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Abstract

A Boundary Integral Method for Modeling Axisymmetric Flow Around a Rising Bubble in
a Vertical Tube and Accurate Numerical Evaluation of Orthogonal Polynomials

by

Yanhe Huang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Jon Wilkening, Chair

Axisymmetric flow around a bubble rising in a 3D fluid has been studied intensively both
numerically and experimentally over the years, but in the high Reynolds number regime, no
matter for small oblate or elongated bubbles, current mathematical models face problems
such as introducing an unnecessary singularity at the stagnation point, missing proper lower
boundary conditions, and solving with low order finite difference methods, which leads to
large numerical errors. Modeling the problem by both potential flow and viscous potential
flow, we can represent the velocity potential using layer potentials and compute the bubble
shape with spectral accuracy, with average numerical errors around 10−9. A dimensionless
inviscid model is first built to study steady flow around a bubble in an infinitely long tube
in the case of zero gravity. With a comprehensive discussion on parametrization, singular
integrals, and numerical quadrature, we solve both oblate and elongated bubble shapes
accurately and find different solution branches of bubble shapes characterized by the number
of humps. These solution branches relating the Weber number and cross-section arc-length
suggest that for any nonzero surface tension, there exists a countably infinite number of
solutions. When there is gravity, kinematic viscosity is introduced to balance out the normal
stress on the bubble surface. Different shapes of steadily rising bubbles under different
Froude numbers are presented.

We also study the corresponding time-dependent problem to illustrate the dynamics of
unsteady bubbles, both small and elongated, and to confirm the non-existence of steadily
rising bubbles in the inviscid model with nonzero gravity. The approximation of dipole
density by spherical harmonics is computed to remove the hyper-singularity in the normal
derivatives of the double layer potential on the bubble surface.

Due to the importance of accurate evaluation of orthogonal polynomials in the boundary
integral method, we introduce a new way to evaluate orthogonal polynomials more accurately
near the endpoints of the integration interval by evaluating a newly created set of associated
orthogonal polynomials at corresponding points. Various ways to evaluate the associated
orthogonal polynomials are discussed and implemented. Among them, the best method can
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achieve round-off error accuracy even for end-point evaluation of generic high-degree Jacobi
polynomials and generalized Laguerre polynomials, which is 3 digits more accurate than
the classic recurrence method in double precision when the degree is around 400. Based
on the accurate evaluation, we perform one iteration of Newton’s method to achieve more
accurate quadrature abscissas near endpoints. We also calculate quadrature weights using
the Christoffel formula based on our accurate evaluation. The resulting errors in abscissas
and weights are compared to those of the Golub-Welsch algorithm, with our method being
more accurate. Strategies on generic weight functions are given and tested on Maxwell
polynomials of current interest in plasma physics.
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Chapter 1

Introduction

In this chapter, first we provide an introduction to the rising bubble problem and briefly
describe some of the related experimental and numerical studies that have been undertaken
over the years. Then we will show the reasoning behind building our new model and how
we approach this problem in Chapters 2-5. The connection between numerical accuracy in
our problem and Chebyshev expansion leads to the discussion on how to evaluate orthogonal
polynomial more accurately. The new algorithm on using associated orthogonal polynomials
to get a more accurate evaluation of the original orthogonal polynomials is discussed in
Chapter 6.

1.1 Single axisymmetric bubble rising in an infinitely

long vertical tube in 3D

The theoretical and experimental study of problems related to a single rising bubble in
different regimes has been extensive over the years [1] [32] [41] [33] [49] [4] [43]. Bubbles and
drops in free rise or fall in infinite media under the influence of gravity are generally grouped
under four categories: spherical, ellipsoidal, spherical-cap or ellipsoidal-cap, and slug flow [7]
[47] [43]. The slug flow regime happens when the bubble or drop is sufficiently large and it fills
most of the container cross-section. Past experiments have prepared a generalized graphical
correlation in terms of the Eötvös number, Morton number, and Reynolds number. We are
particularly interested in the regime characterized by large Reynolds number Re = ρreU/ν
with re the equivalent radius of the bubble, U the terminal rising velocity, ν the fluid viscosity
and ρ the fluid density. It has been shown experimentally people have shown that at high
Reynolds number small bubbles are ellipsoidal-cap like, and for a big bubble filling the tube,
we have the so-called Taylor bubble [9].

For a small air bubble rising through stagnant liquids with small viscosity, past exper-
iments show that the bubble moves in rectilinear motion and will have a terminal velocity
[7]. Moore [36] first studied a single bubble rising with a fixed velocity under the influence of
a buoyancy force by approximating the bubble shape to be an oblate spheroid. The aspect
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ratio of the spheroid as a function of the Weber number was determined by satisfying the
normal stress condition at only two points on the surface of the bubble. Without assuming
the shape of the bubble to be ellipsoidal, Miksis, Vanden-Broeck, and Keller [34] [35] convert
the potential problem without gravity into a nonlinear system of integro-differential equa-
tions and solved it numerically using second-order finite differences and the trapezoidal rule.
But with the number of grid points being around 20 and the low order numerical method,
it is hard to tell whether a convergent solution is found under this low accuracy. We would
like to reformulate the problem to solve for numerical solutions with spectral accuracy.

For a long bubble rising in a cylindrical tube, it has been found experimentally that the
rise velocity U is independent of both the length of the bubble and viscous effect in the large
Reynolds number regime. In 2D, Vanden-Broeck [48] models the rising of the Taylor bubble
using the infinite complex potential plane configuration and solves the problem numerically
by series truncations. This accurate method cannot be applied to the real three-dimensional
case due to the stream function not being harmonic in 3D. In 3D, Doak and Vanden-Broeck
[11] build a similar inviscid infinitely long bubble model and numerically solve it using a
second-order finite difference scheme. In both 2D and 3D, they find that for nonzero surface
tension T , there exists a countably infinite number of solutions, and each of these solutions
corresponds to a different value of Froude number F . Numerically, however, with the missing
boundary condition at the lower end of the bubble due to modeling it to be infinitely long,
the low order finite difference scheme, various assumption about the bubble curvature and
approximating coarsely the nonphysical singularity introduced by their mathematical model
at the stagnation point, the error gotten from the numerical scheme in the 3D case is large.
This makes the quantitative relation between T and F less convincing.

To study the 3D problem more accurately, we model a closed axisymmetric bubble rising
in an infinitely long vertical tube filled with inviscid fluid. Using potential theory to represent
the velocity potential and parametrizing the surface using the Hou-Lowengrub-Shelley (HLS)
framework [44, 23], we solve for the bubble shape numerically using a spectral method. We
find that when there is no gravity, i.e. Froude number is infinite, the bubble shape is wave-
like and there is a 1-1 correspondence between the Weber number T and the arc-length of a
cross-section of the bubble on each solution branch characterized by the number of humps
of the bubble shape. With finite Froude number, we find no solution under our model. This
means that viscosity plays an important role in the boundary layer. To add the effect of
viscosity in the thin boundary layer while characterizing the flow outside the thin layer to
be potential, we use viscous potential flow to model the problem [26] and add the normal
viscous stress to the balance equation on the bubble surface. We demonstrate the steady
bubble shape under different Froude numbers.

The structure of the first part of the thesis (Chapters 2-5) is as follows. In Chapter 2, we
formulate the inviscid Laplacian mathematical system and represent the velocity potential
using single layer potentials. We discuss two ways to parameterize the bubble surface and
decide to use HLS due to several advantages. Logarithmic singularities that appear in the
integral representation of the velocity potential and tangential or normal velocities on the
bubble surface are analyzed. In Chapter 3, proper numerical quadratures are chosen based on



CHAPTER 1. INTRODUCTION 3

the singularity analysis, and the general numerical procedure of solving for the bubble shape
is discussed. Parallelizing the code is necessary due to the drastic increase in complexity as
the number of grid points on the bubble surface and on the tube increases. In the end, we
show quantitative relations between the Weber number and cross-section arc-length when
gravity vanishes. No solution can be found by numerical continuity when gravity is non-zero,
so we instead use viscous potential flow to solve for the case with gravity in Chapter 4. With
normal viscous stress added to the Bernoulli equation, the numerical solution of the viscous
model exists and we demonstrate the steady bubble shapes for different Froude numbers. In
Chapter 5 we model the dynamic problem of a bubble rising and changing shape in an ideal
fluid using a double-layer potential on the bubble surface and a single-layer potential on the
infinite tube. Ways to remove the hyper-singularity in the normal velocity on the bubble
surface are devised and the evolution equation under HLS parametrization is introduced.
Numerical results of a bubble shape deforming in a background flow are shown at the end
of the chapter.

1.2 Accurate evaluation of orthogonal polynomials

near endpoints of the integration interval

Orthogonal polynomials are the cornerstone of numerical analysis. Most spectral methods
and integration schemes rely on the theory of orthogonal polynomials for their derivation
and analysis. For example in the rising bubble problem, we will see in Chapter 3 that the
support of the charge density on the infinite tube is first changed to [0, 1] using a cotan-
gent transformation and then the charge density is approximated by Chebyshev expansions.
Also, the classical Gaussian quadrature that we will use in the numerical integration over the
bubble surface and the tube is derived from Legendre polynomial approximations. To solve
numerical problems accurately, it is important to minimize the error related to orthogonal
polynomial expansions or integrations to ensure that it will not accumulate and contribute
to the final solution. Of course, one can run the numerical algorithms in higher precision
floating-point arithmetic, like quadruple precision, but it will be very time consuming com-
pared to double precision. Our goal is to find a more accurate numerical algorithm related
to orthogonal polynomial evaluations hoping to achieve round-off error accuracy that can be
applied in single, double, quadruple or arbitrary precision.

For most orthogonal polynomials such as Legendre, Jacobi, and Laguerre, the classic
three-term recurrence is sensitive to rounding errors near the endpoints. Consequently, this
always leads to inaccurate Gaussian quadrature weights and abscissas near endpoints where
polynomial evaluation is involved.

Another significant source of round-off error in schemes employing numerical quadrature
or polynomial interpolation on composite grids with quadrature-based interpolation nodes is
the clustering of nodes near the endpoints of the interval. For example, the density of zeros
of the Jacobi polynomials P

(α,β)
n (x) on [−1, 1] as n→∞ is well-known [14, 46] to approach
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π−1/
√

1− x2, which yields grid spacing such that ∆1 = O(∆2
n/2), where ∆i = xi − xi−1.

The goal of the second part of the thesis is to develop alternative recurrence relations for
evaluating univariate orthogonal polynomials near an endpoint of the integration interval to
improve accuracy when implemented in floating-point arithmetic. These improved recurrence
relations also lead to more accurate methods for computing quadrature abscissas and weights.
In this second part of the thesis (Chapter 6), instead of evaluating the original orthogonal
polynomials pn(x) directly, we introduce associated orthogonal polynomials p̃n(x), where
pn(t) = p̃2n(t2). We devise two ways of evaluating p̃n(x). The first method is to take
advantage of the relations between linear terms of pn(x) and p̃n(x). The second method
makes use of the relations between Jacobi matrices of the original and associated orthogonal
polynomials. It turns out the new recurrence relation gotten from the second method can be
derived using continued fraction, where our ‘associated orthogonal polynomials’ serve as the
counterpart of the ‘associated continued fraction’ in continued fraction theory. Numerically
both methods turn out to be more accurate than the original three-term evaluation. Between
the new approaches, the ‘Jacobi matrix method’ is generally found to be more accurate, so
we mostly stick to that approach in the following calculations.

We evaluate Jacobi polynomials and generalized Laguerre polynomials with various pa-
rameters near the endpoints using the classic recurrence method, the improved method, the
hybrid quadruple-double method, and the analytic formula methods based on the theory
presented. We then compare the errors from the different approaches. It turns out that
even in the most general case where the analytic formula of b̃n is not known, the hybrid
quadruple-double method can achieve round-off error accuracy in double precision, which is
3 digits more accurate than the classic recurrence method for the problem sizes considered
here.

With polynomial evaluation involved in the calculation of quadrature abscissas and
weights, it is not surprising that we get more accurate quadrature abscissas and weights
near endpoints by working with the new associated orthogonal polynomials. After applying
one-step of the Newton-Raphson method to calculate the abscissas near endpoints more ac-
curately, round-off error accuracy is achieved in both the Jacobi and Laguerre cases, which
outperforms the Golub-Welsch algorithm. Moreover, the distances from quadrature nodes
near the endpoints to that endpoint are computed with high relative accuracy, which allevi-
ates loss of precision due to the clustering of quadrature nodes near the endpoints.

For general orthogonal polynomials, a strategy is given. As an example, we test it on
Maxwell polynomials and get more accurate polynomial evaluations, quadrature abscissas
and weights near the endpoint, as hoped. Error analysis carried out in the end by comparing
amplification factors from the old method and our new method justifies our new method
being more accurate.
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Chapter 2

Single axisymmetric bubble rising
steadily in an infinitely long vertical
tube in 3D

This chapter describes the main theory related to the steady-state problem of axisymmetric
potential flow around an air bubble. We first mathematically model a single bubble rising
in potential flow inside an infinitely long vertical tube, and proceed with detailed discussion
on using potential theory to represent the velocity potential. Two ways to parametrize
the problem are discussed and compared, showing that the Hou-Lowengrub-Shelley (HLS)
framework is more appropriate in solving our problem. We then analyze the singularities
that arise in computations involving complete elliptic integrals in detail, which helps select
the proper numerical integration methods in Chapter 3.

2.1 Mathematical formulation

Air bubbles rising in water have been modeled and studied extensively over the years, both
experimentally and theoretically [1] [32] [41] [33] [49] [4] [43]. Various approaches in the
current literature have their advantages and disadvantages. Vanden-Broeck [48] model it
as a 2D inviscid problem and analyze the solution selection mechanism between Froude
number and Weber number using an accurate series truncation method, but the use of
complex potential in 2D does not generalize, making their method not applicable in the real
3D case. Hua and Lou [24] model the 3D dynamic problem using the Navier-Stokes equation
and solve it numerically using a front tracking algorithm and finite volume method, but this
is not a systematic or accurate way to show under which conditions the bubble achieves
steady state. Doak and Vanden-Broeck [11] model the Taylor bubble as an infinitely long
bubble without the lower boundary condition which also has large errors and suffers from
the problem that the numerical methods will not converge for small grid sizes. Our goal is
to develop a spectrally accurate model of the inviscid problem, trying to analyze how the
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surface tension contributes to a steady-state and see under which condition there will exist
a solution.

Figure 2.1: Set up of the (dimensionless) problem in (x, y, z) space

Let us consider the following idealized setup: a single bubble rising steadily in a three-
dimensional infinitely long vertical tube filled with the incompressible, inviscid and irrota-
tional flow around it. Taking the standard xyz Cartesian coordinate in R3 with a point O
inside the bubble at the origin, we think of the bubble relatively fixed with fluid flowing
down around it as in Figure 2.1. Our domain of interest D̃ is the region bounded by the
bubble surface S̃1 and an infinitely long tube S̃2. Here we use a tilde to denote variables
before non-dimensionalization. The velocity potential φ̃ satisfies

∆φ̃ = 0 in D̃. (2.1.1)

Since for now we are considering the steady-state problem with the bubble shape not chang-
ing, the flow velocity on S̃1 and S̃2 should both be tangential, giving

∂φ̃

∂n
= 0 on S̃1 ∪ S̃2, (2.1.2)

with the unit normal vector n pointing inside D̃ on S̃1 and outside on S̃2. Ideally, the
background flow should be uniform at infinity, which gives

∂φ̃

∂z̃
→ U as z̃ →∞ or z̃ → −∞. (2.1.3)
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Here the background flow speed U is signed, with negative (positive) sign meaning flowing
downward (upward). We also assume that the density of the air inside the bubble is negligible
and the pressure is a constant p̃0. We denote the water-air surface tension by T , the constant
density of the fluid by ρ, and the gravity by g. The Young-Laplace condition gives the
pressure on the fluid side of the surface as p̃ = T κ̃+ p̃0 = T ( 1

R̃1
+ 1

R̃2
) + p̃0 with κ̃ the mean

curvature of S̃1 and R̃1, R̃2 the principal radii of curvature of S̃1. Notice that R̃1 and R̃2

are counted positive when the centers of curvature lie in D̃. Combined with the Bernoulli
equation on S̃1 due to conservation of energy, we have

1

2
ρ|∇φ̃|2 + ρgz̃ + κ̃T = constant. (2.1.4)

Under the above inviscid model, we plan to answer the following questions on steadily
rising bubbles:

1. When there is no gravity, how does the existence of the infinite tube affects the shape
of steadily rising bubbles?

2. When there is no gravity, under what relations between Weber number and the arc-
length of the cross-section of the bubbles does there exist a steadily rising bubble?

3. When there is gravity, does there exist a bubble that rise steadily?

2.2 Non-dimensionalization

Without background flow

We want to first study the case when U = 0, i.e. with a stationary bubble in a stagnant
fluid. In this case, φ̃ is a constant, which automatically satisfies the Laplacian equation and
all the Neumann boundary condition, so the only equation we are solving is the Bernoulli
equation (2.1.4). In this case, it is simplified to be

ρgz̃ + κ̃T = constant. (2.2.1)

We claim that the only solution to (2.2.1) happens when g = 0 and κ̃ = c with c a constant,
i.e. a round bubble remains still under no gravity. First it is easy to check that the above
equation holds when g = 0 and κ̃ = c, so this is a solution. Notice that when there is a
boundary wall, i.e. the infinite tube S̃2 is present, the round bubble can only have a radius
smaller than tube radius H. Without the tube, theoretically, it can be of any size. In fact
when g = 0, S̃1 needs to be a so-called constant-mean-curvature surface. Delaunay proved in
1841 [10] that the only surfaces of revolution with constant mean curvature are the surfaces
obtained by rotating the roulettes of the conics. These are the plane, cylinder, sphere, the
catenoid, the unduloid, and the nodoid. Since our surface needs to be closed and compact
with front and back stagnation point having horizontal tangent planes, it must be a sphere.
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When g 6= 0, the hydrostatic pressure cannot be balanced out by the effects of surface tension
on the bubble interface as the solution of the balanced equation between pressure forces and
surface tension forces can only be a meniscus touching the wall [15].

With background flow

To non-dimensionalize the above problem when U 6= 0, we normalize the far-field background
flow speed U and treat the tube radius H as the unit reference length. Under this remapping,

we define φ(x, y, z) = φ̃(x̃,ỹ,z̃)
UH

, x̃ = Hx, ỹ = Hy, z̃ = Hz, R̃1 = HR1, R̃2 = HR2 and

T = T̃ /H. Substituting into (2.1.1 – 2.1.4), we build a complete system of equations for the
velocity potential φ as the following

∆φ = 0 in D,
∂φ

∂n
= 0 on the free bubble surface S1,

∂φ

∂n
= 0 on the cylindrical wall S2 = {x2 + y2 = 1},

∂φ

∂z
= −1 at z = ±∞,

|∇φ|2 +
2

F 2
z +

2

W
κ = C on S1,

(2.2.2)

where F = U√
gH

is the Froude number, W = U2Hρ
T

is the Weber number and C is a constant.
Note that the constants F and W uniquely define the problem.

A variant of the problem is to remove the infinitely long tube so that the boundary of
the flow domain is only the bubble surface. The equations on bubble surface and at infinity
remain the same. Due to the removal of the outer wall, we need to find an alternative

reference length. One convention is to use the capillary length Lc =
√

T
ρg

as the reference

length, so that the Bernoulli equation is non-dimensionalised to

|∇φ|2 +
2

W
z +

2

W
κ = C on S1,

with W = U2
√

Tg
ρ

. Another way is to use the equivalent radius of bubble re as the reference

length. But for convenience, we choose the arc-length element σ (which is defined in the HLS
parameterization in Section 2.6 below) as the reference length. The dimensionless Bernoulli
equation will be the same as before except H is replaced by σ in the expression of F and W .

