
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Development and Application of Analysis Tools Optimized For Intrinsically Disordered 
Proteins

Permalink
https://escholarship.org/uc/item/6vz0f3zv

Author
Connolly, Timothy Gene

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vz0f3zv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

DOCTORAL DISSERTATION

Development and Application of Analysis Tools
Optimized For Intrinsically Disordered Proteins

Author:
Timothy G. CONNOLLY

Supervisor:
Professor Michael COLVIN

A dissertation submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Quantitative and Systems Biology
School of Natural Sciences

Committee:

Ajay Gopinathan, Chair

Michael Colvin

Christine Isborn

Shawn Newsam

April 27, 2018

http://www.ucmerced.edu
http://qsb.ucmerced.edu
http://naturalsciences.ucmerced.edu


Figures 5.1 - 5.5, 5.10: Copyright  2016 WILEY VCH Verlag GmbH & Co. KGaA, Weinheim‐

Chapters 1- 4, 6: Copyright 2018 Timothy Connolly



iii

UNIVERSITY OF CALIFORNIA

MERCED

Development and Application of Analysis Tools Optimized For Intrinsically
Disordered Proteins

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Quantitative and Systems Biology

by

Timothy G. CONNOLLY

May 2018

The Dissertation of Timothy G. Connolly is

approved:

Ajay Gopinathan, Chair

Michael Colvin

Christine Isborn

Shawn Newsam

http://qsb.ucmerced.edu


iv

Curriculum Vita

Timothy G. Connolly

Quantitative and Systems Biology
School of Natural Sciences
University of California, Merced

email: tconnolly@ucmerced.edu
url: https://github.com/colvin-lab/g_isd

Fields of Study

Computation Biophysics

Molecular Dynamics Simulations

Intrinsically Disordered Proteins

Cellular Signaling Networks

Machine Learning

Mathematical Programming

Education

2012-2018 Doctor of Philosophy in Quantitative and Systems Biology, University of California,
Merced, Merced, CA: Molecular dynamics simulations of intrinsically disordered
proteins. The continuum of protein disorder and flexibility. Development of analysis
tools optimized for proteins with disordered regions. Applying principles of machine
learning to biological systems in order to implement dimensionality reduction and
novel clustering methods.

2011 Master of Science in Biomedical Engineering, Wayne State University, Detroit, MI:
Simulations of cellular signaling networks based on enzyme kinetics.

mailto:tconnolly@ucmerced.edu
https://github.com/colvin-lab/g_isd


v

2006 Bachelor of Science in Bioengineering, University of Washington, Seattle, WA: Molec-
ular dynamics simulations of the von Willebrand Factor responsible for von Wille-
brand Disease. Supervisor: Wendy Thomas.

Publications

2016 Xingyuan Shen, Timothy Connolly, Yuhui Huang, Michael Colvin, Changchun Wang,
Jennifer Lu. (2016) Adjusting Local Molecular Environment for Giant Ambient
Thermal Contraction. Macromol. Rapid Commun., 37: 1904-1911. doi:10.1002/marc.201600045

2014 Timothy G. Connolly, David Ando, Robert L. Wang, Ajay Gopinathan, Shawn D.
Newsam, Michael E. Colvin. (2014) Identifying Local Regions of Order and Disorder
in FG-Nucleoporins and Partially Disordered Proteins Using Molecular Dynamics
Simulations. Biophysical Journal, Volume 106, Issue 2, 608a.

2014 Robert L. Wang, Timothy G. Connolly, Joshua L. Phillips, Amanda V. Miguel, Ajay
Gopinathan, Shawn D. Newsam, Michael E. Colvin. (2014) Comparison of Metrics
of Inter-Structure Distance When Applied to Molecular Dynamics Simulations of
Intrinsically Disordered Proteins. Biophysical Journal, Volume 106, Issue 2, 610a -
611a.

2012 Timothy G. Connolly, Robert L. Wang, Amanda V. Miguel, Joshua L. Phillips, Ed-
mond Y. Lau, Michael E. Colvin. (2012) Measuring Disorder and Dynamical Prop-
erties of FG-Nucleoporins. Biophysical Journal, Volume 104, Issue 2, 233a - 234a.

Software

g_isd Performs numerous types of protein analyses based on the concept of inter-structure
distance. Estimates explored conformational space and dynamics of exploration. De-
tects local flexibility and disorder in folded proteins. Detects local stiffness and struc-
ture in disordered proteins. Assigns order parameter. Implements classical multidi-
mensional scaling and a dimensionality estimator. Performs protein clustering using
hierarchical spectral clustering and K-means spectral clustering.

doCluster.m Protein ensemble visualization and clustering tool for the GNU Octave or MAT-
LAB programming environments. Displays the exploration of protein conformational
space in 3 or 6 dimensions. Performs several methods of ensemble clustering.

RanchaR An efficient, parallelized random polymer chain generator for the R environment.
Generates ensembles of polypeptides with entropic chain behavior using a self-avoiding
random walk. Applies filters to generate ensembles with specified sizes.



vi

g_dijkstra Computes correlated protein motion based on mutual information theory. Applies
Dijkstra analysis to identify communication pathways in proteins.

g_shape A port of the pre-existing g_shape analysis tool for compatibility with Gromacs ver-
sions 5.1+ and 2016.X.

Teaching

2015-2017 Calculus. Lecture. Undergraduate.

2016 Introduction To Scientific Data Analysis. Computer lab. Undergraduate.

2015 Biostatistics. Computer lab and lecture.

2014 Molecular Dynamics. Computer lab. Graduate and undergraduate level course.



vii

UNIVERSITY OF CALIFORNIA, MERCED

Abstract

Quantitative and Systems Biology

School of Natural Sciences

Doctor of Philosophy

Development and Application of Analysis Tools Optimized For Intrinsically
Disordered Proteins

by Timothy G. CONNOLLY

The study of intrinsically disordered proteins has rapidly advanced since the identification
of the role they play in neurodegenerative diseases. Molecular dynamics simulations of
disordered proteins have become common, but analysis tools optimized for their study have
lagged behind. Both fully and partially disordered proteins present similar challenges: a
vast fold space and difficultly in distinguishing meaningful protein motion. We have imple-
mented an analysis tool based on inter-structure distance. This tool, g_isd, quantifies the dif-
ferences between protein conformations. Our analysis is able to identify local regions that
are flexible or disordered in otherwise folded proteins by employing a universal parameter
that we developed to describe disorder. This order parameter has been scaled to be compa-
rable between all proteins regardless or size or sequence length. We present one of the only
clustering algorithms truly optimized to study protein dynamics and are making it available
as open source software. This hierarchical spectral clustering applies empirically-derived
data to estimate meaningful protein motion allows unsupervised molecular dynamics clus-
tering in reduced dimensional space. We apply our approach to the disordered loop region
of a cystine knot protein. Analysis describes the dynamics of this loop containing a targeted
binding sequence for the cancer-associated integrin αvβ6 protein. A sequence of steps to
dock the cystine knot protein to its target as a large ligand is characterized. Finally, we
analyze the disorder of a synthetic polymer with the useful property of thermal contraction.
Molecular dynamics studies with a customized force field explain that a small difference
in a single bond leads to significant disorder. The efficiency of thermal contraction can be
modulated by varying levels of disorder in the material.
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Chapter 1

Measures of Inter-structure Distance

1.1 Background

Observations of the structural similarities between proteins have been widely uti-
lized in bioinformatics to reveal evolutionary relationships and categorize protein fold mo-
tifs [1–3]. While there are numerous accurate and useful measures of inter-structure dis-
tance (ISD) between like protein structures [4], inferring relationships between distantly
related proteins has required the development of tools to quantify the similarities and dif-
ferences between highly divergent structures [5, 6]. Natively folded proteins exist in a
highly constrained dynamical subspace with only a few essential degrees of freedom [7].
On the other hand, intrinsically disordered proteins (IDPs) exist in a naturally unfolded and
unconstrained state consisting of an ensemble of transient, dissimilar conformations [8–
12]. These ensembles are in many ways analogous to sets of distantly related proteins, and
therefore some of the common methods to calculate ISD may not be appropriate.

Knowledge of IDPs has matured in recent years with advances in proteomics to-
wards predictions of disorder [13] and the establishment of databases for disordered pro-
teins [14, 15] and native protein flexibility [16]. Molecular dynamics (MD) simulations
of IDPs are capable of estimating subsets of these ensembles [17, 18], but most current
tools to analyze MD trajectories are optimized to study folded proteins sampling relatively
small conformational spaces. In recent years, several algorithms have been developed with
the purpose of analyzing MD simulations of disordered proteins which use aligned root-
mean-square deviation (RMSD) as the underlying method to measure the difference be-
tween structures [19–22]. The original motivation for the work presented here was the
observation that the commonly used method of measuring ISD, RMSD, appears to saturate
to a maximal distance within tens to hundreds of nanoseconds in simulations of highly dis-
ordered proteins (Figure 1.1). Once the method of comparison is saturated to a maximal
value, RMSD is unable to differentiate between structures by via ISD. For MD simulations
of IDPs for even moderate durations, RMSD computes that the majority of paired clusters
are nearly equally distant from one another. RMSD is also highly dependent on the size of
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the structures being compared while MD simulations of IDPs show a wide variance in the
radius of gyration (Rg) [23]. For IDPs with nearly entropic chain behavior, the structural
ensemble will contain both extended and compact globular conformations

The dynamics of IDPs are frequently described as similar to random coils [24];
however, observations that IDPs are often more compact than random coil behavior would
predict [25, 26] suggests the behavior of IDPs is more complex: possibly modulated by
charge content and solvent quality [27, 28]. Both computational and experimental ap-
proaches have revealed short-lived, metastable conformations when studying specific sys-
tems of IDPs [29, 30] which indicates that there will be utility in the future for clustering
methods optimized for the unique energetic and conformational landscape of IDPs [21]. As
it becomes clear that the fold space of proteins is continuous rather than discrete [31] and
that protein disorder is a continuum rather than a transition [32], tools optimized for the
study of IDPs can be applied to certain folded proteins as well.

We have created and validated several tools based on the libraries and interface of
the MD simulation software Gromacs [33–38]. In addition, we have completed a library
which implements 16 measures of inter-structure distance (ISDM). The ISDMs that we
have investigated include modifications to the standard RMSD, various algorithms using
internal coordinates such as backbone angles and dihedrals, correlation coefficients based
on internal and aligned external coordinates, and two additional measures of structure com-
parisons based on recent publications: MAMMOTH [39] and elastic shape analysis [40].
By implementing a wide variety of approaches to calculating ISD, our analysis is robust to
many types of biological systems. Internal proteins coordinates using backbone angles are
less size-dependent; however, they are generally only applicable to complete stretches of
protein polymers. On the other hand, binding sites tend to be spatially associated without
being directly bonded. Therefore, external coordinate based systems such as RMSD can be
applied where internal coordinate based systems would fail. Some ISDMs may have more
sensitivity to large changes in structure (IDPs) while others may have more sensitivity to
small changes in structure (folded proteins). The ISDMs are tested based on: (1) their abil-
ity to differentiate more disordered proteins from less disordered one, (2) how quickly they
saturate by measuring a maximal distance between proteins, and (3) their ability to compare
different protein systems based on size-independence.

The ISDM options were tested on a set of three simplified model IDPs with a
known spectrum of disorder. These model IDPs are homopolymer systems that include
a highly disordered and flexible polypeptide (polyglycine), a polymer with significant tran-
sient structure and backbone rigidity (polyglutamine), and a third polymer which displays
a mixture of the two behaviors (polyalanine).

Experimental results of polyglycine show both a preference for highly flexible,
extended conformations [41] and self-aggregation into disordered amyloid-like fibrils [42].
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FIGURE 1.1: A 1.0 µs MD simulation of a 50 amino acid fragment of
FG-nup nsp1 was sampled every 100 ps. Decorrelation of mean RMSD
(blue line) is set against the range from the minimum to maximum val-
ues of aligned RMSD (area shown in red). The range of aligned RMSD
rapidly approaches a measure of unaligned RMSD (black line) which is a
representation of the maximum RMSD possible for a molecule of the given
size. The decorrelations are averaged across all pairs of frames separated
by the time shown, ∆t. Within 30 ns, the aligned RMSD of the maximally
distant structures is saturated since the ceiling of the RMSD range is es-
sentially constant and nearly equal to unaligned structures. In addition, the
decorrelation of the mean ISD reveals most of the sensitivity to average

distance is lost within 50 ns of simulation time.
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MD simulations of polyglycine show more compact but still highly flexible and disordered
behavior [43].

MD simulations of polyalanine reveal significant proportions of α-helical structure
in agreement with experimental results [44, 45]. However, simulations of longer polyala-
nine chains were shown to have a phase transition to a more complex helix-turn-helix en-
semble for greater than 40-45 amino acids [44]. Polyglutamine is a disordered but intrinsi-
cally stiff polypeptide [46] which forms collapsed spherical globules in water [47].

MD simulations of polyglutamine confirm that the protein is disordered but tends
to form significant proportions of β-sheet secondary structure [48, 49]. In addition, MD
simulations of the polypeptide with the addition of small concentrations of NaCl show
significant α-helical structure [50]. These three systems were chosen for MD simulations
because we believe them to follow a spectrum from most disordered (polyglycine) to least
disordered (polyglutamine) without the additional complication of variations of disorder in
local regions seen in more complex sequences.

In addition to simplified polymers, we have chosen to test segments of nucleoporin
proteins rich in phenylalanine-glycine repeats (FG-nups) as our model system of realistic
IDPs. FG-nups are natively unfolded [51] yet have a known function in gating protein dif-
fusion across the nuclear pore complex [52]. FG-nups have complex amino acid sequences
with regional variance in charge content and may display consistent compaction under na-
tive conditions [53].

1.2 Methods

1.2.1 Implementation of ISDMs

To implement the library of ISDMs described, an analysis tool was developed based
on Gromacs functions and libraries [33] called g_isd. Analysis requires trajectory and topol-
ogy files as input in Gromacs-compatible formats. The user must also choose a single option
from the implemented methods to compute ISD between structures.

Figure 1.2 explains the basic algorithm used by the g_isd analysis tool. Briefly,
g_isd loads the trajectory and topology information then compares every possible pair of
structures using the ISDM option chosen by the user. Each pair of structures results in
an ISD calculation that fills in one position of the ISD matrix. The entire ISD matrix
represents all possible pairwise comparisons. There are options for g_isd to operate on
either the entirety or only a portion of the calculated ISD matrix. As an example, a pair of
structures is highlighted in red, and the rmsd option is used to calculate their inter-structure
distance as 1.63 nm which fills in one position of the ISD matrix. Note that the ISD matrix
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FIGURE 1.2: Analysis workflow for the g_isd analysis tool. The
command-line application accepts trajectories from MD simulations in
Gromacs-compatible formats. The ISD of every pair of structures is calcu-
lated using one of the implemented ISDMs to build an ISD matrix. Several
types of analysis utilize the computed ISD. As an example, (1) a pair of
structures marked in red is chosen, (2) the pair is compared with (3) the
RMSD ISDM for a resulting distance of 1.63 nm. (4) The result is stored

in the ISD matrix (red background).
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TABLE 1.1: Sequences of simulated nucleoporins.

nsp1 AFSFGAKPDENKASATSKPAFSFGA
KPEEKKDDNSSKPAFSFGAKSNEDK

nup116 ASSSGAKPDENKASATSKPASSSGA
KPEEKKDDNSSKPASSSGAKSNEDK

is generally symmetric, but some of the implemented ISDMs do not guarantee this. The
ISD matrix can be coerced into a symmetric matrix with the -symmetric option.

