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ABSTRACT 
 
 

Neural Signatures of Subjective Value and Confidence in 

Decisions with Different Physical Costs  

 

By 

 

Allison D. Shapiro 

 

 

Two fundamental goals of decision making are to select actions that maximize rewards 

while minimizing costs and to have strong confidence in the accuracy of a judgment. Neural 

signatures of these two forms of value: the subjective value (SV) of choice alternatives and the 

value of the judgment (confidence), have been observed in ventromedial prefrontal cortex 

(vmPFC). However, the relationship between these dual value signals and their relative time 

courses are unknown. Furthermore, there are often several ways that one can obtain a desired 

reward, each entailing its own costs.  Previous research investigated the neural representations 

of many types of decision costs with the notable exclusion one evolutionarily significant 

expense: cardiovascular effort. It remains unclear how physical costs, such as pain and exertion 

are transformed into value information to guide decision making and the extent to which this 

process is domain-specific versus domain-general. To test this, in Experiments 1 and 2 we 

recorded fMRI while participants performed a two-phase ApAv task with mixed-outcomes of 

monetary rewards paired with significant physical costs. In Experiment 1 costs were painful 

shock stimuli, in Experiment 2 costs were intervals of demanding cardiovascular exercise on 
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a stationary bike. Neural responses were measured during offer valuation (offer phase) and 

choice valuation (commit phase) and analyzed with respect to observed decision outcomes, 

model-estimated SV, confidence, and costs. During the offer phase, vmPFC tracked SV and 

decision outcomes, but it not confidence. During the commit phase, vmPFC tracked 

confidence, computed as the quadratic extension of SV, but it bore no significant relationship 

with the offer valuation itself, nor the decision. In fact, vmPFC responses from the commit 

phase were selective for confidence even for rejected offers, wherein confidence and SV were 

inversely related. Conversely, activation of the cognitive control network, including within 

lateral prefrontal cortex (lPFC) and dorsal anterior cingulate cortex (dACC) was associated 

with ambivalence, during both the offer and commit phases. None of these signals differed in 

magnitude between the pain and effort conditions, consistent with shared neural faculties of 

cost representations.  However, inspection of voxel response patterns within those faculties 

revealed representational dissimilarity between the two types of decision costs, indicating that 

cost-domain-specific information is encoded throughout the decision making process. Within 

vmPFC in particular, the availability of cost-specific information over the course of a decision 

suggested qualitatively different decision processes under conditions of confidence and 

ambivalence. Taken together, our results reveal complementary representations in vmPFC 

during value-based decision making that temporally dissociate such that offer valuation (SV) 

emerges before decision valuation (confidence), both of which include specific information 

about costly consequences. 
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Chapter I:  Introduction 

	
Theoretical Overview 

A fundamental goal for survival is accruing the maximum amount of appetitive 

resources while minimizing the aversive outcomes of those pursuits. The pressure to optimally 

arbitrate such cost/benefit tradeoffs has resulted in remarkable capacities for extracting value 

information from the environment and applying complex decision policies (Cosmides and 

Tooby, 1994; Montague and King-Casas, 2007). Humans, who evolved as foragers, often faced 

choices between approaching and avoiding opportunities to obtain resources such as food items 

(Hayden, 2018). Approach decisions hold the potential for rewards but come at the cost of 

energetic expenses and the threat of physical harm. Avoidance decisions are less risky in the 

short term, but increase one’s reliance on the environment to afford future opportunities.  

Approach-Avoidance (ApAv) decisions can be simulated in a laboratory setting. In 

these tasks, participants decide whether to accept (approach) or reject (avoid) individual offers 

of appetitive rewards paired with contingent aversive costs (Miller, 1944). Given the relevance 

of ApAv choices to evolved decision making capacities in humans, we selected this paradigm 

to measure behavioral and neural responses during value-based decision making. This enabled 

us to enforce true rewards and costs of physical pain and cardiovascular exercise that invoke 

authentic choice scenarios for the participant.  

ApAv offers are one type of multi-attribute mixed-outcome (or conflict) choice. Such 

choices entail multiple consequences (multi-attribute) with opposing values (mixed-outcome) 

that induce competing objectives (conflict) to pursue rewards, avoid costs, and minimize risks 

(Keeney and Raiffa, 1993). No single choice satisfies all goals, instead one must make 

tradeoffs between them (Tversky and Shafir, 1992). The overall utility of the offer accounts 
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for both its positive and negative attributes. There are vast literatures of economics research 

specifically aimed at modeling the precise parameters in value computations revealed by 

human choice behavior (Coombs and Avrunin, 1977; Kahneman and Tversky, 1979; Dyer et 

al., 1992). Generally speaking, the utility of an offer combines weighted estimates of its reward 

and cost components (Neumann and Morgenstern, 1944). 

The relatively recent advent of neuroeconomics brought together the fields of 

economics, psychology, and neuroscience, resulting in a flood of groundbreaking discoveries 

about the biology underlying value-based decisions (Rangel et al., 2008).  Now, we are 

beginning to connect the dots between a widely distributed value network in the human brain, 

which includes ventromedial prefrontal cortex (vmPFC) and orbitofrontal cortex (OFC), the 

amygdala, anterior cingulate cortex and particularly its more dorsal segments (ACC / dACC), 

posterior cingulate cortex, anterior and posterior segments of the insula (aIC and pIC), the 

basal ganglia and in particular the nucleus accumbens (nAcc) (O'Doherty, 2004; Behrens et 

al., 2007; Rushworth and Behrens, 2008; Bartra et al., 2013) 

Neural representations of rewards, reward predictions, and hedonic experiences more 

generally have been observed in medial prefrontal cortex (including vmPFC, OFC, and 

subgenual ACC [sgACC]), nAcc, the striatum, and midbrain (Ernst et al., 2004; O'Doherty, 

2004; Kringelbach, 2005; Kahnt et al., 2011a). Conversely, aversive stimuli, anticipated 

negative outcomes, and costs elicit responses in the amygdala (Becerra et al., 2001; Yacubian, 

2006), ACC (Prevost et al., 2010; Massar et al., 2015), and throughout the insula (Preuschoff 

et al., 2008; Kurniawan et al., 2010; Prevost et al., 2010; Kurniawan et al., 2013; Arulpragasam 

et al., 2018). Some nodes within the value network integrate multiple sources of value 

information. vmPFC, OFC and the striatum seem to encode appetitive and aversive cues 
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together (Brooks et al., 2010; Plassmann et al., 2010). dACC is recruited when competing 

value signals induce response conflict (Pochon et al., 2008; Aupperle et al., 2015), consistent 

with this region’s more general role in managing response competition in difficult decisions 

(Kerns et al., 2004; Botvinick, 2007).  

There are often several ways that one might reach a certain goal, and different paths 

promise varying types and degrees of costs.  Neuroeconomic studies are beginning to show 

how different types of costs are accounted in value-based choices, both at the behavioral and 

neural levels. Previous empirical work has posed a wide array of cost stimuli in behavioral, 

neuroimaging, and lesion studies, including delays of rewards (Frederick et al., 2002; Kable 

and Glimcher, 2007), probabilistic risk (Kahneman and Tversky, 1979; Preuschoff et al., 2008; 

Boorman et al., 2009), pain stimuli (Park et al., 2011; Talmi, 2012), cognitive effort (Botvinick 

et al., 2009; Westbrook et al., 2019), physical effort in motor tasks (Treadway et al., 2012; 

Arulpragasam et al., 2018), and in manual grip force (Croxson et al., 2009; Kurniawan et al., 

2013; Klein-Flügge et al., 2015; Hogan et al., 2018).  

 

Premises for the Present Research 

Despite the wealth of research on decision costs, the field is starkly lacking examination 

of one evolutionarily critical type of decision cost, cardiovascular exercise. To our knowledge, 

value-based choices with costs of aerobic exercise have never been implemented in a 

laboratory setting. Furthermore, there is little consensus on one fundamental question: are 

value representations domain-specific or are all types of costs and rewards represented in a 

domain-general manner, potentially with a common currency?   
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After accounting for the patterns in decision behavior that can be explained by 

evolutionary pressures and shared cognitive and neural capacities, there are still wide margins 

in individual preferences. Such individual differences have been observed in humans and non-

human primates alike (Premack, 1963; Schunk and Betsch, 2006). We intuitively experience 

that many of our decisions are made on the basis of subjective judgments, in line with our 

internal beliefs and core values. This isn’t entirely illusory. Every individual has a unique 

personal history that shapes their preferences, needs, and future goals. The relative worth of 

different types of rewards and the aversiveness of different types of costs depend critically on 

these factors. In this way, the overall value perceived in a given opportunity is, in fact, unique 

to each decision maker.  Subjective value (SV) measures the perceived utility of objective 

value information, relative to the decision maker.  

vmPFC, in particular, plays a crucial role in representing SV. This region is understood 

to guide decisions by integrating reward and cost attributes of choice alternatives (Basten et 

al., 2010; Amemori and Graybiel, 2012; Levy and Glimcher, 2012; Talmi and Pine, 2012) and 

automatically track the SV of items in our environment (Lebreton et al., 2009; Pessiglione and 

Delgado, 2015). In ApAv decision making tasks, vmPFC encodes multiple value 

representations including rewards, decision variables, SV, and valuation models that inform 

SV (Talmi et al., 2009; Park et al., 2011; Skvortsova et al., 2014; Wan et al., 2015).  

Recently, it has been suggested that confidence, the extent to which one can believe 

that they are making the best choice, is a form of valuation in its own right (Lebreton et al., 

2015). Accurate decisions are valuable decisions, and in this sense, the confidence with which 

one makes a decision may measure the value of that judgment. There is recent evidence that 

vmPFC also signals choice confidence. For example, vmPFC activation varies with confidence 
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about perceptual judgments (Heereman et al., 2015; Bang and Fleming, 2018; Gherman and 

Philiastides, 2018) and lesions lead to atypical confidence reports on general knowledge tests 

(Hebscher et al., 2016). These findings could be evidence that both SV and confidence emerge 

from shared neural computations, however only one study has tested this hypothesis directly 

(Lebreton et al., 2015). Moreover, it remains unclear how vmPFC manages dual signals 

pertaining to SV and confidence over the course of a decision. Are SV and confidence 

integrated into a common signal, temporally dissociated, or something else entirely? 

The present work investigates behavioral and neural signatures of SV and confidence 

in value-based decision making with different types of costs. We recorded functional magnetic 

resonance imaging (fMRI) while participants decided to accept or reject real offers that entailed 

enduring aversive costs to receive monetary rewards. In Experiment 1 (Chapter 2), participants 

were offered monetary rewards in exchange for receiving painful electrical shocks. We 

combined neuroeconomic models of decision behavior with neuroimaging to identify when, 

where, and how neural activity tracks model-estimated SV and confidence. In Experiment 2 

(Chapter 3), participants were offered monetary rewards in exchange for performing intervals 

of demanding cardiovascular exercise. We applied the same analyses from Experiment 1 on 

the new data collected in Experiment 2 to test whether observations about decisions involving 

pain costs generalized to decisions involving effort costs. Then, to test for domain-specific 

processing of SV and confidence with respect to decision costs, we contrasted the results from 

Experiments 1 and 2. In Chapter 4, data from Experiments 1 and 2 were re-analyzed with a 

multivariate approach to measure the representational dissimilarity (differences between 

patterns of activation) of effort and pain costs in voxel response patterns. In Chapter 5, we 
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measured individual differences the relative valuation of pain and effort costs by comparing 

both behavioral and neural data from the two tasks at the individual level.  

 

Notes on Terminology 

Note that in the present work, we examine multiple types of value. Offer stimuli 

comprise two value attributes: costs and rewards. We use “value” and “value stimuli” to refer 

not only to reward attributes (which have positive value), but also to cost attributes (which 

have negative value) and to the entire offer stimulus (which has an overall worth or SV) – all 

of these carry some type of value information.  Moreover, in the present research, we varied 

the domain of cost attributes, which could influence behavioral and neural responses not only 

to the cost itself, but also to the reward and the overall valuation of the offer. We use “domain-

specific” to refer to characteristics of behaviors and neural representations that were only 

observed in response to offers with either pain costs or effort costs, but not both, and can pertain 

to the rewards, costs, SV, or confidence of those offers. We use “domain-general” to refer to 

behaviors and neural representations observed across both the bike and shock task, including 

representations of rewards, costs, SV, and confidence. Furthermore, we occasionally use the 

term “common currency” to describe that value information from different domains (e.g. pain 

and effort) may be evaluated or represented similarly. The literature often links this term with 

the integration of costs and rewards into an overall utility, which is one subtype of common 

currency. We use this term more generally and often in reference to domain-general processing 

of different types of costs (Levy and Glimcher, 2012). 
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Chapter II:  Experiment 1: Value and Confidence in Decisions with Pain Costs 

 

Every day, we navigate a maze of choices, guided by our subjective preferences and 

goals. When the route forks, multiple forms of value imbue the selection of one’s path. We 

assess the value of potential actions from their relative costs and benefits, as well as the value 

of our own judgment – accurate decisions are valuable decisions, regardless of the options.  

Much progress has been made toward understanding how the brain resolves value-

based decisions (Rangel et al., 2008; Bartra et al., 2013) and vmPFC’s important role in this 

process. As described in Chapter 1, vmPFC is understood to integrate reward and cost of choice 

alternatives (Basten et al., 2010; Amemori and Graybiel, 2012; Levy and Glimcher, 2012; 

Talmi and Pine, 2012) and track SV (Lebreton et al., 2009; Pessiglione and Delgado, 2015). 

Neuroeconomic models benefit from mixed-outcome ApAv tasks, which pose realistic, 

consequential choice scenarios (e.g. accept or reject offers of appetitive rewards contingent on 

aversive costs). Such fMRI studies in humans demonstrate multiple value representations in 

vmPFC including rewards, decision variables, SV, and valuation models that inform SV (Talmi 

et al., 2009; Park et al., 2011; Skvortsova et al., 2014; Wan et al., 2015). 

Recent research suggests that vmPFC also signals choice confidence. BOLD responses 

in vmPFC correlate with confidence about perceptual judgments (Heereman et al., 2015; Bang 

and Fleming, 2018; Gherman and Philiastides, 2018) and impair self-reported confidence 

ratings (Hebscher et al., 2016) These findings could be evidence that vmPFC performs a 

valuation of one’s judgment, assigning high value to high confidence decisions (Lebreton et 

al., 2015). Confidence signals in vmPFC also accompany value-based decisions(Rolls et al., 

2010; De Martino et al., 2013; Lebreton et al., 2015), which is intriguing given the relationship 
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between confidence and value. Self-reported confidence takes a U-shaped function with 

respect to first-order valuation judgments (Lebreton et al., 2009; Hebscher and Gilboa, 2016): 

decisions about extremely high- or low-value items elicit stronger confidence than decisions 

about items with neutral or ambiguous value. Similarly, vmPFC responses take a U-shaped 

function with respect to value in risky decision making (Schlund et al., 2016). Accordingly, 

Lebreton et al. (2015) operationalized confidence as the quadratic extension of value and 

elegantly demonstrated that vmPFC tracks modeled confidence, even in the absence of explicit 

ratings. 

Given this literature, vmPFC should track both SV and its quadratic extension, 

confidence, in mixed-outcome ApAv decision making, but this has not been explicitly tested. 