2.3 Potential theory

Potential theory is heavily used when representing the velocity potential in both the steady
and unsteady problems, so it is worthwhile to describe the key theorems here for later
reference [12, 28, 29, 16, 8, 21].
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Let N(p, q) denote the fundamental solution of Laplace’s equation in Rn, n ≥ 2. Partic-
ularly, when n = 3 as in our case, N(p, q) = 1

4π|p−q| . Let µ(q) be a continuous function on Γ,

where Γ is a closed Lyapunov surface in Rn, separating Rn into an interior domain D+ and
an exterior domain D−. The single layer (S), double layer (D), adjoint double layer (D′),
and hyper-singular (H) operators with charge density µ are formally defined as

S[µ](p) :=

∫
Γ

N(p, q)µ(q) dAq, (2.3.1a)

D′[µ](p) :=

∫
Γ

∂N(p, q)

∂np
µ(q) dAq, (2.3.1b)

D[µ](p) :=

∫
Γ

∂N(p, q)

∂nq
µ(q) dAq, (2.3.1c)

H[µ](p) := p.v.

∫
Γ

∂2N(p, q)

∂np∂nq
µ(q) dAq = lim

ε→0

∫
Γ−Bε(p)

∂2N(p, q)

∂np∂nq
µ(q) dAq, (2.3.1d)

where dAq is the area element on Γ and Bε(p) is the intersection of Γ with a ball of radius
ε centered at p. Notice that formally, D′ is the normal derivative of S, and H is the
normal derivative of D. When p 6∈ Γ, the four integrals above are not singular. When p ∈ Γ,
however, S, D′ and D contains 1/|p−q| type singularity in the integrand, which is integrable

on a 2-d surface in the normal sense. For D, in its integrand we have ∂N(p,q)
∂nq

= (p−q)·nq
|p−q|3 and

(p−q)·nq = O(|p−q|2) due to nq and (p−q) being almost orthogonal as q approaches p along
Γ. Similar argument also applies to D′. But H contains 1/|p − q|3 type hyper-singularity
in the integrand, so it must be understood in the principal value sense as in (2.3.1d) (The
principal value symbol can be dropped when p /∈ Γ). Different strategies of dealing with
these singularities numerically will be discussed later this chapter and in Chapter 5. The
regularity of these four operators regarding Γ and µ has been studied thoroughly over the
years. Since we are concentrating on getting spectral accuracy of the numerical solutions,
from now on we assume for simplicity that Γ is a smooth surface and µ is C∞.

The normal derivative of a single-layer potential (2.3.1a) has a discontinuity when passing
across the surface S as follows(

∂S[µ](p)

∂np

)+

=: lim
p′→p,p′∈D+

∂S[µ](p′)

∂np
=
µ(p)

2
+D′[µ](p), (2.3.2a)(

∂S[µ](p)

∂np

)−
=: lim

p′→p,p′∈D−

∂S[µ](p′)

∂np
= −µ(p)

2
+D′[µ](p), (2.3.2b)

where
(∂S[µ](p)

∂np

)±
are the limiting values of the normal derivatives from D± as defined above.

D′[µ](p) is sometimes also called the direct value of ∂S[µ](p)
∂np

. The tangential derivative of

single layer potential is continuous across S, and is denoted by ∂S[µ](p)
∂tp

. In three dimensions,

both integrals (2.3.1a) and (2.3.1b) feature weakly singular kernels that will be discussed
later in Section 2.6. The tangential derivative, however, has an order one pole in our case,
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which will also be discussed in detail in Section 2.6. But the singularity can be removed as
explained in Chapter 3.

A double layer potential, when passing across the surface Γ, has a discontinuity

D+[µ](p) := lim
p′→p,p′∈D+

D[µ](p′) = −µ
2

+D[µ](p), (2.3.3a)

D−[µ](p) := lim
p′→p,p′∈D−

D[µ](p′) =
µ

2
+D[µ](p), (2.3.3b)

whereD±[µ](p) are the limit values of the double layer potentialD± as defined above. D[µ](p)
in (2.3.1c) denotes the so-called direct value of the double-layer potential calculated over the
surface Γ. The kernel in D[µ](p) features a weak singularity, thus making it integrable.
The tangential derivative applying to both sides of (2.3.3) also has a jump, and the formal

tangential derivative ∂D[µ](p)
∂tp

has a 1/|p − q|2 type singularity, which is integrated similarly

in principal value sense as in steady state case. But the normal derivative retains its value
when passing across S(
∂D[µ](p)

∂np

)+

:= lim
p′→p,p′∈D+

∂D[µ](p′)

∂np
= H[µ](p) = lim

p′→p,p′∈D−

∂D[µ](p′)

∂np
=:

(
∂D[µ](p)

∂np

)−
.

(2.3.4)
Although formally similar, (2.3.1d) is divergent due to the hyper-singular kernel and the
Cauchy principal value version of it coincides with the above limiting value. To get spectral
accuracy, however, we apply a singularity removal technique. The procedure will be fully
discussed in detail in Chapter 4.

It is easy to show by Green’s identity that any harmonic function φ can be represented
by the sum of single and double layer potentials with densities ∂φ(p)

∂np
and −φ(p) respectively;

however, we are more interested in expressing it using only a single layer or double layer
potential. This can be achieved using the Fredholm alternative of compact operators in the
following four basic scenarios. We refer to the setup and theorems from [12] in the following.
Let Ω = Ω+ be an open bounded domain in Rn with C2 boundary Γ. Let Ω− = Rn−(Ω+∪Γ).
Ω+ and Ω− will both be allowed to be disconnected. However, since Γ is differentiable there
can only be finitely many components. We denote the connected components of Ω+ by Ω+

1 ,
· · · , Ω+

m, and those of Ω− by Ω−0 , Ω−1 · · · Ω−m′ where Ω−0 is the unbounded component.
Interior Dirichlet: Find a function φ(x) ∈ C(Ω+ ∪ Γ) that is harmonic in Ω+ and

satisfies the boundary condition φ(x) = u(x) for x ∈ Γ, with u(x) ∈ C(Γ). The solution
to this problem always exists, and is unique. Due to the m′ dimensional kernel of the left
hand side operator in (2.3.3a), a correction of the equation should be made before solving
for µ(x). See the proof of Theorem 3.40 from [12] for details.

Exterior Dirichlet: Find a function φ(x) ∈ C(Ω− ∪ Γ) that is harmonic in Ω− and
regular at infinity i.e.

lim
|x|→∞

|x|n−2φ(x) = const,

and satisfies the boundary condition φ(x) = u(x) for x ∈ Γ, with u(x) ∈ C(Γ). Here n = 2
or 3 is the dimension of physical space. The solution to this problem always exists and
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is unique. Due to the m dimensional kernel of the left hand side operator in (2.3.3b), a
correction of the equation should be made before solving for µ(x), similar to the interior
Dirichlet case for n ≥ 3. When n = 2, one extra step should be applied.

Interior Neumann: Find a function φ(x) ∈ C1(Ω+ ∪ Γ) that is harmonic in Ω+ and

satisfies the boundary condition ∂φ(x)
∂nx

= u(x) for x ∈ Γ, with u(x) ∈ C(Γ). A solution to this
problem exists if and only if the following condition holds∫

∂Ω+
j

u(x) dAx = 0 for j = 1, · · · ,m. (2.3.5)

The solution is unique modulo functions which are constant on each Ω+
j . It can be represented

as S[µ](x) where µ is obtained from (2.3.2a). Its corresponding homogeneous equation has
a solution space of dimension m and (2.3.2a) is solvable under the condition (2.3.5).

Exterior Neumann: Find a function φ(x) ∈ C1(Ω− ∪ Γ) that is harmonic in Ω− and

regular at infinity and satisfies the boundary condition ∂φ(x)
∂nx

= u(x) for x ∈ Γ, with u(x) ∈
C(Γ). A solution exists if and only if∫

∂Ω−j

u(x) dAx = 0 for j = 1, · · · ,m′, (2.3.6)

and also for j = 0 when n = 2. The solution is unique modulo functions which are constant
on Ω−1 , · · · , Ω−m′ and also on Ω−0 when n = 2.

In our case, the cylindrical wall is infinite, so the above theorems do not strictly apply,
but the arguments can be modified to handle this case, as explained below.

2.4 Representing the steady velocity potential using a

single layer potential

Now we are ready to use potential theory to solve the system (2.2.2). Using the notation
from the last section, we can divide R3 into three parts, the connected open bounded set
inside S1, which we denote by Ω−1 ; the connected open set inside S2 and outside S1, which
is exactly our flow region D = Ω1; and the unbounded set outside S2, denoted by Ω−0 . So in
our case, m = m′ = 1. When requiring vanishing normal velocity on S1 and S2 approaching
from inside D, it is an interior Neumann problem. A caveat here is that in this set-up, the
inside domain for S2, i.e. Ω−1 ∪ S1 ∪D, is not bounded. But potential theory is based on the
divergence theorem, which can be extended to the infinite region with functions regular at
infinity [28]. So with smooth charge densities, (2.3.2) and (2.3.3) still hold in our case. We
can imagine smoothing out the problem by adding an upper and lower cap far away to the
cylindrical tube. This way the modified tube with caps form closed boundary and all the
previous theory should still apply. Since charges far away from the bubble contribute very
little to the potential near the bubble due to the decaying property of our integrand, solution
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to the modified problem should be very close to the original problem and we should expect
the interior Neumann problem applicable to our infinitely-long vertical tube case. Although
we cannot prove the compactness of D′ on the space of continuous axisymmetric functions
defined on S2 with a finite limit at infinity, there can still exist legitimate solutions without
the integral operator being compact. We will show in Chapter 3 that the layer potential
method works well numerically.

Based on the discussion above, we use single layer potentials to represent the solution.
In this normalized setting, the velocity potential φ consists of three parts. The first part is
the velocity potential φ1 induced by the ‘charges’ on the bubble surface S1; the second part
φ2 is induced by the ‘charges’ on S2; and the third part accounts for the uniform downward
flow with unit speed. Mathematically, we can write it as

φ = φ1 + φ2 − z, (2.4.1)

where

φ1(p) =

∫
S1

µ1(q)

4π|p− q|
dAq,

φ2(p) =

∫
S2

µ2(q)

4π|p− q|
dAq,

(2.4.2)

with µi unknown charge densities on Si to be found. With exterior Neumann boundary
condition on S1 and the interior Neumann boundary condition on S2, using (2.3.2b) and
(2.3.2a) respectively, we get

− 2πµ1(p) +

∫
S1

(q − p) · n(p)

|p− q|3
µ1(q) dAq +

∫
S2

(q − p) · n(p)

|p− q|3
µ2(q) dAq = 4πn3(p), p ∈ S1,

(2.4.3a)

2πµ2(p) +

∫
S1

(q − p) · n(p)

|p− q|3
µ1(q) dAq +

∫
S2

(q − p) · n(p)

|p− q|3
µ2(q) dAq = 0, p ∈ S2, (2.4.3b)

with n(p) = (n1(p), n2(p), n3(p)) the outward normal vector for any p ∈ S1 ∪ S2.

2.5 Solvability of the integral equation

Since one main step in the calculation is solving for charge densities µ1 and µ2 from (2.4.3),
we want to prove that the equation is solvable with the given right hand side data. Since it
is an interior Neumann problem with m = m′ = 1 as discussed at the beginning of Section
2.4, it has a one dimensional kernel in C(S1 ∪ S2) and the problem is solvable if and only if
the right hand side function in (2.4.3) has vanishing mean, i.e.

∫
S1

4πn3(p) dAp = 0, which is
easily seen to hold. Now we prove that the one-dimensional kernel is the constant function
on S2. Fixing µ1(q) = 0 for any q ∈ S1 and µ2(q) = 1 for any q ∈ S2, evaluating (2.4.3b) at
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p = (1, 0, z) for any z gives zero:

2π +

∫ ∞
−∞

∫ 2π

0

−1 + cosϕ(
(z − y)2 + 2− 2 cosϕ

)3/2
dϕdy

= 2π +

∫ ∞
−∞

∫ 2π

0

−1 + cosϕ(
y2 + 2− 2 cosϕ

)3/2
dϕdy

= 2π − 4

∫ ∞
−∞

∫ π

0

sin2 ϕ(
y2 + 4 sin2 ϕ

)3/2
dϕdy

= 2π − 4

∫ π

0

∫ ∞
−∞

sin2 ϕ(
y2 + 4 sin2 ϕ

)3/2
dydϕ

= 2π −
∫ π

0

y√
y2 + 4 sin2 ϕ

∣∣∣∞
y=−∞

dϕ = 0.

Here the integration order can be swapped in the second line due to the non-negativity of the
integrand and Fubini’s theorem. Similarly it is easy to show that ∇φ2(p) · (0, 1, 0) = (0, 0, 0)

for any p ∈ S1, so evaluating (2.4.3a) gives
∫
S2

(q−p)·n(p)
|p−q|3 dAq = ∂

∂np
(
∫
S2

1
|p−q| dAq) = 0 for any

p ∈ S1. We proved that [µ1(q), µ2(q)] in (2.4.3) can be uniquely solved up to a constant
function on S2.

2.6 Two parametrizations: radial and HLS

Due to the problem being axisymmetric about the z-axis, instead of studying the whole
surface S1, from now on, unless stated otherwise, we concentrate on the profile curve of a
cross-section, i.e. S1 ∩ {y = 0}. A natural parametrization is to use the polar angle τ to
describe the profile curve as the radial function R(τ), as shown in the left figure of 2.2.
Points on the profile curve can be written as (x, y, z) = (R(τ) sin τ, 0, R(τ) cos τ, ) and the

mean curvature in the Bernoulli equation is κ = RR′′−R2−2R′2

(R2+R′2)3/2
+R′ cot τ/R−1

(R2+R′2)1/2
. R(τ) is 2π periodic

and also even around kπ for any k ∈ Z, thus is expanded as a Fourier cosine series. Radial
parametrization works well for profile curves that are close to a circle, but the following
drawbacks are difficult to deal with:

1. For elongated or very oblate bubbles, a uniform grid on τ cannot resolve the profile
curve evenly, making it hard for spectral modes to decay when its arclength element√
R2(τ) +R′2(τ) changes rapidly.

2. Since second derivatives are involved in calculating κ, high order differentiation brings
in more numerical error.

3. It is impossible to describe profile curves with ‘overturns’. If more than one point
corresponds to a certain radial angle τ , R(τ) is not a well-defined function. See the
right panel in Figure 2.2.
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Figure 2.2: Two ways to parametrize the bubble surface, the radial angle (left) and the HLS
framework (right) in a case where radial parametrization breaks down.

Alternatively, we can follow the approach of Hou, Lowengrub, and Shelley (HLS) [44, 23].
We will show below that the above three issues can be solved naturally by HLS. The profile
curve can be parametrized as {(ξ(α), 0, η(α)), α ∈ [0, 2π]}. For any point q ∈ S1 we can
write it as q =

(
ξ(α) cosϕ, ξ(α) sinϕ, η(α)

)
with α ∈ [0, 2π] and ϕ ∈ [0, 2π]. Given ξ(α) and

η(α), we can find another pair of variables: the arc length element s′(α) =
√
ξ′2 + η′2, and

the tangential angle θ(α) = arctan
(η′(α)
ξ′(α)

)
. On the other hand, we can treat s′ and θ as the

pair of free variable describing the bubble, and represent ξ(α) and η(α) easily as

ξ(α) = ξ(0) +

∫ α

0

cos(θ(β))s′(β) dβ, η(α) = η(0) +

∫ α

0

sin(θ(β))s′(β) dβ. (2.6.1)

This shows that problem 3 listed above is not an issue anymore in the HLS framework.
Notice that the problem we are working on is a steady-state problem, so we do not have
time variables involved in any calculation and the differentiation is with respect to the
parameter β by default. Due to the time-invariant nature of the problem, s′(β) is fixed as a
constant σ to make sure that the uniform grid points of β are spreading out uniformly with
respect to arc length. This solves problem 1 listed above.

Now let us fully expand (2.4.3) according to the above parametrization. Since S1 and S2

are both axisymmetric, charge densities µ1 and µ2 in (2.4.2) do not depend on ϕ and can
also be parametrized as µ1(α) with α ∈ [0, π], µ2(y) with y ∈ (−∞,∞). Also, to enforce
(2.4.3) we only need to evaluate it at

(
ξ(α), 0, η(α)

)
∈ S1 and (1, 0, z) ∈ S2. To make the
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notation cleaner, we use G[a, b, c, d] to denote the following integral

G[a, b, c, d] : =

∫ 2π

0

a− b cosϕ

(c− d cosϕ)3/2
dϕ

=
4b

d
√
c− d

K

(
− 2d

c− d

)
− 4

(bc− ad)

(c+ d)d
√
c− d

E

(
− 2d

c− d

)
,

(2.6.2)

where K and E are the complete elliptic integrals of the first and second kind. When d = 0,
the above integral can be easily computed to have analytic expression 2πa

c3/2
.

In (2.4.3a), for any fixed p =
(
ξ(α), 0, η(α)

)
∈ S1 and any q =

(
ξ(β) cosϕ, ξ(β) sinϕ, η(β)

)
∈

S1 , we have n(p) = (− sin θ(α), 0, cos θ(α)), (q − p) · n(p) = −(η(α) − η(β)) cos θ(α) +
ξ(α) sin θ(α)−ξ(β) sin θ(α) cosϕ and |p−q|2 = ξ2(α)+ξ2(β)+(η(α)−η(β))2−2ξ(α)ξ(β) cosϕ.
With notation (2.6.2), we can rewrite the following integral as∫

S1

(q − p) · n(p)

|p− q|3
µ1(q) dAq =

∫ π

0

µ1(β)ξ(β)s′(β)G[a1, b1, c1, d1] dβ,

with
a1 = −(η(α)− η(β)) cos θ(α) + ξ(α) sin θ(α),

b1 = ξ(β) sin θ(α),

c1 = ξ2(α) + ξ2(β) + (η(α)− η(β))2,

d1 = 2ξ(α)ξ(β).

For any q = (cosϕ, sinϕ, y) ∈ S2, we have (q−p)·n(p) = −(η(α)−y) cos θ(α)+ξ(α) sin θ(α)−
sin θ(α) cosϕ and |p− q|2 = (y− η(α))2 + 1 + ξ2(α)− 2ξ(α) cosϕ. Using this, we can rewrite
the following integral as∫

S2

(q − p) · n(p)

|p− q|3
µ2(q) dAq =

∫ ∞
−∞

µ2(y)G[e1, f1, g1, h1] dy,

with
e1 = −(η(α)− y) cos θ(α) + ξ(α) sin θ(α),

f1 = sin θ(α),

g1 = (y − η(α))2 + 1 + ξ2(α),

h1 = 2ξ(α).

Similarly, in the (2.4.3b), for any fixed p = (1, 0, z), we have n(p) = (1, 0, 0). For any
q =

(
ξ(β) cosϕ, ξ(β) sinϕ, η(β)

)
, we have (q − p) · n(p) = ξ(β) cosϕ − 1 and |p − q|2 =

ξ2(β) + 1 + (η(β)− x)2 − 2ξ(β) cosϕ. With notation in (2.6.2), we have∫
S1

(q − p) · n(p)

|p− q|3
µ1(q) dAq =

∫ π

0

µ1(β)ξ(β)s′(β)G[a2, b2, c2, d2] dβ,

with
a2 = −1, b2 = −ξ(β), c2 = ξ2(β) + 1 + (η(β)− z)2, d2 = 2ξ(β).
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For any q = (cosϕ, sinϕ, y) ∈ S2, we have (q − p) · n(p) = cosϕ − 1 and |p − q|2 =
(y − z)2 + 2− 2 cosϕ. Using this, we have∫

S2

(q − p) · n(p)

|p− q|3
µ2(q) dAq =

∫ ∞
−∞

µ2(y)G[e2, f2, g2, h2] dy,

with
e2 = −1, f2 = −1, g2 = (y − z)2 + 2, h2 = 2.