The analysis tool g_isd uses the ISD matrix to carry out a variety of analysis op-
tions. The -isd output creates a comma-separated values (CSV) format file containing the
entire ISD matrix with a summary of mean and maximum ISD. The ISD matrix in CSV for-
mat can be converted into heat map showing groupings of similar conformations over time.
Structures retaining similarity over brief periods can be identified as transient metastable
states. These metastable conformations appear as squares along the diagonal of the heat
map with low ISD scores. The areas along the diagonal between low ISD squares can be
identified as transition states. The length along the diagonal corresponds to the period of
the transition.

1.2.2 MD Simulations

All-atom MD simulations were run on protein fragments of 50 amino acids in
length using the velocity rescaling thermostat [54] and Parinello-Rahman pressure cou-
pling [55]. The yeast nucleoporins nsp1 and nup116 were simulated using three different
solvent/forcefield combinations at 300 K. The sequences used in MD simulations are given
in Table 1.1. As a model system, three simple homopolymer chains of 50 amino acids were
also simulated at 300 K: polyglycine, polyalanine, and polyglutamine. All simulations used
uncapped sequences without the addition of acetamide or N-methyl groups.

Two groups of MD simulations were used in this analysis. The first group consisted
of a larger number of short replicates. The 5 protein chains described were each simulated
in 3 different solvent environments for a total of 15 protein systems: (1) the Amber ff99SB-
ILDN force field [56–58] with the with the Generalized Born surface area implicit solvent
model, (2) the Amber ff99SB-ILDN force field [56–58] with the TIP3P explicit solvent
water model [59], and (3) the Amber ff03ws force field [60] with the TIP4P/2005 explicit
solvent model [61]. The 15 protein systems were each run in 20 replicates for a total of
300 production MD simulations. Each replicate included a 50 ns equilibration followed by
a 100 ns production run for approximately 45 µs of simulation time. The second group
of MD simulations used the Amber ff03ws force field [60] with the TIP4P/2005 explicit
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solvent model [61] for a 1,000 ns MD simulation of each protein. The longer simulations
only consist of a single replicate.

Initial starting configuration of the replicates were generated with a custom paral-
lelized R script [62–65] called random chains in R (ranchar) which was optimized to gen-
erate large numbers of randomized protein structures. Pulchra version 3.04 [66] converted
the initial randomized polymer chains to optimized all-atom protein structures. In order to
estimate the necessary simulation box size, the ranchar script was used to generate 100,000
randomized, self-avoiding entropic chains for each protein sequence. The maximum dis-
tance between residues was calculated for all generated structures to estimate the periodic
boundary conditions large enough to fit more than 95% of the structures. Explicit solvent
replicates contained approximately 40,000 to 60,000 atoms depending on the polymer.

All replicates were run through a similar set of steps involving energy minimiza-
tion; MD simulation with position restraints and a short thermalization up to 300 K; several
short NVT MD simulations with 1 fs, 2 fs, and 5 fs time steps to slowly increment the time
steps; a short NPT simulation with Berendsen pressure coupling [67]; and a 50 ns equilibra-
tion simulation using Parinello-Rahman pressure coupling [55]. Explicit solvent production
runs used several optimization to accelerate simulation times. Explicit solvent production
runs of 100 ns and 1,000 ns used virtual sites, heavy hydrogens, bond constraints, and 5 fs
time steps. MD simulations using implicit solvent were run in Gromacs version 4.5.5 with
2 fs time steps; MD simulations using explicit solvent were run in Gromacs version 2016.3
[33–38].

1.2.3 Figure Abbreviations

Figures use abbreviations for the names of ISDMs: backbone angles (ang), back-
bone dihedral angles (dih), combined backbone angles and dihedrals (angdih), φ − ψ an-
gles (phipsi), RMSD (rmsd), RMSD of backbone dihedrals (rmsdih), grid search rotations
RMSD (grot), randomly rotated RMSD (rrot), backbone angle correlation (acor), position
correlation (pcor), radius of gyration (rg), distance root mean square deviation (drms), end-
to-end distance (e2e), elastic shape analysis (esa), and MAMMOTH (mmth or mammoth).
The ISDMs grot, rg, and e2e were implemented as intentionally poor measures of ISD.

1.2.4 Further Details

Details of the individual ISDM implementations are discussed in the Implementa-
tion Details For ISDMs section.
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1.3 Results And Discussion

1.3.1 Distinguishing Polymers By Quantified Disorder

We would like to be able to use our measures of ISD to quantify the conforma-
tional sampling of systems and differentiate disordered proteins from flexible or stable ones.
Therefore, the ability to distinguish systems with varying levels of disorder is one of their
most important performance indicators.

Figure 1.3 presents the results of 13 ISDMs which were applied to 15 simulated
systems of 20 replicates each. The 15 sets consist of 5 polymers each simulated in 3 differ-
ent solvent models. For each ISDM, the mean ISD was calculated for all 300 trajectories.
For the 15 sets of MD simulations, there are a total of 105 possible paired comparisons.
We quantified the ability of our implemented ISDMs to distinguish systems based on their
disorder. Since the mean ISDs cannot be reliably predicted to follow normal distributions,
the Wilcoxon Rank Sum statistical test was applied rather than the more ubiquitous Stu-
dent’s t-test. The Wilcoxon Rank Sum test [68, 69] was applied to compare each of the
105 possible pairs of systems. The test sample sizes were 20 replicates for each system.
Using α = 0.05 and a Bonferroni correction of n = 105, results were compiled if at least
one ISDM option returned a p-value of p < 0.05/105. Figure 1.3 includes 102 out of the
possible 105 comparisons.

The detection rate for each ISDM is defined as the number of p-values where p <
(0.05/105) divided by the 102 compiled results. Note that there are no false positives, as
all tests compare different sets of simulations. The ISDMs based on internal coordinates
(ang, dih, angdih, phipsi, and rmsdih) generally performed well at distinguishing different
systems. The ISDMs that incorporated information about the backbone dihedrals were
the optimal choice for this test. As expected, the intentionally poor measures of ISD–rg
and e2e–performed poorly. The relatively poor performance of the MAMMOTH algorithm
was unexpected; however, MAMMOTH is optimized to compare molecules with different
sequences to look for genetic relationships [39]. Time steps of a single IDP will have zero
sequence variance but high tertiary structure flexibility. The study of these dynamics is
perhaps not a good usage for MAMMOTH. RMSD performed as poorly at this test as the
rg ISDM. Note that the rg ISDM only uses information about the differences in Rg of the
compared conformations.

The results of acor and pcor ISDMs consistently did not stand out among the other
ISDMs as particularly poor or impressive in both this and the following analyses. Results
for these options have been removed from the other figures to focus on the most interesting
ISDMs.

Due to the rg ISDM performing nearly as well as several other options, we attempt
to explore the relationship between quantified ISD and the size of compared structures as
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FIGURE 1.3: Wilcoxon Rank Sum tests were applied using the ranksum
implementation in Matlab 2017. Each pair of 15 systems was tested for a
total of 105 unique comparisons. Tests used sample sizes of 20 replicates
for each system. Since it is known that each system is unique, there are no
false positives. Results were compiled for the 102 comparisons where at
least one ISDM made a positive detection. In the figure, detection rate is
defined as the number of p-values where p < (0.05/105) divided by the
102 compiled tests. ISDMs incorporating information about the backbone
dihedrals made byCα atoms–dih, rmsdih, and angdih–out-performed other

ISDMs at this test.
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FIGURE 1.4: Size-dependence of ISDMs is displayed as the correlation
coefficient between the Rg and ISD. The correlation coefficient was calcu-
lated for each simulation using the ISD matrix and a Rg matrix containing
the greater of the two Rg for each pair of structures. Since there were 300
separate simulations, the results are displayed as a boxplot. The large me-
dian for the rg ISDM is not unexpected; however, the ISDMs drms and
rmsd are also extremely size-dependent. MAMMOTH and ISDMs based

on internal coordinates are mostly size-independent.

represented by the Rg. Figure 1.4 is based on the correlation between computed ISD and
the size of the larger structure being compared. Note that Rg here does not even take the
size differences into account. Correlation coefficients were calculated for each replicate,
so each boxplot contains the result of 300 correlations. The median correlation of over
0.7 is expected for the rg ISDM since it is entirely based on molecule size. However,
the ISDMs drms and rmsd also give information that largely overlaps with simple size
comparisons. The internal-coordinate-based ISDMs and MAMMOTH provide the most
unique ISD information.

1.3.2 Measurement Saturation

One of the primary motivations for implementing a library of ISDMs was the ob-
servation that RMSD, a standard and well-known method of comparing structures, seemed
to quickly saturate to a maximum value when applied to systems of IDPs (Figure 1.1).
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RMSD is sensitive to small changes in structure which is useful when comparing confor-
mations of folded proteins. However, when the reference structure is being compared to
multiple dissimilar structures, it lacks the ability to differentiate between them.

Figure 1.5 illustrates the output of a scaled decorrelation (option -sdcr of the g_isd
tool) for the synthetic polymers polyglutamine, polyalanine, and polyglycine. This simple
decorrelation algorithm averages over all pairs of frames separated by time, ∆t. The maxi-
mum ∆t that can be calculated is tf/2 where tf is the total simulation time. The reasoning
behind this is that decorrelations over longer periods of time will completely ignore por-
tions of input data. The sampling rate of the input trajectory, td, was 0.5 ns in our analysis.
The decorrelation value calculated before scaling is defined as the mean ISD over all pairs
of structures separated by time ∆t (Equation 1.1). Time step N represents the final sim-
ulation time, tf . Note that due to integer math, the value of N

2 is replaced with N
2 + 1 for

odd numbers of input time steps.

ISD∆t =
2

N

N/2∑
i

ISDti,tj tj = ti + ∆t (1.1)

As time ∆t from the reference frame increases, all the ISDMs tend toward satu-
ration. Since the units and scales of the various ISDMs are not directly comparable, each
plot in Figure 1.5 is divided by the maximum value of the plot to provide a normalized
decorrelation value. A set of 1,000 ns MD simulation production runs was performed to
provide sufficient time for all ISDMs to fully saturate. The g_isd tool incorporates several
methods to analyze time decorrelation which reduce the output data by different amounts.
In all cases, the tool produces output for no more than half of the time covered by the input
trajectory. Therefore, we chose the range of our plots’ x-axes to be 400 ns. The final 800
ns of trajectory data was used as the input to scaled decorrelation.

When applied to the most highly disordered and flexible molecules such as polyg-
lycine (Figure 1.5.c), many of the ISDMs reach 80% of maximal decorrelation nearly im-
mediately. When measuring less flexible systems such as polyglutamine (Figure 1.5.a),
most ISDMs do not approach 80% of saturation until nearly 100 ns. The ISDMs rg and e2e
become unreliable and noisy over a short period of time when applied to all three polymers.
ISDMs based on internal coordinates approach saturation but retain a controlled slope such
that on average, structures that are more distant in time can be differentiated from closer
structures. These types of ISDMs appear to be preferable when studying long-term IDP
dynamics. Note that for the highly disordered polyglycine, all ISDMs appear to achieve
full saturation by 350 ns, but rmsd and drms retain the most stable slope for the longest
period of time. When applied to polyalanine and polyglutamine, these ISDMs gave much
less desirable results.
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FIGURE 1.5: Simple decorrelation algorithm shows a tendency toward sat-
uration of ISDMs as time, ∆t from the reference frame increases. All IS-
DMs except the mirrored RMSD show a similar saturation, and the general
trend is similar across multiple systems: (A) polyglutamine, (B) polyala-
nine, and (C) polyglycine. ISDMs saturate more slowly when measuring
less disordered systems (polyglutamine) than when measuring highly dis-

ordered systems (polyglycine).
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We are often interested in using a single structure as a reference frame and attempt-
ing to distinguish which of two other structures is more distant. We define this property of
the ISDM as sensitivity, S (Equation 1.2). The g_isd tool runs this analysis with the -sens
option. Note that the NS in Equation 1.2 is an arbitrary number of frames used to average
the sensitivity. This can be set manually by the user with the -nsensitivity option. Higher
values of NS lead to more accurate and smoother results; however, the amount of output
data from the sensitivity calculation is further reduced from that of the decorrelation output
by ta = NS × td where ta is the amount of simulation time used for averaging.

Sti,tj =
1

NS

NS∑
njk=1

(ISDti,tk − ISDti,tj ) tk = tj + njktd (1.2)

Several poorly behaved ISDMs were removed from the data presented in Figure
1.6. MAMMOTH outputs discrete probability values which did not lend itself to this anal-
ysis. However, the ISDM options that gave particularly noisy output are presented as a
supplement in Figure A.1. In particular, sensitivity equal to zero and slightly negative is
expected as the ISDMs approach saturation. However, highly negative sensitivity implied
that the ISDM is giving unreliable results which see more similarity in distant structures.
Note that ISDMs rmsd, drms, and esa performed poorly applied to some but not all simu-
lations. All ISDMs based on internal polymer coordinates gave nearly identical results for
this analysis.

1.3.3 Improving ISDMs With Rescaling

We were interested in whether size-dependent ISDMs could be improved with
rescaling to a size-independent measure. The option to scale the output of these ISDMs
is -scaled in the g_isd tool. Details of the rescaling implementations are discussed in Sec-
tion 6.1. Of note, the scaled RMSD option uses a brute force approach that gives a good
approximation of maximum possible RMSD for protein structures of a particular size. The
rmsd and drms ISDMs show significant improvement at distinguishing structures based on
disorder (Figure 1.7). The rmsd option with scaling enabled was nearly as effective at this
as using the ISDMs based on internal coordinates. This may be an attractive option when
one is looking at either portions of a protein or a non-protein system: any simulation where
a polymer is not the subject.

Similarly, the scaled implementations of the rmsd and drms ISDMs are much less
size-dependent. The scaled RMSD correlates with protein size approximately the same
amount as internal coordinates (Figure 1.8). The scaling implementation is not as effective
when applied to the drms option.
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FIGURE 1.6: The sensitivity, S, of each ISDM to conformational change
was calculated as described in Equation 1.2. Most ISDMs show a grad-
ual decrease of sensitivity to conformational change as time from the ref-
erence frame increases. All three systems used the Amber ff03ws force
field optimized for solute solvent energy balance to simulate IDPs. The
homopolymers (A) polyglutamine, (B) polyalanine, and (C) polyglycine;

were solvated with tip4p/2005 explicit solvent and run at 300 K.
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FIGURE 1.7: The ability to distinguish protein systems by quantified dis-
order is significantly improved among size-dependent ISDMs by rescaling
the calculated ISD. The rmsd ISDM with scaling enabled performs nearly

as well as ISDMs based on internal coordinates (Figure 1.3).

FIGURE 1.8: Several of the highly size-dependent ISDMs can be improved
by rescaling. The ISDM option rmsd with scaling enabled is nearly as size-

independent as ISDMs based on internal coordinates (Figure 1.4)
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Figures A.2 and A.3 show no significant differences in decorrelation or sensitivity
based on rescaling.

1.3.4 Harmonic Vs Trig Sums Of Internal Coordinates

We were interested in whether different mathematical methods of summing the
differences in internal coordinates may affect the characteristics of the ISDMs based on
internal coordinates. These can be compiled as the arithmetic mean of the cosines of angle
differences or as the root-mean-square of angle differences. This option can be switched in
the g_isd tool with the -trig option. In short, Figures A.4, A.5, and A.6 reveal no significant
differences in decorrelation, sensitivity, or the ability to distinguish systems.

1.4 Conclusions

The comparison of ISDMs when applied to simulations of disordered proteins re-
veals that the optimal measure may change depending on the analysis desired or the system
studied. ISDMs based on internal coordinates gave good overall performance in our com-
parisons; however, they are limited to continuous sections of protein backbone. They cannot
generally be applied to disconnected amino acids. Several ISDMs saturate too quickly to be
applied to highly disordered and flexible proteins. An interesting point is that using back-
bone angles based only on the Cα appears to give slight advantages in detection of differ-
ences between systems compared to the more commonly used φ−ψ angles representation.
This small difference may be specific to the systems that we tested, but it is notable in that
there are some systems where the φ− ψ angles cannot be calculated due to missing atoms.
Using φ−ψ angles to calculate ISD is difficult to use in the analysis of most coarse-grained
simulations and in all non-protein polymers. We theorize that perhaps enough information
about the overall structure of the protein is retained by coordinates of the Cα atoms. The in-
ternal coordinate ISDM options based only onCα atoms–ang, dih, angdih, and rmsdih–may
also ignore some of the extraneous thermal fluctuations in individual bonds.

