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ABSTRACT

Fault Detection and Diagnosis in Building HVAC Systems
by
Massieh Najafi
Doctor of Philosophy in Mechanical Engineering
University of California, Berkeley

Professor David M. Auslander, Chair

Building HVAC systems account for more than 30%uoehual energy consumption in United
States. However, it has become apparent that ardysmall percentage of buildings do HVAC
systems work efficiently or in accordance with desintent. Studies have shown that
operational faults are one of the main reasonth®inefficient performance of these systems. It
is estimated that an energy saving of 5 to 15 peiseachievable simply by fixing faults and
optimizing building control systems.

In spite of good progress in recent years, methodsanage faults in building HVAC systems
are still generally undeveloped; in particularréhis still a lack of reliable, affordable, and
scalable solutions to manage faults in HVAC systeévtideling limitations, measurement
constraints, and the complexity of concurrent fabkive made the diagnosis of these problems
as much an art as a science. The challenge istnewatuate system performance within the
boundaries defined by such limitations.

This thesis focuses on a number of issues thatripinion, are crucial to the development of
reliable and scalable diagnostic solutions fording HVAC systems. Diagnostic complexity
due to modeling and measurement constraints, thagiveness of diagnostic mechanisms,
bottom-up versus top-down diagnostic perspectidiegnosis-ability, and the correlation
between measurement constraints and diagnostibitipwiill be discussed in detail.

We will develop model-based and non-model-baseghnaistic algorithms that have the
capability of dealing with modeling and measureneamtstraints more effectively. We will
show how the effect of measurement constraintdbeamnaced to the information entropy of
diagnostics assessments and how this can leaftamawork optimizing the architecture of
sensor networks from the diagnostic perspective.



In another part of this study, we focus on proactiagnostics. In the past, the topic of proactive
fault diagnostics has not been given enough attenéiven though the capability of conducting
and supervising automated proactive testing isntisdén terms of being able to replace manual
troubleshooting with automated solutions. We wilb®& how a proactive testing problem can be
formulated as a decision making problem couplett wiBayesian network diagnostic model.

The algorithms presented in this thesis have bepfemented and tested in the Lawrence
Berkeley National Laboratory (LBNL) using real asyhthetic data.
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1. INTRODUCTION

The operation of building HVAC systems accountsnfare than 30 percent of annual energy
consumption in United States [1, 2]. However, & bacome apparent that only in a small
percentage of buildings do HVAC systems work edintly or in accordance with the deign
intent [3, 4]. Studies have shown that operatidaalts are one of the main reasons for the
inefficient performance of these systems. It isnestied that an energy saving of 5 to 15 percent
is achievable simply by fixing faults and optimigibuilding control systems [5].

Current methods for detecting faults or performacreep in building HVAC systems are labor-
intensive. Typically, building operators or enggneuse intuition and various rules of thumb to
identify the problem. In practice, the labor-irdereness of these tasks is such that they are not
routinely performed, and they may never be perfarmemost buildings. If the achievable 5 to
15 percent energy savings are to be met in pradiigkling energy management systems must
be capable of detecting when a failure has occuwredhen performance is creeping, and be
able to determine the likely offending hardwareperating condition. Automated systems for
fault detection are therefore essential if low-gyesr net zero energy goals are to be met
nationally.

The topic of automated fault detection and diagh{SDD) has been an active area for research
and development in applications such as aerospaoegss control, automotive, and
manufacturing over the past four decades [6-17huifding HVAC systems, FDD has received
increasing attention over the last decade or sp][@B A variety of diagnostic methods from
first-principle-model-based approaches [20-23]rtprical-model-based approaches [24-34]
and qualitative/rule-based approaches [35-42] Ie@em developed by researchers to
automatically detect and isolate faults in HVYACtsyss: air handling units [22, 40, 43-48],
chillers [23, 49-53], heat pumps [54-55], and osher

In spite of good progress in recent years, methodsanage faults in building HVAC systems
are still generally undeveloped; in particularaek of reliable, affordable, and scalable solutions
to manage faults in HVAC systems still exists. Aiety of reasons, from technical barriers to
financial motivations and regulatory obstaclespacdt for the absence of widespread availability
and deployment of FDD systems [19]. From a techsizandpoint, which is the focus of this
thesis, modeling limitations, measurement consisaand diversity and multiplicity of faults
have made the problem significantly more complex.

In this thesis, we focus on a number of issuesithatir opinion are crucial to the development
of reliable, affordable, and scalable solutionsaadhostics complexity due to modeling and



measurement constraints, proactiveness of diagnosichanisms, transition from bottom-up to
top-down automated diagnostics, and the correldteiween measurement constraints and
diagnostics capability are the subjects that wedisicuss in detail, and will also suggest some
systematic solutions.

1.1 Modeling limitations and measurement constraints

One of the main challenges in building HVAC diaginessis modeling limitations. The
principles of HVAC equipment are known well enougtcreate a suitable model structure.
However, from a widespread availability and deplentperspective, the accuracy of these
models can be improved up to certain levels. Beybat] extensive effort is required to obtain
high-qualitya priori knowledgé that affects the scalability attribute. This lisithe applicability
of diagnostic solutions that depend on highly aateior detailed models. Such models require
an extensive amount of configuration data that matybe available or measurable in practice.

On the other hand, when the focus leans towardalessrate models, either by using simplified
first-principle models or empirical models with setevel of uncertainty, the new challenge then
becomes how to differentiate inconsistencies (ifferdnce between system outputs and model
predictions) that arise from modeling errors ansteamy faults.

One way to deal with such complexity is to chargediagnostic focus to behavioral patterns
instead of residuals. In other words, instead afyaing a system’s performance by comparing
the difference between the outputs and model piiedgat one or a few operating points,
diagnostics is achieved by evaluating the systemavier pattern over a window of operation.
This strategy has been used in some diagnosticotgtiespecially qualitative and semi-
guantitative approaches [1-4]. The key here im&rénce mechanism to match the observed
behavior from the system with a set of predefinedven new hypotheses in an environment
affected by noise and uncertainty.

Fuzzy logic has turned out to be a popular chaicehfese types of problems. The inherent
flexibility embedded in fuzzy sets and fuzzy rufeake it a suitable solution for reasoning in
domains affected by uncertainty and error. In boddHVAC systems, fuzzy-based diagnostic
mechanisms have been used in several studies§2%7558]. For example, in [57], Haves et al.
have developed fuzzy-based diagnostic routinefatdt detection and diagnosis of VAV air-
handling units. In their proposed approach, fuzagda inference mechanisms compare system

! If the model is a detailed first-principle model, the a priori knowledge is mainly model parameters values and
their variations. If the model is an empirical model, the a priori knowledge is usually high-quality training data of
the system behavior in different modes.



outputs with the predictions of simplified modetssarious operating points to draw conclusions
about the system health status.

However, fuzzy-based inference mechanisms havediei limitations. As the problem
complexity grows (due to the system complexitygéganumber of disparate sensor data, and
many possible faults, etc.), a prohibitive numbigiuazy sets and fuzzy rules are required for
system diagnostics. Added to this is the issualpfsiing and tuning fuzzy sets either manually
or through other approaches.

It is worth mentioning that another way of dealimigh modeling limitations in HVAC

diagnostics is rule-based diagnostics [20-34]hia approach, tha priori knowledge is
formulated through a set of if-then-else rules, andnference mechanism searches through the
rule-space to draw conclusions. Rule-based systambe based on expert knowledge or first
principles. The strength of rule-based systemase @f development and the ability to reason
under uncertainty. However, as it has been disdussg@ 8], as the problem complexity grows or
when new rules are to be added, the simplicityutd-based systems is lost quickly.
Furthermore, sometimes the activation of the rdigsends on threshold(s) that may highly
depend on model uncertainties, measurement emoosher issues. More discussion on this can
be found at [40].

Another challenging issue in building HVAC diagriostis measurement constraints. In building
HVAC systems, sensor network architectures areeo¢ssarily designed solely based on
diagnostic purposes. Other factors such as confmeécial constraints, and practical
limitations are also involved. As a result, it @amon to have one or more components being
monitored through only one sensor (or one setd@s). In such a scenario, when the sensor
output is contaminated, it could be due to the amadfioning of any of the involved components,
and it may not be a straightforward task to loth&affected one. In other words, the problem
complexity expands from the diagnostics of one comapt to a network of components.

An example of this is the air-handling unit. Ashaé discussed in Chapter 2, in air-handling and
rooftop units, there is usually no reliable measwe®et of the mixed air temperature due to the
incomplete upstream mixing. This results in usimg downstream supply-air temperature to
infer the performance of both the mixing box anel leating/cooling coils (Figure 1.1). In other
words, the functionality of three components is itwed through only one sensor.

In general, the complexity of diagnostic problems tb measurement constraints has not been
addressed in a systematic fashion or in much d&faist methods reported in the literature
assume that either the required measurements aitalde, or a unique solution exists that is
sufficiently described by existing measurements.
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Figure 1.1: Air-handling unit schematic diagram

A part of our focus in this study is to developgtastic algorithms that can systematically deal
with modeling and measurement constraints. In Ghrdhtwe present a Bayesian network-based
diagnostic mechanism that analyzes a system’speaface by evaluating the behavioral
patterns over a window of operation and compatiegt with various hypotheses. Each
hypothesis is indeed a predicted performance ofystem (developed by simplified models)
under the assumption of one or more faults. Wedeithonstrate how the framework can be
systematically expanded as the problem complexawsg.

Another attribute of the proposed mechanism isaggbility to deal with measurement
constraints. As it will be shown in Chapter 2, thissing measurements can be formulated as
hidden variables in the Bayesian model.

In Chapter 4, we present another diagnostic appr@amodel-free approach, for rooftop units.
The approach evaluates rooftop unit performancanayyzing the correlation among parameters
and matching them with various predefined patterntisout using any model. We will
demonstrate the effectiveness of the method bintetwith data coming from different retail
stores.



1.2 Bottom-up versus topdown diagnostics

Fault detection and diagnostics in building HVAGEMs can be approached from
perspectives: bottompuand toj-down perspectives [59]. In the bottarp-approach, lower-level
performance measuresId¥/AC systems (Figure 1)® are used to isolate the problem :
propagate its effect on building performance. Cosely, in the topdown approac, higher-level
performance measures are used to reason aboubledssve-level causes of degradation to-

higher-level measures.