Combining the above, the Neumann condition (2.4.3) can be written as

2πµ1(α) +

∫ π

0

µ1(β)ξ(β)s′(β)G[a1, b1, c1, d1] dβ︸ ︷︷ ︸
Π1

+

∫ ∞
−∞

µ2(y)G[e1, f1, g1, h1] dy

= −4π cos θ(α), α ∈ [0, π],

2πµ2(z) +

∫ π

0

µ1(β)ξ(β)s′(β)G[a2, b2, c2, d2] dβ +

∫ ∞
−∞

µ2(y)G[e2, f2, g2, h2] dy︸ ︷︷ ︸
Π2

= 0, z ∈ (−∞,∞),

(2.6.3)

with ai, bi, ci, di, ei, fi, gi, hi with i = 1, 2 as listed out previously. With the given initial
bubble shape, µ1 and µ2 can be solved using (2.6.3) and the velocity potential φ is uniquely
determined by (2.7.3) (2.4.2). Furthermore, at any p =

(
ξ(α), 0, η(α)

)
∈ S1, the velocity

potential can be evaluated as

φ(p) =
1

4π

∫ π

0

µ1(β)ξ(β)sβ
4K
( −2c1
c1−d1

)
√
c1 − d1

dβ +
1

4π

∫ ∞
−∞

µ2(y)
4K
( −2h1
g1−h1

)
√
g1 − h1

dy − η(α). (2.6.4)

Now we are only left with one more constraint: the Bernoulli equation. Due to the
axisymmetric nature of the bubble surface, it suffices to enforce the Bernoulli equation on
points p = (ξ(α), 0, η(α)), α ∈ [0, π]. Due to the vanishing normal velocity, |∇φ|2 = |∂φ

∂s
|2

on S1. One way to calculate |∂φ
∂s
| is to take the derivative of (2.6.4) with respect to arc-

length numerically using FFT. Here we resort to a more accurate method by calculating the
derivatives analytically. When calculating tangential velocity ∂φ

∂s
= 1

s′(α)
∂φ
∂α

, φ2 and −z are
both smooth and can be differentiated directly as the following:

∂φ2

∂s
=

1

s′(α)

∂φ2

∂α
=

∫
S2

1

s′(α)

∂

∂α

µ2(q)

4π|p− q|
dAq =

−1

4π

∫ ∞
−∞

µ2(y)G[e3, f3, g1, h1] dβ, (2.6.5)

with g1 and h1 still as before and

e3 =
1

2s′(α)

∂g1

∂α
= (η(α)− y)

η′(α)

s′(α)
+ ξ(α)

ξ′(α)

s′(α)
= (η(α)− y) sin θ(α) + ξ(α) cos θ(α),
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f3 =
1

2s′(α)

∂h1

∂α
=
ξ′(α)

s′(α)
= cos θ(α).

Similarly, we have
∂z

∂s
=

1

s′(α)

∂z

∂α
=
η′(α)

s′(α)
= sin θ(α).

∂φ1
∂s

is different due to the discontinuity in ∇φ1 across S1 , which will be proved in detail
in the next section. We will prove that for α ∈ (0, π)

1

s′(α)

∂φ1

∂α
= p.v.

∫
S1

1

s′(α)

∂

∂α

( µ1(q)

4π|p− q|

)
dAq =

−1

4π
p.v.

∫ π

0

µ1(β)ξ(β)s′(β)G[a3, b3, c1, d1] dβ︸ ︷︷ ︸
Π3

,

(2.6.6)
with c1 and d1 still as before and

a3 =
1

2s′(α)

∂c1

∂α
= ξ(α)

ξ′(α)

s′(α)
+ (η(α)− η(β))

η′(α)

s′(α)
= ξ(α) cos θ(α) + (η(α)− η(β)) sin θ(α),

b3 =
1

2s′(α)

∂d1

∂α
=
ξ′(α)

s′(α)
ξ(β) = ξ(β) cos θ(α).

Notice that without the principal value in Π3, by Taylor series expansion around β = α we
get b3c1 − a3d1 ∼ O(α − β), which results in a 1/(β − α) type singularity in the integral.
This indicates the importance of the principal value in Π3, whose derivation will be shown
in detail in the next section.

As for mean curvature, the formula is κ = 1
R1

+ 1
R2

, where

R1 =
∂s

∂θ
=
∂s

∂α

∂α

∂θ
=
s′(α)

θ′(α)
, R2 =

ξ(α)

sin θ
. (2.6.7)

Notice that R2(0) = R1(0) and R2(π) = R1(π) in the limit. To compute the mean curvature,
only first derivatives are involved, which is better than the radial parametrization in the sense
of problem 2 from the beginning of this section. The Bernoulli equation can be represented
now as(

∂φ1

∂s
+
∂φ2

∂s
− sin θ(α)

)2

+
2

F 2
η(α) +

2

W

(
s′(α)

θ′(α)
+
ξ(α)

sin θ

)
− C = 0, α ∈ [0, π]. (2.6.8)

After formulating all the elements in the equations, we are ready to discuss how to discretize
them and solve for the bubble shape. But before that, we need to analyze the singularities
in the integrand to determine the numerical method for integration.
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2.7 Analyzing the singularities

In (2.6.3), only Π1 and Π2 are singular when q approaches p due to a zero denominator
in G. To understand the singularity better, let us first study the asymptotic expansion of
G[a, b, c, d] at such a singular point. The two elliptic integrals in (2.6.2) can be expanded
around −∞ as follows

K(z) =
log(−z)

2
√
−z

(
1 +

1

4z
+

9

64z2
+ · · ·

)
+

1√
−z

(
log 4 +

log 4− 1

4z
+

18 log 4− 21

128z2
+ · · ·

)
,

E(z) =
√
−z +

1√
−z

(
1

4
+ log 2 +

8 log 2− 3

64z
+ · · ·

)
+

log(−z)

4
√
−z

(
1 +

1

8z
+

3

64z2
+ · · ·

)
.

(2.7.1)
For G[a1, b1, c1, d1] in Π1, the leading terms in each expansions around α ∈ (0, π) are

c1 − d1 ∼ (ξ′2(α) + η′2(α))(β − α)2 = s′2(α)(β − α)2,

− 2d1

c1 − d1

∼ −4ξ2(α)

s′2(α)(β − α)2
,

b1c1 − a1d1 ∼ ξ(α)s′(α)(s′(α) sin θ − ξ(α))(β − α)2.

(2.7.2)

Combining with (2.7.1), we know that the leading term in 4b1
d1
√
c1−d1

K(− 2d1
c1−d1 ) is 2 sin θ

ξ(α)
log |β−

α|, which is singular except when α = 0 or π due to ξ(0) = ξ(π) = θ(0) = θ(π) = 0. The

leading term in −4 (b1c1−a1d1)

(c1+d1)d1
√
c1−d1

E(− 2d1
c1−d1 ) is ξ(α)−s′(α) sin θ

ξ2(α)s′(α)
. In other words, the integrand of

Π1 has a log type of singularity. When α = 0 or π, however, due to θ(0) = θ(π) = ξ(0) =
ξ(π) = η′(0) = η′(π) = 0, b1 = d1 = 0. The integrand is smooth on [0, π] because

lim
α→0

µ1(α)ξ(α)s′(α)G[a1, b1, c1, d1] =
πµ1(0)s′(0)η′′(0)

ξ′2(0)
<∞,

which is the same case for α = π.
Similarly, for G[e2, f2, g2, h2] in Π2, we have the following expansions around any fixed

z ∈ (−∞,∞)
g2 − h2 = (y − z)2,

− 2h2

g2 − h2

=
−4

(y − z)2
,

f2g2 − e2h2 = −(y − z)2.

So the leading term in 4f2
h2
√
g2−h2

K(− 2h2
g2−h2 ) is log |y−z|, and that in−4 (f2g2−e2h2)

(g2+h2)h2
√
g2−h2

E(− 2h2
g2−h2 )

is 4
(y−z)2+4

. All in all, the integrand of Π2 also has a log type of singularity.

The last type of singularity happens when evaluating ∂φ
∂s

on S1 which is needed to enforce
the Bernoulli equation. To start, let us first understand how to swap the order of integration
and differentiation in (2.6.6). When evaluating φ1 on S1, for any p = (ξ(α), 0, η(α)) ∈ S1,
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we abuse notation and write φ1(α) = φ1(p(α)). From (2.4.2), we have

φ1(α) =

∫ π

0

∫ 2π

0

µ1(β)ξ(β)s′(β)

4π
√
c1 − d1 cosϕ

dϕdβ =

∫ π

0

µ1(β)ξ(β)s′(β)K(− 2d1
c1−d1 )

π
√
c1 − d1

dβ. (2.7.3)

For α ∈ (0, π), as analyzed before,
K
(
− 2d1
c1−d1

)
√
c1−d1

has leading term − log |β−α|
2ξ(α)

when expanded
around α. This leads to extra caution when interchanging the differentiation and integration
when evaluating ∂φ1

∂α
. To justify (2.6.6), it suffices to prove that the following holds

∂

∂α

(∫ α2

α1

f(β) log |β − α| dβ
)

= p.v.

∫ α2

α1

f(β)

β − α
dβ, (2.7.4)

for any f(β) ∈ C1 and α ∈ (α1, α2) ⊂ [0, π]. Without loss of generality, we assume α2 − α ≥
α− α1. By definition,

p.v.

∫ α2

α1

f(β)

β − α
dβ = lim

ε→0+

(∫ α−ε

κ1

+

∫ κ2

α+ε

)
f(β)

β − α
dβ

= lim
ε→0+

(∫ α2−α

ε

f(α + γ)

γ
dγ −

∫ α−α1

ε

f(α− γ)

γ
dγ

)
= lim

ε→0+

∫ α−α1

ε

f(α + γ)− f(α− γ)

γ
dγ +

∫ α2−α

α−α1

f(α + γ)

γ
dγ

=

∫ α−α1

0

f(α + γ)− f(α− γ)

γ
dγ +

∫ α2−α

α−α1

f(α + γ)

γ
dγ.

The last equality holds because limε→0+
f(α+ε)−f(α−ε)

ε
= 2f ′(α). On the other hand, we have

∂

∂α

(∫ α2

α1

f(β) log |β − α| dβ
)

=
∂

∂α

(∫ α2

2α−α1

f(β) log |β − α| dβ +

∫ 2α−α1

α1

f(β) log |β − α| dβ
)

=

∫ α2

2α−α1

f(β)

α− β
dβ − 2f(2α− α1) log(α− α1) +

∂

∂α

(∫ α−α1

α1−α
f(α + γ) log |γ| dγ

)
=

∫ α2−α

α−α1

f(α + γ)

γ
dγ − 2f(2α− α1) log(α− α1)

+
∂

∂α

(∫ α−α1

0

(f(α + γ) + f(α− γ)) log |γ| dγ
)
.

Since f ∈ C1 and log |γ| is integrable over any closed finite interval, by dominated convergence
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we can move the differentiation inside the integral and apply integration by part to get

∂

∂α

(∫ α2

α1

f(β) log |β − α| dβ
)

=

∫ κ2−α

α−κ1

f(α + γ)

γ
dγ − 2f(2α− κ1) log(α− κ1)

+

∫ α−κ1

0

(f ′(α + γ) + f ′(α− γ)) log |γ| dγ + (f(2α− κ1) + f(κ1)) log(α− κ1)

=

∫ κ2−α

α−κ1

f(α + γ)

γ
dγ − f(2α− κ1) log(α− κ1) + f(κ1) log(α− κ1)

+ lim
ε→0

∫ α−κ1

ε

(f ′(α + γ) + f ′(α− γ)) log |γ| dγ

=

∫ κ2−α

α−κ1

f(α + γ)

γ
dγ − lim

ε→0+

∫ α−κ1

ε

f(α + γ) + f(α− γ)

γ
dγ

− lim
ε→0

(f(α + ε)− f(α− ε)) log ε

=

∫ α−κ1

0

f(α + γ)− f(α− γ)

γ
dγ +

∫ κ2−α

α−κ1

f(α + γ)

γ
dγ.

The last equality is due to the fact that limε→0+
f(α+ε)−f(α−ε)

ε
= 2f ′(α) < ∞ and the fact

that limε→0+
(
(f(α+ε)−f(α−ε)

)
log ε = limε→0+ 2f ′(α̃)ε log ε = 0 for some α̃ ∈ [α−ε, α+ε],

so the claim is proved and (2.6.6) is justified.
When α = 0 or π, due to ξ(0) = ξ(π) = θ(0) = θ(π) = 0, the integrand in Π3 from (2.6.6)

does not have 1
β
-type singularity anymore, so we could ignore the Cauchy principal value

integral. From the fact that a3(0) = d1(0) = 0, by definition we have G[a3, b3, c1, d1] = 0,
resulting in ∂φ1

∂s
(0) = 0. This can be proved rigorously by the theorem on exchanging limit

and differentiation, i.e. if fn converges to f pointwisely and f ′n converges to g uniformly,
then f is differentiable and f ′ = g. Furthermore, it should not be surprising that velocity
generated by charges on bubble surfaces is 0 at the stagnation points due to equal charge
density on the same latitude. It is also easy to see geometrically that the velocity generated
by changes on the tube and by the background flow is also 0 at the stagnation points.
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Chapter 3

Numerical procedure and results

In this chapter, we discretize the HLS formulation and integrate the weak singularity with
generalized Gaussian quadrature based on the singularity type discussed in Chapter 2. The
g = 0 and g 6= 0 cases are discussed separately due to the symmetric nature of the problem
when g = 0. The general numerical procedure is stated for the reader’s convenience. Finally,
we show the wall effect on small oblate bubbles and the existence of elongated bubbles when
g = 0. No steady solution is found when g 6= 0. This case will be studied with a viscous
boundary layer in Chapter 4, and for the inviscid time-dependent problem In Chapter 5.

3.1 Numerical discretization and integration

Now we are ready to explain the numerical procedure. First we make an initial guess of θ(β).
Without loss of generality, we assume that β ranging voer [0, 2π] covers the whole bubble
surface. Instead of representing θ(β) directly, we find it easier to represent θ̃(β) = θ(β)− β
as it is a smooth periodic function, so we treat the Fourier modes of θ̃(β) as the variables
we are solving for. To be precise, since θ̃(kπ) = 0 and θ̃(β) is odd around kπ for k ∈ Z,
its Fourier modes are purely imaginary and correspond to sin(kβ) where k is the frequency.
With N + 1 uniform grid points on [0, π], we treat the coefficients before {sin(kβ)}N−1

k=1 as
the first N − 1 variables we are solving for. As for arc-length element s′(β), due to the
time-invariant nature of the problem, it is fixed as a constant σ to make sure that the grid
points are uniformly distributed with respect to arc-length. The complete elliptic integrals
in (2.6.2) are numerically integrated accurately in double precision using method of [13].

Knowing θ̃(β) and σ, we can get the shape of bubble surface using (3.1). With this,
(2.6.3) can be evaluated at {αk}Nk=0 where αk = kπ

N
on S1; whereas on S2 evaluation points

cannot be chosen uniformly due to the domain (−∞,∞) being infinite. We use the transform
y = cot τ to map R to (−π

2
, π

2
). Geometrically, as shown in Figure 3.1, any q = (1, 0, z) ∈ S2

is mapped to the radial angle τ between the positive z direction and the line connecting the
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Figure 3.1: Transforming any point q ∈ S2 to its angle representation τ .

origin O and q. Under this transformation, we obtain a new integral expression∫ ∞
−∞

µ2(y)G[e, f, g, h](z, y) dy =

∫ π

0

µ̃2(τ)G[e, f, g, h](cotω, cot τ) csc2 τ dτ, (3.1.1)

where µ̃2(·) = µ2(tan(·)) and z = cotω. From now on, we think of µ2 being parametrized by
radial angle τ by default and abuse the notation to write it as µ2(τ). We use a Chebyshev-
Gauss grid {ωk}Mk=1 on (0, π) as the new evaluation points to enforce the second equation in
(2.6.3). One caveat is that we represent µ2(τ) using Chebyshev polynomials of degree greater
than 0, not including the constant polynomial. This is because the constant polynomial is
the one-dimensional kernel of (2.6.3) as shown in Section 2.5.

Treating the N + 1 Fourier modes of µ1(β) and the M Chebyshev modes (the coefficients
before Chebyshev polynomials of degree 1, 2, · · · ,M) of µ2(τ) as the N +M +1 variables we
are solving for, the evaluation of (2.6.3) at {αk}Nk=0 and {ωk}Mk=1 gives N + M + 1 defining
equations. µ1(β) and µ2(τ) are then uniquely constructed. To be more precise, since µ1 is
symmetric about kπ for any integer k, the N + 1 Fourier modes only contain real parts,
which correspond to the coefficients before {cos(kπ)}Nk=0.

With all the grid points on S1 and S2 chosen as above, to numerically evaluate all the
above integrals defined on (0, π), we first integrate them on each panels, i.e. {(αj, αj+1)}N−1

j=0

for integrations on S1, and {(ωj, ωj+1)}M−1
j=1 for integrations on S2, and then add all these

N sub-integrals and M − 1 sub-integrals together respectively. For regular integrals, the
integrand can be well approximated on each panels by Legendre polynomials, so we use
classical Gaussian quadrature to integrate on panels. Singular integrals, however, must be
treated differently.
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Due to the singularities discussed in the last section, Π1 and Π2 should be treated dif-
ferently from the others. For the other two integrals, since they have smooth integrands,
on each subinterval (αk−1, αk) and (ωk−1, ωk), the integrand can be approximated well by
polynomials and we can use classical Gaussian quadrature to integrate.

For Π1 in (2.6.3), suppose we are evaluating it with α = αk, when integrating on
(αk−1, αk) and (αk, αk+1), due to the singularity at θk, we need to approximate the inte-
grand by {1, log |α − αk|, α, α log |α − αk|, α2, α2 log |α − αk|, · · · }, which can be done using
generalized Gaussian quadrature with log type of singularity [31]. For integration on non-
adjacent subintervals, we still use classical Gaussian quadrature to approximate the integral.
When k = 0 or N though, the integrand on adjacent subinterval is smooth as we analyzed
before, so classical Gaussian quadrature is applied to all the subintervals.

Π2 in (2.6.3) is dealt with similarly when the evaluation point ωk is close to the middle
of (0, π). When ωk is close to 0 or π, however, cotω might be very far from cot τ even
though ω and τ are close, so we subdivide the adjacent sub-intervals (ωk−1, ωk) into two
parts (ωk−1, ωk−1 + sin2 ωk) and (ωk−1 + sin2 ωk, ωk). We use classical Gaussian quadrature
for the first part as usual due to the smoothness of integrand. For the second part, we
subtract the singularity µ2(ωk) log | cotωk − cot τ)| csc2 τ in the integrand and then add it
back. The new integral can be approximated by classical Gaussian quadrature, and then we
add back ∫ ωk−1

ωk−1+sin2 ωk

µ2(ωk) log | cotωk − cot τ | csc2 τ dτ = −µ2(ωk)l(log |l| − 1),

with l = cot(ωk−1 + sin2 ωk) − cot(ωk−1). This singularity subtraction trick can also be
applied to (ωk, ωk+1) similarly.

Here we present in Figure 3.2 the µ1 and µ2 solutions of (2.6.3) solved in the above
numerical scheme. With N = M = 120, the Fourier modes of µ1 decay down to 10−12, but
the Chebyshev modes only decay to 10−6. Increasing N will make the Fourier modes decay
even more, but increasing M will not make the Chebyshev modes decay more. From Figure
3.2 we see that at τ = 0 and τ = π, µ2(τ) seems to have a log type of singularity. A function
with singularities at the endpoints cannot be approximated well by Chebyshev expansions,
thus making the Chebyshev modes not decay to round-off error with M big enough. Notice
that for different bubble shapes, we do not have a systematic way to recognize endpoint
singularity of µ2 yet. Since the endpoint singularity of µ2 is very far from the bubble
physically in the lab frame, it will have a small influence on the bubble shape. So we stick
to the above numerical scheme at this point.

After solving for µ1 and µ2, we define the error to be the evaluation of the left hand side
of the Bernoulli equation at {αk}Nk=0 subtracted by a constant C, which is another input
variable. One caveat is evaluating the Cauchy principal value in Π3 when k 6= 0, N . Again
we use the same ‘subtract the singularity’ trick on intervals adjacent to αk, i.e. (αk−1, αk+1)
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Figure 3.2: µ1(α) with α ∈ [0, π] on a round bubble of radius 0.9 and µ2(τ) with τ ∈ [0, π]
on the infinite tube solved with N = M = 120 when Neumann conditions are satisfied on
S1 and S2.

as below:

p.v.