Specifically, confidence about accept choices (typically positive SV) should increase as SV 

increases whereas confidence about reject choices (typically negative SV) should increase as 

SV decreases (Fig. 1B). It is unknown how vmPFC represents both SV and confidence in 

value-based choices, particularly when confidence and value are inversely related (i.e. reject 

choices). One possibility is that confidence evolves in parallel with decision variables (Dotan 

et al., 2018). Early confidence-related signals have been recorded from frontal and parietal 

sites (Kepecs et al., 2008; Kiani et al., 2014), including vmPFC (De Martino et al., 2013; 

Lebreton et al., 2015; Gherman and Philiastides, 2018). Alternatively, confidence may evolve 

later through retrospective metacognitive judgments or continued deliberation after choice 

commitment (Resulaj et al., 2009; Pleskac and Busemeyer, 2010; Moran et al., 2015; Yu et al., 

2015; van den Berg et al., 2016), both of which can recruit medial prefrontal cortex 

(Hilgenstock et al., 2014; Fleming et al., 2018; Morales et al., 2018). 



 9 

To test this, we deployed a two-phase ApAv task in which participants accepted or 

rejected offers of monetary rewards paired with painful shock stimuli. BOLD responses were 

measured during offer valuation (offer phase) and choice valuation (commit phase). Observed 

decision outcomes and model-based estimates of SV and confidence were used to predict 

neural activity in vmPFC and elsewhere during both phases of decision making.  

 

Methods 
 
Participants 

We report the data from 28 paid volunteers that participated in the study (17 women, 

27 right-handed, mean age = 21.9, sd=2.8). One additional participant completed the study but 

was removed from analyses due to significant susceptibility artifacts causing excessive errors 

in spatial normalization. No participants had a history of neurological injuries or illnesses or 

current daily use of psychoactive medications. All participants provided written consent in 

accordance with the Institutional Review Board at the University of California, Santa Barbara.  

 

Session overview 

 All testing was performed on the same day. Participants first provided informed consent 

and were screened for disqualifying criteria. Because our experiment ApAv decisions with 

pain stimuli, participants next underwent a pain thresholding procedure and were familiarized 

with the mapping between experimental stimuli and the pain intensities they represented. Then, 

participants performed the decision making task while in the MRI scanner. Finally, after they 

had completed all experimental tasks and been removed from the scanner, participants received 

the pain stimuli and monetary rewards associated with the choices they made during the task.   
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Pain thresholding procedure 

 We used mild cutaneous electrical shocks as pain stimuli. Pain thresholding allowed us 

to control for individual differences in pain tolerance for electrical shocks such that a given 

experimental stimulus was associated with the same pain sensation across participants. To 

identify participant-specific minimum and maximum shock intensities, participants completed 

a pain thresholding procedure before the decision-making task, outside of the MRI scanner. 

Electrical shocks were administered with a constant current stimulator (Digitimer DS7A, 

Digitimer, Great Britain) controlled by a train generator (DG2A Train/Delay Generator, 

Digitimer, Great Britain). Each shock had a duration of 1 s and a frequency of 100 Hz with a 

2 ms waveform. Two adhesive electrodes were placed on the back of the participant’s hand 

approximately 1 inch above the wrist and connected to the stimulator. When a shock was 

administered, electric current was run between the two electrodes, causing an aversive 

sensation that is increasingly painful at higher levels of current.   

 The first stage of thresholding was a ramp-up procedure in which the experimenter 

delivered several shocks, each time increasing the intensity by 1 mV. The participant was 

instructed to report three thresholds: the lowest intensity at which they detected the shock, the 

lowest intensity at which the shock caused discomfort, and the intensity at which the shock 

became unbearably painful. The second stage was a rating procedure in which the participant 

received fourteen shocks with intensities between the discomfort threshold and unbearable 

threshold and rated the pain from each on a 0-10 scale. Next, both the ramping and rating stages 

were repeated to verify that we had accurately identified the participant’s pain tolerance. 

Finally, the pain ratings and shock intensities from the second rating procedure were fit with a 

sigmoid function to model the relationship between shock intensity and perceived pain for this 
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individual (Volz et al., 2017). Based on this sigmoid function, we identified the shock intensity 

that predicted a pain rating of 8 out of 10. No payout trials during the decision task had costs 

exceeding this value.    

 

Familiarization Procedure 

Before the decision making task, participants were shown five example offer stimuli 

illustrating costs of 5%, 25%, 50%, 75% and 95% while the experimenter delivered a shock at 

the corresponding intensity relative to their discomfort and maximum pain thresholds (with 

0% = minimal discomfort and 100% = maximal pain). Participants were instructed to 

remember the sensation associated with the example shocks and use these as points of 

reference when making choices during the task, but that the real offers would include shocks 

ranging anywhere between 0 and 100% intensity, not just at the example levels. 

 

ApAv Task 

Offer stimuli 

We adapted an approach–avoidance task similar that implemented in non-human 

primates by Amemori and Graybiel (2012; 2015) in which participants accepted or rejected 

offers with mixed appetitive and aversive outcomes. On each trial, the participant was offered 

a certain amount of money in exchange for receiving a shock of a certain intensity. The 

participant chose either to accept both the money and the shock or reject both. Therefore, trial 

stimuli were deterministic mixed-outcome offers as there were no probabilistic manipulations 

involving chances of receiving the shock and/or money - receiving a monetary reward was 

contingent on also receiving its associated cost. 
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The offer stimuli were two horizontal bars, one had an overlaid $ symbol and illustrated 

the offered reward and the other had an overlaid lightning bolt symbol and illustrated the 

contingent cost. The width of the bars represented the amount of each attribute being offered 

on the current trial, with monetary rewards ranging continuously from $0.01 to $1.50 and shock 

intensities ranging continuously from minimal discomfort to maximal pain. Each bar was 

within a larger rectangular frame that illustrated the maximum possible bar width. The bars 

were blue and yellow, and color-attribute mappings varied between participants. The relative 

position of the cost and reward bars (i.e. which bar was above the other) alternated between 

blocks. The offer stimuli were centrally aligned and stacked just above and just below the 

vertical midpoint of the display. Overall, there were 189 offers, each presented as a single trial, 

unless the participant failed to respond, in which case the offer was repeated at the end of the 

experiment. Trials were split between six functional runs, with each run containing 31 or 32 

trials. All participants viewed the same set of offers, presented in the same pseudo-random 

order that systematically covered all quadrants of the decision space. 

 

Decision making task 

On each trial, the participant first saw a fixation point in the center of the screen for 

either 910 ms, 1820 ms or 2730 ms, randomly varied between trials. Then, the offer stimulus 

was shown for 4550 ms. The participant was instructed to use this time to evaluate the offer 

but could not yet indicate a choice. Next, the offer remained on the screen and two response 

mappings appeared in left and right positions beneath the offer stimulus for 1820 ms. During 

this time, the participant was required to respond with a button press, indicating their 

commitment to either accept (approach) or reject (avoid) the offer.  All stimuli remained on 
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the screen for the remainder of the response interval, and after the response was submitted, the 

response mapping corresponding to their choice was highlighted. Participants were allowed to 

change their response within the 1820 ms response interval. The response mappings were an 

upward pointing triangle representing the accept option and a downward pointing triangle 

representing the reject option.  The participant used either the index or middle finger of their 

right hand to press either the left or right (respectively) button on a Cedrus LP-RH response 

pad transmitting through a Lumina LSC-400 controller (Lumina, Cedrus Corportation, San 

Pedro, CA, USA), according to the location of their preferred choice option. The left/right 

positions of the choice options varied from trial to trial, preventing the participant from pre-

planning a motor response before the response phase. Finally, a 910 ms feedback interval 

followed the response interval. Feedback included the offer stimulus, which remained on the 

display, and text stating whether the offer was accepted or rejected. On payout trials, a small 

subset of all trials, an additional 9100 ms payout alert followed the decision feedback.  

Because we were interested in value-processing during different phases of decision 

making, our analyses separately analyzed neural responses from the offer phase and the 

commit phase of each trial. The offer phase was the 4550 ms in which the offer was displayed 

but the participant was not yet able to submit a response. The commit phase was the 2730 ms 

comprising the response interval (1820 ms) and the feedback interval (910 ms).  

 

Payouts 

Participants did not receive the rewards and shocks for all accepted trials. Instead, 

during trial generation, 10 pseudorandomly selected offers were tagged as payout trials. On 

these trials, if the participant accepted the offer the payout alert indicated that they would 
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receive both the monetary reward and the shock. If they rejected the offer, the payout alert 

indicated they would receive neither. The payout alert also showed the cumulative number of 

payouts accepted so far. Participants were encouraged to assume that every trial was a payout 

offer and decide to accept or reject it accordingly, as they would not see the payout alert until 

after they’d submitted their choice. Although participants were notified whether an offer was 

a payout immediately after choosing to accept or reject it, the actual delivery of monetary 

rewards and shocks from payout trials occurred after they had completed the entire decision 

making task and had been removed from the MRI scanner. In pilot studies, we found that 

providing realtime payout feedback, relative to showing which trials were payouts at the end 

of a fixed-length block or at the end of the task, reduced the proportion of offers that were 

accepted. We believe that this may indicate that instant feedback reduces temporal discounting 

of future costs, relative to when that information is delayed, even though in both cases the time 

that the costs were actually delivered was the same (after completing the entire task).  

All participants also performed an additional cost-benefit decision making task after 

they completed the approach-avoidance task, not reported here. Twenty-four of the participants 

also underwent simultaneous physiological recordings of impedance cardiography while 

performing the decision making tasks in the MRI scanner, impedance cardiography data is not 

included here and will be presented elsewhere.  

 

Behavioral statistical analysis 

Estimating SV from decision behavior 

 The subjective value (SV) of each offer can be represented as 

SV = β0 + βrroffer + βssoffer  
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where is the available reward, is the contingent shock,  and  describe how 

strongly the individual subject weights rewards and shocks, and  is the individual’s 

intercept, indicating their intrinsic motivations to pursue reward versus avoid shock (Volz et 

al., 2017). We separately modeled each participant’s choice data with logistic regression, a 

specialized from of the generalized linear model, using the glm package in R. Offers to which 

participants failed to respond before the decision deadline were repeated at the end of the task. 

Choice outcomes from the second presentation were included in the dataset used for generating 

valuation models but these trials were excluded from the fMRI analysis. Participants’ model 

estimates were used inversely to predict the perceived subjective value of each offer, SV, and 

the likelihood that it would be accepted, P(Acc) specific to each individual on each trial. 

SV = β0 + βrroffer + βssoffer = log
P(Acc)
1− P(Acc)

 

P(Acc) = 1
1+ e−SV

 

 

Estimating confidence from SV 

Here, we operationalize choice confidence as the extent to which one can believe they 

are making the best decision. In our task, given the options to either accept or reject, the best 

choice depends on the perceived value of the offer and consequently choice confidence is 

maximized when SV unambiguously points to one choice over the other. Therefore, confidence 

varies in a U-shaped function with respect to increasing SV such that when SV is extremely 

high or extremely low, one can be highly confident in choices to accept or reject the offer, 

respectively, but when an offer’s SV is neutral there is more ambivalence about the decision. 
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We quantify confidence in accordance with Lebreton et al. (2015), who demonstrated that 

decision confidence can be estimated from the quadratic extension of perceived value in the 

absence of explicit confidence ratings.  

Confidence = SV 2  

We used these trial-by-trial estimates to test whether behavioral response times and 

neural activity varied with respect to choice confidence, see below. Notably, because we did 

not collect metacognitive self-reported confidence ratings, we do not intend to make explicit 

claims about the subjective experience of confidence. Previous research has found mixed 

results regarding how closely model-estimated confidence varies with self-reported 

confidence, see the discussion for a further explanation. Therefore, we primarily aim to 

describe neural responses that vary with model-estimated confidence. 

We also inspected the relationship between confidence and choice outcomes by 

categorizing trials into confident accepts (AccCon), ambivalent accepts (AccAmb), confident 

rejects (RejCon), and ambivalent rejects (RejAmb).  Each participant’s trials were binned by 

choice outcome and then we performed a median split on SV for both choice bins. Accepted 

offers in the upper 50% SV were assigned to AccCon and the rest were assigned to AccAmb. 

Rejected offers in the upper 50% SV were assigned to RejAmb, and the rest were assigned to 

RejCer. Notably, because we observed substantial individual differences in subjective 

valuation, both parameterizing and categorizing the offers according to individual-specific 

model-based estimates allowed us to describe objectively identical offers differently for each 

participant, according to their own individual preferences. This was a critical feature of our 

study that allowed us to observe group-wide neural responses that were specific to decision 

outcome, SV, and confidence, regardless of the objective properties of the stimulus. 



 17 

In our paradigm, P(Acc) varies as a sigmoidal function of SV while choice confidence 

varies as a U-shaped function of SV. Consequently, when P(Acc) is close to either 0 or 1 there 

is high choice confidence in either accepting or rejecting the offer, respectively and P(Acc) is 

close to .5, there is high ambivalence about committing to either choice. In a two-dimensional 

decision space in which reward values are represented on one dimension, pain values are 

represented on the other, and the modeled decision boundary is the vector along which P(Acc) 

= .5, the choice confidence associated with a reward-pain offer pair increases with its distance 

from the decision boundary. We present individual choice outcomes and binned choice 

confidence overlaid on estimated P(Acc) throughout the decision space in figure (Fig. 2).   

 

Neuroimaging Data Acquisition and Preprocessing 

Neuroanatomical ROI 

We investigated task-related involvement within an a priori region of interest (ROI), 

vmPFC. The ROI was anatomically defined from the Harvard-Oxford cortical structural 

probabilistic atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases),  and includes all voxels with 

at least 25% likelihood of being located within areas labelled Frontal Medial Cortex or 

Subcallosal Cortex.  

 

MRI protocols: 

Anatomical and functional MRI data were collected on a Siemens 3T Magnetom 

Prisma Fit with a 64-channel phased-array head and neck coil (58 channels active for functional 

coronal imaging). High-resolution 0.94 mm isotropic T1- (TR=2500 ms, TE=2.2 ms, FA=7°, 

FOV=241 mm) and T2*-weighted (TR=3200 ms, TE=570 ms, FOV=241 mm) sagittal 
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sequence images were acquired of the whole brain. Next, functional MRI recordings were 

collected while participants performed the decision making task. For each functional run, a 

multiband T2*-weighted echo planar gradient-echo imaging sequence sensitive to BOLD 

contrast was acquired (TR=910 ms, TE=32 ms, FA=52°, FOV=192 mm, multiband factor 4) 

provided by the Center for Magnetic Resonance Research in accordance with a current license. 

Each functional image consisted of 64 coronal slices acquired perpendicular to the AC-PC 

plane (3 mm thick; 3x3 mm in-plane resolution). Coronal orientation is necessary when 

acquiring simultaneous impedance cardiography to avoid artifact (Cieslak et al., 2015). 

 

MRI pre-processing 

Anatomical data was skull-stripped using Advanced Neuroimaging Tools (ANTs) 

brain extraction script (Avants et al., 2011).  All other image pre-processing was performed 

with FMRIB’s Software Library (FSL, www.fmrib.ox.ac.uk/fsl). The first 10 volumes of each 

functional run were removed to eliminate non-equilibrium effects of magnetization occurring 

before the start of the task. The remaining functional volumes were skull-stripped using BET  

(Smith, 2002) motion corrected using MCFLIRT (Jenkinson et al., 2002), spatially smoothed 

using a Gaussian kernel of FWHM 5mm, intensity normalized relative to the grand-mean of 

the entire 4D dataset by a single multiplicative factor, and underwent high-pass temporal 

filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s).  

In preparation for group analyses, participants’ six functional runs were registered to 

their anatomical image and then to the Montreal Neurological Institute (MNI) 2mm averaged 

152-brain template included with FSL distributions, using FSL’s linear image registration tool 

with 12 degrees of freedom (FLIRT; (Jenkinson and Smith, 2001; Jenkinson et al., 2002). 
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Refinement of the latter transformation was carried out with FSL’s nonlinear registration 

image registration tool (FNIRT) with a 10mm warp resolution (Andersson et al., 2007a; 

2007b). 

