
UC Irvine
ICS Technical Reports

Title
The SpeC language reference manual

Permalink
https://escholarship.org/uc/item/6w1281vb

Authors
Domer, Rainer
Zhu, Jianwen
Gajski, Daniel D.

Publication Date
1998-03-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w1281vb
https://escholarship.org
http://www.cdlib.org/

ICS
TECHNICAL REPORT

The SpecC Language Reference Manual

Rainer Domer

Jianwen Zhu

Daniel D. Gajski

Technical Report ICS-98-13

March 1998

(Version as of March 31, 1998)

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA MNotice: This Material
may be protected
by Copyright Law
(Title 17U.S.C.)

doemer@ics.uci.edu

jzhu@ics.uci.edu

gajski@ics.uci.edu

Abstract

This Language Reference Manual defines the syntax and semantics of the SpecC language. For

each SpecC construct the syntax, purpose, and semantics are defined and an explaining example is

given. Also the full SpecC grammar is included using a formal notation in lex and yacc style.

Information and Computer Science
University of California, Irvine

1 Introduction

Art.

XContents ^
1 Introduction ^ ^ 1

fu. f3-|3
2 Semantics of the SpecC language 2

2.1 Boolean Type 2

2.2 Bitvector Type 3

2.3 Event Type 5

2.4 Time Type 6

2.5 Behavior Class

2.6 Channel Class .

2.7 Interface Class 12

2.8 Ports 14

2.9 Class Instantiation 16

2.10 Sequential Execution 18

2.11 Parallel Execution 20

2.12 Pipelined Execution 22

2.13 Finite State Machine Execution 24

2.14 Exception Handling 26

2.15 Synchronization 28

2.16 Timing Specification 30

2.17 Binary Import 32

2.18 Persistent Annotation 33

3 Summary 35

A SpecC Keywords and Tokens 36

A.l Lexical Rules 36

A.2 Comments 37

A.3 String and Character Constants 37

A.4 White space and Preprocessor Directives 37

A.5 Keywords 38

A.6 Tokens with Values 40

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

B The SpecC Grammar

B.l Token with Valu^

B.2 Constants

B.3 Expressions

B.4 Declarations

B.5 Statements

B.6 External Dehnitions

B.7 SpecC Constructs

B.8 SpecC Statements

C References

D Index

siilT /.oijOVi

holout; ir; jo

WdJ . ioC: v:'

(.0.3.U li .'iJiri

1 Introduction

The SpecC language was introduced in [3, 4, 5] as a system level language for modeling embedded
systems. This report contains the SpecC Language Reference Manual and formally defines the syntax
and the semantics of the language.

The SpecC language is an extension of the C programming language and is based on the ANSI-C

standard [1]. In this report the ANSI-C language is assumed to be known. The report only describes
features of the SpecC language that are not found in ANSI-C.

In order to support important concepts needed for modelling embedded systems SpecC adds new
keywords and constructs to the C language. Section 2 defines these special data types, statements and
constructs of the SpecC language.

As a reference the appendix contains the full SpecC grammar formally defined using a lex and yacc
style notation.

2 Semantics of the SpecC language

This sectiondefines all types, statements, operations and constructsof the SpecC language that are not
part of ANSI-C.

2.1 Boolean Type

Purpose: Explicit support for Boolean data types

Synopsis:

basic-type.name;

constant:

Example:

false

true

/* BasicType ♦/

/♦ Expression »/

1 bool f(bool bl, int a)
2{
3 bool b2;
4

5 if (bl == true)
6 { b2 = bl II (a > 0);
7 }
8 else

9 { b2 = !bl;
10 }
11 return (b2);
12 }

Semantics:

A Boolean value, the type bool, can have two values: true or false. It can be used to express the

result of logical operations. If converted to an integer type, true becomes 1, false becomes 0.

2.2 Bitvector Type

Purpose: Direct support of bitvectors of arbitrary length

bindigit [01]
binary {bindigit}4-
bitvector {binary }("b"|"B")
bitvector-u {binary }("ub" | "bu" ["uB" | "Bu" | "Ub" | "bU" | "UB" | "Blf)

basic.type-name : /♦ BasicType */

bit '[' constant-expression constant-expression ']'

constant: /♦ Expression ♦/

I bitvector
I bitvector-u

postfix-expression : /♦ Expression ♦/

I postfix-expression '[' comma-expression comma-expression ']

concat.expression : /* Expression */
cast-expression
I concat-expression cast-expression

1 typedef bit[3:0]
2 nibble-type
3 unsigned bit [15: 0]

nibble-type ;
a;

c;

5 void f(nibble-type b, bit[16:l] d)
6 {
7 a=1101B; A/♦ bitvector assignment ♦/

8 c = lllOOOlllllOOOllub;
9

10 b = c [2: 5];
11 d = a @ b @ c[0:15];
12 b += 42 + a ♦ 12;
13 d = "(b t lOlOlOlOB);

/♦ bitvector slicing »/
/♦ bitvector concatenation */
/* arithmetic operations */
/» logic operations */

Semantics:

A bitvector represents an integral data type of arbitrary length. It Ccin be used as any other integrsd

type {eg. int is equivalent to bit[s22:eo/(mt) ♦ 8 —1 : 0]). Implicit promotion to (unsigned) int,
long, or long long is performed when necessary. Automatic conversion (signed or unsigned extension,

slicing) is supported as with any other integral type. No explicit type casting is necessary.
A bitvector can be thought of as a parameterized type whose bounds axe defined in the name of the

type. The left and right bounds of a bitvector can be constant expressions but will be evaluated at

compile time. Therefore the length of 2my bitvector is always known at compile time.

Bitvector constants are noted as a sequence of zeros and ones followed by a suflfix indicating the

bitvector type (see the synopsis above).

In addition to all standard C operations a concatenation operation, noted as and an extraction

operation, noted as [lb : rft], axe supported (see lines 10 and 11 in the example above). Both can be

applied to bitvectors as well as to any other integral type (which will be treated as bitvector of suitable

length).

2.3 Event Type

Purpose: Support for events as a mechanism for synchronization and exception handling

Synopsis:

basic-type.name : /* BasicType */

I event

wait-Statement : /♦ Statement ♦/

wait paren_event_list

notify.statement : /» Statement */
notify paren.event.list
I notifyone paren-event-list

Example:

1 int d;
2 event e;

3

4 void send{int x)
5 {
6 d = x;
7 notify e;

8 }
9

10 int receive (void)

12 wait e;
13 return (d);
14}

Semantics:

An event type is a special type to support synchronization of concurrent executing behaviors and

exception handling.

An event does not have a value. Therefore, an event must not be used in any expression.

Events can only be used with w€dt and notify statements (see the example above or Section 2.15),

or with the try-trap-interrupt construct described in Section 2.14.

2.4 Time Type

Purpose: Simulation time with support of timed (hardware) and untimed behavior (software)

Synopsis:

primary .expression :

I delta

waitfor.statement:

waitfor time

time :

const ant.expression

Example:

/♦ Expression */

/* Statement */

/♦ Expression »/

1 extern void f(void);
2 const long int CycleTime = 15; /* ns */
3

4 void Timed (void)
B {
6 while (true)

7 { f()j
8 waitfor (CycleTime);

9 }
10}
11

12 void Untimed(void)
13 {
14 while (true)
15 { f();
16 waitfor (delta);

" }

Semantics:

The time type represents the type of simulation time. Time is not an explicit type. It is an imple
mentation dependent integral type (eg. unsigned long long).

The time type is used only with the waitfor statement and in the do-timing construct (see Sec
tion 2.16).

For untimed behavior (behavior with unknown timing, eg. software) the delta time variable is

supported. The delta variable is of type time and is implementation and simulator dependent. At

simulation time it is evaluated to the time spend executing the current behavior on the host machine

since the last simulator entry. NOTE: This section needs more work!

