
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Topics in large-scale statistical inference

Permalink
https://escholarship.org/uc/item/6vz3t6h9

Author
Regier, Jeffrey

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vz3t6h9
https://escholarship.org
http://www.cdlib.org/

Topics in large-scale statistical inference

by

Jeffrey Carroll Regier

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

and the Designated Emphasis

in

Communication, Computation, and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jon D. McAuliffe, Chair
Professor Philip B. Stark

Professor James W. Pitman
Professor Thomas L. Griffiths

Summer 2016

Topics in large-scale statistical inference

Copyright 2016
by

Jeffrey Carroll Regier

1

Abstract

Topics in large-scale statistical inference

by

Jeffrey Carroll Regier

Doctor of Philosophy in Statistics
and the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Jon D. McAuliffe, Chair

Statistical inference may be large-scale in terms of the size of the dataset, the dimension of
the data, or the amount of data needed for provably accurate inference. This dissertation
presents three applications of large-scale statistical inference. Part I considers finding and
characterizing stars and galaxies in images from telescopes. Part II considers figuring out
who wrote what in large collection of articles, where authors often do not have unique names.
Part III considers approximating a high-dimensional function based on a small number of
observations, a common problem when interpreting computer experiments.

i

Contents

Contents i

List of Figures iv

List of Tables vii

1 Introduction 1

I Astronomy 6

2 Variational inference for a generative model of astronomical images 7
2.1 The model . 9

2.1.1 Celestial bodies . 10
2.1.2 Astronomical images . 13

2.2 Inference . 15
2.2.1 Variational approximation of the posterior distribution 16
2.2.2 Optimization . 20

2.3 Experiments . 21
2.3.1 Synthetic images . 21
2.3.2 Uncertainty quantification . 23
2.3.3 Model misfit . 23

2.4 Conclusion . 24

3 A deep generative model for astronomical images of galaxies 25
3.1 The model . 26

3.1.1 Inference . 26
3.2 Experiments . 27

3.2.1 Implementation . 28
3.2.2 Results . 29

3.3 Future work . 31

ii

II Author disambiguation 32

4 Problem overview and preliminaries 33
4.1 Related work . 35
4.2 Exploratory data analysis . 38

4.2.1 Name string variations . 38
4.2.2 Author productivity . 39
4.2.3 Baseline partitioning procedures . 39

4.3 A feature-space representation of records for efficient disambiguation without
blocking . 41
4.3.1 Notation and terminology . 42
4.3.2 Efficiently enumerating T -conceivable record pairs 42
4.3.3 Person name disambiguation . 43

4.4 AuthorshipToolkit . 43
4.4.1 A probabilistic similarity metric . 44
4.4.2 Results . 47
4.4.3 Limitations . 47

5 Conditional random fields for author disambiguation 50
5.1 Model . 50

5.1.1 Feature functions . 51
5.1.2 Computationally efficient relative probabilities 52

5.2 Parameter learning . 52
5.2.1 Maximum likelihood estimation . 52
5.2.2 Contrastive divergence . 53
5.2.3 SampleRank . 56

5.3 Inference . 56
5.4 Results . 57

6 Spectral author disambiguation 58
6.1 Inference procedure . 58

6.1.1 Encoding mention pairs’ similarities through Mahalanobis distance . . 60
6.1.2 Parameterizing the B matrix . 62

6.2 Learning procedure . 63
6.2.1 Designing the objective function . 63
6.2.2 Minimization . 66

6.3 Results . 70
6.3.1 Learning parameters from synthetic data 71
6.3.2 Inferring an optimal partition of synthetic data 71
6.3.3 Learning parameters from MathSciNet 73
6.3.4 Inferring an optimal partition of MathSciNet 74

iii

III Computer experiments 77

7 Confident contouring 78
7.1 Inference from a fixed set of observations . 78
7.2 Inference from an adaptively selected dataset . 80
7.3 Experiments with low-dimensional data . 81
7.4 Experiments with high-dimensional data . 84
7.5 Conclusions . 85

8 Mini-Minimax Uncertainty Quantification for Emulators 90
8.1 Notation and problem formulation . 92
8.2 Bounds on the number of observations needed to approximate f well 96
8.3 Bounds on the maximum uncertainty for a fixed experimental design 98

8.3.1 Lower bounds . 99
8.3.2 Maximum uncertainty for an emulator based on one observation 103

8.4 Applications . 103
8.4.1 High-dimensional `∞ cone . 103
8.4.2 Borehole function . 104
8.4.3 Climate modeling . 107

8.5 Extensions . 110
8.5.1 Distribution of the uncertainty . 110
8.5.2 Uncertainty relative to typical values . 110
8.5.3 Other uses for e−κ and e+κ . 111

8.6 Conclusions . 112

Bibliography 114

iv

List of Figures

2.1 An image from the Sloan Digital Sky Survey [15] of a galaxy from the constellation
Serpens, 100 million light years from Earth, along with several other galaxies and
many stars from our own galaxy. 8

2.2 The Celeste graphical model. Shaded vertices represent observed random vari-
ables. Empty vertices represent latent random variables. Black dots represent
constants. Constants with “bar” decorators, e.g. ε̄nb, are set a priori. Constants
denoted by uppercase Greek characters are also fixed; they denote parameters of
prior distributions. The remaining constants and all latent random variables are
inferred. Edges signify conditional dependency. Rectangles (“plates”) represent
independent replication. 9

2.3 Density plots for two colors, based on an SDSS catalog containing hundreds of
thousands of stars and galaxies. 11

2.4 A distant galaxy, from the SDSS dataset, approximately 20 pixels in height,
predicted to have effective radius σs = 0.6 arcseconds, rotation ϕs = 80○, and ec-
centricity ρs = 0.17. Credit: SDSS . 12

2.5 Messier 87, a galaxy that exhibits the de Vaucouleurs profile. Credit: NASA . . . 13
2.6 An irregular galaxy from the constellation Leo. Because the brightest areas of

this galaxy are not near its center,Celeste may misfit this galaxy. credit: NASA . 23

3.1 The Whirlpool galaxy—a classic spiral galaxy. credit: ESA Hubble / NASA. . . . 26
3.2 The Hubble “tuning fork” of galaxy morphology. credit: Todd Thompson. 26
3.3 The architecture for the proposed generalized denoising autoencoder. 28
3.4 Each row corresponds to a different example from a test set. The left column

shows the input x. The center column shows the output fµ(z) for a z sampled
from N (gµ(x), gΣ(x)). The right column shows the output fΣ(z) for the same z. 29

3.5 Galaxies embedded in two dimensions based on the means of their variational
distributions, fµ(x). 29

v

3.6 fµ(z) for z values sampled according to a one-at-a-time experimental design. In
each row, from left to right, one dimension of z is incremented by one standard
deviation per column, while the other dimensions are fixed at zero. The center
column in each row is fµ(0, . . . ,0). The leftmost and rightmost columns are
3 standard deviations from the mean and thus highly unlikely; we show these
extremes to highlight the effect of each dimension of z. 30

4.1 Bibliographic data before and after author disambiguation. Ovals represent au-
thor mentions, rectangles represent articles, and (hyper)edges represent unique
authors. 34

4.2 Relationship between author disambiguation and other research areas 34
4.3 The empirical distribution of author productivity in MathSciNet is approximately

log-log linear, as predicted by Lotka’s law. 40
4.4 The empirical distribution of author productivity in MathSciNet for authors

named “David” is also approximately log-log linear, with roughly the same slope.
Lotka’s law applies to subsets of authors selected by attributes not highly corre-
lated with author productivity, too. 40

4.5 Proportion of unique authors in MathSciNet disambiguated without any mis-
takes, by each of 4 straightforward partitioning schemes. 41

4.6 An example of G for 4 mentions. The mentions (records) are represented by
verticesM . Censored records are vertices A. Here the # sign indicates a censored
field. Edges X link the mentions to their censored records. Edges B connect
censored records that could have been assigned to the same author, given the
set T of name string transformations to consider. In this example, we set T to
account for initialization of the first name and middle name, and omission of the
middle name. 44

4.7 Results for arXiv HEP, a dataset with low name ambiguity. The fifn+ln upper
bound line indicates the best score that could be attained without merging men-
tions that do not have the same first initial and last name. The baseline line
represents partition by name string, after basic preprocessing. 48

4.8 Results for MathSciNet, a large dataset with high name ambiguity. The blue
bars show results for the baseline procedures introduced in Figure 4.5. 48

6.1 The 2-min-cut of a weighted graph. 59
6.2 Recursive bipartition recovers O(n) authors for n mentions in O(logn) steps, as

long as the bipartitions are roughly balanced. 60
6.3 A graphical representation of similarity matrixW ==XBX⊺, for 3 mentions. The

blue edges correspond to the binary attribute-mention matrix X. The red edges
correspond to the real-valued mention-attribute matrix BX⊺. Only mentions
connected by a path of length 2 have non-zero similarity in W . For mentions
connected by a path of length 2, their similarity is the weight along the red edge
on the path. 61

vi

6.4 Scaling results for inference. Spectral disambiguation exhibits nearly constant
runtime per item, whereas the runtime for agglomerative clustering per item grows
linearly. 72

7.1 Wire frame plot of f ∶ [0,1]2 →R s.t f(x) = x1+x2
10 82

7.2 Wire frame plot of f ∶ [0,1]2 →R s.t f(x) = (x1 − 0.5)2 − (x2 − 0.5)2 82
7.3 The proportion of the domain classified when various strategies are employed to

select points while contouring the flat function f(x) = 0.1 83
7.4 The proportion of the domain classified when various strategies are employed to

select points while contouring the saddle function f(x) = (x1 − 0.5)2 − (x2 − 0.5)2 . 84
7.5 The points omniscient selects at various iterations while contouring the saddle

function during 10 replications . 87
7.6 The points omniscient selects at various iterations while contouring the slab

function during 10 replications . 88
7.7 The proportion of the domain classified when various strategies are employed to

select points while contouring the 25-dimensional flat function f(x) = 0.57 89

8.1 Illustration of the difference between the true Lipschitz constant K and the em-
pirical lower bound K̂ for K. The dotted line is tangent to f where f attains
its Lipschitz constant: it has slope K. The dashed line is the steepest line that
intersects any pair of observations: it has slope K̂ ≤K. 95

8.2 Illustration of the upper and lower envelope functions e−κ and e+κ when κ =K and
when κ <K, and the derived estimate of In both panels, the optimal interpolant
f̂κ is constant. In the left panel κ = K; in the right, κ < K. If κ ≥ K then
e−κ ≤ f ≤ e+κ, and, equivalently, f ∈ Fκ. 95

8.3 Illustration of how the pointwise uncertainty depends on the observed variation
of f : the uncertainty is smaller where the data require f to vary rapidly. The
vertical distance between the blue and red curves is twice the uncertainty at
the corresponding abscissa. The black error bars are at some points where the
uncertainty is largest. The succession of panels shows that as the slope between
observations approaches κ, Eκ(w) approaches 0 for points w between observations,
and the maximum uncertainty decreases. 96

8.4 A function that agrees with the data, has Lipschitz constant K̂, and is hard to
estimate because it is often constant. The function f̄ (shown in the left panel) is
comprised of segments of e+̂

K
, e−̂

K
and the constant function γ̄ (all shown in the

right panel). It is constant over roughly half of the domain. No function between
e−̂
K

and e+̂
K

(inclusive) is constant over a larger fraction of the domain. 98

vii

List of Tables

2.1 Columns 1 and 2 are the average error for Primary and Celeste on celestial bodies
from Stripe 82; column 4 is the average error for Celeste on synthetic images.
Lower is better. “Improve” is the improvement from Celeste relative to Primary,
with SE in parentheses. Celeste on synthetic data is compared to Primary on
real data; see the text. “N” is sample size. “Position” is error, in pixels, for the
location of the celestial bodies’ centers. “Missed gals” counts galaxies labeled
as stars. “Missed stars” counts stars labeled as galaxies. “Brightness” measures
the reference band (r-band) brightness in nanomaggies. “Colors” are log-ratios of
brightnesses in consecutive bands. “Profile” is a proportion indicating whether a
galaxy is de Vaucouleurs or exponential. “Eccentricity” is the ratio between the
lengths of a galaxy’s minor and major axes. “Scale” is the effective radius of a
galaxy in arcseconds. “Angle” is the orientation of a galaxy in degrees. 22

2.2 Average error for Celeste’s predictions, for real astronomical images, binned into
quartiles by estimated uncertainty. SEs in parentheses. Bins of more uncertain
predictions have greater average error, without exception. 23

4.1 Recall and computational burden for MathSciNet for various schemes of selecting
mention pairs to consider for disambiguation. Each row corresponds to a different
scheme for selecting mention pairs. The first row (“no blocking”) considers all
pairs. The second row (“flfn-flln”) considers pairs sharing first and last initials.
The third row (“flfn-ln”) considers pairs sharing a first initial and a last name.
The fourth row (“conceivability”) is the proposed method, with T containing
all discussed transformations. The fifth row (“compatibility”) is the proposed
method with T that accounts for initialization and omission of the middle name.
Recall is true positives: predicted coreferent pairs (resp. clusters) considered as
a proportion of actual coreferent pairs (resp. authors). A “clique author” is a
cluster of mentions where all pairs are joined a path of length 3. A “connected
author” is a cluster of mentions where a path joins every pair. A cluster must
exactly match an author to be marked correct. 45

6.1 Types of name string pairs with support . 61
6.2 Inference performance on synthetic data . 73

viii

6.3 Performance on MathSciNet . 74

8.1 Summary of key notation . 93
8.2 Borehole function domain . 105
8.3 Confidence bounds for quantiles and the mean of the uncertainty of the minimax

emulator f̂K̂ for CAM . 110
8.4 Minimum computational burden for the CAM model. 111

ix

Acknowledgments

I am grateful to Jon McAuliffe, Philip Stark, and Jim Pitman for mentoring me during my
Ph.D.

Jon has been an outstanding Ph.D. advisor to me. By emulating Jon, I learned the
practices and mindset necessary to succeed at research. Jon was supportive and nurturing
throughout. He let my research interests guide our work, and fostered my interest in devel-
oping machine learning theory in the service of real applications. In addition to the quality
of the mentoring, the sheer quantity of time Jon spent with me distinguished my Ph.D.
experience from that of most students. Our work together appears in Part I and Part II.

Philip effectively co-advised me for multiple years. He impressed upon me the importance
of challenging conventional wisdom that is based on unstated assumptions. I aspire to
emulate the clarity of Philip’s writing, and the clarity of his thinking about applied statistics.
Our research together appears in Part III.

Jim involved me in his bibliographic research while I was still a masters student. He
oversaw my transition from software engineer to statistics researcher. Without his guidance
early on, it is unlikely that my academic career would have progressed as seamlessly as it
did. Some of our work together is the basis for Chapter 4.

Additionally, I am grateful to my family and my friends, many with ties to the Hillegass-
Parker House co-op, for their support and friendship during my doctoral work.

1

Chapter 1

Introduction

For large datasets, asymptotic computational complexity [1] determines whether a statisti-
cal inference procedure is feasible. These datasets may be large in terms of the number of
observations, the dimension of the data, or any other statistic affecting the runtime. Pro-
cedures with nearly linear runtimes can be scaled to essentially arbitrary-sized datasets:
the inference procedure requires the same magnitude of computation as collecting the data.
Conversely, procedures with significantly super-linear runtimes cannot be applied to large
datasets, regardless of the engineering effort devoted to the problem.

For many inference problems, direct solutions require either an exponential or a theoret-
ically infinite number of steps. Procedures that iterate through all possible configurations
of discrete variables, or all subsets of a set, for example, will suffer from a “combinatorial
explosion,” leading to at least exponential runtime. Procedures that consider each setting of
a continuous variable will never terminate.

This dissertation presents three applications of statistical inference where direct solutions
all require either exponential or infinite runtime.

Part I considers finding and characterizing astronomical objects in images from tele-
scopes [2]. A subproblem is to determine whether each object s = 1, . . . , S is a star or a
galaxy. A tractable algorithm cannot evaluate a loss function at each of the 2S possible
configurations. If the loss function could be decomposed across astronomical objects, then
just 2S evaluations would be needed. Yet neighboring astronomical objects often overlap
in the images, so a good loss function will not typically decompose across them: knowledge
about some astronomical objects helps to resolve others.

Part II applies statistical inference to author disambiguation—the task of figuring out
which author is referenced by each mention of a person’s name [3]. Author disambiguation
matters because in a large collection of academic publications many authors’ names are
not unique. For instance, a collection may contain hundreds of authors named “J. Smith.”
Moreover, a single author may be referred to in multiple ways, due to misspellings, name
changes, or spelling variations. Each mention of a person’s name is accompanied by several
attributes in addition to the name string itself, that can aid in disambiguation. These
attributes include articles’ keywords, articles’ topics (explicit or inferred), and the name

CHAPTER 1. INTRODUCTION 2

strings of co-authors appearing on the same article. A direct solution might consider every
possible partition of the mentions. Another approach, common in practice, compares every
pair of mentions, thus requiring quadratic runtime. But for sizable datasets, even quadratic
runtime is intractable.

Part III considers approximating a real-valued, high-dimensional function based on a
small number of observations, with minimal prior knowledge (real knowledge, not assump-
tions) about the function. This situation is commonplace when interpreting computer ex-
periments [4]. A computationally expensive simulator maps a particular setting of unknown
model parameters to real-valued output. A priori, little is known about the simulator, but
some degree of smoothness is expected: small changes in model parameters yield small
changes in output. The curse of dimensionality, however, suggests that, even with this reg-
ularity condition, an exponential number of observations are required to achieve adequate
sample density [5]. Yet the curse of dimensionality is only a rule of thumb, not a theorem. In-
deed, much analysis of computer experiments depends on it not applying. For a real dataset,
from a climate model, we show that the number of additional observations that could be
necessary to approximate the function with a useful degree of accuracy is intractable. This
problem is large-scale not in terms of the data available, but rather in terms of the amount
of data that would be required.

The problems of constructing an astronomical catalog (Part I) and disambiguating au-
thors (Part II) have a fundamental similarity. In astronomical cataloging, the data are the
number of photons landing in each pixel. Each photon originates from a single astronomical
object. Partitioning the photons according to origin essentially solves the cataloging prob-
lem. Similarly, author disambiguation is partitioning the mentions according to author. In
both cases, we partition large N observations (i.e., photons or mentions) into O(N) parts
(i.e., astronomical objects or authors).1 There is a collective aspect to both problems too,
where the information about one subset of the observations informs partitioning of a disjoint
subset. For mentions, for example, a shared co-author can indicate that the mentions are
coreferent. For photons, the assignment of neighboring photons to the same astronomical
object suggests that these photons too are “coreferent.”

That said, in astronomical cataloging, it is the catalog that is the final output, not a
partition of photons. If multiple photons from different astronomical objects are recorded by
the same pixel, there is no basis for distinguishing which photon came from which astronom-
ical object, nor is there interest in knowing. In author disambiguation, it may be that an
authoritative list of authors is important, rather than a partition of mentions. More likely,
however, it is the partition that is desired.

Another unifying theme among the parts, with this one uniting all three, has to do
with the relation between the solution proposed and the past standard practice. In the
past, each of these problems has typically been approached with heuristics—algorithms that
may be intuitively reasonable, but that do not follow from an explicit model of the data.
Thus, their conclusions cannot be stated as following from interpretable assumptions. They

1Even clustering algorithms called “scalable” typically are only efficient at recovering O(1) parts.

CHAPTER 1. INTRODUCTION 3

do not generally provide calibrated measures of the uncertainty of their predictions. They
are difficult to extend to accommodate heterogeneous sources of data. They may make
suboptimal predictions because they do not fully exploit prior knowledge.

In astronomy (Part I), the current standard practice for building a catalog of detected
astronomical objects is to process the data through a “pipeline” of software routines [6]. One
stage of the pipeline estimates the level of background noise, another finds bright spots in
the images, and yet another classifies each bright spot as a star or a galaxy.

For author disambiguation (Part II), the current standard practice is agglomerative clus-
tering, a greedy heuristic that does not provide uncertainty estimates. Worse still, every pair
of articles needs to be compared, leading to quadratic runtime unless yet another heuristic,
called “blocking,” is used too. This multi-stage, algorithmic approach cannot provide inter-
pretable uncertainty estimates. The conclusions do not follow from an interpretable model.

For approximating a simulator (Part III), standard practice is to interpolate the known
output of the simulator with a computationally inexpensive “emulator,” denoted f̂ . Kriging,
MARS, and Polynomial Chaos are some common methods [7, 8, 9]. The belief that f
is “well-behaved” or “smooth” is often said to justify letting the emulator stand in for f .
However, this belief does not follow from any explicit and plausible assumptions about the
data. Hence, procedures stemming from it are heuristics.

The alternative to heuristics is procedures motivated by explicit and plausible models
of data. In Chapter 2, we propose a comprehensive statistical approach to astronomical
object curation, represented as a graphical model. Fundamentally, the model assumes that
the night sky has an underlying brightness that does not change on a human time scale, but
that the number of photons detected at any particular pixel is a Poisson random variable.
Each pixel has a unique rate, a complex but deterministic function of latent random variables
and unknown model parameters, including each celestial object’s position, brightness, color,
and shape. The model also accounts for many details: the sky is organized into “fields”;
images are taken through “filters” that selectively allow photons of certain wavelengths to
pass; light is spread by Earth’s atmosphere (the “point spread function”); and more.

Learning a catalog of astronomical objects amounts to conditioning on the observed pixel
intensities and inferring the distribution of the latent random variables—the posterior distri-
bution. Bayes’s rule cannot be directly applied because the marginal likelihood of the data
is not tractable to compute. Markov Chain Monte Carlo (MCMC), a common alternative,
approximates the posterior by sampling [10]. The computational cost of MCMC, however,
can be prohibitively high for large datasets. Variational inference, an alternative to MCMC,
approximates the posterior through numerical optimization [11]. Typically, the approxima-
tion is constrained to a designated class of analytically tractable distributions, indexed by
real-valued parameters. From this class, variational inference finds the distribution that most
closely approximates the posterior in terms of Kullback-Leibler divergence.

We derive scalable variational inference procedures for modeling astronomical images.
These procedures leverage conditional conjugacy and the delta method for moments to elim-
inate non-analytic integrals. To avoid modeling simplifications that would misfit the data,
these procedures break with tradition in the variational inference community by using itera-

CHAPTER 1. INTRODUCTION 4

tive second-order optimization methods rather than closed-form coordinate ascent updates.
In Chapter 3, we derive a flexible generative model for astronomical images of galaxies

that melds neural networks and variational inference. For a particular galaxy image, let z
be a low-dimensional latent random vector, distributed as a multivariate standard normal.
Then the intensities of the pixels—that is, the observed random variables—conditionally
follow a multivariate normal distribution too:

x∣z ∼ N (fµ (z) , fσ (z)) .

Here fµ and fσ are deep neural networks—deterministic non-linear functions that map the
random vector z to the distributional parameters for x. Inference for this model involves 1)
maximizing the likelihood of the data with respect to the model parameters—the weights
of neural networks fµ and fσ; and 2) for the maximizers fµ and fσ, finding the approxi-
mating distribution closest to the posterior, that is, the conditional distribution of z given
x. We restrict the candidate approximations to the class of distributions with the form
N (gµ (x) , gσ (x)), where gµ and gσ are neural networks too, with a fixed architecture. Then
variational inference amounts to finding the weights of gµ and gσ that minimize the Kullback-
Leibler divergence between N (gµ (x) , gσ (x)) and the posterior.

In Chapter 5 we develop an approach to author disambiguation based on discriminative,
undirected graphical models, known as conditional random fields. We model the probability
of a partition Y of the mentions as

P (Y)∝ ∏
yi∈Y

exp(θ0 +
J

∑
j=1

θjfj (yi)) ,

where the fj are feature functions, the yi are parts of a partition, and θ is the model’s
parameters. A Metropolis-Hastings sampler with split-merge proposals infers the posterior
on Y . Contrastive divergence learns parameters θ from manually disambiguated training
data. Developing feature functions such that the maximum-marginal-likelihood estimate θ̂
also induces good partitions, however, remains an open problem.

In Chapter 6, we develop an approach to author disambiguation based on spectral meth-
ods [12]. Learning similarity functions from training data for K-way spectral clustering is a
well-studied problem [13]. For author disambiguation, however, K is the number of authors,
which scales linearly in the number of articles, implying cubic runtime. Recursive spectral
bipartitioning is a fast alternative, terminating after O (logn) bipartitions. Each bipartition
uses the graph Laplacian to approximate the min-cut objective function. The similarity
matrix, and hence the Laplacian, is neither sparse, since many articles have some similarity
to each other, nor low rank, since we must recover O(n) unique authors. Representing the
similarity matrix as a product of sparse matrices enables an O(n) right-multiplication of the
Laplacian, and hence roughly O(n) bipartitioning by iterative eigensolvers. Learning edge
weights from training data for recursive bipartitioning, however, remains an open problem.

In Part III, we consider a function f that has been observed n times. We know only that
f is Lipschitz continuous. This setting is common when f is a simulator, mapping settings

CHAPTER 1. INTRODUCTION 5

to some quantity of interest, and each computer experiment constitutes one observation of
f . In Chapter 7, we propose a procedure for sequentially selecting locations to observe f , in
order to determine where in the domain f is above or below a particular threshold. While the
procedure works well for low-dimensional functions, outperforming several baseline measures,
its good performance does not carry over to high-dimensional functions. Intuitively, in high
dimensions, Lipschitz continuity is not a strong enough condition to learn about f globally
from only a modest number of local observations.

In Chapter 8, we make this intuition rigorous, through minimax analysis. We suppose
f has the smallest Lipschitz constant K̂ consistent with a fixed set of observations. (The
function f must vary somewhat to interpolate the n observations.) How many additional
observations might be required to “pin down” f everywhere to within some tolerance ε? Sup-
pose f̂ is the best possible emulator of f based on the observations—it minimizes worst-case
error at every point of the domain. Given the n observations, how large could ∣f(x) − f̂(x)∣
be for some unobserved input x? We propose statistical tests, that, from a batch of observa-
tions, can determine how many additional observations could be needed, given the observed
smoothness of the function, based on a minimax analysis. Applying the theoretical bounds
derived in Chapter 8 to climate data demonstrates that, even with these optimistic assump-
tions, the number of observations required to emulate f well is intractable: tens of orders
of magnitude more simulations than any supercomputer could run. Based on the data, the
smoothness of f does not justify any emulator. Without stronger assumptions, any emulator
is only a heuristic.

6

Part I

Astronomy

7

Chapter 2

Variational inference for a generative
model of astronomical images

This chapter presents Celeste, a new, fully generative model of astronomical image sets—the
first such model to be empirically investigated, to our knowledge. The work we report is
an encouraging example of principled statistical inference applied successfully to a science
domain underserved by the machine learning community. It is unfortunate that astronomy
and cosmology receive comparatively little of our attention: the scientific questions are
fundamental, there are petabytes of data available, and we as a data-analysis community
have a lot to offer the domain scientists. One goal in reporting this work is to raise the
profile of these problems for the machine-learning audience and show that much interesting
research remains to be done.

Turn now to the science. Stars and galaxies radiate photons. An astronomical image
records photons—each originating from a particular celestial body or from background at-
mospheric noise—that pass through a telescope’s lens during an exposure. Multiple celestial
bodies may contribute photons to a single image (e.g., Figure 2.1), and even to a single
pixel of an image. Locating and characterizing the imaged celestial bodies is an inference
problem central to astronomy. To date, the algorithms proposed for this inference problem
have been primarily heuristic, based on finding bright regions in the images [6, 14].

Generative models are well-suited to this problem—for three reasons. First, to a good
approximation, photon counts from celestial objects are independent Poisson processes: each
star or galaxy has an intrinsic brightness that is effectively static during human time scales.
In an imaging exposure, the expected count of photons entering the telescope’s lens from a
particular object is proportional to its brightness. When multiple objects contribute photons
to the same pixel, their rates combine additively.

Second, many sources of prior information about celestial bodies are available, but none
is definitive. Stars tend to be brighter than galaxies, but many stars are dim and many
galaxies are bright. Stars tend to be smaller than galaxies, but many galaxies appear point-
like as well. Stars and galaxies differ greatly in how their radiation is distributed over the
visible spectrum: stars are well approximated by an “ideal blackbody law” depending only

CHAPTER 2. CELESTE 8

Figure 2.1: An image from the Sloan Digital Sky Survey [15] of a galaxy from the constellation
Serpens, 100 million light years from Earth, along with several other galaxies and many stars
from our own galaxy.

on their temperature, while galaxies are not. On the other hand, stars are not actually
ideal blackbodies, and galaxies do emit energy in the same wavelengths as stars. Posterior
inference in a generative model provides a principled way to integrate these various sources
of prior information.

Third, even the most powerful telescopes receive just a handful of photons per exposure
from many celestial objects. Hence, many objects cannot be precisely located, classified, or
otherwise characterized from the data available. Quantifying the uncertainty of point esti-
mates is essential—it is often as important as the accuracy of the point estimates themselves.
Uncertainty quantification is a natural strength of the generative modeling framework.

Some astronomical software uses probabilities in a heuristic fashion [16], and a gener-
ative model has been developed for measuring galaxy shapes [17]—a subproblem of ours.
But, to our knowledge, fully generative models for inferring celestial bodies’ locations and
characteristics have not yet been examined1. Difficulty scaling the inference for expressive
generative models may have hampered their development, as astronomical sky surveys pro-
duce very large amounts of data. For example, the Dark Energy Survey’s 570-megapixel
digital camera, mounted on a four-meter telescope in the Andes, captures 300 gigabytes
of sky images every night [19]. Once completed, the Large Synoptic Survey Telescope will
house a 3200-megapixel camera producing eight terabytes of images nightly [20].

The remainder of this paper describes the Celeste model (Section 2.1) and its accompa-
nying variational inference procedure (Section 2.2). Section 4 details our empirical studies
on synthetic data as well as a sizable collection of astronomical images.

1However, see [18] for a workshop presentation proposing such a model.

CHAPTER 2. CELESTE 9

Figure 2.2: The Celeste graphical model. Shaded vertices represent observed random vari-
ables. Empty vertices represent latent random variables. Black dots represent constants.
Constants with “bar” decorators, e.g. ε̄nb, are set a priori. Constants denoted by uppercase
Greek characters are also fixed; they denote parameters of prior distributions. The remaining
constants and all latent random variables are inferred. Edges signify conditional dependency.
Rectangles (“plates”) represent independent replication.

2.1 The model
The Celeste model is represented graphically in Figure 2.2. In this section we describe how
Celeste relates celestial bodies’ latent characteristics to the observed pixel intensities in each
image.