∫ αk+1

αk−1

σµ1(β)ξ(β)G[a3, b3, c1, d1] dβ = p.v.

∫ αk+1

αk−1

σµ1(β)ξ(β)h(αk, β)

β − αk
dβ

= σ
(∫ αk+1

αk−1

µ1(β)ξ(β)h(αk, β)− µ1(αk)ξ(αk)h(αk, αk)

β − αk
dβ + µ1(αk)ξ(αk)h(αk, αk)

p.v.

∫ αk+1

αk−1

1

β − αk
dβ
)

= σ

∫ αk+1

αk−1

H(αk, β)−H(αk, αk)

β − αk
dβ,

(3.1.2)
where h(αk, β) = (β − αk)G[a3, b3, c1, d1](αk) and H(αk, β) = µ1(β)ξ(β)h(αk, β). Notice the

integrand H(αk,β)−H(αk,αk)
β−αk

does not have a 1
β−αk

-type singularity anymore, but it still has a log
singularity around αk, so we again use the generalized Gaussian quadrature to evaluate the
integral. Since the interval (αk−1, αk+1) is symmetric about ak,

H(αk,αk)
β−αk

contribute nothing
to the Gaussian quadrature integration due to the symmetry of quadrature grids around αk.
It means we only need to evaluate H(αk,β)

β−αk
when using generalized Gaussian quadrature.

3.2 Numerical procedure

After the detailed discussion on discretizing the problem and integrating accurately, we are
ready to introduce the whole procedure on solving for a numerical solution of a steady rising
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bubble.
With σ fixed, our goal is to find the unknown function θ̃(β) such that the corresponding

velocity potential generated by the layer potential theory satisfies the Bernoulli equation.
Given an initial guess of θ̃(β) and Bernoulli constant C, the bubble surface is reconstructed
using (3.1). µ1 and µ2 are then solved by (2.6.3). Lastly, the value of evaluating the left-
hand-side of (2.6.8) is the error we want to minimize. When the error is 0, we get one
solution.

Since the problem is very non-linear, we use the Levenberg Marquardt algorithm [40]
[51]. This algorithm combines gradient descent and Newton’s method in a trust-region
framework. It has the advantage that the algorithm can still converge to the solution even
with a poor initial guess, and the final iterations converge quadratically for zero-residue
problems. The most time-consuming step is computing the approximate Jacobian matrix of
the whole problem by finite difference.

Since we represent and solve the solutions ‘with and without gravity’ cases differently,
we discuss the detailed numerical procedure separately as follows.

Without gravity

First, we study the bubble shape when there is no gravity, i.e. Froude number F = ∞. In
this case, the Bernoulli equation is simplified to be(∂φ1

∂s
+
∂φ2

∂s
− sin θ(α)

)2

+
2

W

(s′(α)

θ′(α)
+
ξ(α)

sin θ

)
− C = 0, α ∈ [0, π].

Suppose φ(x, y, z) = φ1(x, y, z) + φ2(x, y, z) − z is a solution to (2.2.2). It is easy to show
that −φ1(x, y,−z) − φ2(x, y,−z) − z will also be a solution to the system if (x, y, z) ∈ D
means (x, y,−z) ∈ D, i.e. if S1 is symmetric about α = π

2
. Solving for bubble shape that

is symmetric about α = π
2

we assume both N and M are even. In this case, θ̃(β) is odd
about (k + 1

2
)π and kπ for all k ∈ Z. We expect ξ(β) to be even about (k + 1

2
)π and kπ for

all k ∈ Z. Setting η(π
2
) = 0, η(β) is odd about (k + 1

2
)π and even about kπ for all k ∈ Z.

Except for the obvious fact that µ1(β) is even about kπ for any k ∈ Z, from (2.6.3) we see
that µ1(β) and µ2(τ) must be odd about β = (k + 1

2
)π and τ = π/2 respectively.

With all the symmetries above, the unknown variables will be the N
2
− 1 even Fourier

sine modes of θ̃(β), i.e. coefficients before {sin(2kβ)}
N
2
−1

k=1 , and also the Bernoulli constant
C. So there are in total N

2
unknown real numbers to find. Given an initial guess of these N

2

real numbers, we treat the odd Fourier cosine modes of µ1 and µ2 as intermediate variables,
which can be solved by evaluating (2.6.3) only at grid points with positive z due to symmetry,

i.e. {ak}N/2−1
k=0 and {ωk}M/2

k=1 . All the other constants, i.e the arc-length element σ and Weber
number W , are fixed. Later we will see that the problem size is cut into half relative to that
of the general case with gravity.



CHAPTER 3. NUMERICAL PROCEDURE AND RESULTS 26

With gravity

For the general case when gravity is non-zero, we lose the symmetry about β = π
2

of the

problem due to the 2
F 2 z term in the Bernoulli equation. Now with θ̃(β) being odd only about

kπ for all k ∈ Z, the unknown variables will be the N −1 Fourier sine modes of θ̃(β), i.e. the
coefficients before {sin(kβ)}N−1

k=1 , and also the Bernoulli constant C. One caveat is that not
every θ̃(β) of the above form gives us a legitimate profile curve. This is because ξ(π) = 0
is not guaranteed in the non-symmetric case. With σ fixed as in the g = 0 case, ξ(π) = 0
is equivalent to imposing

∫ π
0

cos(θ(β)) dβ = 0. Notice that not every θ(β) satisfies this. To
make this happen, we abuse notation and split the periodized tangent angle into two parts,
one part consisting of all sine series terms with frequency higher then 1, denoted by θ̃(β),
and another another part c0 sin β, i.e. the first Fourier modes. We then impose the following
condition: ∫ π

0

cos(θ(β)) dβ =

∫ π

0

cos(θ̃(β)− β + c0 sin β) dβ = 0. (3.2.1)

Given any θ̃(β) that is periodic and odd around kπ, we solve for c0 by first integrating
(3.2.1) using the Trapezoidal rule and then using Newton’s iterations to solve it. After the
projection, we treat θ(β) = θ̃(β)−β+c0 sin β as the tangential angle and all the calculations
start from here.

The oddness of θ̃(β) about kπ still holds here, and we treat the N − 2 imaginary Fourier
modes of θ̃(β) with frequency between 2 and N−1 (i.e. the coefficients before {sin(kβ)}N−1

k=2 )
as free variables. Intermediately, we need to calculate the first mode c0 as discussed above
to enforce (3.2.1). Combined with the Bernoulli constant C, and the Weber number W ,
there are N variables in total, with N + 1 residues from evaluating (2.6.8) at {αk}Nk=0.
The arc-length element σ and Froude number F are treated as fixed constants. Although
the problem seems overdetermined, increasing the grid number N and M until spectral
accuracy is achieved should still capture the solution using Levenberg-Marquardt algorithm
if one exists.

3.3 Numerical solution branches

Several constants control the solutions implicitly. The constant arc-length element σ, which
is equivalent to the length of the bubble surface profile curve; the Froude Number F ; and the
Weber number W ; To see under what relation between these constants there exists a solution,
we first fix F and start with small σ and gradually increase it using numerical continuation.
Since the Fourier modes of θ̃ are the variables we are solving for in the Levenberg-Marchquet
algorithm, we say we get a legitimate numerical solution if the Fourier modes decay and the
Bernoulli equation evaluation errors at N grid points are in order of 10−9 on average.
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Figure 3.3: The right-hand side cross-sectional profile curve of a steadily rising bubble with
one (top left), two (bottom left), and three (right) humps. The infinitely long tube wall is
always placed at x = 1 and the far-field background flow is normalized to U = −1.

Without gravity

The case g = 0 corresponds to an infinite Froude number F = ∞, so we are left with two
constants, the arc-length element σ, which controls the profile curve length of the bubble,
and the Weber number W . We wish to determine under what relation of these two constants
there exists a solution.

Each curve in Figure 3.3 represents the right-hand side cross-sectional shape of a bubble
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Figure 3.4: The magnitude of even Fourier modes |c2n| of θ̃(α) with 2n the even frequency
versus n in the no gravity case. Each relation corresponds to one representative from each
solution branch, i.e. σ = 0.5 from the one hump case, and σ = 1.0 from the cases with two
and three humps.

rising steadily at unit speed inside the potential flow filled in an infinitely long tube. The
top left panel in Figure 3.3 shows the solution branches of a small oblate bubble with arc
length element σ increasing from 0.1 to 0.6. We start with a sphere with σ = 0.1 as the
initial guess, and get one solution with σ = 0.1. By increasing σ gradually, new curves are
found by numerical continuation. Similarly in the bottom left panel and the right panel,
each curve corresponds to a steady shape with different σ ranging from 0.1 to 1.2 and 0.1
to 1.6 respectively. Numerically, to make Fourier modes of θ̃ decrease to the round-off error,
we need more and more grid points on S1. This can be illustrated in Figure 3.4 from the
exponential decay of the Fourier modes magnitude of θ̃(α) with one hump (σ = 0.5), two
humps (σ = 1.0) and three humps (σ = 1.0). We let N = 96 in the ‘one-hump case’,
N = 216 in the ‘two-humps case’ and N = 240 in the ‘three-humps case’. As the number of
humps increases, the Fourier modes magnitude decays more slowly. 120 MPI threads have
been used to run the problem in the ‘three-humps case’, so to obtain the full decay of the
Fourier modes, larger N and more MPI threads need to be used. Notice that in all three
cases, σ cannot be increased indefinitely due to the wall at x = 1. As σ becomes larger, the
effect of the wall pushing the bubble away from it becomes bigger, making it harder to find
a convergent solution. If we insist on fixing σ to be larger than the threshold in the current
branch, the searching will be pushed to another solution branch with a higher number of
humps. Very likely, the Levenberg-Marquardt algorithm will land on a curve with one more
hump than the current one. Interestingly, on each solution branch, the Weber number W
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decreases continuously as σ increases.
For a fixed number of humps and a fixed σ, we can only get one smooth bubble shape

numerically. To be precise, when N is not big enough and Fourier modes of θ̃ only decay
to 10−6, numerically we can get several bubble shapes characterized by different Bernoulli
constant C. As we increase N however, all these numerical solutions ‘converge’ to a smooth
solution with a small C. But theoretically, there still might exist other solution branches for
a fixed number of humps.
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Figure 3.5: Three solution branches of different bubble shapes(1, 2, and 3 humps) relating
σ and W obtained from numerical continuation.

Figure 3.5 demonstrates the above three solution branches relating W and σ. Since with
a fixed number of humps, σ cannot be increased indefinitely, all solution branches are not
infinitely extendable to the right and there must be an endpoint to each of them. We can
see that these solutions look similar to unduloid, which is a type of constant-mean-curvature
surface [10]. We can think of our solution shapes as a compact modification of them. Since
an unduloid can be extended with any number of humps, we believe that for a fixed number
of humps there exists at least one solution branch. If this is true, there must be infinitely
many solution branches. Bubbles with more humps need to be represented by more Fourier
modes to get the accuracy, and so far we do not have enough time to search for other
solution branches with a higher number of humps. If we randomly choose a (σ,W ) pair
very close to a solution branch, the Levenberg-Marquardt algorithm will not converge to a
solution. This makes us believe that the union of all these solution branches does not cover
the whole (σ,W ) plane and that for a fixed T , there are countably infinitely many bubbles
that can rise steadily with unit speed. The Swift-Hohenberg equation with cubic and quintic
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nonlinearities also has an infinite hierarchy of solution branches with a different number of
humps [5].

With gravity

Using the results from the no gravity case and increasing g slowly, we find no convergent
solution no matter how small the gravity is, with or without the tube wall S2. This means
that under the current inviscid model, bringing in gravity breaks the symmetry of the bubble
and the kinetic energy and the surface tension stress cannot be balanced on the entire bubble
surface. We will demonstrate the dynamics of an initially symmetric bubble under this setup
in Chapter 5 to see how gravity affects its shape and movement.

Wall effect

The results in the previous two subsections concern a bubble in an infinitely long tube, and
here we show the wall effects on the existence of a steadily rising bubble. We will compare
the shape of the steadily rising bubble with and without an infinitely long tube S2. When
there is no tube, the bubble rises in open water, for example a big water tank or the ocean.
When there is gravity, no solution is found without wall. When there is no gravity, we treat
the solution from the wall case as the initial guess and search for solution in the case of
no wall. Since our goal is to compare the solutions for these two cases, we still choose the
imaginary tube radius H as the reference length even without a tube. Surprisingly for open
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Figure 3.6: Comparison of steadily rising bubbles shapes with or without wall at x = 1.

water we also get rising bubbles with more than one hump using numerical continuation.
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The fluid still accelerates around the outer oscillations and is pulled in by surface tension
there, and is slowed down and pushed back out by surface tension near the inner oscillations
of the bubble shape. In Figure 3.6, we show two steady-rising-bubble shapes without a wall
with different arc-length element σ, obtained by numerical continuation. The other two
curves are the corresponding initializations which are also the steady-rising bubble shapes in
the case of a wall. We see that the tube bubble is more oblate than the open water bubble.
For the other two constant variables, the Bernoulli constant C and the Weber number W ,
C is smaller with the wall than without, but W is larger. In this thesis, we concentrate on
the bubble movement inside the infinitely long vertical tube, so from now on all the bubbles
shown are in the presence of a wall unless stated otherwise.

3.4 Time complexity and parallel computing

The most time-consuming part of the problem lies in computing the Jacobian matrix, which
requires O

(
n(M +N + 1)4

)
flops in the serial version for the general case when g 6= 0. Here

N + 1 and M are the number of Fourier and Chebyshev modes, and n is the maximum
number of quadrature grids on a panel. If we run the serial program on a single machine
with 109 FLOPS, with M +N = 70 and n = 40, it will take roughly one second to calculate
the Jacobian matrix ignoring the big constant in complexity contributed from calculating
elliptic integrals K and E. But to get spectral accuracy, 35 nodes in the right half of the
profile curve is not enough.

We use OpenMP and MPI to parallelize the serial version. Since OpenMP does not scale
as well as MPI when there are many threads, we use MPI for calculating the Jacobian matrix
and each thread takes care of one column naturally by using finite difference approximation
without affecting other computations on other threads. The time that takes the program to
finish varies with the problem size and the initial guess that we give it. If the initial guess
is close to the local minimum, only one or two Jacobian evaluations are required and within
several minutes a convergent solution will be found with N = 120 and M = 72. However
with the same number of grid points, if the initial guess is too far away from the solution,
the program can take up to five hours before failing to find the solution.
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Chapter 4

The viscous model

4.1 Introduction

Using the inviscid potential flow model of Chapter 2 and 3, we have not found any numerical
solutions with non-zero gravity. This implies that according to our initial formulation, the
surface tension force, gravitational force, and dynamic pressure cannot be balanced through-
out the bubble surface. One element missing from our idealized model is the effect of viscosity
— no fluids (aside from superfluid helium) are inviscid in practice. At high Reynolds num-
ber, viscous effects may be insignificant throughout large regions of the flow field and these
regions may be treated as if the fluid were inviscid. However, the effect of viscosity must in
general be taken into account in thin layers adjacent to boundaries in the flow. The essence
of boundary layer theory in fluid mechanics, applicable only at high Reynolds number, is
that viscous effects are considered to be restricted to thin layers called boundary layers and
that certain simplifications can be made in the boundary layer because of its thinness [7]
[42]. In addition to distorting the bubble, gravity exerts a buoyancy force on it, and a steady
bubble is possible only if the flow exerts on it an opposite drag force. This force is supplied
partially by the viscous stress. So even though our primary interest is in the effect of gravity,
we still need to include viscosity stress in our equation in order to find steadily rising bubbles
with g > 0.

4.2 Mathematical formulation

With the notion of ‘viscous potential flow’, following the convention from [35], we only need
to change the Bernoulli equation (2.1.4) to be

1

2
ρ|∇φ̃|2 + ρgz̃ + κ̃T + 2ρν

∂ũ

∂n
= constant,

where ∂ũ
∂n

= ∂2φ̃
∂n2 is the normal derivative of the normal velocity ũ on the bubble surface, and

ν the kinematic viscosity. We neglect shear stresses in the air so that a constant pressure
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normal stress is still imposed on the fluid at the boundary [27]. The new term capturing the
normal component of the normal viscous stress contributes to the equilibrium bubble shape.
Using the same non-dimensionalization transfrom as in Chapter 2, we get the dimensionless
version

|∇φ|2 +
2

F 2
z +

2

W
κ+ 4ν

∂2φ

∂n2
= C on S1. (4.2.1)

With this small modification, the rest of the single layer potential formulation remains un-
changed when solving for the charge densities on S1 and S2. Now let us compute ∂2φ

∂n2 in the
HLS framework. Due to φ being harmonic on D, at any fixed point p = (ξ(α), 0, η(α)) ∈ ζ, in
the local cartesian coordinate system oriented along the vectors n = (− sin θ(α), 0, cos θ(α)),
t = (cos θ(α), 0, sin θ(α)) and e = (0, 1, 0) we have

∂2φ

∂n2
+
∂2φ

∂t2
+
∂2φ

∂e2
= 0.

So to find ∂2φ
∂n2 , it suffices to compute −∂2φ

∂t2
− ∂2φ

∂e2
. We first relates the ∂2φ

∂t2
with the second

derivative of velocity potential restricted on profile curve ζ(α). We have

1

σ

∂φ(ζ(α))

∂α
= ∇φ(ζ(α)) · ζ

′(α)

σ
= ∇φ(ζ(α)) · t

and

1

σ2

∂2φ(ζ(α))

∂α2
=

1

σ

∂

∂α

(
∇φ(ζ(α)) · t

)
= t′Hφt +∇φ(ζ(α)) · θ

′(α)n

σ
=
∂2φ

∂t2
, (4.2.2)

where Hφ is the Hessian of φ and the fact ∂φ
∂n

= 0 is used in the last equality. Similarly

we relates the ∂2φ
∂t2

with the second derivative of velocity potential restricted on the circle of
latitude γ(ϕ) =

(
ξ(α) cosϕ, ξ(α) sinϕ, η(α)

)
. We have

1

ξ(α)

∂φ(γ(ϕ))

∂ϕ

∣∣
ϕ=0

= ∇φ(γ(0)) · γ
′(0)

ξ(α)
= ∇φ(γ(ϕ)) · e

and
1

ξ2(α)

∂2φ(γ(ϕ))

∂ϕ2

∣∣
ϕ=0

=
1

ξ(α)

∂

∂ϕ

(
∇φ(γ(ϕ)) · (− sinϕ, cosϕ, 0)

)∣∣
ϕ=0

=e′Hφe +
∇φ(γ(0)) · (−1, 0, 0)

ξ(α)
=
∂2φ

∂e2
− ∂φ

∂t

cos θ(α)

ξ(α)
= 0,

(4.2.3)

where the last equality is due to φ(γ(ϕ)) being a constant function by axisymmetry. Com-
bining (4.2.2) (4.2.3) we have the final expression

∂2φ

∂n2
(p) = − 1

σ2

∂2φ(ζ(α))

∂α2
+

cos θ(α)

σξ(α)

∂φ(ζ(α))

∂α
. (4.2.4)

Numerically, derivatives with respect to α are easy to compute using the FFT. Notice that
when α = 0 or π, after applying L’Hospital’s rule to the second part, both terms cancel and
the normal viscous stress vanishes at the two stagnation points.
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4.3 Numerical solution

We use the steady shape for the g = 0 case from Chapter 3 as an initial guess, and treat
viscosity as an unknown that is solved for along with the bubble shape using the Levenberg-
Marquardt method. There are four constants that control the physics: the Froude number
F , the Weber number W , the kinematic viscosity ν, and the arc-length element σ. We fix F
and σ, and solve for the bubble shape with W and ν being variables. Figure 4.1 shows the
change of the steadily rising bubble as F goes down from infinity.

5.2.
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Figure 4.1: Right-hand cross-sectional profile of a steadily rising bubble for several values of
the Froude number F (left) and the decay of Fourier modes |cn| (1 ≤ n ≤ 198) of θ̃(α) when
F = 14.14 with N = 200 and M = 120 (right).