2.5 Behavior Class

Purpose: Construct for specification of behavioral objects; container for functionality

Synopsis:

behavior-declaration: /♦ void */
behavior-specifier port-list-opt

behavior-definition : /♦ void ♦/

behavior.specifier port-list.opt '{' internal.def. .list.opt

behavior-Specifier :
behavior identifier

Example:

/♦ Declarator */

1 behavior B (in int pi, out int p2)
2 {
3 int a, b;
4

5 int f (int x)
6 {
7 return(x * x);
8 }

10 void main (void)

{
12 a = pi;

13 b = f(a);
14 p2 = b;
15 }

/* read data from input port */
/* compute */
/* output to output port ♦/

Semantics:

In SpecC the functionality of a system is described by a hierarchical network of behaviors. A behavior

is a class that consists of an optional set of ports, an optional set of instantiations, an optional set of

local variables and functions, and a main function.

Through its ports a behavior can communicate with other behaviors. This is described in detail in

Section 2.8.

A behavior is called a composite behavior if it contains instantiations ofother behaviors (as described
in Section 2.9). Otherwise it is called a leaf behavior.

Local variables and functions, as o, b, and / in the example above, can be used to conveniently

program a behaviors functionality. The function main of a behavior is the only one that can be called

from outside the behavior (callbadc functions of instantiated interfaces, as described in Section 2.7, are

an exception to this rule). The main function is called whenever an instantiated behavior is executed

and the completion of main determines the completion of the behaviors execution.

A behavior is compatible with another behavior if the number &nd the types of the behavior ports

match. Compatibility of behaviors is important for reuse and "plug-and-play".

The example above shows a simple leaf behavior. For typical composite behaviors please refer to

Sections 2.10 to 2.14.

2.6 Channel Class

Purpose: Construct for specification ofchannel objects; container for communication protocols

Synopsis:

channel-declaration: /♦ void */
channel-specifier port_list-opt implements-interface.opt

channel-definition : /» void */
channel-specifier port-list.opt implements.interface.opt

'{' internal-definition_list_opt

channel-Specifier : /♦ Declarator ♦/

channel identifier

implements-interface.opt : /* SymbolPtrList ♦/

/♦ nothing ♦/

I Implements interface.list

interface-list : /* SymbolPtrList */
interface-name

I interface-list interface-name

1 interface I;
2

3 channel C (void) implements I
4{
5 int data;
6

7 void send (int x)
8 {
9 data = x;

12 int receive (void)
13 {
14 return (data);
15 \

Semantics:

Communication between behaviors can be encapsulated in channels. A channel is a class that consists

of an optional set of ports, an optional set of instantiations, and an optional set of local variables and

functions called methods. Also, a channel can have a list of supported interfaces specified after the

implements keyword.

A channel can include a list of ports through which it can communicate with other channels or

behaviors (jdthough channel ports are r2u:ely used). Ports are described in detail in Section 2.8.

A channel is called a hierarchical channel if it contains instantiations of other channels (as described

in Section 2.9). A channel is called a wrapper if it instantiates behaviors.

In general variables and functions (methods) defined in a channel can be accessed from outside (just

like members of structures). By using interfaces (defined in Section 2.7) only a subset of the internal

methods can be made public. The implements keyword declares the list of implemented interfaces.

All the methods of the implemented interfaces must be defined inside the channel.

A channel is compatible with another channel if the number and the types of the channel ports, and

the list of the implemented interfaces match.

The example above shows a simple channel providing a simple communication via an integer variable.

2.7 Interface Class

Purpose: Link between behaviors and channels; support for "Plug-and-Play"

Synopsis:

interface-declaration: /* void */
interface.specifier

interface-definition: /* void »/
interface.specifier internal-declaration.list.opt

interface-specifier: /» Declarator ♦/

interface identifier

internal-declaration-list-opt : /* void */
/♦ nothing ♦/

I internal.declaration
I internal.declaration.list internal-declaration

internal-declaration :

declaration

I callback declaration
I note-definition

Example:

/♦ void ♦/

1 interface I

2 {
3 void send(int x);
4 int receive (void);
5 };
6

7 interface 12

8 {
9 void send-block (void);

10 callback int get.data (void);
11

12 void receive-block (void);
13 callback void put.data(int d);

Semantics:

Interfaces can be used to connect behaviors with channels in a way so that both the behaviors £ind

the channels are easily exchangable with compatible components ("plug-and-play"). An interface is a

class that consists of a set of variable or function declarations. The definitions of these declarations are

contained in a channel that implements the interface.

A typical use of £in interface is a behavior with a port of interface type. Via £in interface port
a behavior has access to all commimication methods declared in that interface. For each interface

multiple channels can provide an implementation of the declared communication functions and each of

these channels then can be connected to the behavior with the interface port.

The example above shows an interface I declaring two functions send and receive. It is this interface

that the channel C in the example from Section 2.6 implements.

The interface 12 in the exampleabove defines a commimication scheme involving callback functions.

A callback function is a method that must be supplied by the class instantiating the interface (eg. the
behavior, not the channel). So a behavior with an interface port 12 must contain definitions of the

functions getjiata and putjdata, whereas a channel implementing interface 12 must define only the
functions sendMock and receiveJblock which can call back the functions get-data and putjdata.

2.8 Ports

Purpose: Specification of connectors of behaviors and channels

Synopsis:

port-list.opt :
/♦ nothing */
I '(' ')'
I '(' port-list ')'

port-direction :
/♦ nothing »/
I in
j out
I inout

Example:

/♦ ParameterList */

port-list : /* ParameterList ♦/

port-declaration
I port.list port-declaration

port-declaration : /♦ Parameter */
port-direction parameter-declaration
I interface-name
I interface-name identifier
I channel-name
I channel-name identifier

/» Direction »/

1 interface I;
2

3 behavior B1 (in int pi, out int p2, in event elk);
4

5 behavior B2 (I i, inout event elk);
6

7 channel C (inout bool f) implements I;

Semantics:

Behavior and channel classes can have a list of ports through which they communicate. These ports

are defined with the definition of the behavior or channel they axe attached to (exactly like function

parameters are defined with the function definition).

A port can be of three t3T)es; standard, interface, or channel type. A standard type port can be

of any type, but may include its direction as an additional type modifier. A port direction can be in,

out, or incut, and is handled as an access restriction to that port. An in port only allows read-access

from inside the class (write-access from outside), an out port only allows write-access from the inside

(read-access from outside). An inout port can be accessed bi-directionally, as can a port without any

direction modifier.

An interface or channel type port enables access to the methods of that interface or channel class.

Via such a port a behavior or a channel can call the methods of the ports class.

2.9 Class Instamtiation

Purpose: Specification of behavioral hierarchy and connectivity among behaviors and channels

Synopsis:

instance_declaring_list : /* DeclarationSpec */
behavior_or .channel instance .declarator
I instance.declaring.list instance-declarator

instance.declarator : /» Declarator ♦/

identifier port.mapping.opt

behavior.or-channel :

behavior.name

I channel.name

/* DeclarationSpec ♦/

/* ParameterList */port.mapping.opt : /*
/* nothing */
I '(' ')'
I '(' port.mapping.list ')'

/* ParameterList */port.mapping.list : /* Paramt
identifier

I port.mapping.list identifier

1 interface I;
2 channel C (inout bool f) implements I;
3 behavior B1 (in int pi, out float p2, in event elk);
4 behavior B2 (I i, out event elk);
5

6 behavior B (float fl , float f2)
7 {
8 bool b;
9 int 1;

10 event e;
11

12 C c(b); /♦ instantiate c as channel C*/
13 B1 bl(i, fl, e), /* instantiate bl and bS as behavior Bl*/
14 b3 (i , f2 , e);
15 B2 b2(c, e); /♦ instantiate b2 os behavior B2 */

Semantics:

SpecC supports behavioral hierarchy by allowing (sub-) behaviors and (sub-) channels, called com

ponents, to be instantiated inside compound behaviors and channels. The instantiation of behaviors

and clmnnels also defines the connectivity among the instantiated components and with the compound

class.

An instantiation defines its connections by use of a port mapping list. Each port of the instantiated

class must be mapped onto a corresponding variable or port of suitable type. A port must match the

type of the mapped variable or port, just as the types or arguments to a function call must match the

types of the function parameters. Also, the port directions must be compatible. As a rule, for each

connection there can be at most one driver (no two out ports can be connected, whereas two in ports

can).

The example above contains four class instantiations. In line 12 a channel c is instantiated as type

channel C. Its only port of type bool is mapped to the Boolean variable 6.