CHAPTER 2. CELESTE 10

2.1.1 Celestial bodies

Celeste is a hierarchical model, with celestial objects atop pixels. For each object s = 1, . . . , S,
the unknown 2-vector µs encodes its position in the sky as seen from Earth. In Celeste, every
celestial body is either a star or a galaxy. (In the present work, we ignore other types of
objects, which are comparatively rare.) The latent Bernoulli random variable as encodes
object type: as = 1 for a galaxy, as = 0 for a star. We set the prior distribution

as ∼ Bernoulli(Φ). (2.1)

2.1.1.1 Brightness

The overall brightness of a celestial object s is quantified as the total radiation from s
expected to reach a unit area of Earth’s surface, directly facing s, per unit of time. However,
we can also quantify brightness as the proportion of this radiation (per square meter, per
second) that passes through each filter in a standardized filter set. Such a set is called a
“photometric system.” These standardized filters are approximately band-pass: each allows
most of the energy in a certain band of wavelengths through, while blocking most of the
energy outside the band. The physical filters attached to a telescope lens closely match the
standardized filters of some photometric system.

In Celeste, we take the photometric-system approach—we directly model brightnesses
with respect to the B filters of a fixed photometric system. We designate a particular filter
as the “reference” filter, letting the random variable rs denote the brightness of object s with
respect to that filter. We make rs dependent on as, since stars tend to be brighter than
galaxies. For computational convenience, and because brightness is typically considered to
be non-negative and real-valued, we set

rs∣(as = i) ∼ Gamma (Υ(i),Ψ(i)) . (2.2)

Object s’s brightnesses with respect to the remaining B − 1 filters are encoded using
“colors.” The color csb is defined as the log ratio of brightnesses with respect to filters b and
b + 1. Here, the filters are ordered by the wavelength bands they let through. The B − 1
colors for object s are collectively denoted by cs, a random (B − 1)-vector.

Celeste uses the color parameterization because stars and galaxies have very distinct prior
distributions in color space. Indeed, for idealized stars—blackbodies—all B − 1 colors lie on
a one-dimensional manifold indexed by surface temperature. On the other hand, though
galaxies are composed of stars, theory does not suggest they lie near the same manifold: the
stars in a galaxy can have many different surface temperatures, and some of the photons are
re-processed to other energies through interactions with dust and gas. Figure 2.3 demon-
strates that stars are much nearer a 1-dimensional manifold in color space than galaxies
are.

We model the prior distribution on cs as a mixture of D multivariate Gaussians. The
number of mixture components D may be selected to minimize error on held out data, or

CHAPTER 2. CELESTE 11

Figure 2.3: Density plots for two colors, based on an SDSS catalog containing hundreds of
thousands of stars and galaxies.

kept small for computational efficiency. The random categorical variable ks indicates which
mixture component generated cs. A priori,

ks∣(as = i) ∼ Categorical (Ξ1, . . . ,ΞD) (2.3)

and

cs∣(ks = d, as = i) ∼ MvNormal (Ω(i,d),Λ(i,d)) . (2.4)

A celestial body’s brightnesses in the B filters, (`sb)Bb=1, is uniquely specified by its reference-
filter brightness rs and its colors cs.

2.1.1.2 Galaxies

The distance from Earth to any star (besides the Sun) exceeds the star’s radius by many
orders of magnitude. Therefore, stars are well modeled as points. Modeling the (two-
dimensional) appearance of galaxies as seen from Earth is more involved. We divide the
appearance of galaxy s into two parts: its per-filter brightnesses (`sb), as discussed in Sec-
tion 2.1.1.1, and its “light kernel” hs(w), which describes how the apparent radiation from
the galaxy is distributed over the sky. The argument w is in sky coordinates; the light kernel
is a density function that integrates to one and is largest near the apparent galactic center.
In Section 2.1.1.3, we show how these two parts of apparent galaxy brightness come together.

We take hs(w) to be a convex combination of two prototype functions, known in astron-
omy as the “exponential” and “de Vaucouleurs” prototypes:

hs(w) = θshs1(w) + (1 − θs)hs2(w), θs ∈ [0,1]. (2.5)

CHAPTER 2. CELESTE 12

Figure 2.4: A distant galaxy, from the SDSS dataset, approximately 20 pixels in height,
predicted to have effective radius σs = 0.6 arcseconds, rotation ϕs = 80○, and eccentricity
ρs = 0.17. Credit: SDSS

The de Vaucouleurs prototype is characteristic of “elliptical” galaxies, which have smooth
light kernels (Figure 2.5), whereas the exponential prototype matches “spiral” galaxies (Fig-
ure 2.1). The prototype functions hs1(w) and hs2(w) contain additional galaxy-specific
parameters. In particular, each prototype function is a rotated, scaled mixture of bivari-
ate normal distributions. The rotation and scaling are galaxy-specific, but the remaining
parameters of each mixture are not:

hsi(w) =
J

∑
j=1

η̄ijφ(w;µs, ν̄ijWs), i = 1 or 2. (2.6)

In Equation (2.6), (η̄, ν̄)ij are pre-specified constants that characterize the exponential and
de Vaucouleurs prototypes; µs is the center of the galaxy, in sky coordinates; Ws is a spatial
covariance matrix; and φ is the bivariate normal density.

The light kernel hs(w) is a finite scale mixture of Gaussians: its mixture components have
a common mean µs and covariance matrices that differ only in scale. The “isophotes” (level
sets of the light kernel) are concentric ellipses. Although this model prevents us from fitting
individual “arms,” like those of the galaxy in Figure 2.1, most galaxies are not sufficiently
resolved to see such sub-structure. (See Figure 2.4 for a typical galaxy image.) A more
flexible galaxy model might overfit them.

The spatial covariance matrixWs is parameterized by a rotation angle ϕs, an eccentricity
(minor-major axis ratio) ρs, and an overall size scale σs:

Ws = R⊺
s [
σ2
s 0

0 σ2
sρ

2
s
]Rs, (2.7)

CHAPTER 2. CELESTE 13

Figure 2.5: Messier 87, a galaxy that exhibits the de Vaucouleurs profile. Credit: NASA

where Rs is a rotation matrix,

Rs = [cosϕs − sinϕs
sinϕs cosϕs

] . (2.8)

The scale σs is specified in terms of “effective radius”—the radius of the disc that contains
half of the galaxy’s light emissions before applying the eccentricity ρs.

2.1.1.3 The ideal sky view

In the upcoming Section 2.1.2, we account for distortions from pixelation, atmospheric blur,
and background noise; and we deal in photons counted by a camera, rather than continuous-
valued brightness (energy arriving at Earth). The developments of the previous sections
represent the sky without these concerns; we call this part of the model the “ideal sky view.”
Let δµs denote the Dirac delta function—the light kernel of a star. Then the total apparent
brightness (the ideal sky view) in filter b, at sky position w, is

Gb(w) =
S

∑
s=1

`sbgsas(w), (2.9)

where

gsi(w) =
⎧⎪⎪⎨⎪⎪⎩

δµs(w), if i = 0 (“star")
hs(w), if i = 1 (“galaxy”).

(2.10)

2.1.2 Astronomical images

Returning to the Celeste graphical model, the data is represented in the bottom half of
Figure 2.2. A “field” is a small, rectangular region of the sky. Fields may overlap. Each of

CHAPTER 2. CELESTE 14

the N fields in the data set is imaged B times, once per filter in the photometric system
(Section 2.1.1.1).2

Each resulting image is a grid of M pixels. Each pixel in turn receives light primarily
from celestial bodies near the pixel’s corresponding region of the sky. The observed random
variable xnbm is the count of photons recorded at pixel m, in image b of field n.

The night sky is not completely dark owing to natural skyglow, a combination of reflected
sunlight off dust particles in the solar system, night airglow from molecules in Earth’s at-
mosphere, and scattered starlight and moonlight. We model the night sky’s brightness as
background noise, through a spatial Poisson process that is homogeneous for each image and
independent of stars and galaxies. The noise rate depends on the image and the band be-
cause atmospheric conditions vary over time. Also, the atmospheric effects differ for imaging
targets closer to the horizon. The image-specific constant ε̄nb denotes the rate of background
noise.

Both ε̄nb and the brightnesses of celestial bodies are quantified in linear units of nanomag-
gies; nanomaggies are a physical unit of energy, not specific to any particular image [21].
The image-specific constant ῑnb is the expected number of photons recorded in image b of
field n, for a pixel receiving a brightness of one nanomaggy.

2.1.2.1 Point-spread functions

Ground-based astronomical images are blurred by a combination of small-angle scattering in
Earth’s atmosphere, the diffraction limit of the telescope, optical distortions in the camera,
and charge diffusion within the silicon of the CCD detectors. Together these effects are
represented by the “point spread function” (PSF) of a given image. Stars (other than the
Sun) are points in the ideal sky view (Section 2.1.1.3), but the PSF typically spreads their
photons over dozens of adjacent pixels.

When dealing with images, as in this section, we work in the image coordinate system.
For any single image, there is a one-to-one mapping between image and sky coordinates, so
nothing is lost; our notation suppresses the mapping for clarity.

We model the action of the PSF as a mixture of K Gaussians. Consider pixel m (in
band b of image n), having coordinates wm. The probability that a photon originating at
coordinates w lands at wm is given by the PSF

fnbm(w) =
K

∑
k=1

ᾱnbkφ(wm;w + ξ̄nbk, τ̄nbk). (2.11)

Here φ is the bivariate normal density. The parameters (ᾱnb, ξ̄nb, τ̄nb) of the the PSF are spe-
cific to an image, in part to account for atmospheric conditions that vary between exposures,
but are constant throughout the image.

2 Cameras for optical astronomy typically use charge-coupled devices (CCDs), which convert light into
electrons [19]. A CCD is a grid of millions of pixels, designed to accumulate the radiation arriving at each
pixel during an exposure.

CHAPTER 2. CELESTE 15

2.1.2.2 The Celeste likelihood

Convolving the ideal sky view (Equation 2.9) with the PSF and adding background noise
yields the rate of photon arrivals for pixel m:

znbm ∶= εnb + ∫ Gb(w)fnbm(w)dw (2.12)

= εnb +
S

∑
s=1

`sb∫ gsas(w)fnbm(w)dw. (2.13)

These normal-normal convolutions can be computed analytically. For stars (as = 0),

f̆s0(m) ∶= ∫ gs0(w)fnbm(w)dw (2.14)

=
K

∑
k=1

ᾱnbkφ(wm;µs + ξ̄nbk, τ̄nbk). (2.15)

Let θs1 = θs and θs2 = 1 − θs. For galaxies (as = 1),

f̆s1(m) ∶= ∫ gs1(w)fnbm(w)dw (2.16)

=
K

∑
k=1

ᾱnbk
2

∑
i=1

θsi
J

∑
j=1

η̄ij ⋅ φ(wm;µs + ξ̄nbk, τ̄nbk + ν̄ijWs). (2.17)

Let a = (as)Ss=1, r = (rs)Ss=1, and c = (cs)Ss=1. Then the expected number of photons landing
in pixel m is

Fnbm(a, r, c) = ῑnb[εnb + znbm]. (2.18)

For n = 1, . . . ,N , b = 1, . . . ,B, and m = 1, . . . ,M , we finally obtain the likelihood

xnbm∣a, r, c ind∼ Poisson(Fnbm(a, r, c)). (2.19)

2.2 Inference
In this section we explain how we apply the Celeste model to astronomical image data sets,
to draw inferences about unknown quantities.

In principle, all parameters could be learned by variational inference. But we reuse some
estimates from the existing photometric pipeline that are not thought to limit performance.
The background noise level ε̄bn is set by the existing photometric pipeline, based on a heuris-
tic: most pixels in each image receive photons primarily from background radiation. The
calibration constant ῑbn is set by first calibrating overlapping images relative to each other,
and then by calibrating some images absolutely, based on benchmark stars [22]. The image-
specific parameters of the point spread function, (ᾱnb, η̄nb, τ̄nb)Kk=1, are set by the existing

CHAPTER 2. CELESTE 16

photometric pipeline; a mixture of Gaussians is fit to known stars (considered point sources,
before convolution with the PSF) in each image that are not near other celestial objects.

Galaxy profiles’ parameters, (η̄ij, ν̄ij)Jj=1, are set a priori too, by fitting mixtures of Gaus-
sians to Sérsic profiles—widely used models of galaxy profiles. We fit J = 8-component
mixtures for de Vaucouleurs galaxies (i = 1) and J = 6-component mixtures for exponential
galaxies (i = 2). These approximations are good enough for the current version of the model:
the misfit versus Sérsic profiles is smaller than the misfit between Sérsic profiles and actual
galaxies.

The prior distributions also could be learned within the variational procedure, by empiri-
cal Bayes. But, because much data is available in existing astronomical catalogs, we estimate
their parameters a priori. Fitting Φ, Υ, and Λ by maximum likelihood to existing catalogs
is straightforward. To fit the prior on color (cs) to existing catalogs, we use the expectation-
maximization algorithm, initialized by k-means [23]. Though D = 64 minimized held-out test
error, we set D = 2, to work around a limitation of our present optimizer—it only supports
box constraints. Figure 2.3 shows a two-dimensional slice of the (B − 1)-dimensional data
set used to construct the color prior.

The remaining quantities are estimated by variational inference.

2.2.1 Variational approximation of the posterior distribution

Let Θ = (a, r, k, c) be the latent random variables in the Celeste model, and let

x = (x111, . . . , xNBM)
be the pixel intensities. Computing the posterior p(Θ∣x) is intractable: to apply Bayes’s rule
exactly, we need to evaluate

p(x) = ∫
N

∏
n=1

B

∏
b=1

M

∏
m=1

p(xnbm∣Θ)
S

∏
s=1

p(Θs)dΘ. (2.20)

But the S-dimensional integral in (2.20) does not decompose into a product of low-dimensional
integrals, and therefore cannot be computed efficiently.

Instead, we use optimization to find a distribution that best approximates the posterior.
For any distribution q over Θ,

log p(x) = log∫ p(x,Θ)dΘ (2.21)

= log∫ p(x,Θ)q(Θ)
q(Θ)dΘ (2.22)

= logEq [
p(x,Θ)
q(Θ)] (2.23)

≥ Eq [log p(x∣Θ)] −DKL (q(Θ), p(Θ)) (2.24)
=∶ L(q). (2.25)

CHAPTER 2. CELESTE 17

Here Eq is expectation with respect to q. We call L the evidence lower bound (ELBO).
To find a distribution q⋆ that approximates the exact posterior, we maximize the ELBO over
a set Q of candidate q’s. We restrict Q to distributions of the factored form

q(Θ) =
S

∏
s=1

q(as)q(rs∣as)q(ks∣as)
B−1

∏
b=1

q(csb∣as). (2.26)

Furthermore, for all s = 1, . . . , S, b = 1, . . .B − 1, and i ∈ {0,1}, we set

q(as) ∼ Bernoulli(χs), (2.27)

q(rs∣as = i) ∼ Gamma(γ(i)
s , ζ

(i)
s), (2.28)

q(ks∣as = i) ∼ Categorical(κ(i)
s), (2.29)

q(csb∣as = i) ∼ Normal(β(i)
sb , λ

(i)
sb). (2.30)

Then finding q⋆ is equivalent to finding the optimal (χs, γs, ζs, κs, βs, λs) for each celestial
body. By design, most of the expectations in L can be evaluated analytically. We proceed
by decomposing each of the two expectation in equation (2.24).

2.2.1.1 Expected log likelihood

From the density function for the Poisson distribution,

Eq[log p(x∣Θ)] =
N

∑
n=1

B

∑
b=1

M

∑
m=1

{xnbmEq[logFnbm] −Eq[Fnbm] − log(xnbm!)}. (2.31)

Here

Eq [Fnbm] = ῑnbEq [Gnbm] (2.32)

and

Eq [Gnbm] = εnb +
S

∑
s=1

{(1 − χs)Eq [`s∣as = 0] fs0 (m) + χsEq [`s∣as = 1] fs1 (m)} (2.33)

and

Eq [`s∣as = i] (2.34)

= Eq [rs∣as = i]Eq [
B−1

∏
j=1

exp{Ib (j) csb} ∣as = i] (2.35)

= exp{γ(i)
s + ζ(i)s /2}

B−1

∏
j=1

Eq [exp{Ib (j) csb} ∣as = i] , (2.36)

CHAPTER 2. CELESTE 18

and, for τ ∈ R,

Eq [exp{τcb} ∣ks = d, as = i] = exp{τβ(i)
sb +

1

2
τ 2λ

(i)
sb } . (2.37)

We approximate Eq [logFnbm] by replacing the logarithm with its second-order Taylor
expansion around Eq [Fnbm]:

log (x) = logEq [x] +
1

Eq [x]
(x −Eq [x]) −

1

2Eq [x]2 (x −Eq [x])2 + . . .

Therefore,

Eq [logFnbm] ≈ logEq [Fnbm] − Vq [Fnbm]
2Eq [Fnbm]2 , (2.38)

where

Vq [Gnbm] =
S

∑
s=1

Vq [`sbfsas (m)] (2.39)

=
S

∑
s=1

Eq [`2
sbfsas (m)2] +Eq [`sbfsas (m)]2

,

and

Eq [`2
sbfsas (m)2] = (1 − χs) fs0 (m)2 Eq [`2

sb∣as = 0] + χsfs1 (m)2 Eq [`2
sb∣as = 1] , (2.40)

and

Eqs [`2
sb∣as = i] = Eq [r2

s ∣as = i]
B−1

∏
j=1

Eq [exp{2Ib (j) csb} ∣as = i] , (2.41)

and

Eq [r2
s ∣as = i] = exp{2 (γ(i)

s + ζ(i)s)} . (2.42)

This technique is known as delta-method variational inference [24, 25]. Because znbm is a
sum over celestial bodies, whose corresponding random variables are treated as independent
in q, the computational complexity of the approximation scales linearly in the number of
celestial bodies:

Vq[znbm] =
S

∑
s=1

Vq[`sbf̆sas(m)]. (2.43)

CHAPTER 2. CELESTE 19

2.2.1.2 Kullback-Leibler divergence

The second expectation in equation (2.24) is DKL (q(Θ), p(Θ)), the Kullback-Leibler diver-
gence between the variational distribution and the prior. Intuitively, this term penalizes
variational distributions that deviate from the prior, even though they may fit the data
more closely. To compute it, we make use of the factorization of the variational distribution:

DKL (q(Θ), p(Θ))

= ∫ [log q − log p]
S

∏
s=1

q(as)q(rs∣as)q(ks∣as)
B−1

∏
b=1

q(csb∣as) (2.44)

=
S

∑
s=1

DKL (q (as, rs, ks, cs) , ps (as, rs, ks, cs)) (2.45)

=
S

∑
s=1

DKL (q(as), p(as)) +
2

∑
i=1

q(as = i) (2.46)

⋅ [DKL (q(rs∣as = i), p(rs∣as = i)) +DKL (q (ks, cs∣as = i) , ps (ks, cs∣as = i))] .

Then, the KL-divergence between color vector cs and color prior indicator ks (an auxilliary
variable) is

DKL (q (ks, cs∣as = i) , ps (ks, cs∣as = i))

= ∫ [log q(ks∣as = i) + log q (cs∣ks, as = i) − log p(ks∣as = i) − log p (cs∣ks, as = i)] (2.47)

⋅ q(ks∣as = i)q(cs∣ks, as = i)
=DKL (q(ks∣as = i), p(ks∣as = i)) (2.48)

+ ∫ [log q (cs∣ks, as = i) − log p (cs∣ks, as = i)] q(ks∣as = i)q(cs∣ks, as = i)

=DKL (q(ks∣as = i), p(ks∣as = i)) (2.49)

+
D

∑
d=1

q (ks = d∣as = i)DKL [q (cs∣as = i) , p (cs∣ks = d, as = i)] .

The KL-divergence between astronomical object type indicator as is

DKL (q(as), p(as)) = χs log
χs
∆

+ (1 − χs) log
1 − χs
1 −∆

. (2.50)

The KL-divergence between conditional brightness in the reference band is

DKL (q(rs∣as = i), p(rs∣as = i)) = log
Ψ(i)
ζ
(i)
s

+
ζ
(i)
s + (γ(i)

s −Υ(i))2

2Ψ(i) − 1

2
. (2.51)

The KL-divergence between the color prior mixture component indicators is

DKL (q(ks∣as = i), p(ks∣as = i)) =
D

∑
d=1

κ
(i)
sd [logκ

(i)
sd − log Ψ(i,d)] . (2.52)

CHAPTER 2. CELESTE 20

And finally, the KL-divergence between color vectors is

DKL (q (cs∣as = i) , p (cs∣ks = d, as = i))

= 1

2

⎧⎪⎪⎨⎪⎪⎩
(

4

∑
b=1

[(Λ(i,d))−1]
bb
λ
(i)
sb) + (Ω(i,d) − β(i)

s)
⊺
(Λ(i,d))−1 (Ω(i,d) − β(i)

s)

− 4 −
4

∑
b=1

logλ
(i)
sb + log ∣Λ(i,d)∣

⎫⎪⎪⎬⎪⎪⎭
.

2.2.2 Optimization

Once the expectations in the ELBO are replaced with analytic expressions, maximizing it
becomes a standard optimization problem, amenable to various techniques. We use L-BFGS-
B [26].

When possible, we use existing star and galaxy catalogs for initialization. When no
catalog is suitable, we convolve the images with matched filters to increase the signal-to-
noise ratio [27]. We find each pixel whose value exceeds both the values of its neighboring
pixels and an upper bound on the number of photons that could come from sky noise. We
initialize the center of each such pixel as a celestial object. The number of such pixels
determines S, the number of objects we assume are present in the image. Modeling S as
random is the subject of ongoing research.

We compute derivatives alongside the evaluation of the objective, with little overhead:
results for the most computationally expensive operations required to evaluate the objective,
like exponentiation, can be reused for evaluating the derivative. We have not found the speed
of automatic differentiation toolkits competitive with manually coded derivatives, so our cur-
rent results use the latter. Validating manually derived derivatives against approximations
from numeric differentiation is essential.

To get a feel for the scale of the computation, consider how we produced the results in the
next section. The objective and its derivative are summations over pixels (Equation (2.31)).
At each pixel, for each nearby celestial body, we evaluate 45 Gaussian densities, to compute
the quantities in Equations (2.15) and (2.17). In the model, every celestial body can con-
tribute photons to every pixel. In practice, we truncate these Gaussians. Most stars and
galaxies contribute photons to fewer than 100 pixels, and no pixels are thought to receive
photons from more than 10 celestial bodies.

With these techniques, evaluating the ELBO takes several seconds on a 2000-pixel im-
age containing a few celestial bodies, and roughly 5 minutes on a 4-megapixel image with
hundreds of celestial bodies. The calculation for a single image could be parallelized, though
instead we elect to process images in parallel, on separate processors.

CHAPTER 2. CELESTE 21

2.3 Experiments
For real astronomical images, ground truth is unknown. However, a region of the sky known
as “Stripe 82” has been imaged more than 30 times by modern telescopes, whereas most
of the sky has been imaged through all five filter bands of our chosen photometric system
just once. “Photo” [6, 28] is the current state of the art for detection and characterization
of celestial bodies. We henceforth refer to Photo, limited to just one image in each band,
as “Primary,” and Photo run on the complete collection of replicated Stripe 82 images as
“Coadd.” Coadd serves as the ground truth in our subsequent analysis. However: (1) any
systematic biases in the Photo software are shared by both Coadd and Primary, and (2)
the composition of images taken through different atmospheric conditions can create its own
biases. Nonetheless, with predictions based on at least 30 times more data, we expect that
Coadd accurately characterizes any celestial body detected by either Primary or Celeste.

We compare Celeste to Primary on 654 celestial bodies from Stripe 82, selected based
on Coadd (the ground truth), that were not so bright as to be trivial to detect, but not so
dim as to be impossible to detect. The data are sets of B = 5 images, called “stamps,” each
centered on a selected celestial body. For these experiments, stamps substitute for fields
in Figure 2.2. Unlike fields, the stamps do not overlap, and a celestial body appearing in
one stamp does not contribute photons to other stamps that we analyze. Multiple celestial
bodies contribute photons to most stamps.

We initialize Celeste to the output of Primary, so that we can assess the marginal im-
provement obtained from our inference procedure. Results appear in Table 2.1.

Sample size varies by row because the galaxy models for Celeste and Photo are not always
comparable: both fit exponential and de Vaucouleurs light-kernel prototypes to each galaxy,
but in Celeste both prototypes are constrained to have the same rotation and scaling applied
to them. Hence, for rotation and scaling measures, we only compare using galaxies where
Coadd puts all the mixing weight on one of the two prototypes.

Primary (Photo) is a carefully hand-tuned heuristic. Yet, Celeste matches or improves
Photo on most metrics; only for reference-band brightness and scale is Celeste worse by more
than two standard errors. This result comes on a data set of difficult celestial bodies, with
ground truth set by Photo itself. For each color, Celeste reduces Primary’s error, making
Celeste (initialized by Photo) state-of-the-art for color detection. Whereas Primary estimates
each filter band’s brightness independently, Celeste predicts band brightnesses jointly, and
regularizes these predictions based on prior information.

Celeste significantly outperforms Primary for position too. The 9.8% (+/- 2.0%) smaller
position error is of practical importance to astronomers.

2.3.1 Synthetic images

To gauge the extent to which Celeste’s performance is limited by model misfit, or by errors in
Coadd (the ground truth), we also test Celeste with synthetic images. For each real image,
we generate a synthetic image with the same properties, with the locations, celestial object

CHAPTER 2. CELESTE 22

Table 2.1: Columns 1 and 2 are the average error for Primary and Celeste on celestial
bodies from Stripe 82; column 4 is the average error for Celeste on synthetic images. Lower
is better. “Improve” is the improvement from Celeste relative to Primary, with SE in
parentheses. Celeste on synthetic data is compared to Primary on real data; see the text.
“N” is sample size. “Position” is error, in pixels, for the location of the celestial bodies’ centers.
“Missed gals” counts galaxies labeled as stars. “Missed stars” counts stars labeled as galaxies.
“Brightness” measures the reference band (r-band) brightness in nanomaggies. “Colors” are
log-ratios of brightnesses in consecutive bands. “Profile” is a proportion indicating whether
a galaxy is de Vaucouleurs or exponential. “Eccentricity” is the ratio between the lengths of
a galaxy’s minor and major axes. “Scale” is the effective radius of a galaxy in arcseconds.
“Angle” is the orientation of a galaxy in degrees.

dataset real synthetic
model primary celeste improve celeste improve n
position 0.22 0.20 .02 (.00) 0.08 .14 (.01) 654
missed gals 28 / 654 15 / 654 .02 (.01) 14 / 654 .02 (.01) 654
missed stars 8 / 654 31 / 654 -.04 (.01) 6 / 654 .00 (.01) 654
brightness 0.76 1.60 -.83 (.12) 0.29 .47 (.08) 654
color u-g 1.10 0.49 .61 (.04) 0.20 1.06 (.05) 582
color g-r 0.16 0.09 .07 (.01) 0.05 .43 (.02) 654
color r-i 0.09 0.06 .03 (.00) 0.04 .25 (.01) 654
color i-z 0.25 0.10 .15 (.01) 0.08 .31 (.02) 654
profile 0.19 0.23 -.04 (.02) 0.16 .03 (.02) 237
eccentricity 0.17 0.13 .04 (.01) 0.11 .05 (.01) 237
scale 0.37 1.28 -.91 (.17) 0.23 .14 (.04) 237
angle 19.40 18.10 1.40 (.80) 14.90 4.50 (.80) 237

types, and reference band bright of the celestial bodies set to Coadd, but with the colors
and pixel values drawn from our model. For each synthetic image, we initialize Celeste to
the predictions from Primary (run on the real images, not the synthetic images).

We would like to also test Photo on the synthetic images. Running Photo on new data,
however, rather than using the catalogs from former runs of Photo, exceeds our capacity;
Photo is a long, intricate hand-tuned pipeline that has not been compiled in 6 years. Com-
paring the results for Celeste on synthetic data to Primary is nonetheless informative, since
the synthetic data mirrors Coadd (the ground truth).

For position, brightness, color, and all 4 properties of galaxies, we see large reductions
in error by Celeste from using synthetic images rather than real images. The number of
galaxies we misclassify as stars, and vice versa, is also reduced.

CHAPTER 2. CELESTE 23

Table 2.2: Average error for Celeste’s predictions, for real astronomical images, binned into
quartiles by estimated uncertainty. SEs in parentheses. Bins of more uncertain predictions
have greater average error, without exception.

Q1 Q2 Q3 Q4
brightness .27 (.02) .53 (.04) .94 (.10) 4.04 (.50)
color u-g .17 (.01) .43 (.04) .65 (.07) .85 (.09)
color g-r .05 (.00) .07 (.01) .09 (.01) .15 (.01)
color r-i .03 (.00) .04 (.00) .06 (.01) .08 (.01)
color i-z .04 (.00) .09 (.01) .10 (.01) .17 (.01)

Figure 2.6: An irregular galaxy from the constellation Leo. Because the brightest areas of
this galaxy are not near its center,Celeste may misfit this galaxy. credit: NASA

2.3.2 Uncertainty quantification

Celeste is fairly certain (≤1% uncertainty) about the classification (star vs. galaxy) for
526 out of 573 celestial objects. Of these classifications, 4% are wrong. Of the remaining
classifications (>1% uncertainty), 45% are wrong.

For brightness and each of the four colors, observed error rates also correlate directly
with reported uncertainty (Table 2.2). This correlation holds for synthetic data too.

2.3.3 Model misfit

On real data, galaxy model misfit may have constrained Celeste’s performance across the
board. Celeste’s two-component galaxy model is based on the successful models from [29]

CHAPTER 2. CELESTE 24

and [17]. However, Celeste is a fully generative model, so any misfit between the modeled
galaxy and the actual galaxy must be explained by Poisson randomness. The Poisson process
is well-suited to modeling the variation in photon count when the underlying rate is correct.
But, for galaxies, the rate itself may deviate greatly from the model. With this type of model
misfit, the galaxy shape that optimizes the ELBO may be unduly influenced by irregularities
in the underlying rate. Figure 2.6 illustrates a galaxy that would be difficult to fit with any
simple parametric model, even if sampled at low spatial resolution. Enhancing Celeste’s
galaxy model is a promising direction of ongoing research.

Modeling the galaxy-specific parameters (ρs, ϕs, σs, and θs) as constants to be learned
rather than as random variables with prior distributions likely also worsens performance. In
some cases galaxies scales’ (σs) were much too large; the optimizer may have been using a
galaxy to explain a background noise rate that exceeded εnb. These cases likely explain why
Primary outperformed Celeste in determining brightness and scale. Though the underlying
issue is model misfit (as Celeste’s good performance on synthetic data suggests), constraining
σs with a prior distribution could mitigate this effect. Also, a model that assigns more
degrees of freedom to galaxies—unconstrained by prior distributions—than stars biases the
classification in favor of galaxies. Treating all unknown quantities in Celeste as random is
the subject of ongoing research.

2.4 Conclusion
Posterior inference in a fully generative model works for astronomical object detection. Vari-
ational approximation in conjunction with techniques like the delta method, and modeling
choices that lead to analytic expectations, make inference tractable. Treating pixel values as
observed Poisson random variables, whose rate parameters are a function of latent variables,
is feasible. It leads to performance that improves the state of the art for locating celestial
bodies. Constraining star and galaxy colors with a Gaussian mixture prior, as well as mod-
eling all colors jointly in the posterior, is also both feasible and effective: Celeste reduces the
error rate for color detection as much as 60%. Characterization of galaxy shapes and profiles
is feasible with the Celeste model too, but performance does not yet improve upon heuristic
methods. Extending the Celeste model with a richer galaxy model and constraining more
quantities with prior distributions are promising directions for future research.

