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ABSTRACT
' Based on the microscopic model, the moment-of—inertia parameter Jo
and the force constant CVMI associated with .the va;iable—moment-of—inertia
model are célculated microscopically for rafe—earth nuciei Higher-order
effects representing quadrupole and hexadecapole centrifugal stretching,
proton and neutron Coriolis-anti-pairing effects and fourth-order cranking

correction are included. The present calculations are able to reproduce

the trend and the magnitude of both Jo and C fairly well with discrep-

VMI

ancies ranging from 10 to 40 percent.

NUCLEAR STRUCTURE rare earth even-even nuclei, calculated
moment-of-inertia and force constant. Variable-moment-of-

inertia model, cranking model. Coriolis-anti-pairing effect,

fourth-order cranking, centrifugal stretching. ]
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I. INTRODUCTION

It is now well establishedvthat the quasi-rotational spectrum plays a
central role in the excitatiéns of even-even deformed~nucléi.l’2 The general
features of the quasi-rotational states are as follows: 1) their spins and
parities follow the sequence of O+, 2+, h+, 6+, « « ., and 2) their energies
deviate from the I{(I+l) rule as the spins increase. Récently, it was dis-
covered that at very high angular momenta, the rotational energies of some

1,2,3

. nuclei may exhibit anomalous behavior, the so called back-bending. We

shall not discuss'the'back-bending phenomenon in this paper, but

shall limit our c#lculations only to those states with moderate high spins.
There exist many two-parameter forleas which fit very well the energy levels
up to spin I~l2. ' Among them we may mention the centrifugal stretching model
of Diamond, Stephens and Swiateckih (which was later extended by Soods), the
fourth order cranking model of Harriss, the variable moment-of-inertia model
(VMI ‘model) of Mariscotti, Scharff-Géldhaber and Buck7, and the EXP model of
Draper.8 Recently the VMI model has also been extended to high spins by
several authors to deal with the back-bending phenomenon.g’lo Compared to
the phenomenological fits, the microscopical calculations of the nuclear
rotational energieze.,ll“17 on the other hand, have only moderate success in
reproducing the‘experimental data. For example, the authors of Ref. 1l to
Ref. 15 (Udagawa and Sheline; Chan and Valatin; Sano and wakai; Bes, Landowne
and Mariscotti; Krumlande) tdok into consideration the centrifugal stretching
and the Coriolis-anti-pairing effectl8 (CAP effect) and obtained fairly good

16,17 have shown

agreement with the experiment. However, other calculations
. that the fourth-order cranking contribution is as important as the CAP effect
and the inclusion of the former makes the theoretical results much worse.

Indeed, Marshalék's calculationsl6 showed that in general the calculated
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values of the B coefficient associated with the 12(I+1)2 correction term in
an expansion of the rotational energies is about a factor of 1.5 to 3 too’large
compared with the experimental data in the rare-earth region. The calculations

17 were likewise only capable to pfdduce'results of the

by Me and Resmussen
right order of magnitude; however, the quantitative significance of their ' .
results is subject to some uncertainty duevto‘the use of a eimple basis where
the single particle angular momentum-is kept ae a good quantum number. More

19-21 yave done Hartree-Fock-Bogoliulov variational

recently, several authors
calculations to study the back-bending phenomenon at high spin states; which,.
however, will not be discussed here. In summary, the above situatiens indicate
that the microscopic calculation of the rotational energy deserves much further
study.
| The present calculations are based on fhe cranking model of Inglis.22 We
follow closely the formuiations of Ma and Rasmusseh17 (hereafter referred to
es‘(I)), and make.use of the single particle wave functions of Nilsson §3.55.23
with the inclusion of both quadrupole (§,) and hexadecapole (€,) deformation.
Since it has been shown that most of the two-parameter formuias are related

to each other,7’l7’2h

we shall calculate specifically the parameters associated
with the VMI model and the B coefficient connected with the 12(I+l)2 term.
The following section will briefly review the formulations developed in

(1), the detailed calculations and formulas are given in Sec. III, and the -

last two sections will give the results and discussions.
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II. REVIEW OF MICROSCOPIC THEORY

7
The VMI model can be expressed as follows:

1 2 | I(I+l)
E; =5 Cm Yr -9 * 23
oE
I
T, (1)
aJI

where EI and JI are respectively the energy and moment-of-inertia of the
excited stﬁte with spin I. The force constant CVMI and the ground state
moment—of—ihertié Jo are the two parameters which can be determined by a
least squared fit to the expefimental energy levels, The VMI model is able
to give very good fit for states up to spin I ~ 12. Recently Saethre 25_23:25
have improved the fitting by using a three-parameter and a four-parameter
cranking.model formulas. The two-parameter. VMI model‘has begn shown’ to be
mathematically identical to the Harris fourth order cranking model; in addition,
Klein gE'2l324 have proved that the VMI model and craﬁking model are equivalent
to all orders.

The microscopic derivation of the VMI model has been given in (I} and

will ke briefly outlined below. One first expresses the total energy of a

rotating system as

I(I+1)

ST (2)
1

_ ‘1 2

E = z: > Clx = %)% +
i

where the potential energy is expressed approximately as a sum of harmonic

terms each of which represents contributions from various collective degrees

of freedom denoted here by X, . Ci is the spring constant associated with
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the i-th degree of freedom. The second term is the kinetic energy. The
rotational solutions are obtained by minimizing Eq. (2) with respect to
various x; at a given value of spin I. 1In the presen£ calculation we introduce
as collective degrees of freedom the quadrupole and hexadecapole shape deform-

ations €, and €

5 4 involved in the centrifugal stretching effect; the proton

and neutron pairing correlation paranmmers‘vp and vn involved in the Coriolis-

' . - -2, .
anti-pairing effect; and a new collective variable N = w involved in the fourth
order cranking correction where w is the angular velocity. Thus, we define

{(see (I) for details)

v ,v ,n} h (3a)

{22, €40 o Vn

{xll le x3l x4r xs}

{e;rcyncq0cpn gl = {cy,, Cyy Cup’ Cun’ cn} . (3b)
We have not included the asymmetric degree of freedom (gamma shape vibration),
since its contribution is rather insignificant as was shown by the calculations
of Marshalek.ls’

In the first order approximation, Eq. (2) can be reduced to Eg. (1)

through a normal coordinate transformation and one obtains

2
9J (x,)
-1 _ ) l. —_
Comr = Z c.( ox, ) ' (4)
1 1 1
{x. }

10

where xio is the value of xi at the ground state, thus no = 0. The moment-

of-inertia J(xi) can be expressed as

J(xi) = Jo(xl, Xogr X x4) +2¢C (xl, Xy xs, x4)-n . (5)

n
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The first term is the ground state. moment-of-inertia which can be calculated

, 2 26
by the well known cranking formula of Inglis 2 and Belyaev,

[Car]3, ] |2

J_ = 2h (U, Vv -V, U) (6)
myo For tE @@ ol

o ]

where la ) is the deformed single particle state with.a denoting the appro-
priate quantum numbers, ma,iS“the magnetic quantum humber. along the symmetry
axis, Ua and Vd are the probability amplitudes in\the presence of pairing
interaction and Ea is the quasi-particle energy.