Lines 13 and 14 instantiate two behaviors hi and 63 (of type behavior Bl) which are both connected

to integer i and event e. The second port of 61 is connected to the first port of B, whereas the second

port of 63 is mapped to the second port of B.

In line 1562 is instantiated as a B2 type behavior. Its ports are mapped to the channel c (instantiated

in line 12) and event e.

2.10 Sequential Execution

Purpose: Specification of sequential control flow

Synopsis:

statement:

labeled-Statement

j compound-Statement
j expression-Statement
I selection-Statement
I iteration-Statement
I jump-statement
I spec-C-Statement

spec-C-statement :

concur rent-Statement

I fsm.statement
I exception-Statement
I timing-Statement
I wait.Statement
I waitfor.statement
I notify-Statement

Example:

1 behavior B;
2

3 behavior B-seq(void)
4{
5 B bl, b2, b3;
6

7 void main (void)
8 {
9 bl. main ();

10 b2.main();
U b3.main();

/» Statement */

/* Statement »/

Semantics:

Sequential execution of statements and behaviors is the same as in standard C. The sequential control

flow can be programmed using the standard C constructs if-then-else, switch-case, goto, for, while,

The example above shows the trivial case of sequential, unconditional execution of three behaviors.

2.H Parallel Execution

Purpose: Specification of concurrency

Synopsis:

concurrent-Statement : /♦ Statement */

I par compound-statement

compound-Statement: /♦ Statement ♦/

I declaration-list
I statement-list
I declaration-list statement-list

Example:

1 behavior B;
2

3 behavior B-par{void)
M
6 B bl, b2, b3;
6

7 void main (void)
8 {
9 par{ bl.main()

10 b2.mam()
11 bS.mainQ
12 }
13 }

Semantics:

Concurrent execution of statements can be specified with the par statement. Every statement in the

compound statement block following the par keyword formes a new thread of control and is executed

in parallel. The execution of the par statement completes when each thread of control has finished its

execution.

Usually concurrent execution is used in the behavioral hierarchy in order to execute instantiated

behaviors in parallel. This is shown in the example above where the behaviors 61, 62 and 63 are running

concurrently. The compound behavior B.par finishes when 61, 62 and 63 have completed.

Note that in a simulation concurrent threads of control are not really executed in parallel. Instead

the scheduler, which is part of the simulation run-time system, always executes one thread at a time,

and decides when to suspend and when to resume a thread depending on simulation time advance and

synchronization points.

2.12 Pipelined Execution

Purpose: Explicit support for specification of pipelining

Synopsis:

storage-class :

piped
storage_class piped

concurrent-Statement :

/♦ BasicType */

/* Statement */

I pipe compound-Statement

compound-Statement: /* Statement */

I declaration-list
I '{' statement-list
1 '{' declaration-list statement-list

Example:

1 behavior B(in int pi, out int p2);
2

3 behavior B-pipe(in int a, out int b)
4{
5 int x;
6 piped int y;
7 B l>l(a, x),
8 b2(x, y),

9 b3(y, b);

11 void main (void)
12 {
13 pipe{ bl.main()
14 b2.main()
15 b3. main ()
16 }
17 }
18 };

Semantics:

Pipelined execution specified by the pipe statement is a special form of concurrent execution. As is

with the par statement all statements in the compound statement block after the pipe keyword form a

new tliread of control. They are executed in a pipelined fashion (in parallel but obey the specification
order). The pipe statement never finishes (except through abortion which is described in Section 2.14).

For example, as shown above, the behaviors 61, 62 and 63 form a pipeline of behaviors. In the first

iteration only 61 is executed. When 61 finishes the second iteration starts cind 61 and 62 eire executed

in parallel. In the third iteration, after 61 and 62 have completed, 63 also is executed in parallel with

61 and 62. Every next iteration is the same as the third iteration (iteration three is repeated forever).
In order to support buffered communication in pipelines the piped storage class can be specified for

variables connecting pipelinestages. A variable with piped storage class can be thought of as a variable

with two storages. Write access always writes to the first storage, read access reads from the second

storage. The contents of the first storage are shifted to the second storage whenever a new iteration

starts in the pipe statement.

In the exampleabove x is a standard variable connecting 61 (pipeline stage 1) with 62 (stage 2). This

variable is not buffered, every access from stage 1 is immediately reflected in stage 2. On the other

hand, variable y connecting 62 and 63 is buffered. A result that is computed by behavior 62 and stored

in y is available for processing by 63 in the next iteration when 62 already produces new data.

Note that the piped storage class can be specified n times defining a variable with n buffers. This

can be used to transfer data over n stages synchronously with the pipeline.

2.13 Finite State Machine Execution

Purpose: Explicit support for specification of finite state machines and their state transitions

Synopsis:

/♦ Statement ♦/fsm.statement: /♦ S.
fsm

I fsm transition-list '}'

/* TransitionList */transition-list: /*
transition

I transition.list transition

transition : /♦ Transition ♦/

identifier

I identifier cond.branch.list
1 identifier '{' '}'
I identifier cond.branch-list

/* TransitionList */cond-branch-list : /* Tri
cond-branch

I cond-branch-list cond-branch

cond-branch: /♦ Transition */
if '(' comma-expression ')' goto identifier
I goto identifier
I if '(' comma-expression ')' break
I break ';'

1 behavior B;
2

3 behavior B.fsm(in int a, in int b)
M
5 B bl, b2, b3;
6

7 void main (void)
8 {
9 £5m{ bl: { if (b < 0) break;

LO if (b >= 0) goto b2;
}

L2 b2: { if (a > 0) goto bl;
L3 goto b3;
14 }

15

16

17

18 }
19 };

b3 : { break;

}

Semantics:

Finite State Meichine (FSM) execution is a specieil form of sequential execution allowing explicit
specification of state transitions. Both Mealy and Moore type finite state machines C2in be modeled

with the fsm construct.

As shown in the synopsis section above the fsm construct specifies a list of state transitions where the

states are instantiated behaviors. A state transition is a triple (current-state, condition, nextstate).

The currentstate and the next-state take the form of labels and denote behavior instsinces. The

condition is an expression which has to be evaluated as true for the transition to become valid.

The execution of a fsm construct starts with the execution of the first behavior that is listed in the

transition list (eg. 61). Once the behavior has finished, its transitions determine the next behavior to

be executed. The conditions of the transitions are evaluated in the order they are specified (first 6 < 0,

then 6 > 0) and as soon as a condition is true the specified next behavior is started (eg. 62 for 6 = 1).
If none of the conditions is true the next behavior defaults to the next behavior listed (similar to a case

statement without break). A break statement terminates the execution of the fsm construct.

Note that the body of the fsm construct does not allow arbitrary statements. As specified in the

synopsis section the grammar limits the transitions to well-defined triples.

2.14 Exception Handling

Purpose: Support for (premature) abortion ofexecution and interrupt handling

Synopsis:

exception-Statement: /♦ Statemtnt »/
try compound-Statement exception.list

exception-list : /» ExceptionList ♦/

exception
I exception-list exception

exception: /♦ Exception */
trap paren.event-list compound-statement
I interrupt paren.event-list compound-statement

paren_event-list :
event-list

I '(' event.list ')'

/* SymbolPtrList ♦/

/♦ SymbolPtrList ♦/event.list : /♦

identifier

I event.list identifier

Example:

1 behavior B;
2

3 behavior B-except(in event el, in event e2)
4 {
5 B bl, b2;
6

7 void main (void)
8 {
9 try { bl.main(); }

LO interrupt (el) { b2.main(); }
LI trap (e2) { bl.main(); }
L2 }

Semantics:

The try-trap-interrupt construct deals with two types of exception handling: abortion (or trap)
and interrupt.

With try a behavior is made sensitive to the events listed with the trap and interrupt declarations.

Whenever such an event occurs while executing the try behavior its execution is immediately suspended.

For an interrupt event the specified interrupt hjindler is executed and after its completion the execution

of the try behavior is resumed. For a trap event the suspended execution is aborted and the trap handler

takes over the execution.