25

Chapter 3

A deep generative model for
astronomical images of galaxies

Galaxies in astronomical images (Figure 3.1) often resemble galaxy prototypes (Figure 3.2)
and possess shared characteristics like spiral “arms,” a “bar,” or a “bulge.” Even irregular
galaxies—typically resulting from the collision of two regular galaxies—have shapes greatly
constrained by physics.

Simple parametric models (e.g., [30, 31, 32, 33, 34]) suffice to describe many idealized
galaxy shapes, but severely misfit actual galaxies: they are not sufficiently flexible [34].
The popular program GALFIT copes with the limitations of simple parametric models by
allowing users to fit an arbitrary number of mixture components [35, 36]. These mixtures
are not learned from actual galaxies, so the models cannot provide meaningful uncertainty
estimates. To our knowledge, no existing galaxy models are learned from a training set,
which would allow for such uncertainty estimates. Indeed, only [31] attempts a Bayesian
treatment of galaxy shapes,1 albeit one based on just a few manually specified parameters.
Yet modeling galaxies is an important part of learning about the universe from large-scale
astronomical sky surveys [33, 34, 37, 38], and billions of images of galaxies are available for
training.

Neural networks—high-dimensional parametric models—have enjoyed great success for
classifying images [39]. They have been effective at discriminating between stars and galaxies
[40] and for labeling images of galaxies as possessing or lacking certain features, such as a
“bar” or spiral “arms” [41]. However, to our knowledge no one has yet reported on melding
the flexibility of neural networks and a generative probabilistic model for galaxies. Recent
advances in variational inference for non-conjugate models [42, 43] make this possible. To
our knowledge, this is the first publication to report on applying these advances to a problem
in the physical sciences.2

1The galaxy models in [33] and [34] are deterministic though they are embedded in probabilistic models.
2 We are informed by a review of reverse citations and personal correspondence with Diederik Kingma

(10/8/2015).

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 26

Figure 3.1: The Whirlpool galaxy—a classic spiral galaxy. credit: ESA Hubble / NASA.

Figure 3.2: The Hubble “tuning fork” of galaxy morphology. credit: Todd Thompson.

3.1 The model
For a particular image x of a galaxy, let z be a low-dimensional latent random vector,
distributed as a multivariate standard normal. Given z, we model the observed intensities
of the image’s pixels x = (x1, . . . , xm), as

x∣z ∼ N (fµ(z), fΣ(z)) . (3.1)

We take the deterministic functions fµ and fΣ to be neural networks that share some weights.
We constrain fΣ to produce diagonal covariance matrices. As shorthand, let the neural
network f(z) ∶= (fµ(z), fΣ(z)).

3.1.1 Inference

Given an image’s pixel intensities x = (x1, . . . , xm), we aim to infer the posterior distribution
of z = (z1, . . . , zn). Unfortunately, integrating z out of the joint distribution (x, z) to compute

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 27

the marginal likelihood of x is intractable due to the nonlinear form of f . Therefore, we turn
to variational inference. In keeping with the approaches in [42] and [43], let the variational
approximate posterior take the form

q(z∣x) = N (gµ(x), gΣ(x)), (3.2)

where gµ and gΣ are neural networks that map x to a mean vector and a diagonal covari-
ance matrix, respectively. As shorthand, let neural network g(x) ∶= (gµ(x), gΣ(x)). By the
standard construction of the variational lower bound,

log p(x) ≥ log p(x) −DKL [q(z∣x), p(z∣x)] (3.3)
= Eq [log p(x∣z)] −DKL [q(z∣x), p(z)] . (3.4)

Therefore, the distribution q that maximizes (3.4) minimizes DKL [q(z∣x), p(z∣x)]: this q
is the best approximation of form (3.2) to the posterior. Let Wf and Wg be the weights
of neural networks f and g, respectively. Maximizing over W = (Wf ,Wg) simultaneously
finds the q that best approximates the posterior and the model p that assigns the highest
probability to our data.

The normal-normal KL-divergence DKL [q(z∣x), p(z)] is closed form, but Eq [log p(x∣z)] is
not. We can nonetheless efficiently compute unbiased estimates of its gradient, and therefore
maximize (3.4) by stochastic gradient optimization.

The stochastic gradient described in [42, 43, 44] and example 5.1 of [45], based on “the
reparameterization trick,” has the lowest variance among all unbiased estimators. Let ε ∼
N (0, I). Then

∂

∂W
Eq [log p(x∣z)] = ∂

∂W
Eε [log p (x∣z = gΣ(x)ε + gµ(x))] (3.5)

= Eε [
∂

∂W
log p (x∣z = gΣ(x)ε + gµ(x))] . (3.6)

Hence, for e sampled from ε,
∂

∂W
log p (x∣z = gΣ(x)e + gµ(x)) (3.7)

is an unbiased estimate of the derivative of Eq [log p(x∣z)].

3.2 Experiments
We apply our model to preprocessed 424×424-pixel images of galaxies from the Sloan Digital
Sky Survey [46, 47]. In keeping with the approach of [41], we crop each image to surround
just the most prominent galaxy and downscale these subimages to 69×69 pixels. Based on
a blob detection routine, we exclude images where the most prominent galaxy overlaps with
other bright astronomical objects,3 leaving 43,444 images for training.

3“Deblending” astronomical objects is a related problem, likely facilitated by an accurate galaxy model,
but beyond the scope of this work.

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 28

Figure 3.3: The architecture for the proposed generalized denoising autoencoder.

3.2.1 Implementation

Fitting our model by stochastic gradient descent involves simultaneously training two neural
networks: f , for specifying the generative model p, and g, for specifying the variational
distribution q.

An alternative perspective is helpful for implementing the fitting procedure: Both f and
g are components in a single neural network called a “generalized denoising autoencoder”
(GDAE) [48, 49]. An image x is input to g, yielding gµ(x) and gΣ(x). The next layer in the
GDAE corrupts gµ(x). Its inputs are gµ(x), gΣ(x), and a sample e from N (0, I). Its output
is gµ(x) + gΣ(x)e. This output z serves as the input to f . The output of f is penalized by
the expected negative reconstruction error: − log p (x∣z). As a form of regularization, the
output of g is penalized too, according to DKL [q(z∣x), p(z)].

This perspective facilitates adapting existing neural network software to learn the pro-
posed generative model. Mocha.jl [50] is a neural network toolkit written in Julia, inspired
by Caffe [51]. We reuse the basic framework from Mocha.jl, but augment it with new types
of layers to compute the proposed loss function. The parts of the network corresponding to
f and g each have two fully connected hidden layers composed of 128 nodes each, all with
rectified linear units. The parts corresponding to the output layers of f and g each use expo-
nential nonlinearities to ensure that variances are strictly positive. We set the dimension of z
to eight. Figure 3.3 diagrams the architecture. On an Nvidia Tesla K20X GPU, our network
performs roughly 200 iterations per second. (Each iteration involves forward and backward

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 29

propagation for one image.) Parameter-specific learning rates are set adaptively [52].

3.2.2 Results

First, we examine the trained model qualitatively. Figure 3.4 shows sample input images
to the trained autoencoder from a held-out set, and the resulting output. The mean of
the reconstruction fµ(z) resembles a smoothed version of the input. The variance of the
reconstruction fΣ(z) is low for the backgrounds, which by construction is nearly black in
the original images. Variance is higher for the foreground, particularly near the borders of
each galaxy—presumably z cannot store enough information to represent slight differences
in galaxies’ sizes. The intensity of the third galaxy’s center is particularly uncertain, which
may reflect that some but not all galaxies have a prominent “bulge” in the center.

Figure 3.5 shows a two-dimensional embedding of a held-out set of galaxies, generated by
applying t-SNE [53] to the 8-dimensional means gµ(x) of the galaxies’ variational distribu-
tions. At this resolution, galaxies are clearly grouped by their orientations. Some clustering
of spiral galaxies is apparent too.

Figure 3.6 shows fµ(z), that is, the mean of p(x∣z), for values of z selected by a one-at-
a-time experimental design.

Figure 3.4: Each row corresponds to a dif-
ferent example from a test set. The left col-
umn shows the input x. The center column
shows the output fµ(z) for a z sampled from
N (gµ(x), gΣ(x)). The right column shows
the output fΣ(z) for the same z.

Figure 3.5: Galaxies embedded in two di-
mensions based on the means of their varia-
tional distributions, fµ(x).

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 30

Figure 3.6: fµ(z) for z values sampled according to a one-at-a-time experimental design. In
each row, from left to right, one dimension of z is incremented by one standard deviation
per column, while the other dimensions are fixed at zero. The center column in each row is
fµ(0, . . . ,0). The leftmost and rightmost columns are 3 standard deviations from the mean
and thus highly unlikely; we show these extremes to highlight the effect of each dimension
of z.

Because the model we propose is, to our knowledge, the first galaxy model learned from
a training set, comparing it to existing galaxy models is not straightforward. Comparison is
also challenging because the most common galaxy models do not explicitly model uncertainty.

We also compare the proposed galaxy model to a current common practice: fitting a
scaled bivariate Gaussian density function to each imaged galaxy. On a held-out dataset
of 1000 images of galaxies, we compute fµ(gµ(x)). This amounts to running the proposed
autoencoder with the layer for sampling z replaced with the mean of z. For each image, we
also fit a scaled bivariate Gaussian density to minimize squared error averaged over pixels.
The optimization was performed with BFGS over six unconstrained parameters: two for the
mean, three for the Cholesky decomposition of the covariance, and one for the scale. For 971
of 1000 images, fµ(gµ(x)) fit x more closely than the best scaled bivariate Gaussian density.
In some sense this is not surprising, since only the proposed model uses training data. On
the other hand, the parameters of the proposed model are only optimized by a feed-forward

CHAPTER 3. A DEEP GENERATIVE MODEL FOR GALAXIES 31

recognition model rather than an iterative algorithm, and only the scaled bivariate Gaussian
model is explicitly trained to minimize residual sum of squares.

Fitting a function to minimize residual squared error averaged across pixels is analogous
to maximizing the likelihood of the data for a model where all pixels have a Gaussian
distribution with a common variance. This interpretation lets us compare our proposed
model, conditioned on a particular z, to the scaled bivariate Gaussian density function in
terms of log likelihood. Now for each image, in addition to fitting a scaled bivariate Gaussian
density function to each held-out image, we learn the variance shared by all pixels that assigns
the highest likelihood to the image. (The solution is closed form.) We compare this to the
likelihood assigned to the data by the model we propose, for a particular z. For 972 of
1000 images, the model we propose better explains the data. Both models treat each pixel
intensity as Gaussian, but only the model we propose assigns different variances to different
pixel.

3.3 Future work
The proposed model shows little sign of overfitting our existing training set, and billions of
additional images of galaxies are freely available. By increasing the dimension of z and by
making our network deeper, we could almost certainly improve accuracy on held-out data.
Augmenting f with intermediate latent layers [43] would also likely improve accuracy on
held-out data and better model uncertainty about the structure of the galaxies, rather than
just uncertainty at the level of individual pixels.

We could also exploit the rotational and reflective symmetries of galaxies, either through
data augmentation or with a network architecture that explicitly enforces it.

Our immediate focus, however, is on embedding the current galaxy model into the model
for raw astronomical images (not cropped around galaxies) described in [34]. Augmenting
the broader model with this data-adaptive galaxy model likely will improve its performance
across the board.

32

Part II

Author disambiguation

33

Chapter 4

Problem overview and preliminaries

In a large collection of academic publications, many authors’ names will not be unique. For
instance, a collection may contain hundreds of authors named “J. Smith.” Moreover, a single
author may be referred to in multiple ways, perhaps due to misspellings, name changes, or
spelling variations. The problem of author disambiguation is to determine who wrote what
[3]. We refer to each instance of an author’s name string as a mention, along with attributes
such as the containing article’s keywords and topics (explicit or inferred), and the name
strings of other authors of the article. Figure 4.1 illustrates a collection of mentions without
attributes besides name strings, before and after author disambiguation.

In addition to being an important problem in its own right, author disambiguation is
representative of a broader class of clustering problems, known as disambiguation problems.
Entity resolution, citation matching, noun-phrase coreference resolution, database hardening
and record linkage are examples of disambiguation problems. Figure 4.2 illustrates the
relationship between several of these research areas. In disambiguation problems, given a
collection of items (e.g., author name strings, customer records, or noun phrases), we seek
to find a clustering of the items such that each cluster contains only coreferent items, and
no items in different clusters are coreferent. In disambiguation, as opposed to clustering
in general, the true number of clusters (e.g., authors, customers, or anaphoric sets) usually
grows linearly in the number of items.

General-purpose clustering algorithms are poorly suited to large-scale disambiguation
problems. Agglomerative clustering, k-means, and traditional implementations of spectral
clustering all have (at least) quadratic runtime on disambiguation problems because the
number of clusters k scales linearly with the number of items n. When faced with an
algorithm whose runtime is quadratic in the number of items, practitioners frequently use
a computationally inexpensive pre-processing algorithm to divide the items into blocks [54].
Then they process each block separately. But this approach has numerous drawbacks, and
often some blocks’ sizes will still grow linearly in the total number of items. Some researchers
have proposed techniques for applying spectral clustering to large datasets without blocking.
While an n × n matrix encoding the similarities between every pair of items cannot be
explicitly constructed, these researchers seek to develop space-efficient alternatives, through

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 34

(a) before

(b) after

Figure 4.1: Bibliographic data before and after author disambiguation. Ovals represent
author mentions, rectangles represent articles, and (hyper)edges represent unique authors.

Figure 4.2: Relationship between author disambiguation and other research areas

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 35

subsampling [55, 56] or low-rank approximation [57]. But the number of clusters k to recover
effectively lower bounds the rank of a similarity matrix that is sufficient to recover the correct
clusters, and for disambiguation problems, k grows linearly in n. Furthermore, determining
the support of a sparse similarity matrix, at least with existing approaches, would itself take
quadratic time.

Section 4.1 reviews existing approaches to author disambiguation, none of which go be-
yond blocking to address the issue of quadratic runtime. Section 4.2 introduces and analyzes
two manually disambiguated datasets that we use throughout. Section 4.3 proposes a novel
technique for disambiguating authors in nearly linear time without blocking. This technique
makes tractable the approaches to author disambiguation throughout Part II. Section 4.4
develops a sophisticated-but-heuristic approach to author disambiguation, which serves as
a baseline for comparison to the model-based approaches in subsequent chapters. Also, it
illustrates the details that accurate author disambiguation must account for.

4.1 Related work
Author disambiguation has been extensively studied, though it remains an open problem.
Several studies are representative of the state of the field.

In [58], records with identical person names are disambiguated. For a general solution,
we would need to generalize the notion of identical names to include all names that could
conceivably refer to the same author. Like most approaches to author disambiguation, [58]
uses agglomerative clustering and a statistic like a Jaccard coefficient [59] to measure simi-
larity between authors. Novel contributions include 1) the use of a PageRank-style algorithm
to determine the importance of each edge in the co-author network; 2) generalization of the
notion of co-authorship to include any relationship, such as appearing in the same conference
or journal; and 3) a way of generating training examples automatically, where rare names
provide the positive examples and very different names provide the negative examples. The
authors train an SVM with these examples, and apply it to test data to combine different
set resemblances (basically Jaccard coefficients) to create a single similarity measure.

[60] proposes evaluating sets of mentions, and determining the likelihood that all mentions
in the set refer to the same author entity. When the cardinality of these sets is 2, their
method recreates existing pairwise approaches to author disambiguation. But when larger
sets are evaluated, their method allows for similarity measures that favor partitions where
each author entity 1) belongs to only a few institutions, 2) has only 1 or 2 different email
addresses, and 3) publishes fewer than 30 publications per year. Their method could easily
be extended to also favor clustering where each author writes papers filed under just 1 or
2 subjects. The proposed inference procedure is more principled than many, as it involves
learning the parameters of a scoring function. This scoring function maps from a partition of
the mentions to a real value representing the partition’s goodness. This goodness score is not
computed with respect to the ground truth, but with respect to the parameters of a scoring
function. Also, the authors propose using a classifier in conjunction with something like a

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 36

perceptron in order to optimize the scoring function’s parameters’ values. Agglomerative
clustering is still used as the final step of the procedure, to partition the test data.

[61] and [62] are widely cited articles that propose two methods for citation matching.
One is based on a naive Bayes classifier and the other on an SVM. These methods are
supervised, and training examples are needed for every author. Supervised methods can be
useful for large-scale disambiguation if training examples are not needed for each author.
But these supervised methods seemingly cannot be easily modified to work without such
extensive training data, so these techniques are not directly relevant to large-scale name
disambiguation.

[63] presents an architecture for large-scale author disambiguation. Mentions are blocked,
so that pairwise comparisons can be performed efficiently A similarity function compares
any two mentions in a block. The similarity function outputs a vector of similarities. These
similarities are computed on text fields. Jaccard similarity, soft-TFIDF, and edit distance
are all employed. A trained SVM takes these similarity vectors as input, and outputs a real-
valued distance measurement. A novel clustering algorithm, DBSCAN, forms clusters based
on the distance measurements. DBSCAN is similar to agglomerative clustering, except it
resolves some transitivity violations. Additionally, this work is noteworthy for using LASVM,
an online (as opposed to batch) SVM library. This facilitates training via active learning,
and simplifies the process of folding in new publications. However, the co-authorship network
is not used in this work.

[64] proposes two graphical models, based closely on probabilistic latent semantic index-
ing (pLSA) and latent Dirichlet allocation (LDA), that generate a collection of publications,
including words and mentions. Gibbs sampling is used for inference. The better-performing
LDA-based model specifies a distribution over topics for each mention. Euclidean distance
in topic space measures the pairwise similarity among mentions. The distance between
non-singleton clusters is the maximum distance between mentions in the two clusters. Lev-
enshtein distance is also considered, though it is not combined with topic-based distance to
create a single distance function. Rather, an agglomerative clustering algorithm merges the
most topically similar clusters if and only if randomly chosen names from each cluster are
closer than some arbitrary threshold with respect to Levenshtein distance. This approach
works for disambiguating mentions on web pages too, because the co-authorship network
is not used. The results suggest that such an approach substantially outperforms [63] with
respect to F-measure. However, the authors refer to [63] as an unsupervised model, when in
fact [63] is supervised and requires training data. Therefore, the comparison may not be apt.
Interestingly, topic code helps their routine disambiguate. The best performance is attained
from topic distance, as computed in [64], as a feature in the model presented in [63].

[65] presents a model tuned for disambiguating Medline data. For a candidate pair of
mentions, a similarity vector is formed based on first name, last name, middle initial, suffix,
article title words, affiliation, journal name, language and co-authors. One entry in feature
vector X is the number of shared co-authors’ names on the two papers in question, when
each co-author’s name is reduced to the first letter of the first name and the last name.
Given a similarity vector x, the probability of a common author P(M ∣x) is computed using

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 37

Bayes’s rule:
P(M ∣x)∝ P(x∣M)P(M).

Critically, P(M) is not the marginal probability that any two mentions are a match. Rather,
P(M) is the prior probability that two mentions sharing a particular name are a match. The
conditional probability P(M ∣x) is monotonic in x, in that if x ≤ y component-wise, then

P(M ∣x) ≤ P(M ∣y).

This property facilitates interpolation and extrapolation of estimates for unobserved similar-
ity vectors, based on a lookup table. Independence between some features is also exploited to
produce a lookup table mapping similarity to vectors to probabilities. Quadratic program-
ming for least squares minimization enforces the monotonicity property. Pairs of mentions
that share rare names serve as positive examples. Randomly selected pairs of mentions that
have different names serve as negative examples.

In [66], graphical models are used for author disambiguation. The proposed model is
based on Latent Dirichlet Allocation, where hidden groups (or communities) generate au-
thors. For each mention, a latent random variable is added to LDA, to model which author
generates it. A noise model determines how mentions are generated from author entities.
It determines how likely names are to be dropped, converted to initials, or misspelled. A
Gibbs sampler performs inference. In addition to assigning author entities to communities,
and mentions to author entities, it is also necessary to determine the most likely name for
each author entity at each iteration of the Gibbs sampler. The number of author entities is
also unknown, but it can be modeled by a Dirichlet Process. The resulting sampling proce-
dure would be prohibitively slow if it were to operated on each mention at every iteration.
Instead, the authors propose permitting only split and merge operations, or equivalently,
performing block assignment of mentions to author entities. An advantage of their approach
is that disambiguation is collective and decisions are not pairwise. The approach does not
require training data, since it is largely unsupervised, though there are several parameters
that need to be manually set. Disadvantages include the runtime and the need to guess the
values of hyper-parameters, an initial assignment, and the true number of hidden community
variables. Several tricks make the Gibbs sampler mix better, such as forcing estimates of
name corruption probabilities to evolve slowly and introducing a scalar to control the rate
of cluster merges. Still, the Gibbs sampler had convergence issues according to personal
correspondence (1/29/2009) with the first author (Indrajit Bhattacharya).

In [67], the authors propose a pairwise similarity metric based not only on the attributes of
mentions, but on the entities that have already been determined. Initially, each mention is its
own cluster. During a bootstrapping phase, only mentions with very high attribute similarity
are merged into the same cluster. For example, two mentions with rare yet matching names
would have high attribute similarity. After bootstrapping, merges are based on a linear
combination of attribute similarity and common co-authors. A variety of normalizations on
the number of co-authors is performed. For example, dividing the number of co-authors in
common by the total number of co-authors for two clusters yields a metric between 0 and 1.

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 38

Such a metric could be interpreted as a probability. On real datasets, [67] reports that the
choice of normalization is not particularly important. Results from 3 datasets are presented,
2 of which are publicly available. For the arXiv HEP dataset, discussed subsequently, the
best pairwise F-measure [68] is 0.985.

Many other approaches to author disambiguation and coreference resolution have also
been attempted [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

Finally, [3] provides an excellent overview of the field.

4.2 Exploratory data analysis
We base our analysis on two manually disambiguated collections of academic articles: arXiv
HEP and MathSciNet. The former, arXiv HEP, contains 29,555 articles from the High-Energy
Physics section of arXiv. These articles contain 58,515 mentions, referencing 9200 unique
authors. The dataset contains only a modest number of authors in relation to the number of
unique author names in dataset; it is representative of bibliographic data with low ambiguity.
This dataset is publicly available and disambiguation results on this dataset are reported
elsewhere.

Our second dataset, MathSciNet, comes from the American Mathematical Society. No
manually disambiguated public dataset comes close to its scale. It contains 2,041,269 articles
about mathematics, including title, subject code, journal, and year published. These articles
contain 3,366,842 mentions, referencing 512,506 unique authors. Because of its large scale,
many authors have the same names.

4.2.1 Name string variations

By examining the set of name strings that refer to the same author in these two databases,
we assemble a list of the common variations. Accounting for these variations is an essential
aspect of author disambiguation.

Name encoding. Name strings that contain non-ASCII characters are often transcoded
to ASCII (e.g., ñ to n) for some instances but not others. Name strings may have uppercase
letters sometimes and title case others (e.g., JOHN and John). Name strings may have non-
standard spacing, such as a trailing space, a tab character rather than a space, or two spaces
rather than one (e.g., “John Smith ” and “John Smith”). Names may appears sometimes
with the last name followed by a comma, but not others (e.g., “Smith, John” and “John
Smith”).

Name decorators. Names strings may include titles (e.g., Dr., Mr., Mrs., Ms.), while
others, for the same author, do not. Name strings may include suffixes (e.g., Jr, III, IV),
while others, for the same author, do not. Short, uncapitalized name pieces (e.g., van, de,
del, da, do, el, la, di, von, der) are frequently omitted.

Name completeness. First names and middle names are often initialized (John and J.)
The middle name may be initialized but not the first name, vice verse, both, or neither. First

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 39

names also get truncated quite often in these datasets (Chan to Ch.), and not necessarily to
just the first two characters.

Nick names. First names and middle names are often replaced with nick names (e.g.,
Samantha to Sam). But this only happens for tens of common names.

Omitted first names. An author’s first name may be omitted entirely, but only if a middle
name is present to take the place of the first name (e.g. “s j fuchs” and “jurgen fuchs” and “c
g ducati” and “g ducati”). Concluding that two authors have the same name based on this
pattern can lead to errors, however. In MathSciNet, the names “alfredo t suzuki” and “takesi
suzuki” are not coreferent.

Appended last names. An author may publish both before and after marrying. Rather
than dropping the original last name, the author may append a hyphen and an additional last
name to the original last name (e.g., “antonio j segui-santonja” and “a j segui”; and “marcia
e knutt-wehlau” and “marcia e knutt”). Concluding that two authors have the same name
based on this pattern can lead to errors, however. In MathSciNet, the names “a lima-santos”
and “a f lima” are not coreferent.

Misspellings. There are two main types of spelling errors: typos and character encoding
issues. The second type of error in some cases may be corrected during pre-processing. We
observe character insertions, deletions, transpositions, and substitutions in MathSciNet—all
the standard types of spelling mistakes. Examples from MathSciNet include “metin gurses”
and “matin gurses,” and “m b johnson” and “m b jonnson.” However, correcting suspected
misspellings, even with just one character edit, may incorrectly suggest coreference (e.g., “m
sakaguchi” and “m sawaguchi”).

4.2.2 Author productivity

Lotka’s law states that the number of publications by each author follows a Zipf distribution
[88]. Figure 4.3 illustrates how closely Lotka’s law fits the empirical distribution of author
productivities in MathSciNet. Some systematic bias is apparent. Nonetheless, Lotka’s law
may work well as an approximation if the quality of author disambiguation is not highly
sensitive to misspecification of the author productivity distribution.

Figure 4.4 illustrates that the approximation holds for a subset of the authors in MathSciNet
selected based on their first name. Lotka’s law approximates the author productivity dis-
tribution for this subset too, with roughly the same rate parameter. In general, subsets of
datasets selected by criteria that do not correlated strongly with author productivity should
be well modeled by the author productivity distribution for the full dataset.

4.2.3 Baseline partitioning procedures

Before considering more complex disambiguation schemes, we verify that straightforward
partitioning algorithms do not suffice. Figure 4.5 shows the accuracy of 4 simple partition-
ing schemes. The singletons partitioning scheme places each mention in its own cluster.
Because 43% of authors only wrote only one publication (as suggested by Lotka’s law), the

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 40

Figure 4.3: The empirical distribution of author productivity in MathSciNet is approxi-
mately log-log linear, as predicted by Lotka’s law.

Figure 4.4: The empirical distribution of author productivity in MathSciNet for authors
named “David” is also approximately log-log linear, with roughly the same slope. Lotka’s
law applies to subsets of authors selected by attributes not highly correlated with author
productivity, too.

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 41

Figure 4.5: Proportion of unique authors in MathSciNet disambiguated without any mis-
takes, by each of 4 straightforward partitioning schemes.

singleton scheme disambiguates 43% of authors perfectly. The name equality partition-
ing scheme groups mentions having the exact same name, after some simple preprocessing
suggested by the analysis in Section 4.2.1. Still, more than one third of all authors are
incorrectly disambiguated—way too many for most applications. One reason is that many
authors have their first names initialized sometimes but not others, or have a middle name
included sometimes but not others. Either inconsistency places their mentions in multiple
parts. The flfn+ln partitioning scheme avoids such issues by partitioning based on just the
first letter of the first name concatenated with the last name. Though this scheme matches
mentions that differ due to initialization, or due to the presence and absence of a middle
name, it “over merges” authors in the process. The overall accuracy of flfn+ln is substan-
tially lower than name equality. Part of the reason for this is that MathSciNet is so large:
it contains publications spanning many areas, and many authors working in unrelated areas
have the same name. In msc2+name equality, the partition is induced by the author name
appended with a high-level subject code (e.g., MSC60: Probability). Unfortunately, this
too fails to improve on name equality: too many authors write papers that span multiple
subjects. More sophisticated disambiguation algorithms are required.

4.3 A feature-space representation of records for
efficient disambiguation without blocking

Disambiguation algorithms typically compare every pair of records that could be coreferent.
Thus, for computational reasons, even moderately sized datasets are often grouped into
(possibly overlapping) blocks, and only references assigned to the same block are compared.
For example, for person names, records (i.e., mentions) may be grouped by the first letter
of the first name together with the full last name. But blocking has two major drawbacks:

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 42

merges across blocks are not possible, and blocks’ sizes typically still grow quadratically in
the size of the full dataset.

This section proposes an alternative to blocking. Rather than assigning records to blocks,
a graph encodes the pairs of records that could conceivably be coreferent. The graph has a
number of edges and vertices that is linear in the number of records. Only pairs of records
connected by a short path must be considered. Our approach explicitly deals with missing
fields (censoring) as well as corrupted entries. First, we develop a method for records in
general, and then apply the method to person names. On a real dataset of person names,
our method reduces the number of pairs of records to consider by a factor of 100, relative to
a standard blocking procedure, without any loss of accuracy.

The standard technique of disambiguation within a block, or without any blocking (which
compares every pair of mentions), may be viewed as a kernel method. Like kernel methods,
it has at least quadratic runtime. Our proposed approach is based on a feature space repre-
sentation of the mentions. Our approach has runtime linear in the dimension of the feature
representation, which is bounded and low. Our approach may be thought of as exploiting
the “inverse” of the kernel trick: rather that operating in an implicit feature space to deter-
mine which pairs of mentions have support, as a kernel method would, we explicitly form a
low-dimensional feature vector for each mention.

4.3.1 Notation and terminology

A record r ∶ Kr → Vr maps field names (keys) to values. Let r∣K denote the restriction of r
to K. Let

Q(r) ∶= {(r∣K ,Kr ∖K) ∶K ⊂Kr} (4.1)

For any record r, q ∈ Q(r) is a censored record. In words, a censored record contains a subset
of the fields of the original record, along with the field names that were excluded. Let T be
a symmetric relation on censored records. Then T induces a symmetric relation on records
too: Records r1 and r2 are T -conceivable if there exist q1 ∈ Q(r1) and q2 ∈ Q(r2) satisfying
q1Tq2.

In practice, we select T so that only T -conceivable records are coreferent; T governs what
discrepancies are minor enough that the pair of records could nonetheless refer to the same
author or entity.

4.3.2 Efficiently enumerating T -conceivable record pairs

Let M be a set of records. Set

A ∶= ⋃
r∈MQ(r). (4.2)

In words, A is all the censored records of the records M . Let

X ∶= {(r, q) ∈M ×A ∶ q ∈ Q(r)} . (4.3)

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 43

In words, X consists of the edges connecting each record to its censored record. Let

B ∶= {(q1, q2) ∈ A ×A ∶ q1Tq2} . (4.4)

In words, B maps censored records to other censored records that could refer to the same
person, according to T .

Let the graph G have vertices V =M ∪A and (undirected) edges E = X ∪B. (Remark:
M ⊂ V is an independent set in G.) By construction, records r1, r2 ∈ M are T -conceivable
iff they are connected in G by a path of length 3. Moreover, ∣V ∣ and ∣E∣ are linear in ∣M ∣.
Therefore, T -conceivable records can be efficiently enumerated.

