslides have a wider range of μ and ξ but still do not 

match the inventory data well. This may be associated with modeling limitations. 

Corominas (1996) demonstrated that the scale effect should be considered in the 

landslide mobility assessment since most small landslides (less than 0.5 x 106 m3) do 

not have any change in the mechanism of progression while in motion, and they have 

travel distances similar to large landslides. In the 2015 Lefkada earthquake event, the 

RAMMS-DF, a fluidized model, tends to overpredict the area and travel path for the 

small rock avalanches. The trend that small landslides have low F1 scores is consistent 

with this observation. It indicates that the actual release energy from the small rock 

avalanches might not be suitable and might not be large enough to be simulated as the 

fluidized model.  

  

  
Figure 4.11: Relationship between back-calculated dry-Coulomb friction (μ) and (a) 

landslide source volume, (b) landslide source height, (c) landslide source area, and (d) 

landslide 3D travel distance 
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4.4 Conclusions 

Understanding landslide mobility is essential to address landslide risk. Although 

primarily empirical landslide mobility models have been developed to estimate 

landslide travel distance, such models are difficult to provide insights into the reasons 

for the observed travel distance and, by extension, have significant uncertainties if 

implemented in different geologic environments. Instead, mechanistic models that are 

properly calibrated against field observations may provide better insights into the 

observed behavior. In this study, a simple mechanical model that is based on Voellmy 

friction law in the Rapid Mass Movement Simulation Debris Flow (RAMMS) is 

calibrated against an inventory of hundreds of landslides triggered by the 2015 Lefkada 

earthquake event to derive statistically significant model parameters. The mode and 

standard deviation of the dry-Coulomb friction (μ) are 0.9 and 0.28, and the mode and 

standard deviation of the viscous-turbulent friction (ξ) are 3000 m/s2 and 3314 m/s2. It 

is found that dry-Coulomb friction (μ) governs the accuracy of the Voellmy friction 

law simulation. Voellmy friction law simulation is not sensitive to viscous-turbulent 

friction (ξ), especially for ξ >1000 m/s2. The performance of Voellmy friction law 

simulation is correlated with the size of the rock avalanches, such as the source area, 

source height, and 3D travel distance. The Voellmy friction law, a fluidized model, 

tends to overpredict the small rock avalanches' release energy and travel path 

compared to the inventory.  
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Chapter 5 Remote Sensing-based 
System-level Monitoring of 
Highway 1 Following the 2021 
Atmospheric River Event 

 

5.1 Introduction  

Extreme events such as storms and hurricanes can trigger ground mass instability such 

as debris flows and landslides that can lead to loss of life or damage to the 

infrastructure, disrupting the road network and causing economic loss (Hilker et al., 

2009, Trigg et al. 2023, Loli et al. 2022). Storms and hurricanes have damaged several 

highways and bridges worldwide in recent decades (Chen et al., 2009). Damage to the 

highway network could isolate the affected area and block access for rescuers and 

supplies (Han et al., 2009). Infrastructure retrofit and restoration before and after 

natural disasters and regular monitoring can reduce infrastructure damage. Guevara et 

al. (2017) noted that highway systems do not often achieve sustained improvements 

because authorities have to choose short-term reactive actions rather than long-term 

proactive efforts due to financial or other constraints. Also, transportation authorities 

do not always have sufficient resources to inspect the entire breadth of infrastructure 

systematically and sustainably.  

California's coastline is an active geologic environment with a long history of 

landslides and debris flows associated with seismic activity, storms, complex geology, 

and steep topography. Highway 1 is a scenic highway along the California coastline, 

but landslides, debris flow, and sediment mobility have repeatedly damaged the road 

and resulted in the closure of Highway 1. Highway 1 has been closed more than 55 

times between 1937 and 2001 due to landslides. As a result, the California Department 

of Transportation (Caltrans) systematically expends efforts for repairs (JRP Historical 

Consulting Services, 2001). In 1952, an 11-km section of Highway 1, north of San 

Simeon to Big Sur, was closed because of several large landslides (Provost, 2017). In 
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1955, Highway 1 was closed in Big Sur due to rainfall-induced landslides (Caltrans, 

n.d.). In 1957, earthquake-induced landslides damaged a segment of Highway 1 

between Pacifica and Daly City (Woods, 2019). In 1983, a 14-month closure of 

Highway 1 was caused by massive landslides triggered by several storms between 

January and April. The largest landslide during that event mobilized 3.1 million cubic 

meters of material that buried Highway 1 near Julia Pfeiffer Burns State Park, and the 

debris from that event reached the ocean and created a beach in McWay Cove (JRP 

Historical Consulting Services, 2001 and Palmer, 2002). In 1998, El Niño storms 

damaged 40 locations of Highway 1, and a landslide caused a 3-month Highway 1 

closure in the south of Gorda (National Oceanic and Atmospheric Administration 

2016). The Devil's Slide area had two Highway 1 closure records: one was the 5-month 

closure in 1995, and another one was the 4-month closure in 2006 (Cabanatuan, 2010). 

In 2011, a 12-m section of Highway 1 collapsed south of the Rocky Creek Bridge, 

leading to road closure for several months (KSBW 2011). In 2016, a mudslide resulted 

in a Highway 1 closure near Julia Pfeiffer Burns State Park, and the Soberanes Fire 

brought about road closures in several locations in the summer (Magallon, 2016). In 

the winter of 2017, the Pfeiffer Big Sur State Park received the most rainfall since 1915 

(Johnson, 2017). By early February of 2017, mudslides blocked more than twelve 

locations of Highway 1, resulting in a closure for more than 14 months because of 

Paul's slide, the failure of Pfeiffer Canyon Bridge, and the Mud Creek slide (Caltrans 

n.d.). Paul's slide contained around 1.5 million cubic meters of debris, leading to the 

road closure north of the Nacimiento-Ferguson Road (Caltrans n.d.). Pfeiffer Canyon 

Bridge was damaged beyond repair, so the road was closed for 8 months to construct 

a bridge that cost $24 million (Wright, 2017). The 2017 Mud Creek slide was the 

largest landslide in Highway 1 history that caused a 48-km Highway 1 closure 

(Caltrans n.d.). The Mud Creek slide brought around 5 million cubic meters of debris 

blocking Highway 1, and the repair took over one year and cost $ 54 million (Reyes, 

2018). 

The California coast received more than 300 mm of rainfall from an 

atmospheric river from January 26 to 28, 2021. This event came shortly after the Dolan 

wildfire, impacting a portion of Big Sur. The Dolan wildfire burned for four months, 

from August to December 2020, affecting more than 500 square kilometers in the Big 

Sur region (USDA Forest Service 2020). More than 90% of the area within the fire 

perimeter was considered burned, and 55% of the total area within the fire perimeter 

had moderate to high burn severity (Burned Area Emergency Response 2020). It is 

well known that a burned area is vulnerable to post-fire debris flows within two to 

three years after the fire because the affected area has a lower storage capacity, higher 

flood potential, rising surface water flow, and higher erosion rate due to vegetation 

removal during the wildfire (Rengers et al., 2020; USGS, 2021). 

The 2021 precipitation washed rock, mud, and trees downslope from the 2020 

Dolan wildfire burned the area, and triggered debris flows in the Big Sur region that 

had experienced several wildfire and drought events the previous summer (Canon, 

2021). During the January 2021 storm event, Mill Creek, Big Creek, and Rat Creek 

were identified as debris flow sites by Li et al. (2022). The debris flow did not result 
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in the damage and closure of Highway 1 at the Mill Creek and Big Creek drainage 

crossing because both Mill Creek and Big Creek drainage crossing of Highway 1 are 

engineered with bridges that allow the evacuation of debris flows with minimum 

impact on the system. Mill Creek Bridge was built in 1993 to carry Highway 1 over 

water (BRIDGEREPORTS.COM, access 2023). Big Creek Bridge is a 180-m concrete 

arch bridge opened for traffic in 1938 (BRIDGEREPORTS.COM, access 2023). The 

Rat Creek drainage crossing of Highway 1 is one of the largest tributary areas that does 

not have a bridge, and thus, it is susceptible to significant surface water flow and debris 

flow (Zekkos and Stark, 2023). During the January 2021 storm, surface water 

transported burned tree trunks and debris from the 2020 Dolan wildfire area and 

breached a natural debris dam, resulting in a high-velocity debris flow scouring Rat 

Creek channel. The debris flow damaged the riser pipe connected to the main culvert 

passing under Highway 1. As a result, the additional water and sediment overtopped 

the roadway and caused the erosion-induced failure that thoroughly washed out the 

Highway 1 section, consisting of two lanes. The failure of Highway 1 at Rat Creek was 

investigated extensively by the Embankments, Dams, and Slopes Technical 

Committee of the Technical Coordination Council of the Geo-Institute of ASCE 

(Zekkos and Stark, 2023). The highway was closed for rebuilding for three months, 

and the embankment was reconstructed with off-site fill material, costing $11.5 million 

(Reynolds, 2021).  

Although Rat Creek was indeed the most impacted location along the highway 

and resulted in the complete closure, there were several locations where damage was 

observed and repairs were needed. Thus, system-level response and assessment are 

essential, not just for the highway section with the most severe damage but for the 

entire roadway system. In this study, information on the performance of several 

locations along the entire highway system is leveraged. Regular infrastructure 

condition assessment is necessary to enable the maintenance and repair work at the 

early damage stage with reduced loss. Conventional visual inspection has been the 

most common method in structural damage detection (Teughels et al., 2004). However, 

visual inspection and non-destructive structure testing are time-consuming and labor-

intensive, especially on linear distributed infrastructure extending for multiple 

kilometers. Such approaches can only be applied locally and have accessibility 

limitations.   

Ground instability, such as debris flow and landslide monitoring, has gained 

more attention in developing prevention measures. Heavy rainfall, the rapid rise of 

pore water pressure, and increasing water levels are significant factors triggering 

debris flow. Although rain gauges, soil moisture, and pore-water pressure sensors can 

be used to monitor, identify, and predict the occurrence of debris flow (Angeli et al., 

2020), these field sensors are resource-intensive and can only provide data on a small 

and local scale. Field observations are the most common monitoring method for 

distributed highway systems (Chae et al., 2017) and require inspection crews to drive 

along the highway and make frequent stops to assess the highway condition. This is 

inefficient and prone to missing out on ground instability that may not be immediately 

visible from the highway corridor but may have short-term or long-term impacts on 
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the highway. Remote sensing data such as satellite imagery can provide geospatial 

information over a large area at a short time interval that can assist in regular 

infrastructure monitoring and provide early warning of ongoing problematic regions. 