Bottom-up diagnosticoutines are usually initiated lcomplaints fronthe occupais. When
occupants complain aboutat, cold, or uncomfortable environment, a diagicastutineon the
area related to the complaistbegunto trace the problem and locate the malfunding device.
In contrast, togdown diagnostic processes, which are also knowrhade building diagnostic:
are normally motivated by@ncerrfor efficientbuilding operation. When, for examp
building energy usage increases unexpectedly,-down diagstic process is performed
locate the inefficient division/section and tralbe problematic device or caL
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2 Figure 1.2 is borrowed from [59].



In recent years, there has been growing interdsiprdown diagnostic approaches [60-64]. Part
of this is due to growing concerns about buildiffecency. Another reason is measurement
flexibility. Top-down diagnostic processes are Uigusased on monitoring the energy consumed
by the building and/or subsystems (e.g., coolingtihg systems, fans, lights, etc.), which is
measured indirectly by monitoring the amount ot#leity or gas provided to the building (or
subsystem). This is an easier way of measuringggnesage than the direct way of measuring
state parameters such as temperature, presswtheoiindicators to calculate the energy usage.

From an automated diagnostics perspective, a \vaidiger of research studies has been performed
for the automation of bottom-up diagnostic proce$48, 19]. However, for top-down
diagnostics, the story is different: building-ledghgnostic processes are still performed
manually, in which building experts analyze thefmenance graphs, looking for predefined
signatures to detect and isolate abnormalities§B961]. In more advanced cases, a building
model (developed by DOEZ2, Energy Plus, etc.) isl @sea rough reference as well [63, 64].

When diagnostics is to be achieved at the builtBrgl, the problem complexity extends to a
new horizon. At the component level, there is alksad of faults to deal with, while at the
building level, a massive number of faults neetddonanaged. Added to this is the complexity
of concurrent faults, which expands the set of amabscenarios exponentially. Another issue is
fault detectability. All building HVAC faults areat necessarily detectable through high-level
measures. The impact of some faults may not berdiftiated from modeling and measurement
errors. For example, it is very unlikely to be atdaletect the effect of a damper leakage or stuck
damper fault on the total energy used by a fourydtailding. The challenge is that there is no
systematic framework to differentiate between datde and non-detectable faults. In other
words, there is no standard routine for evaluatinglable measures to determine which faults
should be included and which ones should be rembeedthe diagnostic process.

These challenges are the main barriers to the atomof building HVAC diagnostics from a
top-down perspective. The extensive number of $aarid the complexity of fault detectability
limit the applicability of conventional diagnostpproaches. In this study, we approach the
problem in a different way. We extend the Bayesiatwork diagnostic model, presented in
Chapter 2, to whole building-level diagnostics angploy numerical routines to manage the
problem complexity. In Chapter 5, we demonstrat® tice proposed diagnostic solution can
effectively analyze building performance from a-tggvn perspective and how the limitation of
fault detectability influences diagnostic results.



1.3 Proactive fault diagnostics

Most research studies on fault detection and disigno building HVAC systems have focused
only on one side of the problem: analyzing systempuats for diagnostics purposes. Fewer
studies have addressed the other side of the pnolbh@nipulating system inputs for better
diagnostics. In other words, the question of hoagdostic mechanisms can supervise system
inputs for diagnostic purposes is still open. # tim of automated diagnostics is to replace
manual troubleshooting with automated tools, FD2ma@isms should be capable of
supervising system inputs for comprehensive oretadjtests, especially when it comes to
commissioning and functional testing. The feedbamkrol loop may never generate enough
excitation of the system inputs to explore broaaipugh for a complete diagnostic analysis. The
ability to supervise and manage automated diagntestts would extend diagnostic tool
capabilities into a new horizon.

Conventional approaches for proactive testing aamiybased on predefined tests [21, 57, 58,
65-68]. Researchers and engineers with a sufficiedéerstanding of system dynamics design
test sets or test sequences as the standard fpreloemsive or targeted diagnostic assessment.
This concept has been pursued in HVAC systems B$5¥e 58, 67, 68]. For example, in [67,
68], Katimamula et al. have developed decision-type test procedures to proactively analyze
the functionality of hot water and cold water vae air-handling units. In another studies [57],
Haves et al have developed test procedures tozntig functionality of mixing box, fan, and
heating/cooling coils in air-handling units.

One drawback of predefined test-based approachies lack of flexibility and adaptability.
Usually, these tests are structured to check tistemce of one (or more) fault(s) at each step (or
subset of steps). For example, in order to checkricoutside air damper leakage fault in a
mixing box, the damper is commanded to a fully etbposition to see whether the discharge
and return air temperatures are equal. Howeverialthee uncertainties arising from modeling
limitations, measurement constraints, etc., thgrabatic mechanism may not be able to
conclusively confirm a fault status based on onevormeasurements. As a result, at the end of
the test cycle, a substantial level of uncertamay still remain in the diagnostic assessment.

In addition, when these tests are to be performethiorderly fashion, which is true in most
applications, there is not that much space for tdlty. In other words, there is no systematic
routine to adjust and modify test sequences basedeodiagnostic assessment at each step.
These limitations apply to both Haves’ and Kapipkrisurameworks.

Another part of this study is to develop systematimeworks for proactive diagnostics. We
think of a proactive testing problem as an optirmi@aproblem in which an optimum path from
the current state (the current diagnostic assed¥neethe final state (a diagnostic assessment



with minimum uncertainty) needs to be found. In @lea3, we show how such an optimization
problem can be formulated as a decision-makinglpnopcoupled with a Bayesian network-
based diagnostic mechanism.

1.4 Quantification of measurement constraints’ impact o diagnostics capability

As mentioned previously, measurement constraintsegpand the complexity of building
HVAC diagnostic problems significantly. An importaquestion to ask is how the relationship
between measurement constraints and diagnostibiigpean be quantified systematically.
Solving this problem will open new horizons in loling HVAC diagnostics. It can be used as a
framework to analyze the effect of new measuremamidiagnostic strength, which
consequently leads to better design and optimizatiGeensor network architectures.

The first step is determining how to quantify diagtic improvement. In other words, the
guestion is, How can one diagnostic assessmernidigitptively compared to another one? In
Chapter 6, we will show that the information enyr@ssociated with diagnostic assessments can
be used a metric system to compare different distgneesults. A diagnostic assessment is said
to be improved if the associated information engrisireduced. We will then show that the
impact of measurement constraints can be linkedg@xpected value of the information
entropy of diagnostic assessment. We will demotestraw, through this proposed framework,
we can justify and select additional or new measergs for diagnostic purposes.



2. BAYESIAN NETWORK BASED DIAGNOSTIC FRAMEWORK

2.1 Bayesian Network Based Diagnostic Mechanism

In the proposed approach, we think of system oudpwt random variable conditionally
dependent on the system input and the fault moidei@2.1). A system fault is interpreted as
external input affecting the mapping function fréme input to the output. Such an interpretation
helps us to systematically deal with existing utaiaties in system output arising from
modeling and measurement errors, as they can beitgeghinto the variance of the output
random variable. The variance estimation can beeael analytically or statistically.

We assume to know the system input when we me#sei@utput. The aim of diagnostics is to
find the fault condition that results in performarsimilar to what has been observed. In other
words, the proposed diagnostic algorithm seeksil&d ¢dandition that generates the closest output
pattern.

To solve the problem, we formulate it as a Bayesitwork model. Briefly, a Bayesian network
(BN) is a directed graph in which each node is ¢ated with qualitative probability
information. The full specification is as follows:

Fault

Input —>  System > Output (1,0)

A B

Figure 2.1 A: Diagnostic framework, B: Dual BayesModel



10

1- A set of random variables makes up the nodes in¢h&ork. Variables may be discrete
or continuous.

2- A set of directed links or arrows connects pairaades. If there is an arrow from node A
to node B, A is said to be the parent of B (Figlixeln a properly constructed network,
the intuitive meaning of an arrow is usually thah&s a direct influence on B.

3- Each node Xi has a conditional probability disttibn P (X;|parents(X;)) that
quantifies the effect of the parents on the node.

4- The graph has no directed cycles.

The topology of the network —the set of nodes amd+—specifies the conditional independent
relationships that occur in the domain. Given dsepts, each node is conditionally independent
of all its non-descendants. For example, in Figuge D is conditionally independent of A given
B. The combination of the topology and the condailodistributions suffices to specify
(implicitly) the full joint distribution for all vaables.

Using the chain rule in probability, a joint distation can always be broken down into a product
of conditional probabilities. For example, for A, 8, and D, P(A, B, C,D) can always be
represented as:

P(4,B,C,D) = P(A)P(B|A)P(C|A B)P(D|A,B,C) (2.1)

The conditional independence assumptions exprdssadN allow a compact representation of
the joint distribution. For example, in Figure hokving that A and D are conditionally
independent given B, the joint probability distriimn can be simplified to:

P(A,B,C,D) = P(A)P(B|A)P(C)P(D|B,C) (2.2)

\\ )

Figure 2.2
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In general, in Bayesian networks with, X,, ..., X,, as random variables, the joint probably can
be simplified as:

P(Xy, Xy X)) = 1_[ P(X;|parents(X,)) 2.3)

The proposed Bayesian diagnostic model contaiegthodes (Figure 2.1). The input node
represents the system inputs; the output nodegeptgthe system outputs; and the fault node
represents system faults and their combinations.

The mapping function from the input to the outpoti@ is indeed a simplified model of the
system that the fault node affects. The fault n@d®pact can be realized in different ways:
There could be a different mapping function fortetault mode, or the output may be a set of
basis functions generated at the input node aeddiy combined with coefficients defined by
the fault node.

The undefined parts of the mapping function shd@ldddressed in the training phase. This
process may include (but is not limited to) theédwing: the variance of the output node
variable(s), and the coefficients of linearly comdal basis functions. If the distribution of the
output node random variable is Gaussian (or monergdly from an exponential family of
distributions), it is straightforward to estimake toutput node variance and coefficients of
linearly combined basis functiofs.