4.3.3 Person name disambiguation

For person name disambiguation, records are mentions. A mention r must have a last name
and a first initial. r may also have a first name, a middle name, and a middle initial. If a
first name is present, so is a first initial that agrees with the first name; if a middle name
is present, so is a middle initial that agrees with the middle names. Figure 4.6 shows the
graph G for 4 mentions.

Let T include all the relationships suggested by all the name variations detailed in Sec-
tion 4.2.1. In other words, T relates mentions to each possible 1 and 2 character spelling
mistake (i.e., addition, substitution, and deletion), as well as all the other types of name
variations (e.g., drop hyphenated part of last name). We omit certain relations from T , such
as those that initialize a first or middle name, or that change the first letter of an initialized
name. These transformations generate an excessive number of false positive matches.

Table 4.1 lists results. The results show that one proposed criterion (conceivability)
attains nearly the same recall as a coarse blocking scheme based on partitioning two initials
(first name and last name initials), while reducing the number of pairs of mentions to consider
by 2 orders of magnitude. Moreover, while the common flfn-ln (first letter of the first name,
concatenated with the last name) blocking scheme incorrectly splits 4.8% of authors among
blocks—errors that cannot be recovered from subsequently—conceivability (connected
authors) splits just 2.4% of authors, effectively halving the rate of flfn-ln, all while making
a modest reduction in the number of author pairs to consider.

4.4 AuthorshipToolkit
This section describes AuthorshipToolkit, a novel approach to author disambiguation. The
feature-space representation of mentions from Section 4.3 limits the number of mention pairs
to consider. AuthorshipToolkit uses agglomerative clustering to partition the test data:
Initially, all mentions belong to singleton clusters. Then the clusters are merged iteratively,
in a greedy fashion, until some stopping criterion is met. At each iteration, potential merges
are assessed based on a model of the probability that a pair of clusters is coreferent, given
that each cluster contains only coreferent mentions.

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 44

Figure 4.6: An example of G for 4 mentions. The mentions (records) are represented by
vertices M . Censored records are vertices A. Here the # sign indicates a censored field.
Edges X link the mentions to their censored records. Edges B connect censored records that
could have been assigned to the same author, given the set T of name string transformations
to consider. In this example, we set T to account for initialization of the first name and
middle name, and omission of the middle name.

While each merge is guided by a probabilistic model, the overall clustering procedure is
not based on any explicit probabilistic model of the full dataset. Thus, AuthorshipToolkit is a
heuristic, despite having some grounding in probability. The AuthorshipToolkit serves as an
advanced baseline procedure for comparison with the model-based approaches in Chapter 5
and Chapter 6. Additionally, it illustrates some benefits and limitations of heuristics for
author disambiguation.

4.4.1 A probabilistic similarity metric

A probabilistic similarity metric resembling a naive Bayes classifier guides the agglomerative
clustering procedure. Let M be a Bernoulli random variable indicating that two clusters, A1

and A2, contain only mentions that refer to the same author, given that the mentions in A1

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 45

recall
pairs pairwise clique connected

to consider out of 69,442,989 pairs out of 512,506 authors
no blocking 5,662,691,033,860 100%: 100%
flfn-flln 17,200,258,884 98.2% 97.6%
flfn-ln 257,756,359 96.0% 95.2%

conceivability 219,271,291 98.1% 96.5% 97.6%
compatibility 89,556,833 92.6% 91.1% 92.4%

Table 4.1: Recall and computational burden for MathSciNet for various schemes of selecting
mention pairs to consider for disambiguation. Each row corresponds to a different scheme
for selecting mention pairs. The first row (“no blocking”) considers all pairs. The second row
(“flfn-flln”) considers pairs sharing first and last initials. The third row (“flfn-ln”) considers
pairs sharing a first initial and a last name. The fourth row (“conceivability”) is the proposed
method, with T containing all discussed transformations. The fifth row (“compatibility”) is
the proposed method with T that accounts for initialization and omission of the middle name.
Recall is true positives: predicted coreferent pairs (resp. clusters) considered as a proportion
of actual coreferent pairs (resp. authors). A “clique author” is a cluster of mentions where
all pairs are joined a path of length 3. A “connected author” is a cluster of mentions where
a path joins every pair. A cluster must exactly match an author to be marked correct.

all refer to one author and the mentions in A2 all refer to one author. By Bayes’ rule,

P(M ∣A1,A2)∝ P(A1,A2∣M)P(M).

Computing the normalization constant for the right-hand side is tractable because M is
binary. The agglomerative clustering procedure terminates when P (M = 1∣Ai,Aj) < P (M =
0∣Ai,Aj) for all i ≠ j.

The marginal probability of a match, P(M), is approximated by dividing the number of
authors in the dataset by the number of clusters at the current iteration. The number of
authors in the dataset, in turn, is approximated by dividing the number of mentions in the
dataset by an estimate of the average number of articles published by authors in the dataset.

We model the likelihood of generating two clusters, A1 and A2, as

P(A1,A2∣M) =
F

∏
i=1

P(fi(A1,A2)∣M)

The fi compute features of the pair of clusters. We select feature functions that summarize
aspects of the data thought to be largely unrelated, given M , to minimize any model mis-
specification stemming from our assumption of independence. Our choice of features, and
the class-conditional likelihoods we assign to these features, account for several factors.

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 46

4.4.1.1 Name frequencies

Mentions of relatively rare names are more likely to refer to the same author than mentions of
more common names. We use a large external dataset of person names to fit the model. Our
model consists of several lookup tables for different name parts. Each row lists the proportion
of the authors in the external dataset with that name. One table lists first names, along
with proportions. Another table lists last names, along with proportions. A third table list
pairs of first name and last names that are common, and that show up much more or much
less frequently than would be expected if first and last names were independent, according
to the product of the corresponding entries in the other two tables.

We use these empirical distributions, along with an estimate of the number of authors in
the dataset to estimate the prior probability that two mentions with the same name string
refer to the same author. Alternatively, we can discretize this real-valued feature: mention
pairs may share a name string that is either very rare, rare, common, or very common. We
learn the probabilities for each level from training data.

We also update these name priors at test time, to account for additional information
in the test set. While our external training set of author names may suggest that there
is at most one author in our test set named “A. Zinheizter,” if our test set contains both
“Aaron Zinheizter” and “Adam Zinheizter,” then our estimate of the number of distinct A.
Zinheizter’s should be at least two.

4.4.1.2 Misspellings and other name-string transformations

Names that do not match exactly can nonetheless refer to the same author in our model if
some sequence of transformations connects them (Section 4.3). The sequence of transforma-
tions that makes a pair of mentions’ name strings equal is a statistic of the pair. If mentions
could share a particular name only through some sequence of transformations, then the prior
probability that two authors with exactly that name string are coreferent should be revised
downward to account for the necessary transformations.

4.4.1.3 Co-authorship network

Each mention is associated with a set of co-authors from the article it appears in, though this
set is unknown a priori. If two mentions share many co-authors, then they are more likely
refer to the same author. Though at disambiguation time we do not have access to mentions’
co-authors, we may approximate it based on either a partition of the mentions made without
use of co-author information or simply the partition of the mentions induced thus far in an
iterative algorithm. In either case, by applying Bayes’s rule, we can incorporate co-author
information into our estimate. In practice, we find that if at least several co-authors are
shared, two mentions are virtually certain to be the same. Thus, it is not necessary to
consider cases where more than a few co-authors are shared. For n ∈ 0,1,2,3, for bothM = 0
and M = 1, we estimate

P(n shared co-authors ∣M)

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 47

from a training dataset similar in structure to our test set. The probability of different author
entities sharing n co-authors is readily computed from a manually disambiguated training
set, either by sampling or with a brute force approach. The probability of two mentions that
refer to the same entity sharing n co-authors is also readily computed from a training set.

Though readily estimated, these probabilities are not perfectly suited to clustering. Con-
sider an extreme case: Initially every mention is assigned to a singleton cluster. According to
this partition, no one co-authors papers with someone who also co-authored a different paper
with someone else, and therefore no pairs of mentions have shared co-authors. Towards the
end of the clustering procedure, once clusters are starting to resemble actual authors, the
estimates may become reasonable. But no fixed set of conditional probabilities remains valid
throughout the procedure.

To mitigate this problem, we perform clustering in two phases with two different similarity
metrics. During the first phase (bootstrapping), our similarity metric is based solely on
attribute similarity. The mentions with the rarest, most unambiguous names are merged.
After this phase, co-authorship becomes meaningful, though some authors are still spread
across more than one cluster. During the second phase, attribute similarity is updated based
on the current co-authorship network.

4.4.2 Results

We apply AuthorshipToolkit to both of our manually disambiguated datasets: arXiv HEP
(Figure 4.7) and MathSciNet (Figure 4.8). Results on arXiv HEP are reported in terms
of the harmonic mean of pairwise precision and recall (pairwise F-measure) for comparison
with other publications. (ROC curves typically are not reported in author disambiguation
literature, thus limiting their usefulness for comparing to existing work.) For the metric
we consider, AuthorshipToolkit reduces error by one third relative to [66]. These results
are encouraging, though we designed the AuthorshipToolkit with arXiv HEP in mind. That
said, AuthorshipToolkit has few parameters, most of which were set in a way that should
generalize to any subset of arXiv.

Results on MathSciNet are reported in terms of accuracy: the proportion of authors
disambiguated perfectly. Though not sensitive to some changes in the disambiguation, ac-
curacy has the advantage of being easily interpreted. For MathSciNet, the test data was not
examined before testing, and the test set is so large anyway that it would be overfit. In this
high ambiguity dataset, we see that AuthorshipToolkit outperforms all baselines by a large
margin. Also, we see that there is much room for improvement.

4.4.3 Limitations

AuthorshipToolkit accounts for many aspects of author disambiguation. However, it fails to
fully exploit available information. Modeling the probability that two mention clusters are
coreferent, rather than the probability of a particular partition of the mentions, simplifies
inference in some respects, but makes it difficult to account for many features in a principled

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 48

Figure 4.7: Results for arXiv HEP, a dataset with low name ambiguity. The fifn+ln upper
bound line indicates the best score that could be attained without merging mentions that
do not have the same first initial and last name. The baseline line represents partition by
name string, after basic preprocessing.

Figure 4.8: Results for MathSciNet, a large dataset with high name ambiguity. The blue
bars show results for the baseline procedures introduced in Figure 4.5.

CHAPTER 4. PROBLEM OVERVIEW AND PRELIMINARIES 49

way. To learn probabilities from training data, we assume in some cases that the probability
that two clusters are coreferent is similar to the probability that two mentions with certain
properties are coreferent. But that only holds exactly when each cluster is a singleton, not
throughout the clustering process. In other cases, we approximate probabilities about pairs
of clusters as if each cluster contained all the references for a particular author, but this is
unlikely to be the case.

Incorporating features about clusters other than the pair which may be merged is partic-
ularly problematic: we can form features based on the other clusters in the partition. But
the probability of observing these features, conditional upon whether the pair of clusters
is coreferent, is unknown. Any estimate likely would not remain constant throughout the
clustering procedure. We have no means of learning how such conditional probabilities vary
during a greedy, heuristic clustering procedure.

To correct these shortcomings, the next chapter develops an approach to author disam-
biguation that explicitly models the probability of any partition of the mentions.

50

Chapter 5

Conditional random fields for author
disambiguation

This chapter presents a probabilistic model for a partition of mentions. Higher probabilities
are assigned to partitions that correctly disambiguate mentions. The model is discrimina-
tive rather than generative: it models the probability the partition is correct directly, wihout
also modeling the probability of the data. Inference is performed by a Metropolis-Hastings
sampler. For parameter learning, we consider both SampleRank [89] and contrastive diver-
gence [90].

5.1 Model
Let M be a set of mentions. Let F ≡ {f1, . . . , fn} be a collection of feature functions, each
mapping a set of mentions to a real value. Let θ be an (n+1)-dimensional real-valued vector.
Let A be a partition of M .

We model the conditional probability given M that A is the correct disambiguation of
the authors as

P(A; θ) ≡ 1

Z(θ) ∏E∈AΨ(E) (5.1)

where

Ψ(E) ≡ exp{θ0 +
n

∑
i=1

θifi(E)} (5.2)

and

Z(θ) ≡∑
A′
∏
E∈A′ Ψ(E). (5.3)

Here E ∈ A denotes a set of mentions that is one part in the partition A. Because we
condition on M , and use an explicit model for the probability of the latent variables, our

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 51

model is discriminative. Because the model is a product of functions of subsets of our latent
variables, it can be conceived of as an undirected graph. Also, our model is log-linear. Thus,
our model defines a conditional random field (CRF) [91, 92]. Let G = (V,E) be a graph such
that Y = (Yv)v∈V , so that Y is indexed by the vertices of G. Then (X,Y) is a conditional
random field, since, conditioning on X, the random variables Yv obey the Markov property
with respect to the graph:

p(Yv ∣X,{Yw ∶ w ≠ v}) = p(Yv ∣X,{Yw,w ∼ v}), (5.4)

where w ∼ v means that w and v are neighbors in G [93]. CRFs have been successfully
applied to many problems [81, 60, 93, 83, 87].

We restrict the form of the feature functions. For i = 1, . . . , n, there must exist φi s.t. for
any {m1, . . . ,mp} ⊂M ,

fi({m1, . . . ,mp}) =
p

∑
j=1

φi(mj,{m1, . . .mj−1}). (5.5)

In words, a feature function fi imposes an arbitrary ordering on entities’ mentions, and
decomposes additively over successively longer sequences of mentions. We restrict fi to
functions that are invariant under re-orderings of their arguments. The feature functions in
F are meant to measure the qualities of a good partition of M .

5.1.1 Feature functions

Our model judges latent-variable configurations by the kinds of properties first introduced
in Section 4.4.1. We compute the follow classes of features:

Name commonality. Mentions with rare names are more likely refer to the same author.
Name frequencies are computed based on the common part of compatible name strings and
then discretized into 5 levels.

Topic similarity. Mentions from papers about the same topic are more likely to refer to
the same author. Topic is determined by Mathematics Subject Classification (MSC) code,
a 5-digit code with some structure: the first 2 digits indicate a high-level subject (e.g.,
probability), the first 3 digits indicate a mid-level subject (e.g., Markov processes), the full
code indicate a low-level subject (e.g., Brownian motion). MSC codes are tested for equality
on their first 2 characters, their first 3 characters, and all 5 characters.

Name string compatibility. Mentions with character-equivalent name strings most likely
to refer to the same person, but truncation of first or middle names, or omission of middle
names, may only lower the probability of a match slightly.

Misspelling likelihood. Some spelling errors are more likely than others. Mentions that
require unusual spelling errors to be coreferent are least likely to match.

Coauthorship network Authors tend to work with each other repeatedly, and to select
co-authors from their community. To encourage these configurations, we include a feature
function that reports the number of co-authors for each author. In the future, we may

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 52

want to either 1) introduce latent variables representing academic communities, and favor
configurations where authors have fewer communities; or 2) favor configuration with fewer
distinct co-authors among authors with similar names.

5.1.2 Computationally efficient relative probabilities

During both inference and learning, we compute the relative probabilities of partitions of
mentions that differ only slightly. In particular, suppose that A1 and A2 are partitions of M
satisfying

A1 = {E1 ∪ {m},E2,E3, . . .Ed} (5.6)

and

A2 = {E1,E2 ∪ {m},E3, . . . ,Ed}. (5.7)

In words, A1 and A2 differ only by the part containing a particular mention. Then we can
efficiently compute the relative probability as

P(A2)
P(A1)

= Ψ(E1)
Ψ(E1 ∪ {m}) ⋅

Ψ(E2 ∪ {m})
Ψ(E2)

(5.8)

= exp{
n

∑
i=1

θi[fi(E1) − fi(E1 ∪ {m}) + fi(E2 ∪ {m}) − fi(E2)]} (5.9)

= exp{
n

∑
i

θi[φi(m,E2) − φi(m,E1)]}. (5.10)

5.2 Parameter learning
The model contains a parameter θ with dimension equal to the cardinality of F . To learn
this parameter, we consider 1) maximum likelihood estimation, 2) contrastive divergence [90],
and 3) SampleRank [89].

5.2.1 Maximum likelihood estimation

Maximum likelihood estimation is the standard approach to estimating θ. However, due
to the normalization term, computing the MLE of our model is intractable. To see this,
consider the log likelihood:

`(A; θ) ≡ logP(A; θ) (5.11)

= ∑
E∈A

n

∑
i=1

θifi(E) − log∑
A′
∏
E∈A′

n

∏
i=1

exp{θifi(E)}. (5.12)

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 53

The derivative of the log likelihood is

∂

∂θi
`(A; θ) = ∑

E∈A fi(E) − ∂

∂θi
log∑

A′
∏
E∈A′

n

∏
j=1

exp{θjfj(E)} (5.13)

= ∑
E∈A fi(E) −

∂
∂θi
∑A′∏E∈A′∏n

j=1 exp{θjfj(E)}
∑A′∏E∈A′∏n

j=1 exp{θjfj(E)} (5.14)

= ∑
E∈A fi(E) −

∑A′
∂
∂θi
∏E∈A′∏n

j=1 exp{θjfj(E)}
Z(θ) (5.15)

= ∑
E∈A fi(E) −∑

A′

1

Z(θ)

⎡⎢⎢⎢⎢⎢⎣

n

∏
j=1
j≠i

∏
E∈A′ exp{θjfj(E)}

⎤⎥⎥⎥⎥⎥⎦

∂

∂θi
∏
E∈A′ exp{θifi(E)} (5.16)

= ∑
E∈A fi(E) −∑

A′

1

Z(θ)

⎡⎢⎢⎢⎢⎢⎣

n

∏
j=1
j≠i

∏
E∈A′ exp{θjfj(E)}

⎤⎥⎥⎥⎥⎥⎦

∂

∂θi
exp{θi ∑

E∈A′ fi(E)} (5.17)

= ∑
E∈A fi(E) −∑

A′

1

Z(θ) [∏
E∈A′

n

∏
j=1

exp{θjfj(E)}] ∑
E∈A′ fi(E) (5.18)

= ∑
E∈A fi(E) −∑

A′
P(A′; θ) ∑

E∈A′ fi(E) (5.19)

= ∑
E∈A fi(E) −EA′ [∑

E∈A′ fi(E)] . (5.20)

Unfortunately it is difficult to reliably estimate the expectation in the second term; even if
correctly distributed samples A1, . . .Am can be drawn, presumably via some MCMC method,
the variance among ∑E∈Ak fi(E) due to θ will be swamped by the variance of ∣Ak∣ [90].

5.2.2 Contrastive divergence

Finding parameters θ that maximize the likelihood is equivalent to minimizing the Kullback-
Leibler divergence between the empirical distribution of the data, P 0, and the modeled
distribution of the data. The latter distribution is termed the equilibrium distribution,
denoted P∞

θ ≡ P; it is the distribution sampled from by an MCMC sampler run infinitely
long [90]. However, it is no easier to compute gradients of DKL(P 0∥P∞

θ):

− ∂

∂θi
DKL(P 0∥P∞

θ) = − ∂

∂θi
EP 0 [log

P 0(A)
P∞
θ (A)] (5.21)

= EP 0 [− ∂

∂θi
log

P 0(A)
P∞
θ (A)] (5.22)

= EP 0 [∂

∂θi
logP∞

θ (A)] (5.23)

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 54

= EP 0 [∂

∂θi
`(A; θ)] (5.24)

= EP 0 [∑
E∈A fi(E) −EP∞

θ
[∑
E∈A′ fi(E)]] (5.25)

= EP 0 [∑
E∈A fi(E)] −EP∞

θ
[∑
E∈A fi(E)] . (5.26)

Fortunately, minimizing DKL(P 0∥P∞
θ) is equivalent to minimizing the difference between

DKL(P 0∥P 1
θ) and DKL(P 1

θ ∥P∞
θ), where P 1

θ is the distribution obtained by running Gibbs
sampling – initialized with P0—for a single iteration. Minimizing the latter objective function
is more tractable, since

− ∂

∂θi
DKL(P 1

θ ∥P∞
θ) = − ∂

∂θi
EP 1

θ
[log

P 1
θ (A)

P∞
θ (A)] (5.27)

= − ∂

∂θi
∑
A

[P 1
θ (A) log

P 1
θ (A)

P∞
θ (A)] (5.28)

= −∑
A

∂

∂θi
[P 1

θ (A) log
P 1
θ (A)

P∞
θ (A)] (5.29)

= −∑
A

∂

∂θi
[P 1

θ (A) log
P 1
θ (A)

P∞
θ (A)] (5.30)

= −∑
A

[(log
P 1
θ (A)

P∞
θ (A))

∂

∂θi
P 1
θ (A) + (P 1

θ (A) ∂

∂θi
log

P 1
θ (A)

P∞
θ (A))] (5.31)

= −∑
A

[(log
P 1
θ (A)

P∞
θ (A))

∂P 1
θ (A)
∂θi

] −EP 1
θ
[∂

∂θi
log

P 1
θ (A)

P∞
θ (A)] (5.32)

= −∑
A

[(log
P 1
θ (A)

P∞
θ (A))

∂P 1
θ (A)
∂θi

] −EP 1
θ
[∂

∂θi
logP 1

θ (A)]+ (5.33)

EP 1
θ
[∂

∂θi
logP∞

θ (A)]

= −∑
A

[(log
P 1
θ (A)

P∞
θ (A))

∂P 1
θ (A)
∂θi

] +EP 1
θ
[∂

∂θi
logP∞

θ (A)] (5.34)

= EP 1
θ
[∑
E∈A fi(E)] −EP∞

θ
[∑
E∈A fi(E)] −∑

A

[(log
P 1
θ (A)

P∞
θ (A))

∂P 1
θ (A)
∂θi

]

(5.35)

= EP 1
θ
[∑
E∈A fi(E)] −EP∞

θ
[∑
E∈A fi(E)] − ∂P

1
θ

∂θi

∂DKL(P 1
θ ∥P∞

θ)
∂P 1

θ

, (5.36)

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 55

and therefore the expectations over P∞
θ cancel:

− ∂

∂θi
[DKL(P 0∥P∞

θ) −DKL(P 1
θ ∥P∞

θ)]

= {− ∂

∂θi
DKL(P 0∥P∞

θ)} − {− ∂

∂θi
DKL(P 1

θ ∥P∞
θ)} (5.37)

= EP 0 [∑
E∈A fi(E)] −EP 1

θ
[∑
E∈A fi(E)] + ∂P

1
θ

∂θi

∂DKL(P 1
θ ∥P∞

θ)
∂P 1

θ

. (5.38)

Computing the leftmost term is straightforward, and the middle term can be reliably ap-
proximated through Gibbs sampling. The rightmost term supposedly does not have much
effect and may be ignored [90].

However, it seems a bit odd to frame the minimization in terms of a difference be-
tween KL divergences, since upon ignoring the third term, the objective function is simply
DKL(P 0∣∣P 1

θ).
Regardless, this approximation of the derivative suggests the following update step:

∆θ
(t)
i ∝ EP 0 [∑

E∈A fi(E)] −EP 1
θ
[∑
E∈A fi(E)] . (5.39)

Let A∗ be the correct disambiguation of the training data. Since P 0 is just a point mass
at A∗, our single observation of a correction disambiguation,

∆θ
(t)
i ∝ EP 1

θ
[∑
E∈A∗ fi(E) − ∑

E∈A fi(E)] . (5.40)

Contrastive divergence generates samples from P 1
θ by updating each latent variable via a

single iteration of a Gibbs sampler. However, any definition of P 1
θ should suffice, as long as

P 1
θ is the distribution of some non-trivial step of a Markov chain initialized to A∗, converging

to P∞
θ . Thus, Metropolis-Hastings sampling may be substituted for Gibbs sampling. Also,

as suggested by [89], P 1
θ may be a single Metropolis-Hastings step, rather than an update of

all latent variables. The latent variables in our model may be parameterized in three ways:
as ∣M ∣(∣M ∣−1)

2 binary coreference indicators, as ∣M ∣ integers, or as one partition. If we take our
latent variables to be ∣M ∣ integers, we get the following update procedure: Let

A∗ = {E1 ∪ {m},E2,E3, . . .Ed}, (5.41)

where the parts’ ordering is arbitrary. Then samples from P 1
θ have the form

Â = {E1,E2 ∪ {m},E3 . . .Ed}. (5.42)

For such samples,

∆θ
(t)
i ∝ [fi(E1 ∪ {m}) − fi(E1)] + [fi(E2) − fi(E2 ∪ {m})] (5.43)

= φi(m,E1) − φi(m,E2). (5.44)

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 56

Contrastive divergence maximizes the joint probability of observed and unobserved vari-
ables, without access to complete data. However, our model is discriminative, and our train-
ing data is fully observed. This simplifies sampling from P 1

θ . To apply the ideas from [90],
we consider the attributes of the mentions to be fixed exogenously, rather than conditioned
upon. Then the data vector is A∗. We get our “reconstructed” data vector Â directly, by
running a sampler initialized to A∗.

5.2.3 SampleRank

SampleRank was developed to improve on contrastive divergence (CD) [94, 89]. Like CD,
SampleRank learns weights from samples drawn by Metropolis-Hastings. With CD, the
sampler’s Markov chain is reset to the ground truth whenever the parameters are updated,
whereas with SampleRank, when the parameters are updated, the Markov chain continues.
SampleRank evaluates a loss function on each sample, and trains a classifier to rank samples
according to the loss. While similar in form to CD, SampleRank appears to lack CD’s
theoretical justification and convergence guarantees. Nonetheless, the ability to optimize for
an arbitrary loss function makes SampleRank an approach to consider.

5.3 Inference
Upon learning the parameters from training data, either by CD or SampleRank, we collect
samples from the posterior distribution by running a Metropolis-Hastings sampler on the
test set. Proposed moves transfer one mention at a time between authors, though split-
merge proposals [95] could improve runtime, and may be necessary in practice. Otherwise
the sampler may need to pass through many low-probability states to get from one likely
partition to another. Proposal canopies [96], another way to improve runtime, essentially
amount to blocking. The approach in Section 4.3 is an even more efficient alternative to
blocking, and could be employed.

We consider several approaches to combining multiple samples, to obtain a single “aver-
age” partition of the mentions. We can solve for either the modal partition or the “median”
partition. To solve for the mode, we introduce a “temperature” parameter to the proposal
distribution. The temperature is gradually lowered, over the iterations, leading the sam-
pler to configurations with higher probability. (Lower temperatures make moves to lower
probability samples less frequent.) To solve for a median partition rather than the mode,
consensus clustering [97] may be applied to combine MCMC samples. Finally, if we just
want to determine whether a particular set of mentions is probably coreferent, we can count
the fraction of samples that place them all in the same cluster.

CHAPTER 5. CRFS FOR AUTHOR DISAMBIGUATION 57

5.4 Results
On synthetic data generated from the model, with highly informative feature functions, the
MAP estimate of the partition recovers the true partition of the synthetic data. Inference
works, at least when the feature functions are very informative and the assumptions of the
model are met.

On real author data from MathSciNet, results are less encouraging. The parameters
learned by CD assign high probability to the true partition of the training set, compared to
partitions that are one Metropolis-Hastings step away from the truth. However, they assign
even higher probability to degenerate partitions, i.e., where every mention is in a singleton
cluster or all mentions are in one cluster.

With SampleRank, the parameters we learn optimize for a loss function rather than
maximize the likelihood. The parameters learned by SampleRank also do not induce good
partitions of even the training data, much less the test data: parameters can be manually
“guessed” through trial and error that perform better than SampleRank even with respect
to the loss function that SampleRank optimizes for. Because SampleRank lacks theoretical
guarantees, it is hard to draw general conclusions about the problem from these empirical
results.

The results from CD suggest that our model is misspecified. While our model leaves
some parameters free, it also make some strong assumptions about the data. For example,
consider a binary feature that indicates whether an author publishes in only one subject
area. Presumably the parameter θi for this feature will be positive: partitions where more
authors publish in only one area tend to be accurate. But if this were the only feature,
a MAP partition would be all singleton clusters: every author has just one subject area.
We might try encouraging merges by adding a feature that reports the size of each cluster.
If CD assigns the parameter θj for this feature a positive weight, it may counteract the
other feature’s preference for small clusters, to some extent. But just counteracting the
other feature does not make the model correct: a precise balance between the two effects is
required, but the second feature can only scale the log probability linearly in the size of each
cluster. There is no reason to think that any combination of θi and θj accurately models the
data.

58

Chapter 6

Spectral author disambiguation

This chapter presents spectral disambiguation, a procedure for author disambiguation based
on spectral clustering and a learned pairwise similarity metric. Section 4.3 proposes a feature-
space representation of mentions and a technique for efficiently finding pairs of mentions with
non-zero similarity. This chapter extends that technique, to not only find pairs of mentions
with non-zero similarity, but to encode the similarity between all pairs, including those
with non-zero similarity. We report on applying both a procedure to learn the similarity
metric (the “learning procedure”) and a procedure to partition the mentions (the “inference
procedure”) to MathSciNet.

Unlike AuthorshipToolkit (Section 4.4), spectral disambiguation is based on optimizing
a loss function over partitions of the mentions. Unlike the approach of Chapter 5, spectral
disambiguation is not probabilistic. Both AuthorshipToolkit and spectral disambiguation in-
clude greedy routines, but only the latter’s greedy routine is based on optimizing an explicitly
stated objective function.

6.1 Inference procedure
Each mention possesses a modest and bounded number (i.e., 10–100) of attributes, regardless
of the number of mentions n to disambiguate. Attributes include things like name string
and article keywords, as well as derived attributes, like possible misspellings of an author’s
name. The precise set of attributes is detailed in subsequent sections. Our choice of at-
tributes follows from the form of our similarity matrix, described shortly, not the other way
around. The total number of unique attributes p grows roughly linearly with n, though some
attributes are shared by O(n) mentions. Let the sparse binary n × p matrix X encode the
attributes possessed by each mention. Let the non-negative sparse p × p matrix B encode
attribute-attribute similarity. Let the mention-mention similarity matrix be

W =XBX⊺. (6.1)

Then the entries of W encode a Mahalanobis distance between pairs of mentions.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 59

Figure 6.1: The 2-min-cut of a weighted graph.

Inference amounts to finding a partition of the mentions that minimizes the edge weights
(entries in W) that cross parts. This is known as the k-min-cut problem [98]. Figure 6.1
gives an example.

Solving k-min-cut is computationally intractable, but good approximations exist. K-
way spectral clustering solves a relaxation of the k-min-cut objective [12]. Unfortunately,
K-way spectral clustering has O(n3) runtime for author disambiguation because K is O(n)
for author disambiguation. Even with our parameterization of W as a product of sparse
matrices with O(n) fill, K-way spectral clustering has O(n2) runtime for fixed K. We need
to determine K, too.

Recursive spectral bipartitioning [99, 100] instead solves a series of 2-min-cut problems
approximately, through 2-way spectral clustering. It recovers O(n) clusters in O(logn) steps,
as shown in Figure 6.2. Each step takes O(n) runtime, so overall runtime is O(n logn)—a
scalable algorithm.