An important result is the demonstration that, with the exception of several inten-
tionally poor ISDMs, RMSD is less capable of detecting differences between systems with
varying levels of disorder than any other method of calculating ISD attempted in this study.
Not only does the alignment of molecules becomes less meaningful as the dissimilarity of
the two structures increases, RMSD is also highly size dependent. IDPs often exist as an en-
semble of conformations including both highly extended conformations and more compact
spherical and ellipsoidal structures. The scaled RMSD implemented in these analysis tools
attempts to correct for the size dependence and shows significant improvements. Scaled
RMSD would be highly useful in looking at segments of proteins which are not directly
connected as polymers: for example, flexible binding sites.
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While the esa ISDM showed poor overall performance in the aspects we tested
by our comparisons and incurs high computational costs, a positive aspect of elastic shape
analysis is that it resamples structures as curves in space. This allows it to compare struc-
tures that do not need to be homologous and do not necessarily even need to be similar in
length.

MAMMOTH was originally designed to score attempts to solve protein folds with
little structural information [39]. MAMMOTH would likely be useful in certain targeted
and folding MD simulations which begin with highly dissimilar structures or when com-
paring an ensemble with different sequences.

The library of ISDM implementations has been released along with the source code
for the analysis tool g_isd which was used to generate these results. The g_isd tool also
employs this library of ISDMs to implement a variety of analyses: clustering algorithms,
improved visualization through dimensionality reduction methods, and the identification
local disorder and flexibility within folded proteins.
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Chapter 2

Identifying Local Disorder And
Flexibility

2.1 Background

2.1.1 The Disorder/Order Spectrum

Proteins tend to exist along a continuum of order to disorder [32], and examples
of functional unfolded proteins are widely acknowledged [70–72]. Intrinsically disordered
proteins (IDPs) are involved in the regulation of cellular signaling networks and often show
a propensity for binding-induced folding [72, 73]. The transition from a free disordered
state to a folded state induced by binding has been studied through kinetics [74], real-time
NMR spectroscopy [75], and folding simulations [76]. The repercussion of this duality of
states between unfolded proteins and their transient folded state is that many IDPs may have
local regions of secondary structure and order in the same way that many folded proteins
have local regions of flexibility and disorder [77].

Protein flexibility is in fact advantageous when adaptability is required based on the
target of binding. The continuum of folded proteins, partially disordered proteins (PDPs),
and IDPs may fit into the relationship between structure and function [78]. DNA-binding
proteins may first bind non-specifically to DNA before interacting with a specific target
sequence [79] and molecular plasticity has been shown to aid in target recognition [80].
Disorder also tends to be prevalent in stress and shock response protein molecules which
are most important in conditions where folded proteins may experience denaturing events
[77, 81].

A simple, intuitive measure of order for a protein structure was proposed by Fisher
and Stultz in 2011 which they refer to as the order parameter [32]. The order parameter
defined by this algorithm is based on a scaled mean of the inter-structure distance (ISD) as
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calculated by root-mean-square deviation (RMSD) after fitting. This approach has the ben-
efit of incorporating structural data into the prediction; however, the original algorithm does
not produce results for individual amino acids as many sequence-based disorder predictors
do [82–84]. This provides a novel way to analyze local flexibility and disorder in proteins
rather than relying solely on root-mean-square-fluctuation calculations.

We attempt to quantify the continuous fold space of proteins [31] through the ap-
plication of a library of measures of interstructure distance (ISDMs) optimized to study the
conformations of IDPs in molecular dynamics (MD) simulations. We present the applica-
tion g_isd which relies on the Gromacs software package [33–38].

The algorithm used by g_isd to calculate a universal quantity of disorder and detect
local regions of flexibility and disorder is illustrated in Figure 2.1. The ISD is computed by
comparing every pair of structures from the input ensemble or MD trajectory. Separate cal-
culations are made for each individual amino acid using an ISDM which is independent of
protein size and sequence length. The ISD is averaged and rescaled to a value between 0 and
1: these values correspond to an average folded protein and an entropic chain respectively.

We present a method to calculate a universal representation of disorder which al-
lows the user to compare regions in different proteins on the same scale without dependence
on the protein size or sequence. The order parameter will allow comparison along the entire
continuum of order from stable proteins to flexible regions in folded proteins to PDP and
IDPs.

2.1.2 Studied Protein Systems

We apply this approach, using the analysis tool g_isd, to both folded and disor-
dered proteins. We observe local flexibility in cystine knots and one of the folded binding
domains of the p53 tumor suppressor protein. Conversely, we observe local regions of rel-
ative stability in IDPs using MD simulations of nucleoporins and experimental ensembles
of β-synuclein.

The cystine knot is a small structural motif defined by the presence of three stabi-
lizing disulfide bonds. A family of plant cystine knot proteins, called cyclotides or cyclins,
contain a disulfide bond connecting their ends which makes them cyclic. This property
allows them to be one of the smallest known folded proteins [85]. Cystine knots provide
a particularly difficult case for sequence-based disorder prediction tools since much of the
stability of the folded protein is provided by disulfide bridges. With only 34 amino acids,
the MCOTI-II protein lacks the large hydrophobic core necessary for most ordered proteins
to fold. The trypsin inhibitor protein MCOTI-II is known from experimental evidence to be
folded with a flexible loop 1 region [86].
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FIGURE 2.1: Analysis algorithm to calculate a universal disorder quantity using the g_isd
analysis tool. (1) The command-line application accepts trajectories from MD simulations in
Gromacs-compatible formats. (2) The ISD of every pair of structures is calculated using one
of the implemented ISDMs to build an ISD matrix. (3) The ISD is calculated independently
for individual amino acid residues. (4) Only ISDMs which compute ISDs that are independent
of protein size and sequence length are appropriate candidates to calculate a universal measure
of disorder. (5) The computed ISD is rescaled to a range from the expected variance of an

average folded protein to a random entropic chain.
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The DNA-binding domain of the tumor protein p53 is a folded sub-domain of a
partially disordered protein. The p53 protein is an important part of cell-cycle regulation
and triggers DNA repair [87]. Dysfunction of the p53 protein is heavily associated with a
variety of cancers.

FG-nucleoporins (FG-nups) are functional IDPs containing numerous phenylalanine-
glycine repeats. FG-nups are natively unfolded proteins [51] present is the nuclear pore
complex and involved in the gating mechanism. [52]. FG-nups are an interesting model of
IDPs as they do not fold but tend to be more compact than true entropic chains [53].

The IDP β-synuclein is closely related to α-synuclein which is involved in the ag-
gregation of plaques that cause Parkinson’s disease [88]. However, β-synuclein is missing
11 residues from the portion of the protein that forms the core of amyloid plaques and is re-
sistant to aggregation [88]. In fact, β-synuclein is known to inhibit α-synuclein aggregation
both in vivo and in vitro [89].

In sum, we are attempting to cover a significant proportion of the continuum from
order to disorder. The studied protein systems cover highly extended and flexible chains,
compact but disordered molten globules, stable proteins with disordered sections, and fully
folded proteins with some local flexibility.

2.2 Methods

Analysis tools optimized to study molecular dynamics simulations of IDPs are rare,
so we discuss how g_isd was optimized to cover the continuum of order to disorder. We
focused on improving the results of the Fisher-Stultz algorithm in several ways: (1) produce
an overall value of disorder with individual scores for each amino acid, (2) easily plot
the output in a format which is familiar to anyone who has used sequence-based disorder
prediction tools, and (3) implement measures of ISD based on both internal and external
protein coordinates. Note that not all ISDMs implemented in g_isd’s library are capable of
calculated ISD for individual residues. We present only the subset of ISDMs that fulfill this
condition.

2.2.1 Disorder Parameter Optimization

Optimization of the order parameter scaling constants comprises two primary goals:
(1) an estimate of the maximum disorder of a random entropic chain and (2) an estimate of
the structural variance expected in an average folded protein. Estimating these properties
for a selection of ISDMs allows linear rescaling of the mean ISD to a globally representative
estimate of disorder.
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The upper theoretical limit of structural variance was calculated over a represen-
tative phase space by generating random polymer chain structures grouped by protein size
(represented by the radius of gyration,Rg) and polymer sequence length. The random poly-
mer chains were produced with a custom script written for the R environment [62] called
random chains in R (RanchaR). Acceleration via parallelization was accomplished with
assistance from external packages [63–65].

Polyglycine homopolymer chains with amino acid sequence lengths ranging from
20 to 400 were generated following a self-avoiding random-walk model (SARW). The gen-
erated chains were filtered and sorted by Rg into specific groups from 0.8 to 4.8 nm. Only
chains within 10% maximum error of one of the target Rg values were kept. In total, sev-
eral million chains needed to be generated to produce the 149 ensembles of 1,000 structures
each representing the desired phase space of protein size and sequence length. Pulchra ver-
sion 3.04 [66] was applied to convert the initial randomized polymer chains to optimized
all-atom protein structures.

For the order parameter calculated by g_isd to be a universal representation of dis-
order, it must be independent of protein size and sequence length. To determine whether
ISDM options fulfilled these requirements, plots of the computed ISD of phase space were
created using the matplotlib package [90] from python 3. Since the chain generation algo-
rithm allowed a range of Rg values for each ensemble, the target Rg was not used in the
phase space plots. Instead, the mean Rg of the structures in the ensemble was used which
is guaranteed to be close to the target value.

Structural variance explained by thermal noise in an average folded proteins was
estimated using MD simulations sampled from the Dynameomics database [16]. The Dy-
nameomics database uses a SQL format of properties rather than a set of raw trajecto-
ries. Therefore, individual properties necessary to create a trajectory were downloaded to
text files representing 100 proteins from the database. These were converted to Gromacs-
compatible gro format files using a python script, and the Gromacs tools trjcat and trjconv
were use to compile the individual time step frames into MD trajectories.

Estimates of order and maximum disorder were carried out using the g_isd tool.
ISD was averaged over all amino acid residues over all pairs of structures in each ensemble
and trajectory described. The results were compiled with the assistance of GNU parallel
[91].

2.2.2 MD Simulations

To validate our results and illustrate applications, we have completed MD simula-
tions of several systems.
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MD simulations were run on the trypsin inhibitor MCOTI-II using the wild type
structure from the protein database (pdb) entry 1IB9 [86] and a two disulfide intermediate
structure from pdb entry 2P08 [92] for 500 ns and contained approximately 25,000 atoms.
The MD simulation of p53 uses the structure from pdb entry 2OCJ [87] and has a production
run of 200 ns. The all atom simulations were carried out in explicit solvent using the tip3p
water model [59] and were run with the Amber99SB-ildn force field [56–58] with 2 fs time
steps in Gromacs 4.6.2 [33–38]. Production runs used the velocity rescaling thermostat [54]
at 310 K and Parinello-Rahman pressure coupling [55].

All-atom MD simulations were run on a protein fragment of 50 amino acids in
length using the velocity rescaling thermostat [54] and Parinello-Rahman pressure cou-
pling [55]. The yeast FG-nucleoporin nup116 was simulated with the TIP4P/2005 explicit
solvent model [61] using the Amber ff03ws force field [60] with 5 fs time steps for 1,000
ns production runs. To achieve stability with 5 fs time steps, the virtual sites and heavy
hydrogens optimizations were used. The nup sequence of the MD simulations is given in
Table 1.1 and uses an uncapped sequences without the addition of acetamide or N-methyl
groups. The initial configurations of coordinates were generated with RanchaR, and the
system contained approximately 50,000 atoms.

2.2.3 Ensemble Of Experimental IDPs

An ensemble of conformations of the β-synuclein IDP derived from experimental
NMR data [88] was downloaded from the Protein Ensemble Database [15].

2.2.4 Figure Abbreviations

Figures use abbreviations for the names of ISDMs: backbone angles (ang), back-
bone dihedral angles (dih), combined backbone angles and dihedrals (angdih), φ−ψ angles
(phipsi), RMSD (rmsd), RMSD of backbone dihedrals (rmsdih), and the distance root mean
square deviation (drms).

2.2.5 Further Details

Details of the individual ISDM implementations are discussed in the Implementa-
tion Details For ISDMs section.
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2.3 Results And Discussion

2.3.1 Correcting For Size and Sequence Length Dependence

ISDMs based on internal protein coordinates are size-independent and sequence
length-independent by default. The phipsi option has essentially no variance across the
tested phase space in Figure 2.2.a. In these plots, single color in the output reveals the
same calculated ISDs at all points along the phase space. The plotted area was heavily
sampled with ensembles of SARW entropic chains and then interpolated with the function
griddata from the scipy.interpolation package for python 3 [93]. Areas plotted in white
are outside of the interpolated area and are not part of the sampled phase space. These
areas are either highly extended or compact forms and are unlikely to represent the natural
conformations of a truly entropic chain.

These ISDMs are good candidates to calculate a universal quantity of disorder.
Furthermore, since the calculated ISDs have a flat response across the entire phase space,
the ISD of fully disordered entropic chains can be estimated by combining the results across
all 149 ensembles.

Conversely, the ISDM options rmsd (Figure 2.3.a) and drms (Figure A.7.a) are
heavily dependent on protein size. The calculated ISDs increase continuously as the Rg
increases. A method to scale rmsd and drms to make them less size-dependent, described
in Section 6.1, was applied (Figure 2.3.b and Figure A.7.b). This improves the result in
two ways. A larger portion of the phase space has a flat ISD, and the calculated ISDs no
longer trend purely with size. Proteins with a longer sequence will also tend to take up
more space, and the scaled rmsd and drms have a relatively flat trend diagonally on the
phase space plot.

In general, these ISDMs are unreliable when comparing highly extended proteins
(bottom right of the phase space) with compact ones (top left). Even with the scaling cor-
rection, the rmsd and drms options are not good candidates to calculate a universal quantity
of disorder. However, there are numerous systems where it is impractical to use internal
protein coordinates (binding sites, proteins with missing domains, and non-polymers).

The phase space was extended up to 400 amino acid residues and Rg of 4.8 nm
with similar results. See supplemental figures in Section A.2.2.

2.3.2 A Universal Quantity of Disorder

The calculated ISDs for the ensembles of random chains across the entire phase
space were compiled to give a single quantity which represents the maximal disorder equiv-
alent to a random entropic change. A similar quantity was calculated for the 100 folded
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FIGURE 2.2: The ISDMs phipsi and rmsdih calculate ISDs which are not
dependent on protein size or sequence length. The single output color re-
veals that the average ISD at each point in the phase space is the same.
Areas plotted as white are outside of the interpolated area. This means
that no ensemble of random chains was produced with the corresponding

combination of sequence length and Rg .
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FIGURE 2.3: (a) The dependence of ISD on size and sequence length is
significant for the rmsd ISDM. Since proteins of different sizes cannot be
compared directly, rmsd is not a suitable candidate for a universal measure
of disorder. (b) Scaling improves the size-independence properties of rmsd
significantly; however, conformations with relatively small Rg still record

smaller ISD.
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TABLE 2.1: For each ISDM, the parameterized values used to calculate a
universe quantity of disorder are displayed. The Order value corresponds
to the expected ISD of an averaged folded protein estimated by compil-
ing results of 100 folded proteins from the dynameomics database. The
Disorder value is the ISD of a fully disordered and random entropic chain.