We start with a symmetric bubble with σ = 0.6, which is a steady solution of the zero
gravity case. Treating W and ν as unknowns, decreasing F when F is large will change
the solution very little. When F is small, however, the solution is very sensitive to changes
in F . Both W and ν become bigger as F increases. The Bernoulli equation error goes
down to 10−9 on average and the Fourier modes of these bubble shapes decrease to 10−6

with N = 72 and M = 60. However, if M and N are increased, the odd Fourier modes of
θ̃(α) only decrease to 10−7, and the even modes decrease to 10−10. From the right panel
of Figure 5.2, the sequence {|c2k−1|}99

k=1 reaches 10−7 when n = 2k − 1 is around 79 and
will not decrease more for bigger n. The sequence of even modes {|c2k|}99

k=1 achieves 10−10

at around n = 2k = 170. Compared with the decay of Fourier modes in Figure 3.4 in the
zero gravity case where odd modes are directly set to 0 by symmetry, we think the reason
of the odd modes not decaying as well as the even modes lies in the numerical treatment of
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the infinite tube. On one hand, the singularity of µ2 after the cotangent transform shown
in Figure 3.2 might bring in numerical errors. We suspect that the asymptotic behavior of
µ2(τ) as τ approaches 0 and π has some fractional power that is not well-represented by
Chebyshev polynomials on [0, π]. On the other hand, in our methods the infinite tube is
always treated as being symmetric about the xy plane, i.e. the large z case is treated in the
principal value sense numerically. Each point p = (1, 0, z) ∈ S2 is treated differently in terms
of integration on S2. In reality, however, due to the infiniteness of S2, all these p are in some
sense no different from each other. We believe that this discrepancy between our numerical
representation and reality due to the infinite tube contributes to the problem.
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Chapter 5

Time-dependent problem

5.1 Mathematical set up

In this chapter we consider the time dependent problem in which the initial bubble shape
S1(0) and the initial velocity potential φ(ζ(β), 0) with ζ ∈ S1(0) are given, and the bubble
shape S1(t) evolves with time. Before non-dimensionalization, the steady Bernoulli equation
(2.1.4) is changed to the following unsteady one

ρ
∂φ̃

∂t̃
+
ρ

2
|∇φ̃|2 + ρgz̃ + T κ̃ = C̃(t) on S̃1(t).

After non-dimensionalization with transformations t̃ = H
U
t (U is the nonzero initial bubble

rising velocity), φ(x, y, z) = φ̃(x̃,ỹ,z̃)
UH

, x̃ = Hx, ỹ = Hy, z̃ = Hz, R̃1 = HR1, R̃2 = HR2 and

T = T̃ /H, we have the non-dimensionalized unsteady Bernoulli equation

∂φ

∂t
+

1

2
|∇φ|2 +

z

F 2
+

κ

W
= C(t) on S1(t). (5.1.1)

Similar to the steady case, the velocity potential is decomposed as

φ(t) = φ1(t) + φ2(t)− z, (5.1.2)

where −z means that we are still choosing the unit upward rising frame as the model frame.
Suppressing the dependence on spatial coordinates (x, y, z) and time coordinate t in the
notation, the complete dynamic system we are solving for is

∆φ = 0 in D,
φ(p, 0) = χ0(p) on the given initial bubble surface S1(0),

∂φ

∂n
= 0 on the cylindrical wall S2 = {x2 + y2 = 1},

∂φ

∂z
= −1 on z = ±∞,

∂φ

∂t
+

1

2
|∇φ|2 +

z

F 2
+

κ

W
= C(t) on S1(t),

(5.1.3)
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where χ0(p) is the given initial velocity potential value at p.

5.2 Representing the solution using single and double

layer potentials

One big difference between the unsteady problem and the steady-state problem is the bound-
ary condition on S1. For the steady problem, it is an exterior Neumann condition, whereas
in the unsteady problem it is an exterior Dirichlet condition. Based on this, total velocity
potential is still decomposed into three parts: φ1 is generated by a dipole density µ1 on S1;
φ2 is generated by a charge density µ2 on S2; and −z describes the background downward
unit speed flow with

φ1(p) =
1

4π

∫
S1

(p− q) · nq
|p− q|3

µ1(q) dAq,

φ2(p) =
1

4π

∫
S2

µ2(q)

|p− q|
dAq,

(5.2.1)

where as before, n(q) is the normal derivative at q ∈ S1 pointing into fluid domain D.
Using the exterior Dirichlet boundary condition on S1, (2.3.3b), and interior Neumann

boundary condition on S2, (2.3.2a), we obtain

φ(p) =
µ1(p)

2
+

1

4π

∫
S1

(p− q) · nq
|p− q|3

µ1(q) dAq +
1

4π

∫
S2

µ2(q)

|p− q|
dAq − p3

= χ0(p), p ∈ S1, (5.2.2a)

∂φ

∂np
(p) =

µ2(p)

2
+

1

4π

∫
S1

∂

∂np

((p− q) · nq
|p− q|3

)
µ1(q) dAq +

1

4π

∫
S2

(q − p) · np
|p− q|3

µ2(q) dAq,

= 0, p ∈ S2, (5.2.2b)

where p3 is the z coordinate of p. Notice that the first integrand in (5.2.2b) can be simplified
as

∂

∂np

((p− q) · nq
|p− q|3

)
= −3

(
(p− q) · nq

)(
(p− q) · np

)
|p− q|5

+
npnq
|p− q|3

due to p never coinciding with q: no singularity is involved.
Now let us work out the detailed expression of (5.2.2) using the HLS framework as in the

previous chapter. To make the notation cleaner, we use F [a, b, c, d, e] to denote the following
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integral

F [a, b, c, d, e] : =

∫ 2π

0

a+ b cosϕ+ c cos2 ϕ

(d− e cosϕ)5/2
dϕ

=
4

3e2(d− e)3/2(d+ e)2

(
(−2cd3 + bd2e+ 4ade2 + 6cde2 + 3be3)E

(
− 2e

d− e

)
+ (d+ e)(−e(bd+ ae) + c(2d2 − 3e2))K

(
− 2e

d− e

))
.

(5.2.3)

Notice that when e = 0, the above integral can be evaluated analytically to obtain π(2a+c)

d5/2
.

For (5.2.2a), without loss of generality, p = (ξ(α), 0, η(α)). For the integration over S1,
q = (ξ(β) cosϕ, ξ(β) sinϕ, η(β)), and nq = (− sin θ(β) cosϕ,− sin θ(β) sinϕ, cos θ(β)). For
the integral over S2, q = (cosϕ, sinϕ, y). After parametrization, (5.2.2a) can be expressed
as

2πµ1(α) +

∫ π

0

µ1(β)ξ(β)sβG[a3, b3, c1, d1] dβ +

∫ ∞
−∞

µ2(y)
4K
( −2h1
g1−h1

)
√
g1 − h1

dy

= 4π(η(α) + χ0(α)),

(5.2.4)

where
a3 = ξ(β) sin θ(β) + (η(α)− η(β)) cos θ(β), b3 = ξ(α) sin θ(β),

and c1, d1, g1 and h1 having the same formula as in (2.6.3).
For (5.2.2b), without loss of generality, p = (1, 0, z) and np = (1, 0, 0). For integration

over S1, q = (ξ(β) cosϕ, ξ(β) sinϕ, η(β)) and nq = (− sin θ(β) cosϕ,− sin θ(β) sinϕ, cos θ(β)).
For the integral over S2, q = (cosϕ, sinϕ, y). After parametrization, (5.2.2b) can be ex-
pressed as

2πµ2(z) +

∫ π

0

µ1(β)ξ(β)sβF [a4, b4, c4, c2, d2] dβ +

∫ ∞
−∞

µ2(y)G[e2, f2, g2, h2] dy = 0, (5.2.5)

with
a4 = −3

(
ξ(β) sin θ(β) + (z − η(β)) cos θ(β)

)
,

b4 = sin θ(β)
(
2 + 2ξ2(β)− (z − η(β))2

)
+ 3 cos θ(β)(z − η(β))ξ(β),

c4 = −ξ(β) sin θ(β),

and c2, d2, e2, f2, g2, h2 are the same as in (2.6.3).
(5.2.4) and (5.2.5) together solves µ1(α) and µ2(z), which gives us the velocity potential

everywhere by plugging into (5.2.1). Two other elements needed later are the normal velocity
∂φ
∂n

and the tangential velocity ∂φ
∂s

on S1, and we compute them here for later usage. For any
fixed p = (ξ(α), 0, η(α)) ∈ S1, since φ1 is a double layer potential, by (2.3.4) and (2.3.1d), its
normal velocity defined in the Cauchy principal value sense is continuous across the surface.
Solving for µ1 and µ2 through (5.2.2) is a key step in the dynamics computations, thus the
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solvability of it should be well studied before proceeding. By the divergence theorem, it is
easy to prove that ∫

S1

(p− q) · nq
|p− q|3

dAq = 0, p ∈ D,

2π +

∫
S1

(p− q) · nq
|p− q|3

dAq = 0, p ∈ S1,

so [µ1, µ2] = R(1, 0) is the one dimensional kernel of the system. Thus we omit the zeroth
modes in the Fourier expansion of µ1.

5.3 Hyper-singularity removal and singularity

analysis

3D vortex sheets with axial symmetry have been well studied theoretically [6], but we need
to compute the singularities using our parametrization in all the integrals to know how to
remove them and what numerical schemes to use to integrate them. First, notice that the
formula for φ2 is the same as in the steady case, so all the calculations involving it stay
the same as before. Evaluations of

∫
S2

µ2(q)
|p−q| dAq and

∫
S2

(q−p)·np
|p−q|3 µ2(q) dAq on S2 both involve

log |p − q| type of singularity when q approaches the evaluation point p. However, φ1 is
different. For any fixed p = (ξ(α), 0, η(α)) ∈ S1, let q = (ξ(β) cosϕ, ξ(β) sinϕ, η(β)), we
have

φ1(α) =
1

4π

∫ π

0

µ1(β)ξ(β)sβG[a3, b3, c1, d1] dβ, (5.3.1)

where a3 = ξ(β) sin θ(β) − (η(β) − η(α)) cos θ(β) and b3 = ξ(α) sin θ(β). By (2.6.2) (2.7.1)
and a Taylor expansion around α, we have b3c1 − a3d1 = O(β − α)2 and the integrand has
a log |β − α| type of singularity. Also when α = 0 or π, the integrand is smooth as in the
steady case. We can use the same method to integrate it numerically as in the steady case.

For normal derivatives of φ1 on S2,
∫
S1

∂
∂np

( (p−q)·nq
|p−q|3

)
µ1(q) dAq in (5.2.2b) has a smooth

integrand due to the evaluation point p and integration point q never coinciding. When they
do coincide however, the integrand is hyper-singular. In more detail, let p = (ξ(α), 0, η(α))
so that∫

S1

∂

∂np

((p− q) · nq
|p− q|3

)
µ1(q) dAq =

∫ π

0

µ1(β)ξ(β)sβF [a5, b5, c5, c1, d1] dβ, (5.3.2)

where the formula of c1, d1 are as before and

a5 = 3ξ(α)ξ(β) sin θ(α) sin θ(β) + 3(η(β)− η(α))ξ(β) cos θ(α) sin θ(β)−
3ξ(α)(η(β)− η(α)) sin θ(α) cos θ(β) + (ξ2(α) + ξ2(β)− 2(η(β)− η(α))2) cos θ(α) cos θ(β),

b5 = (−2ξ2(α)− 2ξ2(β) + (η(α)− η(β))2) sin θ(α) sin θ(β) + 3ξ(α)(η(α)− η(β)) cos θ(α)

sin θ(β) + 3ξ(β)(η(β)− η(α)) sin θ(α) cos θ(β)− 2ξ(α)ξ(β) cos θ(α) cos θ(β),

c5 = ξ(α)ξ(β) sin θ(α) sin θ(β).
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When β approaches α, we have

−2c5c
3
1 + b5c

2
1d1 + 4a5c1d

2
1 + 6c5c1d

2
1 + 3b5d

3
1 ∼ −ξ6(α)σ2(β − α)2,

−d1(b5c1 + a5d1) + c5(2c2
1 − 3d2

1) ∼ 12ξ2(α)σ2(β − α)2.

If α = 0 or π, we have

F [a5, b5, c5, c1, d1] = F [a5, 0, 0, d, 0] =
2πa4

c
5/2
1

∼ O(β − α)−3.

Combined with the only extra term ξ(β) ∼ O(α− β) in the integrand, we get a 1/(β − α)2

type singularity in the integrand: a hyper-singularity. When α ∈ (0, π), using (2.7.1) (2.7.2),
we have a F [a5, b5, c5, c1, d1] also containing leading singularity of type 1/(β − α)2, a hyper-
singularity. So unlike before where at α = 0 or π the integrand is treated differently, here at
any α ∈ [0, π] the integrand formally contains a hyper-singularity. This is why we have to
interpret this integral in the principal value sense as below.

Physically, H[µ1](p) is the limit of pε = p + εnp approaching p from outside the bubble.
We introduce a new auxiliary function µ̂ defined both on and off of the surface S1 and write

H[µ1](p) = lim
ε→0+

∫
S

∂2N(pε, q)

∂np∂nq
µ1(q) dAq

= lim
ε→0+

∫
S

∂2N(pε, q)

∂np∂nq
(µ1(q)− µ̂1(q)) dAq + lim

ε→0+

∫
S

∂2N(pε, q)

∂np∂nq
µ̂1(q) dAq

=

∫
S

∂2N(p, q)

∂np∂nq
(µ1(q)− µ̂1(q)) dAq + lim

ε→0+

∫
S

∂2N(pε, q)

∂np∂nq
µ̂1(q) dAq,

(5.3.3)

where we require µ̂1(q) to be an axisymmetric harmonic function that is a first order ap-
proximation of µ1 at p, i.e. |µ1(q)− µ̂1(q)| ∼ O(q − p)2 as q approaches p on S, making the
first integrand smooth over S. The limit disappears after swapping with the integral. For
the second integral, we apply Green’s identity to get

lim
ε→0+

∫
S

∂2N(pε, q)

∂np∂nq
µ̂1(q) dAq = lim

ε→0+

∂

∂np

∫
S

∂N(pε, q)

∂nq
µ̂1(q) dAq

= lim
ε→0+

∂

∂np

(∫
S

N(pε, q)
∂µ̂1(q)

∂nq
dAq −

∫
Ω

N(pε, q)∆µ̂1(q) dVq

)
= lim

ε→0+

∂

∂np

∫
S

N(pε, q)
∂µ̂1(q)

∂nq
dAq

=− 1

2

∂µ̂1(p)

∂np
+D′

[∂µ̂1(q)

∂nq

]
(p),

(5.3.4)

where the last equality uses jump condition (2.3.2b). Combining (5.3.3) and (5.3.4), we get
the final formula which we will use when computing normal velocity on S

H[µ1](p) =

∫
S

∂2N(p, q)

∂np∂nq
(µ1(q)− µ̂1(q)) dAq −

1

2

∂µ̂1(p)

∂np
+D′

[∂µ̂1(q)

∂nq

]
(p). (5.3.5)
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For the tangential velocity on S, due to the double layer potential jump (2.3.3b), applying
the tangential derivatives to both sides we have

∂D−[µ](p)

∂s
=

1

2

∂µ(p)

∂s
+
∂D[µ](p)

∂s
. (5.3.6)

Similar to the steady case, ∂D[µ](p)
∂s

has a 1/|β − α| type singularity in the integrand in HLS
framework and is defined in principal value sense by (2.7.4). It can be dealt with similarly
to the steady case.

5.4 Evolution under HLS framework

Let us start by describing the motion of the bubble surface using the generic evolution equa-
tion [50, 37, 39, 38]. From now on, primes with respect to β, for example, are changed to
partial derivatives and denoted using subscript β, and the subscript t means taking deriva-
tives with respect to time t. Due to the problem being axisymmetric around the y axis,
for simplicity from now on we restrict ourselves to the xz plane unless stated otherwise.
Intersecting S1 with the xz plane we get the bubble’s profile curve ζ(α, t) = S1(t)∩{y = 0}.
For any point ζ(β, t), we use n and t to denote the outward normal and unit tangent vec-
tors at the point, respectively. The position of the interface at any moment of time can be
determined using the fact that, in the absence of mass transfer through the interface, the
interface is convected by the fluid, i.e. the interface normal velocity is equal to the normal
component of the fluid velocity. The motion of the profile curve can be described as

ζt = (ξ, 0, η)t = un + vt, (5.4.1)

where u = ∂φ
∂n

is determined by physics, and v instead will be chosen later to enforce a
favorable parameterization on the free surface. Since the top and bottom of the bubble are
both flat, the following conditions should be guaranteed: ξ(0, t) = ξ(π, t) = 0, still enforced
by (3.2.1) as in the steady case; n(0, t) = (0,−1), n(π, t) = (0,−1), t(0, t) = (1, 0) and
t(π, t) = (−1, 0). They together induce

v(0, t) = ξt(0, t) = 0, v(π, t) = ξt(π, t) = 0. (5.4.2)

Enforcing the arc-length element sβ being constant when time is fixed as before, at any
point q = (ξ(β, t), η(β, t)) ∈ ζ, the outward normal vector and unit tangential vectors are

n =
(−ηβ, ξβ)

|(−ηβ, ξβ)|
= (− sin θ(β), cos θ(β)), t =

(ξβ, ηβ)

|(ξβ, ηβ)|
= (cos θ(β), sin θ(β)).

Taking time derivatives on both sides of θ(β, t) = arctan(
ηβ
ξβ

) gives

θt =
ξβηβ,t − ξβ,tηβ

s2
β

=
(−ηβ, ξβ)

sβ
· (ξβ,t, ηβ,t)

sβ
=

n · (un + vt)β
sβ

=
uβ + vθβ

sβ
.
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Since θ̃(β, t) = θ(β, t) + β we also have

θ̃t = θt =
uβ + vθβ

sβ
=
uβ + v(θ̃β − 1)

sβ
. (5.4.3)

The evolution of the arc-length element sβ satisfies

sβ,t =
ξβξβ,t + ηβηβ,t

sβ
=

(ξβ, ηβ)

sβ
· (ξβ,t, ηβ,t) = t · (un + vt)β = vβ − uθβ. (5.4.4)

The length of the bubble surface profile curve at time t is
∫ π

0
sβ(t) dβ. Differentiating with

respect to time, with boundary condition (5.4.2) we find

Lt =

∫ π

0

vβ − uθβ dβ = −
∫ π

0

uθβ dβ. (5.4.5)

To make the arc-length element independent of spatial variable, i.e. sβ(t) = L(t)
π

, we also
need

sβ,t(t) =
Lt
π

= − 1

π

∫ π

0

uθβ dβ (5.4.6)

for all t. Combining (5.4.4) and (5.4.5) we get

vβ = uθβ −
1

π

∫ π

0

uθβ dβ.

So after u is determined physically, we solve the above equation for v such that the normalized
arc-length parameterization is maintained at all times. Naturally the integration constant is
taken such that boundary condition (5.4.2) is satisfied. So we let

v(α) =

∫ α

0

uθβ dβ −
α

π

∫ π

0

uθβ dβ. (5.4.7)

The last step is to find the evolution equation for χ(α, t) = φ(ζ(α, t), t), i.e. the total
velocity potential restricted to the profile curve of the bubble. Taking time derivatives on
both sides, we have

χt = ∇φ · ζt + φt.

Combined with (2.6.7), (5.4.1), the Bernoulli equation can be changed to a equation describ-
ing the evolution of χ as

χt = u
∂φ

∂n
+ v

∂φ

∂s
− |∇φ|

2

2
− η(α)

F 2
− 1

W

(θα
sα

+
sin θ

ξ(α)

)
+ C(t), (5.4.8)

where C(t) can be taken to be 0 or chosen to project out the spatial mean of the right-hand
side, for example. Ways to accurately compute the normal and tangential velocities will be
shown in the next section.
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5.5 Numerical computation

Normal velocity on S1

The normal velocity is given by u = ∂φ
∂n

= ∂φ1
∂n

+ ∂φ2
∂n
− cos θ(α) with only ∂φ1

∂n
containing

singular integrals. Based on (5.3.5), to evaluate ∂φ1
∂n

for any fixed p = (ξ(α), 0, η(α)) ∈ S1,
first we need to find µ̂1(q) that satisfies the following four conditions

1. µ̂1(q) is harmonic in R3.