The posterior probability of the fault node is mpeted as the diagnostic belief or, in other
words, the fault condition (hypothesis) that reskslthe system output. Using the Bayesian
network inference mechanism, this probability carchlculated as:

P(f)POIfi, 1D
X P(fOPOIfi, D)

P(fil1,0) = (2.4)
wheref is the fault listf = {fi, f>, ...,n} , | is the input(s), an@ is the output(s)P (f;) is the
prior distribution of the fault nodeAs an example, we can apply the proposed diagnosti
framework to an HVAC device, an air-handling unit.

3 This is a parameter estimation problem for generalized linear models. In [reference], it is shown that the
problem can be formulated as a convex optimization problem.

4 can be estimated statistically or as a quick solution it can be assumed to be uniformly distributed. In this chapter,
we assume it is uniformly distributed.
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Figure 2.3Air handling unit schematic diagram

The air-handling unit is known as the most commmuree of heating, cooling, and ventilation

in medium and large commercial buildings. It cotss&f a mixing box, one or two fans, and
heating/cooling coils (Figure 2.3). The mixing box controls the mixing process betwéhe
return and outside air streams, while the heatmyaoling coils control the temperature and
humidity of the air supplied to the occupied spadice typical air-handling unit, there are usually
three temperature sensors, measuring outsidenajrei@ture (OAT), return air temperature
(RAT), and supply air temperature (SA’TIE. may also contain an air-flow sensor to meashee
supply air rate.

The problem of air-handling unit diagnostics illagés a classic example of the complexity of
diagnostics due to modeling and measurement camtstrdhese devices are usually designed
and customized for each application, making it iaggical to develop highly accurate models for
diagnostic purposes. On the other hand, in pracdERJ’s do not contain enough sensors to
fully monitor system health status directly. Instiexample, we focus on mixing box
functionality.

As mentioned, the mixing box performs the role @fing the air coming out from the building
(Return Air) with the outside air, based on théordefined by the controller. The ratio is
specified to minimize the energy required to hgabucool down the supply air, and also to

5 . .

It may contain both or either
® There may also be a temperature sensor between the mixing box and heating/cooling coils to measure the mixed
air temperature (MAT). However, due to incomplete upstream mixing, the readings from this sensor are usually
unreliable.
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satisfy the standard of fresh air required for gesus. Mixing box malfunction is a common
fault in air handling units. Mixing box abnormadisi could result from a damper being stuck,
leakage of the outside or return air dampers, seekaction of the actuator, or sensor offset.

Mixing box performance is usually analyzed by aelsionless parameter, Outside Air Fraction
(OAF), which is the ratio of the difference betweba mixed air temperature (MAT) and the
return air temperature (RAT) over the differencensen the outside air temperature (OAT) and
the return air temperature (RAT).

OAF = Tmat — Trat 25
T, —rat (2.5)
OAF OAF
1 1

/// NN
/ NN
/ | NN

0.5 /
/ /
/

/ AN
N
0 50 100 DMP 0 50 100 DMP
No Fault Reverse Action

1 /7 OAF1 /ﬁ

0.5 //// 0.5 // //

/ S S
Vg /7

Outside Air Damper Return Air Damper
Leakage Leakage

Figure 2.4:Variations of the outside air fraction (OAF) verghg outside air damper posit
(DMP) in a mixing box. The uppéeft graph shows the behavior in hormal operatianije the
others illustrate different fault modes. Thevelope defines the model uncertainty involvec
other words, the output (OAF) can reside anywhaside the envelope. The wide rang
uncertainty is due to parameters not easily mehkura practice (fluid resistance, air veloc
thermal resistance, etc).
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B, =1, B, =(DMP/100
IUOAF = lB.I.+HZBZ
Ooe =(DMP/10Q - (DMP/100?

Figure 2.5Fault diagnostic mechanism for mixing box. A sebasis functions B, & B,)
is generated from the damper position, and therally combined with a set obefficients
6, & 8,) - defined by the fault node — to estimate the OAF

OAF is an indication of the influence of the ouesalr temperature on the mixed air temperature.
It ideally reads one when the outside air dampérlig open, and zero when the damper is
closed. Figure 2.4 shows the variations of OAF wedamper position (control signal) during
various operating conditions.

The designed diagnostic mechanism for a mixingib@hown in Figure 2.5. A set of basis
functions,B;and B,, is generated from the damper position, and timeatly combined with a
set of coefficientsd;and 8,) — defined by the fault node — to estimate the OBkce the OAF
has been estimated, the mixed air temperature (MAM)be obtained from Equation 2.2.

The diagnostic mechanism was tested by data att&om lowa Energy Center, an
experimental facility for research, education, dedhonstration [76]. During the experiment, the
coils were shut off to be able to use the readaidghe supply air temperature sensor instead of
mixed air temperature. A diagnostic result is shawhigures 2.6 and 2.7.

Note how in Figure 2.7, the diagnostic belief imm® as more data is observed. It seems that
there is a Return Air Damper Leakage (RADL) fanlthe system. However, as the RADL fault
cannot be isolated until the damper opens 100%t(@tlie= nature of the fault), the diagnostic

mechanism waits until it sees the system respandaiastate, and then finalizes its evaluation.
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Figure 2.6: Mixing box performance. OAT:u@ide Air Temperature, RAT: Return .
Temperature, SAT: Supply Air Temperature, DMP: Damhe data comes from a test rul
one of the air handing units at lowa Energy Cemftee diagnostic result is shown in Figure 2.7.

—&— NoFault —s— Reverse OADLeak —=— RADLeak —¥— Stuck

Belief

Figure 2.7:Diagnostic results. Note how belief about the systealth status improves as n
data are observed. It seems that there is a R&tuamper Leakage (RADL) fault in the syste
However, as the RADL fdt cannot be isolated until the damper goes tdd@pen (due to tl
nature of the fault), one can see the diagnostthar@sm waits until it sees the system respor
that state, and then finalizes its evaluation.

15
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2.2 Diagnostics of Mixture of Components

As discussed earlier, the architecture of a semstivork may extend the complexity of a
diagnostic problem. The diagnostic mechanism maebeicted to monitoring the performance
of two or more components through only one sermooiie set of sensors). In such a scenario,
when the sensor output is contaminated, it couldugeto the malfunction of any of the involved
components, and locating the one affected may estdaightforward. An example of this issue
can be found in AHU diagnostics. In air handlingtsinthe readings of the mixed air temperature
sensor, if they exist, are not reliable due to mptete upstream mixing. This scenario means
that the supply air temperature sensor must be tasefer the functionality of both mixing box
and heating/cooling coils.

An intuitive solution is to analyze the functiortglof each component, while the effects of
others are neutralized (shutting down or takingddain states). For example, in the case of the
mixing box, the coils can be turned off while migihox performance is analyzed. However, this
procedure may not be compatible with normal openatinless the system is in free cooling
mode.

Our proposed approach is to extend the designeddgarymodel to a mixture model of
components, an example of which is shown in FiguBe In this figure, each node is itself a
Bayesian model of the related component. The ioteraamong components is defined based
on the system architecture and other specificatidr@mponent input may contain all or part of
the adjacent component outputs, and similarhygutput may construct all or part of the next
component inputs. Here, the input nodes are nagsacily deterministic, and the output nodes
may not be fully observed.

COMP1, OUTP

COMP2, INPT

COMP2, INPT COMP1, OUPT

//;///ﬁ

Figure 2.8 A mixture model example with two components: dput of th
first component constructs the input of the secamel
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When a component of a mixture model malfunctiohs,relation between the input and output
nodes is contaminated. From a larger perspectii@cbntamination leads to a change in the
system behavior pattern, because each componestsathe ones adjacent to it. To detect and
isolate such abnormalities, the system behavidepais again compared with various
hypotheses; each hypothesis is based on the agearti@t one or more components are in fault
modes. Due to measurement constraints, if an impatitput node is partially observed, the
unobserved random variable will be considered ddndvariable and will be summed out over
all its possible values. For instance, in Figuig H.it is assumed that the output of the first
component (also the input of the second componghifiden, the posterior probability of the
fault nodes can be calculated by:

ZOC P(fcl,i)P(fcz,i)P(Ocl,klfcl,irlcl)P(Ocz|fcz,j'OCl,k)
1
chl chz ZOClP(fcl,i)P(fcz,i)P(Ocl,klfcl,i:ICI)P(Ocz|fcz,j:001,k)

P(fcl,i'fcz,i“cercz) = (2.3)

wheref., = {fc, 1, fe, ,» -» feun} IS the fault list of the first componert, = {f., 1, fc,,, -+, fe,n}
is the fault list of the second componeipfis the input of the first componerd;, is the output

of the second component; add = I, = {0, 1,0 ,O¢, n} 1s the output of the first

C127 "

component.

As an example, we can apply the mixture model fraonk to the diagnostics problem of an air-
handling unit consisting of a mixing box and hegtooil.

As mentioned earlier, the heating coil heats upaithgoing into the building. It is a finned tube
heat exchanger with hot water on the hot side anahathe cold side, and it usually contains one
or a few sets of tubes that are mounted perperatlgub the flow of air passing through the

coil. The heat transfer rate is controlled by matapng the hot water valve to vary the water
flow rate through the coil. The most common fauita heating coil system (the coil and the
valve) are as follows: fouling of the heat exchasgdace, valve leakage, valve sticking, and
valve reverse action. The heating coil simplifigdttprinciple model used in this study is based
on the Holme’s effectiveness-NTU method [71]. Byiethe model is (Figure 2.9):

Teo = E(Thi - Tci) + T¢ (2-4’)
1—exp(—NTU * «
1— ax exp(—NTU * (1 — a))
_ Cmin . _
a =————,Cpin = min(Cy, C.), Crax = max(Cy, C.) (2.6)

Cmax

Cy, is hot fluid capacity rate;,. is cold fluid capacity rate.
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U =— 1= 1, %098+ 1, + 1, x 1,08 2.7

v, and v, are water and air velocity,, , 1, , and r, are metal, water, and thermal resistance.