ISDM Order Disorder
phipsi 0.11304 0.48496
ang 0.03634 0.17721
angdih 0.04714 0.17721
dih 0.08083 0.47773
rmsdih 0.14304 0.66732
rmsd 0.08091 0.52096
drms 0.04299 0.25439

TABLE 2.2: The effect of the -scaled option on the parameters of the rms-
dih ISDM.

Order Disorder
Scaled 0.14304 0.66732
Unscaled 0.34429 0.46083

protein trajectories from the Dynameomics database. The medians of the compiled values
for each ISDM are reported in Table 2.1. For ISDMs rmsd, drms, and rmsdih, only the
parameters for the scaled versions of the ISDMs are reported since they have significant
advantages. When quantifying disorder, the analysis tool g_isd linearly rescales the cal-
culated ISD for each amino acid residue using these parameters. This analysis option is
chosen -order command. The parameters may also be manually set by the user with the
-zero and -one command-line options.

The -scaled command-line option is suggested for the rmsd, drms, and rmsdih IS-
DMs. This attempts to correct the size-dependent error associated with the rmsd and drms
ISDMs. However, the option works differently for rmsdih. As described in Section 6.1,
rmsdih is implemented to use local alignments of Cα backbone atoms. The result is a mea-
sure using internal protein coordinates that is expressed in normal distance units (nm). This
is carried out using a shift to spherical coordinates; however, the r variable in the spherical
coordinates corresponds to a degree of freedom that is frozen out in polymers due to pep-
tide bonds. Unfortunately, there is still a significant amount of thermal noise present along
these degrees of freedom. For the rmsdih ISDM, the -scaled option manually sets r = 1
which converts the ISD calculated by rmsdih to a unit-less quantity. The improvement to
the rmsdih ISDM is reported in Table 2.2. The contrast range between the quantity reported
as order versus disorder is increased more than threefold.
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FIGURE 2.4: Comparison of ISD variance of folded proteins from the Dy-
nameomics database. Each box plot has a sample size of 100 MD trajecto-
ries of folded proteins and shows several consistent outliers. Therefore, the
median is a less biased approximation of the order constant than the mean.

During the estimation of the order and disorder constants, the means and medians
of the compiled ISDs were similar. However, calculated ISDs of MD trajectories from the
dynameomics database consistently revealed several more disordered outliers (Figure 2.4).
Therefore, the median was chosen as a less biased estimate.

Figure 2.5 illustrates the compiled ISDs of the 149 ensembles of SARW entropic
chains across the entire phase space of protein size and sequence length. The calculated per
residue ISDs are divided by the median to display all values on a comparable scale. The
box plots only include results for scaled versions of the rmsd, drms, and rmsdih ISDMs.
Even after partially correcting for size-dependence, the rmsd and drms ISDM options show
significantly more variance than ISDMs based on internal coordinates.

2.3.3 Applications: PDPs

The order parameter is implemented in the g_isd analysis tool with the -order op-
tion and outputs to the xvg format by default. A simple script, xvg2bf.bash, is able to
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FIGURE 2.5: Comparison of ISD variance measured with ensembles of
SARW entropic chains. Each box plot contains statistics for a sample size
of 149 ensembles across the sampled phase space of protein size and se-
quence length. Calculated ISDs were normalized by dividing by the me-
dian. The drms and rmsd ISDM options show sizable variance because

their size-dependence is only partially corrected by the -scaled option.
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convert the calculated order parameter into a simple text file which the Gromacs tool edit-
conf understands. The editconf tool is able to create pdb files where the beta factor field has
been overwritten with the order parameter calculations. In the following figures, molecules
were rendered in VMD with color set according to beta factors [94].

A set of functions for GNU Octave [95] or MATLAB are available to read in the
calculated order parameter values and the protein sequence to display.

Proteins heavily reliant on disulfide bridges to maintain structure, such as cyclotides,
are a difficult problem for sequence-based disorder prediction software. The sequence in-
formation is insufficient to determine the number of disulfide bonds in a protein structure
as it is dependent on the protein’s tertiary structure. We explore a more accurate disorder
prediction approach employing MD simulation and calculate the regional disorder.

In Figure 2.6, the analysis of MD simulations of wild-type MCOTI-II (pdb entry
1IB9) protein detects the loop 1 region which has been observed to be disordered. The
order parameter is calculated to be 1.0 for the serine and glycine residues 1 and 2 which are
automatically colored red. The algorithm considers this terminal region to be as disordered
as an entropic chain. The order parameter values calculated for the loop 1 region imply
flexibility but not an equivalence to a fully disordered protein. The other sections of wild-
type MCOTI-II are calculated to be as stable as an average folded protein.

Figure 2.7 contains the analysis carried out on the MCOTI-II intermediate with
only two of three disulfide bonds formed. As is immediately obvious from the coloring of
the protein structure, a significant portion of the loop 1 and loop 2 regions of the protein
are highly flexible to fully disordered. In addition, significantly more amino acid residues
are disordered in the intermediate form than in the wild-type. The beta factor illustration of
flexibility facilitates the identification of the disordered regions within the tertiary structure
of the protein rather than just along the sequence.

The p53 tumor suppressor protein contains 194 amino acids, so the sequence labels
have been left off of Figure 2.8.b. The order analysis finds the greatest disorder at the
terminal ends of the protein domain. However, these amino acids connect to the disordered
linker regions of the full p53 protein, so this is not an unexpected result. The four peaks
showing local flexibility are more interesting. From left to right, the four main peaks of
flexibility in Figure 2.8.b correspond to the regions near residues 117, 185, 226, and 245.
These happen to be near but not directly involved in DNA interaction sites. Since DNA is
itself a flexible molecule, flexible regions near the DNA interaction sites allow the protein
to either bond non-specifically to DNA to increase the probability of a binding event or
reorient the interaction site to increase the chances of coming into direct contact with the
binding site.
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FIGURE 2.6: Folded structure of the cystine knot cyclotide protein,
MCOTI-II. The loop 1 region has significant flexibility and is automati-
cally colored red in VMD after applying the order parameter to the beta
factor fields of the pdb file. The regions of the protein colored blue have
been parameterized as ordered by the analysis of MD simulation trajectory

with the g_isd tool.
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FIGURE 2.7: The intermediate form of MCOTI-II protein has only two
out of three formed disulfide bridges. MD simulations and order analysis
reveal disorder in both the loop 1 and loop 2 regions of the protein. The
automatic coloring of the protein assists in identifying the locations of dis-

ordered regions in the tertiary structure.
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FIGURE 2.8: The order parameter analysis of g_isd identifies 4 regionals
of local flexibility which are all near DNA interaction sites of this DNA-
binding subdomain of the p53 tumor suppressor protein. The four identified
peaks of disorder in (b) are near the four labeled regions. From left to right,

the peaks are near residues 117, 185, 226, and 245.
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2.3.4 Applications: IDPs

Applying order analysis to IDPs serves in part as a reminder of the wide space cov-
ered by the order to disorder continuum. Many proteins may exist in a natively unfolded
state without sharing the properties of an entropic chain. The FG-nucleoporin nup116 ap-
pears to remain in a somewhat compacted state as seen in Figure 2.9.a.

This is unlikely to be merely an artifact of the simulation parameters or forcefield.
The AMBER03WS force field used to simulate nup116 has specifically been corrected
to reduce the "stickiness" of most protein forcefields that induce compactness and tran-
sient secondary structure when applied to IDPs. In addition, experiments have verified that
nup116 tends to exist in an ensemble of structures that is more compact on average than
one would expect from a fully disordered entropic chain.

The phenylalanine-glycine (FG) repeats that exist throughout the protein causes
interspersed regions to be hydrophobic within the primarily hydrophilic protein. This can
cause local regions to collapse into more compact configurations which leads to constraints
on the available degrees of freedom along the backbone. The reduced flexibility of the
polymer chain in this constrained state is likely the reason the order parameter is calculated
to fall between 0.3 and 0.7 in different regions of the IDP. This order parameter is less than
one might expect for an intrinsically disordered protein.

Of particular interest from Figure 2.9 is the ASSSGAK sequence of residues near
the N-terminal region of the protein which appears to have extremely limited disorder.

On the other hand, the IDP β-synuclein shows a preference for a mostly extended
conformation. The calculated order parameter is only slightly less than that of an entropic
chain. The β-synuclein structures used in this analysis are an ensemble derived from NMR
data. The only distinguishing feature from the ensemble of structures is the small region
near the C-terminal end which shows significantly less disoder than the rest of the protein.
This more ordered sequence of residues is the blue-colored region near the labeled proline
amino acid.

2.4 Conclusions

When applied to MD simulations of folded proteins, order analysis applied by the
g_isd tool enables the identification of local flexibility while functioning as a more accu-
rate method to predict disorder in proteins. The analysis was able to produce interesting
information about systems along the entire continuum from order to disorder.
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FIGURE 2.9: The FG-nucleoporin nup116 is an intrinsically disordered
protein which favors a relatively compacted state (a). The tendency to-
wards compacted conformations induces constraints on the protein back-
bone which results in a relatively low calculated order parameter (b). While
the protein is natively unfolded, it is not as disordered as a true entropic

chain.
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FIGURE 2.10: Ensemble of structures of the β-synuclein IDP. β-synuclein
is closely related to α-synuclein which is involved in the formation of amy-
loid plaques seen in Parkinson’s disease. Analysis of the β-synuclein IDP
confirms that it is highly disordered. The order parameter values imply

behavior that is nearly as disordered as an entropic chain.
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The computation of order parameters for MD simulations that have already run
takes a trivial amount of time from seconds to minutes. The analysis only requires a sample
of hundreds to several thousands of structures to provide a useful estimate.

While the order and disorder parameter constants were estimated for several ISDM
candidates, rmsdih with the -scaled correction is efficient and powerful. ISDMs such as
rmsd and drms can not be fully corrected for their inherent size-dependence even with scal-
ing which makes them a poor candidate to be used as a universal way to measure disorder.
These options may still be useful when applied to systems where internal protein coordi-
nates are not feasible. Looking at a small protein region with unconnected protein fragments
such as a binding site may lend itself to analysis with rmsd or drms.
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Chapter 3

Hierarchical Spectral Clustering For
MD Simulations

3.1 Background

As computational power has scaled upwards in scope and downwards in price,
producing long molecular dynamics (MD) simulations of proteins on the order of µs to
ms time scales has become more common. MD trajectories on this scale produce massive
stores of information which present new challenges for analysis. Statistical means have
been proposed to elucidate the important structural insights from our data sets without being
inundated with high frequency thermal noise [96]. One common approach with a long
history [97] has been to employ a wide variety of different clustering techniques [98, 99].
This allows the user to take a data-mining approach to the substantial amounts of data often
produced in long MD simulations. Statistical clustering has seen widespread usage with
both large-scale protein sequence data [100, 101] and individual protein trajectories [97–
99, 102].

The application of spectral clustering methods to intrinsically disordered proteins
(IDPs) has also been explored [21, 29]. Spectral clustering is able to reduce protein motions
to a lower dimensional data set. Expressed in reduced dimensionality, unimportant degrees
of freedom may be more easily differentiated from those central to protein motion.

We present an advanced clustering technique designed specifically to be applied to
protein dynamics. Our algorithm utilizes a combination of spectral and hierarchical clus-
tering. Spectral clustering broadly includes any form of clustering that utilizes reduced
dimensionality. It is most commonly paired with k-means clustering, but hierarchical clus-
tering is an agglomerative method that continuous combines clusters within a maximum
distance. Our estimates of folded protein dynamics to calculate a universl order parameter
provide an empirical basis for estimating this maximal cluster distance as well. The ini-
tial dimensionality reduction to carry out spectral clustering is implemented into the MD
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analysis tool g_isd. Visualization of results is provided through an external script designed
to be used with GNU Octave [95] or MATLAB. The amplitude of structural variance that
can be explained by thermal noised has been estimated using folded protein data from the
Dynameomics database [16].

Our software implements a classical multidimensional scaling (CMDS) algorithm
to reduce the dimensionality of protein motions within their fold space to improve the re-
sults of visualization and clustering. We have optimized our implementation of CMDS to
use a metric which gives more robust and accurate performance than the more common
RMSD. The dimensionality estimate computed by g_isd attempts to alleviate an issue with
the analysis of both folded and disordered proteins. The variance observed in each essential
dimension is comprised of both meaningful structural change and low amplitude thermal
noise. Along the disorder to order continuum [32], the motions of highly ordered proteins
see a proportionally increased contribution from thermal noise since few of their motions
result in meaningful conformation change. Without optimizations to control for the magni-
tude of structural variance expected within folded proteins, dimensionality estimators detect
thermal noise without structural change as important degrees of freedom for folded protein
dynamics.

3.1.1 Homopolymer Polypeptides

We applied hierarchical spectral clustering (HSC) to MD simulations and exper-
imentally derived ensembles along a known spectrum–from fully flexible with transient
structure to highly disordered–to validate our results. Three systems of homopolymers
were chosen for MD simulations as simple protein models: polyglutamine, polyglycine,
and polyalanine.

Polyglutamine is disordered, but MD simulations reveal a tendency to form tran-
sient α-helix [50] and β-sheet [48, 49] secondary structure. MD simulations of polyala-
nine tend to produce small portions of temporary α-helical structure which has also been
observed in experiments [44, 45]. Longer polyalanine chains, similar to the size of the
homopolymers in our simulations, tended to have a more complex helix-turn-helix ensem-
ble [44]. Polyglycine shows a conformational preference for extended conformations in
experiment [41] and aggregation into an amyloid-like highly disordered material has been
observed [42]. In MD simulations, polyglycine is compact yet highly flexible [43].

3.1.2 Optimized Protein Clustering

HSC, implemented through g_isd, was used to study protein systems from MD
simulations and experimental ensembles of structures.
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FIGURE 3.1: Tau protein structure derived from experimental NMR data.
The protein was rendered in Visual Molecular Dynamics [94].

We have explored an experimentally derived ensemble of structures for the K18
domain of the Tau protein [103]. Tau plays a significant role in neurodegenerative diseases
such as Alzheimer’s and Parkinson’s. While generally existing in a disordered state, Tau
sometimes misfolds and self-aggregates into tangles of filaments [104]. Tau normally asso-
ciates with tubulin to stabilize microtubules, but in its dysfunctional diseased state, it causes
devastation to neuron cells.

FG-nucleopons (FG-nups) are IDPs associated with the nuclear core complex and
functional in the gating machinism of the cellular nucleus [52]. They are rich in phenylalanine-
glycine repeats and have a regional variance in sequence charge density. FG-nups show re-
gional variations in their compactness: some areas express transient structure while others
show true entropic chain behavior [53].

A family of plant proteins based on the cystine knot motif contain three disulfide
bonds and a cyclic end-to-end attachment [85, 105]. The additional structural stability from
these bonds make them one of the smallest folded proteins. These cystine knot proteins
are considered interesting candidates as drug delivery scaffolds [106]. They contain a dis-
ordered loop 1 region which can generally be modified without affecting structure, so the
loop can be replace with a targeted binding sequence.
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3.2 Clustering Implementation

A simple method of clustering is to visualize the distances between structures as in
Figure 3.2. The trajectory travels in time from the bottom left to the top right. Blocks of low
interstructure distance (ISD) as seen in Figure 3.2.b are likely transient metastable states.
This partially disordered cystine knot protein is likely shifting between several energetically
favorable conformations with transition states in between. The fully disordered protein in
Figure 3.2.a, nsp1, visits more states for shorter periods of time. This can be seen by the
smaller size of the blocks along the diagonal time axis. Also note that the time scale of
the simulation of the folded cystine knot is such that the longest-held metastable states last
nearly as long as the entire nsp1 simulations.

Advanced forms of clustering often rely purely on big data and computational
power to produce results. However, a useful idiom in this case is "Work Smarter, Not
Harder!". An advanced and expensive version of clustering will likely not work as well as
a simple one that takes into account several known aspects of MD trajectory data.