2. µ̂1(p) = µ1(α).

3. ∇µ̂1(p) · (cos θ(α), 0, sin θ(α)) = µ′1(α)/σ.

4. µ̂1(q) is axisymmetric about z axis.

Spherical harmonics can be applied to find a suitable µ̂1. In spherical coordinates, we denote
r =

√
x2 + y2 + z2 and let

µ̂1(x, y, z) = c0P0

(z
r

)
+ c1rP1

(z
r

)
+ c2r

2P2

(z
r

)
= c0 + c1z + c2

(
z2 − x2 + y2

2

)
,

where Pk denotes the Legendre polynomial of degree k. This expression guarantees conditions
1 and 4 automatically. We use conditions 2 and 3 to get the following matrix equation

A

c0

c1

c2

 :=

(
1 η(α) η2(α)− ξ2(α)

2

0 sin θ(α) 2η(α) sin θ(α)− ξ(α) cos θ(α)

)c0

c1

c2

 =

(
µ1(α)
µ′1(α)

σ

)
.

For α ∈ (0, π), the second row of A cannot be identically 0 due to ξ(α) > 0, so A is
always of rank 2. To get a continuously varying solution depending on α ∈ (0, π), we choose
the smallest set of coefficient (c0, c1, c2) in the l2 norm, i.e. we aim to minimize c2

0 + c2
1 + c2

2.
The reason that we choose three basis functions and make it into a quadratic optimization
problem instead of directly solving for two coefficients under two basis functions is that we
want to find a smooth representation of the coefficients. If we only choose the first two basis
functions, for example, µ̂ will not exists at points α 6∈ {0, π} satisfying θ(α) ∈ {0, π,−π},
i.e. points with horizontal tangent planes as illustrated in Figure 5.1. This might happen
when the bubble surface evolves. Using three basis functions as above, the horizontal case
can be handled well, as will be shown below.

The solution of the above matrix equation can be computed easily using Lagrange mul-
tiplier as

c0 =
c(d2 + e2)− f(ad+ be)

(1 + b2)d2 − 2abde+ (1 + a2)e2
,

c1 =
ace2 + df + b2df − be(cd+ af)

(1 + b2)d2 − 2abde+ (1 + a2)e2
,

c2 =
bd(cd− af) + e(−acd+ f + a2f)

(1 + b2)d2 − 2abde+ (1 + a2)e2
,

(5.5.1)
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Figure 5.1: Two horizontal tangent points q1 and q2 characterized by vanishing tangential
angle.

with a = η(α), b = η2(α)− ξ2(α)
2

, c = µ1(α), d = sin θ(α), e = 2η(α) sin θ(α)− ξ(α) cos θ(α),

and f =
µ′1(α)

σ
. Here no matter what numbers a, b, d, and e are the denominator is always

strictly positive. When d = 0, e 6= 0 due to the rank of A being 2, the denominator is
(1 + a2)e2 > 0. When e = 0 and d 6= 0, the denominator is (1 + b2)d2 > 0. When e 6= 0
and b 6= 0, by the Cauchy-Schwarz inequality we have (1 + b2)d2 − 2abde + (1 + a2)e2 >

(1 + b2)d2 − 2|de|
√

1 + b2
√

1 + a2 + (1 + a2)e2 =
(
|d|
√

1 + b2 − |e|
√

1 + a2
)2 ≥ 0.

When α = 0 or π, however, the second row of A is identically 0 and µ′1(0) = µ′1(π) = 0 due
to the symmetry about 0 and π. Since µ1(β)−µ1(0) ∼ O(β)2 and µ1(β)−µ1(π) ∼ O(β−π)2,
we can simply choose c0 = µ1(α) and c1 = c2 = 0 at α = 0 or α = π.

Now let us parametrize the terms in (5.3.5) to get∫
S1

∂2N(p, q)

∂np∂nq
(µ1(q)− µ̂1(q)) dAq

=
1

4π

∫ π

0

(
µ1(β)− c0 − c1η(β)− c2(η2(β)− ξ2(β)

2
)
)
ξ(β)sβF [a5, b5, c5, c1, d1] dβ,

where the formulae for a5, b5 and c5 are from (5.3.2). We also have

∂µ̂1(p)

∂np
= c2ξ(α) sin θ(α) + (c1 + 2c2η(α)) cos θ(α)
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and

D′
[∂µ̂1(q)

∂nq

]
=

1

4π

∫ π

0

(
c2ξ(β) sin θ(β) + (c1 + 2c2η(β)) cos θ(β)

)
ξ(β)s′(β)G[a1, b1, c1, d1] dβ,

where a1, b1, c1 and d1 exactly the same as in (2.6.3). ∂φ2
∂np

can be calculated as

∂φ2

∂np
=

1

4π

∫ ∞
−∞

µ2(y)G[e1, f1, g1, h1] dy,

with e1, f1, g1 and h1 exactly the same as in (2.6.3). The normal velocity from the background
flow is

− z

∂np
= − cos θ(α).

Tangential velocity on S1

Again there are two choices to compute the tangential velocities at the points {ξ(αk)}Nk=0.
One choice is to take the derivative of the potential on S1 numerically, using the FFT. This
is very convenient since the potential data is given from the previous time step. This could
be harder in the steady problem since we would need to first compute the velocity potential
on S1 before applying the FFT. Another method is to first find the analytic expression of
tangential velocity and evaluate it at the uniform grid points. The derivation is shown as
follows, and it also involves 1/(β − α) type singularity to be interpreted in the principal
value sense as in the steady problem. Unlike in the steady problem, the derivation here is
much more complicated, and the cumbersome evaluations could potentially bring in larger
round-off errors. Although the second method is listed below for completeness, we choose to
use the first (FFT-based) method in the code.

Using (5.3.6) and the HLS parametrization, the tangential velocity at p = (ξ(α), 0, η(α))
is

v =
µ′1(α)

2σ
+

1

4π

(∫ π

0

µ1(β)ξ(β)sβF [a6, b6, c6, c1, d1] dβ −
∫ ∞
−∞

µ2(y)G[e3, f3, g1, h1] dβ
)

− sin θ(α),
(5.5.2)
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where the formula of a3, b3, c1, d1 are as in (5.2.4), e3, f3, g1 h1 as in (2.6.5) and

a6 = (a′3c1 −
3

2
a3c
′
1)/σ

= −3
(
sin θ(α)(η(α)− η(β)) + cos θ(α)ξ(α)

)(
cos θ(β)(η(α)− η(β)) + sin θ(β)ξ(β)

)
+ cos θ(β) sin θ(α)

(
(η(α)− η(β))2 + ξ(α)2 + ξ(β)2

)
,

b6 =
(3

2
(a1d

′
1 + b1c

′
1)− (a′1d1 + b′1c1)

)
/σ

= −2 cos θ(β) sin θ(α)ξ(α)ξ(β)− cos θ(α) sin θ(β)
(
(η(α)− η(β))2 + ξ(α)2 + ξ(β)2

)
+ 3 sin θ(β)ξ(α)(sin θ(α)(η(α)− η(β)) + cos θ(α)ξ(α))

+ 3 cos θ(α)ξ(β)(cos θ(β)(η(α)− η(β)) + sin(θ(β))ξ(β)),

c6 = (b′1d1 −
3

2
b1d
′
1)/σ = − cos θ(α) sin θ(β)ξ(α)ξ(β),

(5.5.3)
where ′ means taking derivatives with respect to α. By Taylor expansion, we have the
following

−2c6c
3
1 + b6c

2
1d1 + 4a6c1d

2
1 + 6c6c1d

2
1 + 3b6d

3
1 ∼ 24ξ5(α) sin θ(α)s3

α(β − α)3,

−d1(b6c1 + a6d1) + c6(2c2
1 − 3d2

1) ∼ −6ξ4(α) sin θ(2α)s2
α(β − α)2.

Again by (2.7.1), with the above computations, similar to the steady case, we have 1/(β−α)
type singularity in

4(−2c6c
3
1 + b6c

2
1d1 + 4a6c1d

2
1 + 6c6c1d

2
1 + 3b6d

3
1)

3d2
1(c1 − d1)3/2(c1 + d1)2

E
(
− 2d1

c1 − d1

)
,

and log |β − α| type of singularity in

−d1(b6c1 + a6d1) + c6(2c2
1 − 3d2

1)

3d2
1(c1 − d1)3/2(c1 + d1)

K
(
− 2d1

c1 − d1

)
.

We can use the singularity subtraction method in (3.1.2) to deal with it.

Numerical procedure

The variables we evolve are the N − 1 Fourier sine modes of θ̃(β, t), the arc-length element
sβ(t), and the N + 1 evaluations of the velocity potential on the bubble surface, {χ(αk, t) =
φ(ζ(αk, t)), t)}Nk=0. At time tn, the profile curve ζ(α, tn) can be reconstructed from the Fourier
modes of θ̃(β, tn) and sβ(tn). With given {χ(αk, tn)}Nk=0, we can evaluate (5.2.4) and (5.2.5)
after the cotangent transform as in the steady case (3.1) at {αk}Nk=0 and {ω}Mk=1 respectively.
We first solve for µ1 and µ2 to determine the normal velocity on S1. As discussed in Section
4.3, we treat the N cosine Fourier modes of frequency greater than 0 and theM+1 Chebyshev
modes as the N+M+1 variables in total. This gives an N+M+1 linear system, which can
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be uniquely solved to get the Fourier modes of µ1 and µ2. After constructing µ̂1 from (5.5.1),
the normal and the tangential derivatives on profile curve can be computed using formulae
from the last two subsections, contributing to the evaluation of the right-hand side of χt
by (5.4.8). Applying the Fourier transform to (5.4.3) on both sides, we get the evolution
equation of the Fourier sine modes of θ̃(t). The arc-length element sβ(t) can be evolved by
(5.4.6) directly.

We use a Runge-Kutta method of order 8 [22] to evolve θ̃, sβ and χ. In the internal
Runge-Kutta stages, ξ(π) = 0 is enforced by (3.2.1) before computing the profile curve. But
the first Fourier modes of θ̃, i.e. the coefficient before sin β, is not updated. However, after
a full time step, the curve is projected to the ξ(π) = 0 case by adding c0 to the first Fourier
modes of θ̃ where c0 from (3.2.1) is numerically solved using Newton’s method.

5.6 Numerical results

We first study the time evolution of an initial round bubble with the radius 0.9 sitting still
with its front stagnation point at the origin. We treat this example as a sanity check of our
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Figure 5.2: Dynamics of the profile curve of a round bubble of radius 0.9 with F = 1.0 and
W = 12.3115 (left) and the displacement of the front stagnation point (right).

inviscid model and the numerical method. The Froude number and Weber number are fixed
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to be F = 1.0 and W = 12.3115. The initial velocity potential on S1 is set to be − cos θ(α).
The movement of the profile curve is described in Figure 5.2.

For the left panel, it shows 28 profile curves with 0.02s time lapse in between. Since we
are thinking of the origin being fixed, and the background flow is flowing down at unit speed,
the bubble not only deforms due to the pressure difference at the surface but also moves
down at a non-constant speed in the model frame, i.e. frame of reference in which φz = −1
at z = ±∞. In the lab frame, the water is stagnant at z = ±∞, and the bubble moves up
at a non-constant speed. In the right panel, we can see the intercept-time curve of the front
stagnation point is slightly concave up, this implies the front stagnation point decelerates as
it moves down in the model frame. In the lab frame, the bubble deforms faster at the lower
and its front stagnation point accelerates upwards from 0 velocity.

Now we choose solution shapes from the no gravity case to evolve. We fixed F = 1,
W = 1.7983, and the initial potential on the bubble surface is chosen to be the surface
potential in the no gravity case. The bubble we choose is a small oblate one with σ(0) = 0.5.
The left panel in 5.3 shows the changes of bubble shapes at every 0.02 second from time 0 to
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Figure 5.3: Dynamics of the profile curve of steadily rising bubbles with two humps from
the no gravity case under the condition F = 1.0 and σ = 0.5 (left) and the displacement of
the front stagnation point (right).

time 0.38. we see that the bubbles deform much more in the lower half than the upper half.
From the right panel, we see that when gravity is turned on, in the bubble frame it initially
drops but decelerates and eventually rises up. In the lab frame, it immediately accelerates
upwards, always rising.
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Chapter 6

Accurate evaluation of orthogonal
polynomials near endpoints of the
integration interval

In Chapters 3-5, we proposed a spectral method in which µ2 is represented by Chebyshev
polynomials after the infinite domain is transformed to a finite interval using the cotangent
transformation. Most orthogonal polynomials suffer from loss of precision when evaluated
near the endpoints of the defining interval, which will bring in numerical errors that might ac-
cumulate throughout later computations. In this chapter, we develop alternative recurrence
relations for evaluating univariate orthogonal polynomials near an endpoint of the integra-
tion interval to improve accuracy when implemented in floating-point arithmetic. These
improved recurrence relations also lead to more accurate methods for computing quadrature
abscissas and weights.

6.1 Preliminaries

In this section, we review various well-known properties of univariate orthogonal polynomials
and quadrature in order to establish notation and summarize the results we need to derive
and use the new recurrence relations. For simplicity, we assume the measure with respect
to which the polynomials are orthogonal is absolutely continuous with respect to Lebesgue
measure. Shifting and/or reflecting the weight function if necessary, we may assume the
region where additional accuracy is desired is near the left endpoint of the support of the
measure, which is located at x = 0. We consider the inner product

〈f, g〉 =

∫ B2

0

f(x)g(x)w(x) dx, (6.1.1)

where w : [0, B2)→ [0,∞) is integrable and has finite moments of all orders. Here B > 0 and
B =∞ is allowed. Using B2 to denote the upper limit of the support of w is convenient in
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later sections of this chapter, where its square root appears frequently. The monic orthogonal
polynomials pk(x) can be constructed by the Stieltjes procedure, which leads to the 3-term
recurrence

p0(x) = 1,

p1(x) = x− a0,

pk+1(x) = (x− ak)pk(x)− bkpk−1(x), (k ≥ 1),

(6.1.2)

where

ak =
〈xpk, pk〉

ck
, ck = 〈pk, pk〉, bk =

ck
ck−1

. (6.1.3)

So far bk is defined only for k ≥ 1, but it is also convenient to define b0 = c0 so that
ck =

∏k
j=0 bj for k ≥ 0. The monic polynomials are often poorly scaled, which can lead to

overflow and underflow problems. It is usually preferable to work directly with the normalized
polynomials ϕk(x) = pk(x)/

√
ck, which satisfy ‖ϕk‖ = 1 and the 3-term recurrence

ϕ0(x) = 1/
√
c0,√

b1ϕ1(x) = (x− a0)ϕ0(x),√
bk+1ϕk+1(x) = (x− ak)ϕk(x)−

√
bkϕk−1(x), (k ≥ 1).

(6.1.4)

This recurrence is mathematically equivalent to applying the Gram-Shmidt procedure to
orthogonalize the functions {1, x, x2, x3, . . . }. It is often convenient to rescale the weight
function w(x) if necessary so that ϕ0(x) = b0 = c0 = 1.

Let us fix n ≥ 1 and define x1, . . . , xn to be the zeros of ϕn(x). By the separation theorem
[14], these zeros are real, distinct, and lie strictly inside (0, B2). Let Rn[x] denote the space
of polynomials of degree ≤ n equipped with the inner product (6.1.1), and let Φn map the
coefficients f̂ = [f̂0; . . . ; f̂n−1] ∈ Rn of a polynomial f(x) =

∑n−1
k=0 f̂kϕk(x) ∈ Rn−1[x] to the

values of f at the xj. We also define Xn = diag[x1, . . . , xn] and the nth Jacobi matrix Jn
encoding the recurrence (6.1.4). Explicitly, Φn and Jn have the form

Φn =


ϕ0(x1) · · · ϕn−1(x1)
ϕ0(x2) · · · ϕn−1(x2)

...
...

ϕ0(xn) · · · ϕn−1(xn)

 , Jn =


a0

√
b1√

b1 a1

√
b2

√
b2

. . . . . .

. . . an−2

√
bn−1√

bn−1 an−1

 . (6.1.5)

The recurrence (6.1.4) together with the fact that ϕn(xj) = 0 shows that the rows of Φn are
left eigenvectors of Jn with the abscissas as eigenvalues, i.e.

ΦnJn = XnΦn. (6.1.6)

Since Jn is symmetric, the rows of Φn are mutually orthogonal. If we were to rescale each
row of Φn to have unit length, it would be an orthogonal matrix. Without rescaling the



CHAPTER 6. ACCURATE EVALUATION OF ORTHOGONAL POLYNOMIALS
NEAR ENDPOINTS OF THE INTEGRATION INTERVAL 51

rows, we instead have

ΦT
nΩΦn = In, Ω = diag[ω1, . . . , ωn], ω−1

j =
n−1∑
k=0

ϕk(xj)
2, (6.1.7)

where In is the n× n identity matrix. This equation is equivalent to

n∑
j=1

ϕk(xj)ϕl(xj)ωj = δkl =

∫ B2

0

ϕk(x)ϕl(x)w(x) dx, (0 ≤ k, l ≤ n− 1), (6.1.8)

which is also true if k = n or l = n (but not both) since the ϕn(xj) = 0 for each j in the sum
on the left-hand side. This shows that the ωj are in fact the Gaussian quadrature weights
such that ∫ B2

0

f(x)w(x) dx =
n∑
j=1

f(xj)ωj, (f ∈ R2n−1[x]). (6.1.9)

The formula (6.1.7) for ω−1
j is due to Christoffel [14], who derived it in a different way. Golub

and Welsch [20] had the idea to solve the eigenvalue problem (6.1.6) numerically to find the
abscissas {xj} and weights {ωj}. The eigensolver returns Qn and Xn = diag[x1, . . . , xn] such
that

JnQn = QnXn. (6.1.10)

After rescaling some of the rows of QT
n by −1 if necessary so that its first column (indexed

0 in our notation) has positive entries, we know from (6.1.7) that QT
n = Ω1/2Φn. Moreover,

the first column of Φn is ϕ0(xj) = 1/
√
c0. Thus, we obtain the Golub-Welsch formula

ωj = (QT
n )2

j0c0 for 1 ≤ j ≤ n. We will improve on the accuracy of this method in floating-
point arithmetic with the new recurrence formulas.

6.2 An associated family of orthogonal polynomials

The key idea that we propose is to change variables (via x = t2) so that evaluation near
the endpoint of the original integration interval becomes evaluation of an associated family
of orthogonal polynomials near the center of its integration interval. While an extensive
literature exists exploring theoretical aspects of this transformation, especially in the context
of continued fractions [25], we are not aware of previous work in which its computational
benefits in floating-point arithmetic have been studied or noted.

Under the change of variables x = t2, dx = 2t dt, the inner product becomes

〈f̃ , g̃〉 =

∫ B

−B
f̃(t)g̃(t)w̃(t) dt, f̃(t) = f(t2), g̃(t) = g(t2), w̃(t) = |t|w(t2). (6.2.1)

Note that we dropped the factor of 2 in dx and extended the interval to [−B,B] using
even symmetry of the integrand. Since the weight function w̃(t) and interval [−B,B] are
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symmetric, the monic orthogonal polynomials p̃n(t) with respect to this measure split into
even and odd polynomials [14], and the coefficients ãn in the recurrence relation are zero:

p̃0(t) = 1, p̃1(t) = t, p̃n+1(t) = tp̃n(t)− b̃np̃n−1(t), (n ≥ 1). (6.2.2)

Similarly, since c̃0 = c0, we have ϕ̃0(t) = 1/
√
c0 , b̃

1/2
1 ϕ̃1(t) = tϕ̃0(t) and

b̃
1/2
n+1ϕ̃n+1(t) = tϕ̃n(t)− b̃1/2

n ϕ̃n−1(t), (n ≥ 1). (6.2.3)

The even polynomials p̃2n(t) are monic and orthogonal to all polynomials of lower degree.
Since pn(t2) also has this property, it must be that

p̃2n(t) = pn(t2), (n ≥ 0). (6.2.4)

It follows that c̃2n = cn and

ϕ̃2n(t) = ϕn(t2), (n ≥ 0). (6.2.5)

For later use, note from (6.2.2) and (6.2.4) that

tp̃2n+1(t) = pn+1(t2) + b̃2n+1pn(t2), (n ≥ 0). (6.2.6)

Orthogonal polynomials are generally more oscillatory near the endpoints of the support of
the weight function than in the interior.