There are numerous examples of remote sensing data and techniques implemented to 

inspect highways and transportation infrastructure. Feng et al. (2021) quantified the 

environmental impacts of highway construction using remote sensing data, including 

vegetation index, moisture index, and land surface temperature. Duffell and Rudrum 

(2005) tried to identify highway earthwork and detect slope instability utilizing 

satellite, aerial photography, airborne laser scanning, thermal scanning, and 

videography. Vaghefi et al. (2012) evaluated potential remote sensing techniques such 

as LiDAR and InSAR for assessing the bridge deck and superstructure condition. Omar 

and Nehdi (2017) utilized unmanned aerial vehicle (UAV) infrared thermography to 

detect subsurface delaminations in concrete bridge decks. Shaghlil and Khalafallah 

(2018) investigated the use of UAV in assessing highway maintenance needs. Ozden 

et al. (2016) assessed pavement deformation and deformation velocities using 

synthetic aperture radar (SAR) satellite data. Hoppe et al. (2016) used interferometric 

synthetic aperture radar (InSAR) data to detect sinkholes and monitor slope stability, 

bridges, and pavement. However, limited studies have used remote sensing data, 

especially satellite imagery, to monitor and assess the damage severity of highways 

caused by debris flow, landslides, and sediment mobility. 

Highway 1 crosses through several drainage basins with different 

characteristics, such as size, steepness, topography, geology, and landslide or debris 

flow susceptibility. The characteristics of these drainage basins can reflect Highway 

1’s performance during natural hazard events and can be monitored using remote 

sensing. This study leverages the data on Highway 1 performance during the January 

2021 atmospheric rivers to develop a methodology to detect damages along the 

highway. The methodology involves using satellite-based multispectral imagery and 

the thresholding of a remote sensing index to indicate damage along Highway 1. The 

methodology can be used to monitor distributed infrastructure such as Highway 1 and 

provide expedient damage assessment along the highway that can help inspection 

crews prioritize inspection efforts along the most affected areas. The quantified failure 

threshold value can be used to monitor the condition of Highway 1 autonomously and 

support maintenance so that the authority can focus on the most critical drainage basins 

compared to the less susceptible ones. The system can issue early warning of 

infrastructure damage when the thresholding of a remote sensing index is reached. 

Furthermore, the monitoring system can immediately reveal the critical damaged area 

whenever a land surface hazard happens. So, authorities can use the system as a 

preliminary assessment, confirm on the ground, and prioritize their mitigation plan.  
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5.2 Methodology  

5.2.1 Basin Analysis 

Performance analyses using remote sensing are conducted along a stretch of 30 km of 

Highway 1 from Half Moon Bay to San Luis Obispo. In addition, forty-four main 

drainage basins were inspected by CalTrans along Highway 1 immediately after the 

January 2021 storm event. Additional drainage basins exist along that stretch but were 

too small or had no observable damage after the January 2021 storm. For the analyses, 

a 3.4-meter (1/9 arc-second) digital elevation model (DEM) from the United States 

Geological Survey (USGS) is used to measure the size and characteristics of the basins 

that Highway 1 intersects using Arc GIS Pro 2.9.0. 

5.2.2 Observed Damage and Ranking 

The observed damage along the Highway varied from minimal damage and sediment 

deposition to landslides, rockfalls, and, worst case, complete loss of the Highway 

embankment at Rat Creek. A damage ranking system that includes five classes is 

developed based on storm impact descriptions and photos taken by CalTrans. Table 5.1 

displays example photographs along Highway 1 and their corresponding class. Class 

0 represents no impact on the inspected drainage crossing and the surface water 

drainage system, typically consisting of one or more culverts. Class 1 is indicative of 

a minor impact on the drainage crossing. In this case, debris or sediment was observed, 

and the culvert may have been partially plugged, requiring modest cleanup work to 

restore full functionality. Class 2 represents moderate damage where portions of the 

roadway were obstructed by debris, requiring cleanup to eliminate any obstacles that 

may result in a slowdown of traffic flow. Class 3 represents moderate to severe 

damage, where post-storm damage partially closes the highway. This may include 

excessive sediment on roadways, rocks, flooding, or other obstacles that do not allow 

for any traffic along one of the highway lanes. Class 4 represents severe damage where 

the highway is entirely closed and requires repair to restore operation.   
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5.2.3 Remote Sensing-based Monitoring 

In this study, Planet© satellite imagery is used for the remote sensing-based 

assessment of Highway 1 condition. Planet© provides daily high-resolution satellite 

imagery with four bands and a resolution of 3 m. The daily frequency of imagery, 

which is more frequent than other sources, facilitates the continuous monitoring of the 

highway and is also more likely to provide <24 hours of imagery following a major 

land surface hazard. Worldview© imagery is also used. Although WorldView© 

satellites offer higher resolution imagery than Planet© sensors, there is no good quality 

WorldView imagery near the January 2021 storm event, and the first images of the 

damage that are available from WorldView© satellites after the January 2021 event 

are 1.84 m resolution WorldView-2 imagery with eight multispectral bands in April 

2021 and 1.24 m resolution WorldView-3 imagery with eight multispectral bands in 

May 2021. 

Vegetation indices estimated from remote sensing data can be quite effective 

for quantitative and qualitative evaluations of vegetation cover and growth dynamics 

(Xue and Su, 2017). In this study, one of the most common indices, the normalized 

difference vegetation index (NDVI), is calculated using the red and near-infrared 

(NIR) band from Planet©, as shown in Equation 5.1. The value of NDVI ranges 

between -1.0 and +1.0. Low NDVI values (from -1.0 to 0.1) represent barren rock. 

Sparse vegetation has moderate NDVI values, around 0.2 to 0.5. Dense vegetation has 

high NDVI values, approximately 0.6 to 0.9 (USGS Remote Sensing Phenology, n.d.). 
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Table 5.1: Damage ranking class description and example photos 

 

 

 

Class Description 
Photos taken by  CalTrans after the January 

2021 storm 

0 No damage 

 

1 

Minor. 

Minor cleanup work is 

needed along the sides; 

the highway remains 

operational. 

 

2 

Moderate. 

Some cleanup work is 

needed; the road is 

partially obstructed but 

still operational. 

 

3 

Moderate to severe. 

The road is partially 

closed or expensive to 

repair due to significant 

damages to related 

infrastructure, such as the 

surface water drainage 

system.  

4 

Severe. 

Complete damage and 

road closure; significant 

work and time needed to 

repair and operate the 

highway 
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         Normalized Difference Vegetation Index (NDVI) = 
NIR−Red

NIR+Red
 (5.1) 

Calculating the NDVI difference (dNDVI), as shown in Equation 5.2, allows for 

detecting change, most often vegetation change. dNDVI is calculated by subtracting 

pre-event NDVI from post-event NDVI to quantify the influence of an event, in this 

case, the January 2021 storm on drainage crossings along Highway 1. A negative 

dNDVI represents vegetation loss or exposure of rock, as well as sediment mobilized 

on the highway sides. Positive dNDVI represents vegetation gain. Remote sensing data 

can reveal the evidence of significant change on a large scale. This study focuses on 

Highway 1 damage caused by the January 2021 storm. So, dNDVI within a 30-m 

buffering distance from Highway 1 is used to capture major changes that can 

eventually damage Highway 1. 

           dNDVI = NDVIpost-event - NDVIpre-event     (5.2) 

5.3 Result and Discussion 

5.3.1 Relationship between Damage Severity and 
Basin Characteristic 

Figure 5.1 illustrates the relationship between the 2D drainage basin area and the 

damage ranking caused by the January 2021 event. Overall, larger basin areas are 

found to have a higher damage ranking. The exceptions are the Mill Creek (Basin 35) 

and McWay (Basin 1) Creek locations, which are discussed subsequently.  

For damage, Class 0 (no damage), 1 (minor damage), or 2 (moderate damage), 

the area of the drainage basins ranges between 0 and 1 km2. Drainage basins assigned 

to Class 3 (moderate to severe damage) have drainage basin areas around 0.01 to 0.75 

km2. Drainage crossings assigned to Class 4 (severe damage) have drainage basin areas 

near or above 1 km2, as shown in Figure 5.1.  

There are three basins assigned to Class 4. Rat Creek (Basin 11) is the third 

largest drainage basin among all forty-four drainage basins, as displayed in Figure 5.2. 

It is also the largest drainage basin in Class 4, with a basin area of 2.17 km2. Although 

WorldView© provides multispectral satellite imagery with a resolution of 1.84 m and 

1.24 m, the available good quality pre-event and post-event WorldView© imagery for 

the January 2021 storm is only on May 2020, April 2021 and May 2021, as shown in 

Figure 5.3. Figure 5.3 shows the new embankment at Rat Creek crossing with off-site 

fill four months after the storm. The other two Class 4 basins are Basin 31 and Basin 

32, with drainage areas of 1.37 and 0.81 km2, respectively. The trace of debris flow in 

Basin 32 caused by the January 2021 storm can still be observed four months after the 

rainfall, as shown in Figure 5.4. 
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Although Mill Creek (Basin 35) has a basin area of 7.06 km2, about three times 

the area of Rat Creek, Mill Creek had only Class 1 damage during the January 2021 

event (Figure 5.1). The reason is that Mill Creek (Basin 35) has a bridge carrying 

Highway 1 over water, so the drainage crossing of Highway 1 at Mill Creek does not 

rely on culverts to convey surface water below the embankment. Thus, although debris 

flow happened at Mill Creek in the January 2021 event, the water and debris can pass 

through Highway 1 under the bridge deck without interfering with the roadway. Figure 

5.5 is the WorldView© Imagery at Mill Creek in May 2020 and April 2021 that 

presents the vegetation loss along the channel at Mill Creek caused by the debris flow 

during the January 2021 storm.   