The diagnostic mixture model of an air-handlingtwvith a mixing box and heating coil is
shown in Figure 2.10. As is apparent in the figtine,mixed air temperature (MAT) which is the
output of the first component (mixing box) and afi¢he second component (heating coil)
inputs is assumed to be hidden (unobserved). Thesrof the heating coil are mixed air
temperature (MAT), supply air CFNentering hot water temperature (TWin), the valve
command (VLV); and the output is the supply air pemature (SAT). The diagnostic results are
shown in Figures 2.11 and 2.12.

Figure 2.9

Heating Coil

Mixing Box

Figure 2.10: The mixture model of an &@ndling unit with a mixin
box and a heating coil

" CEM is short for cubic feet per minute, measurement of air volume flow rate
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It is important to note that this systematic wayle&ling with measurement constraints does not
come without a price. There will be some level efichdation in the diagnosis performance, a
fact that needs to be understood in advance. CaongpBigures 2.7 and 2.12, one notices that, in
the mixture model’s case, the diagnostic mechatadgm®s more time to reach a solid conclusion
about the system’s health status. This differeepeasents the cost of the missing a sensor. In
this application, it has arisen as slower diageastialysis; in other applications, it may appear in
the confidence level of the diagnostic result.

OAT —e—RAT —¢—TWin —@— SAT —¢—DMP —e—VLV
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Figure 2.11: OAT: Outside Air Temperature, RAT: RetAir Temperature, Twin: Hot Water Tempera
entering the coil, SAT: Supply Air Temperature, DMFamper Position, VLV: Valve Position.
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Figure 2.12: Diagnostic Results, MX and HC are sfarmixing box and heating coil, respectively. N
how the belief about the system health status imgg@radually as more data are observed, espeni
the case of the heating coil fouling. It seems thate is an outside air damper fault in the system
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3. PROACTIVE FAULT DIAGNOSTICS

3.1 Introduction

As mentioned in Chapter 1, most research studieauiibdiagnostics for building HVAC
systems—or even in fault diagnostics in general-eHagused on one side of the problem:
analyzing system outputs for diagnostics purpdsewer studies have addressed the other side
of the problem: manipulating system inputs for éetliagnostics. In other words, the question of
how diagnostic mechanisms can supervise systentsifipgudiagnostic purposes is still open. If
the aim of automated diagnostics is to replace @anoubleshooting with automated tools,
FDD mechanisms should be capable of supervisingsysputs for comprehensive or targeted
tests, especially when it comes to commissionirggfanctional testing. The feedback control
loop may never generate enough excitation of systents to explore broadly enough for a
complete diagnostic analysis. The ability to sugeEnand manage automated diagnostic tests
would extend diagnostic tool capabilities into &reorizon.

Proactive fault diagnostics is the process of grealy manipulating system inputs to perform a
diagnostic test. It consists of a diagnostic pad a proactive testing part. The proactive testing
part manipulates/directs the Input, and the diagrepart analyzes the output to assess the
system’s health status. The aim of proactive tgssno control adjustable parameters—for
example, damper position, fan speed, and so onae€thithte and complete the diagnostic
process.

Ideally, a proactive testing mechanism should perfm an adaptive manner. It first should
analyze the current diagnostic assessment resaiftsgfrevious tesfsand then proceed to the
next step. Its direction should be in alignmentwvdiagnostics capability, taking into account the
strengths and weaknesses of the diagnostic mechalfithere is an unclear understanding of
the system’s behavior in some areas, it shouldbt®ifed systematically into the test design
process. The proactive testing mechanism shoutdbadlexible with practical limitations. For
example, if operating conditions do not allow explg some areas—for example, the damper
cannot be at the fully closed position—the testsughbe adjusted accordingly. Directions of the
proactive testing mechanism should be based onmadlyiimproving the diagnostic
assessment.

We think of a proactive testing problem as a dymaoptimization problem in which an optimal
path from the current stage (the current diagn@stsessment) to the final stage (a diagnostic
assessment with minimum uncertainty) needs to bedoThe optimal path is indeed a sequence

® previous tests or daily operation.
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of tests and should lie within the boundaries defiby limitations such as operating conditions,
diagnostic capability, and so on.

We formulate such an optimization problem as agiestmaking problem coupled the Bayesian
network diagnostic mechanism introduced in Chapidihe proposed framework decides on a
test based on its potential effect on the infororagntropy of the diagnostic assessment.

3.2 Proactive Fault Diagnostic Mechanism

A schematic diagram of the proposed proactive diatio mechanism is shown in Figure 3.1. It
is an extension of the diagnostic framework intiatlin Chapter 1. The next input node is a
decision node, which represents the next inputevtiiat ought to be determined by the proactive
testing mechanism. The next output node represieatsystem output (system response) to the
next input. It is a random variable, conditionalgpendent on the next input node and the fault
node.

The utility node contains the utility function quéying the preference of diagnostic results. It
computes the closeness of a diagnostic assesson@mideal one, an assessment with minimum
uncertainty. Indeed, the utility function is théarmation entropy of the fault node random
variable.

In information theory, information entropy is a reaee of the uncertainty associated with a
random variable; the bigger the uncertainty, tlggér the information entropy. Information
entropy quantifies information contained in a ramdaariable, message, and so on. For a random
variable, X, with n outcomelscy, x5, ...., x, }, the information entropy is defined as:

Next Input

Figure 3.1: A schematic diagram of proactive tegtirechanism.
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HG@) = = ) P(xp) logy P(x) 3.1
i=1

Where P(x) is the probability mass function of thcome x, and b is the base of the logarithm.
Common values of b are 2, e, and 10. For examfphe assume that the probability distribution

of x4, x5, ..., x,, is uniform,p(x;) = % the information entropy will be:

n

v0-3 o) - ol
i=1

Conversely, if we assume that somehow it has be@pparent that;is true and others are
false,P(x3) = 1& P(x;) =0 Vi # 3,the information entropy will be:

H(x) = log(1) =0

In general, the bigger the uncertainty associatiéidl arandom variable, the bigger its
information entropy.

At each step, after calculating the diagnostic sssent (the posterior probability of the fault
node in Figure 3.1P(f|1, 0)) based on previous tests, the proactive testintharésm should

find the next best input (next test) that can matiynmprove the assessment. In other words, it
looks for an input value that can maximally redtleeinformation entropy of the fault node.

The challenge is that for each potential input,rtitechanism does not know in advance what the
system output would be to estimate its impact ennformation entropy; therefore, instead of
focusing on the actual value of the diagnostic essent, it calculates the expected value.

For any potential input, ), there would be a set of possible outpudg (/) i =1..m).

Each output leads to a different diagnostic assessand, consequently a different utility
function outcome:

U(f|1,0,1,,0,,) = —Z(P(fj) log. P(f;)|1,0,1,,0y,) (3.2)
j=1

The expected value of the utility function is cdétad by averaging over all possible outputs

(0p, (1) ):

n

E{U(fI1,0,1,)} = Z U(F|1, 0, I, 0,)P(0n, 11,0, 1) (3.3)

i=1
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Using the Bayesian network interface algorithﬂﬁoniu, O,In) can be calculated by:

P(OpI1,0, 1) = 71 P(f;)P(O1f;, )P (On, I}, In)
T B PP OI PO )

(3.4)

Now, the next best input is the one that leadeéaniinimum expected value of the utility
function (minimum expected value of the informatemtropy):

Best Next Input = arg min; {E{U(f|l, 0, In)}} (3.5)

At each step, the mechanism first updates the postéstribution of the fault node (the
diagnostic assessment) and, consequently, thiydtifiction based on the observed data. Then,
to find the next best input that maximally improvks diagnostic assessment, it estimates the
expected value of the utility function for eacheutal input using Equations 3.2, 3.3, and 3.4.
The input that maximally reduces the expected médron entropy is chosen at next best input.
The system input then is changed to the calculag¢stinext input to measure the system output.
After updating the diagnostic assessment and thecaded information entropy, the process
starts over again to find another input to furtingprove the diagnostic assessment. If operating
conditions do not allow exploring some inputs, thely be removed from the potential set, and
the mechanism will be forced to choose its candiffaim the remaining set.

Note that at each iteration, the mechanism, in fearches through an n-dimensional space—the
dimension of the system input—to find the best meptit values. In other words, the
computational load is related to the system inpuiedsion. If the input dimension is high,

finding the optimum inputs may take substantiakti®ne way to deal with computational load

in high-dimension scenarios could be optimizingdach dimension while other dimension
values are fixed. Further research study and dpueat may be required.

3.3 Proactive Testing of Air Handling Unit

In this section, we apply the proposed mechanisprdactively diagnose air handling unit
components. As the first example, let us revigtrtiixing box diagnostics problem in Chapter 2.
From a proactive testing perspective, the aim otarol the damper position (the input) for a
comprehensive diagnostic test. As before, the inpde contains the outside air damper
position,DMP, outside air temperaturg,,; , and return air temperaturé&,,; , the output node
contains outside air fractio@AF, and the fault node contains different combinatbmixing

box faults. The mixing box model is also the sanweleh used in Chapter 2.
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An example of proactive testing results is showRigure 3.2. The upper left graph shows the
directions of the Proactive Testing Mechanisfhe upper right graph shows the system
response, and the lower graph shows the diagnestidts. Note how the proactive testing
mechanism directs the system to the areas (arounan@ 100% position), where there is less
uncertainty about the system behavior and morenfiatéo improve the health status
assessment. As you see, the assessment improwgtargiddly when the system responses
around 0% and 100% positions are observed.
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Figure 3.2: Proactive testing of mixing box. Theepleft graph shows the directions of the Proacliesting
Mechanism (PTM). The first sample comes from themnad operation. PTM becomes effective from the sdco
sample. The upper right graph shows the systenonsgp and the lower graph shows the diagnostidtsediote
how PTM directs the system to the areas (aroun@®dd00% position) where there is less uncertahbut the
system behavior and more potential to improve #adth status assessment. As you see, the assessipmites
substantially when the system responses aroundn@?4@0% positions are observed.

