
UC Irvine
ICS Technical Reports

Title
Shortest paths in orthogonal graphs

Permalink
https://escholarship.org/uc/item/6w02c4bm

Authors
Bhatia, Sandeep
Hirschberg, Daniel
Scherson, Isaac D.

Publication Date
1991-05-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w02c4bm
https://escholarship.org
http://www.cdlib.org/

Notice: Tllis Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

§hortest Paths in Orthogonal Graphs

Sandeep Bhatia:, Daniel Hirschberg2 and Isaac D. Scherson2
:::::::--- r--

1 Department of Electrical Engineering
Princeton University
Princeton, N J 08544

2Department of Information and Computer Science
University of California

Irvine, CA 92717

Technical Report #91-45
May 1, 1991

Shortest Paths in Orthogonal Graphs

Sandeep Bhatia 1 , Daniel S. Hirschberg2 and Isaac D. Scherson2

1 Department of Electrical Engineering
Princeton U ni versi ty
Princeton, N J 08544

2Department of Information and Computer Science
University of California

Irvine, CA 92717

Abstract

Orthogonal graphs were introduced as a simple but powerful tool for the description
and analysis of a class of interconnection networks. Routing, and hence finding shortest
paths between any two nodes of an orthogonal graph, becomes an important problem.
It is shown in this paper that routing in this class of graphs reduces to a node covering
problem in the bipartite coverage graph of the orthogonal graph. A minimum cover
clearly leads to a shortest path. In general, the problem of finding the mínimum node
cover in a bipartite graph is NP-complete. However, the bipartite coverage graphs
corresponding to orthogonal graphs have a regular pattern of edges. This allows the
development of a routing algorithm which results in a minimum cover. The procedure
executes in polynomial time in the number of bit-nades of the bipartite graph. It
therefore results in a shortest path algorithm whose time complexity is quadratic in
the logarithm of the number of nodes in the original orthogonal graph.

Keywords: Orthogonal Graphs, Coverage Graphs, Routing, Minimum Cover, Short
est Path.

1 Introduction

Orthogonal graphs were recently introduced as a unified framework for the description
and analysis of a large class of interconnection networks [1 O, 11, 12]. The graphs are defined
by a construction rule based on three parameters, namely the number of nodes (2m), a
mask length n :::; m, and a set of connectivity modes Q ~ {O, 1, ... , m - l}. Two nodes
labeled with m-bit strings are connected if there exist an integer q E Q such that the node

1

labels differ in at most m - n bits starting at bit position (q + n) mod m. The resulting
structures correspond to spanning bus hypercube-like structures and describe systems like
the binary hypercube, Batcher's Multidimensional Access (MDA) memories, spanning bus
hypermeshes, most known multistage interconnection networks, and many others. In this
paper we address the routing problem in orthogonal graphs and suggest a simple algorithm
to find shortest paths. It is clear that, given that orthogonal graphs describe such a large
class of systems, the proposed algorithm applies to those systems as well.

It will be shown that the connectivity of an orthogonal graph can be depicted by means
of a bipartite graph which consists on one side of nodes representing label bits and, on the
other si de, cover nodes corresponding to integers in the set Q. A path between any two nodes
is an ordered sequence of nodes which differ in at most m - n bits covered by sorne mode
defined in Q. The routing problem reduces to that of finding a cover set of a subset of label
bits, those in which source and destination labels di:ffer. However, the general problem of
finding a mínimum cover in arbitrary bipartite graphs is NP-complete. Fortunately, sorne
properties' of the coverage graph of orthogonal graphs allow the development of a simple
routing procedure which results in a shortest path. We show here that a mínimum solution
can be found in at most O(m 2

) steps, where m is the logarithm of the number of nodes in
the orthogonal graph.

In Section 2, a review of orthogonal graphs is given for completeness and to provide the
nomenclature used in the paper. Section 3 describes the algorithm to identify a mínimum
length path between any two nodes of an orthogonal graph.

2 Review of Orthogonal Graphs

An orthogonal graph is an undirected graph G(n, m, Q) which has 2m nodes · labeled
distinctly from Ym, the set of m-bit binary labels. The edges of graph G are defined by a
construction rule parameterized by n, which is an integer less than m, and Q, the set of
modes, which is a sub set of the integers {O, ... , m - 1}. Let Yi denote the i-th bit of a label,
]!_E Ym, and let EB denote the exclusive-OR operation.