1. MD simulation trajectories contain time information. Therefore, sequential struc-
tures absolutely should be more likely to be clustered than non-sequential structures.
In fact, for short time steps, it is essentially impossible for a protein to have a sig-
nificant conformational change within a single time step. We take this into account
with an adjustable averaging filter approach. While an averaging filter is potentially
destructive when applied directly to MD simulation data, it is extremely simple to
use on Euclidean distances in reduced dimensional space. This reduces thermal noise
and random fluctuations without strongly affecting real changes in structure.

2. Clustering algorithms which attempt to find an "average" structure tend to create
conformations that are not physically possible. Most proteins, even a significant
portion of IDPs that do not show entropic chain behavior, exist in a discrete ensemble
of preferred states. There are parts of fold space which are avoided because they
are not energetically favorable. Average structures sometimes fall into these gaps.
Therefore, our algorithm does not use average structures. We calculate the cluster
centers as an average of the members; however, the single structure closest to the
center is chosen to represent each cluster. All distances calculated between clusters
are therefore also the distances between two actual protein conformations.

3. Most proteins, even most IDPs, tend to spend most of their time in local energy min-
ima with short transitions between states. Some clustering algorithms can be tricked
into collecting these transition states. We avoid this by always beginning node for-
mations from the most similar protein structures among all comparisons. In this way,
large clusters always form their cores in and around temporary structure or metastable
states. This is particularly true when averaging filters are applied. Transition struc-
tures occur when a protein is changing between two or more conformations. Our
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FIGURE 3.2: Color map display of the ISD of (a) the disordered protein
FG-nucleoporin nsp1 and (b) a small folded cystine knot protein. Image
rendered in MATLAB 2017b. Folded proteins tend to visit a small number
of preferred conformations with short transitions between. The large dark
blocks are local energy minima visited by the cystine knot. Disordered
proteins spend less time in each conformation and transition between states

more often.
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hierarchical clustering is robust to cluster nodes being centered around these out-
liers. Transition structures tend to be either left out or collected by clusters of the
metastable states they are transitioning to or from.

4. It is possible to estimate the amount of structural variance which can be explained
by the random fluctuations caused by thermal noise. This can be used as a cutoff to
estimate how much ISD between protein structures signifies a "real" differences be-
tween two conformers. This allows our algorithm to conduct unsupervised clustering
since it knows when to stop. This also means that in instances of highly flexible and
fully disordered proteins, some ensembles will simply not be clustered. Alternatively,
manually setting the cutoff allows for a supervised version when forced clustering of
highly disordered proteins is desired.

3.2.1 Spectral And Hierarchical Clustering

Spectral clustering requires first reducing the dimensionality of the input data. This
was carried out using classical multidimensional scaling. In general, this is a difficult tech-
nique to apply to proteins because of the requirements on the underlying metric. CMDS
utilizes a distance matrix for all comparisons. To function properly, the distances compos-
ing the matrix must be measured using a metric and the distances must be Euclidean. The
requirements of these constraints are (1) symmetry, (2) the triangle inequality, and (3) the
distances must not exist in a curved or reflected space.

In general, RMSD fails tests 1 and 2 because most molecular alignments use a
heuristic approach which is not guaranteed to be a metric. Most measures based on internal
coordinates fail test 3 because of the mirroring properties of angle space. Eventually, angles
reach a maximal difference and begin to curve back around. For this reason, both can cause
poorly behaved results in CMDS which generally results in the production of significant
negative eigenvalues. The negative eigenvalues correspond to imaginary dimensions in
reduced space where distances are also negative. This has an added side effect that for a
given number of dimensions in the reduced space, additional dimensions may take away
information rather than add it. All methods of calculating ISD have the potential to produce
some negative eigenvalues due to limits of numerical precision. However, the metric we
have chosen produces minute negative eigenvalues.

We have observed that RMSD is a particularly poor method of differentiating very
different structures. Metrics based on internal protein coordinates are much more success-
ful. We have based our calculation of ISD on an algorithm which calculates the RMSD
after local alignments of the Ca dihedral angles along the protein’s backbone. In essence,
this provides the same information as comparing the internal coordinates of the polymer
but converts the calculations into Euclidean distances to perform correctly with the CMDS
algorithm.
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Structural variance explained by thermal noise in an average folded proteins was
estimated using MD simulations sampled from the Dynameomics database [16]. Protein
data from Dynameomics needed to be converted to Gromacs-compatible formats using sev-
eral custom scripts. MD trajectories representing 100 common protein folds were made
available from the database. The g_isd tool calculated the average ISD (as calculated via
the RMSD based on aligned backbone dihedrals) caused by thermal noise over all 100 pro-
tein simulations. This unitless value is 0.1841. Our metric intentionally freezes out the
small degrees of freedom between amino acids along the backbone; however, since the av-
erage distance between amino acids in a polymer is fairly rigid at 0.38 nm, this is roughly
equivalent to 0.0700 nm of local fluctuation. Since this is based on folded protein data, it is
possibly too conservative of an estimation for IDPs.

3.2.2 Clustering Algorithm

The clustering algorithm follows these steps:

1. The ISD is calculated between all pairs of protein structures using our implementation
of locally aligned RMSD along the backbone dihedral angles.

2. The ISD matrix is used as the input for CMDS. This implementation of CMDS can
output all calculated dimensions in comma-separated values (CSV) format but also
estimates the number of meaningful dimensions.

3. The dimensionally reduced data is given to the clustering algorithm where there are
some preprocessing options. An averaging filter may be applied to the reduced data
set. The original ISD matrix can optionally be used in place of the dimensionally
reduced data. Obviously, using both of these options at the same time does not make
sense.

4. All clusters of structures (including individual unclustered structures) are searched to
find the overall minimum distance: the two most similar conformations. For clus-
ters, a single representative structure is used to determine the clusters distances. In
cases of ties, we have chosen not to break the tie randomly to make the result repro-
ducible. The two closest structures are combined into a new cluster. If the two closest
structures are already attached to a cluster then the clusters are combined.

5. The newly created cluster searches its members for a representative structure. First,
the center is found in reduced dimensional space. Second, the member of the cluster
which is closest to the center is chosen to represent the cluster for distance calcula-
tions. Future distances between structures in step 3 are all based on the representative
structure. In cases of ties, we have chosen not to break the tie randomly to make the
result reproducible.
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TABLE 3.1: Polyglycine was too disordered to be clustered using the de-
fault cutoff from folded proteins. Several large structure clusters were iden-
tified for polyalanine, but several hundred structures (out of 1,000) were
left unclustered. The results show polyglutamine to be much more rigid

and structured with a smaller number of representative structures.

Polymer Dimensions Clusters
Polyglutamine 19 45
Polyalanine 29 380
Polyglycine 73 N/A

6. Steps 3 and 4 are repeated until the minimum distance between structures in step 3
is greater than the cutoff distance estimated from the Dynameomics database folded
protein data.

7. Output includes the numbers of clusters (singleton clusters are allowed), the number
of structures in each cluster, and the index of the structure closest to the cluster center.

3.3 Results And Discussion

3.3.1 Validation With Homopolymer Models

HSC was applied to the model homopolymer trajectories. MD trajectories from all
20 replicates were combined into one and then sub-sampled. Clustering data is displayed
in 3-dimensional space (Figure 3.3); however, the clustering utilizes a higher number of
dimensions per the dimensionality estimator. Note that while distant structures in Figure
3.3 are guaranteed to be distant, close structures are not guaranteed to actually be close due
to the many hidden dimensions. The maximum number of theoretical degrees of freedom
for a polymer of 50 amino acids is 98.

Numerical results are summarized in Table 3.1. Of note, the algorithm did not
cluster polyglycine (there were a few exceptions) because nearly all the structures were
considered to be too distant. This is the result that should be expected for an entropic
chain where all structures are significantly different conformations. The polyglutamine
ensemble shows a much more ordered appearance where portions of fold space are avoided
and clusters appear around several relatively stable states. Polyalanine represents a hybrid
with some compact clusters along with clouds of disordered transient states. The maximum
number of structures in a single cluster for the polyglycine ensemble was 45.
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a

b

c

FIGURE 3.3: HSC was performed on the set of model homopolymer us-
ing reduced dimensionality of 19, 29, and 73 for peptides polyglutamine,
polyalanine, and polyglycine respectively. The homopolymer protein mod-
els exist on a continuum of disorder from somewhat rigid with transient

secondary structure (a) to highly flexible and disordered (c).
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FIGURE 3.4: HSC was carried out on an ensemble of 20 replicates of the
IDP, nsp1. The trajectory data were reduced to 27 dimensions before the
clustering algorithm was applied. The ensemble appears most similar to
the clustering results of the polyalanine homopolymer. The cluster sizes
and shapes imply that nsp1 is more disordered than the nup116 FG-nup

protein.

3.3.2 Applications To Proteins

The FG-nucleoporins are interesting as a family of natively unfolded proteins which
provide vital functionality. However, the FG-nups’ sizes are an important component of
their function, and they sometimes respond to environmental stimuli by changing their
properties of size or shape. This implies some form of constraint is placed on their avail-
able degrees of freedom. In fact, Figures 3.4 and 2.9 reveals dimensionality estimation and
clustering results more in line with polyalanine than the more fully disordered polyglycine.
One reason to study these proteins is to attempt to distinguish between their preferred en-
sembles of conformations. The more randomized cloud-like appearance of the clustering
results in Figures 3.4 implies that nsp1 behaves as a more disordered and flexible protein
than the FG-nup nup116 in Figures 3.5. Clustering results of nup116 reveal significantly
more empty fold space and more compact clusters. This implies that a greater proportion
of the possible fold space of nup116 is not energetically favorable, and the protein has a
stronger preference for metastable states.

The final two proteins we have applied our clustering algorithm to exist on nearly
opposite ends of the order/disorder continuum. The folded cystine knot protein in Figure
3.6 contains only one disordered loop region and several small flexible residues. Our algo-
rithm differentiates 6 preferred metastable states of the cystine knot protein along with 16
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FIGURE 3.5: HSC applied to an ensemble of 20 replicates of the IDP
nup116. The trajectory data were reduced to 28 dimensions. In contrast to
the resulting clusters of nsp1, nup116 explores more tightly packed regions
of conformational space and more of its fold space is avoided. This implies

rigidity and constraints on its structure.

smaller clusters or individual structures. When the Gromacs tool make_ndx was employed
to extract the disordered loop from the rest of the protein, HSC revealed a similar number
of clusters. Therefore, most of the meaningful structural variance detected in the cystine
knot protein comes from the disordered loop 1 region.

The Tau IDP (Figure 3.7) is a case of a real protein which is not clustered by our
algorithm. Only approximately 10-20% of structures were combined with other structures.
However, the largest cluster contained only 5 members. The ensemble of protein config-
urations does not appear to represent any significant metastable states. In part, this may
be due to the algorithm which produces the structures from NMR data. These algorithms
sometimes intentionally discard similar protein structures.

3.4 Conclusions

We present a method of clustering protein structures specifically designed for the
dynamics of MD simulation trajectories. The algorithm is unsupervised by default, and uses
a conservative estimate of folded protein dynamics to guarantees clusters which contain
only variance that can be explained as thermal noise. The cluster outputs index numbers of
representative protein structures for each cluster rather than averaged structure. HSC can
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FIGURE 3.6: A folded cystine knot was differentiated into 22 clusters us-
ing 8 dimensions of data. Of those clusters, 6 contains most of the struc-
tures. Many of the clusters were small groups of outliers. An interesting
note is that this small protein has a disordered loop region. Clustering of
the disordered region alone resulted in a similar number of clusters. There-
fore, most of the structural variation of the protein comes from that region.

reduce the large number of highly similar structures from MD trajectories into a handful.
Due to its basis in physical quantities, the output structures are guaranteed to be minimally
different from one another. The output structures are not artificial, and the algorithm is
robust against clusters across transition states.

Since this method of clustering has a cutoff based on real physics rather than statis-
tics, the number and size of clusters can be considered a rough estimate of the simulated
system’s disorder. Since the physical constants used are intended to be universal to proteins
of all sizes and lengths, the results of unrelated proteins can generally be compared directly.
Our algorithm is robust to common errors in the CMDS algorithm and accounts for thermal
noise.

Using simulations, we have verified experimental results showing a slight differ-
ence in the level of disorder of the nsp1 and nup116 FG-nups. The nup116 protein appears
to show a stronger preference for metastable states and spends less time transitioning be-
tween states. HSC verified that experimental NMR data of the K18 domain of Tau protein
reveals behavior nearly as disordered as an entropic chain.

We suggest that one extremely elusive property of IDPs is the dynamics of fold
space exploration. Quantifying the amount of fold space explored by IDPs is generally
much simpler than quantifying how quickly they explore it. Reduced dimensional space
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FIGURE 3.7: The clustering algorithm was applied to Tau protein and it
determined that few of the structures are closely associated. It left nearly
all structures unclustered. This is the type of behavior to be expected for
an IDP that behaves like a random entropic chain. The dimensional esti-
mator for Tau protein found 173 meaningful degrees of freedom out of 258
theoretically possible dimensions (this domain of Tau contains 130 amino

acids).
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provides a method to estimate a "speed limit" of sorts. Some proteins race through their
conformational space while others slowly meander. Slight modifications of our approach
would provide a universal estimate of the dynamics of disorder, and the estimates of ther-
mal noise that we have presented would allow a means of universally scaling the speed of
exploration. In this context, the thermal noise is a kT-like quantity that has been translated
into units of protein dynamics.

3.5 MD Simulations

Homopolymer chains of 50 amino acids were simulated for the polypeptides polyg-
lycine, polyalanine, and polyglutamine. FG-nup sequences for the proteins nsp1 and nup116
can be found in Table 1.1. Simulations of the cystine knot protein used pdb entry 2N8B
[107] as an initial structure. The 2N8B structure contained a small error that required disul-
fide bonding to be handled manually. An ensemble of experimentally derived K18 domain
Tau protein structures was downloaded from the Protein Ensemble Database [15, 103]. All
MD simulations were run using Gromacs version 2016.3 [33–38].

All-atom MD simulations of IDPs were run on protein fragments of 50 amino acids
in length using the velocity rescaling thermostat [54] and Parinello-Rahman pressure cou-
pling [55]. MD simulations of IDPs in normal force fields are known to show erroneous
secondary structure or unnatural compaction. Instead these simulations used the Amber
ff03ws force field [60] with the TIP4P/2005 explicit solvent model [61] which has been
specifically modified to improve the accuracy of IDP MD simulations. The 5 disordered
proteins were each run in 20 replicates from initial configuration generated by a custom
program called RanchaR (random chains in R). This relies on the R programming envi-
ronment [62] and several packages for parallelization [63–65]. Pulchra version 3.04 [66]
was used to convert the initial randomized polymer chains to optimized all-atom protein
structures.

Since IDPs show a wide variance in size, MD simulations of them have issues with
possible periodic boundary conditions errors. In order to estimate the necessary simula-
tion box size, the RanchaR script was used to generate 100,000 randomized, self-avoiding
entropic chains for each protein sequence. The maximum distance between residues was
calculated for all generated structures to estimate the periodic boundary conditions large
enough to fit more than 95% of the structures. Each replicate included a 50 ns equilibra-
tion followed by a 100 ns production run. Additonal results are presented based on a 1,000
nanosecond simulation of the FG-nucleoporin, nsp1. All simulations used uncapped se-
quences without the addition of acetamide or N-methyl groups. Explicit solvent replicates
contained approximately 40,000 to 60,000 atoms depending on the polymer.
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The IDP structures were energy minimized from their randomly generated initial
configurations. Short MD simulations steps were carried to thermalize, simulate with po-
sition restraints, and gradually increase the time step from 1 to 5 fs. Several short NVT
MD simulations were run with 1 fs, 2 fs, and 5 fs time steps for stability. Running MD
simulations at 5 fs time steps required optimization settings in Gromacs: bond constraints,
virtual site hydrogens, and heavy hydrogens in water.