® The first sample comes from the normal operation. The proactive testing mechanism becomes effective from the
second sample.
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As the second example, we focus on heating cajgrdistics. Again, from proactive diagnostics
perspective, we aim to manipulate the valve to aohd complete diagnostic test. Applying the
proposed framework, the input node would contaimespositionV LV, temperature of the water
entering the coilT,, 4 in , temperature of the entering diy;, ;,, , air flow rate CFM, and the
output node would be the supply air temperatlifg, ... The fault node contains different
combinations of heating coil faults. The heating swdel is the same NTU based model
introduced in Chapter 2. A proactive testing resuthown in Figure 3.3. You can see how the
mechanism directs the system from one area to anotice it gets clear about the targeted
faults.
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Figure 3.3: Proactive testing of heating cdihe upper left graph is the valve position defifgdthe proactive testil
mechanism (PTM). The first sampiemes from the normal operation. PTM becomes éfieétom the second sample. ~
upper right graph shows the measurements at eephTte supply air temperature varies as the yabsiion changes. T
variations of entering air temperature and entervater temperature are from external sources.didgnostic results &
shown in the lower graph. Due to the possibilitynadltiple faults, the beliefs (the posterior prottiap of faults) are nd
necessarily summed up to one.
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4. A STATISTICAL PATTERN ANALYSIS APPROACH FOR ROOFTOP
UNIT DIAGNOSTICS

4.1 Introduction

Rooftop units (RTU) are the most common sourceeating, cooling, and ventilation in small
and medium-sized commercial buildings, includinigitestores, supermarkets, and restaurants.
The U.S. Department of Energy estimates that rpadiod unitary air-conditioning equipment
accounts for 62% of the 1.66 Quads of annual enesggumption used for cooling of the
current building stock of commercial buildings iretUnited States [1].

Rooftop unit malfunction is known to be one of thain reasons for inefficient operation in
buildings. A fault induced during installation cgvkloped over time can go undetected for a
long period, resulting in high energy costs, shwteequipment life, and adverse impact on
occupant comfort and health.

Functionally, a rooftop unit is an air handling tugAHU) with built-in sources of heating and
cooling (Figure 4.1). It usually contains a fanptdampers, a gas-fired heating coil, and/or a
direct expansion (DX) cooling coil. Usually, thene several stages of cooling and/or heating.
Each stage can be thought of as an independertesoficooling or heating. When it is turned
on, a certain amount of cool or heat is generdthd.stages are activated sequentially by the
controller to meet the load.

Return Air Temp

Exhaust Air I

‘ Return Air
< <{mmm

Actuator

| EERREEE E Return Air Damper

i Supply Air
Outside Air T ':‘ O S
Outside Air Damper Cooling Heating T
Discharge Air Temp

Outside Air Temp

Figure 4.1: Rooftop unit schematic diagram
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Most limitations of AHU diagnostics apply to RTUaginostics as well. For example, with both
problems, there is no reliable measurement of tixedrair temperature (MAT), or no
measurement of the supply air flow rate, which tgnthe estimation of fan efficiency and coill
duty.

In this chapter, we present a statistical apprdachooftop unit diagnostics. The proposed
solution does not depend on a detailed model andleal systematically with measurement
constraints. Another attribute is steady state itmmdflexibility. Usually, diagnostic
mechanisms based on simplified models have thedliion of using measurement obtained in
steady state condition because the models areetinut simulating the static behavior of the
system. A typical strategy is to wait until paraeretariations are small enough to mimic steady
state condition. However, steady-state conditioag not happen frequently either because of
cycling during routine operation, high frequencgtdrbances, or control loop oscillation. The
proposed diagnostic approach has the advantagat odquiring steady state condition. By
analyzing the correlation among parameters and agngpthem with various hypotheses, the
diagnostic framework locates the pattern that bedthes the data and evaluates the
performance.

4.2 Proactive Testing of Air Handling Unit
We evaluate rooftop unit functionality in two steps
i) Cooling/heating system diagnostics

i) Mixing box diagnostics

4.2.1 Cooling/Heating System Diagnostics

A common fault in rooftop unit is malfunction ofdlineating/cooling system in which one or
more stages are broken (non-functional). An intaispproach to detect and isolate the
faulty heating/cooling stage is to monitor the &tidns of the discharge air temperature.
When DAT does not respond accordingly as a coamgeating stage is turned on (or off), it
is an indication of the coil malfunction. However practice, tracking coil effect in DAT
variations may not be straightforward. Usuallyréhis a delay between a control command
and DAT response which complicates the situatiantiqularly when coils are turned on and
off frequently to maintain the DAT set-point. Onayto tackle the problem is to analyze the
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linear correlation between heating/cooling commaamits DAT variations® The correlation
function can tell us if there is any relation betwehe causes (heating/cooling commands)
and the effects (DAT variations).

For each stage of heating and cooling, we asshgnaay variable:
Cl’ Cz, C3, T Hl’ Hz, H3, e

C.(F) = {1 Cooling Stage i is on H(F) = {—1 Heating Stage i is on
(=10 Cooling Stage i is of f (=1 Heating Stage i is of f

the cooling/heating sum (CHS) is then defined as:
CHS(t) = Cl(t) + Cz(t) + ...+ Hl(t) + Hz(t) + .. (4. 1)

When there is no fault, CHS and DAT should be gjlpoorrelated. The correlation can be
verified by analyzing the cross-correlation andserepectrum functions. For two serigs
andy;,, the cross-correlation function:

Vey (R) = E[Ceran — ) (ve — 1y)] (4.2)

whereE is the abbreviation for the expected valyg,andu,, are the mean values of and

v, respectively. The cross-spectrum, which is theriéotransform of the cross-correlation,
is:

fo@= ) py®emor 1) <w<l) 4.3)

h=—o

The cross-spectrum is a complex-valued functior Jduared-coherence functign,is then
defined as:

(@]

Fox (@) (@) (2.4)

p32/.x (w) =

10 Although the relation between heating/cooling systems and DAT variations is not completely linear, itis a
reasonable assumption for diagnostic purposes; the heat balance between the air stream and the coil can be
specified by [reference]:

q = hA(Teoy — Tair)

where h depends on the air velocity and A is the effective surface area. If T,,;;, h, and A are assumed to be
constant, the relation between the air temperature (T,;,-) and q is linear. Now, if we assume that when a
heating/cooling stage is turned on or off, certain amount of hear/cool (q) is provided or taken, we can say that
relation between T,;, and heating/cooling command(s) is linear.
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wheref,,(w) andf,, (w) are the individual spectra af andy,. Although cross-correlation
and cross-spectrum functions are used to analgzedtielation among random processes,
they can also be used for the analysis of lindatioms among deterministic variables, which
is the case for our problem. More details aboussfmrrelation and cross-spectrum
functions can be found in [75].

For example, in Figure 4.2, we show the performari@rooftop unit located in a retail
store in Texas. The plot shows 24 hr operationluebeg the unoccupied period, on a hot
summer day. In Figure 4.3, the corresponding CldBerency, and phase functions are
shown. Note that DAT and CHS are highly correlaetbw frequencies. As there is usually
a 2-3 minute delay between two consecutive heathadjhg commands, the CHS dominant
frequencies are low-band (lower frequencies).

— DAT

DAT
T

0 100 200 300 400 500 600 700 800

Time { min )

Cooling Stage 1 Cooling Stage 2

On-Off ()

0 100 200 300 400 500 600 70O 800 0 100 200 300 400 0 800
Cooling Stage 3 Damper Position
£ o]
=) -]
ey
g
.5 4
0 100 200 300 400 500 600 70O 800 0 100 200 300 400 500 600 700 800
Time ( min ) Time { min }

Figure 4.2:A rooftop unit performance located in a retail stbin Texas. Data contains 24 hr operation exctydimoccupie
periodswith a sampling rate of 1 min. It was collectedttie summer of 2008. The RTU has three cooling stagel thre
heating stages.
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Figure 4.3: The cooling/heating sum (CHS), coheyeaad phase between the DAT and CHS of the RTBignre 42.
The blue dash lines in the coherency and phasédgrare the confidence intervals. The flat linelia toherency gra
shows the approximate value that must be exceegléietsquared coherency to confirm that the cologresinonzero a
the specified frequency§ ,(w) # 0). A seconderder difference operator was applied to make tte dtationary befo
calculating the coherency and phase.

When there is a faulty stage of heating or coolihg, CHS/DAT correlation degrades. In
order to isolate the faulty stage, the coherentwden DAT and a number of CHSs are
compared. Each CHS is constructed based on thenptisa that one or more
cooling/heating stages is non-functional. Wheragesis assumed to be non-functional, its
associated;(t) or H;(t) is set to zero. The CHS that has the strongestlation with DAT
is chosen as the closest match, and the corresppadsumption is concluded to be the
operational status of the heating/cooling systems.

For example, in Figure 4.4, three different CHSd @@ corresponding coherency graphs of
the RTU in Figure 4.2 are showhNote that the no-fault case has the highest airosl, as
expected.

11 .. . .
Due to space limitations, only a few scenarios are shown.
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(2): Coherency
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Figure 4.4:A number of CHSs and the corresponding cohereri@ssd on different hypotheses for the RTU shov
Figure 4.2. It is clear that the no-fault case thasstrongest correlation. Becausespéce limitations, only a few possi
CHSs are shown.

As another example, Figure 4.5 shows the performahanother RTU located in a different
retail store in California. Visual inspection indtes that DAT does not respond accordingly
as the cooling stage 1 is activated. This suggkatghe cooling stagel might be faulty. In
Figure 4.6, various CHSs and the correspondingreolog graphs are shown. It is clear that
the case related to a non-functional cooling stiabas the highest correlation.
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Figure 4.5:Rooftop unit performance located in a retail stor€alifornia. Data contains 24 hr operation, imthg
unoccupied periods, with a sampling rate of 1 nftinvas collected in the summer of 2008. The RTU has 1
cooling stages and three heating stages.
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(2): Coherency
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Figure 4.6:A number of CHSs and the corresponding cohereitziesd on various hypotheses for the RTU showngork
4.5. ltis clear that cooling stage 1 broken casethe strongest correlation. Because of spactations, only a few podsie

CHSs are shown.
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4.2.2 Mixing box diagnostics

As mentioned earlier, the main challenge in mixaog diagnostics is to deal with the lack of
a mixed air temperature measurement (Figure Ahé)main measured variable that is
directly affected by the mixing box functionality the discharge air temperature which is
also affected by the coil behavior. The challersgeaw to differentiate between coils and
mixing box effects. An intuitive approach is to Bize mixing box performance while the
coils are off. This may not be compatible with natmperation unless the system is in free
cooling mode.