In the example above, whenever event el is notified during execution of behavior 61, the execution of

61 is immediately suspended and behavior 62 is started. When 62 finishes the execution of behavior 61

is resumed. Note that during execution of 62 the event el is ignored (the interrupt does not interrupt

itself). Also, as soon as event e2 occiurs while executing behavior 61 the current execution is aborted

and 61 is restarted. If try and trap denote the same behavior, as is in this case 61, effectively a reset

is modeled.

As a rule, interrupt and trap declarations are prioritized in the order they are listed. Always only

the first listed exception that matches an event is executed.

2.15 Synchronization

Purpose: Support for synchronization of concurrent behaviors

Synopsis:

wait.statement : /♦ Statement */
wait paren.event-list

notify.statement : /♦ Statement */
notify paren_event.list
I notifyone paren.event-list

paren_event-list :
event-list

I '(' event-list ')'

/» SymbolPtrList ♦/

/♦ SymbolPtrList */event-list : /♦

identifier

I event-list identifier

1 event e;

2

3 behavior bl(int x, event s)
4{
5 void main (void)
6 {
7 X = 42 ;
8 notify s ;
9

10 notify (e, s);

}
12 }
13

14 behavior b2(int x, event r)
16 {
16 void main (void)
17 {
18 wait (r);
19 printf ("%d" , x);
20

21 wait(e, s);
22 }
23 }

Semantics:

There axe three statements to support synchronization between concurrent executing behaviors: wait,

notify and notifyone. Each of th^e statements takes a list of events (described in Section 2.3) as

argument.

The wait statement suspends the current behavior from execution until one of the specified events

is notified by another behavior. The execution of the waiting behavior is then resumed.

Note that when waiting for a list of events the wait statement provides no information to determine

which of the specified events actually was notified. This limitation is not a bug, it is a featmre of pure

event semantics.

The notify statement triggers all specified events so that all behaviors waiting on one of those

events can continue their execution. If currently no other behavior is waiting on the notified events the

notification is ignored.

The notifyone statement acts similar as the notify statement but notifies exactly one behavior from

all behaviors waiting on the specified events. Again, if there is no behavior weiiting the notification has

no effect.

2.16 Timing Specification

Purpose: Explicit specification of execution time, delay and timing constraints

Synopsis:

waitfor.statement: /♦ Statement */
waitfor time ';'

timing.statement: /♦ Statement ♦/

do statement timing '{' constraint.list

/» ConstraintList */constraint-list: /*'
constraint

I constraint.list constraint

constraint : /♦ Constraint */
range anyjiame any_name time.opt time.opt ')'

time.opt:
/♦ nothing ♦/

I time

/» Constant */

time: /* Expression ♦/

constant .expression

Example:

1 void ClockGen(int *clk, int ♦clk2)

2 {
3 do { tl : { ♦ elk = 1; * clk2 = 1;
4 t2 : { * elk = 0; }
5 t3 : { ♦elk = 1; ♦ clk2 = 0;
6 t4 : { ♦elk = 0; break; }
7 }
8 timing

♦ clk2 = 1 ; }
}
♦ clk2 = 0; }
break; }

9 { range(tl; t2 ; 110; 112);
10 range(t2; t3 ; 110; 112);
11 range(t3; t4 ; 110; 112);
12 range (tl ; t4 ; 332;);

Semantics:

There are two constructs that support the specification of timing (simulation time).

First, the waitfor statement specifies delay or execution time. Whenever the simulator reaohes a

waitfor statement, the execution of the current behavior is suspended. As soon as the simulation time

is increased by the number of time units specified in the argument the execution of the current behavior

resumes.

Second, the do-timing construct can be used to specify timing constraints in terms of minimum
2ind maximum times. In the construct the do block defines labeled statements which will be executed

according to the constraints specified in the timing block. The order of the execution of the labeled

statements is determined solely by the constraints. The execution of a do-timing construct completes

when a break statement is executed.

Timing constraints are specified with range statements. Each constraint consists of two labels linking

the constraint to its actions, and a minimum and maximum time value. The minimum and meiximum

times are optional constant expressions which will be evaluated at compile time. If unspecified the

minimum time is taken as -co, the maximum time as +00.

The semantics of a statement range(/l,/2,min,maa;) is the following: The statement labeled 11 is

to be executed at least min time steps before, but not more than max time steps after the statement

labeled with 12.

Note that the do-timing construct is not directly executable. In order to get a simulatable model

each do-timing construct has to be scheduledso that all constreiints 2ire satisfied. Therefore the SpecC

compiler performs an ASAP scheduling for each do-timing construct and generates code containing

waitfor statements instead.

2.17 Binary Import

Purpose: Fast and easy reuse of library components

Synopsis:

import-definition: /* void ♦/

import string-literal-list

string-literal.list : /* String */
string
I string-literal-list string

Example:

l#iiiclude <stdio.h>
2:#iziclude <stdlib . h>
3

4 import " Interfaces/II" ;
5 import " Interfaces/I2 " ;
6 import " Channels/PCI-Bus" ;
7 import " Components/MPEGJI" ;

Semantics:

For using objects declared or defined in separate files of SpecC source code two constructs are pro

vided. First, the #include statement known from the standard C language can be tised. It will be

evaluated at preprocessing time by the C preprocessor.

Second, the import declciration provides an eflBcient way to incorporate already compiled compo
nents. Using the SpecC compiler any SpecC source description can be compiled into a binary file (with
suffix . sir) containing the SpecC internal representation. Such a file can be includedusing the import
declaration which effectively integrates all declarations and definitions from the binary file into the

current design representation.

The string argument of the import declaration denotes the file name of the binary component to

be integrated. The actual search for the binary file is implementation dependent but usually involves

applying the suffix . sir and searching in a list of specified directories.

2,18 Persistent Annotation

Purpose: Support of persistent design annotation; easy data exchange between refinement tools

Synopsis:

any-declaration : /♦ void */

note-definition

any-definition : /♦ void */

I note-definition

note-definition : /* void »/
note any_name ' = ' annotation
I note any-name any.name ' = ' annotation

annotation :

const ant .expression

any.name:

identifier

I typedef.name
I behavior .name
I channel-name
I interface.name

/♦ Constant */

/* Name */

1 /♦ C style comment, not persistent */
2 // Ci-+ style comment, not persistent
3

4 note Author = " Rainer L^Doemer" ;
5 note Date = "Thu,.Mar,-26,.13: 46: 30^PST.1998" ;
6

7 const int x = 42;
8 struct S { int a, b; float f; };
9

10 note x.Size = sizeof(x);
11 note S.Bits = sizeof(struct S) » 8;
12

13 behavior B(in int a, out int b)
14 {
15 note Version =1.1;
16

void main (void)
{

11 : b = 2 ♦ a;
waitfor (10);

12 : b = 3 ♦ a;

23 note NumOps = 3;
24 note 11 . OpID = 1;
25 note 12. OpID = 3;
26 }
27 };
28 note B. AreaCost = 12345;

Semantics:

SpecC, as does any other programming language, allows comments in the source code to annotate
the description. In particular SpecC supports the same comment styles as Ch—h, which are comments
enclosed in /* and */ delimiters as well as comments after // up to the end ofthe line (see lines 1and
2 in the example above). These comments are not persistent, which means they are not stored in the
SpecC internal representation.

Using the note definition a persistent annotation can be attached to any symbol, label, and user-
defined type. An annotation consists ofa name and a note. The note can be any type of constant or
constant expression (evaluated at compile time).

Names of notes have their own name space. There is no name conflict possible with symbols, user-
defined types or labels.

There are two ways to define anannotation. First, a note can be attached to the current scope. This
way global notes (lines 4 and 5 in the example), notes at classes (line 15), notes at functions (line 23),
and notes at user-defined types can be defined.

Second, the object a note will be attached to can be named explicitly by preceding the note name
with the object name and a dot. In the example above this style is used to define the notes at variable
X(line 10), structure S (line 11), and labels IX and 12 (lines 24 and 25).

3 Summary

The SpecC Language Reference Manual defines the syntax and semantics of the SpecC language.

The SpecC language is designed to model embedded systems at system level. It is based on the

ANSI-C programming language and usesadditionalconstructs to support the requirements of modelling
embedded systems. In Section 2 these additional constructs were enumerated and formally defined. In
summajy these constructs add support for modelling behavioral hierarchy, concurrency, state transitions,

timing, and exception handling.