The Inglis and Belyaev cranking formula (6) is based on the independent
quasi-particle approximation., However, a recent calculation by Meyer, SPetb
and Vogeler27 showed that the two carrection ﬁerms arising from the particle-’
particle and particle-hole interactions nearly cancel eéch other. It has also
been shown by Rich28 that correction due toupafticle-number conservation is
also small. Thus it seems that the use of the cranking formula (6) is rather well
juétified numerically.

The second term of Eq. (5) represents the fourth order cranking
correction which was first studied by Harris6 and the fourth order cranking

. 6
constant Cn can be expressed as

oS la v L fv ) o la fw) < (g fv)

c. =2
n mon,p (em - eo) (en - eo) (ep - eo)
\ 2 2
L o ola v “ <o o v

)D 5 (7)
m,n Em —eo) (en -eo) ‘
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where the ground state wo is the quasiparticle vacéum state, wm and wn are
two~quasiparticle states and the intermediate state wp can- be eithér two-~
quasiparticle or four-quasiparticle excitations. The.corresponding energies
are denoted by E;, Em’ en and G?. The "prime" on the summation indicates
that the grouhd state is excluded from the summation.

It is obvious from Eq. (5) that

Thus, the contribution of the fourth order cranking in Eq. (4) is simply 4Cn

while the contributions of the other degrees of freedom are given by

2

The B coefficient associated with the I2(I+1)2 term in the angular momentum

expansion of the rotational energy

EL = 5—2%—11-)-+ B 12(+1)% +c 3 + ... (8)
o .

can be expressed as

. _ ,
B _ 1 9J
B=-y —L <-—ax_) L. (9)
i 8C.J i _
S iYo {xio}

The value of the force constant C;; or the B coefficient indicates the degree to

I
which the spectrum deviates from the I(I+l) rule. Both Egs. (4) and (9) show

that the contributions from various degrees of freedom are all positively added.

¥
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A simple'relation between C and B can be obtained by combining

VMI
Eq. (4) with Eq. (9), which yields

4 :
8‘B CVMI Jo = -1 . | (10)

' III.  DETAILED CALCULATION AND FORMULAS

A. Single Particle Basis and the Pairing Problem

The deformed single parficle basis used in the present calculations
is chosen to be identical to that of Nilsson 35_31323 The diagonalization
is carried out over the spéce of 11 shells for proton and 12 shells for neutron.
The values of>€2 and 64 of each nucleus are.taken from the work of Nilsson

et al. and are listed in Table I.

The pairing strength G is chosen to be a smooth function of A as

suggested by Nilsson et al.

N-2Z
. = + —
G A go 9 A
9, = 19.2 Mev
9, = 7.4 MeV _ (11)

with plus sign for protons and minus sign for neutrons. They also put in a

linear surface dependence of G, which may be importantvfor large deformation.

/2 /2

The BCS equation is then solved by including (lSZ)l states above

or (lSN)l
and below the proton or neutron Fermi level. The pairing gap parameters Ap and

An thus obtained are given in Table I.
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The energy of a quasipartiéle can be expressed as

E = (€

k

2 .2 .
L - N -V + 20y 6 P UV, | (12)

kk 20

where ek is the single-particle energy and A is the chemical potential.

Following (I) we parametrize the probability amplitudes {Uk, Vk} by introducing

a pairing correlation parameter V

2 |
) €

kol X (3

T O LU , >

x

If v = A (the energy gap A is the equilibirium value of V at ground state),

Eq. (12) reduces to the familiar BCS result

E, = v(ek -n% A . (14)

In what followskwe shall vary V to éalcu;ate the corresponding derivatives of
moment-of-inertia as well as the pairing spring constant for a fixed pairing
strength G as given by Eq. (l1). Since for V # A, the BCS gap equation no
longer holds and Eq. (14) is not valid. Thus, it is important to use Eq. (12)

rather than Eq. (14) as the expression for the quasiparticle energy.

B. Derivatives of the Moment-of-Inertia
We shall calculate the derivative of the moment-of-inertia JO with
respect to the pairing correlation parameter V while the average particle

number n and the pairing strength G are held fixed. One obtains
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aJ aJ aJ
(..2) - (__0_) N <__9_> (él) - (15)
oV n,G v .G aA v,G oV n,G

’

where Jo is given by Eq. (6) and the average particle number n is given by

2z

(16)
k)0 k

1]
e

It then follows

<3J )
-°
oV A,GlVv

1. . 2
=A k,% E_+E

g~ UV

2 2 :
_(Uz - VI Gy + Vi VI/E

20,V (U.V, - V. U,) '
L2k R kL 2
- S 2 L uv - ara
k. 2 m?)0 ,
(aao) SERERAE
= =2 3 (U V, = U,V )
3A \),GI\)=A K% Ek+El k 2 ,Q,kv

. 2U£v2(u U,+ V Vz)/El

k% 'k
J (v, - U,v.)
. k & L7k 2 2 G 2.2,2 2
+ Ek T, PUE Vz) - 4U£V£ A 7n?;o Ume(Um \% ] (17b)

9A o 2. 2,2 2 r
( )n < = E: Ur Vi (Uk - vk)/z kE: U (17¢c)

)0
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Note that in taking the derivative, the quasiparticle energy is given by
Eq. (12). After the derivative is taken, its value at v = A is then

evaluated.

‘The derivatives of qo with respect to the deformation parameﬁers €,
and 84 are calculated by finite differences. ' The mesh point interval is taken
tovbe 0.02 for both'e:2 and 84.

The various derivatives §f tﬁe moment-of-inertia are 1i§ted in Table
II. The derivative.with respect to pairing are quite stable over the rare-
earth region of nuclei. For example, with respect to the neutron pairing,
the dérivatives fluctuate around -(36 + 10) MeV-z, while the derivatives with
respect to proton pairing are roughly equal to -(19 * 3)‘Mev-2 for nuclei in the
region of A v 165 and - (11 £ 2) MeV-2 for those in thevregion of ANV 187. The
derivatives with respect to the deformation, on the otherbhand, are quite
different as one'gées from one nucleus to another. In the case of quadrupole
deformation (82), the derivatives are largest at the beginning of the rare-
earth region ahd generally ‘decrease towards the end;of tﬁe region; while in the

- case of hexadecapole deformation (64), the derivativeé_ére strongly negative

at the beginnihg of the raie-earth region and change'tb positive values near

the end. A negative value for the inertia derivétive with respect to hexa-

decapole deformation (64) has some interesting consequences. The equilibrium

value of 84 at a given spin I in first order approximation is given in (I) as

o I(I+1
€4 T &g * (I ; gg v (18)
2c, 7 4 _ A

where 640 is the hexadecapole deformation at ground state. In the beginning

l
l
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of the rare-earth region, the values of both €4O'and the inertia derivative

with respect to €4 are negative, thus, as the spin goes up, the hexadecapole

deformation will increase in magnitude which is just the familiar stretching

effect. However, for nuclei in the middle of the rare-earth region, the values

of 0 become positive while in most cases the inertia derivatives with respect

a
to €4 still remain'negative. Thus, as the spin goes up, the hexadecapole
deformation will actually decrease.