The initial cystine knot structures were first energy minimized in vacuum and with
solvent. The structure was then simulated by briefly thermalizing the protein to 310 K with
position restraints. Simulations used the tip3p explicit water model [59] in a dodecahedral
water box with the Amber ff99SB-ILDN force field [56–58]. All simulations after ther-
malization were run at 310 K. In order to approach a 5 fs time step, several short NVT
MD simulations were employed at 1 fs, 2 fs, and 5 fs. As with the IDP simulations, 5 fs
time steps required that we enable bond constraints, virtual hydrogen sites, and the heavy
hydrogen atoms setting. A short constant pressure (NPT) simulation with Berendsen pres-
sure coupling [67] was run followed by an equilibration simulation using Parinello-Rahman
pressure coupling [55]. Finally, the cystine knot proteins were simulated for a total of 8 µs.

3.5.1 Further Details

To create the distance matrix required by the CMDS algorithm, ISD between stru-
tures was calculated using a unitless version of locally aligned backbone dihedrals RMSD.
This is chosen with the -rmsdih and -scaled options. The details of the implementations are
discussed in the Implementation Details For ISDMs section.

3.6 Acknowledgements
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Chapter 4

Targeted Binding Of Cyclotides

4.1 Background

The cystine knot is a structural motif in proteins defined by the presence of three
disulfide bonds which stabilize the loop. The motif was first observed in nerve growth factor
[108] but is now known to be present in many inhibitor proteins. The motif is found in bone
formation inhibitor [109] and insect serine protease inhibitor proteins [110].

A particular family of plant cystine knot proteins contains an end-to-end macro-
cyclic disulfide bond. This allows them to be one of the smallest folded micropeptides in
nature [85]. Referred to as cyclotides or cyclins, these small proteins are defined by a single
cystine knot motif and are only able to fold due to the stabilization provided by the disulfide
bonds [105]. Many cyclotides have antimicrobial [85] or inhibitory properties.

The study of plant cyclotides has had widespread interest because the proteins are
simple enough to be completely synthesized [111]. This has made the protein a viable
scaffold for drug delivery and a candidate for other types of customized molecules [106].
Nearly all of the stable tertiary structure of cyclotides come from disulfide bridges. There-
fore, the free loops in between bridges may be replaced with biologically active sequences
without disturbing the structural stability of the knot. In particular, plant cyclotides contain
a large disordered loop 1 region that may be modified with a targeted binding sequence.

We present a comparison of a modified and wild-type pair of cystine knot proteins
with pdb entries 2N8B and 2N8C [107, 112]. The modified cystine knot was tagged with the
addition of a 2-fluoropropanoic acid (2-FP) molecule covalently bonded to the N-terminal
glycine residue. Molecular dynamics (MD) simulations of the pair of cyclotides were run
to verify that the 2-FP label does not significantly affect the local structure. Due to the
location of the protein attachment site, the label is in close proximity to the disordered loop
1 region. This cystine knot protein contains an integrin αvβ6 cancer recognition site on this
loop [107], so any induced folding altered dynamics of the disordered loop could impact the
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FIGURE 4.1: Illustration of the small cystine knot protein (red) docked to
its target integrin molecule (gray). The ligand is docked near the binding
site of a small peptide molecule with the sequence RGD. After docking and
energy minization, the disordered loop 1 region of the cystine appears to

form a β-sheet secondary structure.

effectiveness of the targeted protein. Integrin αvβ6 shows increased expression in a wide
variety of cancers [113].

The cystine knot ligand is presented in a final docked configuration in Figure 4.1.
The Autodock software is a set of tools and software to dock small molecule ligands to
target proteins [114–117]. It employs a force field for energy minimization with a genetic
optimization algorithm and selective protein flexibility.
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4.2 Methods

Before docking the cystine knot ligand to its target, we verified that the 2-FP mod-
ification did not significantly affect the dynamics of the loop 1 region of the cystine knot.
A universal measure of disorder, the order parameter, was calculated using the results of
MD simulations to compare the flexibility of the wild-type and modified cystine knots.
The explored conformational space of the two conformers was compared and found to be
overlapping.

The cystine knot is small for a folded protein at 36 amino acids in length. How-
ever, this is far larger than the small molecules normally docked by automated software.
Therefore, we needed to implement a more complicated procedure.

In brief, the target sequence of the cystine knot protein was sampled in multiple
configurations from MD simulations. The ensemble of 5 amino acid polypeptides were all
docked using the Autodock Vina software [117]. Several of the best docking structures were
kept, and the entire cystine knot protein was fit to the docked peptides using the Gromacs
tool confrms. The fits were analyzed visually for significant steric clashes with the target
protein, and the best were kept. Finally, an energy minimization and a short equilibration
were run on the docked target-ligand complex using Gromacs software [33–38].

4.2.1 MD Simulations

MD simulations were performed on the cystine knot proteins with pdb entries 2N8B
and 2N8C [107]. These structures were solved using NMR and the protein has significant
unfolded regions. The resulting ensembles available from the protein database [112] had
small structural errors. Therefore, the disulfide bonds needed to be handled manually.

MD simulations were run in Gromacs 2016.3 [33–38]. The initial cystine knot
structures were first energy minimized in vacuum and with solvent. The structure was
then simulated with position restraints following a short thermalization. Production runs
of the cystine knot protein used the velocity rescaling thermostat set to 310 K. Simula-
tions used the tip3p explicit water model [59] in a dodecahedral water box with the Amber
ff99SB-ILDN force field [56–58]. Several short constant volume (NVT) MD simulations
were employed to slowly increase the time step from 1 femtoseconds (fs) to 5 fs. In order
to reach the targeted time steps, several optimizations were employed: bond constraints,
virtual hydrogen sites, and the heavy hydrogen atoms setting. A short constant pressure
(NPT) simulation with Berendsen pressure coupling [67] was run followed by an equilibra-
tion simulation using Parinello-Rahman pressure coupling [55]. Finally, the cystine knot
proteins were simulated for 8 µs.
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4.2.2 Ligand Docking

Due to the large sizes of both the ligand and target proteins being docked, we were
unable to follow a simple and standard procedure to perform the docking. The integrin pro-
tein from pdb entry 1L5G [112, 118] was cleaned up and energy minimized using Gromacs
[33–38] before the docking steps. MD simulations of the cystine knot were sampled every
2 microseconds to generate several initial conformations for docking. The target integrin
protein has been solved while bound to a small peptide with an arginine-glycine-aspartic
acid (RGD) sequence.

Our protein had two potential homologous sequences in the loop 1 region. An RTD
sequence over residues 7-9 and a reversed ordered sequence of NGR over residues 5-7.
Since it was not feasible to dock the entire cystine knot protein, we created two trimmed 5
amino acid peptide fragments around the target sequences: 4-8 and 6-10. Autodock tools
and Autodock Vina were utilized to dock the 10 peptide fragments to the target binding site
on the integrin protein. The search for docked conformations was set to an exhaustiveness
of 40. Autodock Vina gives an ensemble of docked conformations; however, only 9 of the
90 docked structres were near the target binding site. Of these, the two structures with the
more favorable binding energies were kept.

The MD simulations were sampled again, and a total of 8 structures of the full
cystine knot protein were fitted to the docked target sequence. The fit was carried out using
the Gromacs tool confrms [33–38]. Since the sequence on the cystine knot proteins only
shared two amino acids with the true target sequence, the fit was performed using all heavy
atoms from the matching amino acid residues and only backbone atoms from the others.

The resulting fitted cystine knots-integrin complexes were filtered visually. Since
the fit procedure does not take steric clashes into account, many complexed structures were
ruled out due to overlap between the two proteins that could not have been fixed with an
energy minimization. All fitted complexes had at least some protein-protein overlap. The
two best candidates were chosen based on their being the most physically possible. Energy
minimizations and short MD equilibrations were run on two protein complexes.

4.3 Results And Discussion

4.3.1 Protein Analysis

The MD simulations of the cystine knots were compared against an ensemble of
800 structures produced based on NMR data using CYANA software [119–123]. This com-
parison was used to verify that the simulations were run for a long enough time to give a
good representation of the protein dynamics. The wild-type and and modified cystine knot
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proteins were analyzed using the g_isd tool to quantify and compare the regional disor-
der and the sampled conformational space of the two proteins using a reduced dimensional
representation. The g_isd tool calculated the order parameters for the two proteins and
employed classical multi-dimensional scaling on their trajectories. Images of the sampled
conformational space were produced in MATLAB 2017b. Protein renders of cystine knots
with coloring based on the order parameter were produced using a chain of tools and scripts.
The g_isd analysis tool calculates order parameter values, and a script xvg2bf.bash converts
the file to a Gromacs-compatible format. The Gromacs editconf tool is able to overwrite
the beta factor values in pdb files, and VMD was used to display and render the final result
[94].

The calculated values of the order parameter for the wild-type cystine knot protein
are found in Figure 4.2.b. These values are overlayed onto the protein as a color key where
the light region illustrates the local disorder of the loop 1 region.

An ensemble of structures was derived from the experimental NMR data that was
used to produce the 2N8B and 2N8C pdb entries. The CYANA software produced 800
structures based on the experimental data, and this ensemble was used to verify that the MD
simulations were long enough to sample the conformational space. Per Figure 4.3, the en-
semble of structures derived from experimental data appears to explore less conformational
space and be less disordered than the MD simulations would predict. The results indicate
that the MD simulations are a decent representation of the full conformational space. The
calculated disorder for the labeled cystine knot is nearly identical to the value calculated
for the wild-type (Figure 4.4). Therefore we conclude that the 2-FP modification did not
significantly hinder the dynamics of the cystine knot protein. The modification likely has
no detrimental effect on the ligand’s ability to bind to the target.

The MD trajectories of the pair of simulations for the modified and wild-type cys-
tine knots were combined into a single file with the Gromacs tool, trjcat [33–38]. This
allowed us to use the g_isd analysis tool to process both proteins in the same reduced di-
mensional space. The loop 1 region of the two conformers over residues 4 to 15 was used
as the input to a classical multi-dimensional scaling (CMDS) algorithm implemented by
g_isd. The dimensionality of the data was reduced to 3 to improve visualization. Note that
the peptide fragment being used is small, so the calculated correlation between the original
data and the reduced data is r = 0.868591. The comparison shows that the two proteins
explored virtually identical conformational space in simulation. A small 10 ns averaging
filter was applied to the results to reduce noise and focus on the two proteins’ trajectories
through their conformational space.
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a

b

FIGURE 4.2: Detected regional disorder in the cystine knot protein. The
order parameter for the protein was calculated by using the g_isd tool on

the 8 µs MD trajectory.
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FIGURE 4.3: The order parameter calculated for the ensemble of structures
based on NMR experimental data. Unexpectedly, the ensemble appears to

explore less conformational space than the MD simulations.

FIGURE 4.4: The disorder estimate for the modified cystine knot protein
is nearly identical to that of the wild-type protein. From this, we infer that
the 2-FP label modification did not affect the structure of dynamics of the

disordered loop 1 region of the cystine knot.
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FIGURE 4.5: We display the paths of the loop 1 regions of modified and
wild-type cystine knot proteins through conformational space in reduced
dimensionality. Since the peptide fragments being analyzed are small, the
three dimensions of reduced data highly correlate with the original infor-
mation. The two variants explore virtually identical portions of the confor-

mational space.



Chapter 4. Targeted Binding Of Cyclotides 61

FIGURE 4.6: The two best fitted structures were energy minimized and
equilibrated. One of the two ligands left the primary binding site, the space
between the silver and purple domains just above the ligand’s location (in

red), during the equilibration.

4.3.2 The Docked Ligand–Target Complex

Autodock Vina calculated the affinity between ligand and target as approximately -
5.5 kcal/mol for the most optimal docked structures. The best docked ligand fragments were
chosen based on affinity and whether the docked ligand interacted with the targeted binding
site. A variety of sampled cystine knot conformations (from the original MD simulatation
trajectories) were fit to the docked peptide fragments. Most showed significant overlap with
the target protein due to the tight spacing of the binding pocket. The two fitted proteins with
the least overlap were run through an energy minimization and short equilibration. Finally,
the best docked complex was easy to choose because during equilibration, one of the ligands
popped out of the binding site (Figure 4.6). The optimally docked target–ligand complex
is displayed in Figure 4.1.
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Chapter 5

Polymer Disorder Modulates
Thermal Contraction

5.1 Background

The disorder-order spectrum exists in non-biological systems, and the tools applied
to the study of biological molecules and systems also have applications to non-biological
systems. In the following, we present a polymer system which presents the property of a
giant thermal contraction mediated in part by the existence of local disorder [124].

Analysis tools to study local molecular disorder were applied to a polymer mate-
rial containing repeats of the molecule S-dibenzocyclooctadiene (DBCOD). The DBCOD
molecule contains an eight-member ring attached to two phenyl rings: one bonded on each
end. The experimentally interesting property of this polymer material is a reversible ther-
mal contraction that can be triggered using low-energy near-infrared light [124]. Materials
with changes to shape or size that can be activated and reversed have seen applications in re-
generative medicine [125, 126], medical drug delivery [127, 128], and robotics [129, 130].
In current medical and industrial applications, many materials with these properties rely
on processes that have extreme ramifications at local molecular scales: phase transitions,
molecular binding, and movement along the order-to-disorder spectrum [124].

Per the results of our local molecular analysis, the DBCOD thermal contraction
appears to rely on a local conformational change which is low energy and does not involve
severe changes to the local molecular environment such as the loss of covalent bonds or
the addition of significant disorder. Furthermore, we show that properties of the thermal
contraction of the DBCOD polymer material can be altered through the mixture of two
polymer sub-types. One of the polymers contains 3,4’-oxydianiline (3,4’-ODA), pictured
in Figure 5.1.a, which causes the polymer material to favor a locally disordered, globular
conformation at the molecular level. This results in an amorphous material structure which
is more kinetically favorable to the conformational change triggering thermal contraction
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FIGURE 5.1: (a) Illustration of the two DBCOD sub-types: 3,4’-ODA
polymer and 4,4’-ODA polymer The difference between the two polymer
sub-types is the bond between the DBCOD monomers at the position far-
thest removed from the central cross-linked section highlighted in (b). The
application of energy to the system, either heat or near infrared photons,
causes a stochastic conformational change across the DBCOD cross-linked

section favoring the chair over the twist-boat conformation. [124].

and expansion. The other polymer contains 4,4’-oxydianiline (4,4’-ODA), Figure 5.1.a,
which tends to favor a more bundle-like, ordered conformation. The resulting macroscopic
structure has the appearance of woven fibers and requires a higher kinetic energy input to
produce the same degree of thermal contraction.

Per Figure 5.2, while both polymer types eventually reach similar degrees of con-
traction, the polymer containing less ordered 3,4’-ODA requires less energy to reach the
maximal degree of contraction than the polymer containing more ordered 4,4’-ODA. The
contraction per unit of temperature rise of the 3,4’-ODA polymer (−2350 ± 73 ppm/K) is
approximately twice that of the 4,4’-ODA polymer (−1140± 64 ppm/K) [124].

The particular interest in the thermal contraction properties of the DBCOD polymer
material is the low energy input requirement compared to other materials with a similar
response to energy. Other studied polymers [131–133] tend to rely on the isomerization
of a molecular subunit which generally requires higher energy UV radiation to trigger a
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FIGURE 5.2: The less ordered 3,4’-ODA polymer approaches a total con-
traction of approximately -10,000 ppm (red) while the more ordered 4,4’-
ODA polymer approaches a similar total contraction of approximately -
9,000 ppm (blue). However, the polymer containing less ordered 3,4’-ODA
requires far less energy to reach the maximal degree of contraction than the

polymer containing more ordered 4,4’-ODA [124].
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mechanoresponse. High-energy UV photons are necessary for the isomerization of the
molecules, but high-energy photons may also break other incidental covalent bonds and
results in unavoidable photobleaching of samples. Since UV light increases rates of cancer,
these materials have limited biological and medical applications.