Our proposed approach is to remove the coil effeat DAT variations first, and then use
the filtered DAT to analyze mixing box performan@ée filtering coil effect can be
achieved by findind,}, which minimizes the following mean squared efumrction:

2

MSE = E (DATt _ Z [?tCHSt_r> (4.5)

r=—oco

The Fourier transform of 8, } can be estimated as [74]:

’B(Wk) - M (4‘ 6)

feus,cns Wi)

{B,} can then be found by the inverse Fourier transfafrf(w, ). The estimateg@, for the
RTU in Figure 4.5 is shown in Figure 4.7. A possiblodel forg, is:

Z B.CHS,_, = —1.1CHS,_5 — 1.43CHS,_, — 0.98CHS,_, — 3.12CHS, + 1.29CHS,,, +

r=—00
0.70CHS; 15 + 0.86CHS; 44 4.7)
Now, the filtered DAT, an estimation of MAT, is:

MAT, = DAT, — z B.CHS,_, (4.8)

r=—o0

12 . . . . . . e
Here, we again assume a linear relation between heating/cooling command and DAT variations.
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Figure 4.7: Estimatefl, for the data shown in Figure 4.5.

In the mixing box, the relation between MAT and ORAT depends on the damper
position. A simple mixing box model {s:

DMP
)* OAT + (1 -

VAT — DMP
B ( 100

00 )*RAT (4.9)

Similar to the heating/cooling system scenario,ptmposed approach is to compare the
correlation between the estimated MAT (filtered DAWith a number of MATS generated
assuming that one or more faults exist. The onle thi# strongest correlation is chosen as the
closest match and the corresponding assumpticmidwded as the mixing box status.

As an example, using the filtered DAT from equadidn/ and 4.8, Figure 4.8 shows the
coherency and phase functions for three scenarmfa(lt, reverse actuator fault, and stuck
damper fault). Note that the no-fault case hasitpkest correlation, meaning that the mixing
box works properly. The correlations are weaker gamnmg to those shown in Figures 4.4
and 4.5 because of the limited excitation existinthe damper position.

BThisis a very simplified model of the mixing box. In reality, the mixed air temperature depends on other factors
such as the shape of dampers, ductwork curves, air velocity, etc. However, most of these parameters are not easily
measureable, so we use this simplified model.
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As another example, Figure 4.9 shows simulatecpeence of a rooftop unit with the stuck
damper fault. Using the same diagnostic framewiarkjgure 4.10, you see how the stuck
damper scenario shows a higher correlation comgéaoimther coherency functions.
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Figure 4.8: The coherency and phase functionshfeetdifferent scenarios (no fault, reverse actyatud stuck damper)

for the RTU in Figure 4.5.
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40

5. BOTTOM-UP VERSUS TOP-DOWN DIAGNOSTICS

As mentioned earlieralilt detection and diagnostics in builc HYAC systems can b
approached from two perspectives: bot-up and top-down. In thigotton-up approach, lower-
level performance nasures of HVAC systems (Figure ) are used to isolate the problem :
propagate its effect on building performanConversely, in the todown approac, higher-level
performance measures are used to reason aboublpdssie-level causes of degradation to-
higher-level measures.

Bottom-up diagnostic routines usually are initiated bydleupant complaints. Wheiccupants
complain about hot, cold, @anuncomfortable environment, a diagnostic routingtésted fron
the complainant'area to trace the problem and locate the malfuning device. In contras
top-down diagnostic process<—also known as whole buildg diagnostic—are normally
motivated by the conceifor g building-efficient operation. For examplehen building energy
usage increases unexpectedly, edown diagnostic process is performed to locate
inefficient division/section and trace the blematic device or cause.

Whole Building
Central Cooling Central Heating Air Distribution
Plant Plant System
Zoom 1 Zoom 2 Zoom n =]
Central . . . S
Terminal Terminal Terminal = %
AHU1 T =]
Box Box Box (=) 3
° 1
| £ c
\J/ ¢ = =
Heating 0 Cooling
Coil Mixing Box Coil
Actuator Damper Sensor
Failure Leakage Offset

> system.
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From an automated diagnostics perspective, a yafedolutions exists for bottom-up
diagnostics, whereas for top-down diagnosticsstbey is different. Top-down diagnostic
routines are still performed manually, with builgiexperts going through performance graphs,
looking for predefined signatures to analyze buaiddperformance.

When diagnostics is to be performed at the buildievgl, the complexity of the problem extends
to a new horizon. At the component level, therdengged number of faults to deal with;

however, at the building level, there is a largeo$éaults and abnormalities that may occur.
Added to this aspect is the complexitycohcurrent faults. Another issue is detectability of
faults: Some faults may not have that much effadtigh-level measures to be detectable
through a top-down diagnostic process. For example four-story building, the damper
leakage fault of a VAV system certainly will notieathat much impact on the total energy used
by the building to be differentiated from modeliaigd measurement errors.

The challenge is that there is no systematic smiut discriminate between detectable and non-
detectable faults. Fault detectability varies assneement errors improve or additional
measurements are included in the diagnostic presgisther, there is no algorithmic solution
to determine which faults should be included anittvishould be removed from the diagnostic
process.

In this chapter, we extend the Bayesian networgrdiatic approach presented in Chapter 2 for
automated diagnostics from a top-down perspective.

5.1 Top-down Automated Diagnostics

A building’s performance is a function of outside@ndition, occupant behavior, and building
characteristics. When a fault occurs, the buildihgracteristics change, which leads to a change
in the building performance (output). Similar te@ thamework presented in Chapter 2, we think
of a building output as a random variable thaoisditionally dependent on the input (outside air
condition and occupant behavior) and fault condi(eigure 5.2). The input is assumed to be
known, and the output is what is measured (e.gidibg energy usage). The aim of diagnostics
is to find a fault condition that results in a loinlg performance similar to what is observed.

To solve the problem, we presented in Chapter aye#ian network model with three nodes:
Input node that represents system inputs (or in whole-bugdiragnostics, it would be building
input), output node that represents the building output, andféut node that represents building
faults and their combinations. The posterior disttion of the fault node is interpreted as the
diagnostic belief or the fault condition that resdes the output. Using Bayesian network
inference mechanisms, the posterior distributionloaestimated by:
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Figure 5.2: A) Diagnostic framework, B) Dual BayesiModel.

P(f)POIfi, 1D

P l‘I,O =
Gl 0) X PURIPOOIfi,D

(5.1

wheref is the fault setf = {fi, f>, ..., n}, | is the input(s)Q is the output(s), ana(f;) is the
fault prior distribution. As more data are obsernbe posterior belief is updated recursively,
leading to a better matching between the obserebd\wior and different hypotheses.

Equation 5.1 could be a good way of estimatinggrast distribution if there were a small (or
reasonable) set of faults. However, as in wholéding level diagnostics, we are dealing with a
massive number of faults, direct calculation of plesterior distribution is impractical. Another
method is to employ numerical algorithms to estertae posterior distribution; however, first
we need to structure the problem properly in otddye solvable numerically.

We categorize building faults based on their eftechigh-level measures. Faults with more or
less similar impact on building performance witffetent magnitudes are put in the same set.
For example, in a four-story building, the effettwo floors with occupancy fault on the

building energy consumption pattern is similarhattof four floors with occupancy faults. The
magnitude (or severity) of the effects is diffefdnit the fingerprints are the same. Therefore, all
different combinations of occupancy fault—firstdlo second floor, different combination of
floors, and so on—are grouped in one set. A singitelogy can be made for fan malfunction
(broken fan), cooling system fault (non-functionabling systems), and so on. An example of
different fault categories can be:

- Category 1: no occupancy fault, Floor 1 occupancy fault, Fld@accupancy fault, ...,
Floors 1 & 2 occupancy fault, ... , Floors 1 & 2 &®8cupancy fault, ...

- Category 2: no fan fault, VAV 1 fan fault, VAV 2 fan fault, .VAV 1 & 2 fan fault, ...
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- Category 3: no cooling system fault, ...

Now, the estimation of the posterior distributi@nde thought as estimating the posterior
distribution in each fault category. If none of faelts existing in a fault category occurred, the
no-fault member should have the highest valuddfliuilding malfunction is due tmncurrent
faults, each in a different fault category, thetpasr distribution of each fault category will
show higher values for these faults.

To estimate the posterior distribution, we empldyiarkov Chain Monte Carlo (MCMC]
algorithm to solve the problem numerically. The MCMlIgorithm searches through a multi-
dimensional space in which each dimension is dasgghto a fault category whose members are
possible outcomes.

Note that all members of a fault set are not necégsletectable. Non-detectable faults will end
up having relatively equal posterior distributiomeaning that they are not distinguishable
through existing measurements and errors (an exasprovided later).

Another issue igault priors. Appropriate distribution for fault priors is imgant to avoid bias
estimations. Here, the priors are defined baseiti®fikelihood of fault occurrences. Concurrent
faults are less likely to happen than are singiit$atherefore, they are assigned smaller priors.
All single faults are assigned a uniform prior dizition. As the number of faults happening
simultaneously increases, the associated prioevddereases.

5.2 lllustrative Example: Diagnostics of an Office Buitling

In this section, we illustrate a top-down approtcfault detection and diagnosis using a
prototypical 511m? office building. The building is one of the bencimk buildings developed
with EnergyPlus [24]. It consists of five effectienergy” zones (Figure 5.3). Each zone is
served by its own heating and cooling system ctingief a gas-driven forced-air furnace, a
single duct terminal unit, a fan, and a unitary (Dfrect Expansion) cooling system. The
building also contains a gas water heater. In daenple that follows, we apply Chicago
summertime weather conditions.

" Markov Chain Monte Carlo (MCMC) methods—which include random walk Monte Carlo methods—are a class of
algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired
distribution as its equilibrium distribution. The state of the chain after a large number of steps is used as a sample
from the desired distribution. The quality of the sample improves as a function of the number of steps. For more
information, please refer to [70].
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Figure 5.3: Schematic and floor plan of the prqtats office building [77].