For further information on the SpecC language please refer to [3, 4, 5].

A SpecC Keywords and Tokens

In this section a complete list of the SpecC keywords and tokens is defined. The following subsections
use the lex syntax as the formal notation.

A.l Lexical Rules

The following lexical rules are used to make the definitions below more understandable.

delimiter

newline

whitespace
ws

ucletter

Icletter

letter

digit
bindigit
octdigit
hexdigit
identifier

integer
binary
decinteger
octinteger
hexinteger
decinteger.u
octinteger.u
hexinteger.u
decintegerJ
octinteger.l
hexinteger.l
decinteger_ul
octinteger.ul
hexinteger_ul
decinteger.ll
octinteger-11
hexinteger.ll
decinteger.ull
octinteger.ull
hexinteger.ull
octchar

hexchar

exponent

fraction

floatl

[\t\b\r]
[\n\f\v]
{delimiter }+
{delimiter }*
[A-Z]
[a-z]
({ucletter}|{ Icletter })
[0-9]
[01]
[0-7]
[0-9a^A^]
(({ letter }I" _")({ letter }|{ digit }!"-")*)
{digit}+
{bindigit }+
[l-9]{ digit}*
"0"{octdigit }♦
"0" [xX]{ hexdigit}+
{decinteger }[uU]
{octinteger }[uU]
{hexinteger }[uU]
{decinteger }[1L]
{octinteger }[1L]
{hexinteger}[lL]
{decinteger }(" ul"|"lu"|" uL"|" Lu"|" Ur'|" lU" |" UL" j"LU")
{octinteger }(" ul"]" lu" j"uL"|"Lu"|" Ul"[" lU" |"UL"|"LU")
{hexinteger }{" ul" |" lu "|"uL" |" Lu" j" Ul" |" lU"]" UL" |"LU")
{decinteger }(" 11 "|"LL")
{octinteger }(" 11 "|"LL")
{hexinteger}(" ir'|"LL")
{decinteger }(" ull "|" Ilu "["uLL"["LLu"|" UIl"i" 11U"|"ULL"|"LLU')
{octinteger }(" ull "I" Ilu " |" uLL" |" LLu" Ull"[" llU"|"ULL"i"LLU')
{hexintegerK"uir'|"llu"|"uLL"|" LLu"i"UU"[" 11U»|"ULL"|"LLU')
"\\"{octdigit}{l,3}
"\\x"{hexdigit}+
[eE][+-]?{integer}
{integer}
{integer }"." { fraction }?({exponent})?

float2 "."{fraction {({exponent})?
floats {integer {{exponent}
float {floatl {|{ float2 {|{ floats {
float-f {float {[fF]
float.l {float }[1L]
bitvector {binary {("b"|"B")
bitvector_u {binary }(" ub" |" bu" |"uB" |"Bu" |"Ub" T'bU" |"UK'|"BU')
cppstart {ws{"#"{ws{
cppflag {whitespace{[l^]
cppfile
cpplineno ^{cppstart {{integer {{whitespace{{cppfile {{cppflag{♦{ws{{newiine{

cpppragma "{cppstart {"pragma"{ws{.*
cppdirective "{cppstart {.♦

A.2 Comments

In addition to the standard C style comments the SpecC language also supports C++ style comments.

Everything following two slash-characters is ignored until the end of the line.

"/*" <anything> "*/"
"//" <anything> "\n"

/* ignore comment */
/* ignore comment */

A.3 String and Character Constants

SpecC follows the standard C/C++ conventions for encoding character and string constants. The
following escape sequences are recognized:

"\n" /♦ newline (OxOa) */
"\t" /» tabulator (0x09) *f
"\v" / * vertical tabulator (OxOb) ♦/

"\b" /* backspace (0x08) ♦/

"\r" /* carriage return (OxOd) ♦/

"\f" /* form feed (OxOc) */
"\a" /* bell (0x07) */
{octchar} / * octal encoded character ♦/

{hexchar} /* hexadecimal encoded character */

A.4 White space and Preprocessor Directives

As usued white space in the source code is ignored. Preprocessor directives are handled by the C
preprocessor (cpp) and are therefore eliminated from the SpecC source code when it is read by the
scanner. As a special case pragma directives which are still left after preprocessing are simply ignored.

{newline}
{whitespace}
{cpplineno}
{cpppragma}
{cppdirective}

A.5 Keywords

* skip ♦/

* skip */
* acknowledge */
* ignore ♦/

* error */

The SpecC language recognizes the following ANSI-C keywords

"auto"

" break"

"char"

" const"

" continue "

"default"

"do"

"double"

"else"

enum

extern"

" float"

" for"

"goto"
"if"

"int"

"long"
" register "
"return"

"short"

"signed"
" s i z e o f "

"static "

" struct"

" switch "

"typedef"
union

unsigned"
"void"

" volatile "

"while"

In addition the fo

TOKAUTO }
TOK^REAK }
TOK.CASE }
TOK-CHAR }
TOKLCONST }
TOK_CONTINUE }
TOKJDEFAtJLT }
TOK_DO }
TOK_DOUBLE }
TOK_ELSE }
TOKENUM }
TOK^TERN }
TOKEXOAT }
TOKEOR }
TOK.GOTO }
TOKJF }
TOKJNT }
TOKiONG }
TOK_REGISTER }
TOKRETURN }
TOK-SHORT }
TOKRIGNED }
TOK_SIZEOF }
TOKRTATIC }
TOICSTRUCT }
TOKRWrrCH }
TOK_TYPEDEF }
TOK_UNION }
TOK_UNSIGNED }
TOK_VOID }
TOK.VOLATILE }
TOK_WHILE }

lowing SpecC keywords are recognized:

behavior"

"bit"

"bool"

" callback"

" channel"

"delta"

"event"

" false"

"fsm"

"implements"
"import"

"inout"

"interface "

"interrupt "
" note"

"notify"
" notifyone "
"out"

"par"
"pipe"
" piped "
"range"
"timing"
"trap "
"true"

"try"
"wait"

" waitfor "

TOK_BEHAVIOR }
T0K3IT }
TOK_BOOL }
TOK_CALLBACK }
TOK_CHANNEL }
TOK_DELTA }
TOK_EVENT }
TOKJALSE }
TOKJSM }
TOKJMPLEMENTS }
TOKJMPORT }
TOKJN }
TOKJNOUT }
TOKJNTERFACE }
TOKJNTERRUPT }
TOKJ^JOTE }
TOK_NOTIFY }
TOKJVOTIFYONE }
TOKDUT }
TOK_PAR }
TOK_P]PE }
TOK_PIPED }
TOICRANGE }
TOK_TIMING }
TOKTRAP }
TOK.TRUE }
TOK_TRY }
TOK_WArr }
TOKLWATTFOR }

SpecC supports all standard ANSI-C operators. The following multi-character operators are recog

nized as keywords:

"&&»

{ TOKARROW}
{ TOKJNCR }
{ TOKDECR }
{ TOK^HIFTLEFT }
{ TOK^HIFTRIGHT }
{ TOKXE }
{ TOK_GE }
{ TOK_EQ }
{ TOK_NE }
{ TOKANDAMD }
{ TOK_OROR }
{ TOK_ELLIPSIS }
{ TOKJVIULTASSIGN }
{ TOK_DIVASSIGN }

{ TOKJVIODASSIGN }
{ TOK_PLUSASSIGN }
{ TOK_MINUSASSIGN }
{ TOK^LASSIGN }
{ TOK^RASSIGN }
{ TOFLANDASSIGN }
{ TOK_EORASSIGN }
{ TOK-ORASSIGN }
{ <single character> }

A.6 Tokens with Values

The following is a complete list of all tokens that carry values

{identifier }
{decinteger}
{octinteger}
{ hexinteger}
{decinteger_u}
{octinteger_u }
{hexinteger.u }
{ decinteger.l }
{ octinteger_l }
{hexinteger.] }
{ decinteger.ul}
{octinteger.ul }
{ hexinteger _ul}
{ decinteger.ll }
{ octinteger.il }
{ hexinteger.ll }
{decinteger.ull }
{octinteger_ull }
{hexinteger.ull }
{ float }
{ float.f }
{ float.] }
{bitvector }
{bitvector.u }
<any .charact er>

TOKJDENTIFIER }
TOKJNTEGER }
TOKJNIEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKJNTEGER }
TOKTTOATING }
TOKJLOATING }
TOKTTOATING }
TOKBITVECTOR }
TOKBnVECTOR }
TOK_CEIARACrER }

B The SpecC Grammeir

This section contains the complete grammar of the SpecC language. For formal notation the yacc

syntax style is used. Note that most of this grammar actually describes the C programming language^.