Experimental results show that the conformational change resulting in thermal con-
traction is a stochastic shift from twist-boat to chair in the central ring structure of the DB-
COD monomer as illustrate in Figure 5.1.b. The low energy requirements of the DBCOD
conformational change means that low energy infrared photons may be used instead, and a
significant mechanical response occurs at near room temperature [124]. Furthermore, the
mechanical response to input can be tuned using a mixture of the 3,4’-ODA and 4,4’-ODA
polymers.

5.2 Experimental Methods

The experimental methods to synthesize the DBCOD molecule and measure the
thermal contraction properties have been published [124].

In brief, several ODA precursor mixtures were combined with other ingredients to
create polymer composite solutions [124]. This was poured onto a mold and evaporated to
form films [124]. The films were annealed under a partial vacuum [124]. A 970 nm laser
was used to heat the film [124]. A tensometer was used to measure the contraction force
while an infrared camera monitored temperatures [124].

5.3 Simulation Methods

To supplement the experimental observations of the twist-boat to chair conforma-
tional change and the observed differences in disorder of the polymer material, molecular
dynamics (MD) simulations were carried out to compare the two sub-types of the DBCOD
polymer.

Since the DBCOD polymer is not closely related to a biological system, the simu-
lation systems needed to be built in silico, and a custom set of force field parameters was
generated. The system coordinates were built and bonding was controlled using a script in
the R programming environment [62]. Invidual interactions of the force field were gener-
ated by the SwissParam web server [134]. MD simulations were run using Gromacs 4.6.5
[33–38]. All visual representations of molecules were created using Visual Molecular Dy-
namics (VMD) [94].
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5.3.1 Building The System Coordinates

Initial coordinates for the simulation system containing 4,4’-ODA molecules were
produced by a script written for the R programming environment [62]. The script builds
up the simulation system from monomers as illustrated in Figure 5.3. The script writes
out atomic coordinates for five monomers which are covalently bonded into strands of poly-
mers. Sets of eight polymer strands are cross-linked into sheets across neighboring DBCOD
molecules wherever they are in close proximity. Four sheets are placed in each layer with-
out covalent bonds. The simulation system comprises 8 layers.

The simulation system contains 1,280 monomers as part of a solid-state system
with no solvent. The algorithm to construct the initial coordinates for the system containing
3,4’-ODA molecules follows the same steps. However, the bond between monomers is
randomly assigned to either type (A) or type (B) in Figure 5.4. The simulation systems used
vacuum annealing rather than temperature annealing to reduce the initial energy barriers and
randomize the subunit conformations. In order to facilitate the low pressure environment,
the layer spacing was initialized to 4.0 nm to simulate a low density of 71.8 kg/m3. [124]

5.3.2 Generating Force Field Parameters

The force field parameters for the DBCOD system were generated using the Swiss-
Param web server [134]. However, the SwissParam software is optimized for the parameter-
ization of small molecules; producing a custom force field for a system of tens of thousands
of atoms is not feasible. Our approach to scale up the system size was first to parame-
terize a system containing all possible unique interactions contained within the total sys-
tem. The tetramer in Figure 5.5 contains both cross-linked and unlinked DBCOD subunits
and contains both bonded and terminal 4,4’-ODA subunits. The structure was sketched in
and exported from the software MarvinSketch in Marvin Beans version 14.11.3.0, 2014,
ChemAxon (http://www.chemaxon.com). This is one of the methods suggested by the
SwissParam web server to generate a compatible mol2 format file for upload.

After the MD force field files were generated by the SwissParam server, the indi-
vidual interactions produced were harvested, reformatted, and incorporated into Gromacs
topology files as a force field option. The improper dihedral potentials generated by the
SwissParam server are harmonic which is a different format than the periodic ones with
only one force constant used by most of the force fields in Gromacs. We replaced these
improper dihedral parameters with periodic potentials derived from the Amber99SB-ILDN
force field [56–58]. By inserting the SwissParam potentials in the standard format of a
Gromacs topology file, the pdb2gmx tool was able to automatically generate topologies for
systems of arbitrarily large sizes such as our DBCOD system with over 50,000 atoms.
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FIGURE 5.3: Illustrates the algorithm used by the R script to generate
initial coordinates used to simulate the 4,4’-ODA molecular structure. The
(e) total system is built from 8 (d) layers. Each (d) layer contains 4 separate
(c) sheets with 8 cross-linked (b) polymer strands of 5 (a) monomers (which
are displayed without hydrogen atoms). The simulated system contains a
total of 1,280 monomers and 55,296 atoms. At each structural step, one

subunit of the previous step is highlighted in red. [124].
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FIGURE 5.4: The algorithm used by the R script to generate initial coor-
dinates for the 3,4’-ODA system follows the same steps as seen in Figure
5.3. However, the script must also randomly assign the 3,4’-ODA bond as

one of two types. [124].



Chapter 5. Polymer Disorder Modulates Thermal Contraction 70

FIGURE 5.5: A tetramer of the 4,4’-ODA sub-type of the DBCOD-based
polymer contains all the unique bonded interaction necessary to generate

an MD force field for the simulated systems. [124].

5.3.3 MD Simulations Of DBCOD Molecule Systems

One simulation system was produced for each of the 3,4’-ODA and 4,4’-ODA poly-
mers to compare the resulting local disorder. MD simulations were carried out using the
Gromacs library of tools and software [33–38]. The systems were first energy minimized
and then run through a short 100 ps constant volume (NVT) simulation with position re-
straints and the velocity rescaling temperature coupling method [54] at a temperature of
300 K. Next the system was annealed using partial vacuum with an NVT simulation of 4.0
ns at the initial system volume (10, 472nm3) and density (71.8kg/m3).

A delayed collapse was simulated using constant pressure (NPT) settings. MD
simulations of the systems were run under a constant 1.0 bar pressure using Berendsen
pressure coupling [67]. Rather than doing a single collapse simulation which may have
caused the molecules to be stuck in energetically unfavorable conformations, the collapse
was halted at system volumes of approximately 4, 000nm3 and 2, 000nm3. Additional 4.0
ns NVT equilibration simulations were run at these system volumes before allowing the
collapse to continue.

After the final NPT simulation where the system volumes were stabilized, a 2.0 ns
NPT equilibration simulation was run using the more accurate Parrinello-Rahman pressure
coupling method [55]. We verified that the final equilibration allowed the system to reach
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stable potential and kinetic energies (Figure A.18). The MD equilibration simulations of
the two ODA systems were followed by 8.0 ns production runs.

Analysis of the MD simulation data used tools included in the Gromacs software
library [33–38], the g_shape tool to compute shape parameters of molecular structures [18],
and several custom scripts written for the R programming environment [62].

5.4 Results And Discussion

5.4.1 DBCOD Twist-Boat To Chair Conformational Change

Experimental results indicate that the cause of thermal contraction in DBCOD-
based polymer is the energy-dependent, stochastic conformational change from twist-boat
to chair configuration illustrated in Figure 5.1.b. To supplement the experimental data,
production runs of the two polymer sub-types were analyzed to calculate the angle across
cross-linked DBCOD subunits for each system. Computations were carried out using a
script written for the R programming environment [62], and the calculated angles were
compiled into histograms for each of the simulation systems.

In Figure 5.6, the two histogram peaks in the center of each figure correspond to
acute angles made by the twist-boat configuration which is the global energy minimum of
the DBCOD subunits. There are two histogram peaks towards the edges of each figure
which represent a local energy minimum near ±π radians and originate from the extended
angles across the the chair conformation of cross-linked DBCOD subunits. The simula-
tion of 3,4’-ODA polymers contains a higher probability density of DBCOD subunits in
the chair configuration relative to the simulation of 4,4’-ODA polymers. This agrees with
experimental evidence that the 3,4’-ODA polymer material may shift from the twist-boat to
the chair conformation at lower energy states than the 4,4’-ODA material. The stochastic
conformational discrepancy between the ODA polymers provides a possible explanation at
the molecular scale for the differences in thermal contraction observed at the macroscopic
scale.

Note that experimental differences in the degree of contraction between the two
polymers are extremely small relative to the simulation size, and only the degree of contrac-
tion has been recorded experimentally. Therefore, the volumes of the simulation systems
cannot be compared directly.

5.4.2 Molecular Disorder Influences Larger-Scale Disorder

The microscopic appearance of the DBCOD-based polymer at scales of several
hundred nanometers reveals ordered fiber-like structure for the 4,4’-ODA polymer which
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FIGURE 5.6: Histograms of the calculated angles across cross-linked DB-
COD subunits illustrate the proportions of DBCOD polymers in the twist-
boat and chair conformations. The angles are given in units of radians.
The two central peaks correspond to the acute angles of the twist-boat con-
figuration, and the two peaks near ±π radians correspond to the extended
angles of the chair configuration. 3,4’-ODA polymer simulation contains a
greater proportion of DBCOD subunits in the higher-energy chair confor-
mation associated with thermal contraction relative to the 4,4’-ODA poly-

mer simulation.
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does not exist when the 3,4’-ODA polymer is incorporated into the material (Figure 5.7).
MD simulations of the polymer material are not feasible on this scale, so analysis of the
local molecular disorder was used to infer possible explanations.

Since system coordinates for MD simulations are built from 32 independent sheets
which are not interconnected through covalent bonds (Figure 5.3), the MD simulations
provided ensembles of independent structures for the 3,4’-ODA and 4,4’-ODA polymer
systems. Several methods of shape and disorder were applied to the structural ensembles.

Qualitatively, sheets comprised of the 4,4’-ODA polymer show a preference for
elongated bundle-like conformations instead of the irregular globular configurations rep-
resentative of sheets containing 3,4’-ODA (Figure 5.8). To quantify this observation, we
employed the shape analysis tool g_shape [18] to compute shape parameters for the en-
sembles of structures. The shape parameter is normalized such that cylindrical shapes have
positive values, oblateness results in negative numbers, and a spherical shape should result
in a parameter of approximately zero.

A histogram of the shape parameters for the two ensembles reveals separate fre-
quency peaks for the 3,4’-ODA and 4,4’-ODA polymers (Figure 5.9). The peak frequency
for the shape parameter of 3,4’-ODA polymer occurs at approximately 0.3 which corre-
sponds to a slightly elongated spherical shape. The 4,4’-ODA polymer’s shape parameter
peak at approximately 0.9 represents a more cylindrical shape. The distributions of the
shape parameters for the two ensembles overlap to some extent, but there is a clear differ-
ence between the distributions.

An ordered bundle-like configuration should produce particle density peaks in the
radial distribution function (RDF) computed by the g_rdf tool from the Gromacs software
library [33–38]. The radial distribution function is often used to quantify ordered structure
in solid-state materials [135], and the regular repeats in ordered molecules result in high
particle density peaks that occur at the distance between repeats.

An ether oxygen atom exists between the ODA subunits of the synthesized polymer
(Figure 5.1). Only one atom of this type exists per monomer, so it was the ideal reference
atom chosen to calculate RDFs of the two ODA polymer sub-types. RDF plots of ether
oxygen atoms for the 4,4’-ODA polymer ensemble shows strong particle density peaks at
radial distances of approximately 0.6 and 1.8 nanometers (Figure A.19). The RDF plot for
the 3,4’-ODA polymer ensemble has much weaker particle density peaks at approximately
0.6 and 1.7 nanometers. It can be inferred from the weaker particle density peaks that the
3,4’-ODA polymer is more disordered.

Peaks in the RDF plot originate from specific structural repeats in the polymer
materials. To further examine the observed 0.6 and 1.8 nanometer peaks from the RDF
plots, we theorized that the most uniform distances between ether oxygen atoms in the



Chapter 5. Polymer Disorder Modulates Thermal Contraction 74

a

b

FIGURE 5.7: At microscopic scales which are still much larger than what
is feasible to explore with MD simulations, (a) the 4,4’-ODA sub-type of
the DBCOD-based polymer exists in an ordered structure with a fiber-like
appearance. (b) The 3,4’-ODA polymer exists in a more disordered en-
vironment without obvious fiber structures. Mixtures of the two polymer
sub-types allow the amount of structural disorder to be tuned by controlling

the ratio of polymer sub-types in the mixture. [124].
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a b

c d

e f

FIGURE 5.8: By sampling the ensemble of independent polymer confor-
mations, the polymers containing 3,4’-ODA (a,c,e) have a preference to-
ward irregular and globular conformations while the polymers with 4,4’-
ODA (b,d,f) are primarily composed of ordered, bundle-like shapes. The
shape of 4,4’-ODA polymer bundles may explain the preference for the
ordered fiber-like structure appearing in the bulk material seen in Figure

5.7.



Chapter 5. Polymer Disorder Modulates Thermal Contraction 76

FIGURE 5.9: After partial vacuum annealing in simulation, 4,4’-ODA
polymer sheets (red) tended to prefer extended bundle-like conformations
rather than the more random, globular conformations favored by the 3,4’-
ODA sheets (blue). The two simulations of DBCOD-based polymer each
contained 32 independent structures. Using the analysis tool g_shape [18],
shape parameters were calculated for the two structure ensembles. His-
tograms of the shape parameters have peaks at approximately 0.3 and 0.9
for the 3,4’-ODA and 4,4’-ODA polymer sheets respectively. Overlap-
ping histogram bins are purple. Shape parameter values close to zero cor-
respond with spherical shapes while positive shape parameters represent

prolate spheroids. [124]
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polymer sheets would be across DBCOD cross-links (Figure 5.10.a Distance A) and along
the polymer chain between monomer subunits (Figure 5.10.a Distance B).

A script for the R programming environment [62] was applied to the final con-
figuration of the two MD simulations to calculate distances between all neighboring ether
oxygen atoms and compile them into histograms. The histograms peaks in Figure 5.10
(b-e) occur at the same distances as the RDF plot peaks in Figure A.19 which appears to
confirm that the RDF peaks are derive from these distances. The stronger peaks in both the
RDF plots and distance histograms for the 4,4’-ODA polymer verifies its preference for a
more ordered ensemble of conformations than the 3,4’-ODA polymer.

5.5 Conclusions

Experimental results indicate that replacement of the 4,4’-ODA subunit of the syn-
thesized DBCOD-based polymer with a 3,4’-ODA subunit reduces crystallinity and induces
morphological disorder in the bulk material [124]. It was observed that the more amorphous
environment created by the polymer containing 3,4’-ODA facilitated the DBCOD conver-
sion and doubled the thermal contraction stress at energy input levels near room temperature
[124]. This change results in more optimized control over its conformation reconfiguration
at low energy levels. The synthesized material has thermal sensing properties due to its ex-
pansion and contraction at ambient temperature. The DBCOD-based polymer can be used
to mechanically alter biological events through induced folding by the application of low
energy infrared photons which are not toxic to biological materials and tissues.

MD simulations using a customized force field topology provided a possible mech-
anism by which the slight difference in bonds between the 3,4’-ODA and 4,4’-ODA induces
a preference for more disordered structural conformations in the 3,4’-ODA polymer. The
presence of 3,4’-ODA in the DBCOD-based polymer creates structural ensembles with a
wider variety of configurations and a preference towards a globular shape over the bundle-
like shapes prevalent in polymer containing 4,4’-ODA subunits. Though not simulated at
the same scales of size as the bulk material observed under microscope, the ensembles
of structures from the MD simulations provide a possible explanation for the observed
divergence between the ordered, fiber-like appearance of the 4,4’-ODA polymer and the
disordered, amorphous properties of the 3,4’-ODA polymer.
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FIGURE 5.10: (a) The two peaks from the RDF plots in Figure A.19 orig-
inate from Distance A and Distance B. Histograms of Distance A (b & c)
and Distance B (d & e) between neighboring ether oxygen atoms contain
peaks at the same distances as the RDF plots: approximately 0.6 and 1.7-
1.8 nm. The 4,4’-ODA polymer histograms (c & e) have stronger peaks
than the 3,4’-ODA histograms (b & d) suggesting the latter is more disor-

dered. [124].
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Chapter 6

Reference For g_isd

6.1 Implementation Details For ISDMs

The analysis tool g_isd allows the user to choose between a variety of options
to quantify the inter-structure distance (ISD) between compared structures. The individ-
ual options are referred to as measures of inter-structure distances (ISDMs). This section
describes the implementation details for the available ISDMs as well as important user op-
tions.