 
Figure 5.1: Basin area versus damage ranking of the basin during the January 2021 storm 
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Figure 5.2: Drainage basins inspected by CalTrans along Highway 1 after the January 

2021 storm 

 

 
Figure 5.3: WorldView© Imagery at Rat Creek on May 2020 and May 2021 

(WorldView© 2021, DigitalGlobe, Inc., a Maxar company). The imagery from May 2021 

illustrates the new embankment that was placed following the washout of the previous 

event. The debris flow in that location is not easily discernible along its length as it is 

obstructed by forest vegetation 
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Figure 5.4: WorldView© Imagery (WorldView© 2021, DigitalGlobe, Inc., a Maxar 

company) at Basin 32 on May 2020 and April 2021 illustrates the occurrence of debris 

flow 

 
 

Figure 5.5: WorldView© Imagery (WorldView© 2021, DigitalGlobe, Inc., a Maxar 

company) at Mill Creek on May 2020 and April 2021 illustrating the occurrence of a 

major debris flow event that passed below the bridge and thus did not affect the highway 

performance   

Figure 5.6 correlates damage to the ratio of total basin area to the culvert 

nominal cross-sectional area for the forty-four drainage basins inspected by Caltrans. 

Most basins have a culvert size between 60.96 cm (24 inches) and 152.4 cm (60 

inches). Locations with lower ratios (i.e., high flow capacity culverts compared to the 

area that they are draining) have lower observed damage. The most significant damage 
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is at Rat Creek, which also had the largest ratio of basin area to culvert cross-sectional 

area. Figure 5.6 shows the pre-1985 and post-1985 geometric configurations at Rat 

Creek. The Rat Creek drainage crossing was built in 1930 with a 167.6 cm (66 inch) 

corrugated metal pipe (CMP) culvert that passed through the Highway 1 embankment 

and transported water into the Pacific Ocean (Zekkos and Stark, 2023). In 1985, 

following the Gorda-Rat fire, a post-wildfire debris flow buried the 167.6 cm (66 

inches) diameter CMP culvert. Hence, Caltrans installed an 88.9 cm (35 inch) diameter 

vertical riser pipe to carry water from the ground surface to the buried 167 cm diameter 

CMP culvert, reducing the total water flow capacity of the drainage system. The ratio 

of drainage basin area and culvert cross-sectional area in Figure 5.6 shows that the Rat 

Creek drainage crossing had become significantly more vulnerable to storm and debris 

flow due to the smaller riser pipe and lower culvert flow capacity after the 1985 Gorda-

Rat fire wildfire and represented the weakest point along the entire highway stretch. 

Among forty-four basins, McWay Creek (Basin 1) has the largest culvert, a 

213.36 cm x 304.8 cm (84 inch x 120 inch) reinforced concrete box culvert (RCB). 

Although McWay Creek (Basin 1), as shown in Figure 5.2, has a basin area of 6.91 

km2, around three times the basin area of Rat Creek, the culvert size in the McWay 

Creek drainage crossing is around ten times the vertical riser pipe in Rat Creek. Figure 

5.6 shows that Rat Creek's ratio of drainage basin area and culvert cross-sectional area 

(Basin 11) is 3.5 times that of McWay Creek (Basin 1). As described earlier, a debris 

flow in the January 2021 storm event damaged the 88.9 cm (35 inches) diameter riser 

pipe in Rat Creek, causing water accumulation and overtopping of Highway 1. In 

contrast, the culvert in McWay Creek was only partially plugged during January 2021, 

so the drainage crossing at McWay Creek suffered moderate damage rather than severe 

damage in the January 2021 storm event, as shown in Figure 5.6. 

Figure 5.7 shows the repair cost estimate of the inspected drainage crossing as 

reported by Caltrans as a function of damage ranking. Increasing damage ranking is 

correlated to increasing repair costs. The Rat Creek crossing has Class 4 damage and 

the highest repair cost, around $11.5 million, among all damaged crossings of Highway 

1 in the January 2021 storm (Reynolds, 2021). Basin 21 has the second highest repair 

cost due to partial embankment failure following culvert plugging, as shown in the 

photo of Class 3 in Table 5.1. The damage at Rat Creek and Basin 21 highlights how 

vital it is to maintain the flow capacity of culverts. Regular cleaning and maintenance 

are required to maintain adequate drainage capacity and highway functionality. 
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Figure 5.6: Basin area/culvert cross-sectional area versus damage ranking of the basin 

during the January 2021 storm 

 

 
Figure 5.7: Repair cost estimate versus damage ranking of the basin during the January 

2021 storm 
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5.3.2 Remote Sensing-based Indicator of Highway 
Damage 

The January 26-28, 2021, storm brought a large amount of precipitation to the 

California coastline. During the January 2021 storm, debris flow removed vegetation, 

scoured the channel, plugged the culvert, and blocked Highway 1. Considering the 

cloud coverage and imagery quality, the Planet© Imagery on January 20, 2021, is used 

as the pre-event imagery, and the imagery on March 28, 2021, is used as the post-event 

imagery. Figure 5.8 shows the dNDVI along Highway 1 between January 20, 2021 and 

March 28, 2021.  

 Among forty-four drainage basins, drainage crossings at Rat Creek, Basin 32, 

and Mill Creek (Basin 35) have the most extensive vegetation loss, negative dNDVI 

area, along Highway 1, as shown in Figure 5.8a-c. The vegetation loss reveals the 

traveling path of debris flow along the channel and some sediment mobility along 

Highway 1 at Rat Creek, Basin 32, and Mill Creek. Basin 7, 2, and 13 are assigned a 

Ranking 1, 0, and 0, with only minor or no damage. Figure 5.8d-f show little vegetation 

loss, indicating no sediment and debris, near Highway 1 at Basin 7, 2, and 13. 

Water and debris flow during storm events can wash out vegetation, and 

sediment can cover vegetation. Hence, vegetation loss is able to reflect the occurrence 

of debris flow, sediment mobility, and the effect of storms. The forty-four drainage 

basins inspected by CalTrans during the January 2021 storm have different sizes of 

area, and each basin crossing intersects with Highway 1 at a different length. A 

distribution curve can display the occurrence frequency of each value in a dataset. 

Figure 5.9 is the vegetation loss, negative dNDVI, distribution curve for the forty-four 

drainage basins. The y-axis in Figure 5.9 shows the value that normalizes the vegetation 

loss area by the 30-m buffering area of Highway 1 at each inspected drainage basin. 

The distribution is only demonstrated for negative dNDVI, which is the focus and the 

expected observation when vegetation is removed or debris is deposited.  

Among forty-four drainage basins, three basins are assigned to Class 4, eight 

basins are Class 3, three basins are Class 2, thirteen basins are Class 1, and seventeen 

basins are Class 0. The result shows that Class 4 locations have a minimum dNDVI of 

-0.33, a maximum dNDVI of -0.01, and a mode dNDVI of -0.05. Class 3 locations 

have a minimum dNDVI of -0.03 and a mode of dNDVI of -0.01. Class 1 locations 

have a mode dNDVI of around 0. Class 4 has the lowest minimum dNDVI among the 

five classes, indicating severe change associated with vegetation loss or debris 

accumulation. Class 3 and Class 2 have less negative dNDVI. Class 1 has even less 

area (pixels) with negative dNDVI and higher near zero dNDVI pixels that are 

indicative of no vegetation change. Among all classes, Class 0 has the least negative 

dNDVI values. 

The magnitude of vegetation loss, or negative dNDVI, area along Highway 1 

can reflect the damage severity of Highway 1. Figure 5.10 is the conceptual negative 

dNDVI distribution curve, and the dashed lines represent the shape of the distribution 

curve for each class. Class 4 has the most vegetation loss area and the broadest 
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distribution of negative dNDVI, shown in Figure 5.10a-f. Class 1 has a mode of dNDVI 

at zero, displayed in blue in Figure 5.10d. Class 0 indicates that the drainage basin of 

Highway 1 is not damaged and does not have vegetation loss, which is presented in 

yellow in Figure 5.10e. As the damage severity decreases, the distribution curve 

narrows, and the minimum dNDVI value increases, as shown in Figure 5.10a-e. The 

mode of dNDVI shifts from negative dNDVI to zero when the damage level reduces 

in Figure 5.10f. As shown in Figure 5.10f, Class 4 has the widest distribution and the 

smallest minimum negative dNDVI, so it is the easiest to detect severe damage 

compared to Class 0-3. The result suggests that the shape and minimum value of 

negative dNDVI distribution curves can reflect and capture the damage severity of 

Highway 1 and form the basis for an autonomous framework for damage detection 

along Highway 1, as described subsequently.     
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(a) Rat Creek, Basin 11, Ranking 4 (b) Basin 32, Ranking 4 

  
(c) Mill Creek- bridge, Basin 35, 

Ranking 1 
(d) Basin 7, Ranking 1 

  
(e) Basin 2, Ranking 0 (f) Basin 13, Ranking 0 

Figure 5.8: Vegetation change, dNDVI, caused by the January 2021 storm 
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5.3.3 Proposed Framework of Autonomous 
Remote Sensing Monitoring System 

The change of remote sensing indexes such as NDVI in this study can provide insight 

into the severity of infrastructure damage. With the availability of daily high-resolution 

satellite imagery, remote sensing indexes can be developed as an autonomous 

monitoring system to track infrastructure conditions regularly and remotely. During 

regular highway operations and following natural hazard events (such as storms and 

earthquake-induced landslides), the proposed monitoring system can continuously 

provide a first-order screening of infrastructure conditions on a large scale.  

Satellite imagery can provide information over a large area with high temporal 

frequency. The resolution of imagery governs how detailed infrastructure damage can 

be detected, and the temporal frequency of imagery affects whether the infrastructure 

damage caused by a specific event can be captured. Even with a high temporal 

frequency, the quality of satellite imagery might be affected by cloud coverage and 

other climate factors. Therefore, the first step in developing an autonomous remote 

sensing monitoring system is collecting good quality satellite imagery before and after 

historical damage events.    

Secondly, in this study, threshold values for dNDVI are shown based on the 

experience with the 2021 atmospheric river damage. An algorithm should be trained 

using imagery from historical damage events to get the thresholding of a remote 

sensing index to indicate infrastructure damage. When the monitoring system 

considers more and more damage events, the damage threshold will become more 

accurate, and the system can be more accurate in detecting critical areas. The 

incorporation of other data, such as precipitation, ground water level, and soil type, 

can enhance the accuracy and reliability of the monitoring system. Training (or, in this 

case, thresholding) using data at regular times or smaller events can enhance the 

monitoring system's performance since the data at regular times or smaller events are 

more extensive. Data collection during regular times can help more accurately detect 

"anomalies" instead of changes due to seasonal variations in the environment. 