Equilibrium values.of quadrupole deformation €_ and of pairing

2
parameters V_ and vy at a given spin I can also be determined by equations
similar to Eq. (18) which then yield the quadrupole stretching and the

Coriolis~anti-pairing effect.

b C. Pairing Spring Constant

The ground state energy can be expressed as

-G E UkV}::UiVQ Z Uivi (19)
k#2 )0 k)0

where the first three terms are the BCS ground state energy, and the last
) 29,30

term approximately accounts for the fixed-particle-number correction.
The pairing spring constant Cv can be obtained by taking the second derivative
of eo with respect to the pairing correlation parameter Vv
a%e
o)

c. =|—=2

\Y 3V2

n,G
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2 2 . 2
_ 9 e;o . P eO 3 . € 22\_ 2
=2 2lovav] | v 2 v
3V A oA v n
Yz 2 | o
O = I A0S . (20)
IA AV IRV

Evaluation of the derivatives of eo with respect to A ahd V are straightforward
by ﬁsing Eq. (19). The derivative of A with respect to V can also be easily
obtained in terms of Eq. (16). The proton and neutron pairing spring constants
CVP and C\).n as Falculated by Eq. (20) are given in Table III.

It is interesting to note that inclusion of the fixed-particle-number
coirection in the ground state energy will in general‘increase‘the pairing
spring constant by about 20 percent, hence, reduces the CAP effect. Some
of the examples are given in Table IV.

A simple formula for Cv based on the continuous model is given in (I)

which reads

o, »
Cy, = (2p + A" 1 -p06) _ (21)

where p is the average nucleon orbital level density. The spring constant
given by Eg. (21) (see Table I of (I)) are somewhat larger than those given by
the present calculations by about 5 to 15 percent in the case of proton and

10 to 25vpercent in the case of neutron. 1In view of the tremendous numerical
work involved in Eq. (20), the simple formula Eq. (21) is indeed a very useful

approximation.




-13- ' : LBL-2347

D. Shape Spring Constant

The shape spring constants C22 and C44 associated with the quadrupole

82 and hexadecapole €4 deformation degrees of freedom can be

obtained similarly by taking the second derivative of the ground state energy

E P
o with respect to 82 and 84

=N e . '
C = eo R C = -——-——o - L (22)
22 362 44 382
2 4

In applying Eq. (22), the ground state energy Eo is calculated according to
the Strutinsky average prescription as described in Ref. 23 by Nilsson et al.

The C2 and C are then obtained by finite differences with .the mesh point

2 44

interval taken to be 0.02 both for 82 and 84; the results are listed in Table III.

The curvatures C22 and C44 at the ground state deformation are due to
contributions.frdm the liquid drop energy éért, the shell correction part ané
the pairing energy part, which make up the potential energy surface. The shell
correction partlgives the largest positive contirbution and in fact determines,
to the larger extent, the deformation of-tﬁé ground state nucleus. The pairing
effect tends to smooth out the level density and thus acfs against the shell
effect. It provides a negative contribution to the curvature. The liquid
drop energy part in general gives a small positive contribution,

The Strutinsky normalization replaces.the smooth part of the eigen-
energy summation by the liquid drop energy. Due to the ihadequacy of volume
normalization of the single particle potential well, the former has a much

stronger curvature than that of the liquid drop part, as is obvious from the

fact that its value would be infinite at € = 1.5 (which is of course quite far
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away from the ground state deforma£ion of € v 0.25), whereas thé liquid drop
energy would be finite. Hence, onevwould expect the'§alue of curvature

calculated in a scheme with the'employment of Strutinsky normalization to be
smaller than the value calculated wifhout it. This is indeed borne out by ouf
detailed calculation which show that the Strutinsky normalization generally reduces
the values by about 20 percent.

On comparison with Table I of (I), our present results for C are

22
about 40 to 100 percent larger. The first reason is that we are currently
using a finer set of grids, Ae = 0.02, as compared with Ac = 0.05 used in the
older calculation. Thus, the new calculations are less iikely to suffer from
the problem of anharmonic effects in the potential energy surface which, in

the present cage, will tend to reduce the effective value of the curvature.

The second and probably the main reagon behind the discrepanéy is that the
older calculation used a surface—independenf pairing force; whereas the new
calculation has a pairing force dependent on the surface area. For most
properties of the nucleus rnear the ground state, this difference does not
present significant discrepancy. But for such higher-order effect as the
curvature, we find it does make a difference. When wé calculated the pairing
energy contribution, we féund that the new calculation with a surface-
dependent pairing force gives '‘a smaller negative value than the old calculation,
~ and the change is sufficient to account for the discrepancy between the two

23,34 on the choice of

results. A detailed discussion.was made by other authors
these two versions of the pairing force. We have not pursued the question regarding

which is the more appropriate form of pairing force to be used. However, as will

be seen later, the contribution of centrifugal stretching effect to the VMI
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force constant is very small when compared with the contributions from
Coriolis-anti-pairing and fourth-order crahking effect, so that either
choice of the pairing force will have little effect on our final results

and conclusions.

E. Fourth Order Cranking Constant Cn

The evaluation of the fourth order cranking constant Cn given by
Eq. (7) 'is rather tedious, since now one has to calculate the contributions
from the four—quagiparticle intermédiate states as well as those from the
two—quasipartiqle states. Fortunately, we are able to reduce Eq. (7) to a
sum of quadratic terms; as a resut, the numerical work is considerably

simplified. We shall quote the final result below while the derivation will

be given in the appendix.‘

wy, - vpu ) (Upvq, -0 V) T
% P . q

-2 Y ) (E_+E_,)-
m=m )0t t_, P P
P P p, P

{plJ X p'l4 | - - 2
pl3 l@¢p']3, |a (U v, = VoU) (U V=V U)

L E +E) (E, +E +
Y Ep _ g o q
+1

q

=m
P
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) N e DL ML A E LY
0 t t ' : : .
" q, ¢ T 1 2
m =m -1
q p
m_,=m +1
Q' P
2
" (UV -VU) (UU , +VV }T
P9 P9 P g P9
E + E
o q
' >
“1+(uv,, -vu UU +VV)
‘(pq' pq')(pq P g
E +E ,
- P q J7
+2 z Z —_—
E +E_,
m=m 20 t~t !
Ppo ,plp p
2, ‘elidetelsle -
<t
q
m =m *1
QP
\
{
(v -vu) (u , U +VvV V) 2
r_pg9 P9 ptda. p'qn’
K E_ +E_
p q
* }
(U, v. -V _,U) (LU +VV)
I S p'g P g P g (23)
E , +E
- p q _JJ

where mp is the magnetic guantum number of the particle in state.,;9, tp denotes
the quantum numbers other than mp andrEp is the corresponding quasi-paftiéle
energy. 'The first two terms représent the contributions from four-quasiparticle
iﬁtermediate states while the last two terms represent those from two-
-quasiparticle intermediate states, as can readily be seen from the form of

the products of the U, V coefficients. The fourth order cranking constants
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Cn calculated in terms of Eq. (23) are listed in Table III. Our calculations
show that the two-quasiparticle contribution is always positive while the
four—quasipafticle contribution is always negative. furtﬁermore, the former
is genefally about three to four times larger than the latter in magnitude.