To compute each bipartition in O(n) time, we find the eigenvector corresponding to the
second smallest eigenvalue of the (unnormalized) Laplacian matrix

L =D −W

where D is a diagonal matrix with Dii = ∑n
j=1Wij, i.e., D = W1. For a vector v, we can

compute
Lv =Dv −X (B (X⊺v))

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 60

Figure 6.2: Recursive bipartition recovers O(n) authors for n mentions in O(logn) steps, as
long as the bipartitions are roughly balanced.

in O(n) time by right-multiplying, as indicated by the parentheses. Using an Arnoldi
method [101], and our formula for Lv, each bipartition can be computed rapidly [99]. We
ensure that each bipartition is roughly balanced, so that the number of recurrences is at most
O(logn). Then, the overall runtime of the inference procedure is O(n logn). Recursion stops
when the average edge weight in the graph associated with Laplacian L cut by the proposed
bipartition exceeds some threshold t.

6.1.1 Encoding mention pairs’ similarities through Mahalanobis
distance

Name strings are by far the most important attributes for author disambiguation. For now
let us focus on mentions with only name strings as attributes. Some pairs of name strings
are identical, and clearly W = XBX⊺ should assign these pairs non-zero similarity. Other
pairs are not identical, but the difference could be exclusively due to censoring, e.g., “J.
Smith” and “John Calhoon Smith.” These pairs should also have non-zero similarity. Now
consider the name strings “John Smith,” “Jane Smith,” and “J. Smith.” Both “John Smith”
and “Jane Smith” should have non-zero similarity with “J. Smith,” but they should have zero
similarity with each other—barring an egregious misspelling. Good spelling correction, and
correction for other types of name mutations, is essential for good disambiguation. Table 6.1

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 61

Figure 6.3: A graphical representation of similarity matrixW ==XBX⊺, for 3 mentions. The
blue edges correspond to the binary attribute-mention matrix X. The red edges correspond
to the real-valued mention-attribute matrix BX⊺. Only mentions connected by a path of
length 2 have non-zero similarity in W . For mentions connected by a path of length 2, their
similarity is the weight along the red edge on the path.

lists the types of name pairs that W = XBX⊺ assigns non-zero similarity. This pattern of
non-zero entries can be encoded by manipulating the entries of B, while maintaining sparsity.
Figure 6.3 shows how entries of B can be set to encode real-valued similarities between name
strings.

Pair type Example
exact match “Sally Smith” ∧ “Sally Smith”
compatible names “R J Clark” ∧ “Ronald Clark”
hyphenated last name “Jane Tyler-Nussbaum” ∧ “Jane Tyler”
truncated first name “Yurii Nesterov” ∧ “Yu Nesterov”
first name dropped “J. Carl Lovejoy” ∧ “Carl Lovejoy”
first and last names swapped “Erin Kotsov” ∧ “Kotsov Erin”
nick name “Jim Hunt” ∧ “James Hunt”
misspelling “G Honderd” ∧ “G Khonderd”
modified word boundaries “Xiao Fan Wang” ∧ “Xiaofan Wang”
compound mutation “Xiao Fan Wang” ∧ “Xiaofan Wangg”

Table 6.1: Types of name string pairs with support

Now suppose mentions are associated with their articles keywords and subject codes,
indicating the Mathematics Subject Classification (MSC). (MSC codes are introduced in

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 62

Section 5.1.1.) Then the B matrix is block diagonal with the following form:

B =
⎡⎢⎢⎢⎢⎢⎣

Bname 0 0
0 Btopic 0
0 0 Bkeyword

⎤⎥⎥⎥⎥⎥⎦
.

Matrix Bname indicates the similarity between name strings, as previously discussed.
Matrix Btopic indicates the similarity between topic codes. It is also a block diagonal

matrix:

Btopic =
⎡⎢⎢⎢⎢⎢⎣

Bt2 0 0
0 Bt3 0
0 0 Bt5

⎤⎥⎥⎥⎥⎥⎦
.

Matrices Bt2, Bt3, and Bt5 indicate the affinities between top-level, mid-level and bottom-
level MSC codes, respectively. For j = 2,3,5, Btj has 1 row and 1 column for each k-digit
topic code prefix (the full code if j = 5). For now,

Btj = αjI

where αj is a scalar. Alternatively, if sparsity is too restrictive, Btj may be a low rank
matrix.

Bkeyword indicates the similarity between keywords. Like Btj, it could be either a sparse
matrix or a low rank matrix. We have not yet implemented this component.

6.1.2 Parameterizing the B matrix

The B matrix has O(p2) entries—far too many to learn from O(n) training examples. (Recall
p grows roughly linearly in n.) Moreover, different datasets possess different attributes, so
each dataset requires a different B matrix. Fortunately, many entries of B are related. We
define B in terms of a much smaller vector θ, and a 3-dimensional tensor E whose entries
are indices of θ:

Bij =
p

∑
`=1

1{` ∈ Eij}θ`. (6.2)

The values of θ are constrained by the requirement that B be non-negative. The vector θ has
roughly 500 entries. Each of the first 5 entries of θ stores a weight for a class of name string
defined by its rarity. For example, the entries of B on the diagonal corresponding to common
names like “John Smith” are assigned similarity θ0, whereas pairs of rare names like “Babbage
Z. Gorzak” are assigned similarity θ4. Off-diagonal entries of B corresponding to pairs of
author names are the sum of two elements of θ: One element of θ corresponds to the rarity
of the name string common to both names (e.g., “J. C. Smith” and “John Smith” shared the
name string “J. Smith”). The other element of θ penalizes the discrepancy between the pair
of name strings (e.g., due to a misspelling). The last few hundred entries of θ correspond
to penalties for various types of frequently mistaken spelling substitutions (e.g., “yu”→“ju,”
“e”→“a”).

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 63

6.2 Learning procedure
In the previous section, we set the similarity matrix W = XBX⊺, where the matrix B is
parameterized by a fixed vector θ. In this section, we present a procedure for learning θ
from a large collection of manually disambiguated publications, which will lead to good
performance of our specific inference procedure on future datasets. Future datasets will not
necessarily contain any of the same authors as the manually disambiguated publications. But
the relative frequency of various types of spelling mistakes, the relative importance topics in
relation to name strings, etc., should generalize from the manually disambiguated dataset to
future datasets.

6.2.1 Designing the objective function

Learning θ to exactly optimize the quality of output from our specific inference procedure
is likely intractable. Due to the heuristic nature of recursive bipartitioning, it is difficult to
reason about the final output of the recursions.

Instead, we optimize an objective function that favors good parameters for minimizing
average cut, the problem that spectral bipartitioning approximately solves. Let Ai denote
the mentions of a particular author. Let A be the collection of all authors’ mention-sets,
that is A = {A1, . . . ,A∣A∣}, where ∣A∣ is the number of authors in the training set. Let M
be the collection of mentions in the training set; that is M = ∪∣A∣

i=1Ai. Let Mi denote the ith
mention. For sets of mentions U,V ⊂M , define

avgCut(U,V) = ∑i,jWij

∣U ∣ × ∣V ∣ .

This is the average weight of the edges between mentions in U and mentions in V . Spectral
bipartitioning approximately solves

min
V ⊂M avgCut(V,M/V).

Therefore, intuitively, a good θ would have relatively low edge weight between pairs of non-
coreferent mentions, and relatively high edge weight between pairs of coreferent mentions.
The absolute edge weights are unimportant, since a constant scaling of all edge weights does
not change bisection minimizing the average cut.

6.2.1.1 Average edge weight

We first consider minimizing the difference between the total weight of edges across authors,
and the total weight of edges within authors:

L1(θ) =
1

(∣M ∣)2

∣M ∣
∑
i=1

∣M ∣
∑
j=1

ϕ(Mi,Mj)Wij, (6.3)

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 64

where ϕ(Mi,Mj) returns 1 if Mi and Mj are coreferent and −1 otherwise. Evaluating
L1 naively would require computing a quadratic number of terms (∣M ∣ is approximately
2,000,000) but an alternate formulation with a linear number of terms exists: the total edge
weight within authors (the intra-author edge weight) can be computed in linear time because
no author has more than a bounded number of publications (about 1000). Additionally, the
total edge weight (both within authors and between authors) can be computed in linear time
by exploiting the form of W = XBX⊺, where X and B are sparse, by both left and right
multiplying W by a ones vector. Thus,

L1(θ) =
1

(∣M ∣)2

⎡⎢⎢⎢⎢⎣
1W1⊺ −

∣A∣
∑
i=1

∣Ai∣
∑
j=1

WiAij

⎤⎥⎥⎥⎥⎦
,

where (with slight abuse of notation) we let Aij denote the index in M of the jth mention of
the ith author. Therefore, L1 can be evaluated in linear time. Also, we can minimize (6.3)
without ever evaluating all of its terms, using a stochastic gradient method and treating each
edge as an example.

Without regularization, however, minθ L1 is unbounded if any attribute appears more
often between coreferent mentions than non-coreferent mentions; increasing the weight of
such an attribute will always decrease L1. And, if any attribute occurs more often between
non-coreferent mentions than coreferent mentions, setting this attribute’s weight to 0 will
minimize L1 (W must be non-negative for spectral clustering.) Adding an L2 regularizer to
L1 yields

L2(θ) =
1

(∣M ∣)2

⎡⎢⎢⎢⎢⎣

∣M ∣
∑
i=1

∣M ∣
∑
j=1

Wij (1 − 2δ(Mi,Mj)) +
λ

2
∥θ∥2

2

⎤⎥⎥⎥⎥⎦
.

This remedies the first problem: the addition of a non-negative quadratic term (λ > 0) bounds
minθ L2 from below. But the second deficiency points to a deeper flaw with the design of this
objective function, which cannot be addressed by regularization: Most attributes will more
often be shared between non-coreferent pairs, because the vast majority of pairs of mentions
are not coreferent. For example, the vast majority of mentions sharing a particular topic
code are not coreferent, but, mentions with the same topic are nonetheless more likely to be
coreferent than those with different topics. Hence, topic is still useful for guiding spectral
clustering. It should receive weight strictly greater than 0. Objectives L1 and L2 will not
do so. Rather than picking θ to minimize average weights, perhaps we could find θ that
accentuates the (relative) similarity between pairs of mentions most likely to be confused.

6.2.1.2 Minimax edge weight

Let α and γ be non-negative tuning parameters. Recall that t is the threshold used by the
inference procedure. Cuts with average weight above t will not be accepted. Because a

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 65

constant scaling of all edge weights does not affect the solution of spectral clustering, the
choice of t is arbitrary. We set t = 1 for both learning and inference. We propose minimizing

L3(θ) =
1

∣A∣
∣A∣
∑
i=1

[`(ξi) + α`(ζi) +
λ

2
∥θ∥2

2] , (6.4)

where

`(x) =1

2
[(x + γ)+]2

, (6.5)

and

ξi = t − min
V ⊂Ai avgCutθ(V,Ai ∖ V),

and

ζi = max
U⊂M∖Ai avgCutθ(Ai, U) − t. (6.6)

For author i, ξi measures the amount by which threshold t exceeds every bipartition of Ai,
and ζi measures the amount by which some cut between the mentions of other authors and Ai
exceeds threshold t. If ξi and ζi are both negative, our inference routine should disambiguate
author Ai perfectly.

Like L1 and L2, objective L3 penalizes a θ that heavily weights edges between non-
coreferent mentions, relative to the edge weights between coreferent mentions. While L1 and
L2 penalize θ based on the average of edge weights within and between authors, L3 compares
the minimum average cut within each author to the maximum average cut between each
author and any set of mentions by other authors. In this sense, it more closely mirrors
the “average cut” perspective on spectral bipartitioning. (Spectral bipartitioning solves a
relaxation of minimum average cut.)

6.2.1.3 Alternative objective functions

We consider two alternatives to L3. Let

L4(θ) = max
i=1,...,∣A∣ [`(ξi) + α`(ζi)] +

λ

2
∥θ∥2

2.

Like L3, objective L4 focuses on learning good θ for the most problematic pairs of mentions,
rather than the overall average of intra- and inter- author edge weights. However, L4 fixates
on a particular author, whose intra-author edge weights are most exceeded by inter-author
edge weights. If perfectly disambiguating all authors were possible, L4 might be a reason-
able objective function, but in practice disambiguating some authors is hopeless. With L4,
learning focuses entirely on authors that we cannot get right, who likely are not representa-
tive of the vast majority of the authors. With L3 the most difficult authors have much less
influence.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 66

We also consider

L5(θ) = max
i=1,...,∣A∣ [e(ξi) + αe(ζi)] +

λ

2
∥θ∥2

2,

where

e(x) = (x + γ)+ .
Like ` (truncated quadratic loss), e (hinge loss) penalizes values of x more that exceed −γ by
more. But e penalizes values in proportion to the amount they exceed −γ, while ` penalizes
them quadratically. Thus, while L4 focuses more than L3 on the most difficult authors, L5

focuses less on them than L3. L5 should lead to disambiguated results more in line with
subjective disambiguation quality. However, minimizing L3 is faster than minimizing L5,
due to its greater convexity. Getting consistent convergence with L5 necessitates setting λ
to higher values than desired, whereas with L3 we are free to pick any non-negative value
for λ. Implementation concerns ultimately dictate our preference for L3 over L5.

6.2.2 Minimization

Objective L3 is convex because it is a non-negative weighted sum of convex functions. To
show that `(ξi) and `(ζi) are convex in θ, because ` is convex and non-decreasing, it suffices
to show that ξi and ζi are convex in θ. Observe that

avgCutθ(V,Ai ∖ V) = [∣V ∣ (∣A∣i − ∣V ∣)]−1∑
i∈V ∑

j∈Ai/V
Wij

= [∣V ∣ (∣A∣i − ∣V ∣)]−1∑
i∈V ∑

j∈Ai/V
Xi⋅B (Xj⋅)⊺

= [∣V ∣ (∣A∣i − ∣V ∣)]−1∑
i∈V ∑

j∈Ai/V ∑k∈Xi ∑`∈Xj
Bk` (6.7)

= [∣V ∣ (∣A∣i − ∣V ∣)]−1∑
i∈V ∑

j∈Ai/V ∑k∈Xi ∑`∈Xj ∑q∈Ek`
θq.

Hence avgCutθ and −avgCutθ are linear functions of θ. Now

ζi = max
U⊂M∖Ai avgCutθ(Ai, U) − t (6.8)

and

ξi = t − min
V ⊂Ai avgCutθ(V,Ai ∖ V) (6.9)

= t +max
V ⊂Ai −avgCutθ(V,Ai ∖ V)

are maxima of linear (and thus convex) functions of θ, and hence are also convex.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 67

6.2.2.1 Stochastic subgradient descent

The maximum in (6.8) and the minimum in (6.9) over cuts are continuous but not differen-
tiable. Each author can serve as an example. Hence, we use stochastic subgradient descent
to minimize objective L3. Let ∂k denote the subdifferential with respect to θk. Then

∂kL(θ) =
1

∣A∣
∣A∣
∑
i=1

[∂k`(ξi) + α∂k`(ζi) + λθk] . (6.10)

For x ∈ {ξ1, . . . , ξ∣A∣, ζ1, . . . , ζ∣A∣},

∂k`(x) =
⎧⎪⎪⎨⎪⎪⎩

{0}, if x ≤ −δ
(x + δ) (∂kx) , otherwise.

(6.11)

Also

∂kξi = −∂k min
V ⊂Ai avgCut(V,Ai ∖ V) (6.12)

and

∂kζi = ∂k max
U⊂M∖Ai avgCut(Ai, U). (6.13)

To find a particular subgradient in ∂kL, we approximate a subgradient from (6.12) and
compute a subgradient from (6.13).

6.2.2.2 Approximating the intra-author subgradient

Though few authors write more than several hundred publications, finding the exact min-
imum in (6.12) seems intractable for more than a few tens of publications: the number of
possible partitions grows exponentially. Fortunately, a minimizer can be well approximated
for a particular θ, using spectral bipartitioning, followed by a greedy “clean up” procedure
that considers swapping individual mentions between parts.

To perform spectral bipartitioning, we find the eigenvector associated with the second
smallest eigenvalue1 (the “Fielder vector”) of the Laplacian matrix

Li = diag(Wi1) −Wi,

where Wi is the submatrix of W corresponding to the affinities between the elements of Ai.
Though we only need to find one eigenvector, we find that in practice computing the full
SVD of Li is faster than using iterative methods. Though finding the SVD takes O(n3) time,

1For authors with disconnected similarity graphs, bisecting based on an eigenvector is neither necessary
nor advisable. Any bisection that does not cut any connected component is a minimizer.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 68

here n is ∣Ai∣, not ∣M ∣. Since the number of publications per author is bounded, the runtime
of this step is linear in the size of the training set.

The Fiedler vector gives an ordering of an author’s mentions. To decide where to cut
the sequence of ordered mentions, we consider each of the n − 1 cuts. By exploiting the
structure of W = XBX⊺, we compute all n − 1 cut weights efficiently. Then, we iterate
repeated through the mentions, and propose moving each mention to the other part of the
bipartition, accepting moves that reduce the average cut. Again, by exploiting the structure
of W , we can efficiently evaluate the change in average cut weight for any particular move.

Upon determining the bipartition of Ai that minimizes the average cut weight, denoted
(V ⋆,Ai/V ⋆), we compute a subgradient gξ(θ) ∈ ∂` (ξi) ∣θ. In two special (but not uncommon)
cases, we can avoid much of the computation needed to compute gξ(θ). First, if author i
has only written 1 publication, then trivially 0 ∈ ∂ξi∣θ. Computing the minimum average
cut can be avoided. In most collections, roughly half the authors have written only a single
publication (author productivity follows a Zipf distribution), so this rule leads to a significant
speedup. Second, if the minimum average cut weight of Ai is greater than t+γ, then 0 ∈ ∂ξi∣θ,
and computing gξ(θ) is unnecessary. This condition usually holds after a small number of
iterations of the stochastic subgradient method, and hence this rule too yields a sizable speed
up.

If neither of these special cases apply, ` (ξi) > 0 and ` (ξi) is differentiable for the current
value of θ, and

gξ(θ) =
∂

∂θ
` (ξi)

= ∂

∂θ

1

2
[(ξi + γ)]2

= (ξi + γ)
∂

∂θ
ξi

= ([t − avgCutθ(V ⋆,Ai ∖ V ⋆)] + γ) ∂

∂θ
[t − avgCutθ(V ⋆,Ai ∖ V ⋆)]

= − [t + γ − avgCutθ(V ⋆,Ai ∖ V ⋆)] ∂
∂θ

avgCutθ(V ⋆,Ai ∖ V ⋆).
For any U,V ⊂M ,

∂

∂θ
avgCut(U,V) = [∣U ∣ (∣V ∣)]−1∑

i∈U∑j∈V ∑k∈Xi ∑`∈Xj ∑q∈Ek`
∂

∂θ
θq (6.14)

= [∣U ∣ (∣V ∣)]−1∑
i∈U∑j∈V ∑k∈Xi ∑`∈Xj

Ek`. (6.15)

In (6.14) we use Ek` to denote the indexes of the entries of θ summed to compute Bk`. In
(6.15) we reused the notation Ek` to denote a binary vector with the same length as θ,
indicating the entries of θ summed to compute Bk`. In practice we compute

∑
i∈V ⋆

∑
j∈Ai/V ⋆

∑
k∈Xi ∑`∈Xj

Ek`

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 69

without explicitly forming any Ek`, by counting the number of times each entry of θ con-
tributes to the weight of edges that cross the cut (V ⋆,Ai/V ⋆).
6.2.2.3 Computing the inter-author subgradient

For a particular author Ai, once a maximizer U⋆ of (6.13) is known, finding a subgradient
gζ(θ) ∈ ∂`(ζi)∣θ of the inter-author loss is straightforward. If avgCutθ(Ai, U⋆) ≤ t − γ, then
inter-author loss is the constant 0 for all θ, so 0 is a subgradient. Otherwise,

gζ(θ) =
∂

∂θ
[1

2
[(avgCutθ(Ai, U⋆) − t + γ)]2]

= (avgCutθ(Ai, U⋆) − t + γ) ∂

∂θ
avgCutθ(Ai, U⋆),

where the formula for ∂
∂θavgCutθ(Ai, U⋆) is given in (6.15).

Algorithm (1) shows how to find

U⋆ = arg max
U⊂M∖Ai avgCut(Ai, U).

The following are the key ideas underlying it. For any maximizer U of (6.13), there exists
a singleton {mu} ⊂ U that is also a maximizer. We aim to find an mu ∈ M/Ai without
considering most of the edges that have end points in Ai (and without considering any of
the edges lacking end points in Ai). In the worst case, we would have to consider all edges
with exactly one end point in Ai, but on average, we can consider many fewer edges, by
exploiting the structure of W =XBX⊺ (where X and B are sparse).

First we partition the mentions into connected components in linear time. This par-
titioning only needs to be done once, regardless of how many subgradients we ultimately
compute. We consider only author’s name string when forming connected components, not
topic. If Ai belongs only to connected components exclusively composed of mentions in Ai,
then their inter-author loss `(ζi) is trivially 0, for all θ. Hence 0 is a subgradient in this
common special case. If Ai belongs to a connected component containing multiple authors,
we count how often each attribute appears in the mentions in Ai. Most attributes do not
appear at all, and these 0 counts are not explicitly stored. Then we compute the weight
with which these attributes target other attributes. Again most attributes are not targeted
by any attribute of any mention in Ai.

Upon building these data structures, we consider targeted attributes, in descending order
according to the ratio of their weight to their number of attributes in the connected compo-
nent sharing this attribute. Thus, we first consider the attributes that are most important
in relation to the amount of work required to process them. Initially, as we iterate through
the attributes, we maintain a sum of the attribute weights for each mention in M/Ai that
shares attributes encountered. The total weight on the remaining attributes upper bounds
how similar any mention could be to Ai. If the upper bound becomes less than t − γ, then
we know the inter-author loss `(ζi) is 0, and 0 ∈ ∂`(ζi)∣θ; considering additional attributes is
unnecessary.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 70

Even if the inter-author loss is not 0, we still avoid considering many mentions with non-
zero similarity to mentions in Ai. After related mentions have been identified by considering
the most promising attributes, considering additional mentions may be unnecessary; we only
aim to find the mention mu most similar to Ai. Therefore, if the combined weight of all
remaining attributes is less than the weight already tabulated for some mention, the most
similar mention must have already been encountered. Alternatively, if the weight remaining
is less than t− γ, then no unseen mention could accrue enough weight to have non-zero loss.
In either case, as we iterate through the remaining attributes, we only need to tally the
weights for mentions that have already been visited.

6.2.2.4 Adaptive subgradient method for stochastic optimization (AdaGrad)

Stochastic subgradient methods’ updates typically have the following form:

θ(t+1) = θ(t) + αtGtg(θ(t)),
where g(θ) is a noisy subgradient at θ, Gt = I, and (αt)∞1 is a divergent series but a square
summable sequence. These updates use the same step size αt for all coordinates of θ. Some
coordinates of θ, such as those corresponding to topic codes, are updated almost every
iteration. Other coordinates of θ, such as those corresponding to rare spelling mistakes, are
updated infrequently. Yet the same step size schedule (αt)∞1 will apply to all coordinates.

A subgradient method called AdaGrad [102] instead sets Gt to a diagonal matrix that
approximates the inverse Hessian of the objective function. Specifically,

Gt = [diag(
t

∑
i=1

g(θ(t)))]
−1/2

,

and, for some constant c,

αt =
c√
t
.

This effectively implements a step size schedule (αtGt)∞1 that, all else equal, cools more
quickly for the coordinates of θ that are updated often, and more slowly for the coordinates
of θ that are updated rarely. We find that AdaGrad converges more quickly than a vanilla
stochastic subgradient method.

6.3 Results
We apply the learning procedure and the inference procedure to both synthetic data and
MathSciNet, a collection of roughly 2 million manually disambiguated publications.

Our synthetic data is a collection of items belonging to roughly 500 true clusters. Each
item is a vector of 10 integers, the first 9 entries formed by corrupting the correspond-
ing cluster’s true identifier with progressively more noise. The final entry is intentionally

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 71

misleading—if two entries share this integer, they likely do not belong to the same cluster.
This synthetic dataset tests both the learning and inference procedures, without testing the
string processing logic required for author disambiguation. Also, by using synthetic data,
we can draw multiple datasets from exactly the same distribution.

6.3.1 Learning parameters from synthetic data

On synthetic data, the learning procedure converges within a few minutes. At the optimum,

θ = [0.168 0.158 0.107 0.079 0.065 0.048 0.048 0.039 0.036 0.001]⊺ .
An application of the learning procedure to the same data, but with a different random
selection of examples, yields

θ = [0.168 0.158 0.106 0.079 0.068 0.050 0.050 0.038 0.038 0.001]⊺ .
Additional trials confirm that the learning procedure indeed converges to the same value
of θ. Moreover, the relative values of the optimizer θi are in accordance with the dataset’s
construction:

θ0 ≥ θ1 ≥ . . . ≥ θ8 ≥ θ9.

The weight on each successive parameter decreases as the amount of noise increases. Also,
the final parameter recovered, which weights an intentionally misleading feature function, is
as small as the constraints allow. (We use projection to enforce θi ≥ 0.001 for all i.)

6.3.2 Inferring an optimal partition of synthetic data

Given the optimal θ, we turn to testing our inference procedure. Since most author dis-
ambiguation to date has been performed by agglomerative clustering, we use agglomerative
clustering as a baseline. We use the similarity matrix W = XBX⊺, where each entry of
B is a sum of elements of θ (as discussed earlier), for both agglomerative clustering and
for our disambiguation procedure (“spectral,” in Table 6.2). Then, we generate six datasets
from the same distribution, learn the optimal θ from the first dataset, and disambiguate the
remaining datasets using that θ.

Our disambiguation procedure easily scales to processing millions of items on a single
machine, whereas agglomerative clustering—which has O(n2 logn) runtime on this type of
data—nears its limit on a synthetic dataset of modest size (approximately 3000 items). If
it can disambiguate real author data well enough, then performance on synthetic data is
relevant only for validating the proper functioning of the procedures.

Figure 6.4 shows that inference for spectral disambiguation scales as expected: nearly
linearly in n. Agglomerative clustering, on the other hand, exhibits quadratic runtime.

We compare the disambiguation algorithms’ performance using two metrics: accuracy and
F-score. Accuracy is the proportion of authors perfectly disambiguated—to get any credit,

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 72

Figure 6.4: Scaling results for inference. Spectral disambiguation exhibits nearly constant
runtime per item, whereas the runtime for agglomerative clustering per item grows linearly.

no mention can be excluded and no other author’s mentions may be included. Accuracy is
strict, but also highly interpretable. F-score is the harmonic mean of pairwise recall and
pairwise precision. For both metrics, larger is better.

As Table 6.2 shows, agglomerative clustering consistently outperforms our spectral dis-
ambiguation procedure. We see two possible explanations: 1) the value of θ that minimizes
objective function L3 is more suitable for agglomerative clustering than for our spectral
disambiguation algorithm; or 2) our disambiguation procedure does not work as well as
agglomerative clustering on these data for any value of θ.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 73

agglomerative agglomerative spectral spectral
trial # F-score accuracy F-score accuracy

1 97.6% 90.7% 95.6% 83.6%
2 98.8% 93.3% 94.8% 81.1%
3 98.1% 93.0% 95.7% 83.6%
4 98.1% 92.3% 95.3% 82.5%
5 97.8% 91.6% 94.7% 80.4%

Table 6.2: Inference performance on synthetic data

6.3.3 Learning parameters from MathSciNet

We test many different parameterizations of the B matrix for MathSciNet. Without spelling
correction, for example, we find

θ = [θfrequency θtopic θmutation θtruncation]
⊺
,

where

θfrequency = [0.4066 0.4731 0.5294 0.5917 0.6148]
θtopic = [0.0565 0.0103 0.046]

θmutation = [−0.0619 −0.1999 −0.4728 −0.4021 −0.0277 −0.1105 0. −0.0001]
θtruncation = [−0.1663 −0.1851 −0.1851 −0.2046 −0.186 −0.15 −0.0865 −0.0662] .

Here θfrequency stores the weights of increasingly rare name strings. The first entry corre-
sponds to very common names, like “J. Smith,” whereas the last entry corresponds to very
rare names, which are almost certain to be coreferent. As desired,

θ0 < θ1 < θ2 < θ3 < θ4.

The rarer the name, the more likely mentions sharing it are coreferent. θtopic stores the
weights for topics codes of 3 levels of specificity. The top-level topic code (e.g., “MSC62:
Statistics”) gets the most weight, as desired: most authors publish in only a small number of
top-level topic codes, whereas the mid-level (e.g., “Nonparametric inference”) and bottom-
level (e.g., “Hypothesis testing”) are far less indicative of coreference. θmutation stores penalties
for different kinds of mismatches (other than misspelling) between name strings. The last
entry of θmutation corresponds to the penalty for adding a hyphen between the middle and
last names, if the mention otherwise would have multiple middle names (e.g., “Juan Carlos
Rodrigez Diaz” →“Juan Carlos Rodrigez-Diaz”). This mutation rule is unlikely to generate
false positives, so the penalty is insignificant. The third entry of θmutation, on the other hand,
is a large penalty. It corresponds to dropping the first name, and using the middle name
as a first name (e.g., “D. Radko Mesiar” → “Radko Mesiar”). Though sometimes authors do

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 74

intermittently identify by their middle names, intuitively, this rule is likely to lead to false
positives, so the high penalty makes sense. Finally, θtruncation stores penalties for truncating
a first name to various lengths (e.g., “Yurii Nesterov” → “Yu Nesterov”). Truncations are
surprisingly common in MathSciNet.

In another test, as a sanity check, we include the ground truth as an attribute of each
mention. In this case, the learning procedure correctly assigns high weight to the ground
truth (0.6469) and low weight to all other features (θi < 0.02).

6.3.4 Inferring an optimal partition of MathSciNet

Table 6.3 gives results from disambiguating MathSciNet.2 Each row reports results from
including a different subset of the attributes. Using name frequency attributes exclusively—
without mutations, truncations, spelling correction, and while ignoring topic codes—yields
71.8% accuracy. This is the baseline score to beat, to show that our combined procedure
(learning + inference) can make effective use of additional attributes. Including mutations,
truncations, spelling correction, but still excluding topic code increases accuracy to 73.9%.
This increase, though not insignificant, is less than expected based on manually examining
the errors made by the baseline procedure. Including topic code attributes (the third row of
table 6.3) made the performance much worse—worse than even the baseline. Additionally,
while including the ground truth increases performance, over 11% of authors are still not
perfectly recovered. Removing the topic code, but leaving all the other attributes—including
the ground truth—increases the accuracy to 98.1%. Why would including topic codes be
particularly deleterious?

included attributes spectral spectral
frequency topic mutation truncation spelling truth F-score accuracy

√
91.6% 71.8%√ √ √ √
90.9% 73.9%√ √ √ √ √
87.4% 63.8%√ √ √ √ √ √
95.4% 88.8%√ √ √ √ √
99.6% 98.1%

Table 6.3: Performance on MathSciNet

Most attributes are shared only by a modest number of mentions. Topics codes are
an exception. Hundreds of thousands of mentions share some top-level topic codes. The
learning procedure learns weights that are good for the final split of the disambiguation
by recursive bisection. Indeed, the learned weights seem to work well in practice for final
splits, but the weights that are good for the final split are not necessarily good for earlier

2We use the same dataset for both training and testing at this time, to postpone dealing with differences
in distribution between the training and testing datasets. With so much data and so few parameters, we do
not expect that overfitting will prevent validating the procedure.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 75

splits—particularly when some attributes are shared by many mentions. In a dataset of
only two authors, when ground truth is an attribute with weight 0.6469, then topic weights,
which are less than 0.02, do not substantively affect the split. But, in a dataset with many
thousands of mentions with the same topic code, the topic weight contributes to billions of
edges connecting thousands of mentions (the number of edges grows quadratically), whereas
the number edges affected by the ground truth scales linearly as new authors are added to
the dataset. Thus, for early splits, topic similarity overshadows the influence of the ground
truth: the inference algorithm prefers to split authors (each of whom comprises relatively
few mentions) than to split topics (which are shared by many mentions).