It is well known that evaluation near the endpoints using (6.1.4) suffers from instability,
which is not the case where evaluation happens far from the endpoints. Since our method
can change the old evaluation near endpoints to a new evaluation close to 0, which is far
from the two endpoints of [−B,B], our idea is that new method using (6.2.3) could gain
more accuracy and stability. Additionally, we can form the new Jacobi matrix J̃2N and
diagonalize it to find the new eigenvalues {tj}2N

j=1, whose squares are the original quadrature
abscissas by Theorem 2 below. The new {tj}2N

j=1, which are the zeros of p̃2N(t), are more
evenly distributed near t = 0 than those of pN(x) near x = 0. Thus, we expect more accurate
quadrature abscissas using our new method. For quadrature weights, using similar versions
of the Christoffel formula [17], i.e.

ωj =
1∑n−1

i=0 ϕ̃
2
2i(tj)

, (6.2.7)

we can gain more accuracy by having more accurate evaluation of ϕ̃2i at more accurate
abscissas tj using our new method. To make all of this happen, it suffices to find b̃n using
an and bn. We now propose two methods of doing this.
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Method using linear term relations

In the first approach, we use the linear terms of pn(x) and p̃n(t). If we give names to the
constant and linear terms in pn(x) and p̃n(t), e.g.

pn(x) = xn + · · ·+ dn,1x+ dn,0, (n ≥ 0),

p̃n(t) = tn + · · ·+ d̃n,1t+ d̃n,0, (n ≥ 0),
(6.2.8)

then (6.2.6) implies that

b̃2n+1 = −dn+1,0

dn,0
, (n ≥ 0). (6.2.9)

Also notice from pn(x) =
∏n

i=1(x − xi) with 0 < x1 < · · · < xn < B2, by direct calculation
we have dn,n = 1 with

dn,k = (−1)n−k
∑

1≤i1<···<in−k≤n

xi1 · · ·xin−k , (0 ≤ k ≤ n− 1). (6.2.10)

From this dn,0 = (−1)nx1 · · · xn 6= 0, which allows the division in (6.2.9). We also find from
(6.2.2) and (6.2.4) that

tpn(t2) = p̃2n+1(t) + b̃2np̃2n−1(t), (n ≥ 1). (6.2.11)

Matching linear terms, we obtain

dn,0 = d̃2n+1,1 + b̃2nd̃2n−1,1.

From (6.2.6), we see that d̃2n+1,1 = dn+1,1 + b̃2n+1dn,1 and d̃2n−1,1 = dn,1 + b̃2n−1dn−1,1, which
gives

b̃2n =
dn,0 − d̃2n+1,1

d̃2n−1,1

=
dn,0 − dn+1,1 − b̃2n+1dn,1

dn,1 + b̃2n−1dn−1,1

, (n ≥ 1). (6.2.12)

Notice that for odd degree polynomials p̃2n−1(t), we must have p̃2n−1(t) = (t+ tn−1) · · · (t+
t1)t(t − t1) · · · (t − tn−1) = t

∏n−1
i=1 (t2 − t2i ) with 0 < t1 < · · · < tn−1 < B. Expanding the

expression we get d̃2n−1,2n−1 = 1 and

d̃2n−1,2k−1 = (−1)n−k
∑

1≤i1<···<in−k≤n−1

t2i1 · · · t
2
in−k

, (1 ≤ k ≤ n− 1). (6.2.13)

So we have d̃2n−1,1 = (−1)n−1
∏n−1

i=1 t
2
i 6= 0, thus justifying the division in (6.2.12). Using

(6.2.9) and (6.2.12), we can compute b̃1, b̃3, b̃2, b̃5, b̃4, b̃7, b̃6, etc. to obtain {b̃k}2N−1
k=1 for any

N ≥ 1, provided {dn,0}Nn=0 and {dn,1}Nn=0 can be computed. Using the following three-term
recurrence relation of monic orthogonal polynomials pn(x),

p0(x) = 1,

p1(x) = x− a0,

pn+1(x) = (x− an)pn(x)− bnpn−1(x),

(6.2.14)
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the d’s satisfy the recurrence relations

d0,0 = 1, d1,0 = −a0, d0,1 = 0, d1,1 = 1,

dn+1,0 = −andn,0 − bndn−1,0, dn+1,1 = dn,0 − andn,1 − bndn−1,1, (n ≥ 1),
(6.2.15)

so given {an}N−1
n=0 and {bn}N−1

n=1 , by first computing {dn,0}Nn=0 and {dn,1}Nn=1 we can easily
compute {b̃n}2N−1

n=1 , as desired.
Notice that {b̃n}2N−1

n=1 derived through the above procedure can be directly shown to be
positive, without even knowing the hidden relation b̃n = c̃n

c̃n−1
. To prove it, from (6.2.9)

and (6.2.12) it suffices to show that dn+1,0dn,0 < 0 and |d̃2n+1,1| > |dn,0| = |d̃2n,0|. The first
inequality is obvious from (6.2.10). For the second one, using expression (6.2.13) and the
interlacing theorem [18], we have |d̃2n+1,1| =

∏n
i=1 t

2
i >

∏n
i=1 y

2
i = |d̃2n,0| where {±ti}ni=1∪{0}

and {±yi}ni=1 are the zeros of p̃2n+1 and p̃2n respectively.

Method using Jacobi matrix relations

The second method we propose to compute {b̃n}2N−1
n=1 is based on the following theorem.

From now on, we use the following matrix notation

J̃ =



0
√
b̃1√

b̃1 0
√
b̃2√

b̃2
. . .

. . .

. . . 0

√
b̃2N−1√

b̃2N−1 0


, J =



a0
√
b1√

b1 a1
√
b2

√
b2

. . .
. . .

. . . aN−2

√
bN−1√

bN−1 aN−1

 .

Theorem 1. The eigenvalues tn of J̃ are related to the eigenvalues of J via t2n−1 =
√
xn,

t2n = −√xn, 1 ≤ n ≤ N .

Proof. Notice first that the eigenvalues {tn}2N
n=1 of J̃ and the eigenvalues {xn}Nn=1 of J are

the zeros of p̃2N(t) and pN(x) respectively, by (6.1.6). Since p̃2N(t) = pN(t2), the square of
the zeros of p̃2N(t) are exactly the zeros of pN(x). So we can rearrange {tn}2N

n=1 and {xn}Nn=1

such that t2n−1 =
√
xn, t2n = −√xn for 1 ≤ n ≤ N , as claimed.

Theorem 2. The even rows and columns of J̃2 give J . The odd rows and columns of J̃2

yield a matrix with the same eigenvalues as the even rows and columns.

Proof. By Theorem 1 and Equation (6.1.6), we can write Φ̃J̃ = X̃Φ̃ explicitly with

Φ̃ =


ϕ̃0(
√
x1) ϕ̃1(

√
x1) · · · ϕ̃2N−1(

√
x1)

ϕ̃0(−√x1) ϕ̃1(−√x1) · · · ϕ̃2N−1(−√x1)
...

...
...

ϕ̃0(−√xN ) ϕ̃1(−√xN ) · · · ϕ̃2N−1(−√xN )

 , X̃ =



√
x1

−√x1
. . . √

xn
−√xn

 .
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So far it is clear that

J̃2 =



0
√
b̃1√

b̃1 0
√
b̃2√

b̃2
. . . . . .
. . . 0

√
b̃2N−1√

b̃2N−1 0



2

=



∗ 0 ∗
0 ∗ 0 ∗
∗ 0 ∗ 0 ∗

. . . . . . . . . . . . . . .

∗ 0 ∗ 0 ∗
∗ 0 ∗ 0
∗ 0 ∗


.

Applying J̃ twice to Φ̃ from the right gives us Φ̃J̃2 = X̃2Φ̃ by (6.1.6). Since the only possible
nonzeros in J̃2 are in the even submatrix and odd submatrix, we can pick the even rows and
columns of J̃2, Φ̃ and X to form a new N × N matrix multiplication Φ̃e(J̃

2)e = (X̃2)eΦ̃e.
Because of (X̃2)e = X and ϕ̃2n(

√
xi) = ϕn(xi), we must have Φ̃e = Φ. Comparing with

J = Φ−1XΦ, we proved (J̃2)e = J , i.e. the even rows and columns of J̃2 give J .
Similarly we can only consider the odd rows and columns of J̃2, Φ̃ and X to get equation
Φ̃o(J̃

2)o = X̃2
o Φ̃o = XΦ̃o. So the even rows and columns submatrix of J̃2, the odd rows and

columns submatrix of J̃2, and J all have the same eigenvalues.

Multiplying out the relation stated in Theorem 2 and comparing entries, we get

b̃2n+1 = an − b̃2n, (n ≥ 0, b̃0 = 0),

b̃2n =
bn

b̃2n−1

, (n ≥ 1).
(6.2.16)

which allows us to find all the b̃n iteratively when an and bn are known.

6.3 Connections with continued fractions

A continued fraction [25] is an ordered pair
〈〈
{pn}, {qn}

〉
, {fn}

〉
where {pn} = p1, p2, . . . and

{qn} = q0, q1, q2, . . . are complex numbers with all pn 6= 0 and {fn} is a sequence in the
extended complex plane defined as follows:

fn = s0 ◦ s1 ◦ · · · ◦ sn(0), n = 0, 1, 2, . . .

where s0(w) = q0 + w and sn(w) = pn
qn+w

, n = 1, 2, 3, . . .. For convenience we denote it by

q0 + p1
q1+

p2
q2+

p3
q3+
· · · . Orthogonal polynomials with respect to the weight function w(x) are

related to the continued fraction expression of the m-function of w(x) [14, 19, 25]. Directly
applying this relation to the original weight function defined on [0, B2] as before, we have
the following theorem.
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Theorem 3. For any z ∈ C− [0, B2] we have∫ B2

0

w(x)

z − x
dx =

1

z − a0−
b1

z − a1−
b2

z − a2−
· · · = lim

n→∞

Rn(z)

Sn(z)
, (6.3.1)

where the convergents Rn(z)
Sn(z)

satisfy Rn+1 = (z − an)Rn − bnRn−1 with R0 = 0 and R1 = 1,

and Sn+1 = (z − an)Sn − bnSn−1 with S0 = 1 and S1 = z − a0. Truncation of the continued
fraction up to the n-th term is related to Stieltjes’s result for Gaussian quadrature as follows

n∑
j=1

ωj
z − xj

=
1

z − a0−
b1

z − a1−
· · · bn−1

z − an−1

=
Rn(z)

Sn(z)
.

Notice that here the denominator Sn(z) is exactly our monic orthogonal polynomial pn(z).
Using (6.3.1), we can give another proof of (6.2.16) as follows.

Denoting
∫ B2

0
w(x)
z−x dx by F (z) and making substitution x = t2 we get

F (z2) =

∫ B2

0

w(x)

z2 − x
dx =

∫ B

−B

w̃(t)

z2 − t2
dt =

1

2z

(∫ B

−B

w̃(t)

z − t
dt+

∫ B

−B

w̃(t)

z + t
dt
)

=
1

2z

(∫ B

−B

w̃(t)

z − t
dt+

∫ B

−B

w̃(t)

z − t
dt
)

=
1

z

∫ B

−B

w̃(t)

z − t
dt =

F̃ (z)

z
.

(6.3.2)

Letting sk(w) = b̃k
z−w and considering only the even part of F̃ (z) (defined in [25]), we let

tk(w) = s2k−1 ◦ s2k(w) = c2k−1 +
c2k−1c2k

1− c2k − w
,

where c1 = b̃1
z

and ck = b̃k
z2

for k > 1. In this way

s1 ◦ s2 · · · s2n(0) = t1 ◦ t2 · · · tn(0)

= c1 +
c1c2

1− c2 − c3−
c3c4

1− c4 − c5−
· · · c2n−1c2n

1− c2n

=
1

z

(
b̃1 +

b̃1b̃2

z2 − b̃2 − b̃3−
b̃3b̃4

z2 − b̃4 − b̃5−
· · · b̃2n−1b̃2n

z2 − b̃2n

)
.
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By Theorem 3, we have the right hand side of (6.3.2) as

F̃ (z)

z
=

1

z

( 1

z−
b̃1

z−
b̃2

z−
· · ·
)

=
1

z
lim
n→∞

1

z − s1 ◦ s2 . . . ◦ s2n(0)
=

1

z
lim
n→∞

1

z − t1 ◦ t2 . . . ◦ tn(0)

=
1

z

1

z − 1
z

(
b̃1 + b̃1b̃2

z2−b̃2−b̃3−
b̃3b̃4

z2−b̃4−b̃5−
· · · b̃2n−1b̃2n

z2−b̃2n−b̃2n+1−
· · ·
)

=
1

z2 − b̃1 − b̃1b̃2
z2−b̃2−b̃3−

b̃3b̃4
z2−b̃4−b̃5−

· · · b̃2n−1b̃2n
z2−b̃2n−b̃2n+1−

· · ·

=
1

z2 − b̃1−
b̃1b̃2

z2 − b̃2 − b̃3−
b̃3b̃4

z2 − b̃4 − b̃5−
· · · .

The left hand side of (6.3.2) is

F (z2) =
1

z2 − a0−
b1

z2 − a1−
b2

z2 − a2−
· · · .

Comparing these two J-fractions (defined in [25]), by uniqueness we must have b̃2n−1b̃2n = bn
and b̃2n + b̃2n+1 = an, which are (6.2.16).

6.4 Numerical results

To evaluate ϕ̃n more accurately through (6.2.3), b̃n need to be computed accurately so
that the its evaluation error will not accumulate thoroughout the recurrence relation. The
good news is that for most ‘standard’ polynomials such as Jacobi polynomials and Laguerre
polynomials, the associated b̃n can be computed analytically. For other polynomials whose
associated polynomials do not have analytic b̃n, we can use either method in Section 3 to
compute them numerically. To decide which approach is more accurate, we implement both
methods to find b̃n and compare the error of b̃n with the quadruple precision version in
floating-point arithmetic. We find that the second method is generally more accurate than
the first. This is not surprising considering equations (6.2.9), (6.2.12) and (6.2.15) imple-
mented in the first method carry more computations than that in equation (6.2.16) involved
in the second method. More operations of arithmetic might bring in more cancellation of
digits, and the round-off error might accumulate in the process. Besides, intermediate values
dn,0 and dn,1 in (6.2.15) for the first method suffer from both underflow and overflow when
n is large, which makes it harder to implement. So from now on, we concentrate on using
(6.2.16) to find b̃n of Jacobi polynomials and generalized Laguerre polynomials to test our
new method.



CHAPTER 6. ACCURATE EVALUATION OF ORTHOGONAL POLYNOMIALS
NEAR ENDPOINTS OF THE INTEGRATION INTERVAL 58

Jacobi polynomial

The classical Jacobi polynomials P
(α,β)
n (y) are orthonormal polynomials defined on [−1, 1]

with weights function w(y) = (1 − y)α(1 + y)β. To put this into our standard form (6.1.1),
we can use the change of variables x = 1+y

2
and x = 1−y

2
to map y = −1 and y = 1 to x = 0

respectively.
In more detail, the monic Jacobi polynomials p

(α,β)
n (y) defined on [−1, 1] with weight

w(y) = (1 − y)α(1 + y)β can be related to the shifted monic Jacobi polynomials p̂
(α,β)
n (x)

defined on [0, 1] with weight ŵ(x) = (1− x)αxβ using the change of variable x = y+1
2

in the
following way:

cnδmn =

∫ 1

−1

p(α,β)
n (y)p(α,β)

m (y)w(y) dy = 2α+β+1

∫ 1

0

p(α,β)
n (2x− 1)p(α,β)

m (2x− 1)ŵ(x) dx

= 2α+β+m+n+1

∫ 1

0

p̂(α,β)
n (x)p̂(α,β)

m (x)ŵ(x) dx = 2α+β+m+n+1ĉnδmn,

where we use the relation p
(α,β)
n (y) = 2np̂

(α,β)
n (y+1

2
). So we have ĉn = cn

2α+β+2n+1 . Similarly one
may show that

ân =
〈xp̂(α,β)

n , p̂
(α,β)
n 〉

ĉn
=

1

2
+
an
2
,

b̂n =
〈xp̂(α,β)

n , p̂
(α,β)
n−1 〉

ĉn−1

=
〈yp(α,β)

n (y), p
(α,β)
n−1 (y)〉

2α+β+1+2nĉn−1

=
bn
4
,

ϕ(α,β)
n (y) =

p
(α,β)
n (y)
√
cn

=
2np̂

(α,β)
n (y+1

2
)

2
α+β+2n+1

2

√
ĉn

=
ϕ̂

(α,β)
n (x)

2
α+β+1

2

,

where ϕ
(α,β)
n (y) and ϕ̂

(α,β)
n (x) are the corresponding orthonormal Jacobi polynomials needed

in the recurrence (6.1.4). Using our method from Section 3, we can create new sets of

orthonormal polynomials ϕ̃
(α,β)
n (t) from ϕ̂

(α,β)
n (x). Although they are not Jacobi polynomials

of any kind, this notation seems natural in the framework of Section 3. To evaluate ϕ
(α,β)
n (y),

we can alternatively evaluate ϕ̃
(α,β)
2n (

√
y+1

2
). From [18], we know

a0 =
β − α

α+ β + 2
, an =

β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
, (n > 0),

b1 =
4(1 + α)(1 + β)

(2 + α+ β)2(3 + α+ β)
, bn =

4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β)2(2n+ α+ β + 1)(2n+ α+ β − 1)
, (n > 1),

which we can use easily to calculate the ân and b̂n first. Applying algorithm (6.2.16) we then
can get b̃n.
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We can treat the right endpoint y = 1 similarly. letting x = 1−y
2

we have

cnδmn =

∫ 1

−1

p(α,β)
n (y)p(α,β)

m (y)w(y) dy = 2α+β+1

∫ 1

0

p(α,β)
n (1− 2x)p(α,β)

m (1− 2x)ŵ(x) dx

= (−1)m+n2α+β+m+n+1

∫ 1

0

p̂(β,α)
n (x)p̂(β,α)

m (x)ŵ(x) dx = (−1)m+n2α+β+m+n+1ĉnδmn,

with ŵ(x) = (1 − x)βxα, p
(α,β)
n (y) = (−2)np̂

(β,α)
n (1−y

2
) and ĉn = cn

2α+β+2n+1 . Similarly we can
show that

ân =
〈xp̂(α,β)

n , p̂
(α,β)
n 〉

ĉn
=

1

2
− an

2
,

b̂n =
〈xp̂(α,β)

n , p̂
(α,β)
n−1 〉

ĉn−1

=
〈yp(α,β)

n (y), p
(α,β)
n−1 (y)〉

2α+β+1+2nĉn−1

=
bn
4
,

ϕ(β,α)
n (y) =

p
(β,α)
n (y)
√
cn

=
(−2)np̂

(α,β)
n (1−y

2
)

2
α+β+2n+1

2

√
ĉn

=
(−1)nϕ̂

(α,β)
n (x)

2
α+β+1

2

.