Some of the examples are given in Table IV.
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IV. RESULTS AND DISCUSSIONS N

“A. "Moment-of-Inertia

The grbund state moment-of-inertia Jo is calculated according to
qu {6). In addition, we have followed Nilsson and Prior31 and increased
the calculated values by 5 percent Which“represents approkimately the éffécts of the
coupling between the shells N and N + 2, dué'to the j; operator. This is
because the Nilsson wave functions of Ref. 23 are expressed in the stretched
coordinates and the'jx operator in these étretched coordinates will give rise
to a term which will couple the shells N and N + 2.> The results are listed in
Table II and plotted in Fig. 1. Ffom Fig. 1, it is seen that the trends of
the experimental moment-of-inertia are well reproduced‘by the calculations.
The calculated’magnitudes, however, are éenerally too smal; by 10 to 40 percent,
the average discrepancy being 25 percentf This disagreement in magnitude seems
to be somewhat too large compared to a similar calculation by Nilséon_and Prior3
where the calculated Jo ére generally 10 to 30 percent tdo small, the average
discrepancy being 20 percent. But it éhould be pointed out that in the present
calculation, the.single_particle states andAthe parameters G, 82, €, are all
taken directly from the works of Nilsson 35_51,23 without any readjustment.
One may, for example, obtain very good_agreement with the experimental daté by
choosing 9, = 18.0 MeV instead of 19.2 MeV in Eq. (11). We shall return to

this question at the end of this section.

B. Force ConstantvcVMI

The force constant C;;I associated with the VMI model of Eq. (1) is

calculated using Eq. (4) and the results are listed in Tablée V and plotted in

VMI

Fig. 2. The contributions to C from various sources are also given-
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separately in Table V. One notices first that exceptvfor nuclei with neutron
number N = 90 and 92, both quadrupole and hexadecapole centrifugal stretching
contribute very little to thé energy deviation from the I(I+l) rule. Typicélly
they amount to only a few percent of the total contribution and hence in most
cases can be entirely neglected. This result is consistent with other micro-
scopic calculations and also with experimental observations.32 It is important
to hote that the contributions of hexadecapole stretching are comparable with

those of quadrupole stretching. Hence they should both be taken into account

in other relevant analyses, such as the studyl6 of change of nuclear

mean-square radius A r2 ) or the study‘of the deviation of the trans-
ition probability from the rigid rotor formula.

It is shown in Table V that the neutron Coiolis-anti-pairing and the
fourth-order cranking correqtions are the two largest contributions and are
comparable with each other. The proton Coriolis-anti-pairing term is relatively
smaller and amounts to about 10 to 20 percent of the total contribution. In
general, the present results are Qery different quantitatively  from those of
(I). However, many quaiitative‘discussiOns of (I) are S§ill valid.

We observe in Fig. 2 that except for nucléi with neutron number N = 90,
104 and 108, both the experimental tfend and magnitude of the force constant

CVMI are fairly well reproduced in general by the present calculation. 1In

most cases the discrepancy ranges: from 10 to 40 percent; the average discrepancy

for all nuclei (excluding those with N = 90) is about 34 percent.
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The large discrepancies of- the calculated force constants which
occurred at peuﬁron'numbet N = 90, 104 and 108 deserye_more careful study.
Perhaps the 90-neutron nuclei are so close to being shape unstable that the
preéent model of stable deformation may be somewhat queétionable. This
argument, however, cannot be épplied to nuclei with N = 104 and 108, all of
which appear to be good rotors. We then compare the calcglated Nilsson
single neutron levels aroung N = 104 .and 108 with thosé deduced semi-empirically
by Ogle g&_§£.33 and are not surprised to fiﬁd some discrepancies between
them. Consequently, we make the following preliminary neutron level shifts

’

(512, 5/'2"]n + 0.05 hw

Calculation B: { [510, 1/2‘]n - 0.05 hw . for A=170

[512, 3/271_ - 0.05 hu | o (24)
P |

With the above neutron level shiftsland assumiﬁg further that the
wave function and the quad;upole and hexadecapole stretching are the same,
we repeat the calculation on the moment-of-inertia and the fdrce constant
which will be called calculation B while the previous calculation without
level shifts will bg called calculation A. The results of calculation B
are listed in Table VI. In general, the results of calculation B are
similar to those of calculation A except for nuclei around neutron number N
= 104 and 108. Note in Table VI that the moments-of—inertias‘from calculation
B change only slightly over the results of célculation A, On the other hand,
the force constants of calculation B are considerably impro?ed over the
reéults of calcuiatiop A around N = 104 and 108, as can be seen in Fig. 3.
The serious discrepancies of calculation A which occurred at N = 104 and 108

are now much reduced; in most cases, both the trend and magnitude of the
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experimental force constants are now fairly well reproduced. However, in ad-

- ¥ . 7
dition to the 90-neutron nuclei there still remain three nuclei (iogEr, iSZYb

and 18OHf) whose calculated force constants are a factor of 2 too large com-

108
pared to the experiment. The average discrepancy for all nuclei (excluding
N = 90) is now 29 percent. Thus the agreement between the theoretical and
experimental values of the force constant is comparable to that of the
moment-of-inertia calculations.

The above results indicate that the force constant CVMI which repre-
sents the higher-order effects in the rotational energy calculation is much
more sensitive»to the single particle levels than the moment-of-inertia. We
haverno intention here to dq a detailed searching for better single neutron
levels. Instead, the emphasis is to indicate that by removing the discre-
pancy of fhe Nilsson neutron levels aroung N = 104 and i08 (although only in
a preliminary way), the calculated resultshof the force constant C;;I'can be

considerably improved.

‘C. B Coefficients

The B coefficient associated with the IZ(I+1)2'term in an expansion
of the rotational energy can be evaluated either by Eq. (9) or in a more

straightforward way, since we already know Jo and C;; . by Eq. (10). The

I
results of calculation B are given in Table VI and plotted in Fig. 4. The
"experimental B coefficients are obtained by a least-squared-fit to the first

three excited states by using the first three terms in Eq. (8) with Jo>taken

from Ref. 7. It is seen in Fig. 4 that the trend of the B coefficient is fairly

well reproduced; the calculated magnitudes, however, are generally too large
by a factor of 2 to 5. Thus, the agreements are much worse than those of the

force constant C;i although both of them represent the higher-order effects.

I

The reason is easy to understand, because the B coefficient depends on the
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inverse fourth power of the moment-of-inertia Jo accordipg to Eq. (10). Our
calculated Jo are roughly 10 to 40 percent smaller while oﬁr calculated C;;I
are roughly 10 to 40 percent larger; so combined they yield the B values by a
factor 2 to 5 too large.‘

Because of this‘J;4 dependence, it seems that in order to get reasonable
agreement for B coefficient one probably should first fit the moment-of-inertia
as accurately as possible. We have mentioned in the beginning of this section

that very good agreements of the moment-of-inertia could be achieved provided

one uses a reduced pairing strength 9, = 18.0 MeV instead of 19.2 MeV in

VMI

without neutron levels shifts are listed in Table VII. 1In addition, the

Eg. (11). The values of Jo' B and C calculated with gb = 18.0 MeV and

. 6 . .
second set of results of Jo and B of Marshalekl which are obtained by adjusting

the pairing strength so as to exactly reproduce the experimental moment—of—
inertia are also included for comparison. Our results are roughly similar to those
of Marshalek at the middle of the rare-earth region, though discrepancies occur

at both ends of this region. Note alse in Table VII that our B values are

now improved over those obtained previously with 9, = 19.2 Mev, although they

are still too large by a factor of 1.5 to 3 in general. On the other hana,
however, the force constants C;;I in Table VII are much worse than those

obtained previously with 9, = 19.2 Mev.