Moreover, while the monitoring system is applied system-wide, regular monitoring 

can reveal potential spatial differences among different locations.  
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5.4 Conclusions 

Remote sensing methodologies can detect the impact of land surface hazards, such as 

storms and earthquake-induced landslides, on highways and roadway infrastructure 

that is inherently distributed. The atmospheric river and associated precipitation event 

of January 28-30, 2021, highlights that drainage crossings at larger drainage basins are 

more likely to experience severe damage during storm events, especially if the culvert 

sizes are smaller or poorly maintained at full flow capacity. Measuring the negative 

differential NDVI, typically indicative of vegetation loss or debris accumulation, in 

the vicinity of the highway system can reveal the severity of highway damage. A lower 

minimum value and a broader distribution of vegetation loss indicate severe damage. 

Thresholds of dNVDI are identified based on the January 2021 event for different 

damage classes. An autonomous remote sensing monitoring system for distributed 

infrastructure can be developed based on the workflow in this study, including data 

collection and analyses that have quantified failure threshold values calibrated from 

historical events. The monitoring system can track the distributed infrastructure 

condition and assess expedient damage on a large scale in regular operation times and 

immediately after natural hazard events. 

 
 

 
Figure 5.9: dNDVI distribution curves along Highway 1 caused by January 2021 storm 
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(a) Class 4 

 
(b) Class 3 

 
(c) Class 2 

 
(d) Class 1 

 
(e) Class 0 

 
(f) All Classes 

Figure 5.10: Conceptual dNDVI distribution curves 
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Chapter 6 An Autonomous 
Methodology for Monitoring 
Mining Instability Using Remote 
Sensing 

 

6.1 Introduction 

Mining activities produce significant amounts of waste by-products, such as crushed 

rock, processed water, and chemicals (Kossoff et al., 2014). The waste by-products are 

usually disposed of and retained by engineered embankments known as tailings dams 

(Lyu et al., 2019). Billions of tons of mine tailings have been generated by the mining 

industry globally (Owen et al., 2020), and the decreasing ore grades and increasing 

consumption of raw materials show that vast amounts of tailings will need to be stored 

in the future (Bowker and Chambers, 2017). 

Tailings dam facilities are vulnerable to failure and require high maintenance 

costs during the operation and after mine closure (Rico et al., 2008). Tailings dam 

failures can affect areas several kilometers downstream from the dam and adversely 

impact the environment. The rate of tailings dam failure was estimated to be 

approximately 1.2% in the last 100 years, which is a higher failure rate than water 

retention dams (Azam and Li, 2010; Bowker and Chambers, 2015). Islam and 

Murakami (2021) pointed out that the location of mining failure cases has shifted from 

developed to developing countries. The number of tailings dam failure events is rising, 

and many smaller-size failure cases are under-reported (Villarroel et al., 2006). Even 

though tailings dam failures are preventable, failures have also reoccurred at the same 

site due to several factors, including regulation requirements and lack of oversight 

(Yangon, 2020). 

Recent advances in remote sensing techniques and data availability have 

increased the value of remote sensing technologies in disaster prevention and response 

(Metternicht et al., 2005). For example, Mura et al. (2018) used DInSAR to monitor 
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the vulnerability of dams and dikes after the collapse of the Fundao tailings dam. 

Rudorff et al. (2018) analyzed the collapse of an iron ore mining wastewater dam using 

Landsat imagery. Rauhala et al. (2017) conducted unmanned aerial vehicle 

surveillance of a mine tailings impoundment in sub-arctic conditions. Remote sensing 

techniques have been applied to study mining activities but have yet to become 

standard practice. Existing research has focused on using remote sensing data to 

analyze a specific failure event rather than developing a scalable monitoring system 

for mining failure detection. 

This study proposes a fully autonomous approach for monitoring mining 

failures. Environmental protection agencies, mining boards, and other regulators 

typically do not have the resources to independently monitor all active and closed 

facilities. A fully autonomous approach for monitoring mining failures can provide a 

completely independent approach to detect potential instabilities in operational, closed, 

and abandoned mines. As shown in Figure 6.1, the multispectral satellite imagery can 

be collected regularly on a daily, weekly, or monthly basis. Secondly, the remote 

sensing indexes can be calculated from the multispectral satellite imagery. Thirdly, 

change detection can be performed on historical failure cases, and the failure threshold 

value can be derived. Lastly, the monitoring system can monitor the mining sites 

autonomously. If there is a significant change in remote indexes and the failure 

threshold value is exceeded, the failure warning will be issued to the authority. 

The key to the process is identifying a detection method that can automatically 

indicate a failure. Thus this study aims to identify the detection indexes that are more 

likely to successfully detect a failure and quantify the threshold values that can be used 

to do so. To that end, this study leverages eight recent mining instability failures and 

tests different satellite-based change detection indexes to assess their performance. 

Specifically, the following events are considered: the 2022 Jagersfontein tailings dam 

failure (Motsau and Van Wyk, 2022), the 2022 Pau Branco iron ore mine landslide 

(Petley, 2022), the 2020 Carmen copper mine landslide (Petley, 2020), the 2020 

Singrauli fly ash dam breach (South Asia Network on Dams, Rivers and People, 2020), 

the 2019 Córrego De Feijão tailings dam failure (Robertson et al., 2019), the 2018 

Cadia gold mine tailings dam failure (Petley, 2018), the 2014 Mount Polley mine 

tailing dam failure (WISE Uranium Project, 2023), and the 2013 Bingham Canyon 

copper mine landslide (Pankow et al. 2014). 
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Figure 6.1: Workflow for the mining instability monitoring 

6.2 Failure Cases 

Table 6.1 lists the failure case histories considered in the analyses. Each case is located 

in a different place and has various climates. Pau Branco iron ore mine (PB) is in the 

tropical highland, Jagersfontein tailings dam (JF) is in semi-desert, Carmen Copper 

mine (CCM) is in tropical wet and dry, Singrauli fly ash dam (SFA) is in subtropical, 
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Córrego de Feijão tailings dam (CDF) is in tropical, Cadia gold mine tailings dam 

(CGM) is in temperate oceanic, Mount Polley mine tailing dam (MPM) is in humid 

continental, and Bingham Canyon Copper mine (BCC) is in dry-summer continental 

climate. CDF, JF, SFA, CGM, and MPM are tailings dam failures. PB, CCM, and BCC  

are landslides. 

Córrego de Feijão (CDF) mine near Brumadinho, Região in Brazil, had a 

catastrophic rotational failure and released around 12 million cubic meters of ore 

tailings into the river on January 25, 2019 (Grebby et al., 2021). Figure 6.2a is a satellite 

imagery of the Córrego de Feijão mine before the failure. Figure 6.2b shows that the 

fluidized mass traveled approximately 10 km downstream and reached the river. The 

fluidized mass led to 260 deaths, destroyed a bridge, contaminated the drinking water, 

and damaged the habitat. Robertson et al. (2019) mentioned that liquefaction and 

vertical subsidence occurred before the dam collapsed. The lack of internal drainage, 

the steep upstream constructed slope, and rainfall contributed to the instability. 

The Jagersfontein mine (JF) is the deepest hand-excavated mine in the world 

(Streeter, 1892). On September 11, 2022, the Jagersfontein tailings dam collapsed. 

Figure 6.3a shows the Jagersfontein tailings dam before the 2022 failure. Figure 6.3b 

shows that the slide had a significant runout and affected a large downstream area. The 

tailings runout was about 1.5 km wide and extended 8.5 km toward the southeast 

(NASA Earth Observatory, 2022). The Jagersfontein tailings dam had a steep tailings 

gradient and was built on top of a shallow aquifer with steep retaining walls on a slope, 

all contributing to the failure (Motsau and Van Wyk, 2022). 

The Pau Branco iron ore mine landslide (PB) occurred in Brazil on January 8, 

2022. Petley (2022) mentioned that the failure was a rotational landslide that occurred 

following heavy rainfall. The failure of the uphill slope gave rise to the overtopping of 

the downstream retention structure (Riskslope, 2022). Figure 6.4a displays the Pau 

Branco iron ore mine before the 2022 failure event. Figure 6.4b indicates that the 

landslide affected the road downslope. The landslide is approximately 300 m wide and 

870 m long.  

On December 21, 2020, a landslide occurred after a tropical storm at the 

Carmen Copper mine (CCM) in the Philippines. The primary failure was located on 

the upper part of the slope and collapsed into the lake downslope (Petley, 2020). Figure 

6.5a is a satellite image before the 2020 Carmen Copper mine failure event. The 

landslide is 330 m wide and 800 m long, as shown in Figure 6.5b.  

The Singrauli fly ash dam (SFA) was breached in India on April 10, 2020. The 

massive liquid fly ash affected villages, destroyed crops, and contaminated water 

reservoirs (South Asia Network on Dams, Rivers, and People, 2020). Figure 6.6a 

presents the Singrauli fly ash dam before the failure. Figure 6.6b illustrates the long 

travel distance of the fly ash that exceeded  5 km from the dam after the failure.  

On March 9, 2018, the Cadia gold mine tailings dam (CGM) failed. Cadia is 

one of Australia's largest open copper mines (Petley, 2018). Figure 6.7a is the satellite 

imagery one day before the failure event. Figure 6.7b shows that the failed section of 

the tailings dam is 270 m wide and 430 m long. The failure of the Cadia gold mine 

tailings dam released around 1.3 cubic meters of tailings (WISE Uranium Project, 
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2023).  

The Mount Polley mine (MPM) in Canada failed on August 4, 2014, releasing 

7.3 million cubic meters of tailings (WISE Uranium Project, 2023). Figure 6.8a shows 

the imagery two weeks before the failure event. Figure 6.8b shows that the collapse 

mass from the Mount Polley mine reached the adjacent lakes.  

On April 10, 2013, a massive landslide occurred at the Bingham Canyon copper 

mine (BCC) in the United States. Around 65 million cubic meters of material was 

deposited, making the landslide the largest non-volcanic landslide in North America 

in modern times (Pankow et al. 2014). Figure 6.9a shows the imagery before the failure 

event. The landslide is 450 m wide and 2.3 km long, as shown in Figure 6.9b.  