The edge construction rule is as follows: Two distinct nodes labeled ~ and]!_1 are connected
by an edge if and only if there exists a q E Q such that

(q+n)modm

2:= Yi EEl Y: = O
i=q

The no des are said to be orthogonal mode q. This is denoted symbolically as y_ l_q y_'.

The following properties are ascribed to orthogonal graphs:

l. Connectivity: An orthogonal graph G(n, m, Q) is connected if and only if

Vi E (O, m - l], 3q E Q such that j(q + n) mod m - ij < (m - n)

2

We say that mode q covers bit position i.

2. Disjoint modes: Q is said to be a disjoint set of modes if and only if for all i E [O, m -1)
there is a unique mode q E Q which covers bit position i.

3. Omega graphs: A connected orthogonal graph with a disjoint set of modes is called
an omega graph. Vve denote these graphs as wG(n, m) because, in order to satisfy
connectivity and disjointness, there must be sorne integer w such that m = w(m - n)
and Q ={O, (m - n), 2(m - n), ... : (w - l)(m - n)}. Note that any omega graph with
Q = {l, l + (m - n), ... , l + (w- l)(m - n)} for any integer O< l < m - nis isomorphic
to the graph for l = O. The diameter of an omega graph is the size of Q (#Q).

3 Routing

The routing problem in orthogonal graphs was outlined in [11, 12]. Because of the
similarity between this problem and that of Boolean minimization, it was conjectured that
finding a shortest path would require an exhaustive search as a solution is not unique. In
this paper we use sorne properties of the bipartite coverage graphs of an orthogonal graph
to develop an algorithm which results in a shortest path solution.

As was outlined in [11, 12], to find a path between nodes 'fL and '!L', we first compute a
routing tag i = 'fL EB 'jj_'. The tag i has l 's in all those bit positions in which the nodes labels
differ.

We define the coverage graph for an orthogonal graph ,G(n, m, Q) to be a bipartite graph
G* in which the left-hand-side nodes (bit nodes) correspond to label bits and the right-hand
side nodes (q-modes or cover nodes) correspond to modes in Q. A q-mode is adjacent to a
bit node if and only if the mode covers that bit position. A connected orthogonal graph will
have a coverage graph in which all bit nodes are connected to at least one cover node. For
the remainder of our discussion we consider only connected orthogonal graphs.

A set a of cover nodes in the coverage graph corresponds to (genera tes) a set of paths
in the orthogonal graph. If q E a, then a node labeled with a bit string 'fL is adjacent to
a set of nodes whose labels differ, from y, in at most m - n bits starting at bit position
(q + n) mod m. Path sequences can be g~nerated as follows. Starting from a given source
node in the orthogonal graph, iterate obtaining the label of the next node in a path by
inverting the bits of the current node label at bit positions corresponding to a subset of the
bit no des adj acent to one of the cover nodes of a. Note that a regular (m - n)-ary tree
can be constructed for each node in the orthogonal graph. This tree represents all possible
shortest paths available from node ~ to all other nodes.

We define the routing grnph as the subgraph of the coverage graph obtained by deleting
the bit nodes corresponding to the O-bits in i and the edges associated with those deleted
nodes. The routing problem is reduced to finding a mínimum subset of the q-modes that
cover the bit nodes in the routing graph.

3

biinodoo cove:rna::le• tng•ICXXXJlll

bO ti)

bl bl

Ra~mult I • (dl, el}
b2 b2

Ra~m..Jc 2- (dl. c2}

b3 b3

Ra~multJ •(el.~}

b4 b4

b5 b5

b6 b6

b7 b7

(•) (b)

Figure 1: (a) Coverage graph for G(5, 8, {O, 2, 3, 5, 6}) (b) Routing problem for path from
01101011 to 1110100

In Figure 1, the left bipartite graph is the general converage graph for G(5, 8, {O, 2, 3, 5, 6}).
An example routing problem is given in the right graph of Figure l. The routing tag,
t.='!!_ EB y', is shown at the top and the circled nodes, corresponding to 1-bit positions in t.,
are those that must be covered. A solution minimum covering set of q-modes corresponds
to a routing mask set which need not be applied in any predefined order. Note that the
minimum covering set is not necessarily unique. For this example, the three solution routing
mask sets are indicated.

It is worth noting here that if G(n, m, Q) is an w-graph, the coverage set will contain all
cover nodes in the routing graph as bit nodes are uniquely covered. Such a case is trivial
and will not be discussed any further.

We define the following notation :

bi : a bit node in the coverage graph.