Rules in the grammar added to support SpecC constructs are marked with comments.

B.l Token with Values

identifier :

TOKJDENTIFIER

typedef_name :
TOK.TYPEDEFNAME

behavior_name :

TOKBEHA.VIORNAME

channeLname :

TOK_CHANNELNAME

interface-name :

TOKJNTERFACENAME

integer :
TOKJNTEGER

floating :
TOK_FLOATING

character:

TOK_CHARACIER

string :
TOK^TRING

bitvector :

TOK-BITVECTOR

B.2 Constants

/♦ Name */

A Name */

/♦ Name ♦/

/♦ Name */

/* Name */

/♦ Const */

A Const */

A Const ♦/

A String */

A Const */

constant: /♦ Expression */

^The SpecC grammar presented here is based on a ANSI-C grammar developed byJ. A. Roskind. Use ofthat grammar
IS permitted if the following statement is preserved: "Portions Copyright (c) 1989, 1990 James A. Roskind".

integer
I floating
1 character
/**♦ SpecC—only: boolean constants ***/
j TOK_FALSE
I TOK_TRXJE
/♦*♦ SpecC—only: bitvector constant ♦♦*/

1 bitvector

/* String ♦/string.literal.list: /* !.
string
I string_literal_list string

B.3 Expressions

primary .expression : /* Expression ♦/

identifier

I constant
I string.literal.list
I '(' corama.expression ')'
/♦♦♦ SpecC—only: untimed timing ***/
I TOKDELTA

postfix.expression : /♦ Expression */
primary,expression
I postfix.expression '[' comma.expression ']'
I postfix.expression '(' ')'
I postfix.expression '(' argument.expression.list ')'
I postfix.expression memberjiame
I postfix.expression TOKARROW memberjiame
I postfix.expression TOKJNCR
I postfix.expression TOKEECR
/♦** SpecC—only: bitvector slicing ♦»»/

I postfix.expression '[' comma.expression comma.expression ']

memberJiame:

identifier

I typedef.name

/* Name */

argument.expression.list : /♦ ExpressionList ♦/

assignment.expression
I argument.expression.list assignment.expression

/♦ Expression */unary .expression : /♦

postfix.expression
j TOKJNCR unary.expression

I TOKJDECR unary.expression
1 unary.operator cast-expression
I TOK-SIZEOF unary_expression
[TOK-SIZEOF '(' type-name ')'

unary-operator /♦ ExpressionType */

cast-expression: /♦ Expression */
unary-expression
I '(' type.name ')' cast-expression

/♦♦♦ SpecC-only: bitvector concatenation ***/
concat-expression : /♦ Expression */

cast-expression
I concat-expression cast-expression

multiplicative-expression : /* Expression */
concat-expression
I multiplicative-expression concat-expression
I multiplicative-expression '/' concat-expression
I multiplicative-expression concat-expression

additive-expression : /♦ Expression */
multiplicative-expression
I additive-expression ' + ' multiplicative-expression
I additive-expression ' —' multiplicative-expression

shift-expression : /* Expression »/
additive-expression
I shift-expression TOK.SHIFTLEFT additive_expression
j shift-expression TOK_SHIFTRIGHT additive-expression

relational-expression : /♦ Expression ♦/

shift-expression
I relational-expression '<' shift-expression
I relational-expression '>' shift-expression
I relational-expression TOK-LE shift-expression
[relational-expression TOK_GE shift-expression

equality-expression: /♦ Expression ♦/

relational-expression
I equality .expression TOK-EQ relational-expression

I equality-expression TOK_NE relational-expression

and-expression : /♦ Expression */
equality-expression
I and-expression equality-expression

exclusive-or-expression : /» Expression */
and-expression
I exclusive-or_expression '"' and-expression

inclusive-OT-expression : /* Expression ♦/

exclusive_or-expression
I inclusive-or.expression exclusive-or-expression

logical-and-expression : /♦ Expression */
inclusive-or-expression
I logical-and-expression TOKANDAND inclusive-or-expression

logical-or-expression : /♦ Expression */
logical-and-expression
I logical-or-expression TOK-OROR logical-and.expression

conditional.expression : /* Expression */
logical-or.expression
I logical-or.expression '?' comma-expression conditional-expression

assignment-expression: /* Expression */
conditional-expression
I unary-expression assignment-operator assignment-expression

assignment-Operator : /♦ ExpressionType ♦/

I TOKJVfULTASSIGN
I TOK_DIVASSIGN
I TOK-MODASSIGN
I TOK_PLUSASSIGN
I TOKJVnNUSASSIGN
j TOK-SLASSIGN
1 TOK-SRASSIGN
I TOKj^ASSIGN
I TOK-EORASSIGN
[TOK-ORASSIGN

comma-expression: /* Expression */
assignment-expression
I comma-expression assignment-expression

constant-expression : /* Expression */

conditional-express ion

comma_expression_opt;
/♦ nothing */
I comma-expression

B.4 Declarations

/♦ Expression */

declaration: /* void */
sue_declaration_specifier
I sue-type_specifier
I declaring-list
I default-declaring-list

default-declaring-list : /* DeclarationSpec */
declaration.qualifier-list identifier-declarator initializer-opt
I type_qualifier-list identifier.declarator initializer.opt
I default.declaring-list identifier.declarator initializer .opt

declaring.list : /♦ DeclarationSpec */
declaration-Specifier declarator initializer.opt
I type.specifier declarator initializer.opt
I declaring-list declarator initializer-opt

declaration.specifier : /* DeclarationSpec */
basic.declaration-Specifier
I sue-d eel ar at ion .specifier
I ty pedef-declaration.specifier

type-Specifier :
basic-type.specifier
I sue-type .specifier
I typedef.type-Specifier

/* Type ♦/

declaration-qualifier-list : /* BasicType ♦/

storage-class
I type-qualifier-list storage.class
I declaration-qualifier-list declaration-qualifier

type-qualifier-list: /♦ BasicType */
type-qualifier
I type-qualifier-list type-qualifier

declaration.qualifier :
storage-class
I type-qualifier

/* BasicType */

type-qualifier :
TOK_CONST

I TOK-VOLATILE

/* BasicType ♦/

basic.declaration-specifier : /♦ BasicType ♦/

declaration.qualifier.list basic-type.name
I basic-type.specifier storage-class
I basic.declaration-Specifier declaration-qualifier
I b as ic-declaration-specifier basic-type .name

basic-type.specifier : /» BasicType ♦/

basic-type-name
I type.qualifier-list basic-type.name
1 basic-type-specifier type .qualifier
[basic-type-Specifier basic-type .name

sue-declaration-specifier : /» DeclarationSpec */
declaration-qualifier.list elaborated.type .name
I sue.type.specifier storage.class
I sue.declaration.specifier declaration-qualifier

sue.type.specifier : /♦ Type */
elaborated-type.name
I type.qualifier-list elaborated-type.name
I sue.type.specifier type.qualifier

typedef-declaration.specifier : /* DeclarationSpec */
typed ef-type.specifier storage.class
I declaration.qualifier-list typedef.name
I typedef-declaration.specifier declaration.qualifier

typedef-type.specifier : /♦ Type */
typedef.name
I type.qualifier-list typedef.name
I typedef-type.specifier type .qualifier

storage-class : /♦ BasicType */
TOK.TYPEDEF

I TOKEXTERN
I TOK.STATIC
I TOKAUTO
I TOK-REGISTER
/*** SpecC—only: piped modifier ***/
I TOKJ>IPED

basic-type.name :
TOK_[NT

/» BasicType */

I TOK-CHAR
I TOK-SHORT
I TOKXONG
I TOK_FLOAT
I TOKJX)UBLE
I TOK^IGNED
I TOK_UNSIGNED
1 TOK.VOID
/♦♦* SpecC-only : boolean type ***/
I TOKBOOL
/*** SpecC—only: bit (vector) type ***/
I TOKJBIT '[' constant^expression (
/♦♦* SpecC-only: event type ***/
I TOKJEVENT

const ant-express ion ']'

elaborated-type.name :
aggregate.name

enum_name

/♦ Type »/

aggregate-name: /» Type */
aggregate-key '{' member-declaration-list
I aggregate-key identifier-or-typedef-name ' {' member .declaration-list