Maus et al. (2020) generated a global-scale mining site polygons dataset 

considering all mining activities features derived from visual interpretation of satellite 

imagery. The size of each mining site in Table 6.1 is estimated according to the mining 

activities polygons from Maus et al. (2020). The size of the failure source for each site 

is estimated based on Figure 6.2 to Figure 6.9, and the percentage of failure sources 

compared to the entire mining site is approximated accordingly to estimate the size of 

the failure compared to the facility. In addition, the Normalized difference vegetation 

index (NDVI) is calculated for each site for the whole imagery in Figure 6.10 and 

within the mining site. NDVI is a vegetation index with values ranging between -1 and 

1. The value of NDVI is descriptive of the density of vegetation. Densely vegetated 

areas tend to have higher NDVI (closer to 1). In contrast, barren and non-vegetated 

areas have a lower value of NDVI. A negative NDVI indicates water, a positive value 

near zero indicates bare soil, a positive NDVI around 0.1 and 0.5 indicates sparse 

vegetation, and an NDVI of 0.6 and above indicates dense vegetation (Pettorelli, 

2013).  

Figure 6.10 displays the NDVI density curves of eight mining sites from the 

entire imagery before the failure. BCC, JF, SFA, and CGM are the mining sites with 

lower NDVI and have a statistical mode of NDVI below 0.5. MPM, CDF, PB, and 

CCM have a mode of NDVI higher than 0.5, which indicates more vegetated sites.  
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(a) January 24, 2019 (pre-failure) (b) February 1, 2019 (post-failure) 

Figure 6.2: 2019 Córrego de Feijão tailings dam failure, Planet© Imagery 

 

 
(a) September 9, 2022 (pre-failure) (b) September 12, 2022 (post-failure) 

Figure 6.3: 2022 Jagersfontein tailings dam failure, Planet© Imagery 

Figure 6.4: 2022 Pau Branco iron ore mine landslide, Planet© Imagery 

 

 

 
(a) October 03, 2021 (pre-failure) (b) January 23, 2022 (post-failure) 
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Figure 6.5: 2020 Carmen Copper mine landslide, Planet© Imagery 

Figure 6.6: 2020 Singrauli fly ash dam breach, Planet© Imagery 

 

 

 
(a) October 14, 2020 (pre-

failure) 
(b) January 26, 2021 (post-failure) 

   

   
(a) April 09, 2020 (pre-failure) (b) April 13, 2020 (post-failure) 
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(a) March 08, 2018 (pre-failure) (b) March 10, 2018 (post-failure) 

Figure 6.7: The 2018 failure of the Cadia gold mine tailings dam, Planet© Imagery 

 

 

 

(a) July 12, 2014 (pre-failure) (b) August 14, 2014 (post-failure) 

Figure 6.8: Mount Polley mine tailings dam failure, Planet© Imagery 
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(a) October 05, 2012 (pre-failure) (b) May 23, 2013 (post-failure) 

Figure 6.9: 2013 Bingham Canyon copper mine landslide, Planet© Imagery 

 

 
Figure 6.10: NDVI from the entire imagery before the failure event 
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Table 6.1: The background of mining sites 

Mining Site 

Year of 

the 

Failure 

Event 

Country Climate 
Size of Mining 

Site (km2) 

Size of 

Failure 

Source 

(km2) 

Failure 

Source/ 

Mining 

Site (%) 

Pau Branco 

iron ore mine 

(PB) 

2022 Brazil 
Tropical 

highland 
4.13 0.13 3.05 

Jagersfontein 

tailings dam 

(JF) 

2022 
South 

Africa 
Semi-desert 9.15 0.53 5.78 

Carmen 

Copper mine 

(CCM) 

2020 Philippines 
Tropical wet 

and dry 
17.67 0.19 1.05 

Singrauli fly 

ash dam 

(SFA) 

2020 India Subtropical 8.76 0.36 4.07 

Córrego de 

Feijão tailings 

dam (CDF) 

2019 Brazil Tropical 11.51 0.25 2.20 

Cadia gold 

mine tailings 

dam (CGM) 

2018 Australia 
Temperate 

oceanic 
29.75 0.08 0.27 

Mount Polley 

mine tailing 

dam (MPM) 

2014 Canada 
Humid 

continental 
18.56 2.58 13.92 

Bingham 

Canyon 

Copper mine 

(BCC) 

2013 
United 

States 

Dry-summer 

continental 

climate 

42.91 0.68 1.59 
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6.3 Remote Sensing Data 

Satellite imagery is used in the detection analyses. Specifically, Planet© (Planet Team, 

2017) imagery is selected to provide daily satellite imagery with global coverage from 

different sensors. This study uses Planet Scope Scene with a resolution of 3 m, Planet 

Psorthotile with a resolution of 3.125 m, and Planet Reorthotile with a resolution of 5 

m with four bands of blue, green, red, and near-infrared to detect the mining instability.  

As shown in Table 6.2, satellite imagery at different time instances is collected 

considering cloud coverage and imagery quality for the 2022 Jagersfontein tailings 

dam failure, 2022 Pau Branco iron ore mine landslide, 2020 Carmen copper mine 

landslide, 2020 Singrauli fly ash dam breach, 2019 Córrego de Feijão tailings dam 

failure, 2018 Cadia gold mine tailings dam failure, 2014 Mount Polley mine tailing 

dam failure, and 2013 Bingham Canyon copper mine landslide.  

Two images are used before the event to assess variations in the indexes under 

"normal" operations (as shown in the second column of Table 6.2), whereas an image 

before and an image after the event is used to compare the changes in indexes 

associated with the failure (as shown in the third column of Table 6.2).  
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Table 6.2: Planet© satellite imagery is collected for change detection analysis 

 
Images before the failure  

(duration between two images) 

Images for the 

failure event  

(duration between two images) 

2019 

Córrego de 

Feijão 

tailings dam 

failure  

12/20/2018 and 01/24/2019  

(1 month) 

01/24/2019 and 02/01/2019  

(9 days) 

2022 

Jagersfontein 

tailings dam 

failure  

09/10/2021 and 09/12/2021  

(2 days) 

09/09/2022 and 09/12/2022  

(3 days) 

2022 Pau 

Branco iron 

ore mine 

landslide 

09/30/2020 and 10/03/2021  

(12 months) 

10/03/2021 and 01/23/2022  

(4 months) 

2020 

Carmen 

Copper Mine 

landslide 

10/04/2019 and 05/28/2020  

(8 months) 

10/14/2020 and 01/26/2021  

(3 months) 

2020 

Singrauli fly 

ash dam 

breach 

04/09/2019 and 04/12/2019  

(4 days) 

04/09/2020 and 04/12/2020  

(4 days) 

2018 Cadia 

gold mine 

tailings dam 

failure 

03/05/2017 and 03/26/2017  

(21 days) 

03/07/2018 and 03/10/2018  

(3 days) 

2014 Mount 

Polley mine 

tailing dam 

failure 

07/21/2013 and 09/11/2013  

(1.5 months) 

07/12/2014 and 08/14/2014  

(1 month) 

2013 

Bingham 

Canyon 

copper mine 

landslide 

10/18/2011 and 05/10/2012  

(8 months) 

10/05/2012 and 05/23/2013  

(8 months) 
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6.4 Change Detection   

The change detection model uses eight remote sensing indexes that can be derived 

from satellite imagery. Indexes often related to vegetation that are used in this study 

are normalized difference vegetation index (NDVI), green normalized difference 

vegetation index (Green NDVI), modified soil adjusted vegetation index (MSAVI), 

visible atmospherically resistant index (VARI), simple ratio (SR), modified triangular 

vegetation index (MTVI2) and chlorophyll index - green (CIg) are described 

subsequently and are shown in Equation 6.1-6.7.  

NDVI is a very common vegetation index that uses the red and near-infrared 

(NIR) band, as shown in Equation 6.1. The NIR band can distinguish the high 

reflectivity of vegetation material, and the red band can show chlorophyll pigment 

absorption (Pettorelli, 2013). NDVI ranges between -1 and +1, and the value of NDVI 

is proportional to the amount of vegetation. Green NDVI (Moges et al., 2005) can 

estimate photosynthetic activity in Equation 6.2 and ranges from -1 to 1. MSAVI (Qi 

et al. 1994) is a vegetation index that minimizes the effect of bare soil using NIR and 

red band in Equation 6.3 and ranges between -1 and 1. VARI (Stow et al., 2005) is a 

vegetation index that utilizes three visible bands to reduce the atmospheric effect, as 

shown in Equation 6.4. SR (Chen 1996) is a vegetation index that uses the NIR and 

red band ratio to minimize the atmosphere effect in Equation 6.5. MTVI2 (Haboudane 

et al., 2004) detects the leaf chlorophyll content in Equation 6.6. CIg (Wu et al., 2012) 

is a vegetation index to estimate leaf chlorophyll content utilizing NIR and green band 

in Equation 6.7. Lastly, iron oxide (IO) in Equation 6.8, a geological index, can detect 

rock experiencing oxidation of iron-bearing sulfides (Dogan, 2009). Change detection 

is performed in ArcGIS Pro 2.9.0 by calculating the absolute value of the remote 

sensing index difference between two rasters at different times, as shown in Equation 

6.9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6.  AN AUTONOMOUS METHODOLOGY FOR MONITORING MINING INSTABILITY  

USING REMOTE SENSING 

113 

 

 Normalized Difference Vegetation Index (NDVI) =
NIR−Red

NIR+Red
 (6.1) 

 Green Normalized Difference Vegetation Index (Green NDVI) =
NIR – Green

NIR + Green
        (6.2) 

Modified Soil Adjusted Vegetation Index (MSAVI) =  
1

2
 (2(NIR + 1) − √(2NIR + 1)2 − 8(NIR − Red)) (6.3) 

 Visible Atmospherically Resistant Index (VARI) =
Green – Red

Green + Red – Blue
 (6.4) 

 Simple Ratio (SR) =  
NIR

Red
 (6.5) 

 Modified Triangular Vegetation Index (MTVI2) =
1.5(1.2(NIR−Green)−2.5(Red−Green))

√(2 NIR+1)2−(6 NIR−5√Red)−0.5

 (6.6) 

 Chlorophyll Index −  Green (CIg) =
NIR

Green
− 1 (6.7) 

 Iron Oxide (IO) =
Red

Blue
 (6.8) 

 Remote Sensing Index Difference = |Remote Sensing Indextime2 − Remote Sensing Indextime1|     (6.9) 

where NIR is the near-infrared band, red is the red band, green is the green 

band, blue is the blue band, and time 1 is earlier than time 2. 