 

Neuroimaging Statistical Analysis 

fMRI analysis  

 FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Time-series 

statistical analysis was carried out using FSL’s improved linear model (FILM) with local 

autocorrelation correction (Woolrich et al., 2001).  We performed whole-brain statistical 

analyses with two general linear models (GLMs), as described below. Both GLMs had separate 

terms for the offer phase (off) and the choice commitment phase (com) of each trial. Offer 

phase regressors were time-locked to the onset of the offer and had a duration of 4.55s, during 

which the participant assesses the SV of the offer but cannot yet respond. Commit phase 

regressors were time-locked to the onset of the response mappings and had a duration of 2.73 

seconds, during which the participant submits their decision about the offer and then views 

feedback confirming their choice. Finally, the GLMs also included a nuisance regressor for 

payout notifications, which were not used in analyses of interest but were intended to absorb 

variance in neural responses associated with subjective value (as payout notifications included 

an image of the payout offer) but unrelated to decision making processes.  The payout regressor 

was time-locked to the onset of the payout notification and had a duration of 4.55 s, and the 

remaining 4.55 s of the payout notification screen was included with baseline activity. 



 20 

 Both analyses were performed at three sequential levels. First, at the run level, each 

participant’s six runs were separately modeled to find mean within-run activity corresponding 

each regressor and contrast images were generated by estimating pairwise differences between 

conditions. Then, at the participant level, run-level data was combined (fixed effects) to find 

the participant’s overall mean response relating to each regressor and contrast. Finally, at the 

group level, the participant data was combined (mixed-effects treating participant as a random 

effect with FSL’s FLAME 1) to find the group-wide mean responses for each regressor and 

contrast. 

 We tested the results of each contrast with non-parametric permutation testing at the 

whole brain level with threshold-free cluster enhancement (TFCE), implemented with FSL’s 

Randomise.  This approach minimizes false positives by deriving a null distribution from the 

voxelwise data rather than assuming a parametric null distribution. For one-sample t tests, the 

distribution is created by iteratively multiplying statistical map values by 1 or -1, we performed 

5,000 permutations of each contrast. TFCE detects clusters of contiguous voxels without 

setting an arbitrary cutoff for minimum cluster size or voxel statistic but rather summarizes the 

cluster-wise evidence at each voxel, against several types of cluster-forming thresholds and 

controls the family-wise error (FWE) rate at p=.05 (Nichols and Holmes, 2002; Winkler et al., 

2014). We present figures with voxel-wise T-values from all voxels that survived whole-brain 

TFCE correction. Some contrasts yielded significant voxels across contiguous but widespread 

regions of cortex, and consequently reporting only the peak voxel of a cluster would obscure 

other local maxima in different anatomical regions. Therefore, we also report the coordinates, 

t statistics, Brodmann area, and anatomical structure labels from Automated Anatomical 

Labelling the of the MNI atlas for local maxima within each cluster in Table 1. Local maxima 
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were found with the cluster command provided with FSL and labelled with label4MRI, a freely 

available toolbox for R (https://github.com/yunshiuan/label4MRI ). We additionally report 

results from sub-conditions of GLM2 restricted to and TFCE corrected only within our primary 

ROI of interest, vmPFC.  

 

GLM1: Parametric analysis SV and confidence 

GLM1 was a parametric statistical analysis to observe neural activity modulated by SV 

and confidence (CD) during the offer and commit phases of each trial:  

 

Y = βoff Xoff + βcomXcom + βSVoff XSVoff + βSVcomXSVcom + βCDoff XCDoff + βCDoff XCDcom + β payout X payout + ε

 

where Y is the time series of a given voxel predicted by a design matrix with one row for each 

time sample and one column for each of 7 trial regressors, convolved with a canonical gamma 

hemodynamic response function.  The model included categorical terms (βoff Xoff ,  βcomXcom ) 

to isolate task related activity during the offer and commit trial phases (onsets and offsets 

described above). Parametric terms βSVoff XSVoff  and βCDoff XCDoff were orthogonalized with 

respect toβoff Xoff  to capture variance in neural activity during the offer phase explained by 

trial-by-trial SV and confidence (for which regressors were range normalized by z-score). 

Likewise, βSVcomXSVcom  and βCDcomXCDcom  were orthogonalized with respect toβcomXcom and 

modeled neural activity related to SV and confidence during the commit phase. 

 

GLM2: Categorical choice by confidence analysis 
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GLM2 estimated categorical variance in neural responses during the offer and commit 

phases of each trial:  

 

Y = β
ACoff
X
ACoff

+ β
AAoff
X
AAoff

+ β
RCoff
X
RCoff

+ β
RAoff
X
RAoff

+ β
ACcom

X
ACcom

+ β
AAcom

X
AAcom

+ β
RCcom

X
RCcom

+ β
RAcom

X
RAcom

+ ε

  

The first four terms modeled the offer phase of confident accepts, ambivalent accepts, 

confident rejects, and confident accepts, respectively. The next four terms modeled the commit 

phase of the same conditions. The ninth regressor modeled payout notifications. 

Our contrasts compared each condition with baseline, tested main effects of choice outcome 

(i.e. accepted offers vs. rejected offers irrespective of choice confidence) and choice confidence 

(i.e. high confidence choices vs. low confidence choices irrespective of choice outcome) 

separately during the offer and commit phases, as well as select pairwise comparisons within 

these conditions (AccCon vs. AccAmb, and RejCon vs. RejAmb), which were specifically 

inspected within our anatomical ROI, vmPFC.  

 

Phase-specific responses in vmPFC  

To further characterize the pattern of vmPFC responses during the offer and commit 

phases, we extracted mean parameter estimates within vmPFC for each condition at each trial 

phase. We tested whether vmPFC simultaneously tracks value and confidence, or if these two 

signals modulate vmPFC responses during different phases of decision making. Following the 

logic of Lebreton et al., (2015), we assumed that the function that decision phase-specific 

vmPFC responses take across trial conditions of ascending value (RejCon < RejAmb < 

AccAmb < AccCon) would be indicative of the information being processed during that trial 
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phase. A linear increase of vmPFC response magnitudes would be associated with value 

processing, whereas a quadratic function would be associated with confidence processing. If 

vmPFC simultaneously tracked confidence and value, model terms for both the linear and 

quadratic extensions of value would be necessary to fully explain the observed pattern of 

vmPFC activity.  

To tailor the predictors in these models to individual participants, we used the mean 

perceived value across trials from each condition, calculated separately for each participant. 

SV varies substantially between participants depending on the consistency of their choice 

behavior. Specifically, slight differences in participants’ choice consistency lead to substantial 

differences between their model-estimated SV predictors. Consequently, there was a large 

range of SV and SV2 throughout the group and many participants’ data only spanned only a 

portion of that range, making it difficult to draw conclusions at the group level. P(Acc) and 

P(Rej) (the latter is equivalent to 1-P(Acc)) are always restricted to the range of 0 to 1. 

Consequently, P(Acc)-P(Rej) normalizes value to range from -1 to 1 while preserving the sign 

of SV, with negative values predicting reject choices, positive values predicting accept choices, 

and values surrounding zero indicating decision ambivalence. Conversely, normalizing SV at 

the individual level (e.g. z-score) would not preserve the sign of raw SV. Furthermore, whereas 

in GLM1 we observed parametric modulation by SV, in GLM2 trials were binned according 

to observed choice, which is more specifically related to P(Acc)-P(Rej). Therefore, we used 

P(Acc)-P(Rej) as value predictors in our ROI analysis, which improved consistency for 

groupwide analysis while retaining the sign of SV. Previous research has used a similar 

approach (Lebreton et al., 2015). 
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Each participant’s mean vmPFC parameter estimates from the four trial conditions 

were predicted as a function of their mean P(Acc)-P(Rej) of that condition using linear mixed 

effects regression, implemented with the lme4 package for R (Bates et al., 2015).   

 

Linear Model: ŷ = b0 + b1(P(Acc)− P(Rej))+ ε  

Quadratic Model: ŷ = b0 + b1(P(Acc)− P(Rej))+ b2(P(Acc)− P(Rej))
2 + ε  

 

The linear and quadratic extensions of P(Acc)-P(Rej) were specified as fixed effects and we 

included a random effect on the model intercept across subjects to account for baseline 

variation in vmPFC parameter estimates. Predictor values entered into the model were 

participants’ mean P(Acc)-P(Rej) of trials from each of the four conditions. Both models were 

separately fit to parameter estimates of BOLD responses in vmPFC during the offer phase and 

during the commit phase. We  report model fits as well as the results of model comparisons. 

Due to ambiguity in estimating denominator degrees of freedom, linear mixed model fits are 

not best evaluated by p-values. However, significance can be inferred from confidence 

intervals constructed by iteratively sampling the model posterior to estimate the likelihood of 

the observed parameter estimates. We ran 5,000 simulations using the posterior distributions 

over each parameter from the mixed models using the merTools package for R. We report 

significant parameters with 95% CIs that do not span zero. For interested readers, 

corresponding p-values estimated with Satterthwaite’s method implemented in the lmerTest 

package for R are also provided. Model comparison (ordinary likelihood ratio test) and relative 

AIC and BIC values were used to determine the best fitting model for the offer phase and for 

the commit phase.  
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Behavioral Correlates of SV and Confidence 

We estimated confidence as the quadratic extension of value in accordance with a 

similar study that validated this operationalization by demonstrating that both response times 

(RTs) and self-reported confidence were related by the inverse quadratic to value, and thus 

RTs and confidence were negatively correlated. Notably, that study found that quadratic 

extension of value (i.e. model-based confidence) better predicted self-reported confidence than 

RTs, suggesting that while RTs were a useful behavioral correlate of subjective confidence, 

they didn’t fully explain variance in metacognitive confidence ratings (Lebreton et al., 2009; 

2015).  

We aimed to measure neural correlates of implicit, naturalistic experiences of 

confidence during decision making. Therefore, our task did not solicit metacognitive 

confidence ratings. Instead, we used model-based confidence (estimated in accordance to 

previous literature) to predict changes in BOLD responses. Given previous findings that 

model-based confidence better predicted confidence ratings than RTs, we did not take RTs to 

be a direct proxy for the subjective experience of confidence. Nonetheless, it was important to 

verify that model-estimated confidence mad a meaningful relationship with behavior in our 

task, that is, to the time it took participants to commit to a decision. Specifically, an inverse 

quadratic relationship between behavioral RTs and model-estimated confidence would 

indicate that it took participants longer to commit to decisions that were associated with lower 

degrees of model-estimated confidence. To test this, we fit RTs with mixed effects regression 

(lme4 package for R; (Bates et al., 2015)). Fixed effects specified the linear and quadratic 

extensions of value and a random effect on the model intercept was included to account for 
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baseline variation in RT. 

 

ŷ = b0 + b1(P(Acc)− P(Rej))+ b2(P(Acc)− P(Rej))
2 + ε  

 

Value predictors entered into the model were generated by sorting model-estimated 

value into 5 equally spaced bins and the dependent measures were participants’ mean RTs for 

each bin. The model was tested again using z-scored SV as value predictors to verify that 

relationship between value and RTs were consistent regardless of the method used to estimate 

value. 

 

Results 

Behavioral Choice Models and RTs 

 A separate logistic regression model was fit to each participant’s decisions to accept or 

reject shock/reward offers made while undergoing fMRI. All participants’ model fits had 

significantly positive reward coefficients and significantly negative shock coefficients, 

indicating that both offer attributes influenced SV in the intended direction, despite individual 

differences in their relative contribution to choice outcomes (br estimates: mean= .199, range 

= [0.064, 0.547], p values all <.001), costs (bs estimates: mean = -0.170, range = [-0.547, -

0.050], p values all <.001). Moreover, there was great variation in participants’ model 

intercepts with ranges that spanned zero, suggesting strong individual differences in baseline 

tendencies to accept or reject offers (b0 estimates: mean = 1.057, range = [-6.420, 9.750]). On 

average, participants tended to accept more offers than they rejected (mean=61.3%, 

sd=17.8%), and seemed to be engaged in the task (98.2% of all trials received responses before 
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the 1.8s decision deadline). Finally, linear mixed effects regression of behavioral RTs 

confirmed that RTs were quadratically related to SV and negatively correlated with estimated 

confidence, signifying that choices with low estimated confidence indeed took longer. This 

relationship between RT and confidence is consistent with previous research that defined 

confidence in a similar form (Lebreton et al., 2015). 

 

Neuroimaging Results 

GLM 1: Parametric Modulation by SV and Confidence 

 In GLM 1 we measured parametric modulation of BOLD responses by continuous 

regressors for SV and choice confidence over the course of value-based choices. During the 

offer phase SV correlated significantly with activation in many regions of cortex, including a 

network of value-related regions incorporating vmPFC, posterior cingulate cortex, 

orbitofrontal cortex (OFC,) the basal ganglia, posterior insula, and hippocampus, as well as 

other regions known to be involved with perceptual and value comparison such angular gyrus, 

lateral temporal cortex, and visual cortex (Fig. 3A).  A comprehensive list of significant 

clusters for all conditions are tabulated in Table 1.  

 We additionally found a relatively smaller set of regions where activity negatively 

correlated with confidence during the offer phase including areas associated with cognitive 

control and conflict resolution such as dACC and right lPFC, right superior parietal lobule 

(SPL), premotor regions, and visual cortex (Fig. 3B). There were no voxels with activity 

negatively related with SV nor any voxels that were positively related with confidence during 

the offer phase. Notably, neural responses to neutral SV can’t be easily interpreted with the SV 

regressor alone. Instead, the inverse of the confidence regressor can be interpreted as a measure 
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of choice conflict. Both the dACC and lPFC demonstrated a strong inverse relationship with 

confidence, consistent with previous results demonstrating their recruitment during 

ambivalence, conflict, uncertainty, and choice difficulty during value based decision making 

and other tasks (Kahnt et al., 2011b; Badre et al., 2012; Economides et al., 2014; Shenhav et 

al., 2014; Aupperle et al., 2015; Lopez-Persem et al., 2016; Schlund et al., 2016; Shenhav et 

al., 2016) . The inverse relationship between the confidence regressor and conflict-resolution 

and positive relationship of the regressor with SV is consistent with the idea that neural activity 

during the offer phase is primarily related to valuation processes. 

  Surprisingly, we did not observe any BOLD responses, in vmPFC or elsewhere, that 

varied with SV during the commit phase. Furthermore, during the commit phase, there were 

no regions where activity varied negatively with choice confidence. Instead, choice confidence 

significantly predicted activity in a cluster of voxels within vmPFC as well as other regions 

including posterior insula, superior temporal cortex, and premotor areas during the commit 

phase (Fig. 3C).  

Taken together, the key findings from GLM1 regarding vmPFC were that during the 

offer phase vmPFC tracks SV but not confidence, and during the commit phase vmPFC tracks 

confidence but not SV. These results suggest that in value-based decision making, vmPFC 

responses do increase with both SV and confidence, however these signals do not modulate 

simultaneously. Rather, there may be a more dynamic process through which vmPFC is first 

involved in the valuation process before transitioning to signaling confidence about that 

valuation. This interpretation preliminarily supports the idea that vmPFC’s dual roles in value-

based decision making are separable if that process is examined in sequential stages. However, 

while SV predicts choice outcomes (i.e. offers perceived as highly valuable are likely to be 
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accepted), the two are not perfectly related, especially in choices that are closer to one’s 

decision boundary. It is possible that SV is computed relatively early on, but that vmPFC 

responses relating to the final choice (selected with respect to SV) occur later and concurrently 

with choice confidence, during the commit phase. Therefore, in GLM2 we measured responses 

related to choice outcomes and confidence.   