I aggregate-key identifier.or-typedef-name

aggregate-key :
TOK.STRUCT

1 TOK-UNION

/* UserTypeClass ♦/

member-declaration-list: /* MemberList */
member-declaration

I member_declaration-list member-declaration

member-declaration: /* MemberList */
member-declaring-list ';'
I member.default-declaring-list
/♦** SpecC-only: note definition in member list ***/
I note-definition

member-default.declaring-list : /* MemberDeclSpec */
type-qualifier-list member-identifier-declarator
I member-default-declaring-list ',' member-identifier-declarator

member.declaring-list : /» MemberDeclSpec */
type.specifier member.declarator
I member.declaring-list member-declarator

member.declarator : /* MmbrDeclarator */

declarator bit-field-size.opt
I bit_field_size

member_ideiitifier_declarator ; /♦ MmhrDeclarator ♦/

identifier-declarator bit-field _size_opt
I bit-field-size

bit-field-size-opt :
/♦ nothing */
I bit-field-size

bit-field-size :

const ant-expression

/» Expression */

/♦ Expression */

enum_name: /» Type ♦/

TOICEINUM enumerator-list

I TOK-EMJM identifier-or-typedef-name enumerator-list '}'
I TOK-ENUM identifier_or_typedef_name

enumerator-list : /♦ MemberList */
identifier-or_typedef-name enumerator-value-opt
i enumerator-list ',' identifier-or-typedef-name enumerator-value-opt

/* Expression ♦/enumerator-value-Opt : /
/* nothing */
I ' = ' constant-expression

/* ParameterList */parameter-type-list : /* Param
parameter-list
I parameter-list TOK-ELLIPSIS

parameter-list : /* ParameterList */
parameter-declaration
I parameter-list parameter-declaration

parameter-declaration; /♦ Parameter */
declaration-Specifier
I declaration-Specifier abstract-declarator
I declaration-specifier identifier-declarator
I declaration-Specifier parameter-typedef-declarator
I declaration-qualifier-list
I declaration-qualifier-list abstract-declarator
I d eclar at ion-qu ali fier-lis t identifier-declarator
I type-specifier
I type-Specifier abstract-declarator
I type-Specifier identifier-declarator
[type-specifier parameter-typedef-declarator
I type-qualifier-list

[type_qualifier_list abstract.declarator
I ty pe_qualifier_list identifier-declarator

identifier_or_typedef_name : /♦ Name */
identifier

I typedef_name

type-name: /» Type */
type-Specifier
I type-Specifier abstract-declarator
I type-qualifier-list
I type-qualifier-list abstract-declarator

initializer-opt :
/♦ nothing ♦/

I ' = ' initializer

/♦ Initializer ♦/

initializer : /♦ Initializer */
'{' initializer-list '}'
I '{' initializer-list '}'
I constant-expression

initializer-list : /♦ InitializerList */
initializer

I initializer-list initializer

B.5 Statements

statement: /♦ Statement */
labeled-Statement

[compound-Statement
t expression-Statement
I selection-Statement
I iteration-Statement
I jump-Statement
/♦*♦ SpecC—only: SpecC statements ***/
I spec-C-Statement

labeled-Statement: /* Statement */
any-name ':' statement
I TOK-CASE constant-expression statement
I TOKDEFAULT ':' statement

compound-Statement: /♦ Statement */
compound-SCope '{'
I compound-scope declaration-list

] compound-scope statement-list
I compound-scope '{' declaration-list statement-list '}'

compound.scope:
/♦ nothing */

/* Scope */

declaration-list: /* void */
declaration

I declaration-list declaration
/»»♦ SpecC—only: note definitions in compound statements ♦♦*/

I note-definition
I declaration-list note-definition

statement-list : /♦ StatementList ♦/

statement

I statement-list statement
/*** SpecC—only: note definitions in compound statements ♦♦♦/

I statement-list note-definition

expression-Statement: /* Statement */
comma-expression.opt

selection-Statement: /♦ Statement ♦/

TOKJF '(' comma-expression ')' statement
I TOKJF '(' comma-expression ')' statement TOKJJLSE statement
I TOK-SWTTCH '(' comma-expression ')' statement

iteration-Statement: /* Statement */
TOK-WHEiE '(' comma-expression-opt ')' statement
I TOK_DO statement TOKWHTT.R comma_expression ')'
I TOKFOR '(' comma-expression-opt corama-expression-opt

comma-expression-opt ')' statement

jump.statement: /* Statement */
TOK-GOTO any-name ';'
I TOK-CONTINUE
I TDK-BREAK
I TDK-RETURN comma_expression_opt

B.6 External Definitions

translation-unit : /♦ void */
external-definition

I translation-unit external-definition

external-definition : /♦ void */

function.definition

I declaration
/♦♦♦ SpecC-only: SpecC specific definitions ***/
I spec_c-definition

function-definition: /* void */
identifier-declarator compound .statement
I declaration-Specifier identifier-declarator compound-statement
I type.specifier identifier .declarator compound .statement
I deciaration_qualifier-list identifier-declarator compound-statement
I type.qualifier_list identifier-declarator compound-Statement

declarator:

identifier-declarator

[typedef.declarator

/» Dec/orator */

typedef-declarator : /* Declarator »/
paren.typedef-declarator
I parameter-typedef-declarator

pararaeter-typedef.declarator : /* Declarator ♦/

typedef-name
I typedef-name postfixing.abstract-declarator
I clean.typedef-declarator

clean-typedef-declarator : /♦ Declarator ♦/

clean-postfix-typedef-declarator
I ' ♦' parameter-typedef-declarator
I type-qualifier-list parameter-typedef-declarator

clean.postfix-typedef-declarator : /* Declarator ♦/

'(' clean.typedef-declarator ')'
I '(' clean-typedef-declarator ')' postfixing.abstract-declarator

paren.typedef-declarator: /* Declarator »/
paren-post fix-typedef-declarator
I '(' simple.paren-typedef.declarator ')'
I type-qualifier-list '(' simple.paren-typedef.declarator ')'
I paren-typedef-declarator
I type-qualifier-list paren.typedef-declarator

paren-postfix.typedef.declarator : /♦ Declarator ♦/

'(' paren.typedef-declarator ')'
I '(' simple.paren-typedef.declarator postfixing.abstract-declarator ')'
! '(' paren.typedef-declarator ')' postfixing.abstract-declarator

simple.paren.typedef-declarator :
typedef-name

/♦ Declarator */

I '(' simple_paren.typedef_declarator ')'

identifier-declarator : /* Declarator */
unary-identifier-declarator
I par en-identifier-declarator

unary-identifier-declarator : /* Declarator */
postfix-identifier-declarator
I identifier-declarator
I type-qualifier-list identifier-declarator

postfix-identifier-declarator : /♦ Declarator */
paren-identifier-declarator post fixing-abstract-declarator
I '(' unary-identifier-declarator ')'
I '(' unary-identifier-declarator ')' post fixing-abstract-declarator

paren-identifier-declarator : /» Declarator ♦/

identifier

I '(' paren-identifier-declarator ')'

abstract-declarator: /» AhstrDeclarator */
unary-abstract-declarator
I postfix-abstract-declarator
I postfixing-abstract-declarator

postfixing-abstract-declarator : /* AhstrDeclarator ♦/

array-abstract-declarator

I '(' ')'
I '(' parameter-type-list ')'

array-abstract-declarator : /♦ AhstrDeclarator */

I '[' constant-expression ']'
I array-abstract.declarator '[' constant-expression ']'

unary-abstract-declarator : /* AhstrDeclarator */

I type-qualifier-list
I abstract-declarator
I type-qualifier-list abstract-declarator

postfix-abstract-declarator : /* AhstrDeclarator */
unary-abstract-declarator ')'