Cj : a cover node in the coverage graph.

adj (a) : the set of no des adj acent to no de a in the coverage graph. See Figure 2 for
examples.

f3i : the set of bit nodes in the routing graph that are adjacent to the ith cover node of
the minimum cover. Note that the union of all {3/s gives all 1-bits in the routing tag t.. .

Sorne of the (3/s may have non-empty intersection. Arbitrarily, remove common bit nodes
from intersecting (3/s so that they become a disjoint partition of the set of 1-bits in t_.

~i : a subset of bit nodes in the routing graph that are adjacent to the ith cover node of
the mínimum cover so that the set of ~i's is a disjoint partition of the l~bits in f.

The set of ~i's gives the minimum path (indices of the intermediate nodes, if any) for the
routing tag t_. Starting from the source node, the index of the next node in a minimum path
is obtained by inverting the index at bit positions corresponding to one of the ~/s. Each of
the ~i's is considered only once. The destination node is reached when all the Pi's have been

4

bit nodes cover nodes tag = 00011110

bü

bl bl adj(b2) - {e 1, c2}

b2 b2 adj(c2) = {b2, b3, b4}

b3 c2 b3 c2

c3 c3
b4. b4

b5

b6

b7

(a) (b)

Figure 2: A typical coverage graph (a) Coverage graph for G(5, 8, {O, 3, 5, 6}), (b) Routing
graph for path from 01000111 to 01011001

considered.

For the example of Figure 2, c1 and c2 forma minimum cover. The bit nodes adjacent to
them are /31 = {b1, b2} and /32 = {b2, b3, b4}. Let ~1 = {b1, b2} and ~2 = {b3, b4}. Therefore,
a minimum-length path from 01000111 to 01011001 is

01000111 - 01000001 -01011001

The order of using the ~i's is not important, so another minimum path is

01000111 -01011111 -01011001

For each cover nade Cj in the coverage graph, adj(Cj) is a contiguous subset of the bit
nodes if they are considered as forming a ring b0 , b1 , ... , bm_ 1 , b0 . Accordingly, for cover nade
Cj, we denote adj(Cj) by the pair of indices firstb(Cj) and lastb(Cj). If firstb(Cj) ::; lastb(Cj) then
adj(cj) = {bfirstb(cj), ... , btastb(cj)}· Otherwise, adj(cj) = {bfirstb(cJ·), ... , bm-1, bo, ... , b1astb(cj)}· It
follows that, in the routing graph, adj(Cj) is also a contiguous subset of the bit nodes.

Similarly, for each bit node bi in the coverage graph, adj(bi) is a contiguous subset of the
cover nodes if they are considered as forming a ring ea, c1 , ... , cn_1 , ea. Accordingly, for bit
node bi, we denote adj(bi) by the pair of indices firstc(bi) and lastc(bi). If firstc(bi) ::; lastc(bi)

5

then adj(bi) = {cfirstc(b¡), ... , C/astc(b¡)}· Otherwise, adj(bi) = {cfirstc(b¡), ... , Cn-1? ca, ... , C/astc(b¡)}·

In the routing graph, adj(bi) is also a contiguous subset of the cover nodes.

The following is an algorithm solving the covering problem :

Let (3* be the set of indices of the 1-bits in f.
We will find optT, the mínimum size subset of Q that covers (3*.

optT +- Q

foreach z E Q do

X f- Z

T +- {ex}
S +- (3* - adj (Cx)

initially the smallest subset that works is the entire set

z is the index of the first cover node to be placed in T

T builds up to a candidate for optT
S is the part of (3* not yet covered

while S is non-empty do
if 3i ES s.t. i > lastb(cx)
then nextb +- min{ i E SJi > lastb(ex)}
else nextb +- min { i E S}

X +- laste (bnextb)

T +-TU {ex}
S +- S - adj(cx)

endWhile

nextb is the (circular) first index i s. t. bi not yet covered
x is the (circular) last index j s. t. Cj covers bnextb

add one more cover node to T
remove the bit nodes in S covered by ex

if (JTJ < JoptTJ) then optT +- T

endFor

The correctness of the algorithm is easily shown .. One of the iterations of the for loop
will initialize the set T to contain a cover node of a mínimum cover set T*. As we next see,
this iteration will produce a mínimum cover node set T. Each iteration of the while loop
determines the circular first bit node bnextb not yet covered by T and then covers it with
the circular last possible cover node ex. Any other cover node that could cover bnextb will
not cover any bit nodes not covered by ex or previously chosen cover nodes. Therefore each
chosen cover node in T will perform as well its counterpart in T* and the cardinality of T
will be equal to that of T*.