 

GLM 2: Categorical Choice by Confidence Conditions 

 In GLM2 we measured BOLD responses from four trial conditions: AccCon, RejCon, 

AccAmb, and RejAmb.  These analyses mirror GLM1 except that in GLM2, value is signified 

as trial by trial choice outcome rather than estimated SV and confidence has been binned into 

high (confident) and low (ambivalent) categories. During the offer phase, we observed that a 

similar network of regions to those that were parametrically modulated by SV in GLM1 also 

showed significant contrasts for decision outcome in GLM2 such that BOLD responses were 

stronger preceding decisions to accept than decisions to reject (Fig. 4A). This augments our 

findings from GLM1, demonstrating that not only SV but also a decision variable is 

represented within vmPFC relatively early in the decision making process, in this case during 

the offer phase.  

 There was substantial overlap between value-related responses in GLM1 and decisions 

to accept in GLM2. These similarities are likely attributable to participants’ relatively stable 

choice behavior, causing SV model estimates to be strongly predictive of choice outcomes. 

Consequently, neural responses associated with high estimated SV in GLM1 were also 

categorized as objective accept choices in GLM2. The primary exception to this rule was visual 

cortex, where activity tracked SV but not choice outcome, suggesting that visual cortex 
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activation varied with SV only insofar as it systematically related to visual properties of the 

offer stimuli. 

 Similarly, the contrast of BOLD responses from the offer phase of ambivalent versus 

confident choices revealed a similar network of regions as those that were negatively related 

to confidence during the offer phase from GLM1, with the addition of the anterior insula for 

GLM2 (Fig. 4B). No regions, including vmPFC, showed a stronger response during confident 

choices than ambivalent choices during the offer phase, nor were any regions more responsive 

during rejected trials than accepted trials.  

 During the commit phase, there were highly significant and widespread differences 

between confident and ambivalent choices, but no regions responded preferentially to one 

choice outcome (accept or reject) over the other. Critically, clusters of voxels in vmPFC as 

well as posterior cingulate, and an adjacent medial segment of superior parietal lobule showed 

a significant contrast between confident and ambivalent decisions during the commit phase, 

with stronger BOLD responses to confident choices (Fig. 4C, purple). The reverse contrast 

(ambivalent versus confident) revealed several of the same regions that responded selectively 

to ambivalent choices during the offer phase, such as the anterior insula, lateral PFC, and dACC 

(Fig. 4C, orange). This could possibly indicate sustained ambivalence-related activity that 

arises early in the valuation process and may still be unresolved at the time of choice 

commitment for highly difficult choices. The observed responses in vmPFC, selective for 

positive choice outcomes during the offer phase and for high confidence during the commit 

phase, provide additional evidence of separable stages of activity over the course of a value-

based choice.  

 Given the robust SV- (from GLM1) and choice-related (from GLM2) responses during 
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the offer phase, it is possible that apparent confidence-related signals in vmPFC activity during 

the commit phase were in fact attributable to strong, sustained value-related responses carrying 

over from the offer phase. That is, relative differences in vmPFC responses to AccCon choices 

versus AccAmb choices could have driven the observed main effect of confidence – and 

moreover these effects might be better explained by value than confidence. To verify that the 

apparent effects of confidence could not be explained by relative differences in value, we 

measured contrasts of confident versus ambivalent BOLD responses separately for accepted 

and rejected offers. We were specifically interested in these comparisons within our a priori 

vmPFC ROI and therefore restricted statistical correction to this region alone (Fig. 5A). During 

the commit phase, we observed a cluster of voxels with significantly stronger responses during 

RejCon versus RejAmb trials as well as a cluster of voxels that preferred AccCon to AccAmb 

(Fig. 5B). Notably, because SV of RejCon trials is less than SV of RejAmb trials, this result 

suggests that during the commit phase, clusters of vmPFC activity are signaling choice 

confidence irrespective of SV. We found no voxels that demonstrated the same pattern during 

the offer phase, nor did we find any voxels with stronger responses to ambivalent choices 

during either phase.  

 

Decision Phase-Specific Responses in vmPFC  

 Finally, for both phases of the decision making process, we examined the pattern of 

response magnitudes in vmPFC across trial conditions of increasing value, beyond relative 

differences between pairs of conditions and compared the fits of models with linear and 

quadratic terms (Fig. 5C). For the offer phase, the linear model best explained the observed 

pattern of vmPFC parameter estimates across the four conditions as the additional term in the 
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quadratic model did not improve the model fit (Linear model: AIC = 901.1, BIC = 911.98; 

Quadratic model: AIC = 903.1, BIC = 916.69; comparison of models: χ2(1) = .0018, p = .966), 

indicating that vmPFC activity increased linearly with P(Acc)-P(Rej) during the offer phase 

(signaling value). For the commit phase, the quadratic model best explained the observed 

pattern of vmPFC parameter estimates (Linear model:  AIC = 1014.5, BIC = 1025.3, Quadratic 

Model: AIC = 1002, BIC = 1015.6, comparison of models: χ2(1) = 14.320, p < .001), indicating 

that vmPFC responses take a quadratic function with respect to value during the commit phase, 

signaling confidence. Model effect sizes are plotted in Fig. 5D and details about model fits are 

shown in Table 2.  

In summary, vmPFC responses increased linearly across trial conditions of increasing 

value during the offer phase, signifying early involvement with valuation of the offer stimulus, 

and varied quadratically across the same conditions during the commit phase, signifying late 

involvement with valuation of the decision and deriving confidence. Notably, no values 

associated with model-estimated confidence (such as those used in GLM1) were entered into 

the mixed effects models. Rather, the models estimated participants’ mean parameter estimates 

from the four trial conditions (of GLM2) from their mean P(Acc)-P(Rej) for all trials of that 

condition. Therefore, the plots in Figure 5c demonstrate that during the offer phase, vmPFC 

responses naturally take a linear function across the four trial conditions of ascending value 

P(Acc)-P(Rej), whereas during the commit phase, vmPFC responses naturally take a quadratic 

function across the same trial conditions.  

 Strictly speaking, because P(Acc)-P(Rej) takes a sigmoid function with respect to SV 

and that vmPFC increased linearly with SV in GLM1, one might predict vmPFC responses to 

take a logistic function with respect to P(Acc)-P(Rej). Visual inspection of individual raw 
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vmPFC parameter estimates (Fig. 5B) did not reveal that the underlying pattern of vmPFC 

parameter estimates had a logistic shape. To verify that this was the case, we repeated the linear 

mixed regression model, substituting SV predictors for P(Acc)-P(Rej) predictors, and found 

analogous statistical results. While the fMRI parameter estimates had sufficient resolution to 

discern between linear and quadratic functions, it is unlikely that a similar distinction could be 

made between two monotonic functions such as linear and logistic functions. We present 

results with respect to P(Acc)-P(Rej) because this measure improved the interpretability of 

group-wide results by controlling the range of predictor values across the group while 

preserving the sign of raw SV (as described above). 

 

Behavioral RTs and Confidence 

Before analysis, trials with RTs exceeding 3 SD of the overall group mean were 

excluded (1.56%). Additionally, trials exceeding 3 SD of the individual’s mean RT for each 

bin of each analysis were excluded (0.98%).  The model confirmed that RTs times took an 

inverse quadratic function with respect to value (Fixed Effects: (P(Acc)-P(Rej) estimate = -

35.415, 95CI [-50.042, -20.787], SE = 7.466, t = -4.743, p < .001;  P(Acc)-P(Rej)2 estimate = 

-77.330, 95CI [-102.213, -52.451], SE = 12.700, t = -6.90, p <. 001; Random Effect SD = 

88.02), indicating that participants were slower to commit to decisions associated with low 

model-estimated confidence (Fig. 6). Notably, in addition to the quadratic relationship, there 

was also a negative linear correlation between value and RTs, indicating that it took 

participants longer to commit to decisions about low value offers versus high value offers. This 

may have been caused by the observed bias to accept offers more offers than were rejected, 

which meant that responses to lower value offers, which were often reject choices, required 
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overriding the default decision to accept.  

We observed statistically analogous, but somewhat weaker results when using SV as 

value predictors (Fixed Effects: SV estimate = -27.198, 95CI [-32.326, -22.070], SE = 2.618,  

t = -10.390, p < .001; SV2 estimate = -7.900, 95CI [-12.230, -3.563], SE = 2.212, t = -3.570, p 

= .001; Random Effect SD=8.020), which is likely due to large individual differences in 

estimated SV, as described above. Taken together, the results of the RT analysis confirmed 

that there was a meaningful relationship between model-estimated confidence and behavior. 

Participants were slower to commit to decisions about offers we predicted would elicit 

ambivalence, suggesting that these choices might have been more challenging to resolve. This 

is not an indication that RTs measure the subjective experience of confidence, but rather that 

there is an empirical basis that model-estimated confidence captures aspects of our task 

associated with decision difficulty. Importantly, because participants varied in their subjective 

preferences and their decision boundaries diverged considerably from the reward=cost line 

(Fig. 2), increased RTs for ambivalent choices cannot be explained by difficulty in perceptual 

discrimination (i.e. merely determining whether costs or rewards were perceptually larger).  

 

 

 

Discussion 

We measured behavioral and neural responses during a two-phase Ap-Av decision 

making task with consequential mixed outcomes. Model-based SV, confidence estimates and 

decision variables correlated with BOLD responses throughout the cortex, including within 

vmPFC. We provide novel evidence that these vmPFC signals emerge during different phases 
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of decision making. Specifically, neural responses to offer valuation (SV) and choice 

determination were temporally dissociated from decision valuation (confidence), with the 

former dominating vmPFC prior to choice commitment, when the latter takes priority. The 

following sections discuss our key findings regarding neural signatures of SV and confidence 

as well limitations of this study and suggestions for future research.  

During the offer phase of each trial, participants deliberated on accepting or rejecting 

offers and vmPFC responses increased with estimated SV (GLM1). We complemented this 

finding by demonstrating that parameter estimates from an anatomical vmPFC ROI increased 

monotonically with P(Acc)-P(Rej) (GLM2). This is consistent with a vast literature 

documenting vmPFC’s role in integrating items’ cost and reward attributes into its overall SV 

(Talmi et al., 2009; Grabenhorst and Rolls, 2011; Park et al., 2011; Amemori and Graybiel, 

2012). vmPFC also distinguished between decision outcomes during the offer phase, with 

stronger responses anticipating accept decisions than reject decisions (GLM2). These results 

support a goods-based models of value-based decision making, which proposes that economic 

choices are made between goods rather than actions (Padoa-Schioppa and Assad, 2006), and 

can therefore be settled prior to planning the action to submit the decision (Wunderlich et al., 

2010).  To our knowledge, this is the first evidence of approach-selective vmPFC responses 

preceding choice commitment in an economic ApAv task. One previous fMRI study that 

employed a strategy game requiring choices to attack or defend reported that an adjacent 

region, rostral ACC, preferentially responded when participants defended versus attacked and 

tracked the value of deploying defense strategies but not attack strategies (Wan et al., 2015). 

While we did not observe regional activation corresponding to reject choices, the conceptual 

equivalent to defending, the notion of separable but adjacent neural bases for approach and 
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avoidance behaviors is compelling. Further exploration of the relationship these behaviors 

have with valuation will be an interesting avenue for further research.  

Beyond vmPFC, we observed extensive overlap between regions tracking SV in GLM1 

and regions that selectively activated preceding accept decisions in GLM2. This was observed 

in a larger value-network including regions important for sensory association, value-

comparison, and reward processing such as angular gyrus, posterior parietal cortex, lateral 

temporal cortex, posterior cingulate cortex, and the ventral striatum. The value network likely 

encodes finer-grained distinctions between SV and choice outcome than were apparent in our 

analyses. For example, others have suggested separable time courses for evolving value signals 

and decision variables (Rushworth et al., 2012). Future research aiming to find finer 

dissociations of SV and decision variables may benefit from novel variations of this task. 

Furthermore, our anatomical vmPFC ROI was selected a priori and is somewhat inclusive, 

combining subcallosal cortex and medial frontal cortex from the Harvard-Oxford atlas, which 

include structures that others have labeled medial OFC, pregenual or subgenual ACC. Thus, 

we cannot draw meaningful conclusions about functional specificity at a smaller scale, but we 

appreciate that others have made interesting discoveries on this front. For example, it has been 

suggested that over the course of stimulus processing, OFC is the first cortical site where 

reward values are assigned to appetitive stimuli, whereas later processing in vmPFC transforms 

value representations into choices (Grabenhorst and Rolls, 2011) that guide action selection 

(Rushworth et al., 2009). Future research might combine finer parcellation of prefrontal cortex 

with fMRI models that include terms for individual offer attributes to reveal separable patterns 

of responses to reward, SV, and choice outcome. However, this was beyond the scope of our 

study.  
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Remarkably, we found no regional activation that was significantly modulated by SV 

(GLM1) or differed by choice outcome (GLM2) during the commit phase, even when 

statistical correction was restricted to vmPFC (GLM2). This result was unexpected given 

previous findings that vmPFC representations of subjective preferences are automatically 

elicited by task stimuli, even when this information is task-irrelevant (Lebreton et al., 2009; 

Smith et al., 2010). Moreover, SV responses in vmPFC can last for the entire duration of value 

stimuli, even when stimulus durations long outlast the time needed to make a decision and the 

extra time does not change decision behavior (Sokol-Hessner et al., 2012). Together, these 

prior findings suggest that in our study, vmPFC should encode SV whenever the offer stimuli 

were visible (including during the commit phase), but we failed to find such effects. This may 

indicate that our two-phase task reveals the transition of vmPFC processing from offer 

valuation to decision valuation in such a way that other paradigms that require immediate 

responses, delay responses but remove task stimuli during the response, or transition to choice 

outcomes without providing choice feedback cannot. Alternatively, there may be enduring, but 

relatively weak, SV representations in vmPFC during the commit phase that did not reach 

statistical significance. Visual inspection of the group mean parameter estimates suggests an 

asymmetrical quadratic function such that accepted offers, on average, were associated with 

larger response magnitudes than rejected offers. Furthermore, when we modeled vmPFC 

parameter estimates from the commit phase, a linear-only model provided a marginal fit with 

the data, consistent with a weak SV effect during the commit phase. Thus, there is a hint that 

vmPFC represents SV, albeit weakly, through the commit phase, but this effect is markedly 

exceeded by confidence.   
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We did not find any BOLD responses that parametrically correlated with confidence 

during the offer phase (GLM1) nor were there any regions with selective responses for 

confident over ambivalent trials during the offer phase (GLM2), even when statistical 

correction was restricted to vmPFC. This was somewhat unexpected given the empirical and 

theoretical literature suggesting early emergence of confidence signals that evolve in parallel 

with the processing of choice stimuli (Kepecs et al., 2008; Gherman and Philiastides, 2015; 

Dotan et al., 2018). Instead, we found confidence-related activity emerged after SV signals. 

During the commit phase of each trial, while participants submitted a choice and then viewed 

feedback about their selection, vmPFC responses increased parametrically with decision 

confidence (GLM1) and similarly were stronger for confident choices than ambivalent choices 

(GLM2). Closer inspection revealed that vmPFC parameter estimates took a quadratic function 

with respect to increasing value. Therefore, during the commit phase, vmPFC responses were 

stronger for confident choices than ambivalent choices, even for rejected offers when high 

confidence is associated with low SV.  This provides strong novel evidence that vmPFC 

encodes both value and confidence during deterministic ApAv decision making, extending 

previous findings of confidence representations within vmPFC during value-based decision 

making (Lebreton et al., 2009; De Martino et al., 2013; Schlund et al., 2016). 