We seem to be in a very interesting situetion. On the one hand, our
calculation with pairing strength go.ﬁ 19.2 MeV is able to reproduce fairly
“well Jo and CVMI’ howeve:, it yields very poor B coefficients. On the other
hand, very good Jo'and improved values of B (but still too large by a factor

of 1.5 to 3) could be obtained from calculation with the reduced pairing
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strength 9, = 18}0.Mev, But now the CVMI'becomes very poor. We feel that '

an accurate micréscopic theory shduld be able to reproduce both force constanﬁ
and the B coefficient correctly. For qalculations involving as many approx-
imations és these, however, we suggest that the force constant CVMI is a more
meaningful quantity to be compared with. The reasons are as follow: 1) Because
of the J;4 dependence, the large discrepancy of the caicu}ated B coefficient

may be misleading since it may.essentially be a result of small to moderate

‘deviation in Joo It is also probably misleading for one to obtain better B

coefficient by adjusting the pairing strength alone in order to reduce the
error arising from the J;4 dependence, because in doing so, the force

constnat CVM will become unduly worse. 2) It is well known that the expansion

I

. . ‘ ce 2,
of the rotational energy in terms of the angular velocity W~ is much better

‘than the expansion in terms of the angular momentum I(I+l). Thus, the force

constant CVMI also appears to be a more physically significant parameter than

the Bvcoefficient.
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V. SUMMARY

Based on the microscopic cranking model, the.present calculations are
able to reproducé fairly wel; the moment-of-inertia Jo_énd the force cqnstant
CVMI associaﬁed with the VMI model with discrepancy ranging from 10 to 40 . o
perceht in general. On the oﬁher hénd, the calculated B coefficients are
quantitatively poor, which resemble the calculations of Marshalek.16 However,_
as we have mentioned, one must use care in interpreting the large discrepancy
of the B coefficient becaﬁse“of its J;4 dependencé.

We have taken into accouht the fixed-particle-number correction for
the potential energy; obviously it will also affect the ﬁoment—ofjinertia and
the fourth order cranking calculations. ‘According to.the calculation of Rich,.28
the fixed-particie—number correctionrwill rédude the ihertia'derivative with
respect to pairing by 10 to. 20 percent. Since the force constant C;;I is
proportional to the square of the inertia derivative, this will cause 20 to
50 percent reduction of the Coriolis-anti-pairing effect, which is in fhe
right direction of improvement. We feel.that the present appréach is not

accurate enough to study nuclear rotation at very high spin; to do that, the

perturbétion treatment on wa probably will have to be avoided altogether.
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APPENDIX

We first express the Jx operator in'the quasi;particle representation

as
I =911 * Y20 | (A.1)
with
<p|3 ;o> = <plila> (UpU_q +VV,) - (A.2a)
mq+% :
<o|dJ = (-1 <pli l-a> (UV_ -VU A.2b
|350lpa> = (-1) = <plg,f-a> (U v, -V, U) (A.2b)

where [0? is the quasi-particle vacuum state. Note that I only
operates between states with J, components differed by * 1.

Consider now the contribution of the four-quasiparticle excitations

to the first term in Eq. (7)

C.n (Lqp) = 1/8 - 2 .Z(}pg)il | M
'Ep q'%:i (E+E,)
P, 4
p#d#b #q

<pq|J20|pq, p'a’s <Pq,P'qllJ20|P1q1> <p1qllJ2Olo>

(E +E +E_++E /+)(E_ +E_ )
P9 p 4q p1 ql
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where (pq)+l denotes a éomplete set of two-Quasiparticlebstatés | pa>

with Jz coﬁponent mb+mq.= +1. Since.for each |pq>-there is a corresponding
state |qp>, the factor 1/8 thus accounts for the double counting of pq,

p’q’ and plqi.‘ Writing the non-zero‘ﬁerms bf the above exﬁression explicitly

one obtains

ch (%P)—%z | <ofd,,|pe>" <o|J,,|p"a">
?q 2| (B +Eé)2 (B 4B )
p#q#p tq '

<017, P> <0134/ p’a"> <0] 3,4l pa’> <07, [P a>

.(Ep+Eq)(EP+Eq,)(Ep,+Eq)

<01d,| pa> <0]d,4|P 2> <o|T,4lpp’> <0y, laa’>

(Ep¥Eq)( Ep*l'.E:‘p/ )(Eq+qu )

We notice first that the constraint p # g # p' # q' can be dropped because
the additional terms thus created will cancel each other. Secondly, the
third term may be made equal to the second term by exchanging p' with q'.

It then follows

' ] 2 2
Cﬁ (kQp) = & ¢ . <o|d,,lpe>" <o0|d, |0 a’>

. \2
. +E +
q’ )+l (Ep Eq) (Epl Eq/)

1
-z

<O|J'Olpq> <O|J20lp,q'> <°‘J OIPQ'> <0‘J20‘p'q>

%pq)tl (A.3)
(p'a’)£1 (E+E )(E By )(E +E z)(n ~+Eg) |

X (EP+EP/+Eéqu;)’
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The first term in this equation obviously cancels the second term in Eq. (7); we

thus defined the full contributions of the four-quasiparticle excitations

as

_Cn (uqp) C% (LQP) + second term of Eq. (7)

1

second term of (A.3)

The summation of the second term in Eq. (A.3) can be separated into four

terms
|
> = T + + 0z + £
(pq)+l (pa), (pa), (pa)_;  (pa)_4
(p'a’)s) (p’q"); (p’d"),; (p'd’)y (r'a’)_,
The first term yields
z = -% T ' z <O|J2O!pq> <olJ20|plq5 <OlJZO]pq’><O]J20lp'q>
(pQ)l m :11/2,13/2,... p’ p' - )
(p'q’ p (E+E WE_+E +)(E+E_,)(E_,+E )
p'a’)y m o=y £ 4, P 40P TP e e
qQ’"q :
= = - +1 ’ $
m =ty = -0 X (Ep+Ep,+quEq,)
. , ’ 2
= =5 D (EP+EP,) b <O‘J20|pq> <‘)'J20ip Q>‘
mp::tl/2,ﬂ;3/2, LAY tp,t 4 tq (Ep“Eq)(Ep/‘t‘Eq)
m ,=m
p" "
“ m= -m+1
a P

where we have applied the conditions

m +n = %1 m +m = *1
r q ’
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The other three terms can be evaluated in a similar way, and we obtain

finally
Co(4QP) = -k £ (BqE) [5 <ola, |pes <ofd, [pa’s T 2
plHaP) = q g '“20 20
. mp>O tq,tq/ 'tp .
my= -m+l (Ep+Eq)(Ep+EQ')
m = -m_-1
q p
. , 2
25 . 5 (245, [2 <0]3,,|pe> <ol 3, |p’a>
m =M > t_,t s t
P PP (E+E JE_s+E )
mq= -mpil Pqp a

(A.4)

Substitution of Eq. (A.2) into Eq. (A.l4) then yields the first two terms
in Eq. (23).
The contribution of the two-quasiparticle excitations to the first

term in Eq. (7) is

. ' '
Cy (2Q2) = 1/8 - 2% <o|J,4lpa> <pals; [p'a’s <p’a’ly ,lpya>

(pq)£l ( )
E +E_)(E_/+E
(p’q’)o,%2 p'Eq)(Bp By
(pyq,)41
<01y [ Tpolo>
(Ep_+Eq ) i
Since 1 4
1 7 _ ! ’ - ! X
<P9|J11'P 1'>.= 8, <alay,[a> + 8qq P11y 1P - 6 <alay |p7> .