Recursive spectral bipartitioning is a well-established clustering algorithm, but as far
as we know, this is the first work that attempts to learn the similarity matrix for it from
labeled data. Our experience suggests a negative result: no single set of pairwise similarities
leads to good splits at every recursion. Unfortunately, we see no straightforward way to
extend our approach to learn a variable similarity matrix. Generative modeling may be
more appropriate for this application, with an Indian Buffet Process as a prior on the binary
author-article assignment matrix.

CHAPTER 6. SPECTRAL AUTHOR DISAMBIGUATION 76

Algorithm 1 Find m ∈M/Ai maximizing avgCut(m,Ai)
def max_external_cut(self):

assert(self.num_true > 1)
neighbors = defaultdict(float)

w_at2 = []
total_w = 0.
for at_id, count in self.at_counts_global.iteritems():

for at2_id, poses_lst in self.sg_component.at_to_at2(at_id):
prop = count / float(self.sg_local.n())
w = self.model.get_affinity(poses_lst) * prop * 2.
w_at2.append((w, at2_id))
total_w += w

visited_w = 0.
max_it, max_ws = None, 0.

def goodness(w_at2):
return w_at2[0] / len(self.sg_component.at_to_it(w_at2[1]))

for w, at2_id in sorted(w_at2, reverse=True, key=goodness):
left_w = total_w - visited_w
for speed, if there’s no chance of incurring inter author
error, just return 0 immediately.
if max_ws + left_w <= (learn_t - delta):

print "short circuit"
return None, 0.

visited_w += w
if left_w > max_ws and left_w > (learn_t - delta) \

and len(self.sg_component.at_to_it(at2_id)) <= max_external_nodes:
"breadth loop"
for it2_id in self.sg_component.at_to_it(at2_id):

if self.sg_component.items[it2_id].true_id != self.true_id:
neighbors[it2_id] += w
if neighbors[it2_id] > max_ws:

max_it, max_ws = it2_id, neighbors[it2_id]
else:

"depth loop"
for it2_id in neighbors.keys():

if at2_id in self.sg_component.it_to_at(it2_id):
neighbors[it2_id] += w
if neighbors[it2_id] > max_ws:

max_it, max_ws = it2_id, neighbors[it2_id]
return max_it, max_ws

77

Part III

Computer experiments

78

Chapter 7

Confident contouring

This chapter addresses the problem of determining a level set of a real-valued function
f , based on a limited number of evaluations of f . This problem is common when f is
computationally expensive computer simulator, modeling a physical process, which maps
settings for unknown constants to a real-valued outcome.

We are particularly concerned with contouring a climate simulator, based on a dataset
from the Lawrence Livermore National Laboratory (LLNL) containing results from their
climate simulations. Each simulation has 21 parameters as its inputs. The output of interest
is the simulated global average upwelling longwave flux (FLUT) approximately 50 years in
the future. Henceforth, we refer to the mapping from the parameter space to FLUT induced
by the climate simulation as the simulation function. Evaluating the simulation function
was computationally expensive, with each run taking several days on a supercomputer. The
dataset contains results from approximately 1000 runs, and any additional datasets would
likely be of a similar scale. The 21 parameters are scaled between 0 and 1. This range contains
all parameter settings considered reasonable. We aim to determine which parameter settings
map to FLUT values in excess of some threshold t.

We focus on two settings. In the first, the dataset is fixed. We aim to impute a level set
based on a finite collection of observations. Henceforth, we refer to the task of determining
points’ memberships with regard to the level set as classification. In the second setting,
given an existing set of observations of f , we get to adaptively select parameter settings to
test, so as to maximize knowledge of the simulation function while minimizing the number
of evaluations of the simulation function.

7.1 Inference from a fixed set of observations
Clearly no finite collection contains every possible combination of the 21 real-valued param-
eters. In fact, no dataset of the scale anticipated contains all combinations of a high setting
and a low setting for each parameter. (221 runs would be required to simulate the “corners”
of the parameter space.)

CHAPTER 7. CONFIDENT CONTOURING 79

While it may be tempting to approximate the simulation function with a simplier para-
metric model, such an approximation is unlikely to be accurate: the simulation function is
highly nonlinear, with many interactions between parameters. One may also be tempted to
suppose some prior distribution over the parameter space, but the model’s true parameters
really might lie anywhere: no decisive prior information is available.

Continuity conditions can reasonably be expected to hold: minor perturbations in the
inputs are unlikely to trigger major changes in the output. Though other types of continuity
conditions might also suffice, for simplicity, we suppose Lipschitz continuity. More precisely,
let f ∶ [0,1]21 → R be the simulation function. Let dX be some distance metric on the
parameter space. We supposed that for all x1, x2 ∈ [0,1]21, there exists a scalar Kf satisfying

∣f(x2) − f(x1)∣
dX(x1, x2)

≤Kf .

Without evidence that some other distance metric would be more appropriate, we set dX
to the distance metric induced by the sup-norm. Let S be the level set desired. Let t be the
threshold for inclusion in S. Let g satisfy

g(x) = f(x) − t.

Then g has the same level set with respect to 0 as f has with respect to t. Thus, without
loss of generality, we may let t = 0. Then

S = {x ∶ f(x) ≥ 0}.

Let h satisfy
h(x) = f(x)/Kf .

Then h has the same level set with respect to 0 as f has with respect to 0, and Kh = 1.
Thus, without loss of generality, we may let Kf = 1. Now, for x ∈ [0,1]21, if f(x) ≥ 0, then

B̄(x, f(x)) ∩ [0,1]21 ⊂ S,

where B̄ is the closed ball centered at x of radius f(x). Similarly, if f(x) < 0, then

B(x, ∣f(x)∣) ∩ [0,1]21 ⊂ Sc,

where B is the open ball centered at x of radius ∣f(x)∣. Thus, setting dX to sup-norm
allows classifying cubical subsets of the domain with regard to their membership in S. This
is convenient because a cube can be naturally represented in a computer program by the
coordinates of its lowest corner and its highest corner, and this storage format scales linearly
in the dimensionality of the domain of f .

We also experimented with setting dX to the distance metric induced by the L1-norm,
or, equivalently, the Manhattan distance.

CHAPTER 7. CONFIDENT CONTOURING 80

Under any distance metric, classification is most difficult where f is near 0. To formalize
this intuition, let µ be Lebesgue measure. In the worst case, where there exists A ⊂ [0,1]21

satisfying µ(A) > 0 and f ∣A = 0, no finite or countable number of evaluations of f would let
us classify a non-measure-zero subset of A; if x ∈ A, then we classify B(x, f(x)), and

µ(B(x, f(x))) = µ(B(x,0)) = 0.

To avoid this situation, redefine the classification problem slightly: Fix ε > 0. Rather than
classifying points as either in or out of S, classify each point into the following categories:

1. {x ∶ f(x) > 0}

2. {x ∶ ∣f(x)∣ < ε}

3. {x ∶ f(x) < 0}
These categories are not mutually exclusive. The classification problem is solved when every
point in the domain is assigned to at least one category.

7.2 Inference from an adaptively selected dataset
At present, LLNL tests combinations of parameter settings in accordance with Latin hy-
percube designs, one-at-a-time designs, and several variants thereof. In other words, the
experimental design is fixed before any simulations take place. Yet batches of runs are per-
formed serially, so there is the potential to use the results from earlier runs to select the
inputs for subsequent simulations.

The optimal sequence of evaluations would allow us to classify the entire domain with
the fewest evaluations of the simulation function. However, a Bayes optimal approach would
require knowing unknowable distributions. Instead, we propose a greedy strategy. At each
iteration, we select the point in the parameter space to maximize the anticipated volume of
the domain classified during that iteration, according to a surrogate model, trained on the
observations thus far. Intuitively, a good selection has the following qualities:

1. It lies away from the borders and from regions of the domain that has already been
classified, so as to maximize the volume of neighboring domain that can be classified.

2. The simulation function maps it to a value far from the level set’s threshold, so that a
large neighborhood around it may be determined to have the same classification.

Optimizing for the second quality requires modeling the simulation function. At any point
in the parameter space, we want estimates not just of the expected value of the simulation
function, but estimates of the distribution of the simulation function. A Gaussian process
model gives us these estimates. Gaussian process models are frequently used to model nearly-
deterministic computer simulations [103], in part because their fitted values exactly match
the true responses at observed points. Henceforth, let f̂(x) be the estimate of f(x) from

CHAPTER 7. CONFIDENT CONTOURING 81

Algorithm 2 gasp
1: for i = 1, . . . , n1 do
2: Draw point xi at random uniformly from [0,1]N .
3: Draw scalars y(1)i , . . . , y

(n2)
i from N (f̂(xi), σ̂(xi)).

4: For j = 1, . . . , n2, draw points z(1)ij , . . . , z
(n3)
ij at random uniformly from

B(xi, y(j)i) ∩ [0,1]N .

5: Let R ⊂ [0,1]N be the region already classified and let 1 be the indicator function.
Set

πi =
∑n2
j ∑n3

k 1(z(k)ij ∈ R)
n2n3

,

6: Find i⋆ = arg maxi′{πi′}.
7: Evaluate f(xi⋆).

the Gaussian process model, and let σ̂(x) be the standard error of this estimate. Then
N (f̂(x), σ̂(x)2) is the distribution of the Gaussian process model at x.

However, even with the ability to estimate the simulation function’s value at any point,
finding the optimal point in a high-dimensional space for a single iteration of a greedy algo-
rithm is intractable. The modeling assumptions so far enable comparing points, determining
which was better, but not searching an uncountable set for an optimal point. So we again
use Monte Carlo methods. Let N be the dimensionality of the domain. Fix whole numbers
n1, n2, n3. Then our selection procedure is given by algorithm 2, henceforth called gasp. For
each i = 1, . . . , n1, gasp forms an estimate of the additional volume that would be classified
during the current iteration if f(xi) were evaluated.

7.3 Experiments with low-dimensional data
To validate the proposed selection procedure, gasp, we introduce several baseline procedures
and compare them to gasp. The procedure random picks a point uniformly from the domain
at each iteration, without considering what has already been classified or what values the
simulation function has returned thus far. The procedure minimax picks the point that has
the fewest classified points within an ε radius of it. The procedure omniscient cheats. It is
identical to gasp, except that in step 2, rather than drawing points from N (f̂(xi), σ̂(xi)), it
draws the exact value of the simulation function at the point in question.

We test these selection procedures on three functions: flat, slab and saddle. flat is
f ∶ [0,1]2 → R satisfying f(x) = 0.1. slab and saddle are shown in figures 7.1 and 7.2,
respectively. We aim to test how rapidly each selection procedure classified the domain.
Because our selection procedures are stochastic, and because our method for determining

CHAPTER 7. CONFIDENT CONTOURING 82

how well each procedure performed is also stochastic, we base our conclusions on at least 10
runs of each combination of selection procedure and test function.

Figure 7.1: Wire frame plot of f ∶ [0,1]2 →R s.t f(x) = x1+x2
10

Figure 7.2: Wire frame plot of f ∶ [0,1]2 →R s.t f(x) = (x1 − 0.5)2 − (x2 − 0.5)2

A box plot (figure 7.3) shows that when contouring flat, the strategies minimax, gasp
and omniscient each classify virtually all of the domain after 75 iterations. random is
significantly slower. The true optimal strategy would require just 25 iterations, since on

CHAPTER 7. CONFIDENT CONTOURING 83

flat, choosing points in accordance with an appropriately spaced grid will classify 4% of
the domain per iteration; upon determining that f(x) evaluates to 0.1, we can classify the
sup-norm ball B(x,0.1), and the volume of this ball is 0.04. After 25 iterations, both gasp
and omniscient classify roughly 85% of the domain.

Figure 7.3: The proportion of the domain classified when various strategies are employed to
select points while contouring the flat function f(x) = 0.1

A box plot (figure 7.4) shows that when contouring saddle, minimax outperforms random
at all iterations, while gasp and omniscient both outperform minimax at all iterations.
omniscient outperforms gasp during the first 50 iterations, but after that the best method
is less clear. After 50 iterations, gasp makes estimates that are nearly perfect.

Figure 7.5 shows which points omniscient selects at various iterations while contour-
ing the saddle. During early iterations, points mapping to values far from the threshold
are preferentially selected, since initially such selections classify the greatest volume of the
domain. However, after 10 iterations, points with f(x) closer to the threshold start to be
preferred, since the rest of the domain has already been classified. This progression is clearer
in figure 7.6, which displays the points selected by omniscient while contouring slab.

CHAPTER 7. CONFIDENT CONTOURING 84

Figure 7.4: The proportion of the domain classified when various strategies are employed to
select points while contouring the saddle function f(x) = (x1 − 0.5)2 − (x2 − 0.5)2

7.4 Experiments with high-dimensional data
With all routines performing well in low-dimensional space, we turn to testing them in high-
dimensional spaces. Our first high-dimensional test function is f ∶ [0,1]25 → R satisfying
f(x) = 0.57. It is henceforth referred to as flat25. Picking a high-dimensional constant
test function is challenging, because we need a height such that the strategies would finish
classifying the domain within a tractable number of iterations, but without finishing on
the first iteration. Figure 7.7 shows that flat25 strikes such a balance, and that as in
low-dimensional space, gasp and omniscient perform the best. However, the difficulty of
selecting 0.57 was concerning; a slightly lower value lets even random finish in 1 iteration,
while a slightly higher value prevents even omniscient from making measurable progress.
Any real application seemed unlikely to strike such a delicate balance.

Upon validating our algorithm and implementation on a variety of closed form functions,
we tested it on a function that more closely resembled the actual simulation function. We

CHAPTER 7. CONFIDENT CONTOURING 85

created such a test function by fitting a Gaussian process model to the LLNL dataset, and
using the resulting model as a map from any point in the parameter space. Because we were
taking 0 to be the level set’s threshold, we figured that shifting the test function to have
mean 0 would make for a substantive test scenario. The test function would also need to be
scaled so it would have Lipschitz constant 1. It would have been convenient if an expert with
domain knowledge could have given an upper bound on the simulation function’s Lipschitz
constant. Better yet, such an expert would provide separate Lipschitz constants for each of
the 21 parameters. However, we was not able to obtain any such constants, so we estimated
the Lipschitz constant from the dataset itself, by comparing every pair of runs. Under sup-
norm, the dataset never exhibited a slope greater than 35. Under L1-norm, the dataset
never exhibited a slope greater than 15. Note that the L1-norm is always greater than the
sup-norm, so the slope under it is always less. However, the maximum distances between
two points under sup-norm and L1-norm are 1 and 21, respectively. It is also important to
note that our estimates of Lipschitz constants are lower bounds; we only compared some
subset of the pairs of points in the true parameter space (i.e., the points for which we had
data). The true Lipschitz constant could only be higher, which could only make it more
difficult to identify level sets.

We then tested our algorithm on this test function, scaled by optimistic estimates of the
Lipschitz constant. After any feasible number of function evaluations, our estimate of the
proportion of the domain classified remained at 0. As the dimension N increases, the volume
of cubes with a constant radius decreases geometrically. For example, in 21 dimensions, the
cube with radius 0.8 occupies less than 1% of the volume of the unit cube, while the cube
with radius 0.5 occupies less than 0.00005% of the volume of the unit cube. Had we fallen
victim to the curse of dimensionality?

7.5 Conclusions
With additional conditions on f , we might be able to classify the entire domain of f based on
only a modest number of observations of f . For example, if f were known to be linear with
respect to some polynomial basis having only low-order interaction terms, with observations
corrupted by additive Gaussian noise, then standard design of experiments methodolgy ap-
plies. Fractional factorial design would detect interactions, and extraneous interaction terms
could be removed from the model. Once the model had been pruned sufficiently, we might
iteratively select points (or batches of points) from the parameter space that lead to the
D-optimal or G-optimal design. After exausting our budget of simulations, we could com-
pute the variance of the fitted model at any point in the parameter space by analyzing the
residuals. There is some reason to think that f could approximately have a polynomial
basis: a polynomial can approximate any function that has a Taylor expansion arbitrarily
well. But we do not know that a Taylor approximation composed of only low-order terms
would suffice.

Another direction for future research would be a change the problem: rather than identify

CHAPTER 7. CONFIDENT CONTOURING 86

level sets of f , directly solve the problem finding level sets was thought relevant to answer-
ing. Ultimately climate modelers concerned about global warming want to know how much
Earth’s temperature will increase. Moreover, the ranges of parameter values deemed reason-
able was itself determined by running the models, and comparing the output to historical
data. Perhaps we could bound the simulation function’s output by a function of models’
differences on estimates of historical data, and avoid finding level sets entirely.

Rather pursuing either possible remedy, the following chapter developes negative results
about learning black-box functions in high-dimensional spaces from any tractable number of
function evaluations.

CHAPTER 7. CONFIDENT CONTOURING 87

Figure 7.5: The points omniscient selects at various iterations while contouring the saddle
function during 10 replications

CHAPTER 7. CONFIDENT CONTOURING 88

Figure 7.6: The points omniscient selects at various iterations while contouring the slab
function during 10 replications

CHAPTER 7. CONFIDENT CONTOURING 89

Figure 7.7: The proportion of the domain classified when various strategies are employed to
select points while contouring the 25-dimensional flat function f(x) = 0.57

90

Chapter 8

Mini-Minimax Uncertainty
Quantification for Emulators

This chapter studies the accuracy of emulators, also known as surrogate functions and meta-
models. Emulators are important tools for approximating functions that have been observed
only partially. Kriging, Multivariate Adaptive Regression Splines (MARS), Projection Pur-
suit Regression, Polynomial Chaos Expansions (PC), Gaussian Process models (GP), and
other Bayesian modeling techniques are common methods for constructing emulators [7, 8, 9].
We find error bounds for emulators in general—including the “best possible” method—rather
than focusing on any particular emulation method.

Emulators are frequently used to approximate expensive computer models, which are
often deterministic functions.1 Resources limit the number of times the computer model
can be run, though typically an intractable number of inputs are possible—for instance if
any input parameter is a floating point number. By fitting an emulator to the output of
a tractable number of runs for different inputs, one can approximate the computer model
inexpensively; the issue is the accuracy of that approximation.

Computer models known as HEB [104] may be particularly difficult to emulate: They
depend on H igh-dimensional inputs; they are Expensive to run; and they are effectively
B lack boxes that are not amenable to closed-form, analytic study. Because such models
have high-dimensional inputs, it takes prohibitively many runs to explore their domains: to
attain a given sample density, the number grows exponentially in the dimension. Because
the models are expensive, performing many runs is impractical or impossible. And because
the models are black boxes, there are few (if any) constraints to ensure that the error in

1They might not be entirely deterministic; for instance, they could involve Monte Carlo simulations.
Moreover, in distributed parallel computations, numerical results can depend on the order in which subprob-
lems happen to complete. These cases can be thought of as observing the function with noise. We do not
address noise here; however, uncertainty in the observations makes accurate approximation more difficult.
Because we focus on lower bounds on the difficulty of approximating the function accurately, our results
generally remain lower bounds when the observations are not only incomplete, but also noisy. To extend our
methods to include noise would involve finding a lower confidence bound on the regularity of the function.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 91

extrapolating from inputs actually tried to inputs not sampled is small.
HEB problems arise often in practice, for instance:

• Climate models: [105] (21–28-dimensional domains; 1154 simulations; Kriging and
MARS)

• Automobile crashes: [106] (15-dimensional domain; 55 simulations; polynomial re-
sponse surfaces and artificial neural networks).

• Chemical reactions: [107] (30–50-dimensional domain; boosted surrogate models) and
[108] (46-dimensional domain; seconds per simulation).

• Aircraft design: [109] (25-dimensional domain; 500 simulations; response surfaces and
Kriging), [110] (22-dimensional domain; minutes per simulation; response surfaces and
Kriging), and [111] (31-dimensional domain; 20 minutes to several days per simulation;
Kriging).

• Electric circuits: [112] (60-dimensional domain; 216 simulations; Kriging).

How accurately can a function f be emulated from a given set of data? How many evaluations
of f are required to guarantee that f can be emulated to a given level of accuracy?

Since f is a “black box,” we do not know how rough it might be: extrapolating beyond the
data could entail arbitrarily large errors. We assume that f is regular and find the resulting
uncertainty in emulating f . If the regularity assumption fails, the uncertainty would be
larger. We measure the regularity of f by its absolute condition number or Lipschitz constant
K. Similar results could be derived for other measures of regularity, but Lipschitz bounds
are particularly amenable to analysis.

The observations impose a lower bound K̂ on K. Suppose, optimistically, that the true
Lipschitz constant of f is equal to this lower bound. Then f might be any member of the
set FK̂ of functions that agree with the observations and have Lipschitz constant no greater
than K̂. If an emulator is guaranteed to do well no matter which member of FK̂ f happens
to be, then the uncertainty of that emulator is low. On the other hand, if there are elements
of FK̂ that an emulator cannot approximate well, the uncertainty is large.

Consider all emulators that can be computed from the observations alone, without addi-
tional knowledge of f ; this collection includes emulators constructed using GP, PC, MARS,
and all the other methods mentioned above. Viewed as a function of w in the domain of f ,
the minimax error among such emulation methods over the set FK̂ of functions that agree
with the observations and have Lipschitz constant no greater than K̂ is the mini-minimax
uncertainty EK̂(w) in the title of this chapter.

The first “mini” refers to the regularity condition: sinceK is not smaller than K̂, EK̂(w) is
a lower bound on the minimax uncertainty for functions that are as regular as f . The second
“mini” refers to emulators: this is the uncertainty for the best emulator—including all the
standard ones. The “max” is over functions that agree with f at the observations and satisfy

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 92

the optimistic regularity condition. That is, EK̂(w) is the smallest that the uncertainty at
w could be, for the best emulator, over the set of functions that have the highest degree
of regularity consistent with the observations and that agree with the observations. The
maximum of EK̂(w) over w in the domain of f is an attainable lower bound on the maximum
uncertainty of any emulator f̂ of f .

IfK were known, this would be a standard problem in information-based complexity [113,
114, 115]. We derive bounds on the uncertainty using the lower bound K̂ computed from
the observed variation of f . Section 8.2 derives a lower bound on the number of additional
observations that might be necessary to learn f . Section 8.3 derives two lower bounds on
the maximum uncertainty for approximating f from a fixed set of observations: a purely
empirical bound and a bound expressed as a fraction of the unknown Lipschitz constant.
The latter yields conditions under which emulating f by a constant function, equal to the
value of f at the centroid of its domain, has smaller maximum uncertainty than any emulator
based on the n actual observations.

Section 8.4 applies these bounds to two closed-form functions (a high-dimensional cone
and the borehole function [116]) and to a black-box function (the Community Atmosphere
Model [105]). Section 8.5 extends the results for the maximum error to quantiles of the error
and the mean of the error over the domain of f . Section 8.6 gives our conclusions.

8.1 Notation and problem formulation
The function f is a fixed unknown real-valued function on [0,1]p, the p-dimensional unit
cube. The space of real-valued continuous functions on [0,1]p is C[0,1]p. The Roman letters
i, j, p, q, and Mε denote integers. Lowercase Greek letters denote real scalars, with the
exception of µ, which denotes Lebesgue measure. Uppercase Roman letters such as X and
D denote subsets of [0,1]p; X is a fixed finite subset of [0,1]p. Lowercase Roman letters from
the end of the alphabet, such as v, w, x, y, and z, denote points in [0,1]p. The lowercase
Roman letters e, f , g, and h denote real-valued functions on (subsets of) [0,1]p. The domain
of a function g is dom(g). The restriction of a function g to D ⊂ dom(g) is denoted g∣D.
The observations from which f is to be emulated are f ∣X ; that is, we observe f on the set
X. An emulator f̂ is a real-valued function on [0,1]p. Let ∥h∥∞ ≡ supw∈dom(h) ∣h(w)∣, the
infinity-norm of h. This chapter studies how large ∣f̂(w) − f(w)∣ and ∥f̂ − f∥∞ could be, for
the best f̂ chosen on the basis of the data—without other information about f .

Let d be a metric on dom(g). The (best) Lipschitz constant for g is

Lip(g) ≡ sup{g(v) − g(w)
d(v,w) ∶ v,w ∈ dom(g) and v ≠ w} . (8.1)

If f ∉ C[0,1]p, then Lip(f) ≡∞. Define

Fκ(g) ≡ {(h ∶ [0,1]p →R) ∶ Lip(h) ≤ κ and h∣dom(g) = g}.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 93

symbol meaning
f unknown function on [0,1]p to be emulated
f̂ an emulator
X finite subset of [0,1]p where f is observed
g∣Y the restriction of the function g to the set Y ⊂ [0,1]p
f ∣X the data: the restriction of f to X

K Lipschitz constant of the function f
K̂ smallest Lipschitz constant of any function that interpolates the data
Fκ,Y all functions that interpolate f ∣Y and have Lipschitz constant no larger

than κ.
Fκ Fκ,X
e+κ(w) maximum value at w among functions in Fκ
e−κ(w) minimum value at w among functions in Fκ
f̂κ(w) mean of e+κ(w) and e−κ(w); the minimax emulator at the point w over

functions in Fκ
Eκ,Y (w; f̂) ... maximum uncertainty of f̂ at w: uncertainty of f̂ at the point w over

functions in Fκ,Y
Eκ,Y (w) minimax uncertainty at w: uncertainty of the best possible emulator at

the point w over functions in Fκ,Y
Eκ,Y (f̂)maximum uncertainty of f̂ : maximum (over w ∈ [0,1]p) uncertainty

of f̂ over functions in Fκ,Y
Eκ,Y minimax uncertainty : maximum (over w ∈ [0,1]p) uncertainty of

the best possible emulator over functions in Fκ,Y
Eκ(⋯) when Y =X, we generally suppress X from the subscript, viz., Eκ(w; f̂),

Eκ(w), Eκ(f̂), and Eκ
Mεminimum computational burden: a lower bound on the number of

additional observations needed to guarantee that the minimax
uncertainty is no larger than ε

Table 8.1: Summary of key notation

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 94

Then F∞(f ∣X) is the space of (possibly discontinuous) functions that fit the n data. Some
of our results involve values of f at points other than the points X at which f was observed;
Y denotes a generic set of points in the domain of f . To simplify notation, we set

Fκ,Y ≡ Fκ(f ∣Y).
When Y =X, we generally write Fκ in place of Fκ,X .

Definition. The uncertainty at w of f̂ ∶ [0,1]p →R over the set of functions Fκ,Y is

Eκ,Y (w; f̂) ≡ sup
g∈Fκ,Y ∣f̂(w) − g(w)∣

The minimax uncertainty at w over the set of functions Fκ,Y is

Eκ,Y (w) ≡ inf
f̂ ∶[0,1]p→R

Eκ,Y (w; f̂).

The maximum uncertainty of f̂ ∶ [0,1]p →R over the set of functions Fκ,Y is

Eκ,Y (f̂) ≡ sup
w∈[0,1]p Eκ,Y (w; f̂) = sup

g∈Fκ,Y ∥f̂ − g∥∞.
The minimax maximum uncertainty over the set of functions Fκ,Y is

Eκ,Y ≡ inf
f̂ ∶[0,1]p→R

Eκ,Y (f̂).

The emulator f̂ approximates f within E∞(w; f̂) at the point w if f is in F∞, the set of
functions that agree with the observations. However, E∞(w; f̂) is infinite for every f̂ unless
w ∈X, even if f is guaranteed to be continuous.2 To guarantee that the uncertainty is finite
requires stronger regularity than mere continuity.

Let K ≡ Lip(f) and K̂ ≡ Lip(f ∣X). Because X ⊂ [0,1]p, K̂ ≤ K, as illustrated in
figure 8.1. (There and in subsequent figures, p = 1 and the bold black dots represent f ∣X ,
the observations of f at x ∈X.)

Define
e+κ(w) ≡ min

x∈X [f(x) + κd(x,w)]
and

e−κ(w) ≡ max
x∈X [f(x) − κd(x,w)] .

The mean of the two is

f̂κ(w) ≡ f̂κ(w;X,κ) ≡ e
−
κ(w) + e+κ(w)

2
.

Figures 8.2 and 8.3 illustrate these definitions. The proof of Proposition 8.1 shows that the
function f̂κ(w) is the minimax emulator for pointwise error over the class Fκ of functions that
agree with the data and have Lipschitz constant no greater than κ. The minimax emulator
f̂κ(w) interpolates (rather than smooths) the data.

2The set X is not dense in [0,1]p, so for any c > 0, there exists some function g ∈ F∞(f ∣X) satisfying
∥f − g∥∞ > c.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 95

f

Figure 8.1: Illustration of the difference between the true Lipschitz constant K and the
empirical lower bound K̂ for K. The dotted line is tangent to f where f attains its Lipschitz
constant: it has slope K. The dashed line is the steepest line that intersects any pair of
observations: it has slope K̂ ≤K.

e+κ
e−κ
f

e+κ
e−κ
f

Figure 8.2: Illustration of the upper and lower envelope functions e−κ and e+κ when κ = K
and when κ < K, and the derived estimate of In both panels, the optimal interpolant f̂κ is
constant. In the left panel κ = K; in the right, κ < K. If κ ≥ K then e−κ ≤ f ≤ e+κ, and,
equivalently, f ∈ Fκ.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 96

e+κ
e−κ
f̂κ

e+κ
e−κ
f̂κ

e+κ
e−κ
f̂κ

Figure 8.3: Illustration of how the pointwise uncertainty depends on the observed variation
of f : the uncertainty is smaller where the data require f to vary rapidly. The vertical distance
between the blue and red curves is twice the uncertainty at the corresponding abscissa. The
black error bars are at some points where the uncertainty is largest. The succession of panels
shows that as the slope between observations approaches κ, Eκ(w) approaches 0 for points
w between observations, and the maximum uncertainty decreases.

8.2 Bounds on the number of observations needed to
approximate f well

In this section we construct a function f̄ that agrees with the data f ∣X , has Lipschitz constant
K̂ (the smallest Lipschitz constant consistent with the data), and yet would require a large
number Mε of additional observations f ∣Y to estimate f within ε on [0,1]p.3 The function
f̄ is not intended to be an emulator—it is a technical device. Since f could in fact be f̄ ,
this gives a lower bound on the number of additional observations that might be required to
estimate f well, even if f is no rougher than the original data f ∣X reveal it to be.