6.5 Result and Discussion   

Change detection of remote sensing indexes is conducted to detect mining instability. 

The change detection of remote sensing indexes can reveal the tailings runout and 

landslide traveling path, as shown in the example of Figure 6.11 for the 2019 Córrego 

de Feijão tailings dam failure and in Figure 6.12-6.16 for the other cases.  

The Córrego de Feijão tailings dam failed on January 25, 2019. Satellite 

imagery on December 20, 2018, and January 24, 2019, is used to look for the change 

detection before the failure. Imageries on January 24, 2019, and February 01, 2019, 

are utilized to explore the detection of the Córrego de Feijão tailings dam failure 

incident, as shown in Figure 6.11a-h. Figure 6.11 demonstrates that the change in 

practically all remote sensing indexes can detect the Córrego de Feijão tailings dam 

failure. The traveling path of the failure material downstream is particularly visible. 

Similarly, Figure 6.12, Figure 6.14, and Figure 6.16 illustrate that the change of NDVI 

and Green NDVI can reveal the traveling path of the fluidized mass caused by the 

Jagersfontein tailings dam failure, disclose the traveling path of fly ash released from 

the collapse of Singrauli fly ash dam, and display the path of tailings runout for the 

Mount Polley mine tailing dam failure. In Figure 6.13 and Figure 6.15, the change of 

remote sensing indexes can reveal the Pau Branco iron ore mine landslide and disclose 

the Cadia gold mine tailings dam failure.  
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(a) Failure event- NDVI (b) Failure event- Green NDVI 

  
(c) Failure event- MSAVI (d) Failure event- VARI 

  
(e) Failure event- SR (f) Failure event- MTVI2 

   
(g) Failure event- CIg (h) Failure event- IO 

Figure 6.11: Change detection of remote sensing indexes- 2019 Córrego de Feijão 

tailings dam failure 
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(a) Failure event- NDVI (b) Failure event- Green NDVI 

Figure 6.12: Change detection of remote sensing indexes using imageries on September 

9, 2022, and September 12, 2022- 2022 Jagersfontein tailings dam failure 

 
 

 

(a) Failure event- NDVI (b) Failure event- Green NDVI 

Figure 6.13: Change detection of remote sensing indexes using imageries October 3, 

2021, and January 23, 2022- 2022 Pau Branco iron ore mine landslide 

               
 

(a) Failure event- NDVI (b) Failure event- Green NDVI 

Figure 6.14: Change detection of remote sensing indexes using imageries on April 9, 

2020, and April 14, 2020- 2020 Singrauli fly ash dam breach 
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(a) Failure event- NDVI (b) Failure event- Green NDVI 

Figure 6.15: Change detection of remote sensing indexes using imageries on March 7, 

2018, and March 10, 2018- 2018 Cadia gold mine tailings dam failure 

 
 

(a) Failure event- NDVI (b) Failure event- Green NDVI 

Figure 6.16: Change detection of remote sensing indexes using Imageries on July 12, 

2014, and August 14, 2014- 2014 Mount Polley mine tailing dam failure 

Figure 6.17 illustrates the remote sensing index density curves for the Córrego 

de Feijão tailings dam failure event from the entire imagery with the area of 202.2 km2 

as shown in Figure 6.2b, mining site polygon with the area of 11.51 km2 from Maus et 

al. (2020), and the failure source with the area of 0.25 km2 is annotated with a red 

polygon in Figure 6.2b. Different density curves are shown for different portions of 

imagery. The solid line is the density curve for the failure source only (as annotated in 

Figure 6.2), the dashed line is the density curve when the image portion that shows the 

mining facility is selected, and the dotted line is the density curve of the entire imagery 

as shown in Figure 6.2b. The density curve before the failure is shown in blue, and after 

the failure is shown in red.  

As shown in Figure 6.17a, in all cases (failure source only, mining facility, and 

the entire imagery), the density curves translate significantly after the event, indicating 

that for all scales, a discernible change has occurred. As expected, the differences are 

highest for the case where change detection is taking place for the failure source only, 

but the change is also very discernible for the mining facility scale and the entire 
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imagery scale. The statistical mode of the NDVI difference density curve within the 

failure source changes from 0.068 before the failure to -0.195 for the failure event, i.e., 

the NDVI difference has changed by 0.263. On the other hand, the mode of NDVI 

difference density curve at the mining site scale and entire imagery has a value change 

of 0.06. Correspondingly, the statistical mean of NDVI difference within the failure 

source changes from 0.07 before the failure to -0.15 for the failure event and has a 

value change of 0.22. For the mining site, the mean NDVI difference has a value 

change of 0.08. Similarly, the statistical median of NDVI difference on the failure 

source has a change of 0.238 and has a value change of 0.052 on the entire mining site. 

In general, the density curve from the failure source has a major change between before 

the failure and failure event compared to the curve from the mining site and entire 

imagery, especially NDVI, Green NDVI, MSAVI, SR, and CIg as shown in Figure 

6.17a-h. The density curves tend to have a normal-type shape with a pronounced mode. 

Differences in the density curves before and after the failure are observed, and the 

difference in the remote sensing indexes has a similar change in the statistical mean, 

median, and mode caused by the failure event. This confirms that at all scales, these 

indexes could be automatically calculated and used for detection. However, in the 

detection result, it is important to get a sense of what a significant change in the index 

is.   
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(a) NDVI (b) Green NDVI 

  

(c)MSAVI (d)VARI 

  

(e) SR (f) MTVI2 

  

(g) CIg (h) IO 

Figure 6.17: Remote sensing indexes difference- 2019 Córrego de Feijão tailings dam 

failure 
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Each remote sensing index has a different range of values; thus, normalization 

is necessary to quantify its performance. The change of statistical mean, median, and 

mode in remote sensing indexes difference is normalized by the standard deviation of 

the density curve before the failure to provide a more quantitative assessment of the 

range of each remote sensing index and the significance of the change that has 

occurred. To clarify, if the ratio of the change in the mean or median or mode divided 

by the standard deviation of the curve before failure, as shown in the y-axis in Figure 

6.18, is high, that would be indicative of significant change. For example, for the 

Córrego de Feijão tailings dam failure incident, NDVI, Green NDVI, and MSAVI are 

the three indexes that have the highest normalized change in mean, median, or mode 

of the remote sensing index difference and are better predictors of change than the 

other indexes.   

 
Figure 6.18: Histogram of statistical mode differences/ pre-failure standard deviation of 

remote sensing indexes within failure source- 2019 Córrego de Feijão tailings dam failure 

This study aims to quantify the remote sensing index for autonomous 

monitoring of mining instability. As described earlier and shown in Figure 6.17, when 

one considers the failure source only, the most notable remote sensing index change is 

observed compared to considering the mining site and the entire imagery. However, 

the location of the failure source is unknown before the failure incident happens, so 

the analysis within the mining site is of particular interest and focus in the autonomous 

mining instability monitoring system. Despite the clear differences in the entire density 

curves, it is easier to focus on just the mode of the density curve. Table 6.3 summarizes 

the change in the statistical mode of remote sensing index difference on the mining 

site for each failure event. The top three remote sensing indexes with the highest 

NDVI Green NDVI MSAVI VARI SR MTVI2 Clg IO

0

2

4

6

8

10

12

14

16

D
if
fe

re
n

c
e

/P
re

-f
a

ilu
re

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Remote Sensing Index

 Mean

 Median

 Mode



CHAPTER 6.  AN AUTONOMOUS METHODOLOGY FOR MONITORING MINING INSTABILITY  

USING REMOTE SENSING 

120 

 
difference in the normalized statistical mode for each failure event are highlighted in 

bold format. It is clear that a number of indexes are sensitive to the observed changes, 

and some of them are quite common. For example, the MSAVI and VARI appear to 

be among the top three performing indicators in five out of eight case histories, the IO 

in four cases, the MTVI2 in three cases, the NDVI, Green NDVI, and CIg in two cases, 

while SR appears only once as the top performing indicator.    

For the 2019 Córrego de Feijão tailings dam failure, the NDVI, Green NDVI, 

and MSAVI are the top three performing indicators, with the value of normalized 

change in remote sensing mode as 1.267, 1.952, and 1.410, respectively. MSAVI, CIg, 

and IO are the best three failure indicators for the 2022 Jagersfontein tailings dam 

failure and have the value of normalized change in remote sensing mode as 0.592, 

0.985, and 1.600. The top three failure indicators for the 2022 Pau Branco iron ore 

mine landslide are NDVI, MSAVI, and VARI, with the normalized change in remote 

sensing mode as 1.326, 1.067, and 1.226, respectively. Green NDVI, MTVI2, and IO 

are the top three remote sensing indicators for the 2020 Carmen copper mine landslide 

and have the normalized change in remote sensing mode as 1.513, 1.215, and 1.734, 

respectively. MSAVI, VARI, and IO are the best three failure indicators for the 2020 

Singrauli fly ash dam breach and have the normalized change in remote sensing mode 

as 0.926, 0.961, and 1.855, respectively. For the 2018 Cadia gold mine tailings dam 

failure, the VARI, MTVI2, and IO are the top three performing indicators, with the 

value of normalized change in remote sensing mode as 4.383, 1.737, and 6.563, 

respectively. The top three failure indicators for the 2014 Mount Polley mine tailing 

dam failure are VARI, SR, and MTVI2, with the normalized change in remote sensing 

mode as 0.814, 1.680, and 0.687, respectively. MSAVI, VARI, and CIg are the best 

three failure indicators for the 2013 Bingham Canyon copper mine landslide and have 

the value of normalized change in remote sensing mode as 1.450, 20.290, and 2.051. 

The mean value of NDVI within each of the mining sites before the failure 

event can quantify the vegetation condition of mining sites. CDF, CGM, CCM, MPM, 

SFA, PB, JF, and BCC have the mean values of NDVI of 0.52, 0.37, 0.36, 0.36, 0.24, 

0.22, 0.15, and 0.11, respectively. Among eight cases, CDF, CGM, CCM, and MPM 

are the more vegetated sites and have a mean NDVI between 0.36 and 0.52, whereas 

SFA, PB, JF, and BCC are the less vegetated sites with a mean NDVI between 0.11 

and 0.24. MTVI2 and Green NDVI are the top two remote sensing indexes for the four 

vegetated sites. MSAVI and CIg are the best remote sensing indexes for the four non-

vegetated sites. Generally, VARI and IO detect mining instability well for both 

vegetated and non-vegetated sites. MTVI2 can point out the mining instability of 

vegetated mining sites the best. MSAVI performs the best in indicating the mining 

instability in non-vegated sites. 