6.1.1 Backbone Angles

The g_isd option (-ang) calculates the ISD as the root-mean-square of the differ-
ences between the backbone angles of the two structures being compared. The reference
structure angle θRi and the comparison structure angle θSi is calculated for each contiguous
set of three Cα atoms; therefore, for n amino acids, there are n − 2 total backbone angles.
Each backbone angle is calculated using the gmx_angle function from the Gromacs library
[33] with the two vectors

−−−−−−→
CαiCαi−1 and

−−−−−−→
CαiCαi+1 as inputs. This algorithm calculates θi

using the equation:

θi = arctan
‖
−−−−−−→
CαiCαi−1 ×

−−−−−−→
CαiCαi+1‖

−−−−−−→
CαiCαi−1 ·

−−−−−−→
CαiCαi+1

(6.1)

Using this measure, the ISD is defined as the root-mean-square of the differences
between backbone angles rescaled to return a value between zero for θRi = θSi and a
maximum of one. The -ang ISDM works with the -trig option which replaces the sum of
the squared differences of the angles with the sum of the cosine differences of the angles.
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ISDang =
1

π

√√√√ 1

n− 2

n−1∑
i=2

(θRi − θSi)
2 (6.2)

6.1.2 Backbone Dihedrals

The g_isd option (-dih) calculates the ISD as the root-mean-square of the differ-
ences between the dihedrals of the two structures being compared. The backbone dihedral
angle made by each set of four Cα atoms is determined by choosing two vectors normal to
the planes formed by the two contiguous sets of threeCα atoms. The two normal vectors are
calculated by taking the cross products of the atom coordinates

−→
V1 =

−−−−−−→
CαiCαi−1×

−−−−−−→
CαiCαi+1

and
−→
V2 =

−−−−−−→
CαiCαi+1 ×

−−−−−−−→
Cαi+2Cαi+1 . The dihedral angle θi between the resultant vectors is

calculated using the Gromacs library function gmx_angle [33]. The dihedral angle θi is
multiplied by the sign of

−−−−−−→
CαiCαi−1 ·

−→
V2 which gives a consistent dihedral angle measure

within a range of [0, 2π].

Since θRi and θSi are both bounded by [−π, π], the difference ∆θi has a range
of [−2π, 2π]. An adjustment is made by adding 2π for ∆θi < −2π and subtracting 2π
for ∆θi > 2π. Using this measure, the ISD is defined as the root-mean-square of the
differences between the n − 3 backbone dihedral angles. The -dih ISDM works with the
-trig option which replaces the sum of the squared differences of the angles with the sum of
the cosine differences of the angles.

ISDdih =
1

2π

√√√√ 1

n− 3

n−2∑
i=2

(∆θi)2 (6.3)

6.1.3 Backbone Angles And Dihedrals

The backbone angles and dihedrals option (-angdih) defines the ISD as the geo-
metric mean of the backbone angles and backbone dihedrals options. The geometric mean
is used to guarantee equal contribution of both the angles and dihedrals even though the
magnitudes of the two measures differ. For all of the options -ang, -dih, and -angdih, the
final sum of root-mean-square differences of angles can be replaced with the cosine of the
difference of angles by additionally using the -trig isdm option.
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6.1.4 Phi–Psi Angles

The φ and ψ angles are calculated in the same way as backbone dihedrals described
previously. However, all backbone atoms are used, and n amino acids produce n−1 angles
of each type. This option defines the ISD as the root-mean-square differences between all
2n − 2 pairs of angles from the reference and comparison structures. The option -phipsi
chooses this calculation and the option -trig isdm can be used in combination to replace the
sum with the cosine of the differences of angles.

6.1.5 RMSD And Scaled RMSD

The RMSD implementation in g_isd (-rmsd) uses the Gromacs library functions
reset_x and do_fit to perform the molecular alignment [33], but the distance sums are car-
ried out with higher default precision. All RMSD results presented here use Cα atoms for
alignment and distance calculations.

The -scaled option divides the standard RMSD by a scaling factor to provide a size-
independent measure of ISD. The purpose is similar to previously described methods [136].
A similar mirrored approach to size-independent RMSD scaling can be chosen with the -
mir option in g_isd. This is a computationally inexpensive approach where the reference
structure is mirrored by multiplying by the negative identity matrix. However, this results
in a reproduction of the structure which does not feature correct chirality. The scaling factor
computed using this approach is too large.

The preferred implementation takes advantage of modern processing power to ap-
proximate the ISD of two unaligned molecules with the same size. The scaling factor is
calculated by g_isd using the method described in the Grid Search Rotation RMSD sec-
tion. The scaled RMSD calculation can be chosen in g_isd by using the options -rmsd and
-scaled together.

6.1.6 Distance RMSD

Distance RMSD (-drms) is also referred to in some software packages as RMS
Dist. For each of the two structures, a distance matrix is computed containing the Euclidean
distances between every pair of atoms. The distance RMSD is based on the differences of
distances between the two structures. Final ISD is calculated using Equation 6.4. When
combined with the -scaled option, the ISD is divided by 2 × Rg where Rg is the radius of
gyration for the larger structure.
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ISDdrms =
1

n

√√√√ 1

n− 1

n∑
i=1

(‖
−−−→
RiRj‖ − ‖

−−→
SiSj‖)2 (6.4)

6.1.7 Backbone Dihedral RMSD

The backbone dihedral RMSD option (-rmsdih) is a hybrid that uses internal coor-
dinates but calculates a Euclidean distance with units of nanometers. The internal coordi-
nates of the backbone angles and dihedrals are converted into a Euclidean measurement of
distance by locally aligning each set of three consecutive Cα atoms and calculating the dis-
tance between a fourth Cα atom. We use a specific type of fit to vastly simplify alignment.

We use three pairs of Cα atoms for the alignment: Cαi−2 , Cαi−1 , and Cαi . The
RMSD calculation uses the distance between a fourth pair of Cα atoms, Cαi+1 . A true
alignment step is unnecessary if the first three atoms are instead aligned to a new coordinate
system. The Cαi atom is set as the origin in this coordinate system and the vector Vz =
−−−−−−→
Cαi−1Cαi is aligned to the z axis. The first three Cα atoms create a plane, and the vector
normal to the plane is aligned to the y axis.

In this new coordinate system, the spherical coordinates of the fourth Cα atom can
be calculated using the methods described in the backbone angles and backbone dihedrals
sections. The spherical coordinates of the fourth Cα atom can be calculated using the
following equations:

r = ‖
−−−−−−→
CαiCαi+1‖

φ = π − ang(Cαi−1 , Cαi , Cαi+1)

θ = dih(Cαi−2 , Cαi−1 , Cαi , Cαi+1)

(6.5)

The g_isd tool converts the spherical coordinates to Cartesian and calculates the
Euclidean distance between the Cαi+1 atoms of the two structures. Since the alignment
employs coordinates from only one side of the atom used as the distance reference, the
calculation is carried out originating from both the N-terminal and C-terminal ends. Each
sweep of the coordinates computes n−3 distances due to the number ofCα atoms necessary
for alignments. The final ISD is defined as root-mean-square of the 2n− 6 total calculated
distances.
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6.1.8 Backbone Angles And Position Correlation

The sample Pearson’s correlation coefficient, r, is calculated between the cosine of
the angles of comparison and reference structures (-acor). However, the ISD is defined as
the mean over all backbone angles of a rescaled version of the correlation coefficient. All
values less than or equal to zero are set to a value of 1.0 and values greater than zero are
rescaled to 1.0− r.

The position correlation option uses the atomic coordinates on each axis to calcu-
late three Pearson’s correlation coefficients over all atoms (-pcor). After the comparison
structure is aligned to the reference structure, the correlation coefficient is calculated for
the x, y, and z components of the coordinates independently. The three correlations are
combined by taking the arithmetic mean, and the result is rescaled in the same way as the
backbone angle coefficient. This algorithm shares some aspects with a previously described
method of structural comparison [137].

6.1.9 Elastic Shape Analysis

Our implementation of the elastic shape analysis method is a slightly modified port
from Matlab to C of a previously described algorithm [40]. Briefly, elastic shape analysis
resamples the compared structures as curves in space and attempts to quantify the effort
of warping one curve onto the other. The algorithm is selected with the -esa option. The
number of points used during curve resampling can be controlled by the user with the -
esasamples option, but a sensible value is automatically chosen based on the number of Cα
atoms in the input. The computational cost of elastic shape analysis scales proportionally
to the number of samples chosen. This algorithm is computationally expensive making
it impractical to run on trajectories with a large number of frames. The analysis requires
frames to be sparsely sub-sampled.

6.1.10 MAMMOTH

We modified the source code of MAMMOTH, a structural comparison package
[39], to interface with our tools. MAMMOTH was designed to compare different variants
of related molecules and focuses on similarities in local secondary structure by comparing
local sequences of six amino acids at a time. MAMMOTH approximates the probability
of random structure sharing the amount of structural similarity observed and outputs a Z-
score. The ISDM option converts the Z-score output to a p-value, and the ISD is defined as
the inverted p-value: ISD = 1− P .
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6.1.11 Random Rotation RMSD

The RMSD between the comparison structure and a rotated reference structure is
available as a negative control. The g_isd tool option -rrot implements a randomly rotated
reference structure. After the comparison and reference structures are centered, the coordi-
nates of the reference structure are multiplied by a randomly generated three-dimensional
rotation matrix. The output is the computed RMSD of the resultant rotations. This is not
the preferred method of computing the scaling factor due to inherent limitations of the ran-
dom rotations. The randomized RMSD is subject to significant noise, and a good sampling
of the rotational space requires many independent rotations. The number of rotations may
be set by the user with the -nrotations option, but the tool’s default value is 500. The total
processing cost scales proportionally with the number of rotations, and a balanced sampling
of the rotational space is not guaranteed.

6.1.12 Grid Search Rotation RMSD

The grid search rotation RMSD is conceptually similar to the Random Rotation
RMSD. However, it guarantees a balanced sampling of the rotational space and therefore
does not require as many rotations. This implementation first fits the compared structures,
but then applies a rotation to one of the structures. By default, the algorithm that generates
the rotations uses a grid search of 8 angles along each of x, y, and z axes for a total of
83 = 512 possible rotations. The grid search density for rotation angles can be controlled by
the user with the -griddensity option. For each set of three rotations, a single transformation
matrix is calculated through matrix multiplication. The list of rotations are then checked
for uniqueness. The default settings result in 208 unique rotation matrices from the original
512.

The algorithm to produce unique rotation matrices using a grid search of possible
rotations was tested within the R programming environment [62] with a script applied to
arbitrary unit vectors. After the 208 unique rotations, the sum of rotated vectors cancel
out to the available numerical precision. The rotation matrices are applied to the reference
structure to approximate an unaligned RMSD measurement. The results are averaged to
estimate the RMSD of two structures which are unrelated but similar in size to the pair
of structures being compared. Compared to the randomly rotated RMSD, the grid search
rotation RMSD implementation is balanced, less prone to noise from random rotations, and
requires less processing time by default. The scaling factor can be calculated separately
from RMSD using the -grot option in the g_isd tool.
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6.1.13 End-to-end Distance

The distance between terminal Cα atoms is calculated for the reference and com-
parison structure, and the difference of these distances is used to define the ISD. The scaled
version divides this result by 2×Rg, where Rg is the radius of gyration for the larger struc-
ture. The g_isd tool implements this option with the option -e2e and scaling is applied with
the addition of the -scaled option.

6.1.14 Radius Of Gyration

The option -rg simply calculates the radii of gyration for the two structures being
compared. The ISD is defined as the difference between the two values. The -scaled option
divides the distance by Rg, the radius of gyration of the larger structure, to provide a size-
independent distance. The scaled version of the computed ISD should be considered an
approximate fraction of the maximum possible size difference between the two structures.

6.2 Acknowledgements

The elastic shape analysis was originally written in a combination of MATLAB and
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Appendix A

Supplementary Figures

A.1 Chapter 1 Supplement

The figures here include plots of time decorrelation, sensitivity, and ability to dis-
tinguish systems by relative disorder. Supplementary plots cover ISDMs which were poorly
behaved and comparisons between sets of ISDMs with similar outputs. Differences in the
method of summing the ISDM output for internal coordinate representations of proteins did
not significantly affect any analysis tests. The simpler root-mean-square difference and the
more complex mean of cosines methods gave similar results.
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FIGURE A.1: Presents ISDMs which show significantly negative results
when the sensitivity analysis is applied. Supplementary figure to Figure

1.6.
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FIGURE A.2: Rescaling has no significant effect on the decorrelation anal-
ysis.
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FIGURE A.3: Rescaling has no significant effect on the sensitivity analysis.
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FIGURE A.4: The method of compiling sums has no significant effect on
the decorrelation analysis.
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FIGURE A.5: The method of compiling sums has no significant effect on
the sensitivity analysis.
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FIGURE A.6: The method of compiling sums has no significant effect on
the ability to distinguish proteins based on quantified disorder.

A.2 Chapter 2 Supplement

Entropic chains were generated using a self-avoiding random walk model. Ensem-
bles of chains sampled the likely conformational phase space of possible volumetric sizes
and sequence lengths. Chains that are either too compact or too extended would be unphys-
ical for realistic entropic chains. Size-independent ISDMs will compute approximately the
same mean ISD regardless of size or sequence length. Size-dependent ISDMs will relate to
these characteristics and therefore do not serve as a good universal measure of disorder. A
large proteins may erroneously appear to be more disordered than a smaller protein using a
poorly behaved ISDM.
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FIGURE A.7: (a) The dependence of ISD on size and sequence length is
significant for the drms ISDM. Since proteins of different sizes cannot be
compared directly, drms is not a suitable candidate for a universal measure
of disorder. (b) Scaling improves the size-independence properties of drms
significantly; however, conformations with relatively small Rg still record

smaller ISD.
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A.2.1 Phase Space Up To 100 Residues

FIGURE A.8: Protein size and sequence length dependence.

FIGURE A.9: Protein size and sequence length dependence.
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FIGURE A.10: Protein size and sequence length dependence.

FIGURE A.11: Protein size and sequence length dependence.
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A.2.2 Phase Space Up To 400 Residues

FIGURE A.12: Protein size and sequence length dependence.

FIGURE A.13: Protein size and sequence length dependence.
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FIGURE A.14: Protein size and sequence length dependence.

FIGURE A.15: Protein size and sequence length dependence.
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FIGURE A.16: Protein size and sequence length dependence.

FIGURE A.17: Protein size and sequence length dependence.
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A.3 Chapter 5 Supplement

FIGURE A.18: Simulations of the DBCOD sub-types, "3,4’-ODA" and
"4,4’-ODA", were initialized under low density conditions to perform par-
tial vacuum annealing. The system was allowed to collapse under atmo-
spheric pressure with NPT setting. A final equilibration was performed to

verify that the system was able to reach a constant energy. [124].
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FIGURE A.19: The radial distribution function (RDF) as computed by
the g_rdf tool. The RDF of the 4,4’-ODA polymer has normalized par-
ticle density peaks at distances of approximately 0.6 nanometers and 1.8
nanometers (red). The 3,4’-ODA polymer RDF has much weaker peaks at
similar distances (black). Greater disorder in the 3-4’-ODA polymer sheets

can be inferred from this result.
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