We will apply the algorithm to detect and diagnegamples of four common faults:
malfunctioning of cooling systems, malfunctioninigfans, occupancy misscheduling
(misscheduling of heating/cooling systems, etcd, mmsscheduling of outdoor/perimeter lights.
We consider all possible combinations of theset$atmore than 6,000 different scenarios. A
larger number and types of faults could have beasidered, but we kept the number small here
to be able to discuss the results in detail.

Three measurements are used to analyze buildirfigrpemce: total electricity used by the
building, total electricity used by cooling systerand total electricity used by fans. We
introduced error in the measurements by adding?&20% error to the model prediction.

In the first example, we consider an occupancyt fsegnario in which the operation of one or
more zones in the building does not properly switom daytime schedule to an evening
schedule. Figure 5.4 shows the building performavitie the induced occupancy fault. For
better comparison, we have also included the mglgerformance in fault-free condition (blue
graphs).

Using the proposed algorithm, the updated posteigiribution is shown in Figure 5.5. The x-
axis shows the severity of the fault, as descrlipethe number of units out of the total that are
faulting. For example, “4/5” means that four oufigé zones have occupancy fault.
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operation with induced occupancy fault.

The diagnostic results indicate that at least taurof five zones in the building are
misscheduled. However, the result is inconclush@uathe operation of cooling systems: It is
unclear whether all cooling systems are operatorghally with no fault or if only one of unitary
DX cooling systems is faulty.

The inconclusiveness of diagnostic results forabaling systems is due to non-detectability of
small cooling system faults. In other words, thee&tfof one cooling system fault on measured
parameters is so small that it cannot be diffea¢eti from modeling and measurement errors. To
improve the diagnostic result, we either need tluce the modeling/measurement errors or
include other measurements—additional sensors—eimlidgnostic process.
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Figure 5.5: Diagnostic result, updated posteristritiution of the fault node in Figure2.Each graph shows the histograr
the posterior distribution of the associated faaliegory. The »axis shows the severity of fault, as describedhgyrtumber ¢
units out of total that is faulting. For examplé/5” means that four out of five zones have an pacgy fault.

We now consider another example in which two faafessoccurring simultaneously: a cooling
system fault and misscheduling of outside lightgufe 5.6 shows the building performance in
which the cooling systems in three zones are faalhy the outside lights are operational in

daytime. At first glance, we see a reduction indbeling system electricity usage, which raises

the idea of a cooling system malfunctioning. Howeas we do not observe a similar effect on
the total electricity usage, we suspect that thaght be other explanations.

The inconsistency is due to the effect of the algtdight fault. The increase of electricity usage

from the operation of outside lights in daytime basered the effect of the cooling system fault.

In other words, if the only parameter used to arealye building performance were total
electricity usage, these two types of faults wowdt be distinguishable.
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cooling system fault and misscheduling of outsigbts.

The diagnostic result, the update posterior digtidm, is shown in Figure 5.7. It indicates a
cooling system fault in three or four zones andsetigduling of the outside lights. However, the
result does not specify which zones have malfunatgcooling systems. This goes back to the
question of what level of diagnostic precisionghiavable through available measurements
and/or existing measurement/modeling errors. Byitodng only the electricity used by the
building, cooling systems, and fans, we cannot etxpenore detailed diagnostic result—
especially if fans, cooling/heating systems, andrscare more or less the same size. If a higher
diagnostic resolution is desired, one solutioroiage lower-level measures.
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Figure 5.7: Diagnostic result, updated posteristritiution of the fault node in Figure25. Each graph shows the histog
of the posterior distribution of the associatedltf@ategory. The x-axis shows the setyenf fault, as described by 1
number of units out of total that is faulting. Forample, “4/5” means that four out of five zoneseéhan occupancy fault.

As the final example, we consider a fan fault scendt is likely that a fan fault condition would
be caught quickly by the operators or occupanfsa@ally in a hot or cold climate; however, we
are interested to see how the diagnostic algoréghalyzes such a situation. Fans were
deliberately turned off, and data were fed to tiger&thm to analyze the building performance.
Figure 5.8 shows the diagnostic result. As yousse) the result correctly indicates the fans are
faulty, although it is inconclusive about the caglisystems operation and occupancy
scheduling. In other words, it does not give us$ thach insight about cooling system and
occupancy faults.

To explain the result, note that when fans are fooctional (broken), no air circulates through
the units; consequently, no energy is transfewetie zones. When no energy is transferred,
there will be no consumption of cooling/heatingrgye Such a scenario confuses the diagnostic
algorithm as it cannot verify whether the decliieaoling electricity usage is due to a cooling
malfunction, fan malfunction, or both. All will hava similar effect on the pattern of cooling
electricity usage. In other words, the informatedisting in current measurements are
insufficient to distinguish these faults, whichwky we see such inconclusive results. If other
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lower-level measures, such as room temperature used, the diagnostic result would be
different.

In the above examples, we focused more on thesféhat relate to functionality or scheduling of
HVAC devices. However, sometimes a fault is dutheochange of one or more parameter
values. For example, fan efficiency may degradetdweproblem with the blades, belts, and so
on. For this type of fault, the target parameter loa thought of a random variable whose
posterior distribution is to be estimated basedlmserved data. In the proposed Bayesian model,
this will be formulated as another dimension tofthdt node.

Occupancy Cooling System
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04 04 I
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Figure 5.8: Diagnostic result, updated posteristritiution of the fault noda Figure 2. Each graph shows the histog
of the posterior distribution of the associatedltfaategory. The »axis shows the severity of fault, as describedhe
number of units out of total that is faulting. Fample, “4/5” means that four out of five zoneséhan occupancy fault.
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6. MEASUREMENT CONSTRAINT AND DIAGNOSTIC CAPABILITY

As discussed earlier, measurement constraints reatlygextend the complexity of diagnostic
problems in building HVAC systems (or even otheplagations). An important question to ask

is how the relation between measurement constramdgliagnostic capability can be
systematically quantified. A reliable solution tost problem may reveal a new horizon in the
diagnostics of building HVAC systems and could bedias a framework to analyze the effect of
new measurements on diagnostic strength, thereloynlg to better design or optimization of
sensor network architecture from a diagnostic peetsye.

To analyze the relation between measurement camsarad diagnostic capability, the first step
involves quantification of diagnostic improvementother words, the question is how two
diagnostic assessments can be compared quantijabweetermine which one is superior. In
Chapter 3, we presented the idea of using therirdtion entropy associated with a diagnostic
assessment as a mean to evaluate diagnostic réstdtsnation entropy is a measure of the
uncertainty associated with a random variablepigger the uncertainty, the bigger the
information entropy. A diagnostic assessment id &abe improved when the associated
information entropy is reduced. In this chapter,use the information entropy as a mean in
order to analyze the improvement or degradatiagiagnostic results. We present a framework
that connects the effects of new and/or additiomehsurements to the information entropy and
show how this framework can effectively identify aserements that have better effects on
diagnostic analysis.

6.1 A Framework for the Quantification of the Impact of Additional Measurement
on Diagnostic Capability

A schematic diagram of the proposed framework sswhin Figure 6.1. It is another extension
of the Bayesian network-based diagnostic framewtdrkduced in Chapter 2. As before, the
input node represents the system inputs and thriboode represents the current outputs
(current measurements). The new measurélM; |, new measure 2V(M,), ... and new measure
n (NM,,) nodes represent potential new measurementsahdiecincluded in the diagnostic
process. The utility node contains the utility ftion that quantifies the preference of diagnostic
results. As mentioned eatrlier, it is the informatentropy of the fault node.
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The aim is to identify which new measure (from se¢ of NM;, NM, ... NM,,) would better
improve the diagnostic assessment. In other wevdsyant to locatehe new measurement tf
maximally reduces the information entropy. The ldmge is that, for each potential n
measure (new sensor), we do not know the sensdingean advance in order to estimate
effect on the information entropy. Therefore, iad of focusing on the actual value of
information entropy, we calculate its expected galL

For any new measurd/{f;), there is a set of possible readings/outegNM;, k=1,2,..,m ).
Each output leads to a different diagnostic ament and, consequently, a different uti
function outcome:

n

U(f|1,0,NM;;) = —Z(P(fj) loge P(f;)|1,0,NM;) (6.1)

j=1
The expected value of the utility function is cdétad by averaging over all possilvalues:

m

E{U(f|I,0,NM;)} = Z U(f|1,0,NM;, )P(NM; |1, 0) (6.2)
k=1

Using the Bayesian network interface algorittP(NM; |1, 0) can be calculated k

27=1P(fj)P(0 fj 1)P(NMyg|f;, 1)

P(NM;|I,0,1,) =
(Ntall 0 = S S PP (O P (WMl

(6.3)




52

Now, the selected new measure minimizes the exgp@etee of the utility function:

New Measure = arg minyg, {E{U(f|1, o0, NML-)}} (6.4)

6.2 lllustrative Example: Analyzing the Impact of New Measurement on an Office
Building’s Diagnostics

In this section, we apply the proposed frameworgrater to analyze the impact of new
measurement on the top-down diagnostics of ard4 bffice building. The building is a
benchmark model developed by Energy Plus [77] sting of three effective “energy” zones
(Figure 6.2). Each zone is served by a separatengesnd cooling system, each of which
consists of a gas-driven forced-air furnace, alsidgct terminal unit, a fan, and a unitary DX
(Direct Expansion) cooling system. In the examgihes follow, we apply Chicago summertime
weather conditions.

Similar to the example in Chapter 5, we focus amr flmmmon types of faults: cooling system
faults (when one or more cooling systems are nowtfanal), fan faults (when fans are non-
functional), occupancy faults (when zone occupanare mis-scheduled), and mis-scheduling of
exterior/perimeter lights. All possible combinatsoof these faults are considered. A larger
number and range of faults could have been coreidéut we kept the number small here to
improve understanding of the overall approach.

First, we analyze the building performance by mannig only the total electricity usage. In the
second step, we use the proposed framework tondieiemhat additional measurement (from
the set of the electricity used by cooling systetims electricity used by fans, and the electricity
used by exterior lights) would better improve thegdostic result.