As mentioned, the change in the remote sensing index within the failure source 

can reveal the mining instability more distinctly than the index value when the entire 

mining site or entire imagery is considered. Although the size of the failure source for 

the 2019 Córrego de Feijão tailings dam failure event is only 2.2 percent of the mining 

site, the normalized remote sensing index mode difference on the failure source is 

around ten times, nine times, and five times as the value from the mining site for 
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MSAVI, NDVI, and Green NDVI respectively as shown in Table 6.4. The normalized 

remote sensing mode difference within the failure source can be more significant than 

the mining site. However, in some cases, the mining site has a more notable normalized 

remote sensing mode difference than the failure source, probably due to the 

construction and other factors, so satellite imagery with higher temporal frequency is 

required to access the difference caused by the failure event only. 

6.6 Conclusions   
 

Mining instability and failures can happen anytime during the operation or several 

years after mining activities have stopped and may reoccur at the same location. 

Therefore, mining sites need regular maintenance and monitoring to ensure stability. 

Daily high-resolution satellite data allows for the efficient and economical monitoring 

of mining failures in short intervals. Change detection analyses using vegetation and 

geological indexes for eight recent study cases: the 2022 Jagersfontein tailings dam 

failure, the 2022 Pau Branco iron ore mine landslide, the 2020 Carmen copper mine 

landslide, the 2020 Singrauli fly ash dam breach, the 2019 Córrego De Feijão tailings 

dam failure, the 2018 Cadia gold mine tailings dam failure, the 2014 Mount Polley 

mine tailing dam failure, and the 2013 Bingham Canyon copper mine landslide are 

conducted in this study. The result shows that remote sensing indexes can be 

promising mining instability and failure indicators. Both visible atmospherically 

resistant index (VARI) and Iron oxide (IO) effectively reveal mining instability in 

vegetated and non-vegetated sites. The modified triangular vegetation index (MTVI2) 

is particularly useful in identifying the failure source in vegetated mining sites, while 

the modified soil-adjusted vegetation index (MSAVI) performs best in indicating 

mining instability in non-vegetated sites. The change in remote sensing indexes can 

be applied as a reference for failure and assist the mining industry and supervisory 

boards in enhancing monitoring, safety management, and planning during and after 

mining operations. 
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Table 6.3: Summary of the difference in the mode of remote sensing indexes in the 

mining site 

    NDVI 
Green 

NDVI 
MSAVI VARI SR MTVI2 CIg IO 

2019 Córrego de Feijão 

tailings dam failure  

Before the Failure  0.050 0.060 0.035 0.000 0.335 0.035 0.200 0.050 

For the failure event  -0.010 -0.010 -0.030 -0.020 0.050 0.010 -0.200 -0.150 

Difference 0.060 0.070 0.065 0.020 0.285 0.025 0.400 0.200 

Pre-failure standard 

deviation 
0.047 0.036 0.046 0.033 1.528 0.031 0.675 0.173 

Difference/Pre-

failure standard 

deviation 

1.267 1.952 1.410 0.601 0.187 0.804 0.593 1.159 

2022 Jagersfontein 

tailings dam failure  

Before the Failure  0.000 -0.005 -0.025 0.000 -0.015 -0.015 -0.150 -0.150 

For the failure event  0.010 0.000 0.005 0.010 0.010 -0.010 0.000 -0.015 

Difference 0.010 0.005 0.030 0.010 0.025 0.005 0.150 0.135 

Pre-failure standard 

deviation 
0.028 0.038 0.051 0.039 0.084 0.081 0.152 0.084 

Difference/Pre-

failure standard 

deviation 

0.364 0.132 0.592 0.253 0.296 0.062 0.985 1.600 

2022 Pau Branco iron 

ore mine landslide 

Before the Failure  -0.020 -0.020 0.000 0.015 0.050 -0.050 -0.100 -0.150 

For the failure event  0.090 0.040 0.200 0.090 -0.100 -0.100 0.150 -0.100 

Difference 0.110 0.060 0.200 0.075 0.150 0.050 0.250 0.050 

Pre-failure standard 

deviation 
0.083 0.077 0.187 0.061 0.382 0.127 0.416 0.342 

Difference/Pre-

failure standard 

deviation 

1.326 0.775 1.067 1.226 0.392 0.393 0.601 0.146 

2020 Carmen Copper 

mine landslide 

Before the Failure  0.025 0.055 0.005 -0.060 0.100 0.085 0.050 0.135 

For the failure event  -0.040 -0.030 -0.045 -0.025 -0.300 -0.010 -0.050 0.000 

Difference 0.065 0.085 0.050 0.035 0.400 0.095 0.100 0.135 

Pre-failure standard 

deviation 
0.065 0.056 0.090 0.046 0.344 0.078 0.255 0.078 

Difference/Pre-

failure standard 

deviation 

1.000 1.513 0.553 0.757 1.163 1.215 0.392 1.734 

2020 Singrauli fly ash 

dam breach 

Before the Failure  0.015 0.000 -0.005 0.005 0.050 -0.020 0.005 0.015 

For the failure event  0.020 -0.005 0.050 0.030 0.050 -0.005 0.010 -0.075 

Difference 0.005 0.005 0.055 0.025 0.000 0.015 0.005 0.090 

Pre-failure standard 

deviation 
0.036 0.039 0.059 0.026 0.106 0.068 0.120 0.049 

Difference/Pre-

failure standard 

deviation 

0.138 0.128 0.926 0.961 0.000 0.222 0.042 1.855 

2018 Cadia gold mine 

tailings dam failure 

Before the Failure  0.080 0.055 0.080 -0.250 -4.850 0.030 -5.150 2.615 

For the failure event  0.000 -0.020 -0.035 0.030 -0.150 -0.065 -0.250 -0.040 

Difference 0.080 0.075 0.115 0.280 4.700 0.095 4.900 2.655 

Pre-failure standard 

deviation 
0.088 0.071 0.095 0.064 5.176 0.055 4.865 0.405 

Difference/Pre-

failure standard 

deviation 

0.910 1.051 1.215 4.383 0.908 1.737 1.007 6.563 

2014 Mount Polley 

mine tailing dam failure 

Before the Failure  -0.010 0.010 -0.200 -0.150 -15.450 1.100 -3.400 6.600 

For the failure event  0.000 -0.020 0.050 0.050 0.300 -0.150 0.050 -1.380 

Difference 0.010 0.030 0.250 0.200 15.750 1.250 3.450 7.980 

Pre-failure standard 

deviation 
0.139 0.114 0.394 0.246 9.376 1.820 16.141 54.588 

Difference/Pre-

failure standard 

deviation 

0.072 0.262 0.634 0.814 1.680 0.687 0.214 0.146 

2013 Bingham Canyon 

copper mine landslide 

Before the Failure  -0.005 -0.010 -0.050 0.050 -0.100 -0.050 -8.850 -13.750 

For the failure event  -0.025 -0.040 0.100 2.460 -0.005 0.000 -1.350 -51.450 

Difference 0.020 0.030 0.150 2.410 0.095 0.050 7.500 37.700 

Pre-failure standard 

deviation 
0.069 0.113 0.103 0.119 0.540 0.238 3.656 42.465 

Difference/Pre-

failure standard 

deviation 

0.289 0.265 1.450 20.290 0.176 0.210 2.051 0.888 

 

 



CHAPTER 6.  AN AUTONOMOUS METHODOLOGY FOR MONITORING MINING INSTABILITY  

USING REMOTE SENSING 

123 

 
Table 6.4: Summary of the difference in the mode of remote sensing indexes in the 