I '(' postfix-abstract-declarator ')'
I '(' postfixing-abstract-declarator ')'
I ' (' unary-abstract-declarator ')' postfixing-abstract-declarator

B,7 SpecC Constructs

spec-C_definition :
import-definition
I behavior-declaration
[behavior-definition
I channel-declaration
I channel.definition
I interface.declaration
I interface-definition
I note-definition

/* void ♦/

import-definition : /* void ♦/

TOKJMPORT string-literal-list

behavior-declaration: /* void ♦/

behavior-specifier port-list-opt

behavior-definition : /♦ void */
behavior-Specifier port-list _opt internal-definition-list.opt

behavior-Specifier : /* Declarator */
TOKLBEHAVIOR identifier

channel-declaration : /♦ void */
channel-Specifier port-list-Opt implements-interface-opt ';'

channel-definition : /♦ void */
channel-specifier port-list-opt implements-interface-opt

internal-definition-list-opt

channel-Specifier : /♦ Declarator */
TOK-CHANNEL identifier

port-list-opt :
/♦ nothing ♦/

I '(' ')•
I '(' port-list

/♦ ParameterList */

port-list : /* ParameterList »/
port-declaration
I port-list port-declaration

port-declaration : /♦ Parameter ♦/

port-direction parameter-declaration
I interface-name

interface-name identifier

channel-name

channel-name identifier

port-direction :
/♦ nothing ♦/

I TOKJN
I TOK-OUT
i TOKJNOUT

/♦ Direction ♦/

/♦ SymbolPtrList ♦/implements-interface-opt : /* Sym
/* nothing */
I T0K.IMPLEME3NTS interface-list

interface.list : /♦ SymbolPtrList */
interface.name

I interface-list interface-name

internal.definition-list.opt : /* void ♦/

/♦ nothing ♦/

I internal-definition_list

internal.definition-list : /♦ void */
internal-definition

I internal-definition-list internal.definition

internal-definition :

function- definition

I declaration
I instantiation
I note.definition

/♦ void */

instantiation : /♦ void »/
instance.declaring-list

instance.declaring.list : /♦ DeclarationSpec ♦/

behavior.or.channel instance-declarator
I instance.declaring.list instance.declarator

instance.declarator : /» Declarator */
identifier port.mapping.opt

behavior.or.channel:

behavior.name

I channel.name

port.mapping.opt :
/♦ nothing */

/♦ DeclarationSpec ♦/

/* ParameterList */

I 'C ')'
I '(' port_mapping_list ')'

port-mapping_list :
port.mapping
I port-mapping-list

port-mapping :
identifier

/* ParameterList */

port-mapping

/* Parameter ♦/

interface-declaration : /♦ void */
interface-Specifier

interface-definition : /* void */
interface-specifier internal-declaration-list_opt '}'

interface-specifier ; /* Declarator ♦/
TOKJNTEEtFACE identifier

internal-declaration-list-opt : /♦ void */
/* nothing */
I internal-declaration-Iist

internal-declaration.list : /* void */
internal-declaration

I internal-declaration-list internal-declaration

internal-declaration: /* void */
declaration

I TOK-CALLBACK declaration
I note-definition

note-definition: /* void */
TOK-NOTE any-name ' = ' note

TOKNOTE any-name

constant -expression

identifier

I typedef-name
I behavior-name
I channel-name
I interface-name

any.name ' = ' note

/* Constant ♦/

/» Name */

B.8 SpecC Statements

spec_c-statement : /* Statement */
concurrent-Statement

I fsm-statement
j exception-Statement
I timing-Statement
1 wait-Statement
I waitfor-statement
I notify-Statement

concurrent-Statement: /♦ Statement */
TOKPAR compound-Statement
I TOKPIPE compound-Statement

fsm.statement: /♦ Statement */
TOK-FSM '}'
I TOK-FSM '{' transition-list

/» TransitionList ♦/transition-list: /♦

transition

I transition-list transition

transition : /♦ Transition */
identifier

I identifier cond-branch.list
I identifier '{' '}'
I identifier '{' cond-branch.list

/» TransitionList */cond-branch-list : /» Tr
cond-branch

I cond-branch-list cond-branch

cond-branch: /♦ Transition */
TOK-IF comma-expression ')' TOICGOTO identifier
I T0KJ30T0 identifier
j TOK-IF '{' comma-expression ')' TOKPREAK
I TOKPREAK

exception-Statement: /» Statement ♦/

TOK-TRY compound-Statement exception-list

/* ExceptionList */exception-list : /i
exception
I exception-list exception

exception : /♦ Exception */

TOK_TRAP paren.event-list compound-statement
I TOKJNTERRUPT paren.event-list compound-statement

paren-event-list :
event -list

I event.list ')'

event -list :

event

I event-list event

event:

identifier

/♦ SymbolPtrList ♦/

/* SymbolPtrList */

/* SymbolPtr */

timing-Statement: /♦ Statement ♦/

TOK_DO Statement TOKLTIMING '{' constraint-list *}'

constraint-list : /* ConstraintList */
constraint

I constraint-list constraint

constraint : /♦ Constraint */
TOK-RANGE * any-name any-name time-Opt time-opt ')'

time-opt:
/♦ nothing ♦/

I time

/♦ Constant */

time: /♦ Expression ♦/

const ant-expression

wait-Statement : /♦ Statement ♦/

TOK-WATT paren.event-list

waitfor-statement : /♦ Statement ♦/

TOK-WATTFOR time

notify-Statement : /» Statement */
TOK-NOTIFY paren_event_list
I TOK-NOnFYONE paren-event-list

C References

[1] X3 Secretariat. The C Language. X3J11/90-013, ISO Standard ISO/IEC 9899. Computer and Busi
ness Equipment Manufacturers Association, Washington, DC, USA, 1990.

[2] M. A. Ellis, B. Stroustrup. The annotated C-h-h Reference Manual. Addison-Wesley, Reading, Mass.,
1990.

[3] D. Gajski, J. Zhu, R. Domer. The SpecC+ Language. University of California, Irvine, Technical
Report ICS-TR-97-15, April 15, 1997.

[4] J. Zhu, R. Domer, D. Gajski. Syntax and Semantics ofthe SpecC+ Language. University ofCalifor
nia, Irvine, Technical Report ICS-TR-97-16, April 1997.

[5] D. Gajski, J. Zhu, R. Domer. Essential Issues in Codesign. University ofCalifornia, Irvine, Technical
Report ICS-TR-97-26, June 1997.

[6] J. Zhu, R. Domer, D. Gajski. Syntax and Semantics of the SpecC Language. Proceedings of the
Synthesis and System Integration of Mixed Technologies 1997, Osaka, Japan, December 1997.

[7] D. Gajski, G. Aggarwal, E.-S. Chang, R. Domer, T. Ishii, J. Kleinsmith, J. Zhu. Methodology
for Design of Embedded Systems. University of California, Irvine, Technical Report ICS-TR-98-07,
March 1998.

Index

Annotation, 33

ANSI-C, 1

behavior, 8

bit, 3

bool, 2

C, 41

callback, 12

channel, 10

Glass

Behavior, 8

Channel, 10

Instantiation, 16

Interface, 12

Comment, 37

Concatenation, 3

Constant, 41

Character, 37

String, 37

Construct

SpecC, 53

Declaration, 45

Definition, 50

delta, 6

Escape Sequence, 37

event, 5, 28

Exception Handling, 26

Execution

FSM, 24

Parallel, 20

Pipelined, 22

Sequential, 18

Expression, 42

false, 2

&m, 24

Grammar, 41

implements, 10

Import, 32

mport, 32

n, 14

nout, 14

nterface, 12

interrupt, 26

Keyword, 36

ANSI-C, 38

SpecC, 38

lex, 36

Lexical Rule, 36

note, 33

notify, 5, 28

notifyone, 5, 28

Operator, 39

out, 14

par, 20

pipe, 22

piped, 22

Port, 14

Mapping, 16

Preprocessor, 37

range, 30

Semantics, 2

Statement, 49

SpecC, 56

Synchronization, 28

wait, 5, 28

WEiitfor, 6, 30

White Space, 37

yacc, 41