-6qpr<lelllq’>
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one obtains -
- . <& I ’ .
S (2qr) = 2 %pq)il o|d,,lpas <aldy;la’> <a’dy;fa,> <pa|3,,]0>
E_+E )(E_+E E
(pa')o,22  (BpBQ)(Ep+Eq/)(E, +E, )
(pa, )£l
' ' ’ ‘o <n o
+2 2(: " <old,olpe> <aldy;la’> <pla | {p> <p'd' |3, o>
. (pa)+
E_+E )(E +E_,)(E_,+E
(pa’)o,x2 ( P q)( P q’)( p’ q')
(p'a’ )£l

Recalling that Jx only operates between states with Jz‘components differed

by £1, we get

Cﬂ (2qp) =1 4 <& + 45 + 4y v}' X
(pa);  (pa)y (pa),
(pa’)y,  (pa),  (pa'),

(pa)y  (pgy)_;  (pay)y

y (<O|J20‘PQ> <QIJ11|Q’> <q,|J11!q]_> <pql|J20lO>)

(Ep+Eq)(Ep+Eq/)(Ep+qu)
+ 4k + b4z .+ Z } X
(pa);  (pa)y  (pa)y, *
(pa’)y  (pa')y  (pa’),

(p'a’), (p'a’); (p'a’),

X <<O'J2O'pq> <alyyla’s <ploy, [e'> <P'q"|J2°lo>).

(Ep+Eq)(quEq,)(Ep/+Eq:) (A.5)
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where we have used the concise notation

(g+2+2}(A)=ZA+ZA+ZTA
1 2 3 1 2 3 )

We regroup the third and the sixth term in Eq. (A.5) where the Jz
components of the twb-quasiparticle intermediate states are mp + mq, = 2,

and obtain

Cﬁ (2qP) = 4 % b 1 £ <oliyylres <alayla’> -2
mp:il/Z,iB/Z,... tp,tq, E *Eq -[tq T T,
m. s : m = -m +1
q'= -m+2 1Y
P
+ U T - z E—I%——— [Z <OIJ20!PQ> <Q|Jl]|q,> -
m =41/2,43/2,... t_,t + P q t - Ik
P pa 1 E_+E
= - +2 m= -m +1..
Mq’= "p ¢ p Poa
O 1\ ’ H -
.[i 'Qw%o¢q><MJn“DJ
q .
E ,+BE
m =m -1
ap a 4a
The above expression can be rewritten finaliy as
_ _ 1 - <olJ20Ipq)<qlJlllq')-'2
CT'] (20P). = 4 % X E——;——E—" 2z . R ———
m > 3/2 t_ t Chgt |t .
o / p,5q P ity P q
mq,= —mp+2 : mq= ~-m_+1
'#Z (oIJzo‘,qq')(lelllq)
t E , +E
q q q
m =m ~1 ‘ J
. 9 P

" (A.6)
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We then regroup the remaining four terms in Eq. (A.5) where the g
components of the two-quasiparticle intermediate states are mp+mq,=o,

and obtain

" - ( - 2
oy (2ap) = £ 1 z: <oIJ20Ipq> <q|dyqie’> ]
—Il/z :"..3/2,o.ot t ’ E +E 14 t
P p’ @ P q \ q E +E
= =M - -
mq, b ( mq m +l P 4
' ’ ’
¥ [:‘; 7 <°lJzo'pq;> <qlJ11Iq > :‘ [ i <°lJzoqu> <qlJ11]q >
4 E+E, A E+E
m= -m+1 -
Q P 4 P
T« ' ’ ’
+ [z < |J,,lpe> <a|3;la’> ] [ i | <o|J,plaa’s <p| 3y o> -
q _ qQ
E_+E E +E
m= -m+1 m = +1
< P g | me= My 4 q
4
+ [Z <O|J20lpq> <q|Jll‘q’> ] [ % . <O|J20‘qq > <P|Jlll‘1> -
mq_ el B +E, mq_m . EE
q b ' qa p
which can be rewritten finally as " . '2
1 [ | \
Cy (20P) = 2 % z s | % <o|Jp4lpas <aldq,fa> |
m >0 t ,br TpTq t -
P p’7q q .
= -m m= -m =1 v q
1Y q P
,
* i <olJ,,laa"> <a| 7 ,|p>
q ' KN
m =m_+1 Eq'Eq'
q P /
o

(A.7)

Substitution of Eq. (A.2) into Eqs. (a.6) and (A.7) then yields the last two

terms in Eq. (23),
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Table I.
are taken from Ref. 23. The energy gap Ap and An_are calculated

with pairing strength G as given in Eq. (11).

Nucleus ‘ A A
"2 K (vev) (V)
sm 152 0.202 -0.036 1.114 0.975
154 0.227 -0.039 1.024 0.888
Gd 154 0.206 -0.029 1.1 1.001
156 0.233 -0.030 1.020 0.935
158 0.245 -0.024 0.980 0.895
160 0.255 -0.015 0.948 0.849
Dy 160 - 0.24s -0.015 0.988 0.93k
162 0.256 -0.006 0.945 0.880
164 0.26k 0.003 0.910 0.836
Ex 162 0.242 -0.007 0.989 0.969
164 0.25kh 0.001 0.941 0.906
166 0.261 0.010 0.898 0.861
168 0.272 0.020 0.847 0.815
170 0.273 0.031 0.807 0.786
166 0.246 0.004 1.002 0.926
168 0.255 0.014 0.956 0.883
170 0.265 0.025 10.902 0.835
172 0.270 0.037 0.845 0.799
174 0.266 0.0L8 0.799 0.739
176 0.258 0.053 0.785 0.661
{HE 174 0.258 0.03k 0.915 0.822
176 0.256 0.043 0.879 0.734
178 0.250 0.052 0.8L4 0.672
180 0.2h3 0.063 0.808 0.561
w180 0.236 0.050 0.870 0.699
182 0.232 0.060 0.828 - 0.602
184 0.216 0.061 0.793 0.735
}86 0.197 0.060 0.777 0.790
0s184 0.213 0.053 0.750 0.690
186 0.198 0.055 0.665 0.780
188 0.178 0.055 0.592 0.819
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r'd

Table II. The moment-of-inertia and the inertia derivatives, where D.. Ela«a— (23 /ﬁ%}
: X, o
' i
X