Others have demonstrated that model-based confidence estimates correspond closely 

to self-reported confidence (Lebreton et al., 2015) and the strength of the relationship between 

model-based confidence and vmPFC activation strongly predicts the relationship between self-

reported confidence and vmPFC activation (Bang and Fleming, 2018). Because we were 

interested in confidence in naturalistic decision making, which tends to occur in the absence 

of metacognitive evaluation, we did not solicit self-reported confidence ratings. We replicated 
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previous findings that model-estimated confidence had an inverse quadratic relationship with 

RTs (Lebreton et al., 2015), such that increasing model-estimated confidence predicted faster 

decision commitments (Fig. 6), suggesting that model-estimated confidence captures an 

element of choice difficulty.  

A similar study by De Martino et al. (2013), that incorporated explicit confidence 

ratings with an fMRI value-based choice task suggests separable neural signals corresponding 

to model-based and self-reported confidence and found that while vmPFC tracked unsigned 

value differences between choice options (which roughly correspond to our model-estimated 

confidence), rostrolateral PFC (rlPFC) tracked self-reported confidence. They used this basis 

to ground a hypothesis that rlPFC probes internal confidence signals, represented in vmPFC, 

and makes them available for metacognitive self report. Others have made similar claims 

(Fleming et al., 2012). Notably, rlPFC responses correlated with ambivalence in our task 

(which did not require explicit confidence ratings), suggesting that our task did not elicit 

similar metacognitive appraisal processes. While there is not yet broad consensus regarding 

the loci of implicit versus metacognitive confidence – it seems evident that decision tasks 

requiring metacognitive confidence judgments may recruit unique neural resources from tasks 

that model confidence directly from decision behavior. Nonetheless, our results support recent 

suggestions that implicit confidence, the valuation of one’s judgment, shares a 

neuroanatomical basis with a variety of other valuation processes, vmPFC (Lebreton et al., 

2015; Hebscher and Gilboa, 2016; Fleming et al., 2018). We add to this growing theoretical 

framework evidence for a dynamic process by which vmPFC shifts from valuation of external 

stimuli to valuation of internal value representations and the decisions they inspire. 
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Chapter III:  Experiment 2: Value and Confidence in Decisions with Effort Costs 

 

Chapter 2 laid a framework for empirically investigating neural representations of value 

in cost-benefit ApAv choices with pain as the cost. The current chapter builds upon that 

framework by expanding the types of cost to which participants were exposed, allowing us to 

identify cost-domain-general and cost-domain-specific features of human decision behavior 

and their corresponding neural bases.  

In everyday life, there are often several ways that one might reach a certain goal, and 

different paths promise varying types and degrees of costs.  For example, when one is hungry 

for a snack, they could choose to spend time and resources cooking something from scratch, 

or spend money on delivery from a restaurant, or spend energy (and their potential welfare) on 

walking into the wilderness to catch some prey. How are expected energetic expenses, 

cognitive demands, pain, and time transformed into value information to guide decisions? And 

how similar are the representations of different types of costs?  

Chapter 1 outlined numerous types of effort costs that have been posed in in the 

laboratory, including delayed rewards, risks, pain, cognitive effort, motor tasks, and grip force. 

More recently, the literature has expanded to begin directly comparing neural value 

representations of different types of costs, side by side. For example, neuroeconomic studies 

have contrasted decisions with costs of delayed rewards versus cognitive effort (Massar et al., 

2015) and manual grip-force effort (Rudebeck et al., 2006; Prevost et al., 2010); as well 

decisions requiring physical effort versus cognitive effort (Schmidt et al., 2012; Chong et al., 

2017) or probabilistic risks (Burke et al., 2013).  
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Still, it remains unknown whether different types of costs elicit different, domain-

specific neural value computations or if all types of costs are represented in a domain-general 

manner, potentially with a common currency.  Efforts to resolve this debate yield mixed results, 

often times even at the level of individual studies. One straightforward example is the 

comparison between cognitive effort and physical effort. Even intuitively, one can see strong 

cases for how such cost representations might be either domain-general or domain-specific. 

On one hand, physical and cognitive effort are conceptually distinct and the resources required 

for each are minimally overlapping – many different considerations go into deciding whether 

you would do one hour of manual labor in exchange for a meal versus deciding whether you 

would complete one hour of 3-back working memory tasks for the same reward.  On the other 

hand, if costs are all represented in distinct domain-specific modules, how can they be 

evaluated with respect to rewards or one another?  

Empirical tests of this specific question turned up mixed results. Whereas one study 

concluded that both cognitive and motor systems are driven by a common “motivational node,” 

the ventral striatum (nAcc), which represents the rewards associated with different types of 

effort (Schmidt et al., 2012), another reported to find an entire network of regions involved 

with domain-general reward devaluation, notably excluding the ventral striatum, as well as one 

unique domain-specific locus, the amygdala, that represents the rewards of cognitive efforts 

(Chong et al., 2017). The story only grows richer as additional types of costs are taken into 

consideration. Other studies that compared effort to risk and delay almost unanimously agree 

that representations of effort costs are highly domain-specific and found within dACC (see 

below) , while a recent report concludes that cognitive effort costs are encoded by the same 

domain-general network as any other type of value stimulus (Westbrook et al., 2019). 
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Nonetheless, as the field matures, some themes are coming into focus. dACC (and/or 

ACC proper) is consistently implicated as a hub for representations of both cognitive effort 

costs (Massar et al., 2015) and physical effort costs (Rudebeck et al., 2008; Kurniawan et al., 

2010; Burke et al., 2013; Arulpragasam et al., 2018). Interestingly, it has also been 

demonstrated that ACC represents SV in cost-benefit choices with effort costs (Croxson et al., 

2009; Prevost et al., 2010; Chong et al., 2017), even potentially supplanting vmPFC from its 

well-understood role in this process  (Klein-Flugge et al., 2016).  

Notably, studies that directly compared neural representations of effort costs against 

risk and delay costs have seemingly reached consensus that dACC (/ACC) is uniquely domain-

specific in this regard. That is, dACC(/ACC) consistently and exclusively tracks effort costs 

whereas other regions such as OFC, lateral parietal, and temporal cortex do not discriminate 

between cost types (Massar et al., 2015); nAcc, vmPFC, and (in this case) OFC specifically 

encode delay costs (Prevost et al., 2010), and aIC represents risks (Rudebeck et al., 2006). 

However, it has also been suggested that studies reporting associations between dACC(/ACC) 

and effort costs of value-based decisions, such physical effort, have conflated representations 

of the consequences of the choices with difficulty of making the decision itself (Hogan et al., 

2018).  

The insula is also frequently associated with cost representations in value-based 

decision making, although its exact role is unclear. Several studies have found that aIC tracks 

physical effort costs (Prevost et al., 2010; Treadway et al., 2012; Kurniawan et al., 2013; 

Arulpragasam et al., 2018), others have shown that this region encodes risks (Preuschoff et al., 

2008; Burke et al., 2013), rewards associated with exerting effort (Croxson et al., 2009), and 

SV more generally (Chong et al., 2017).  pIC has been reported to represent temporally 
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discounted rewards (Tanaka et al., 2004; Wittmann et al., 2007), respond to pain and the 

expectation of pain (Singer et al., 2009) and aversive values more generally in decision making 

tasks (Plassmann et al., 2010). These results are generally consistent with the anatomy of the 

region. pIC is a sensory cortex for visceral afferents and aIC is the source of cortical efferents 

to the parasympathetic nervous system, i.e. visceral motor cortex. 

Despite these exciting advances, the field is starkly lacking examination of one 

evolutionarily critical type of decision cost, cardiovascular exercise. To our knowledge, value-

based choices with costs of aerobic exercise have never been implemented in a laboratory 

setting. Previous investigations into the neural representations of physical effort costs in 

decision making posed offers with difficult motor tasks, such as rapid button presses, or manual 

grip force. However, such tasks are not particularly representative of the decision costs humans 

evolved to face.  When our ancestors decided what to do about foraging and prey selection, 

their options often involved steep costs of cardiovascular effort rather than rapid button presses 

to dial in a delivery order. It follows that humans should be particularly well-equipped to make 

such cost-benefit decisions about aerobic energetic expenses, and we were interested to know 

how people decide about and how the brain represents significantly physically demanding 

effort costs. Furthermore, we sought to understand how such choices and neural responses 

compare to our results from Chapter 2, in which participants faced choices with pain costs. As 

decisions with exercise costs had not been studied empirically, they had not been contrasted 

with pain costs either. In fact, to our knowledge, no previous studies have compared decisions 

with pain costs to decisions with any sort of effort costs. 

We had participants complete two ApAv decision making tasks while undergoing 

fMRI. In one session, decision costs entailed significant pain stimuli, as in Chapter 2. In the 
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other session, decision costs were exercise intervals on a stationary bike, calibrated to 

challenge the individual’s maximum capacity for physical exertion. We applied the same 

analyses as described in Chapter 2 to measure decision outcomes, SV, and confidence in 

choices with cardiovascular exercise costs. These analyses tested whether the results observed 

in Chapter 2 generalized to other types of decision costs (physical exercise) as well as to probe 

decision making about aerobic exercise more generally, as such a task had not been previously 

implemented.  

In addition to testing for a replication of our original findings, we additionally sought 

to identify domain-specific and domain-general behaviors and value representations between 

decisions about pain and exercise costs.   

We hypothesized that the overall pattern of results from Chapter 2 (shock version) 

would generally replicate here (bike version) in a domain-general manner, as we used identical 

experimental designs and stimuli, and because both tasks entailed significant physical costs 

paired with monetary rewards. While the literature strongly suggests that effort costs recruit 

dACC in a uniquely domain-specific manner, it was unclear exactly how this would manifest 

with respect to our initial findings of ambivalence-related responses in the same region.  We 

expected that the bike task would elicit stronger responses in dACC, representing effort costs, 

than the shock task. Yet, because this was an entirely novel implementation of effort costs, we 

did not have explicit predictions about the exact nature of such domain-specific representations 

in dACC beyond relative magnitudes. Previous research also reported that SV is represented 

in ACC and not vmPFC in decision making about effort costs. Accordingly, we expected that 

value representations would be somewhat weaker in vmPFC and potentially distributed more 

broadly into adjacent cortical regions (dACC /ACC) in the bike task relative to the shock task.  
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Methods 

Participants 

We report data from 21 participants (13 women, 20 right-handed, mean age = 21.9, 

SD=2.5). One additional participant completed the study but was removed from analyses due 

to significant susceptibility artifacts in their functional neural images that caused excessive 

errors in spatial normalization. No participants had a history of neurological injuries or 

illnesses, current daily use of psychoactive medications, cardiovascular disease, nor physical 

injuries that would interfere with performing cardiovascular exercise. Participants provided 

written consent in accordance with the Institutional Review Board at the University of 

California, Santa Barbara.  

 

Experiment Overview 

Participants made three separate visits to the lab: once for the pain decision making 

task, once for a physical fitness test and once for the exercise decision making task. Seventeen 

participants completed the shock session first, four completed the bike version first. 

Experimental procedures for the pain task are detailed in Chapter 2 and an overview of both 

sessions is included in Figure 7. The bike experiment required an initial fitness test to identify 

participants’ aerobic capacity, as measured by their VO2 max, a cardio-pulmonary exercise 

test. On the second visit, participants were familiarized with the cost stimuli by biking several 

intervals at a percent of their VO2 max on a stationary bike while viewing corresponding cost 

stimuli. Next, participants performed the decision making task while in the MRI scanner. 

Finally, after they had completed the experimental task, they returned to the stationary bike to 
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perform the exercise intervals they had chosen during the task and received their monetary 

rewards.  

 

Session 1: Aerobic thresholding procedure (VO2 max test) 

The VO2 max test determines a person’s maximal oxygen uptake during cardiovascular 

exercise. For the purposes of our study, this metric served as an objective benchmark of 

participants’ capacity for physical exercise. In this way, costs in the decision making task were 

normalized for individual differences in physical fitness. Therefore, the VO2 max test was 

analogous to the pain thresholding procedure in Chapter 2, but without any variance that might 

have been driven by subjective pain ratings.  

Participants refrained from strenuous physical exercise for at least 48 hours before 

coming to the lab for a bike session. They were also instructed to eat a full meal approximately 

two hours before both sessions. Before performing the fitness test, we verified that participants 

were eligible to engage in physical exercise with the Physical Activity Readiness 

Questionnaire (PAR-Q) from the National Academy of Sports Medicine (www.nasm.org). 

Participants were then fit with electrocardiograph recording electrodes, a pulse oximeter, and 

a respiratory mask, all transmitting to a Vyntus CPX/ECT metabolic cart (www.vyaire.com). 

The respiratory mask connected with a spirometer measured respiratory gas exchanges as the 

participant performed the test. During the first three minutes of testing, participants rested on 

the stationary bike (Ergoline 900, www.vyaire.com) while baseline respiration and 

cardiography were measured. For the next three minutes, participants began pedaling at a 

constant rate with a work load determined by their reported typical exercise routines and 

overall physical health. Next, the resistance of the bike gradually increased until oxygen uptake 
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plateaued. Participants then entered a cooldown phase by pedaling for five minutes at the 

baseline resistance level. The entire test lasted approximately 25 minutes.  

Participants also completed brief fMRI sessions immediately before and after their 

VO2 max test for an independent study about visual attention (data not reported here).  

Physiological benchmarks from the VO2 max test were used to determine the bounding 

thresholds of minimally and maximally difficult exercise that defined the range of costs in the 

decision making task. At the start of the start of the VO2 max test, physiological signals 

initially increase gradually with increasing resistance load, however as the test progresses and 

the load further increases, heartrate and metabolic respiratory gas exchanges begin to increase 

nonlinearly as load increases. We identified this point of deflection through visual inspection 

of physiological signals measured during the VO2 max test and the resistance load at this time 

point was recorded as the threshold for minimally difficult exercise. The VO2 max test ends 

when oxygen intake eventually plateaus, signifying the individuals peak physical exertion 

capacity. We recorded the resistance load at which participants reached this plateau (VO2 max) 

as the threshold for maximum physical exertion. All costs offered during the decision making 

task ranged from 1 – 100% between these two thresholds.  

 

Session 2: Cost familiarization, decision task, and decision payouts 

Cost familiarization: Participants returned to the lab to complete the exercise decision 

making task. Before the decision making task, participants were first familiarized with cost 

stimuli by riding the stationary bike while viewing example offers from the decision making 

task. They were shown  5 example offers with costs of 5%, 25%, 50%, 75% and 95% while 

pedaling the stationary bike at the corresponding resistance load. The loads were calibrated 
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such that 1% corresponded to the recorded load for minimally strenuous exercise from the VO2 

max test, 100% was the recorded load when they reached their VO2max (maximally strenuous), 

and all other values were scaled linearly between the two. Each familiarization interval was 90 

seconds. Participants were informed that the duration of the familiarization intervals were 

longer than the costs from the decision making task, but were instructed to attend to the 

perceived difficulty of the exercise rather than the timing. They were additionally instructed to 

remember the sensation associated with the example exercise intervals and use these as points 

of reference when making choices during the task, but that the real offers would include 

exercise ranging anywhere between 0 and 100% intensity, not just at the example levels.  

ApAv task: The offer stimuli, trial design, and experimental procedure were identical 

to the methods described in Chapter 2 for the pain version of the task. The key difference 

between the two sessions were the costs of the offers. In the bike version of the task, the cost 

stimulus (though perceptually identical to that in the shock version) represented one minute of 

exercise at an intensity proportionate to the size of the cost attribute stimulus, rather than the 

pain intensity of an electrical shock. We additionally varied which offers were tagged as 

payouts between sessions so that participants decisions weren’t biased by memories about 

which offers participants would result in payouts.  