failure source 

    NDVI 
Green 

NDVI 
MSAVI VARI SR MTVI2 CIg IO 

2019 Córrego de Feijão 

tailings dam failure  

Before the Failure  0.068 0.066 0.053 -0.005 1.050 0.054 0.850 0.020 

For the failure event  -0.195 -0.115 -0.195 -0.105 -1.150 0.000 -1.150 -0.080 

Difference -0.263 -0.181 -0.248 -0.100 -2.200 -0.054 -2.000 -0.100 

Pre-failure standard deviation 0.023 0.018 0.018 0.033 0.612 0.016 0.349 0.095 

Difference/Pre-failure 

standard deviation 
11.328 9.918 14.077 3.005 3.596 3.280 5.732 1.048 

2022 Jagersfontein 

tailings dam failure  

Before the Failure  -0.017 -0.022 -0.040 0.001 -0.060 -0.025 -0.065 -0.060 

For the failure event  -0.016 -0.025 -0.030 0.015 -0.050 -0.070 -0.075 -0.080 

Difference 0.001 -0.003 0.010 0.014 0.010 -0.045 -0.010 -0.020 

Pre-failure standard deviation 0.023 0.023 0.038 0.024 0.057 0.041 0.064 0.052 

Difference/Pre-failure 

standard deviation 
0.044 0.133 0.265 0.582 0.175 1.090 0.155 0.387 

2022 Pau Branco iron 

ore mine landslide 

Before the Failure  0.025 0.010 0.050 0.050 0.000 -0.075 -0.200 -0.050 

For the failure event  -0.225 -0.220 -0.350 -0.005 0.150 -0.065 0.400 0.350 

Difference -0.250 -0.230 -0.400 -0.055 0.150 0.010 0.600 0.400 

Pre-failure standard deviation 0.178 0.218 0.475 0.106 0.641 0.501 0.701 0.295 

Difference/Pre-failure 

standard deviation 
1.402 1.055 0.842 0.519 0.234 0.020 0.856 1.355 

2020 Carmen Copper 

mine landslide 

Before the Failure  0.010 0.060 0.025 -0.062 0.080 0.135 0.140 0.115 

For the failure event  -0.050 -0.055 -0.075 0.020 -0.120 -0.110 -0.155 -0.005 

Difference -0.060 -0.115 -0.100 0.082 -0.200 -0.245 -0.295 -0.120 

Pre-failure standard deviation 0.051 0.047 0.086 0.029 0.130 0.074 0.118 0.043 

Difference/Pre-failure 

standard deviation 
1.166 2.441 1.162 2.781 1.535 3.320 2.503 2.820 

2020 Singrauli fly ash 

dam breach 

Before the Failure  -0.007 -0.011 -0.025 0.001 -0.040 -0.014 -0.040 0.025 

For the failure event  0.005 -0.005 0.015 0.026 0.040 -0.015 -0.010 -0.030 

Difference 0.012 0.006 0.040 0.025 0.080 -0.002 0.030 -0.055 

Pre-failure standard deviation 0.021 0.018 0.028 0.017 0.074 0.021 0.074 0.039 

Difference/Pre-failure 

standard deviation 
0.548 0.337 1.440 1.482 1.076 0.070 0.404 1.395 

2018 Cadia gold mine 

tailings dam failure 

Before the Failure  0.080 0.070 0.105 0.021 0.500 0.062 0.250 -0.065 

For the failure event  0.155 0.125 0.215 0.001 0.450 0.155 0.450 0.015 

Difference 0.075 0.055 0.110 -0.020 -0.050 0.094 0.200 0.080 

Pre-failure standard deviation 0.060 0.052 0.052 0.031 1.274 0.039 1.187 0.062 

Difference/Pre-failure 

standard deviation 
1.242 1.049 2.129 0.632 0.039 2.368 0.169 1.292 

2014 Mount Polley mine 

tailing dam failure 

Before the Failure  0.020 -0.020 -0.200 -0.100 0.100 1.100 0.050 2.700 

For the failure event  0.000 0.705 0.050 0.045 0.000 0.050 1.000 1.085 

Difference -0.020 0.725 0.250 0.145 -0.100 -1.050 0.950 -1.615 

Pre-failure standard deviation 0.244 0.177 0.999 0.452 0.425 4.503 0.299 0.686 

Difference/Pre-failure 

standard deviation 
0.082 4.085 0.250 0.321 0.235 0.233 3.175 2.353 

2013 Bingham Canyon 

copper mine landslide 

Before the Failure  -0.005 -0.030 -0.050 0.015 -0.010 0.000 -0.050 0.020 

For the failure event  0.020 0.080 0.025 -0.085 0.035 0.230 0.255 0.450 

Difference 0.025 0.110 0.075 -0.100 0.045 0.230 0.305 0.430 

Pre-failure standard deviation 0.089 0.135 0.305 0.154 0.145 0.567 0.345 2.540 

Difference/Pre-failure 

standard deviation 
0.280 0.816 0.246 0.649 0.310 0.405 0.884 0.169 
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Chapter 7 Conclusions  

 
In this dissertation remote sensing data is analyzed using various Artificial Intelligence 

(AI) and big data analysis techniques with the goal to detect ground failure, assess 

landslide mobility, and monitor ground instability of infrastructure. Detailed 

conclusions are provided in each of the chapters, and a brief summary and broad 

conclusions, as well as recommendations for future work, are provided as follows.  

 

7.1 Summary and Conclusions  
 

• Factors affecting machine learning-based landslide detection for the 2015 

Lefkada earthquake (chapter 2) The influence of different inputs and computing 

steps of a machine learning-based landslide detection model for the 2015 Lefkada 

earthquake event on the detection results is evaluated. It is found that for successful 

landslide detection, the selection of features is the most critical, with the post-event 

slope and pre-event slope being the two most essential features in the Lefkada 

event. Incorporating ten features results in a robust landslide detection model that 

is similar to the model performance using ninety-two features. The size and 

geospatial distribution of training samples are also critical. Secondary factors 

affecting detection accuracy are the resolution of input data and machine learning 

algorithms. Other factors, such as segmentation parameters, the spatial distance 

between non-landslide and landslide training samples, and the geometry of the 

training sample are less critical. The geospatial distribution influences the training 

sample size required to generate a reliable landslide detection model. Wider 

geospatial distribution of training samples results in better landslide detection 

ability. 

 

• Lessons learned on the efficacy of machine learning-based landslide detection 

following three recent earthquake events (chapter 3) Machine learning models 

can be valuable for the expedited detection of large numbers of landslides 

following major earthquakes. The performance of the landslide detection model 

is affected by the selection of features, resolution, machine learning algorithms, 

segmentation, and training sample size. Since landslides occur in different 
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geologic and climatic environments, the importance of each factor on the landslide 

detection may vary. The influence of various factors on the landslide detection 

model has been investigated for three recent earthquakes, namely the 2015 

Lefkada earthquake, the 2016 Kaikōura earthquake, and the 2021 Nippes 

earthquake event, to assess the commonalities and the differences in detection 

success. The results reveal that feature selection is the most critical factor in 

landslide detection. However, the features that may yield the best results vary. 

Topographic terrain features play an essential role in events in less vegetated 

areas, whereas indexes that consider textural characteristics, such as vegetation 

index, can improve the model's performance significantly in highly vegetated 

areas. The importance of machine learning algorithms and segmentation varies 

with the event. However, the data resolution and training sample size similarly 

affect the landslide detection model for the 2015 Lefkada earthquake, 2016 

Kaikōura earthquake, and 2021 Nippes earthquake event. 

 

• Derivation of Voellmy model parameters for landslide runout based on co-

seismic rock avalanches inventory (chapter 4) Landslide mobility is essential 

in addressing landslide risk. A simple mechanistic model that is based on the 

Voellmy friction law as incorporated in Rapid Mass Movement Simulation Debris 

Flow (RAMMS-DF) is regressed against hundreds of mapped rock avalanches 

that were triggered by the Mw 6.5 Lefkada earthquake on November 17, 2015, 

with the goal to calibrate the two model parameters against statistically significant 

observations of landslide runout. The result reveals that the dry-Coulomb friction 

(μ) governs the performance of the simulation, whereas the results are less 

sensitive to viscous-turbulent friction (ξ), especially for large values of ξ. The 

RAMMS-DF simulation's accuracy positively correlates with landslide source 

area, height, and 3D travel distance. The model does not match well landslides 

with small source areas (<4,000 m2), but in these cases, it systematically 

overestimates the runout compared to field observations.   
 

• Remote sensing-based system-level monitoring of Highway 1 following the 

2021 atmospheric river event (chapter 5) The damage observed along Highway 

1 from the January 2021 atmospheric river is classified, and a remote-sensing-

based methodology is developed for system-level monitoring and assessment 

following natural disasters. Forty-four drainage basins inspected by Caltrans along 

Highway 1 are classified into five damage classes based on the severity of damage 

along the highway. As expected, surface water management systems need to be 

properly sized to accommodate the size of the drainage basins, but larger drainage 

basins are usually prone to debris flow after heavy rainfall. Remotely sensed 

indicators of vegetation loss can reflect sediment mobility and the occurrence of 

landslides or debris flows. Planet© satellite imagery was used to detect changes 

in the normalized difference vegetation index (NDVI) before and after the January 

2021 atmospheric river. The result reveals that the vegetation loss distribution 

curve can represent the severity of highway damage. A lower minimum value and 
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broader distribution of the vegetation loss curve are indicative of severe impact. 

Sections of the highway not impacted by the storm usually have a higher minimum 

value and a narrower distribution of vegetation loss. The minimum value and 

shape of the vegetation loss distribution curve can serve as an indicator of highway 

damage to detect the most critical and susceptible drainage crossings in an 

expedited manner.  

 

• An autonomous methodology for monitoring mining instability using remote 

sensing (chapter 6) The detection of mining instability using high-resolution 

satellite imagery by evaluating the performance of different remote sensing 

indexes when failures occur is investigated. Eight recent failure cases are 

examined: the 2022 Jagersfontein tailings dam failure, the 2022 Pau Branco iron 

ore mine landslide, the 2020 Carmen copper mine landslide, the 2020 Singrauli 

fly ash dam breach, the 2019 Córrego De Feijão tailings dam failure, the 2018 

Cadia gold mine tailings dam failure, the 2014 Mount Polley mine tailing dam 

failure, and the 2013 Bingham Canyon copper mine landslide. Vegetation indexes 

(normalized difference vegetation index, NDVI; green normalized difference 

vegetation index, Green NDVI; modified soil adjusted vegetation index, MSAVI; 

visible atmospherically resistant index, VARI; simple ratio, SR; modified 

triangular vegetation index, MTVI2; chlorophyll index – green, CIg) and 

geological indexes (iron oxide, IO) derived from satellite imagery are used to track 

spatial and temporal change at mining facilities. The result shows that remote 

sensing indexes can be good indicators of mining failures. Change in VARI and 

IO detects the mining instability well for both vegetated and non-vegetated sites. 

Change in MTVI2 detects the failure well in vegetated sites, while MSAVI 

performs best in identifying mining instability in non-vegetated sites. 

 

7.2 Recommendations for Future Work 
 

• Leveraging big data in the machine learning-based landslide detection model 

and incorporating global landslide cases to develop a landslide detection 

guideline Landslides are catastrophic, and various characteristics, such as 

ground displacement and fluctuation of soil water content, can indicate the 

occurrence of landslides. Therefore, integrating remote sensing data and in-situ 

monitoring field data can enhance the capability of the landslide detection 

model. Data from ground-based remote sensing sensors, including lidar and 

radar, can benefit the model's accuracy and acquisition frequency. In general, 

leveraging big data and incorporating global landslide cases can improve the 

efficiency of landslide risk assessment and management.  

 

• Developing a mechanistic runout model parameters database Although 

empirical landslide mobility models have been developed to estimate the landslide 

travel distance, these models have limitations when implemented in different 
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geologic environments. This dissertation uses the 2015 Lefkada earthquake event 

as a study case to derive parameters in a simple mechanistic model calibrated 

against field observations. Extending the derivation of the mechanistic model 

parameters to global landslide cases can provide an improved understanding of 

landslide behavior and enhance the applicability of existing empirical landslide 

mobility models. 

 

• Calibrating the autonomous remote sensing-based monitoring model using 

historical and future infrastructure failure events This dissertation uses the 

2021 atmospheric river event to develop the remote sensing-based monitoring 

system of Highway 1 and eight mining failure cases for the mining instability 

monitoring system. Leveraging weather and in-situ monitoring data and adding 

historical and future failure events can improve the model's accuracy and reduce 

uncertainty while eliminating bias associated with model calibrations against 

specific events. This study demonstrated that such a remote sensing-based 

monitoring system can be fully autonomous and continuously track roadway 

infrastructure conditions and mining facilities on a large scale and after natural 

hazards. However, additional model optimizations against a wider set of 

events/data are expected to be needed.    
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