Figure 6.2: Schematic diagram of the office buigdprototype.
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Figure 6.3 shows the 24-hr operation (with a 1dmgle rate) of the building’s performance
with an induced occupancy fault (two zones haveipancy faults). To provide a better
comparison, the non-faulty operation of the buiddfblue lines) is also included. We introduced
error into the measurements by adding a 40%-5086 tyithe model’s prediction.

The diagnostic assessment, update posterior disbibof the fault node, using the algorithms
explained in Chapters 2 and 5 is shown in Figude &s the figure clearly shows, the diagnostic
result is not very informative concerning the bunfgls health status; it does not lead us to any
conclusion about the operation of fans, coolingesyss, etc. To improve the diagnostic
assessment, we need to identify which additionalsueement can better help the diagnostic
process.

Expanding equations 6.1 and 6.2 from one sampiet() to 24 samplest(= t;, ty, ..., ty4 ), We
have:

U(f|le, o Tty Oty woe oo g,y NSig, wov oo NSit,,)

n
= = > (P(;) 10ge P(£) |0c, - v Otyys NSty oo NSie,,) 6.5)
j=1

(6.6)

In practice, we may not need to include all theas There is not necessarily much variation
in the characteristics of the building’s performarmt each measuring interval. For example,
from 2:00 A.M. to 3:00 A.M., there is not much clganin building performance. On the other
hand, when more sampling measures are includdeiartalysis process, the computational load
extends exponentially. The question of how manymasnand/or which samples are optimum
from the perspective of both the reliability of ttesult and the computational load is a research
study in itself. In this example, we chose samptmgasures at 2:00 A.M., 11:00 A.M., 1:00
P.M., and 9:00 P.M. from the data in Figure 6.3.
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Figure 6.5 shows the expected information entragpyefch additional measurement. As
figure clearly shows, measuring the electricitygesaf the cooling systems is expected to re(
the information entropof the diagnostic result more than oth™ In Figures 6.6, 6.7, and 6.
we show the diagnostic result with each additionehsurement. Figure 6.6 shows the re
when cooling system electricity was included, Fggér7 shows the result when fan ericity
was included, and Figure 6.8 shows the result vex¢erior light electricity was included.
Figure 6.6, which is related to the case of cootipgtem electricity, it can be seen that the
less uncertainty about the operation, as was ped in Figure 6.5.

As another example, we consider fault case scenario. The building performance asshin
Figure 6.3 (blue lines), the diagnostic result bas@ one measurement (total electricity usag
shown in Figure 6.9, and the expected rmation entropy for each additional measure is sh
in Figure 6.10. Again, the cooling electricity saen has the lowest information entropy. 1
diagnostic results of each additional measuremenstzgown in Figures 6.11, 6.12, and 6.1
can also bseen that, as expected, in the case of coolingmysltectricity (Figure 6.11), there
less uncertainty about building performau

The superiority of cooling electricity to other nseieements could be due to the fact
measurement of cooling eleicity usage might provide insight about the functbty of both
cooling systems and fans. As the example in Ch&psdiows, fans’ faults can affect cooli

Bt may seem like there is not much difference between the information entropies in Figure 6.5. This is due to the
fact that only four measuring samples were used to estimate the expected information entropy. Should more
samples be included, a larger difference would result.
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system performance. When fans are non-functiohafgetis no air circulating through the units,
and consequently no energy is transferred to thegavhich means no consumption of
cooling/heating energy. This could be the reasoy thhh measurement of cooling electricity is
superior. However, more experiment and analysiegsired to confirm such a conclusion. We
did not have enough experiment to confirm thisnsla®ur main focus has been to provide an
illustrative example showing that the proposed frauork can successfully identify effective
measures.
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Figure 6.4: Diagnostic results based on analysth@fotal electricity used by the building.
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7. CONCLUSION

In this thesis, we focused on a number of crussliés regarding the development of reliable,
scalable, and affordable solutions for building HY Aystems. We discussed in detail how
modeling limitations are one of the main challenigesng the diagnostic problems. The
principle of building HVAC systems is sufficientlyell known for a suitable model structure;
however, the accuracy of these models can onlynpeaved up to certain levels, and beyond
that, it would be expensive and time-consumingwaadld affect the scalability attribute.

We proposed two diagnostic algorithms with theighbib address modeling limitations
systematically: a model-based approach (Chaptan@yx non-model-based approach (Chapter
4). In Chapter 2, we presented a Bayesian netwasled diagnostic mechanism, in which a
system output is interpreted as a random varidiaiei$ conditionally dependent on the input and
fault condition. With such an interpretation, werevable to quantify the uncertainty in the
output, caused by modeling and measurement emattse variance of the random variable. A
diagnostics assessment was then formulated astingé&on of the posterior distribution of the
fault node. We demonstrated how the proposed dsignapproach can effectively analyze the
performance of an air handling unit.

The diagnostic approach presented in Chapter #hiessdvantage of being systematically
extendable for more complex scenarios. In Chapteresshowed how the approach can be
extended for top-down diagnostics of building HVAgtems in which a massive number of
potential faults and abnormalities exist. We showed, by employing numerical algorithms
such as Markov Chain Mont Carlo (MCMC), the diagimmsiechanism can effectively analyze
building performance from a top-down perspectivé deal with challenging issues like fault-
detect-ability.

Further development and research still require miagahe computational load of the proposed
top-diagnostics approach discussed in Chaptersimgting the posterior distribution of the

fault node numerically, due to a large set of fguhicreases the computational load
considerably. In addition, the process speed hedetphends on the performance of the employed
building simulation tool. At each iteration, themerical algorithm runs the simulation tool with

a different configuration. If the simulation prosas slow, it will affect the overall diagnostic
process.

With the continuous improvement exists in compptecessing and new investments being
made on building simulation tools, this may nobsoncern in a few years. However,
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employing approximation modeling techniques suchuasogate modeling, response surface
models, and others might be helpful in reducingabwaputational load (future work).

In Chapter 4, we presented another diagnosticieolusd model-free approach, for rooftop units.
The key attribute of the approach was its indepeoel®f any detailed model, which makes it
appealing from a scalability perspective. The apphovas based on analyzing the correlation
among parameters and comparing them with variopsthgses to evaluate the system
performance. We demonstrated the effectivenedseadpproach using data from rooftop units
located at several retail stores.

Another important attribute of the diagnostic agmio presented in Chapter 4 is its flexibility
with steady state conditions. As discussed, ona ictallenge of using simplified models for
building HVAC diagnostics is that most of these misdare limited to simulating only the static
behavior of the system, meaning that the measureshenld be obtained when the system is in
the steady state condition. This is not an easgtcaint to deal with, as steady state conditions
do not occur frequently because of cycling duriogtine operations, high frequency
disturbances, or control loop oscillation. An agpwpacharacteristic of the proposed approach is
that it does not have the restriction of steadtestanditions.

Although the focus in Chapter 4 was on rooftop dragnostics, the proposed approach has the
potential to be extended to air handling unit dzsgits as well. This would be another topic for
further research and development.

Limitations derived from sensor network architeetuwere another focus in this thesis. As
discussed previously, in building HVAC systems,ssemetwork architectures are not
necessarily designed solely based on diagnostfmoges; other factors such as controls,
financial constraints, and practical limitationg afso involved. As a result, it is common to have
one or more components being monitored through oné/sensor (or one set of sensors). In
such a scenario, when the sensor output is congetnit could be due to the malfunctioning of
any of the involved components, and it may not bargle process to locate the affected one.

In Chapter 2, we demonstrated how the measurerestraint issue can be addressed
systematically by extending the Bayesian networsebadiagnostic model to a mixture model of
components, in which the missing measures are fatedias hidden variables in the Bayesian
interface routine. In another approach, the mors-tliagnostic algorithm (presented in Chapter
4) deals with the measurement constraint issuedifferent manner. The issue is addressed by
filtering the effect of one component from the meay) parameter(s) and then analyzing the
correlation between the filtered parameter(s) &edsecond component to detect and isolate
faults.
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It is important to note that these systematic sohstfor the measurement constraint issue do not
come without a price. There will be some level efcadation in the diagnosis performance,
which must be understood in advance. For exampl@hapter 2, the diagnostic solution of the
mixture model of components requires more timeseh a solid conclusion about the system
fault condition. This is the cost of the missingser. In other scenarios, the drawback may be
observed in the confidence level of the diagnastults.

On the measurement constraint topic, another faassquantifying the relation between
measurement constraints and diagnostics capatiiéyaimed to develop an algorithm
guantifying the impact of the measurement consti@ndiagnostics capability. A systematic
solution to this problem can be used as a framewméanalyze the effect of new measurements
on diagnostics strength, which subsequently woedd [to better designs and the optimization of
sensor network architectures from a diagnosticspaetive.

In Chapter 6, we showed that the impact of measamégonstraints can be traced in the
information entropy of diagnostic assessments.ddsggned algorithm connects the effect of
new measurements to the expected value of thenmafioon entropy. Initial results show how the
framework can successfully identify effective amdatal measurements in building diagnostics.

Another topic that we focused on was proactive mstjcs or proactive testing. In the past, the
topic of proactive fault diagnostics has not bemem enough attention, while the capability of
conducting and supervising automated proactiventgst essential to replace manual
troubleshooting with automated processes. Mos@are$ studies regarding HVAC fault
detection and diagnostics have focused on the sttlerof the problem: analyzing system
outputs for diagnostic purposes.

In Chapter 4, we defined the proactive testing lenmbas an optimization problem and showed
how it can be formulated as a decision-making geblcoupled with the Bayesian network-
based diagnostic mechanism developed in Chapi#fellustrated how the framework can
adaptively conduct proactive testing processeshamdit can adjust itself to the diagnostics
capability, taking into account the strengths améknesses of the diagnostic mechanism,
practical limitations, etc.

The proposed proactive testing framework is nowdl anique; however, it is subjected to

further development and improvement. Further dguraknt might be required in the context of
more complex scenarios, when different componentiewices interact with each other. Another
area that would benefit from additional researaobtier substitutes or more advanced substitutes
for the utility function, other than the informati@ntropy of the fault node.
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