Payouts: Payouts were carried out analogously to the procedures for the shock version 

of the study described in Chapter 2. After participants completed the decision making task in 

the MRI scanner, they returned to the stationary bike to perform the exercise costs from 

accepted payout trials and to receive the associated monetary rewards. Before the payout 

intervals, participants were re-fitted with a breathing mask and pulse oximeter and completed 

five minutes of warm-up exercise at a resistance below their minimally strenuous threshold. If 
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participants grew too fatigued to complete the payout intervals, the experimenter transitioned 

the exercise protocol to a cool down interval and the participant chose whether to complete the 

remaining payouts or to terminate the session and be compensated for what had been 

completed so far. 

 

Statistical Analysis 

Decision behavior from the bike ApAv session was analyzed with the same methods 

as the shock data as described in Chapter 2. Participants’ choices were fit with individual 

logistic regression models to estimate the perceived SV, P(Acc)-P(Rej) and confidence 

associated with each trial offer, and trials were categorized into AccCon, AccAmb, RejCon, 

and RejAmb trials for contrast analyses.  Likewise, the same preprocessing pipeline was 

applied to neuroimaging data from the bike session and the same analyses (GLM1 and GLM2 

from Chapter 2, in Chapter 3 will be referred to as GLM1b and GLM2b), with the same 

regressors and contrasts were applied at the run level. Condition (e.g. AccCon in GLM1b) and 

regressor parameter estimates (e.g. SV in GLM1b), as well as contrasts between trial 

conditions (e.g. AccCon vs. AccAmb in GLM2b) estimated at the run level were then carried 

up to the second level to estimate overall statistics at the subject level, just as in Chapter 2. The 

novel additions to GLM1b and GLM2b are that bike runs and shock runs were both included 

at the subject level, allowing us to specify additional higher-order contrasts between bike and 

shock conditions (domain-specific: e.g. SVshock vs. SVbike and domain-general: e.g. SVshock and 

SVbike together), which were in turn carried up to the group level. Notably, such comparisons 

couldn’t be made at the run-level as participants performed the bike and shock versions of the 

ApAv task on separate days.  
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In summary, GLM1b measured parametric responses to four regressors (SVoffer, 

SVcommit, Confidenceoffer, and Confidencecommit) with bike costs, with shock costs, overall 

(domain-general; averaging across bike and shock), and finally contrasts between the two 

(domain-specific; e.g. SVoffer_bike vs.  SVoffer_shock). GLM2b measured neural responses during 

both the offer and commit phases of each trial condition (AccCon, AccAmb, RejCon, and 

RejAmb) and select contrasts between these conditions (the same as in Chapter 2; e.g. AccCon 

vs. AccAmb). Each contrast was estimated for bike and shock costs separately, overall 

(averaging across bike and shock), and then contrasted between bike and shock conditions. 

Statistical outcomes of both GLMs were corrected for multiple comparisons at the whole-brain 

level with permutation-based TFCE, using FSL’s Randomise function, as in Chapter 2. This 

was repeated within our vmPFC ROI and included additional sub-condition contrasts of 

AccCon vs. AccAmb and RejCon vs. RejAmb.  

 

Results 

The primary differences between the analyses conducted here and in Chapter 2 are that 

we now draw from a subset of the original group (21 instead of 28) and we include two data 

sets for each individual - one in which decision costs are pain stimuli and one in which decision 

costs are cardiovascular exercise intervals. Decision behavior was similar to that described in 

Chapter 2 - participants negatively valued the bike offer attributes, indicating that aerobic 

exercise was perceived as a proper cost. The results of the behavioral analyses are described 

in detail in Chapter 5. Our fMRI analyses measured neural responses separately for bike (bike-

only) and shock (shock-only) data sets, both pooled together (domain-general), and contrasted 

the two (domain-specific). The latter comparison would identify any voxels with significantly 
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stronger responses to one cost versus the other. Although the analysis approach to the shock-

only data is identical to what was presented in Chapter 2, here we present results from only the 

subset of 21 individuals who also completed the bike task.  

Remarkably, we found no voxels with significant differences between the two costs in 

GLM1b or GLM2b, indicating that there were no domain-specific differences in the magnitude 

of responses correlating with any the variables that we measured. Therefore, we focus our 

descriptions on the results of the domain-general analyses, which incorporated neural 

responses from both the bike and shock tasks. Our figures additionally include the results of 

bike-only and shock-only analyses, which highlight two noteworthy features of the data set 

analyzed here. First, the effects of the reduced sample are rather apparent. Comparison of the 

results presented here in the shock-only analysis versus the results from Chapter 2 reveals that 

some effects that were robust in a sample of 28 fail to reach significance in a sample of 21 with 

strict statistical thresholding (p <.05, tfce, whole brain level). Second, in some cases there 

appear to be considerable differences between the bike-only and shock-only results through 

visual inspection of statistical maps. However, these visually apparent differences are spurious, 

statistically speaking, as we found no significant contrasts between the two tasks after 

correcting for multiple test comparisons.  

 

GLM1b 

In GLM1b we measured parametric modulation of BOLD responses by continuous 

regressors for SV and choice confidence during the offer and commit phases of value-based 

choices, as in GLM1 in Chapter 2. During the offer phase, domain-general SV correlated 

significantly with a wide network of regions, especially within the value network, including 
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vmPFC, OFC, throughout the basal ganglia including within nAcc and the caudate, posterior 

cingulate cortex, and the pIC (Fig. 8, left). Other robust signals were observed in lateral parietal 

cortex and dorsal premotor areas, and other relatively weaker but statistically significant voxels 

were found to track SV virtually throughout the cortex. No voxel activation was negatively 

correlated with SV or positively correlated with confidence during the offer phase. These 

results largely replicated our findings in Chapter 2, validating that SV computations in value-

based decisions with exercise costs recruit highly similar neural resources as decisions about 

pain costs. Interestingly, ACC also seemed to track SV. Although we had not observed this 

effect our previous analysis, other previous studies have found similar responses in this region 

(Klein-Flugge et al., 2016).  

BOLD responses in a partially overlapping network of cortex correlated negatively 

with confidence (that is, positively with ambivalence) during the offer phase. Specifically, we 

observed that dACC and right SPL responses increased with ambivalence, replicating our 

findings in Chapter 2 and extending them to decisions about exercise costs (Fig. 8, right).  

Responses in dACC in particular are likely best explained by the resolution of conflict evoked 

by valuation of neutral offers (Aupperle et al., 2015).  Activation in early visual cortex also 

correlated with ambivalence, suggested ongoing analysis of choice stimuli during difficult 

decisions. Building on our findings from Chapter 2, the regions that respond both to SV and 

ambivalence during the offer phase are a particularly interesting case because we expect that 

for offers with positive SV confidence increases with SV. Thus, the pattern of responses in 

dACC and SPL may be specific to negatively valued items, for which ambivalence increases 

as value increases. Taken together, the results from the offer phase in GLM1b reinforce our 
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previous conclusions that task-related activation during the offer phase are largely related to 

processing the valuation of the offer.  

During the commit phase, BOLD responses in pIC, lateral temporal cortex, and SPL 

correlated positively with choice confidence, mirroring our previous findings with one notable 

exception (Fig. 9, left). Given the results of GLM1 in Chapter 2, we predicted vmPFC would 

track confidence during the commit phase in GLM2b, but no voxel activation reached 

significance at a strict statistical threshold (p < .05, tfce, whole brain correction). Slightly 

reducing the threshold ( p < .1, tfce, whole brain correction), did reveal task-related activity in 

vmPFC that correlated positively with choice confidence (Fig. 8, right). Notably, reducing the 

threshold only slightly changed the overall pattern of results, in most cases subtly augmenting 

clusters that were already significant at the stricter threshold. vmPFC was the most salient 

exception to this rule, as reducing the threshold revealed a new large cluster of voxel responses 

correlating with confidence, suggesting that we lacked sufficient power to observe a true effect 

at the original threshold. We did not find any neural responses that were negatively correlated 

with confidence during the commit phase 

No regional activation was positively correlated with SV during the commit phase, 

replicating our original findings from Chapter 2. Instead, we observed activation that was 

negatively correlated with SV during the commit phase, which is a novel result relative to 

Chapter 2. These responses were observed throughout the insula, the amygdala, ventral mid-

cingulate cortex, left angular gyrus, sensory cortex, and precuneus (Fig. 10).  

 

 

 



 54 

GLM2b 

In GLM2b we compared BOLD responses measured during accept versus reject 

decisions and during confident versus ambivalent decisions. During the offer phase, many 

regions had significantly stronger responses while evaluating offers that would be accepted 

versus offers that would be rejected. The network of regions showing this effect closely 

resembled those that tracked SV during the offer phase in GLM1b, and importantly included 

vmPFC (Fig. 11, left). This result additionally confirms findings from Chapter 2 that robust 

activation of the value network correlates both with increasing offer valuation (SV) and 

positive decision outcomes (accept decisions). BOLD responses within the cognitive control 

network, such as in dACC and lPFC, were stronger during the offer phase of ambivalent 

decisions than confident decisions (Fig. 11, right). These effects again suggest the recruitment 

of regions critical for settling response conflict during more difficult choices. Posterior parietal 

cortex and visual cortex showed the same effect, which may be related to amplification of 

processes related to perceptual and value comparison as the participants attempted to resolve 

ambiguous choices. As in Chapter 2, BOLD responses from the offer phase revealed no regions 

that responded preferentially during decisions to reject over decisions to accept, nor any 

regions that responded preferentially to confident choices over ambivalent choices.  

During the commit phase, many regional responses showed significant contrasts 

between confident and ambivalent trials, but none responded differentially according to 

decision outcome, replicating our findings in Chapter2. dACC, lPFC, aIC, and inferior parietal 

cortex, responded more strongly to ambivalent trials than confident trials (Fig. 12, left, orange). 

Similar regions had all shown the same effect during the offer phase, and during the commit 

phase the activation seemed to spread and incorporate other regions important for resolving 
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response conflict such as aIC and wider swaths of lateral prefrontal cortex. The reverse contrast 

was observed in cortical regions including the pIC, superior temporal cortex, and primary 

sensory cortex (Fig. 12, left, purple). As in GLM1b, we had strongly predicted that vmPFC 

would be included in the set regions with significantly stronger responses during commitment 

of confident choices, vmPFC activation correlating with high confidence did not surpass 

statistical thresholding. We again lowered the critical threshold (to p < .1, tfce, whole brain 

correction), which modestly expanded the regions showing this contrast to now incorporate 

vmPFC (Fig. 12, right).  

Finally, we measured contrasts BOLD responses during the offer and commit phases 

of confident versus ambivalent trials within our priori vmPFC ROI. As in Chapter 2, during 

the offer phase, there were no significant differences in vmPFC responses between confident 

and ambivalent trials of either decision type. However, during the commit phase, we observed 

clusters of voxels showing significantly stronger responses for confident accepts and confident 

rejects versus ambivalent accepts and ambivalent rejects, respectively (Fig. 13). 

 

Discussion 

We measured behavioral and neural responses during the same two-phase mixed-

outcome Ap-Av decision making task presented in Chapter 2, except decision costs now 

included cardiovascular exercise on a stationary bike. No prior studies had used exercise costs 

to study value-based decision making. The results presented here validate the use of the 

methodology for future research and suggest that domain-general valuation mechanisms are at 

work during decisions about physical pain costs as decisions about physical exercise costs.  
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Overall, analysis of the bike and shock data sets revealed remarkably similar neural 

response patterns, to the extent that we found no significant contrasts between the bike and 

shock task for any of the variables that we measured in GLM1b and GLM2b. That is, we cannot 

confirm hypotheses predicting domain-specific valuation or decision processes between our 

two tasks. Instead, our domain-general analyses revealed highly similar results to those 

presented in Chapter 2, in which decision costs were only pain stimuli. We additionally 

observed novel activation in ventral mid-cingulate cortex, the amygdala, aIC and pIC, 

precuneus, and inferior parietal cortex that was inversely related with SV, suggesting that these 

regions tracked the aversiveness of offer stimuli. We organize our discussion of key results 

around the regions showing the most theoretically interesting results and that are used in ROI 

analyses in Chapters 4 and 5.  

 

vmPFC 

We observed confirmatory evidence that vmPFC signals relating to SV and confidence 

emerge during different phases of value-based decision making such that processing of offer 

valuation (SV) and decision variables arise during the offer phase, prior to neural signals 

relating to decision confidence, which arise during the commit phase. While late confidence 

signals in vmPFC were somewhat weaker than we initially observed in Chapter 2, we take the 

overall pattern of results as preliminary evidence that such value and confidence 

representations are domain-general across pain and exercise costs.  

During the offer phase, vmPFC responses increased parametrically with SV in GLM1b 

and were stronger for accept decisions than reject decisions in GLM2b, as in GLM1 in Chapter 

2. The fact that we did not observe significant contrasts between the two cost conditions, 
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suggests that SV and decision outcomes are represented in a domain-general fashion for offers 

with both exercise and pain costs. Moreover, such early, domain-general encoding of decision 

outcomes in vmPFC is further evidence that our results support a goods-based model of value 

representations in vmPFC and OFC. This model posits that economic choices are made on the 

basis of the relative SV of one’s options, which is encoded in abstract (domain-general) value 

representations in vmPFC and OFC (Padoa-Schioppa, 2011). Furthermore, decision variables 

are computed prior to and irrespective of the planning of actions required to execute the choice. 

(Padoa-Schioppa and Assad, 2006).  

The majority of studies that employed decision tasks with effort costs report that ACC 

/ dACC, and not vmPFC, encodes SV, our data did not replicate this effect. In our task, vmPFC 

did track SV during decisions about both pain and effort costs.  Despite the broader consensus, 

our observation of effort-related SV signals in vmPFC was not entirely unprecedented. Earlier 

studies that employed physical effort costs of manual grip force and challenging motor tasks 

also found that vmPFC tracked SV (Treadway et al., 2012; Arulpragasam et al., 2018; Hogan 

et al., 2018). However, it has been suggested that vmPFC responses in decisions about physical 

effort are specifically related to reward maximization, rather than representing the overall SV 

of the offer, which is encoded by ACC instead (Klein-Flügge et al., 2015). Closer inspection 

of within-ROI response patterns in Chapters 4 and 5 attempted test these competing hypotheses 

more directly.  

During the commit phase, we did not find a statistically significant parametric 

relationship between vmPFC responses and model-estimated confidence when correcting for 

multiple comparisons at the whole brain level (GLM1b). Similarly, contrasts between the 

commit phase of confident versus ambivalent trials did not reveal decision-specific activation 
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in vmPFC (GLM2b) when corrected at the whole-brain level. Reducing the whole-brain 

threshold changed little throughout the rest of the cortex, but revealed large clusters of voxel 

activation in vmPFC that were positively correlated with decision confidence. Thus, as an 

exploratory study, we can make a reasonable case that vmPFC is likely to be involved in 

representing confidence. 

Finally, to verify that apparent late confidence signals in vmPFC couldn’t be explained 

by strong SV signals (from positively valued items only) carrying over from the offer phase, 

we separately contrasted AccCon vs. AccAmb and RejCon vs. RejAmb within in vmPFC ROI. 

Note that for reject decisions, which are associated with negative value, confidence decreases 

as value increases, whereas the opposite is true for accept decisions. Both contrasts revealed 

clusters within vmPFC with significantly stronger responses associated with high confidence 

decisions, indicating that during the commit phase, vmPFC responses relate to decision 

confidence, irrespective of SV. This is a key replication of our original novel finding of 

temporally dissociated signals corresponding to SV and decision confidence within vmPFC 

(Chapter 2). With this result, we can extend our conclusion that implicit confidence (valuation 

of one’s judgment) shares a neuroanatomical basis with valuation processes in vmPFC:  These 

complementary representations are domain-general insofar as they are commonly represented 

in decisions with different costs. Furthermore, the dynamic process by which vmPFC shifts 

from early processes related to offer valuation to later processes related to decision valuation, 

is likewise domain-general – as we observed it across both types of costs.  
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ACC / dACC 

ACC / dACC correlated with ambivalence during both the offer (GLM1b and GLM2b) 

and commit phases (GLM2b), suggesting that the pattern of results observed in Chapter 2 was 

indicative of domain-general resolution of response conflict during difficult decisions. This is 

consistent with numerous, diverse observations of dACC’s role in decision making under 

ambivalence, conflict, and uncertainty (Kahnt et al., 2011a; Badre et al., 2012; Economides et 

al., 2014; Aupperle et al., 2015).  