Let B(x, δ) denote the open ball in Rp centered at x with radius δ. Since f has Lipschitz
constant K, f(y) is guaranteed to be within ε of f(x) if y ∈ B(x, ε/K). But depending on f
and X, it can happen that f̂K̂ is guaranteed to be within ±ε of every g ∈ FK for parts of the
domain not contained in ∪x∈XB(x, ε/K). To see this, consider p = 1, f(x) = x, and let X be
the two-element set {0,1}. Then K = K̂ = 1. In this case, the observations f ∣X determine
f exactly: the only function in FK is f . In this example, for a function g to agree with the
observations requires it to attain the Lipschitz constant K everywhere. A function cannot
agree with the observations and “run away” from f very far.

More generally, if f varies on X, then for a function g to agree with f at the observations,
g must vary too. That required variation “spends” some of g’s Lipschitz constant, preventing
g from running as far away from f as it could if fX were constant. We now quantify this

3We do not discuss the choice of ε > 0 in detail: scientific context should inform the choice. In examples
below, we set ε to be an absolute tolerance, a fraction of K̂, and a fraction of K. One might also consider
relating ε to the “typical value” of f (e.g., the mean of f or of f ∣X).

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 97

intuition to construct a function f̄ that requires many additional observations to estimate
well. The function f̄ is constant “as much as possible” subject to the constraint that it
interpolates the data and has Lipschitz constant K̂. Since estimating f̄ where it is constant
is hard (as illustrated in figure 8.3), the size of the set where f̄ could be constant gives a
lower bound on the number of additional observations that might be required.

Define γ̄ ≡ arg minγ∈R∑x∈X ∣f(x) − γ∣p. Computing γ̄ is straightforward because the
objective function is univariate and convex.4 Let X+ ≡ {x ∈ X ∶ f(x) ≥ γ̄} and let
X− ≡ {x ∈X ∶ f(x) < γ̄}. Let

Q+ ≡ ⋃
x∈X+

{B (x, f(x) − γ̄
K̂

)⋂ [0,1]p}

and
Q− ≡ ⋃

x∈X−
{B (x, γ̄ − f(x)

K̂
)⋂ [0,1]p} .

Then Q+ ∩Q− = ∅.5
Define

f̄ ∶ [0,1]p → R

w ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−̂
K
(w), w ∈ Q+

e+̂
K
(w), w ∈ Q−

γ̄, otherwise.

Figure 8.4 illustrates this definition. If we know f ∣X , we know f̄ . By construction, f̄ ∈ FK̂ ⊂
FK .

Let Q̄ ≡ [0,1]p ∖ (Q+ ∪Q−). Let µ be Lebesgue measure. By the union bound, because
µ([0,1]p) = 1,

µ(Q̄) ≥ 1 − ∑
x∈X µ (B (x, ∣f(x) − γ̄∣/K̂)) .

Let C2 ≡ πp/2
Γ(p/2+1) and C∞ ≡ 2p, where Γ is the gamma function. Then, for q ∈ {2,∞},

µ(Q̄) ≥ 1 −Cq ∑
x∈X (∣f(x) − γ̄∣/K̂)p .

4Alternatively, we could set γ̄ ≡ 1
#X ∑x∈X f(x), where #X is the size of X. The resulting lower bound

may not be as tight.
5Fix x+ ∈ X+ and x− ∈ X−. Then ∣f(x+) − f(x−)∣ /d(x+, x−) ≤ K̂. Equivalently, d(x+, x−) ≥

∣f(x+) − f(x−)∣ /K̂. Let B+ = B (x+, [f(x) − γ̄] K̂) and B− = B (x−, [γ̄ − f(x)] /K̂). Let a be the sum of
the radii of B+ and B−. Then a = (f(x+) − γ̄) /K̂ + (γ̄ − f(x−)) /K̂ = (f(x+) − f(x−)) /K̂, and a ≤ d(x+, x−).
Therefore, B+ ∩B− = ∅. Because our selection of x+ ∈X+ and x− ∈X− was arbitrary, Q+ ∩Q− = ∅.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 98

f̄

γ̄

e+̂
K

e−̂
K

γ̄

Figure 8.4: A function that agrees with the data, has Lipschitz constant K̂, and is hard to
estimate because it is often constant. The function f̄ (shown in the left panel) is comprised of
segments of e+̂

K
, e−̂

K
and the constant function γ̄ (all shown in the right panel). It is constant

over roughly half of the domain. No function between e−̂
K
and e+̂

K
(inclusive) is constant over

a larger fraction of the domain.

If there is some x ∈ X for which for all g ∈ FK̂,{x}, ∣g(y) − f(x)∣ < ε for all y ∈ A ⊂ Q̄, then
µ(A) ≤µ(B(0, ε/K̂)). Hence, because f̄ ∈ FK ,

Mε ≥ ⌈ µ(Q̄)
µ(B(0, ε/K̂))

⌉

≥ ⌈ε−p [K̂p

Cq
− ∑
x∈X ∣f(x) − γ̄∣p]⌉ . (8.2)

Section 8.4 shows that this lower bound, the minimum computational burden, can be ex-
tremely large for even modest problem dimensions p.

8.3 Bounds on the maximum uncertainty for a fixed
experimental design

The previous section gave lower bounds on the number of additional observations of f re-
quired to attain a desired maximum uncertainty ε. This section gives two lower bounds on
the maximum uncertainty EK(f̂) for a fixed experimental design X: an absolute bound and a
bound expressed as a fraction of K. The bound as a fraction of K can yield a strong negative
result: when a statistic—calculable from the observations—exceeds a calculable threshold,
the maximum uncertainty is not less than the maximum uncertainty of the best emulator
based on a single observation at the centroid of the domain. If the goal is to minimize the
maximum uncertainty, we could have just approximated f as constant and saved #X − 1
observations.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 99

8.3.1 Lower bounds

Consider the set Fκ of functions g that agree with the observations f ∣X and have Lipschitz
constant no larger than κ. Consider all possible emulators f̂ . Proposition 8.1 states that the
smallest (across emulators f̂) maximum (across functions g) error at the point w ∈ [0,1]p is
[e+κ(w) − e−κ(w)]/2, and the emulator f̂κ(w) attains this bound at every w.

Proposition 8.1. If κ ≥ K̂, then

Eκ(w) = Eκ(w; f̂κ) =
e+κ(w) − e−κ(w)

2
.

Proof.

Step 1: e+κ and e−κ are Lipschitz continuous with constant κ.
For v,w ∈ [0,1]p, ∃x, y ∈X satisfying

e+κ(v) = f(x) + κd(x, v) and e+κ(w) = f(y) + κd(y,w).

Suppose without loss of generality that e+κ(v) ≥ e+κ(w). By construction, e+κ(v) ≤ f(y) +
κd(y, v). Hence

0 ≤ e+κ(v) − e+κ(w) ≤ f(y) + κd(y, v) − e+κ(w)
= f(y) + κd(y, v) − f(y) − κd(y,w)
≤ κ(d(y, v) − d(y,w))
≤ κd(v, y),

by the triangle inequality. Hence e+κ has Lipschitz constant κ. An analogous argument shows
that e−κ also has Lipschitz constant κ.

Step 2: e+κ and e−κ agree with f on X. (Hence, f̂κ = (e+κ + e−κ)/2 agrees with f on X.)
We have

κ ≥ K̂ ≡ max
x,y∈X ∶x≠y

∣f(x) − f(y)∣
d(x, y) ,

and hence ∣f(x) − f(y)∣ ≤ κd(x, y) for all x, y, ∈X. Thus

min
x∈X [f(x) + κd(x, y)] = min{f(y), min

x∈X,x≠y[f(x) + κd(x, y)]} = f(y).

Similarly, maxx∈X[f(x) − κd(x, y)] = f(y) for y ∈ X. Hence, e+κ(y) = e−κ(y) = f(y) for y ∈ X.
Since, as shown in step 1, e+κ and e−κ are Lipschitz with constant κ, e+κ and e−κ ∈ Fκ.
Step 3: e−κ is the pointwise infimum of Fκ and e+κ is the pointwise supremum of Fκ.
Suppose to the contrary that there exists w ∈ [0,1]p, x ∈X, and g ∈ Fκ for which

g(w) > f(x) + κd(x,w).

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 100

Recall that g ∈ Fκ implies that g(x) = f(x) ∀x ∈X. Hence

g(w) − g(x) > f(x) + κd(x,w) − f(x) = κd(x,w).

That is, g has a Lipschitz constant greater than κ, a contradiction. Hence, e+κ(w) = sup{g(w) ∶
g ∈ Fκ} for all w ∈ [0,1]p. The same argument, mutatis mutandi, shows that

e−κ(w) = inf{g(w) ∶ g ∈ Fκ} for all w ∈ [0,1]p.

Step 4: The maximum uncertainty of f̂κ at w, Eκ(w; f̂κ), equals [e+κ(w) − e−κ(w)]/2.

Eκ(w; f̂κ) ≡ sup
g∈Fκ(w) ∣f̂κ(w) − g(w)∣

= max{ sup
g∈Fκ(w) g(w) − f̂κ(w), f̂κ(w) − inf

g∈Fκ(w) g(w)}

= max{e+κ(w) − f̂κ(w), f̂κ(w) − e−κ(w)} (8.3)

= max{e+κ(w) − e
+
κ(w) + e−κ(w)

2
,
e+κ(w) + e−κ(w)

2
− e−κ(w)}

= e
+
κ(w) − e−κ(w)

2
.

Equality (8.3) follows from step 3.

Step 5: The minimax uncertainty at w, Eκ(w), equals [e+κ(w) − e−κ(w)]/2.
Suppose f̂(w) > f̂κ(w). Then

∣f̂(w) − e−κ(w)∣ > e
+
κ(w) − e−κ(w)

2
= Eκ(w; f̂κ).

Suppose f̂(w) < f̂κ(w). Then

∣f̂(w) − e+κ(w)∣ > e
+
κ(w) − e−κ(w)

2
= Eκ(w; f̂κ).

Hence, f̂κ(w) is minimax, and Eκ(w) = Eκ(w, f̂κ) = [e+κ(w) − e−κ(w)]/2.

Proposition 8.1 gives us Corollary 8.2, our next result, and contributes to the proof of
Theorem 8.5.

Corollary 8.2. For any emulator f̂ ,

EK(w, f̂) ≥ EK(w) ≥ EK̂(w; f̂K̂). (8.4)

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 101

Corollary 8.2 follows from proposition 8.1 and the fact that, since K̂ ≤K,

FK̂ ⊂ FK .

Corollary 8.2 is one of our principal results: EK̂ , a statistic calculable solely from the obser-
vations f ∣X , is a lower bound on the maximum uncertainty for any emulator f̂ based on the
observations f ∣X .

Theorem 8.5 gives a stronger lower bound in terms of the unknown value of K. Two
lemmas contribute to the proof of Theorem 8.5, both based on the several definitions. For
real χ and ρ, define the interval

I(χ, ρ) ≡
⎧⎪⎪⎨⎪⎪⎩

[χ − ρ,χ + ρ] , ρ ≥ 0

∅, otherwise.

If I is an interval, µ(I) denotes its length; for instance, µ(I(χ, ρ)) = max(0,2ρ).

Lemma 8.3. Fix α ∈ [0,1], ρ1, . . . , ρn ∈ [0,∞) and χ1, . . . , χn ∈ R. Let I1 ≡ ⋂ni=1 I(χi, ρi) and
Iα ≡ ⋂ni=1 I(χi, αρi). Then αµ (I1) ≥ µ (Iα).

Proof. Because the intersection of intervals is itself an interval, there exist χ0 and ρ0 satisfying

Iα = I(χ0, ρ0).

Fix i ∈ 1, . . . , n. Then
I(χ0, ρ0) ⊂ I(χi, αρi).

It follows that
χ0 − ρ0 ≥ χi − αρi.

Then
α(ρi −

ρ0

α
) ≥ χi − χ0.

Because α ≤ 1 and ρi ≥ 0,
ρi −

ρ0

α
≥ χi − χ0.

Finally,
χ0 −

ρ0

α
≥ χi − ρi.

By symmetric reasoning we also have

χ0 +
ρ0

α
≤ χi + ρi.

Therefore,

I (χ0,
ρ0

α
) ⊂ I(χi, ρi).

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 102

Because i was arbitrary,

I (χ0,
ρ0

α
) ⊂ I1.

Hence,

µ (I1) ≥ µ(I (χ0,
ρ0

α
)) = 2ρ0

α
= µ (Iα)

α
.

Lemma 8.3 is used in the proof of Theorem 8.5, below.

Lemma 8.4. For κ ≥ 0,

Eκ(w) = 1

2
µ(⋂

x∈X I (f(x), κd(x,w))) .

Proof.

Eκ(w) = 1

2
[e+κ(w) − e−κ(w)]

= 1

2
{min
x∈X {f(x) + κd(x,w)} −max

x∈X {f(x) − κd(x,w)}}

= 1

2
µ([max

x∈X {f(x) − κd(x,w)} ,min
x∈X {f(x) + κd(x,w)}])

= 1

2
µ(⋂

x∈X I (f(x), κd(x,w))) .

The first equality follows from proposition 8.1.

Theorem 8.5. For any λ ∈R+, if EK̂ ≥ λK̂, then EK(f̂) ≥ λK.

Proof. Let w⋆ ≡ arg maxw EK̂(w). Then

EK(f̂) ≥ EK(f̂K)
= EK(w⋆)
≥ K

K̂
⋅ EK̂(w⋆) (8.5)

≥ K

K̂
⋅ λK̂ (8.6)

= λK.

Inequality (8.6) follows from (8.5) by hypothesis. Inequality (8.5) is a consequence of
lemma 8.3: Let α = K̂/K ≤ 1. For, i = 1, . . . ,#X, let ρi = f(xi) and χi = Kd(x,w).
Then, by lemma 8.4, µ(I1)/2 = EK and µ(Iα)/2 = EK̂ .

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 103

8.3.2 Maximum uncertainty for an emulator based on one
observation

In this section we work in `∞: d(v,w) = ∥v −w∥∞. This simplifies the calculations and gives
a particularly strong result.

Let z ≡ (1/2, . . . ,1/2), the centroid of [0,1]p, and let Z ≡ {z}. Let ĝ ∈ F∞,Z be the
constant function ĝ(w) ≡ f(z), ∀w ∈ [0,1]p. The `∞ distance from z to any point on the
boundary of [0,1]p is 1/2, so

EK,Z(ĝ) =
K

2
.

That is, the maximum uncertainty of the emulator that is constant throughout [0,1]p and
equal to the value of f at the centroid of the cube is K/2. Let W ⊂ [0,1]p be finite and
c ∈ R. Suppose f is constant on the set W and that W contains fewer than 2p points. Let
ĥ ∈ F∞,W . By examining the corners of the domain, it follows that

EK,W (ĥ) ≥ K
2
.

Making 2p observations of f is intractable for the Community Atmosphere Model and for
many other applications. If f is nearly constant, the situation may still be hopeless.

How do we know whether f ∣X is too close to constant to benefit from observing it more
than once, but fewer than 2p times?

Corollary 8.6. If EK̂ ≥ K̂/2, then

EK(f̂) ≥ K
2
≥ EK,Z(ĝ).

That is, if EK̂ ≥ K̂/2, no emulator based on observing f ∣X has smaller maximum uncer-
tainty than the constant emulator based on a single observation—f is too nearly constant.
Corollary 8.6 follows directly from theorem 8.5, taking λ = K̂/2.

8.4 Applications
This section presents three examples of increasing complexity: two in which f is known
analytically, and one in which f is HEB arising from a numerical model of climate. In this
section the distance metric is d(v,w) = ∥v −w∥∞, except where noted.

8.4.1 High-dimensional `∞ cone

Consider a emulating a function defined on the 21-dimensional hypercube [0,1]21; z ≡
(0.5, . . . ,0.5) denotes the center of that hypercube. Suppose

f(x) ≡ ∥x − z∥∞.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 104

We observe f at z and, for i = 1, . . .21, at both points satisfying xi ∈ {0,1} and xj = 0.5 for
j ≠ i. (This is a “one-at-a-time” sampling design, where one component at a time is shifted
from a typical value to a more extreme value.) These 43 points constitute X. Then

K̂ =K = 1.

Because every point w ∈ [0,1]21 is within 0.5 of x ∈X satisfying f(x) = 0.5,

e−̂
K
≥ 0.

Because every point w ∈ [0,1]21 is within 0.5 of z, and f(z) = 0,

e+̂
K
≤ 0.5.

Hence, by corollary 8.2,
EK̂ ≤ 0.25.

Had we only observed f at z but fixed K̂ = 1 (or observed f at another point in addition to
z and computed K̂ from those two points),

EK̂ = 0.5.

In this example, despite the high dimension of dom(f), emulating f using a modest number
of observations (43) has smaller maximum uncertainty than emulating f using just a single
observation of f at z: a small number of observations may constrain a high-dimensional
function globally. High-dimensional problems with small numbers of data do not necessarily
have large uncertainties, as “the curse of dimensionality” would suggest. The dimension
matters, but so does f itself.

To connect our results to a common emulation method, we fit a Gaussian process to
f ∣X by maximum likelihood using the R package mlegp [117]. For 100,000 points selected
uniformly at random from [0,1]p, the mean error is 0.02, 2% of K. The maximum error at
these 100,000 points is 0.23, but the error at (0.6, . . . ,0.6)—which is not in the sample—is
0.38.6 Because the error of f̂K̂ is no greater than EK̂ = 0.25, for this f , the minimax emulator
f̂K̂ outperforms this Gaussian process emulator both in minimax uncertainty and in actual
maximum error.

8.4.2 Borehole function

The commonly used test function

f0(Hu,H`, Tu, T`, r, rw, L,Kw) ≡
2πTu (Hu −Hl)

log (r/rw) (1 + 2LTu
log(r/rw)r2wKw + Tu

T`
)

models water flow through a borehole [116]. Its input variables are described in table 8.2,
which also lists the ranges of those variables. The output is water flow rate in cubic meters

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 105

Table 8.2: Borehole function domain

variable range description
Hu [990,1110] potentiometric head of upper aquifer (m)
H` [700,820] potentiometric head of lower aquifer (m)
Tu [63070,115600] transmissivity of upper aquifer (m2/yr)
T` [63.1,116] transmissivity of lower aquifer (m2/yr)
r [100,50000] radius of influence (m)
rw [0.05,0.15] radius of borehole (m)
L [1120,1680] length of borehole (m)
Kw [9855,12045] hydraulic conductivity of borehole (m/yr)

per year. We rescale f0 so that its inputs range over the 8-dimensional unit hypercube [0,1]8;
the resulting function is denoted f .

Now, by reasoning about the functional form of f , we seek a bound on its Lipschitz
constant K. In `∞, because f is differentiable and dom(f) is convex,

K = sup
w∈dom(f) ∥Df(w)∥∞ = sup

w∈dom(f)
8

∑
i=1

∣ ∂
∂wi

f(w)∣ .

Let
H = 2π(Hu −H`),
R = log(r/rw),
M = 2L/Kw,

t = T −1
` + T −1

u

and
S =M +Rr2

wt.

Now

f0(Hu,H`, Tu, T`, r, rw, L,Kw) =
Hr2

w

S
.

6This point was found by searching the ray c(1, . . . ,1); there might be points with even larger errors.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 106

We bound each partial derivative of f using the ranges of the input variables:

∣ ∂f0

∂H`

∣ = ∣ ∂f0

∂Hu

∣ = 2πr2
w

S
≤ 0.76 Ô⇒ ∣ ∂f

∂H`

∣ = ∣ ∂f
∂Hu

∣ ≤ 91.2

∣ ∂f0

∂Tu
∣ = HRr

4
w

S2T 2
u

≤ 0.01 Ô⇒ ∣ ∂f
∂Tu

∣ ≤ 0.01

∣∂f0

∂Tl
∣ = HRr

4
w

S2T 2
`

≤ 0.13 Ô⇒ ∣ ∂f
∂Tl

∣ ≤ 6.8

∣∂f0

∂r
∣ = Hr

4
wt

S2r
≤ 0.01 Ô⇒ ∣∂f

∂r
∣ ≤ 290.8

∣ ∂f0

∂rw
∣ = Hr

3
wt

S2
+ 2H

S(1/rw +Rrwt/M) ≤ 4050.2 Ô⇒ ∣ ∂f
∂rw

∣ ≤ 405.0

∣∂f0

∂L
∣ = 2Hr2

w

S2Kw

≤ 0.34 Ô⇒ ∣∂f
∂L

∣ ≤ 190.4

∣ ∂f0

∂Kw

∣ = 2LHr2
w

S2K2
w

≤ 0.06 Ô⇒ ∣ ∂f
∂Kw

∣ ≤ 123.7.

Summing these upper bounds for the partial derivatives of f yields

sup
w∈dom(f) ∥Df(w)∥∞ < 1200.

Moreover, for w0 = (1100,700,115547,116,100,0.15,1120,12045),

∥Df(w0)∥∞ = 944.

Hence, for the rescaled borehole function f ,

944 ≤K ≤ 1200.

Of course, if f really were a black box, such reasoning would be impossible. We estimated
K̂ from 1000 sample points selected in two different ways:

1. Select 1000 points by Latin hypercube sampling. This yields K̂ = 367.

2. Select 100 points by Latin hypercube sampling. For each of these points, draw an
additional 9 points a small distance (10−5) from it in each coordinate, in a random
direction. This yields K̂ = 576.

We fix K̂ = 576 for the remainder of this example; note that this is roughly half the true
value of K.

Now let X contain the following 273 points: all 28 = 256 corners of [0,1]8, the center of
the domain (0.5, . . . ,0.5), and, for i = 1, . . . ,8, each of the two points satisfying xi ∈ {0,1}

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 107

and xj = 0.5 for j ≠ i. (The empirical Lipschitz constant of f on this set is less than 576.)
By branch-and-bound we find

E576 < 207

which is less than 576/2. Hence, by corollary 8.2, the best emulator f̂576 based on f ∣X has
lower maximum uncertainty than the best emulator based on f ∣{z} alone.

Holding X fixed, we now lower-bound Mε, the minimum computational burden (Sec-
tion 8.2). Convex programming finds γ̄ = 134.7. The union bound implies that the propor-
tion of the domain where f could be constant is µ (Q̄) ≥ 0.76. Then for ε = 100 (about 20%
of K̂ or 10% of K), M100 ≥ 3598 additional observations might be needed. But for ε = 10,
M10 ≥ 3.59 × 1011 additional observations might be required.

For comparison, we emulate f by a Gaussian process, again estimating the parameters
using the R package mlegp [117] from the same set X of 273 points. For 100,000 points
selected at random uniformly from [0,1]8, the mean error is 37.3, approximately 3% of K.
The maximum error at these points is 207.9, approximately 20% of K.

8.4.3 Climate modeling

The Uncertainty Quantification Initiative at Lawrence Livermore National Laboratory7 pro-
vided results from 1154 climate simulations using the Community Atmosphere Model (CAM)
with p = 21 parameters. Each parameter was scaled so that the interval [0,1] contained all
values considered physically reasonable. The output of interest was a scalar, the simulated
global average upwelling longwave flux (FLUT) averaged over the third through twelfth
years of the simulation (a 10-year average after a 2-year burn-in). Each such average is
deterministic: repeating a run with the same input parameters should produce the same
output. The simulator amounts to a function f that maps [0,1]p → R. Running the simu-
lator was computationally expensive; each run took several days on a supercomputer. The
Lawrence Livermore National Laboratory team used several approaches to choose the points
X ⊂ [0,1]p at which to run simulations, including Latin hypercube, one-at-a-time, and
random-walk multiple-one-at-a-time [105]. The 1154 simulations include all points selected
by any of those approaches.

For these observations, we find γ̄ = 232.77, K̂ = 14.20 for q = 2, and K̂ = 34.68 for q =∞.

8.4.3.1 Computational burden

By (8.2),

Mε ≥ ⌈ε−21 [1.57 × 1024

0.0038
− 6.81 × 1024]⌉ > ε−21 × 1026

7This dataset was provided by the Institutional Science and Technology Office at Lawrence Livermore
National Laboratory under the Uncertainty Quantification Strategic Initiative Laboratory-Directed Research
and Development Project 10-SI-013.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 108

for q = 2. For example, if ε is 1% of K̂, then Mε ≥ 1043. Even if ε is 50% of K̂, Mε > 108. For
q =∞,

Mε ≥ ⌈ε−21 [2.19 × 1032

221
− 6.81 × 1024]⌉ > ε−21 × 1025.

These lower bounds on the minimum computational burden are extreme for a wide range
of values of ε: there are functions that fit the 1154 observations and are as regular as
the observations allow, but that cannot be approximated with useful uncertainty from any
tractable number of observations. The function f̄ , which is simple to construct, attains these
lower bounds on minimum computational burden. Note the contrast with the cone example,
which was also 21-dimensional: the dimension of dom(f) does not by itself determine how
hard it is to emulate f accurately.

8.4.3.2 Uncertainty

Is the maximum uncertainty of the best emulator based on observing f at the 1154 points in
X lower than the maximum uncertainty of the constant emulator based on one observation
of f at the centroid of [0,1]p? We cannot simply compute these two maximum uncertainties,
because K is unknown. But corollary 8.6 applies if we can determine whether EK̂ ≥ K̂/2.
Unfortunately, determining EK̂ is difficult. In `∞, if f ∣X is constant, finding EK̂ amounts to
finding a maximal empty hypercube, a problem recently shown to be NP-hard in p [118].
It is generally no easier if f varies on X. Fortunately, it suffices to bound EK̂ . By working
in `∞, we can bound EK̂ above and below by considering just the corners of [0,1]p; we take
d(v,w) = ∥v −w∥∞ throughout this section.

Proposition 8.7. Let 0 ≡ (0, . . . ,0), 1 ≡ (1, . . . ,1), and d̃(v) ≡ max (d(v,0), d(v,1)). Then

EK̂ ≤ 1

2
{min
x∈X [f(x) + K̂d̃(x)] −max

x∈X [f(x) − K̂d̃(x)]} .

Proof. Fix w ∈ [0,1]p. Let w(i) denote the ith component of w. Then

d(v,w) = max
i∈{1,...,p} ∣v(i) −w(i)∣

≤ max
i∈{1,...,p} max

δ∈{0,1} ∣v(i) − δ∣
= max
i∈{1,...,p} max

y∈{0,1} ∣v(i) − y(i)∣
= max
y∈{0,1} max

i∈{1,...,p} ∣v(i) − y(i)∣
= max
y∈{0,1}d(v, y)

= max(d(v,0), d(v,1)).

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 109

Hence,

EK̂(w) =1

2
µ(⋂

x∈X I (f(x), K̂d(x,w))) (8.7)

≤1

2
µ(⋂

x∈X I (f(x), K̂d̃(x))) (8.8)

=1

2
{min
x∈X [f(x) + K̂d̃(x)] −max

x∈X [f(x) − K̂d̃(x)]}

where (8.7) follows from lemma 8.4. Because the right-hand side of this inequality does not
depend on w, the proposition follows by taking suprema.

Using this proposition, we calculate EK̂ ≤ 20.95 for the CAM dataset. On the other hand,
the maximum over all [0,1]p is at least as large as the maximum over the corners of [0,1]p:

EK̂ ≥ max{EK̂(w) ∶ ∀w ∈ {0,1}p} .

Perhaps surprisingly, this lower bound is essentially sharp for the CAM dataset. The domain
[0,1]p contains 2p corners {ri}2p

i=1. Divide [0,1]p into 2p hypercubes {Ri}2p

i=1 with edge-length
1/2, disjoint interiors, each containing a different corner of [0,1]p (e.g., one such hypercube
is [0,1/2]p). Then the Ri are disjoint `∞-balls of radius 1/4. Because X contains only 1154
points, the vast majority of {Ri}2p

i=1 do not contain any element of X. Because EK̂(w) tends
to increase with distance from points in X, these unoccupied hypercubes are good regions to
look for points with large values of EK̂(w). Within an unoccupied hypercube Ri, no point is
farther in `∞ from any point in X than the corner ri. So, the corners {ri}2p

1 are good places
to observe EK̂(w) to find a tight lower bound on EK̂ .

For the CAM dataset, one corner rj attains EK̂(rj) = 20.95. Since this is also the numerical
upper bound, EK̂ = 20.95.

Because EK̂ ≥ K̂/2 = 17.34, theorem 8.5 says that EK(f̂) ≥ K/2 for any emulator f̂ . In
other words, by the discussion in Section 8.3.2, our maximum uncertainty would have been
no greater had we just observed f once, at z, and predicted f̂(w) = f(z) for all w ∈ [0,1]p.

In some sense, this result is not surprising: if we had fixed K̂ but replaced f with a
constant function, and #X < 2p, then EK̂ ≥ K̂/2, with equality holding if and only if z ∈ X.
By repeating the bounding procedures from the previous two sections with K̂/2 = 17.34 fixed
but f replaced with constant function c, we find Ec,X,K̂ = 26.95. The increase in maximum
uncertainty from 20.95 to 26.95 that results from replacing f with a constant shows that
the observed variation in f reduces the maximum uncertainty considerably—although the
maximum uncertainty remains quite large.

To connect these theoretical results to common emulation methods, we fit a Gaussian
process model [117] and Multivariate Adaptive Regression Splines (MARS) [119] to the
110 CAM observations from a Latin hypercube design, leaving 1043 observations for testing.
On the test set, the mean error of the Gaussian process model is 1.03 (3% of K̂) and the
maximum error is 6.73 (20% of K̂). For MARS, the mean error on the test set is 1.59 and

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 110

Table 8.3: Confidence bounds for quantiles and the mean of the uncertainty of the minimax
emulator f̂K̂ for CAM

95% lower confidence bound
norm units lower quartile median upper quartile average
Euclidean K̂/2 1.462 1.599 1.732 1.599
supremum K̂/2 0.648 0.716 0.781 0.715
Euclidean γ̂ 0.044 0.049 0.053 0.049
supremum γ̂ 0.048 0.053 0.058 0.053

Column 1: distance metric d used for the Lipschitz constant. Columns 3–5:
binomial lower 95% confidence bounds for quartiles of the uncertainty, obtained
by inverting binomial tests. Column 6: 95% lower 95% confidence bound for
the integral of the uncertainty over the entire domain [0,1]p, based on inverting
z-tests. Columns 3–6 are expressed as a fraction of the quantity in column 2.
Results are based on 10,000 uniform random samples from [0,1]p.

maximum error is 6.21. Since the 1043 test points are all distant from many corners of
[0,1]p, the error of these methods over [0,1]p might be far larger; it would take many more
evaluations of f to tell. Absent such data, there is no evidence that those methods have
maximum error less than EK̂ = 20.95.

8.5 Extensions

8.5.1 Distribution of the uncertainty

By drawing independent points W ∼ Uniform([0,1]p) and evaluating EK̂(W), we construct
lower confidence bounds for quantiles of the uncertainty and the mean uncertainty over
[0,1]p. Table 8.3 shows the results for the CAM simulations based on 10,000 random samples
from [0,1]p. Even the lower quartiles are a large fraction of K̂. For instance, at confidence
level 95%, the uncertainty under the sup-norm metric exceeds 71.7% of K̂/2 on at least 50%
of the domain.