10
Nucleug Degl Deél Dup g D L ZJP/be 2Jn/?i 2JO/?i 2Jexg{ﬁ2
(MeV ") | (MeVv ) |(MeV *) |(MeV °) |(Mev ) |(MeV T) |(Mev ) [(MeV )

sm 152] 196 | -266 |-16.68 |-32.35 |13.62 | 24.84 |40.38 | 46.8
154 163 | -266 [-20.17 [-46.17 |17.16 | 35.19 | 54.97 | 73.0
Gd 154| 195 | -236 [-15.51 [-29.85 | 13.26 | 23.14 [ 38.22 | 46.6
156| 168 | -235 |-18.49 |-41.16 | 16.33 | 32.00 | 50.75 | 66.6
158 119 | -176 [-19.88 [-37.59 | 17.45 | 33.27 | 53.26 | 74.8
160{ 126 | -150 |-20.98 |-40.19 | 18.20 [ 35.40 | 56.28 | 79.4
Dy 160| 131 | -169 [-19.48 [-35.24 | 16.55 | 30.63 | 49.53 | 68.6
162| 126 | -137 [-20.55 |-38.17 [ 17.60 | 33.33 | 53.48 | 73.8
164 94 | -116 [-21.25 [|-43.05 | 18.33 | 35.84 | 56.88 | 81.2
Er 162 148 | -147 [-16.15 [-32.72 | 15.07 [ 27.99 | 45.21 | 58.6
164] 134 | -109 |-17.25 |-36.35 | 16.38 | 31.41 | 50.17 | 65.4
166] 102 TI§7 |-18.22 |-41.23 | 17.41 | 34.00 | 53.98 | 73.8
168 85 | -35 [-19.04 [-36.48 | 18.74 [ 35.11 | 56.54 | 75.0
170] - 108 4 {-19.93 [-40.27 [19.59 [ 36.77 [ 59.19 | 75.6
Yb 166| 154 .| -86 |-14.94 [-35.08 | 14.16 | 29.59 | 45.94 | 57.8
168 135 -68 [-16.52 |-39.72 | 15.54 | 32.27 | 50.20 | 68.4
170[ 118 -19 [-18.14 [-36.34 | 17.20 | 33.76 | 53.51 [ 70.8
172] 124 7 |-19.70 |-39.98 | 18.75 | 35.96 | 57.45 | 75.8
174 86 | -4 |-21.11 |-41.15 [ 19.78 | 36.83 | 59.44 | 78.4
176 49 11 [-21.87 [-31.59 | 19.90 | 35.45 | 58.12 | 72.8
| HE 174] 141 -11  [-13.18 [-37.80 [ 14.90 | 34.40 | 51.77 | 65.4
176 108 -17 {-13.38 [-45.53 [ 15.38 | 38.19 | 56.25 | 67.6
178 53 -7 |-13.68 [-35.14 | 15.74 | 36.42 | 54.77 | 64.0
180 15 35 |[-13.88 [-33.54 | 16.18 | 39.02 | 57.96 | 64.2
W 180 .63 3 | -3.69 |-36.56 | 12.34 | 35.26 | 49.98 | 57.6
182 21 52 | -8.94 [-35.55 | 12.90 [ 37.84 | 53.28 | 59.6
184 69 65 | -9.91 |-28.92 | 12.88 | 31.00 | 46.07 | 53.6
186 89 74 |-10.87 |-22.25 | 12.55 | 24.76 | 39.18 | 48.6
Os 184 49 62 | -9.25 [-36.92 [ 11.92 | 34.35 | 48.58 | 49.4
186 79 68 [-10.75 [-29.99 [ 12.62 | 28.53 | 43.20 | 43.0
188 86 68 |[-12.97 |-22.67 | 13.29 | 22.64 | 37.72 | 37.4
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Table III. The spring constants associated with various degrees of freedom.

Nucleus C22‘ C44 C\)p Cvn Cn )
(MeV) (Mev) (Mev—1) (Mev~1) (Mev™3)

Sm 152 760 _ 1205 3.67 3.88 27.32
154 966 1519 3.74 3.27 37.68
Gd 154 | 725 1222 3.72 3.93 23.61
156 899 1453 3.75 3.50 31.48
158 1019 1556 3.78 4.18 24.81
160 1092 1620 3.81 4.13 28.44
Dy 160 989 1450 3.36 4.18 | 23.79
162 1108 1592 3.36 4.19 27.36
164 1215 1711 3.40 3.50 33.25
Er 162 926 1318 3.73 4.22 19.27
164 1043 1503 3.66 4.24 22.38
166 1175 1663 3.62 3.59 27.44
168 1205 1780 3.58 4.40 17.75
170 1181 2005 . 3.57 4.18 23.34
Yb 166 956 1390 3.93 . 4.27 21.21
168 1064 1517 3.83 3.69 26.56
170 1097 1645 3.66 4.40 19.49
172 1113 1714 -~ 3.46 4.25" 25.66
174 1220 1710 3.34 4.03 30.56
176 1275 1709 3.39 5.20 19.89
HE 174 1032 1637 4.10 " 4.56 20.90
176 1178 1643 4.20 ' 3.71 31.15
178 1243 1603 4.29 4.92 21.16
180 1300 1600 4.39 2.19 14.27
W 180 1238 1600 4.15 4.76 18.34
182 1280 1595 4.18 2.49 12.16
184 1255 1450 4.37 5.25 15.29
186 1175 1225 4.60 5.37 12.46
Os 184 1280 1663 2.45 3.06 13.53
186 1225 1488 T 2.06 5.14 16.28
188 1188 1325 1.77 5.36 13.12
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TABLE IV. The first four columns list pairing spring constants with and
without fixed-particle-number correction (PBCS and BCS). The fifth
and sixth columns give separately the two and four quasiparticle

contributions to the fourth-order cranking constant.

Cop (Mev'z) o (Mev'z) B <, (Mev ™)

Nucleus

‘ 'BCS PBCS BCS PBCS 20.P. 49.P.
14gn 3.17 3.74 3,07 3.27 49.8 -12.2
158:q 3.21 - 3.78 3.43 4.18 35.2 -10.4
162, 3.07 3.36 3.50 ° 4.19 37.7 -10.4
1665, 3.09 3.62 3.36 3.59 | .37.7 -10.3
1704, 3.18 3.66 3.60 4.40 28.8 -9.35
174y¢ 3.44 410 3.70 4.56 30.0 -9.06
180, | 3.32 4.15 3.40 4.76 27.3 -8.97
184, 2.45 2.45 2.89 3.06 22.3 -8.76
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, TABLE V. The force constant C;;I and the separate contributions from various
higher order effects. The experimental values of CVMI are taken from_Ref. 7.
We define K#i E 3£;-Jo/h2)2/ci. All units are in MéV-B.
Nucleus K22 K44 K\)p Kvn 4CH' C;&I C;&
» (Calc.) {exp.)