During the offer phase, we observed that clusters of activation centered in vmPFC but 

extending into adjacent dACC that were positively correlated with SV (GLM1b) and were 

stronger for accept decisions than reject decisions (GLM2). Notably, these extensions into 

dACC were not observed in Chapter 2. Although contrasts between the bike-only and shock-

only data sets were not significant, by visual inspection it seems that bike-only SV and accept-

selective activation is more dorsal and posterior than that observed in the shock-only analysis. 

While we can’t confirm these signals are cost-domain-specific, the basic finding of SV signals 

in dACC are consistent with other previous reports (Croxson et al., 2009; Prevost et al., 2010; 

Chong et al., 2017).   

We additionally found that responses in ventral mid-cingulate cortex were inversely 

related with SV, which we had not observed in Chapter 2. It is tempting to deduce that this 

effect might have been primarily driven by the bike task, given that this region and adjacent 

dACC are consistently identified as domain-specific modules for processing effort costs and 

the SV of effortful offers (Rudebeck et al., 2006; Prevost et al., 2010; Burke et al., 2013; 

Massar et al., 2015). However, when the bike and shock data were analyzed separately, we 
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found that neither had significant activation in ACC, dACC, or mid-cingulate, nor were there 

significant contrasts between the two.  

Previous claims about domain-specificity of effort costs ACC / dACC were made on 

the basis of empirical comparisons between decisions with effort costs versus decisions with 

risk or delay costs. When we compared physical effort costs with physical pain costs we did 

not find evidence of domain-specific effort representations in ACC / dACC, but rather domain-

general activation in more inferior and posterior portions of cingulate cortex that was 

negatively correlated with SV. It is possible that this region is encoding something about 

enduring aversive events, which include both pain and intense exercise, but not risks or delays, 

per se. In fact, ACC responds robustly to pain, among other aversive stimuli (Shackman et al., 

2011). In this light, we might describe our observations as domain-specific cost representations 

(-SV) insofar as pain and exercise belong to the same domain of ‘endurance of aversive events.’ 

This is a testable hypothesis. Future research may compare pain, physical effort, and risk or 

delay costs to determine if cost representations in dACC are truly domain-specific, and if so – 

specific to what? Still, this interpretation does not explain why our analysis of the bike-only 

data failed to replicate numerous accounts that dACC tracks effort costs in value-based 

decision making.  

An alternative explanation is that dACC is in fact involved in a process other than 

computing effort costs. It was recently pointed out that many influential decision making 

studies inadvertently conflate decision costs with decision difficulty, leading to unfounded 

assumptions that dACC encodes negative value representations (Shenhav et al., 2014; 2016). 

Specifically, task designs often failed to orthogonalize SV with respect to choice difficulty by 

systematically pairing difficult decisions with lesser value increments. Controlling for this 
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revealed that dACC only tracks negative value when it is confounded with decision difficulty 

(Shenhav et al., 2014; 2016). Another study directly tested this hypothesis in decision making 

with effort costs and found that responses in dACC were explained by choice difficulty rather 

than by negative valuation of effort costs (Hogan et al., 2018). Our design is well-suited for 

dissociating negative SV from decision difficulty. Ambivalence takes an inverse U-shaped 

function with respect to SV such that there are ambivalent decisions with both positive and 

negative SV. Therefore, having appropriately controlled for potential confounds of 

ambivalence and effort costs, we might have circumvented the potential for spurious 

correlations between effort costs and activation in dACC.  

 

aIC and pIC 

The posterior insula is the primary sensory cortex for visceral afferents and associated 

with somatic representations whereas the anterior insula is the source of parasypmathetic 

efferents to the viscera (Tsakiris and Haggard, 2003; Taggart et al., 2016) Thus, activations in 

these areas provide a window into potential connections between somatic visceral 

representations and decision making. With that in mind, we found interesting patterns of 

responses in pIC and aIC that seem to roughly mirror those in vmPFC and dACC, respectively. 

During the offer phase, pIC activation parametrically correlated with SV (GLM1b) and 

responded more strongly to accept decisions than reject decisions (GLM2b). During the 

commit phase, pIC responses increased parametrically with confidence (GLM1b) and were 

stronger in categorically binned confident versus ambivalent trials (GLM2b). This is the same 

pattern that we observed in vmPFC, if not a bit stronger – as late confidence signals in pIC 

survived whole-brain statistical correction at our original statistical threshold. Our robust 
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results in pIC are novel as the literature is largely silent on the potential contributions of this 

region to value-based decision making beyond its role in responding to aversive stimuli. There 

is one crucial dissimilarity between pIC and vmPFC, pIC responses in the commit phase 

correlate negatively with SV. This fascinating comparison demonstrates subtle dissociations 

between how the two regions differentially represent value and confidence over the course of 

a decision. Earlier in the trial both regions respond positively with increasing value, but later 

while vmPFC hones in on confidence, pIC signals both confidence and negative value. 

Chapters 4 and 5 will more closely examine pIC’s role in in our task as well as potential 

domain-specific response patterns. 

We did not observe significant involvement of aIC during the offer phase. Instead, 

during the commit phase, BOLD responses in aIC were negatively correlated with SV in 

GLM1b and were stronger when participants committed to ambivalent versus confident 

decisions. Thus, whereas dACC seemed to be exclusively engaged by decision ambivalence 

during the commit phase, aIC encoded both ambivalence and negative value, mirroring the 

relationship between pIC and vmPFC. 

The pattern of responses we observed in aIC agree, to some extent, with other similar 

studies. aIC is frequently co-reported with dACC in representing negative value of effort costs 

(Kurniawan et al., 2010; Prevost et al., 2010; Treadway et al., 2012; Arulpragasam et al., 2018) 

and other negative decision outcomes such as risk (Preuschoff et al., 2008; Burke et al., 2013). 

Given the discussion above regarding the often misreported relationship between dACC and 

decision costs, perhaps aIC responses are truer neural signatures of negative value. Conversely, 

aIC has also been observed to represent the rewards associated with exerting effort (Croxson 

et al., 2009) and positive SV more generally (Chong et al., 2017), suggesting that there is 
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deeper complexity to value representations in aIC, which will be explored in the following 

chapters. 

Amygdala 

The amygdala tracked negative value during the commit phase (GLM1b), consistent 

with this region’s known responsivity to aversive stimuli. Research is beginning to explain 

how the amygdala’s role in emotional response regulation interacts with circuits for value-

based decision making, steering behavior away from aversive stimuli and even participating in 

the valuation process (Hsu et al., 2005; De Martino et al., 2006; Basten et al., 2010; Jenison et 

al., 2011; Zangemeister et al., 2016). Interestingly, the amygdala has also been observed to 

track rewards associated with physical effort in a domain-specific manner (i.e., it did not  

similarly track the rewards of cognitive effort; (Chong et al., 2017)). In our task, BOLD 

responses that were significantly stronger for accepted trials than rejected trials spread 

marginally into the amygdala, however it is unclear whether this is indicative of a true positive 

value representation in the amygdala or an artifact of spatial smoothing. To explore this further 

and to get a finer-grained look at response patterns within this region associated with our 

variables of interest, we include the amygdala in our ROI analyses in Chapters 4 and 5. 

 

Nucleus Accumbens 

Finally, nAcc is well-understood to respond to rewards. Accordingly, in our task, nAcc 

tracked SV (GLM1B) and engaged during the offer phase of decisions to accept (GLM2b). We 

included nAcc in our ROI analyses to understand if this region differentially encoded rewards 

according to the costs with which it was paired. While the magnitudes of such differences 

weren’t statistically significant after correction at the whole-brain level, it was possible that 
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they were represented within patterns of activation or only apparent with finer-grained 

comparisons of choice variables.  

 Taken together the results of Chapter 3 validated a novel methodology for 

implementing cardiovascular effort costs in empirical studies of cost-benefit decision making, 

replicated and generalized the results of Chapter 2, and presented evidence that neural 

representations of SV and confidence are domain-general with respect to costs. Although we 

did not observe differences in response magnitudes between decisions about exercise and pain 

costs, it is possible that these costs elicit unique patterns of voxel activation within the set of 

ROIS highlighted in the discussion for showing theoretically interesting results. In Chapter 4, 

we test this hypothesis by measuring representational dissimilarity in voxel response patterns 

in vmPFC, ACC / dACC, aIC, pIC, amygdala, and nAcc.  
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Chapter IV: Representational Dissimilarity of Pain and Effort Costs 

 

 Chapter 3 compared neural responses recorded while people made decisions about 

offers with effort costs (bike version) versus pain costs (shock version). We specifically looked 

for differences in how effort and pain costs might influence BOLD responses associated with 

decision outcomes, SV, and confidence during two phases of decision making. The goal was 

to determine which, if any, of these three types of value representations are similar (domain-

general) or unique (domain-specific) when associated with different types of costs. The 

magnitudes of neural responses from the bike and shock tasks were statistically 

indistinguishable for all three variables, suggesting that neural processing of decision costs is 

domain-general. Here, we test this conclusion by applying a different analysis that measured 

representational dissimilarity in voxel response patterns rather than the relative magnitudes of 

responses.  

 The decision tasks that participants performed in Chapter 3 were identical in all ways 

(experimental session schema, thresholding procedures, task design, stimuli, trial order, etc.) 

except the meaning of the cost stimulus. In the bike version costs were cardiovascular effort, 

whereas in the shock version costs were physical pain. While pain and effort are conceptually 

different, there are reasons to believe that differences in neural responses during these two 

tasks may be more nuanced than what can be detected by comparing the magnitudes of BOLD 

responses alone. First, both costs are corporeal in nature – that is, rather than other costs often 

implemented in the laboratory such as cognitive effort, delay, or probabilistic risk of reward 

loss; exercise and pain are physical, tangible costs. Therefore, we might expect similar neural 

mechanisms to respond to the anticipation of both costs. Second, if the pain and effort costs 
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we posed are encoded by overlapping cortical regions, we may not necessarily expect that 

what varies between the two is the strength of the overall response. Instead, pain and effort 

costs may elicit different patterns of responses across voxels within the same region. Although 

the overall amplitude of the responses associated with each cost were comparable, we 

hypothesized that this may have occluded differences in the underlying patterns of voxelwise 

activation.  

Because we suspected that our initial analyses undermined our attempts to observe 

cost-domain-specific processing, we maintained our initial hypotheses posed in Chapter 3, but 

took a multivariate analysis approach. Differences between patterns of activation can be 

detected by multivariate approaches to analysis of neuroimaging data, such as representational 

dissimilarity analysis (RDA), which is more often referred to as representational similarity 

analysis (RSA) (Kriegeskorte, 2008; Walther et al., 2015a).  Some RSA/RDA analyses attempt 

to measure similarities between patterns of activation in a manner akin to correlation analysis, 

resulting in representational similarity matrices (RSMs). We were interested in the converse, 

and sought to measure differences between patterns of activation, and therefore computed 

representational dissimilarity matrices (RDMs) comprising Euclidean distances between 

multivoxel patterns of activation.  

GLM2b was recomputed to measure neural responses during AccCon, AccAmb, 

RejCon, and RejAmb trials, but this time preprocessing and modeling steps were tailored to a 

secondary analysis with RDA. Furthermore, to increase our ability to observe subtle 

differences in voxel response patterns, we measured neural responses on a more precise 

timescale. In Chapters 2 and 3, we looked at neural responses averaged across the offer (4.55s) 

and commit (3.27s) phases. Here, we measure neural responses during each of 9 individual 
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TRs (.91s each) over the course of the trial, beginning with the fixation cue. We predicted that 

this approach would reveal cost-domain-specific patterns in voxel responses, confirming the 

hypotheses originally put forth in Chapter 3. 

In addition to comparisons between conditions with different costs, we also measured 

all pairwise distances between trials that varied in decision outcome, confidence, and cost. 

Figure 16 illustrates non-specific predictions about the relative differences between conditions, 

irrespective of the ROI in which they measured. It is primarily intended to illustrate the 

comparisons under consideration. Identical trial conditions (diagonal that runs bottom left to 

top right) will have a distance of 0 by definition. We predicted that pairs of trials that vary on 

every dimension (different costs, decisions, and confidence) would have the greatest distances 

(diagonal that runs top left to bottom right). Beyond this basic prediction, specifics of how 

costs, decision outcomes, and confidence would influence representational similarity would 

depend on the ROI under consideration as described in Chapter 3, as well as the time at which 

the distance was recorded. Generally speaking, we predicted that distances between pairs of 

trial conditions would increase with the number of dimensions on which they varied.  

Furthermore, we expected that the time at which patterns of voxel activation begin to 

differentiate between trial conditions would be indicative of the type of information being 

processed there as well as the evolution of the neural representation of that decision content. 

For example, if a region was involved in representing different costs, then it would show highly 

similar patterns of activation at the start of all trials. Then, as the decision was deliberated, the 

patterns of activation between bike trials and shock trials would gradually begin to separate 

until the choice was settled or until confidence about the choice was estimated.  Conversely, a 
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region that does not encode decision costs would show lesser differentiation in its voxel 

response patterns between bike and shock trials. 

 

Methods 

GLM2b (FIR version for RDA) 

Pre-processing of functional imaging data and distance estimation were conducted at 

the individual participant level until the final stage of group-wide statistical comparisons. 

GLM2b was re-estimated at the run-level; this time functional data was not spatially smoothed 

and a finite impulse response (FIR) model was applied. Neural responses were sampled in each 

of nine consecutive .91s time bins during each trial, beginning with the final .91s of the fixation 

cue before the offer stimulus appeared. Then, for each individual, for each of the 12 functional 

runs (6 bike and 6 shock), parameter estimates (PEs) and model residuals from the four trial 

conditions (AccCon, AccAmb, RejCon, RejAmb) during nine time intervals were extracted 

from a priori regions of interest.  

 

ROIs 

Individuals’ parameter estimates from the four trial conditions of the shock and bike 

tasks (choice X confidence X decision phase X cost = 16 conditions per participant) were 

extracted from a priori anatomical ROIs:  vmPFC, ACC / dACC, amygdala, nAcc,  aIC, and 

pIC, as well as a control ROI, primary auditory cortex (A1). ROIs were anatomically defined 

from the Harvard-Oxford cortical and subcortical structural probabilistic atlases 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), thresholded to include only voxels that 

exceeded 50% probability of being located within each structure and then divided into left- 
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and right-hemisphere components. Most ROIs correspond directly to labels on the Harvard-

Oxford atlas, but our vmPFC ROI combines Harvard-Oxford’s Frontal Medial Cortex and 

Subcallosal Cortex (as in Chapter 2) and ACC / dACC combines Cingulate Gyrus anterior 

division and paracingulate gyrus. aIC and pIC ROIs were created by masking Harvard-

Oxford’s Insular Cortex with insula subdivisions labeled on the Brainnetome atlas ( 

http://atlas.brainnetome.org ): aIC includes ventral agranular, dorsal agranular, and dorsal 

dysgranular insular cortex from Brainnetome and pIC includes hypergranular, ventral granular 

and dorsal granular insular cortex. See Figure 14 for an illustration of all ROIs.   