The preprocessing to calculate lastb and laste takes time O(m). Each iteration of the
while loop takes constant amortized time. Each iteration of the for loop takes time O(m).
The for loop will be iterated JQ 1 :::; m times. Therefore, the time complexity of the algorithm
to determine the minimum size cover node set is O(m2

). From the solution cover set, a

6

shortest path can be produced in time proportional to the length of the path, which is
O(m).

We conjecture that it may be possible to calculate a restriction on the choices of which
itern to be first placed in the minimum cover set. Such a restriction would reduce the
complexity of this algorithm correspondingly.

4 Conclusions

In this paper, an algorithm to identify a shortest path in an orthogonal graph is pre
sented. Since orthogonal graphs can be used to describe various interconnection networks,
this provides a tool to find a shortest path from any node to any other node in a general
interconnection network.

The work can be further expanded to identify several different shortest paths, if more
than one shortest path exists, or to find a mínimum length path in the presence of a fault
in a set of nodes and links in the interconnection network.

References

[l] K. E. Batcher, The Multidimensional Access Memory in STARAN) IEEE Transactions
on Computers, Vol. C-26, No. 2, February 1977, pp. 172-177.

[2] R. E. Buehrer et al., The ETH Nlultiprocessor EMPRESS: A Dynamically Reconfigurable
MIMD System, IEEE Transactions on Computers, Vol. C-31, No. 11, November 1982,
pp. 1035-1044.

[3] L. N. Bhuyan and D. P. Agrawal, Generalized Hypercube and Hyperbus Structures for
a Computer Network) IEEE Transactions on Computers, Vol. C-33, No. 4, April 1984,
pp. 323-333.

[4] R. P. Grimaldi, Discrete and Combinatoria! Mathematics. An Applied Introduction)
Reading, Addison-Wesley Publishing Co., Inc.:, 1989.

[5] F. Harary, Graph Theory) Reading, Addison-Wesley Publishing Co., Inc., 1969.

[6] K. Hwang and D. Kim, Generalization of Orthogonal Multiprocessor for l\lfassively Par
allel Computation) Proceedings of Frontiers 88, 2nd Symposium on the Frontiers of
Massively Parallel Computation.

[7] K. Hwang, P. S. Tseng and D. Kim, An Orthogonal Multiprocessor for Large-Grain
Scientific Computations) IEEE Transactions on Computers, Vol. C-38, No. 1, J anuary
1989, pp. 4 7-61.

7

[8] l. D. Scherson and Y. Ma, Vector Computations in an Orthogonal Memory Access Mul
tiprocessing System) Proceedings of the 8th Symposium on Computer Arithmetic, May
1987, pp. 28-37. February 1989, pp.238-249.

[9] l. D. Scherson and Y. Ma, Analysis and Applications of the Orthogonal Access Multi
processor) The Journal of Parallel and Distributed Computing, Vol. 7, No. 2, October
1989, pp.232-255.

[l O] l. D. Scherson, Definition and A nalysis of a Class of Spanning Bus Orthogonal lvlultipro
cessing Systems) Proceedings of the 1990 ACM Computer Science Conference, February
19-22, 1990, Washington DC, pp. 194-200.

[11] l. D. Scherson, Orthogonal Graphs and the Analysis and Construction of a Class of
Multistage Interconnection Networks) Proceedings of the 1990 International Conference
on Parallel Processing, August 1990.

[12] l. D. Scherson, Orthogonal Graphs for the Construction of a Class of Interconnection
Networks) IEEE Transactions on Parallel and Distributed Systems, in press.

[13] l. D. Scherson, Ashish Mehra and Jennifer Rexford, Toward Scalable Algorithms for
Multidimensional Access Systems Proceedings of the IEEE 1990 Symposium on the
Frontiers of Massively Parallel Computation, Maryland, October 1990.

[14] C. L. Seitz, The Cosmic Cube) Communications of the ACM, Vol. 28, No. 1, January
1985, pp. 22-33.

[15] H. J. Siegel, Interconnection Networks for Large Scale Parallel Processing: Theory and
Case Studies) Reading, Lexington Books, Lexington, Mass. 1984.

[16] H. S. Stone, High Performance Computer Architecture) Reading, MA, Addison Wesley,
1987.

[17] A. Tucker, Applied Combinatorics) Reading, John Wiley & Sons, Inc., 1980.

8