Sml52 13 15 18.98 67.45 109.53 224.0 595
154 7 12 27.20 163.11 150.73 353.0 229
Gdl54 13 11 16.16 56.68 94.46 191.3 544
156 8 10 22.78 121.15 125.94 287.9 338
158 3 5 26.13 84.55 99.24 217.9 245
160 4 4 28.85 97.89; 113.76 . 248.5 215
Dyl60 4 5 28.25 74,28 95.15 206.7 219
162 4 3 31;43 86.97 109.44 234.8 195
164 2 2 33.23 132.55 132.99 302.8 238
Exrle2 6 4 17.48 63.43 77.07 168.0 255
164 4 2 20.29 77.95 89.50 193.7 _ 197
166 2 1 22.96 118.26 109.76 ' 254.0 240
le8 2 o 25.35 75.57 -70.98 173.9 110
170 2 0 27.80 96<92 93.36 220.1 132
Ybl66 6 2 14.19 71.98 84.83 179.0 255
lée8 4 1 17.79 106.91 106.23 235.9 .258
170 3 | 0] 22.48 75.03 77.96 178.5 160
172 3 0 28.05 93.90 102.64 227.6 213
174 2 0 33.33 105.01 122.26 262.6 108
176 o 0 35.23 48,01 79.57 - 162.8 128
HE174 5 0 10.60 78.40 83.61 177.6 215

176 2 0 10.66 139.57 124.61 276.8 170 .
178 l- 0 10.90 62.80 84.66 159.4 135
180 0 0 10.97 128.56 57.06 196.6 73
w180 1 0 4,55 70.13‘ 73.35 149.1 188

182 0 0 4.79 126.76 48.65 180.2 98
184 1 1 5.61 39.81 61.16 108.6 102
186 2 1 6.42 23.04 49.84 82.3 93
Csls4 1 1 8.74 111.23 54.14 176.1 180
186 .l 1 14.04 43,71 65.11 124.9 162
188 2 1 23.82 23.96 52.49 103.3 196




Table VI. The results of calculation B where neutron levels have been shifted according to Eg. (24).

5 230, | C c_ 23 23 c-1 “Btheo [Pexp
Nucleus n %§rﬁ v ~ n _ %72 _ ;FQ'_ VMI_
et (Mev %) mev | (mev™?) | Tmev! mevh) | ev? (ev) | (eV)
Bm152 0.975 -32.35 3.88 1 27.32 24.84 40.38 0 224.0 169 195
154 0.888 _-46.17 3.27 37.68 35.19 54.97 353.0 77.3 | 14.9
5d154 1.001 -29.85 3.93 23.61 23.14 38.22 191.3 179 180
156 0.935 -41.16 3.50 31.48 32.00 50.75 287.9 86.8 | 33.8
158 0.895 -37.59 4.18 24.81 33.27 53.26 217.9 54.2 |17.5
160 0.849 -40.19 4.13 ' 28.44 35.40 56.28 248.5 49.5 |11.8
py160 0.934 ~35.24 4.18 ©23.79 30.63 49.53 206.7 68.7 | 20.7
162 0.880 -38.17 4.19 27.36 33.33 53.48 234.8 57.4 |12.0
164 0.836 -43.05 3.50 33.25 35.84 56.88 302.8 57.9 | 12.0
Er162 | 0.969 -32.72 4.22 19.27 27.99 45.21 168.0 80.4 | 40.0
164 0.906 -36.35 4.24 22.38 31.41 50.17 193.7 61.1 | 19.9
166 0.861 -41.23 3.59 27.44 34.00 53.98 254.0 59.8V 17.4
168 0.815 -36.48 4.40 17.75 35.11 56.54 173.9 3.0 |6.74
170 0.771 -44.06 3.48 . 25.57 38.84 58.43 271.7 46.6 }10.1
Yb166 0.926 ~35.08 4.27 21.21 29.59 145.94 179.0 80.4 | 49.5
_168 0.883 -39.72 3.69 26.56 32.27 50.20 235.9 74.3 | 22.9
170 0.813 -37.41 4.38 19.58 35.34 52.54 183.8 48.2 |12.7
172 0.786 -43.59 3.61 27.80 37.86 56.61 273.9 53.3 |10.4
174 0.789 -36.41 4.70 26.46 34.99 54.78 211.6 50.0 }5.79
176 0.746 -29.64 - 4.95 17.55 33.14 53.05 149.8 37.8 }12.9
{continued)
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Table VI. continued
2J - :
Nucleus - a;ﬁ'(ﬁgiﬁ C\)n N -Cﬂ , ;%2., ;;Q Cv&I -Bthec 'BeXP
(MeV) (Mev %) Mev ) mev ) | mevh | mevh ! mevH| (ew) | (ev)
Hf174 0.825 ~-41.11 3.98 22.85 35.61 750.51 | 213.2 65.5 21.0
176 0.803 -39.93 4.42 26.53 35.30 50.68 298.9 63.3 14.7
178 0.770 f32.51 4.62 18.10 33.1% 48.93 141.5 49.4 15.1
180 0.721 -30.89 3.68 .13.82 33.48 49;65 131.0 43.1| - 6.36
W 180 0.795 -33.53 4,55 15.19 31.88 44,23 128.1 66.9 39.9
182 0.747 -31.94 3.54‘ 11.13 32.48 45.38 115.7 54.6 16.8
184 0.749 ~-31.75 4.75 14.65 31.09 43.98 119.2 63.7 24.4
186 0.759 -27.90 4.78 14.91 26.98 39.54 ~109.8 89.8 34.2
k755184 0.807 -32.37 4.08 11.75 29.71 41.63 121.9 81.2 59.2
186 0.809 -31.47 4.76 | 15.16 27.93 40.55 128.7 95.2 88.2
188 0.814 -26.63 5.09 14.92 23.84 37.13 l21.3 128 174

-Ob—
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TABLE VII. The moment-of-inertia, B coefficient and the force constant calculated
with g = 18.0 MeV in Eq. (11), the results of Marshalekl® are also
listed for comparison. : c

[

This Calculation ' Marshalek
Nucleus 2Jo =B _ ¢l 2Jo -B
12 -3 " (ev)
(Mev ™) (ev) (Mev ™)

sm152° | 55.57 99.8 476 46.77 221
154 78.02 | 50.4 934 72.31 37.5
Gd154 52,17 109 - 403 46.30 160
156 70.69 . s6.9 711 66.53 43.0
158 69.66 32.4 © 382 . 74.96 26.7
160 - 73.42 29.4 o427 79.05 25.4
Dy160 66.06 42.7 407 68.45 37.4
162 70.74 34.6 433 74.02 33.4
164 © 78.00 39.6 ; 733 81.37 . 26.0
Erl64 65.54 36.9 © 340 65.19 43.7
166 73.17 435 623 . ©73.96 33.7
168 71.40 193 251 74.96  25.0
170 75.56 21.2 346 75.13 30.0
Yb170 68.33 25.5 278 70.82 31.8
172 73.90 25.0 373 ' 75.93 30.0
174 76.61 28.1 485 - 77.82 27.8
176 ' 71.03 20.8 265 ' . 72.46 27.7
HEL76 73.30 39.5 570 67.43 42.6
178 66.44 261 254 64.10 44.0
w184 54.67 29.8 133 53.48 68.5
186 46.41 50.4 117 48.40 99.1
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FIGURE CAPTIONS
Fig. 1. The moment-of-inertia Jo/hz. The -theoretical values are calculated
with the single particle states and pairing strength (Eq. (11)) as given

23 ‘ : :
by Nilsson et al. = The experimental values are taken from Mariscotti

;
st al.

Fig. 2. The force constant C“1 . The theoretical values are calculated with

VMI
‘the single particle states and pairing strength (Eq. (11)) as given in
Nilsson 93_55323 The experimental values are taken from Mariscotti et al.
the the large discrepancies at neutron number N = 90,.104 and 108.

Fig. 3. Same as Fig. 2, except in these calculations the'neutron levels have
been shifted according to Eq. (24).

Fig. 4. The B-coefficient. The theoretical values are calculated with the

pairing strength as given in Eq. (11) and with the neutron levels shifted

according to Eq. (24).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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