8.5.2 Uncertainty relative to typical values

We have focused on taking ε to be a fraction of K or K̂. When ε is chosen that way,
Section 8.2 and Section 8.3 establish conditions under which no emulator can be guaranteed
to replicate the variation of f . Emulators are generally constructed to capture the complexity
of the model: tracking its variability. That suggests approximating f to within a fraction of
its variation, which is why we have calibrated ε to K̂. If the goal were to approximate f to
within a fraction of its mean, and its mean is large compared to its variation, approximating
f globally by its sample mean might suffice. Then it might make sense to set ε to be a

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 111

Table 8.4: Minimum computational burden for the CAM model.

norm ε/γ̂ lower bound on Mε

Euclidean 0.02 3.6 × 1012

0.04 1,720,354
0.06 345
0.08 1

supremum 0.02 8.6 × 1010

0.04 413,595
0.06 83
0.08 1

fraction of a typical value of f , for instance, γ̄ or the sample mean

γ̂ = 1

#X
∑
x∈X f(x).

The last 2 rows of Table 8.3 list confidence bounds for percentiles of the uncertainty as a
fraction of γ̂.

Similarly, for ε chosen suitably, inequality (8.2) gives a lower bound on Mε for approxi-
mating f within a fraction of its typical value, rather than within a fraction of its observed
variation. (Of course, the resulting bounds can be made arbitrarily small by adding a suf-
ficiently large constant to f . One reason we think it is more interesting to calibrate ε as a
fraction of K or K̂ is that the results are invariant under affine transformations of f .)

For the CAM model, this lower bound on Mε is trivial when ε is a large fraction of the
typical value of f , but grows rapidly as the fraction decreases (table 8.4).

8.5.3 Other uses for e−κ and e+κ

We have primarily used e+κ and e−κ to construct the minimax emulator and find its uncertainty.
But if f is no less regular than it was observed to be, e+̂

K
is a pointwise upper bound on

f and e−̂
K

is a pointwise lower bound on f . Moreover, if f is no less regular than the data
require it to be, maxw∈[0,1]p e+̂K(w) is a global upper bound on f and minw∈[0,1]p e−̂K(w) is a
global lower bound on f .

Maximizing e+̂
K

or minimizing e−̂
K

exactly may not be tractable. For sup-norm, we can
use the techniques from Section 8.4.3 to bound these extrema from above and below: for
the CAM model, those upper and lower bounds on e+̂

K
are equal, as they are for e−̂

K
. The

maximum of e+̂
K

is 253.78 and the minimum of e−̂
K

is 211.88.

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 112

8.6 Conclusions
We find a lower bound on the minimum (over emulators) maximum (over functions that agree
with the data and are as regular as the data allow) error of emulators of a function f based
on n observations. This “mini-minimax” uncertainty is optimistic because it assumes that f
has the smallest Lipschitz constant consistent with the data. The mini-minimax uncertainty
is an attainable bound on the error of the best emulator of f at w: for any emulator f̂ , there
is a function g that is at least as regular as f , that agrees with f at the n observations, and
for which ∣f̂(w) − g(w)∣ is at least this mini-minimax value.

In some problems, every emulator based on any tractable number of observations of f
has large maximum uncertainty (and the uncertainty is large over much of the domain), even
if f is as regular as the data allow. That is, there are functions g and h that agree perfectly
with the observations, are as regular as the observations permit, and yet differ by a large
amount at some point in the domain of f .

We give sufficient conditions under which even the best possible emulator has large un-
certainty. The conditions depend only on the observed values of f ; they can be computed
from the same observations used to train an emulator, at a cost that typically is small com-
pared with the cost of generating those observations. The conditions are sufficient but not
necessary, because f could be less regular than any finite set of observations reveals it to be.
It is not possible to give necessary conditions that depend only on the observed values of f ;
a priori bounds on the regularity of f would be needed.

The conditions seem likely to hold for many high-consequence applications. Indeed, we
show quantitatively that the conditions hold for a large climate-modeling dataset. When the
maximum uncertainty in approximating f everywhere by a constant—the value of f at the
center of the domain—is no larger than the maximum uncertainty in approximating f from
any tractable number of observations, emulators may not be useful. No emulator can then
reliably model f as a function of its input w ∈ [0,1]p.

Common techniques for assessing the accuracy of emulators (e.g., posterior variance or
performance on hold-out data) understate the true uncertainty, because they make strong
assumptions about f that are based neither on the observations nor on known properties of f ,
or because they focus on average error rather than worst-case error. However, as Section 8.5
shows, even the average uncertainty and quartiles of the uncertainty for the CAM model are
quite large.

The mini-minimax uncertainty is a one-sided tool: if this uncertainty is large, the data
do not constrain f well, while if it is small, the data constrain f only if it is no less regular
than the data collected so far show it must be. That said, if the mini-minimax uncertainty
is uncomfortably large, there might be ways to reduce it. For instance, if the lower bound
(8.2) on the computation burden required to reduce the uncertainty to a useful level ε is
affordable, one might collect more data. Provided the new data do not increase K̂ substan-
tially, the mini-minimax uncertainty can be reduced at will. But when p is large, the lower
bound is likely to be large, because it grows exponentially with p. If observing f requires
a real-world experiment, new technology might be required to make a useful number of ad-

CHAPTER 8. UNCERTAINTY QUANTIFICATION FOR EMULATORS 113

ditional observations affordable. When observing f involves running a simulator, collecting
enough additional data to reduce the uncertainty to a reassuring value might require not
only recruiting additional computational resources but also reducing the computational cost
of each simulation—substantially.

In some cases, clever strategies can reduce the cost of computing f , at least to some
known degree of approximation, but that is not always so. Cost reductions of orders of
magnitude might require reducing the complexity of f . Reducing the dimension p of the
domain of f is especially helpful, because reducing p pays exponential dividends. But it
requires scientific justification: In general, eliminating parameters from a model entails bias
in the model with no a priori limit. It is hard to calibrate the tradeoff between fitting a
model that is constrained by the data but is known or suspected to be overly simplistic—and
therefore biased—and a model that has lower bias but cannot be estimated reliably from an
affordable number of data. Subject-matter knowledge is key.

Without increasing the number of observations or revising the model, reducing the un-
certainty of emulators requires either more information about f 8 or changing the measure
of uncertainty—changing the scientific question. Finally, approximating f pointwise is not
usually the ultimate scientific goal. More important questions about f might be answered
more directly.9 These tactics are application-specific: the underlying science dictates the
conditions that actually hold for f and the questions about f that matter.

8Common additional conditions include the following: parameters have only low-order interactions; the
second derivative has an upper bound; the third derivative has a limited number of knots; the integral of
the squared derivative of the model is bounded [120]. There are problems in which conditions like these
may reflect actual knowledge about f . However, such conditions tend to be difficult to verify: simulation is
perhaps most valuable when the underlying equations are not amenable to mathematical analysis.

9For example, for global optimization—finding maxima or minima—a form of adaptive sampling known
as multi-start methods yields good results [121].

114

Bibliography

[1] S. A. Cook. “An Overview of Computational Complexity.” In: Commun. ACM 26.6
(June 1983), pp. 400–408. issn: 0001-0782. doi: 10.1145/358141.358144. url:
http://doi.acm.org/10.1145/358141.358144.

[2] R. Berry and J. Burnell. The Handbook of Astronomical Image Processing. Willmann-
Bell, 2005. isbn: 9780943396828. url: https://books.google.com/books?id=
O0fPPAAACAAJ.

[3] N. Smalheiser and V. Torvik. “Author name disambiguation.” In: Annual Review of
Information Science and Technology (2009). Ed. by B. Cronin and E.)

[4] T. J. Santner, B. J. Williams, and W. I. Notz. The design and analysis of computer
experiments. Springer Science & Business Media, 2013.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer New
York, 2013. isbn: 9780387216065. url: https://books.google.com/books?id=
yPfZBwAAQBAJ.

[6] R. Lupton, J. Gunn, et al. “The SDSS imaging pipelines.” In: arXiv preprint astro-
ph/0101420 (2001).

[7] J Sacks et al. “Design and Analysis of Computer Experiments.” In: Statistical Science
(1989).

[8] E. Ben-Ari and D. Steinberg. “Modeling data from computer experiments: An empir-
ical comparison of Kriging with MARS and projection pursuit regression.” In: Quality
Engineering (2007).

[9] R. Ghanem, A Doostan, and J Red-Horse. “A probabilistic construction of model
validation.” In: Computer Methods in Applied Mechanics and Engineering (2008).

[10] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[11] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. “Variational inference: A review for
statisticians.” In: arXiv preprint arXiv:1601.00670 (2016).

[12] U. Von Luxburg. “A tutorial on spectral clustering.” In: Statistics and computing 17.4
(2007), pp. 395–416.

http://dx.doi.org/10.1145/358141.358144
http://doi.acm.org/10.1145/358141.358144
https://books.google.com/books?id=O0fPPAAACAAJ
https://books.google.com/books?id=O0fPPAAACAAJ
https://books.google.com/books?id=yPfZBwAAQBAJ
https://books.google.com/books?id=yPfZBwAAQBAJ

BIBLIOGRAPHY 115

[13] F. Jordan and F Bach. “Learning spectral clustering.” In: Adv. Neural Inf. Process.
Syst 16 (2004), pp. 305–312.

[14] C. Stoughton, R. H. Lupton, et al. “Sloan digital sky survey: early data release.” In:
The Astronomical Journal 123.1 (2002), p. 485.

[15] SDSS. Sky images observed by the SDSS telescope. http://classic.sdss.org/
gallery/gal_data.html. [Online; accessed January 30, 2015]. 2015.

[16] E. Bertin and S Arnouts. “SExtractor: Software for source extraction.” In: Astronomy
and Astrophysics Supplement Series 117.2 (1996), pp. 393–404.

[17] L. Miller, C. Heymans, et al. “Bayesian galaxy shape measurement for weak lensing
surveys III: Application to the Canada–France–Hawaii Telescope Lensing Survey.” In:
Monthly Notices of the Royal Astronomical Society (2013).

[18] D. Hogg. Theories of everything. Slides of a talk given at the NIPS 2012 Cosmology
Meets Machine Learning Workshop. 2012.

[19] Dark Energy Survey. http://www.darkenergysurvey.org/. [Online; accessed Febru-
ary 5, 2015]. 2015.

[20] Large Synoptic Survey Telescope Consortium. http://www.lsst.org/lsst/about.
[Online; accessed October 7, 2014]. 2014.

[21] SDSS DR10. Flux units: maggies and nanomaggies. https://www.sdss3.org/dr10/
algorithms/magnitudes.php#nmgy. [Online; accessed February 6, 2015]. 2015.

[22] N. Padmanabhan et al. “An improved photometric calibration of the Sloan Digital
Sky Survey imaging data.” In: The Astrophysical Journal 674.2 (2008), p. 1217.

[23] D. van Leeuwen. GaussianMixtures.jl: A Julia package for Gaussian Mixture Models.
https://github.com/davidavdav/GaussianMixtures.jl. [Online; accessed May
11, 2015]. 2015.

[24] M. Braun and J. McAuliffe. “Variational inference for large-scale models of discrete
choice.” In: Journal of the American Statistical Association 108.504 (2010), pp. 1230–
1242.

[25] C. Wang and D. M Blei. “Variational inference in nonconjugate models.” In: The
Journal of Machine Learning Research 14.1 (2013), pp. 1005–1031.

[26] R. H. Byrd et al. “A limited memory algorithm for bound constrained optimization.”
In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–1208.

[27] D. O. North. “An analysis of the factors which determine signal/noise discrimination
in pulsed-carrier systems.” In: Proceedings of the IEEE 51.7 (1963), pp. 1016–1027.

[28] R. H. Lupton. SDSS Image Processing I: The Deblender. Tech. rep. 2005.

[29] D. Lang and D. Hogg. Tractor: Astronomical source detection, separation, and pho-
tometry. http://thetractor.org/. [Online; accessed January 30, 2015]. 2015.

http://classic.sdss.org/gallery/gal_data.html
http://classic.sdss.org/gallery/gal_data.html
http://www.darkenergysurvey.org/
http://www.lsst.org/lsst/about
https://www.sdss3.org/dr10/algorithms/magnitudes.php#nmgy
https://www.sdss3.org/dr10/algorithms/magnitudes.php#nmgy
https://github.com/davidavdav/GaussianMixtures.jl
http://thetractor.org/

BIBLIOGRAPHY 116

[30] R. Lupton, Z. Ivezic, et al. SDSS Image Processing II: The Photo Pipelines. Tech. rep.
Princeton University, 2005.

[31] L. Miller, T. Kitching, et al. “Bayesian galaxy shape measurement for weak lensing
surveys–I. Methodology and a fast-fitting algorithm.” In:Monthly Notices of the Royal
Astronomical Society 382.1 (2007), pp. 315–324.

[32] L. Simard, C. Willmer, et al. “The deep groth strip survey. II. Hubble space telescope
structural parameters of galaxies in the groth strip.” In: The Astrophysical Journal
Supplement Series 142.1 (2002), p. 1.

[33] D. Lang and D. Hogg. Tractor: Astronomical source detection, separation, and pho-
tometry. http://thetractor.org/. [Online; accessed January 30, 2015]. 2015.

[34] J. Regier, A. Miller, J. McAuliffe, et al. “Celeste: Variational inference for a generative
model of astronomical images.” In: Proceedings of the 32nd International Conference
on Machine Learning. 2015.

[35] C. Y. Peng et al. “Detailed structural decomposition of galaxy images.” In: The As-
tronomical Journal 124.1 (2002), p. 266.

[36] C. Y. Peng et al. “Detailed decomposition of galaxy images. II. Beyond axisymmetric
models.” In: The Astronomical Journal 139.6 (2010), p. 2097.

[37] M. Barden et al. “GALAPAGOS: From pixels to parameters.” In: Monthly Notices of
the Royal Astronomical Society 422.1 (2012), pp. 449–468.

[38] B. Häußler et al. “MegaMorph—multiwavelength measurement of galaxy structure:
complete Sérsic profile information from modern surveys.” In: Monthly Notices of the
Royal Astronomical Society 430.1 (2013), pp. 330–369.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with deep con-
volutional neural networks.” In: Advances in neural information processing systems.
2012, pp. 1097–1105.

[40] E. Bertin and S. Arnouts. “SExtractor: Software for source extraction.” In: Astronomy
and Astrophysics Supplement Series 117.2 (1996), pp. 393–404.

[41] S. Dieleman, K. Willett, and J. Dambre. “Rotation-invariant convolutional neural
networks for galaxy morphology prediction.” In: Monthly Notices of the Royal Astro-
nomical Society 450.2 (2015), pp. 1441–1459.

[42] D. Kingma and M. Welling. “Auto-encoding variational bayes.” In: arXiv preprint
arXiv:1312.6114 (2013).

[43] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation and ap-
proximate inference in deep generative models.” In: arXiv preprint arXiv:1401.4082
(2014).

[44] M. Titsias and M. Lázaro-Gredilla. “Doubly stochastic variational bayes for non-
conjugate inference.” In: Proceedings of the 31st International Conference on Machine
Learning. 2014, pp. 1971–1979.

http://thetractor.org/

BIBLIOGRAPHY 117

[45] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Sim-
ulation, and Control. Wiley Series in Discrete Mathematics and Optimization. Wi-
ley, 2005. isbn: 9780471441908. url: https://books.google.com/books?id=
f66OIvvkKnAC.

[46] C. Stoughton, R. Lupton, et al. “Sloan digital sky survey: early data release.” In: The
Astronomical Journal 123.1 (2002), p. 485.

[47] Galaxy Zoo—The Galaxy Challenge. https://www.kaggle.com/c/galaxy-zoo-
the-galaxy-challenge. [Online; accessed October 1, 2015]. 2013.

[48] Y. Bengio et al. “Generalized denoising auto-encoders as generative models.” In: Ad-
vances in Neural Information Processing Systems. 2013, pp. 899–907.

[49] S. Mohamed. A Statistical View of Deep Learning. http://blog.shakirm.com/wp-
content/uploads/2015/07/SVDL.pdf. [Online; accessed October 1, 2015]. 2015.

[50] C. Zhang. https://github.com/pluskid/Mocha.jl. [Online; accessed October 5,
2015]. 2015.

[51] Y. Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding.” In:
arXiv preprint arXiv:1408.5093 (2014).

[52] D. Kingma and J. Ba. “Adam: A method for stochastic optimization.” In: arXiv
preprint arXiv:1412.6980 (2014).

[53] L. Van der Maaten and G. Hinton. “Visualizing data using t-SNE.” In: Journal of
Machine Learning Research 9.2579-2605 (2008), p. 85.

[54] M. Bilenko and B. Kamath. “Adaptive blocking: Learning to scale up record linkage.”
In: International Conference on Data Mining. 2006. isbn: 0-7695-2701-7.

[55] D. Yan, L. Huang, and M. I. Jordan. “Fast approximate spectral clustering.” In:
Knowledge Discovery and Data Mining. 2009. isbn: 9781605584959.

[56] C. Fowlkes et al. “Spectral grouping using the Nyström method.” In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2004).

[57] F. Bach and M. I. Jordan. “Learning spectral clustering, with application to speech
separation.” In: The Journal of Machine Learning Research (2006).

[58] X. Yin and J. Han. “Object distinction: Distinguishing objects with identical names.”
In: Data Engineering, 2007. ICDE 2007. (2007), pp. 1242–1246.

[59] P.-N. Tan et al. Introduction to data mining. Pearson Education India, 2006.

[60] A. Culotta et al. “First-order probabilistic models for coreference resolution.” In:
Proceedings of NAACL HLT. 2007, pp. 81–88.

[61] H. Han et al. “Two supervised learning approaches for name disambiguation in au-
thor citations.” In: Proceedings of the 4th ACM/IEEE-CS joint conference on digital
libraries (2004), pp. 296–305.

https://books.google.com/books?id=f66OIvvkKnAC
https://books.google.com/books?id=f66OIvvkKnAC
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
http://blog.shakirm.com/wp-content/uploads/2015/07/SVDL.pdf
http://blog.shakirm.com/wp-content/uploads/2015/07/SVDL.pdf
https://github.com/pluskid/Mocha.jl

BIBLIOGRAPHY 118

[62] H. Han, W. Xu, and H. Zha. “A hierarchical naive Bayes mixture model for name
disambiguation in author citations.” In: Proceedings of the 2005 ACM symposium on
Applied computing (2005), pp. 1065–1069.

[63] J. Huang, S. Ertekin, and C. L. Giles. “Efficient Name Disambiguation for Large-Scale
Databases.” In: Knowledge Discovery in Databases: PKDD 2006 (2006), pp. 536–544.

[64] Y. Song et al. “Efficient topic-based unsupervised name disambiguation.” In: Proceed-
ings of the 7th ACM/IEEE-CS joint conference on Digital libraries. JCDL ’10. New
York, NY, USA: ACM, 2007, pp. 342–351. isbn: 978-1-4503-0085-8.

[65] V. Torvik et al. “A probabilistic similarity metric for Medline records: a model for
author name disambiguation.” In: Journal of the American Society for information
science and technology 56.2 (2005), pp. 140–158. issn: 1532-2882.

[66] I. Bhattacharya and L. Getoor. “A latent Dirichlet model for unsupervised entity
resolution.” In: SIAM International Conference on Data Mining. 2006.

[67] I. Bhattacharya and L. Getoor. “Collective entity resolution in relational data.” In:
ACM Trans. Knowl. Discov. Data 1.1 (2007), p. 5. issn: 1556-4681.

[68] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005.

[69] C. A. D’Angelo, C. Giuffrida, and G. Abramo. “A heuristic approach to author name
disambiguation in bibliometrics databases for large-scale research assessments.” In:
Journal of the American Society for Information Science and Technology 62.2 (2011),
pp. 257–269. issn: 15322890.

[70] A. A. Ferreira et al. “Effective Self-Training Author Name Disambiguation in Schol-
arly Digital Libraries.” In: Proceedings of the 10th annual joint conference on Digital
libraries (2010), pp. 342–351.

[71] H. Han and H. Zha. “Name disambiguation in author citations using a K-way spectral
clustering method.” In: Joint Conference on Digital Libraries (2005).

[72] I. Kang et al. “On co-authorship for author disambiguation.” In: Information Pro-
cessing & Management 45.1 (2009), pp. 84–97. issn: 0306-4573.

[73] B. Malin. “Unsupervised name disambiguation via social network similarity.” In:
Workshop on Link Analysis, Counterterrorism, and Security. Vol. 1401. 2005, pp. 93–
102.

[74] D. M. McRae-Spencer and N. R. Shadbolt. “Also by the same author: AKTiveAu-
thor, a citation graph approach to name disambiguation.” In: Proceedings of the 6th
ACM/IEEE-CS joint conference on Digital libraries. JCDL ’06. New York, NY, USA:
ACM, 2006, pp. 53–54. isbn: 1-59593-354-9.

BIBLIOGRAPHY 119

[75] B. On et al. “Comparative study of name disambiguation problem using a scalable
blocking-based framework.” In: Proceedings of the 5th ACM/IEEE-CS joint confer-
ence on Digital libraries. New York, NY, USA: ACM, 2005, pp. 344–353. isbn: 1-
58113-876-8.

[76] L. Tang and J. Walsh. “Bibliometric fingerprints: name disambiguation based on
approximate structure equivalence of cognitive maps.” In: Scientometrics 84.3 (2010),
pp. 763–784. issn: 0138-9130.

[77] Y. F. Tan, M. Y. Kan, and D. Lee. “Search engine driven author disambiguation.”
In: Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries. New
York, NY, USA: ACM, 2006, pp. 314–315. isbn: 1-59593-354-9.

[78] T. Velden, A. Haque, and C. Lagoze. “Resolving author name homonymy to improve
resolution of structures in co-author networks.” In: Joint Conference on Digital Li-
braries (2011), p. 241.

[79] K.-H. Yang et al. “Author name disambiguation for citations using topic and web cor-
relation.” In: Research and Advanced Technology for Digital Libraries (2008), pp. 185–
196.

[80] A. Culotta et al. “Author disambiguation using error-driven machine learning with a
ranking loss function.” In: Sixth International Workshop on Information Integration
on the Web (IIWeb), collocated with AAAI, 2007. 2007.

[81] A. Culotta and A. McCallum. “Tractable learning and inference with high-order repre-
sentations.” In: ICML Workshop on Open Problems in Statistical Relational Learning.
Citeseer, 2006.

[82] L. Getoor et al. “Learning probabilistic models of link structure.” In: JMLR 3 (2003),
p. 707.

[83] A. McCallum, K. Bellare, and F. Pereira.A conditional random field for discriminatively-
trained finite-state string edit distance. Conference on Uncertainty in AI (UAI), 2005.

[84] H. Pasula et al. “Identity uncertainty and citation matching.” In:NIPS. 2002, pp. 1425–
1432.

[85] S. Singh et al. “Large-scale cross-document coreference using distributed inference and
hierarchical models.” In: Association for Computational Linguistics: Human Language
Technologies (ACL HLT) (2011).

[86] A. Wellner and A. McCallum. “Conditional Models of Identity Uncertainty with Ap-
plication to Noun Coreference.” In: NIPS. 2004.

[87] M. Wick et al. “An entity based model for coreference resolution.” In: SIAM Inter-
national Conference on Data Mining. Citeseer, 2009, pp. 365–376.

[88] A. J. Lotka. “The frequency distribution of scientific productivity.” In: Journal of
Washington Academy Sciences (1926).

BIBLIOGRAPHY 120

[89] M. Wick et al. “SampleRank: Training Factor Graphs with Atomic Gradients.” In:
ICML. 2011.

[90] G. Hinton. “Training products of experts by minimizing contrastive divergence.” In:
Neural Computation 14.8 (2002), pp. 1771–1800.

[91] C. Sutton and A. McCallum. “An introduction to conditional random fields for re-
lational learning.” In: Introduction to statistical relational learning x (2006), pp. 95–
130.

[92] C. Sutton and A. McCallum. “An Introduction to Conditional Random Fields.” In:
Found. Trends Mach. Learn. 4.4 (Apr. 2012), pp. 267–373. issn: 1935-8237. doi:
10.1561/2200000013. url: http://dx.doi.org/10.1561/2200000013.

[93] J. Lafferty, A. McCallum, and F. Pereira. “Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.” In: ICML. Citeseer, 2001.

[94] M. Wick et al. “Samplerank: Learning preferences from atomic gradients.” In: Neural
Information Processing Systems (NIPS), Workshop on Advances in Ranking. Citeseer,
2009, pp. 1–5.

[95] S. Jain and R. M. Neal. “A Split-Merge Markov chain Monte Carlo Procedure for
the Dirichlet Process Mixture Model.” In: Journal of Computational and Graphical
Statistics 13.1 (2004), pp. 158–182. issn: 1061-8600.

[96] A. McCallum, K. Nigam, and L. Ungar. “Efficient clustering of high-dimensional
data sets with application to reference matching.” In: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
2000, pp. 169–178. isbn: 1581132336.

[97] A. Goder and V. Filkov. “Consensus clustering algorithms: Comparison and refine-
ment.” In: Proceedings of ALENEX. Citeseer, 2008, pp. 109–117.

[98] N. Guttmann-Beck and R. Hassin. “Approximation algorithms for minimum k-cut.”
In: Algorithmica 27.2 (2000), pp. 198–207.

[99] L. Hagen and A. B. Kahng. “New spectral methods for ratio cut partitioning and
clustering.” In: IEEE Transactions on Computer-Aided Design (1992).

[100] J. Shi and J. Malik. “Normalized cuts and image segmentation.” In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2000).

[101] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 1996. isbn: 9780801854149.
url: https://books.google.com/books?id=mlOa7wPX6OYC.

[102] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learning
and stochastic optimization.” In: Journal of Machine Learning (2010), pp. 1–23.

[103] P. Ranjan, D. Bingham, and G. Michailidis. “Sequential experiment design for contour
estimation from complex computer codes.” In: Technometrics 50.4 (2008), pp. 527–
541.

http://dx.doi.org/10.1561/2200000013
http://dx.doi.org/10.1561/2200000013
https://books.google.com/books?id=mlOa7wPX6OYC

BIBLIOGRAPHY 121

[104] S Shan and G. Wang. “Survey of modeling and optimization strategies to solve high-
dimensional design problems with computationally-expensive black-box functions.”
In: Structural and Multidisciplinary Optimization (2009).

[105] C Covey et al. A new ensemble of perturbed-input-parameter simulations by the Com-
munity Atmosphere Model. Tech. rep. Lawrence Livermore National Laboratory, 2011.

[106] D Aspenberg, J Jergeus, and L Nilsson. “Robust optimization of front members in a
full frontal car impact.” In: Engineering Optimization (2012).

[107] M Holena, D Linke, and U Rodemerck. “Generator approach to evolutionary op-
timization of catalysts and its integration with surrogate modeling.” In: Catalysis
Today (2011).

[108] J. Shorter, P. Ip, and H. Rabitz. “An efficient chemical kinetics solver using high
dimensional model representation.” In: The Journal of Physical Chemistry A (1999).

[109] A Srivastava et al. “A method for using legacy data for metamodel-based design of
large-scale systems.” In: Structural and Multidisciplinary Optimization (2004).

[110] P. Koch, T. Simpson, and J. Allen. “Statistical approximations for multidisciplinary
design optimization: the problem of size.” In: Journal of Aircraft (1999).

[111] A. Booker et al. “A rigorous framework for optimization of expensive functions by
surrogates.” In: Optimization (1999).

[112] R. Bates et al. “Experimental design and observation for large systems.” In: Journal
of the Royal Statistical Society, Series B (1996).

[113] E. Packel. “Do linear problems have linear optimal algorithms?” In: SIAM Review
(1988).

[114] J Traub and H Woźniakowski. A general theory of optimal algorithms. 1980.
[115] J. Traub, G. Wasilkowski, and H Woźniakowski. Information-based complexity. 1988.
[116] S Surjanovic and D Bingham. Virtual library of simulation experiments: test functions

and datasets. http://www.sfu.ca/~ssurjano/emulat.html. Online; accessed March
3, 2014.

[117] G. Dancik. mlegp: Maximum likelihood estimates of Gaussian processes. R package
version 3.1.4. http://cran.r-project.org/package=mlegp. 2013.

[118] J Backer and J. Keil. “The mono- and bichromatic empty rectangle and square prob-
lems in all dimensions.” In: LATIN 2010: Theoretical Informatics. 2010.

[119] T Hastie and R Tibshirani. mda: Mixture and Flexible Discriminant Analysis. R
pacakage version 0.4.4. http://cran.r-project.org/package=mda. 2013.

[120] M Lamboni et al. “Derivative-based global sensitivity measures: general links with
Sobol’ indices and numerical tests.” In: arXiv preprint (2012).

[121] F. Hickernell. “A simple multistart algorithm for global optimization.” In: OR Trans-
actions (1997).

http://www.sfu.ca/~ssurjano/emulat.html
http://cran.r-project.org/package=mlegp
http://cran.r-project.org/package=mda

	Contents
	List of Figures
	List of Tables
	Introduction
	Astronomy
	Variational inference for a generative model of astronomical images
	The model
	Celestial bodies
	Astronomical images

	Inference
	Variational approximation of the posterior distribution
	Optimization

	Experiments
	Synthetic images
	Uncertainty quantification
	Model misfit

	Conclusion

	A deep generative model for astronomical images of galaxies
	The model
	Inference

	Experiments
	Implementation
	Results

	Future work

	Author disambiguation
	Problem overview and preliminaries
	Related work
	Exploratory data analysis
	Name string variations
	Author productivity
	Baseline partitioning procedures

	A feature-space representation of records for efficient disambiguation without blocking
	Notation and terminology
	Efficiently enumerating T-conceivable record pairs
	Person name disambiguation

	AuthorshipToolkit
	A probabilistic similarity metric
	Results
	Limitations

	Conditional random fields for author disambiguation
	Model
	Feature functions
	Computationally efficient relative probabilities

	Parameter learning
	Maximum likelihood estimation
	Contrastive divergence
	SampleRank

	Inference
	Results

	Spectral author disambiguation
	Inference procedure
	Encoding mention pairs' similarities through Mahalanobis distance
	Parameterizing the B matrix

	Learning procedure
	Designing the objective function
	Minimization

	Results
	Learning parameters from synthetic data
	Inferring an optimal partition of synthetic data
	Learning parameters from MathSciNet
	Inferring an optimal partition of MathSciNet

	 Computer experiments
	Confident contouring
	Inference from a fixed set of observations
	Inference from an adaptively selected dataset
	Experiments with low-dimensional data
	Experiments with high-dimensional data
	Conclusions

	Mini-Minimax Uncertainty Quantification for Emulators
	Notation and problem formulation
	Bounds on the number of observations needed to approximate f well
	Bounds on the maximum uncertainty for a fixed experimental design
	Lower bounds
	Maximum uncertainty for an emulator based on one observation

	Applications
	High-dimensional cone
	Borehole function
	Climate modeling

	Extensions
	Distribution of the uncertainty
	Uncertainty relative to typical values
	Other uses for e- and e+

	Conclusions

	Bibliography