After applying the transform x = t2 to ϕ̂
(α,β)
n (x), we get the new set of orthonormal polyno-

mials ϕ̃
(α,β)
2n (t) on [0, 1]. Since both ends can be treated similarly, from now on we only deal

with evaluation around y = −1.
Alternatively, we can derive analytic formulas for the b̃n by observing that the associated

orthogonal polynomials of Jacobi polynomials are the generalized Gegenbauer polynomials
[3]. Their relation can be well seen as w̃(t) = |t|ŵ(t2) = |t|2β+1(1− t2)α, which is the weight
function of the generalized Gegenbauer polynomials. We therefore know that

b̃n+1 =
(n+ 1 + δn)(n+ 1 + 2α + δn)

4(n+ 1 + α + β)(n+ 2 + α + β)
(6.4.1)

with δn = (2β + 1)1+(−1)n

2
.

Notice that for evaluation near y = −1, the behavior of P
(α,β)
n (y) is mostly affected by β.

Our first test case is when α = 0.5 and β = −0.5, where P
(0.5,−0.5)
n (y) is bounded between

[−1, 1] and behaves like a Chebyshev polynomial near −1. Another test case we choose is

α = 1, β = 2, with the magnitude of P
(1,2)
n (−1) increasing to infinity as n gets bigger with

a well-known estimate [45]

max
y∈[−1,1]

(1− y)α+ 1
2 (1 + y)β+ 1

2

(
P (α,β)
n (y)

)2
= O(max{1, (α2 + β2)

1
2}).

The last test case is when (α, β) = (1.7, 2.1), which is typical of the most general setting with
α > −1 and β > −1. To analyze the relative evaluation error, we introduce the normalized
functions

q(α,β)
n (x) =

P
(α,β)
n (2x− 1)

P
(α,β)
n (−1)

, q̃(α,β)
n (t) =

ϕ̃
(α,β)
n (t)

ϕ̃
(α,β)
n (0)

.
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Since evaluation error en(x) = |qn(x) − qquadruple
n (x)| is sensitive to the evaluation points

x and polynomial degree n, to get a smoother error curve we calculate the average error
over a 21-points Chebyshev-Lobbato grid. Specifically, for each n > 1, we use the average

error errn =
√

1
20

∑20
i=1 e

2
n(t2i ) and ẽrrn =

√
1
20

∑20
i=1 ẽ

2
2n(ti), where {ti}20

i=0 is the 21-point

Chebyshev-Lobatto grid from t0 = 0 to the smallest positive quadrature abscissa t20 on
[−1, 1] to represent how well an evaluation method near the original endpoint is.

Errors in evaluating q
(0.5,−0.5)
n (x), q

(1,2)
n (x) and q

(1.7,2.1)
n (x) near x = 0 with respect to

degree n using four different methods are plotted in Figure 6.1. Using (6.1.4) directly,
which is the most classic way to evaluate orthogonal polynomials, we get large errors as n
increases in all cases as shown in the plots. Implementing all our new methods discussed in
Section 3 in double precision, we create the ‘improved error’, which hits the round-off error
threshold in the (α, β) = (0.5,−0.5) case, but not in the other two cases. This discrepancy
is due to the accuracy of b̃n. In the (0.5,−0.5) case, the recurrence relation (6.2.16) gives
us accurate constant b̃n within round-off error due to the an and bn being constant. In the
(α, β) = (1, 2) case, however, computing b̃n from an, bn using (6.2.16) in double precision

leads to errors in b̃n that affect the accuracy of evaluating q̃
(α,β)
n (t). When α and β are non-

integers as in the third case, the accumulation error in computing b̃n is even worse, making the
‘improved method’ not much improved. To guarantee the accuracy of b̃n, besides using the
‘analytic formula method’ where b̃n is computed directly through (6.4.1), we can use ‘hybrid
quadruple/double’ method, i.e. computing b̃n through (6.2.16) in quadruple precision with
all other computations in double precision. Although computing b̃n iteratively in higher
precision is more time consuming, this procedure only needs to be executed once and all the
following polynomial evaluations can achieve similar accuracy as in the analytical formula
method.

From Figure 6.1 we can see generally the hybrid quadruple-double method and the an-
alytic formula method hit the round-off error accuracy as n increases. For generic integer
parameters, as in the case when (α, β) = (1, 2), both versions give similar error curves. How-
ever in the non-integer case, like α = 1.7 and β = 2.1, the hybrid quadruple-double error
is slightly bigger than the analytic formula error. In general, however, we are satisfied with
the resulting error in both methods. In the last plot of Figure 6.1, we compare the errors
of b̃n calculated using (6.2.16) in the improved method and those using the analytic formula
(6.4.1) in the (α, β) = (1.7, 2.1) case. As we can see, the error obtained by the recurrence is
much bigger than that by the analytic formula, which validates our reasoning above.

Taking advantage of accurate evaluating near the endpoints using the new methods,
we can apply one iteration of the Newton-Raphson method to calculate the abscissas near
endpoints more accurately. The intermediate step of evaluating derivatives is done using
the recurrence of ϕ′n(x) by differentiating both sides of (6.1.4). The error in calculating the
quadrature abscissas and weights using the classical Golub-Welsch algorithm and our new
method are compared in Figure 6.2. Two plots in the first row are for the error of calculating
the first 40 quadrature abscissas (zeros of P

(1.7,2.1)
400 (x)) closest to −1. As a result, our error

is much smaller than that from the Golub-Welsch algorithm. Normalizing the quadrature
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Figure 6.1: Evaluation error of P
(−0.5,0.5)
n , P

(1,2)
n and P

(1.7,2.1)
n using the classic, improved,

hybrid quadruple/double, and analytic formula methods; and accuracy of b̃n used in the
improved and analytic formula methods.

weights by multiplying w−
1
2 (x) to characterize the relative error, the error of the quadrature

weights calculated using (6.2.7) at the new abscissas versus those by Golub-Welsch are plotted
in the last row of Figure 6.2.

Generalized Laguerre polynomials

Generalized Laguerre polynomials Lαn(x) are orthonormal polynomials defined on [0,∞)
with weight function w(x) = xαe−x (α > −1). Its corresponding associated orthonormal
polynomials derived as in Section 3 are denoted as L̃αn(t) defined on (−∞,∞). So in our
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Figure 6.2: Error in calculating quadrature grids and weights of Jacobi type with α = 0.5,
β = −0.5 (first column) and α = 1.7, β = 2.1 (second column).

new method, the idea is to evaluate L̃α2n(
√
x) instead of Lαn(x) whenever x is close to 0.

Notice that the new associated weight function w̃(t) = |t|w(t2) = |t|2α+1e−t
2

defines the
so-called generalized Hermite polynomial. Similar to Jacobi polynomials, we can either
get the analytic formula of b̃2n = n [18], or calculate b̃n numerically using (6.2.16), which
might lead to cancellation of error in some cases. Notice that Lαn(x) goes to infinity as x

increases, so to avoid overflow, we rescale the the output evaluation to be Lαn(x)w
1
2 (x). Due

to the fast decaying property of w(x), we also scale the quadrature weights by dividing it
by w(x) to avoid underflow. In this way, both polynomial evaluation and quadrature weight
output are of order 1 and they together still satisfy the quadrature formula. Similar to Jacobi
polynomials, we plot the average evaluation error of the generalized Laguerre polynomial over
a 21-point Chebyshev-Lobatto grid distributed from 0 to the smallest positive quadrature
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Figure 6.3: Evaluation error of L2
n(x) and L2.1

n (x) using the classic, improved, hybrid and
analytic formula methods.

abscissa on (−∞,∞), where evaluation error at each point is obtained by comparing with the
quadruple precision version. The relation between ‘classic error’, ‘improved error’, ‘analytic
formula error’ and ‘hybrid quadruple/double error’ and n are plotted in Figure 6.3 for α = 2
and α = 2.1. As in the Jacobi case, there is a discrepancy between the accuracy of the
‘improved method’ in both cases due to computing b̃n using (6.2.16) in double precision.
When α = 2, it is more or less the same as the best two methods, achieving round-off error
accuracy. Whereas in the α = 2.1 case, its error is similar to the classic method. This is
again due to the nice property when α = 2 that all the an, bn and b̃n turn out to be integers
and no large error is accumulated in the recurrence relation. In general, for all α ∈ N, the
‘improved method’ works well. For generic α ∈ R, however, we need the other two methods
to achieve round-off error accuracy.

Figure 6.4 shows the error in finding quadrature abscissas and weights in the α = 2.1
case, which serves as a generic case with −1 < α ∈ R. Unlike Jacobi polynomials, we cannot
apply our new method near the right endpoint since it is ∞.

General orthogonal polynomials

When evaluating general orthogonal polynomials near endpoints, if we can derive analytic
formulas of the associated b̃n directly, the ‘analytic formula method’ is the best choice, which
has the same time complexity O(n) as the classic method when evaluating an n-th degree
orthogonal polynomial at a certain point, yet achieves the round-off error accuracy. If we
cannot find the analytic formula of b̃n, but the analytic formula of bn is known, we should
choose the hybrid quadruple/double method. Although the overall computation increases
compared to the classic method due to the quadruple precision calculation of an, bn and b̃n,
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Figure 6.4: Error of quadrature abscissas and weights for the generalized Laguerre case
α = 2.1 using classic and analytic formula methods.

these only have to be computed once and subsequent evaluations near the endpoints can be
done in double precision with improved accuracy.

What if no analytic formula can be found for either bn or b̃n? Our method still works
well. Let us take Maxwell polynomials (half-line Hermite polynomials) as an example. We
will use ‘Maxwell polynomial’ to denote the non-classical family of real-valued orthonormal
polynomials ϕn(x) with weight w(x) = x2e−x

2
over the positive real line. The recurrence

coefficients an and bn satisfy

bn + bn−1 + a2
n−1 =

2n+ 2

2
, anan−1bn =

(n+ 1

2
− bn

)2

− 1

4
, (6.4.2)

and can be numerically computed using the method proposed in [2].
For the associated polynomials which are orthonormal polynomials with respect to the

weight function w̃(t) = |t|5e−t4 , a special case of Freud weights wρ(t) = |t|ρe−|t|m where
ρ > −1 and m > 0, b̃n in our case satisfy 4b̃2

n(b̃2
n+1 + b̃2

n + b̃2
n−1) = n + 2(1 − (−1)n), with

b̃0 = 0 and b̃1 =
√

Γ(2)
Γ(1.5)

. Making the substitution xn = 2b̃2
n, we get the discrete Painlevé

equation d-P1

xn(xn+1 + xn + xn−1) = n+ 2
(
1− (−1)n

)
, (6.4.3)

which is a non-linear recurrence relation that has a unique non-negative solution. We im-
plement the ‘boundary-value approach’ proposed in [30] to get numerically accurate b̃n.

Now using the an, bn and b̃n calculated as above, we get the following error plot of
Maxwell polynomial evaluation in Figure 6.5. Notice here we change names of ‘analytic
formula method’ to ‘direct calculation method’ as we do not have analytic expression of b̃n.
In direct calculation method, we use (6.4.3) to obtain b̃n directly. Whereas in the ‘hybrid
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quadruple/double method’, we solve for an and bn through (6.4.2) and compute b̃n through
(6.2.16) in quadruple precision with all the subsequent calculations in double precision.
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Figure 6.5: Evaluation error of Maxwell polynomial ϕn(x) using 4 methods(left). Quadrature
abscissas(middle) and weights(right) error using ‘direct calculation method’ and ‘Golub-
Welsch’.

Quadrature abscissas near endpoints can be calculated by solving for eigenvalues of J̃n as
before, followed by one step of Newton-Raphson. Again, the weights can be calculated using
(6.2.7). We find that they are more accurate near the left endpoint 0 than by Golub-Welsch.

6.5 Amplification factor analysis

To see why the new algorithm works better, let us first rewrite (6.1.4) in matrix form as

φn =

(
x−an√
bn−1

−
√

bn
bn+1

1 0

)
φn−1 = Bn,n−1φn−1 where φn =

(
ϕn+1

ϕn

)
. (6.5.1)

Using this notation, we also have
φn =: Bn,mφm, (6.5.2)

with Bn,m = Bn,n−1Bn−1,n−2 · · ·Bm+1,m. In numerical calculations, however, numerical error
proportional to the input is brought in on each step of matrix multiplication and is amplified
through (6.5.2). Since the numerical error in forming the matrix Bn,m can be moved to the
input vector φm, without loss of generality, we always consider the matrix multiplication to
be exact with an input error proportional to φm. We now present an error analysis. Let ε
denote a 2 by 2 matrix with ||ε||2 = O(ε) where ε is the machine round-off error for single,
double, quadruple or arbitrary precision floating-point arithmetic is used. We have the norm
of the numerical error after (6.5.2) bounded by ||Bn,m−1|| · ||φm−1||ε, with the relative error

bounded by ||Bn,m−1||·||φm−1||ε
||φn|| . We define the amplification factor An of φn to be

An =

∑
0≤m<n ||Bn,m|| · ||φm||

||φn||
, (6.5.3)
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which provides an upper bound on the amplification of the relative error compared to machine
error ε for errors committed at each step of the recurrence. Similarly, applying the formula
to our new algorithm we have

Ã2n =

∑
0≤m<2n ||B̃2n,m|| · ||φ̃m||

||φ̃2n||
.
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Figure 6.6: Amplification factors of Jacobi polynomial in the (α, β) = (1.7, 2.1) case with
n = 8, 64, 512 and y ∈ [−1,−0.5] obtained from the old and the new methods.

Both amplification factors for different n and at different evaluation points x are presented
in Figure 6.6 for Jacobi polynomials with the most general parameters (α, β) = (1.7, 2.1).
We find that when n ≥ 8, Ã2n(y) < An(y) for y ≤ −0.95. Surprisingly, this threshold
y = −0.9 also applies to Jacobi polynomials with general (α, β) pairs. This result validates
our numerical results in the previous section and also gives us a threshold of when to use the
new recurrence relations versus the original ones. To get more accurate evaluation of Jacobi
polynomials at y ∈ [−1, 1], we can first compare y with −0.95 (even -0.9 when n is large as
seen from the Figure 6.6). If x is smaller, we use our new algorithm to evaluate. Otherwise
we use the classic method. We have turned this idea into a package.
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Chapter 7

Conclusion and future work

In the first part of the dissertation (Chapters 2-5), we model the 3D axisymmetric rising-
bubble problem in the high Reynolds number regime. The novelty of our work lies in the
following aspects: Potential theory in 3D is used to present the velocity potential and meth-
ods are devised to numerically integrate singular integrals with spectral accuracy; the HLS
framework is applied to get uniform grid spacing on the bubble surface with respect to arc-
length and a projection is devised to guarantee ξ(π) = 0 in both the steady and unsteady
problem; steady bubble shapes characterized by the different number of humps are found.
The importance of boundary layer effects is implied from the comparison between the inviscid
model (using potential flow) and the viscous model (using viscous potential flow).

Our original motivation for modeling the rising bubble problem is to get a more accurate
representation of the bubble shapes, so we use spectral methods to solve the discretized
systems numerically throughout our work, but there are several places that we would like
to refine more if we had more time. One future work is to study the compactness of layer
potential operators on infinite cylinders. Our numerical method suggests that the discretized
system is always solvable in our problem, but the compactness of D′ has not been shown.
Besides, the way we integrate on the infinite domain using the cotangent transform might
bring in singularities at the finite endpoints, which we have not analyzed. Our inability to
fully achieve round-off error accuracy might be related to not representing µ2 at the endpoints
well enough.

In the second part of the dissertation (Chapter 6), we introduce a new way to evaluate
orthogonal polynomials more accurately near the endpoints of the integration interval by
evaluating at corresponding points the newly created associated orthogonal polynomials.
The connection between the (associated) orthogonal polynomials and the (even part of)
continued fractions brings some insight into the transformation x = t2. For evaluation close
to the endpoint, our new methods (both analytic formula method and hybrid method) can
achieve 3 more digits of accuracy than the classic recurrence method for general orthogonal
polynomials when the degree is around 400. Furthermore, the higher the polynomial degree
is, the more the new methods outperform the classic one. Based on the accurate evaluation,
more accurate quadrature abscissas near endpoints and more accurate quadrature weights
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are obtained compared to those by Golub-Welsch.
Besides the new method stated in Chapter 6, we have been exploring another new set of

orthogonal polynomials associated with the odd part of continued fractions. They relate to
the original monic orthogonal polynomials via p̃2n+1(t) = tpn(t2). The new data b̃n can be
computed from a new recurrence relation similar to (6.2.16). However, so far this approach
does not give better results than our new methods presented in Chapter 6. Although other
transformations such as x = t4 are not as natural as x = t2, for future work it would be
interesting to explore whether they will bring some new aspect to the problem.
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[22] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Berlin
Heidelberg: Springer, 1993.

[23] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. “The long-time motion of vortex sheets
with surface tension”. In: Physics of Fluids 9.7 (1997), pp. 1933–1954.

[24] J. Hua and J. Lou. “Numerical simulation of bubble rising in viscous liquid”. In:
Journal of Computational Physics 222.2 (2007), pp. 769–795.

[25] W. B. Jones and W. J. Thron. Continued Fractions: Analytic Theory and Applications.
Cambridge: Cambridge University Press, 1984.

[26] D. D. Joseph. “Potential flow of viscous fluids: historical notes”. In: International
Journal of Multiphase Flow 32.3 (2006), pp. 285–310.

[27] N. D. Katopodes. Free-Surface Flow: Environmental Fluid Mechanics. Kidlington, Ox-
ford: Butterworth-Heinemann, 2019.

[28] O. D. Kellogg. Foundations of Potential Theory. Berlin, Heidelberg, New York: Springer,
1967.

[29] R. Kress. Linear Integral Equations. New York: Springer, 1989.

[30] J. S. Lew and D. A. Quarles Jr. “Nonnegative solutions of a nonlinear recurrence”. In:
Journal of Approximation Theory 38.4 (1983), pp. 357–379.

[31] J. Ma, V. Rokhlin, and S. Wandzura. “Generalized Gaussian quadrature rules for
systems of arbitrary functions”. In: SIAM Journal on Numerical Analysis 33.3 (1996),
pp. 971–996.



BIBLIOGRAPHY 71

[32] C. Málaga and J. M. Rallison. “A rising bubble in a polymer solution”. In: Journal of
Non-Newtonian Fluid Mechanics. 141.1 (2007), pp. 59–78.

[33] S. Middleman. Modeling Axisymmetric Flows, Dynamics of Films, Jets and Drops.
New York: Academic Press, 1995.

[34] M. Miksis, J. M. Vanden-Broeck, and J. B. Keller. “Axisymmetric bubble or drop in
a uniform flow”. In: Journal of Fluid Mechanics 108 (1981), pp. 89–100.

[35] M. Miksis, J. M. Vanden-Broeck, and J. B. Keller. “Rising bubbles”. In: Journal of
Fluid Mechanics 123 (1982), pp. 31–41.

[36] D. W. Moore. “Rising Bubbles”. In: Journal of Fluid Mechanics 23.4 (1965), pp. 749–
766.

[37] Q. Nie and G. Baker. “Application of adaptive quadrature to axi-symmetric vortex
sheet motion”. In: Journal of Computational Physics 143.1 (1998), pp. 49–69.

[38] M. Nitsche. “Axisymmetric vortex sheet motion: accurate evaluation of the principal
value integral”. In: SIAM Journal on Scientific Computing 21.3 (1999), pp. 1066–1084.

[39] M. Nitsche. “Singularity formation in a cylindrical and a spherical vortex sheet”. In:
Journal of Computational Physics 173.1 (2001), pp. 208–230.

[40] J. Nocedal and S. J. Wright. Numerical Optimization. New York: Springer, 1999.

[41] S. B. Pillapakkam et al. “Transient and steady state of a rising bubble in a viscoelastic
fluid”. In: Journal of Fluid Mechanics 589 (2007), pp. 215–252.

[42] L. Prandtl. “Zur berechnung der grenzschichten”. In: Journal of Applied Mathematics
and Mechanics 18.1 (1938), pp. 77–82.

[43] D. M. Sharaf et al. “Shapes and paths of an air bubble rising in quiescent liquids”. In:
Physics of Fluids 29.12 (2017), p. 122104.

[44] Y. Hou T, J. S. Lowengrub, and M. J. Shelley. “Removing the stiffness from interfa-
cial flows with surface tension”. In: Journal of Computational Physics 114.2 (1994),
pp. 312–338.
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