 

Estimating Representational Dissimilarity of Trial Conditions 

RDA measures the dissimilarity of patterns in voxel-wise responses. Here, we 

compared patterns of responses observed in our ROIs during AccCon, AccAmb, RejCon, and 

RejAmb trial conditions of GLM2b (FIR version). Conceptually, if an ROI has n voxels, each 

trial condition can be described as a point in n-dimensional space, with its coordinates 

determined by voxel-wise parameter estimates from the corresponding condition. The 

dissimilarity between two conditions is then the distance between their respective coordinates, 

or their locations in that n-dimensional space. We quantified these relationships with de-noised 

and normalized Euclidean distances.  

An ROI’s response to a given trial condition was represented as a vector of n parameter 

estimates (one for each voxel). This was performed at the level of a single FIR time bin, within 

single ROI, for individual participants. Voxels with missing data from any run, likely caused 

by signal artifacts during imaging or during spatial normalization to template space, were 

removed from further analysis - conceptually speaking, this eliminated one dimension (per 
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missing voxel) from the ROI space.  Then, in order to reduce the influence of noisy voxels on 

distance estimates, each voxel’s PEs were noise normalized by weighting each PE with the 

unbiased within-run variance (Σ). Σ  was calculated by multiplying the matrix of model 

residuals (t timepoints by n voxels in the ROI) by its transpose and dividing by t . ((Walther et 

al., 2015b) Equation 4). Therefore, the square root of the diagonal of Σ represents the standard 

deviation of each voxel’s residuals across time points from that run. Along that diagonal, larger 

values correspond to greater amounts of overall variance, therefore when it is divided into the 

vector of PEs from the corresponding voxel ((Walther et al., 2015b) Equation 5), noisier voxels 

are down-weighted, resulting in univariate noise reduction.  

Next, we calculated all pairwise Euclidean distances between the de-noised voxel 

responses from different trial conditions (separately for each FIR time bin, for each ROI, for 

each participant). Pairs of trial conditions could vary in decision outcome, confidence, cost, 

and the experimental run in which they were observed. We computed distances between all 

trial conditions across runs rather than measuring only within-run distances, which is another 

popular method for RDA analyses.  Computing distances between runs allowed us to do three 

crucial things: First, this allowed us to take distances between cost conditions which were never 

presented in the same run. Second, it allowed us to cross validate distance estimates by taking 

the mean distance of two conditions computed across all runs. The can eliminate spurious 

mutivariate similarity based on within run temporal correlation of the residual error (Walther 

et al., 2015b). Third, this allowed us to estimate the baseline variance of each condition by 

computing the distance between a given condition and itself in all other runs, and taking the 

average of all within-condition-between-run pairwise comparisons. Although we initially 
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computed within-run distances, these were excluded from group-wide analyses in the results 

presented, as not all distances could be computed at the within-run level.  

We took the average Euclidean distances between trial conditions across runs, d(A, B), 

and normalized them with respect to the baseline between-run variance inherent in the two 

conditions themselves, d (A, A) and d(B, B). The number of trials per condition could not be 

counterbalanced across runs by design because they depended on the participants’ choice 

behavior. Cases in which there were only one or two trials of a given condition in a given run, 

lead to extremely large distance estimates for all comparisons including that condition, 

including when comparing that same condition to itself in another run (Fig. 15). Therefore, the 

baseline distances could be used to attenuate this bias without discarding any data. Normalized 

distances estimates were calculated as: 

 

Normalization made it such that d(A, B)* reflected the relative distance between two 

conditions, beyond variance inherent in the conditions themselves and because d(A,B), d(A,A), 

and d(B,B) were calculated separately for different ROIs, d(A, B)* also controlled for ROI size 

as larger ROIs lead to larger d(A, B) values prior to normalization.  

 

Emergence of pattern dissimilarity between costs 

In order to visualize the overall pattern and time course of representational similarity 

between conditions, we plotted group mean d(A, B)* for all comparisons between conditions. 

(Fig. 16). However, our RDA analyses of interest specifically concerned between-cross 

comparisons, as we had already observed differences in the magnitude of responses to different 

trial conditions with the same costs.  
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We aimed to identify whether and when over the course of a trial, our ROIs revealed 

cost-specific representations in their patterns of activation. To test this, we isolated all d(A, B)* 

cases in which A and B only differed by cost (e.g. d(AccConBike, AccConShock)* and 

compared their representational similarity at sequential time points after the onset of the offer 

relative to baseline (during the fixation cue).  Separate linear mixed effects models, 

implemented in the lme4 package for R (Bates et al., 2015) predicted representational 

dissimilarity as a function of the time bin in which they were observed. There were five models, 

one for each of the trial conditions (AccCon, AccAmb, RejCon, RejAmb), and one for overall 

dissimilarity collapsed across trial condition. Each took the form: 

 

where predicts d(A, B)*, the fixed effect FIRbin is a categorical label for the time 

bin of the neural response, and we included a random effect on the model intercept across 

subjects to account for baseline individual differences overall pattern similarity. Because we 

were only interested in comparing each FIRbin to baseline, we only measured select contrasts 

of each post-cue time bin (FIR 2-9) against the baseline (FIR 1) and report significant effects 

corrected for multiple comparisons with the Dunnett one-to-many test using the glht and 

confint functions from the multcomp package for R (Hothorn et al., 2008).  

 

Results 

We measured the representational dissimilarity of voxel response patterns during 

different types of value-based decisions. Neural responses were modeled at nine time points 

over the course of a decision to examine when representations of task-relevant information 

were available in our ROIs. Although the primary focus of this analysis was to identify cost-



 73 

specific representations (i.e., representational dissimilarity between decisions with bike and 

shock costs), we also explored representational dissimilarity of all combinations of decision 

variables over the course of a trial to understand the general time course of these dissociations.  

 

Overview of all pairwise distances 

Figure 17 illustrates the pairwise distances between all possible combinations of 

decision outcomes, confidence, and costs in 6 ROIs and the control region. Each column is a 

time point (FIR bin) with the offer onset occurring in the second time bin. Note that because 

an FIR model was implemented, the neural responses may be offset from the marked trial 

events. Darker colors indicate smaller distances whereas brighter colors are larger distances. 

The dark diagonal that runs from the bottom left to top right of each FIR bin is the identity 

comparison – a condition compared to itself – where distances are always zero.  

Figure 17 does not illustrate statistical comparisons, but instead depicts a descriptive 

overview of all observed distances, which is useful for demonstrating general trends in the time 

course of representational dissimilarity and highlights salient local comparisons. During the 

earliest time bins, all regions exhibit relatively small distances between conditions, suggesting 

that distinctions between different task conditions have not yet emerged. Gradually, over the 

course of the trial (typically beginning around FIR bin 3, ~ 1.8s after trial onset), distances 

between voxel response patterns begin to grow and by the latest time bins (around FIR bin 8, 

~6.4s after trial onset), most response distances were returning towards their baseline values. 

Note that the control region (bottom row) exhibits patterns in representational dissimilarity that 

are generally similar to those in the network of value ROIs, indicating that there are global 

dissimilarities in voxel activation patterns beyond our network of value ROIs. aIC and ACC / 
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dACC have the longest sustained response pattern differences (see the 8th and 9th FIR bins for 

each of these ROIs), which are apparent both when comparing across different costs and 

different choices with the same cost.  

Across all ROIs, the largest distances are found along the diagonal that runs bottom 

right to top left, where pairs of trials differ on every dimension, and particularly comparisons 

of bike rejects with shock accepts (the top left and bottom right corners of the center squares). 

The smallest distances are typically between trial conditions that differ only by decision 

confidence (adjacent to the identity diagonal). Within-cost comparisons (such as bike AccCon 

versus bike RejCon bike) tend to be smaller for the bike task (bottom left) than the shock task 

(top right). The control ROI, A1, differs from the value ROIs in that in A1 distances are smaller 

overall and less stable over the course of the trial, suggesting that the control region isn’t 

encoding value information (which differs between trial conditions) as precisely as the other 

ROIs.  

 

Cost-Domain-Specific Representations, Across All Conditions 

We next analyzed distances between pairs of trials that varied solely by the type of cost 

in the offer (e.g. ignoring trials with different costs and different choices, etc.). Larger distances 

indicate greater representational dissimilarity and imply that a region is differentially encoding 

information about the two types of costs. We assumed the logic that a meaningful difference 

between cost representations could be inferred if there were significantly greater distances 

between voxel response patterns when the offer was on the display versus before it appeared 

(during the cue period). Therefore, we compared the representational dissimilarity of decision 

costs, collapsed across all trial conditions (AccCon, AccAmb, RejCon, and RejAmb), at each 
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time point (FIR bins 2-9) after the offer appeared against the baseline (FIR bin 1), within each 

of our ROIs.  

Distances were compared by fitting linear mixed effects models to normalized 

Euclidean distances between voxel response patterns from the bike and shock tasks. Separate 

models were fit for each ROI. The fixed effects predictor was FIR bin (categorical) and the 

model included a random intercept term to account for individual differences in overall pattern 

dissimilarity within each ROI. We statistically compared FIR bins 2-9 against baseline, FIR 

bin 1, with Dunnett’s one-to-many test. All relevant statistics can be found in Table 3, here we 

summarize the key findings.  

Cost distances in the control region, A1, did not differ before and after the offer 

appeared on the display. That is, no distances in FIR bins 2-8 differed significantly from 

baseline (FIR bin 1).   This is consistent with our assumption that patterns of voxel activation 

in the control region would not encode meaningful differences between effort and pain costs. 

However, all value-network ROIs did differ from baseline in at least one FIR bin, post offer 

onset Fig. 18). Distances in ACC / dACC, aIC, and pIC differed from baseline during FIR bins 

3 - 7. There were significant distances from baseline in the amygdala during FIR bins 3, 5, and 

6; in vmPFC during FIR bins 5 and 6; and in nAcc during FIR bin 5.  

 

Cost-Domain-Specific Representations, Within Trial Conditions 

Our second ROI analysis tested whether and when there were meaningful distances 

between pain and effort costs that were specific to the trial condition. For example, how 

similarly are pain and effort costs represented during ambivalent rejects?  We again only 

analyzed distances between pairs of trials that varied solely by the type of cost in the offer, 
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however this time it was done separately for each of the four trial conditions (e.g. AccConBike 

versus AccConShock).  We fit the same linear mixed models as in the previous analysis, except 

this time separately for each of the four trial conditions, for each ROI. All relevant statistics 

can be found in Table 4, and we summarize the key findings here.  

The control region, A1, again did not differ from baseline in any trial condition, during 

any FIR bin. All value ROIs did differ from baseline during at least one FIR bin of at least one 

trial condition (Fig. 19). In the RejCon condition, there were cost-specific differences in voxel 

response patterns in ACC / dACC (FIR bins 3, 5) and vmPFC (FIR bins 5, 7). For the RejAmb 

condition, there were cost-specific differences in ACC / dACC (FIR bins 3-7), vmPFC (FIR 

bins 3, 5-6), the amygdala (FIR bin 6), and aIC (FIR bin 5). In the AccAmb condition, there 

were cost-specific differces in vmPFC (FIR bins 4-5, 7), the amygdala (FIR bins 3, 5), aIC 

(FIR bin 7), and pIC (FIR bin 7). Finally, for the AccCon condition, there were cost-specific 

differences in ACC (FIR bins 5-6), in vmPFC (FIR bins 5-6), in the amygdala (FIR bins 5-6), 

and nAcc (FIR bin 7  

 

Discussion 

Although the magnitudes of BOLD responses elicited by effort and pain costs did not 

differ in Chapter 3, here we observed unique patterns of voxelwise activation between the two 

costs in all of our ROIs, except the control region, A1. This consistent with the hypothesis that 

our value ROIs encode domain-specific representations of effort and pain costs.  

Cost distances were measured at successive time points after the offer appeared on the 

display and compared against baseline (when the fixation cue was on the display) to identify 

when domain-specific voxel response patterns began to emerge over the trial. This was done 
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once for distances collapsed across all trial conditions (AccCon, AccAmb, RejCon, RejAmb), 

and then once analyzing each trial condition separately. The former revealed that all value ROIs 

differed from baseline during at least one FIR bin after the onset of the offer, confirming that 

all ROIs were encoding cost-specific information, irrespective of other choice variables. The 

differences (collapsed across trial conditions) began the earliest and were longest sustained in 

aIC, pIC, and ACC / dACC. In the amygdala, cost differences onset and offset relatively earlier, 

whereas in vmPFC they onset and offset relatively later, and in nAcc distances were only 

observed in one FIR bin, at the temporal midpoint of the trial. Beyond these subtle differences, 

the most interesting and theoretically relevant results were observed in analyses of individual 

trial conditions. Below, we discuss domain-specific cost representations observed in each of 

our ROIs during different trial conditions.  

 

vmPFC 

vmPFC was the only ROI that encoded cost-domain-specific representations in all four 

trial conditions, suggesting that information about the identity of the cost is included in neural 

computations of SV. Moreover, there is an intriguing structure to the relative times at which 

cost-domain-specific information was available in vmPFC. Specifically, during ambivalent 

choices, when offer valuation is most challenging, vmPFC encodes unique representations of 

pain and effort costs early in the decision making process. During confident choices, such 

differences don’t emerge until relatively later. 

It is noteworthy that the temporal dissociation of cost representations between 

ambivalent and confident trials in vmPFC corresponds with the temporal dissociation of 

SV/decision outcome and confidence signals in the same region. In Chapters 2 and 3 we 
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observed that during the offer phase of each trial (relatively early), vmPFC tracked the SV of 

the offer stimulus and the decision outcome, whereas during the commit phase (relatively late), 

vmPFC tracked decision confidence – or the value of one’s judgment. Here we show that 

during ambivalent choices, when offer valuation requires more careful consideration, patterns 

of voxel activation in vmPFC distinguished between the types of costs earlier in the trial, 

whereas during confident choices those differences emerged relatively later.  Taken together, 

the similar time courses of these representations suggest that domain-specific cost information 

co-occurs with and may even be factored into vmPFC representations of SV, decision 

outcomes, and decision confidence. That is, vmPFC may represent both decision outcomes and 

choice confidence in a cost-domain-specific manner but at different time points over the course 

of a decision. We discuss this hypothesis more thoroughly in the general discussion.  

 

ACC / dACC 

ACC / dACC encoded cost-domain-specific representations during RejCon, RejAmb, 

and AccCon trial conditions, confirming numerous previous accounts that this region 

distinguishes between effort and other types of costs (Rudebeck et al., 2006; Prevost et al., 

2010; Burke et al., 2013; Massar et al., 2015). The largest and longest-sustained differences in 

representational disimilarity were observed in the RejAmb condition, suggesting that cost-

specific representations become most critical in highly deliberated decisions that ultimately 

result in rejecting the offer. In Chapters 1 and 2 we observed ambivalence related responses in 

ACC / dACC during both the offer and commit phases, consistent with this region’s known 

role in managing response competition and conflict resolution. However, the magnitude of 

ambivalence signals did not differ between the bike task and the shock task. Here, the timing 
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of cost distances in the RejAmb condition lines up well with the offer and commit phases of 

GLM1(b) and GLM2(b), and we find that differences between cost representations were 

available within ACC / dACC when measured in distances between voxel response patterns 

rather than response magnitudes. 

 

Amygdala 

There were cost-domain-specific voxel response patterns in the amygdala during 

RejAmb, AccAmb, and AccCon trials. Given the amygdala’s known role in processing 

aversive stimuli, it was somewhat unexpected that we found no differences in cost 

representations in the RejCon condition in which decision costs are the most salient. However, 

we did observe relatively later cost-specific differences in the amygdala during RejAmb trials 

– which may be related to our finding in GLM2b that BOLD responses in this region were 

inversely correlated with SV. That is, as individuals carefully evaluate offers with borderline 

negative SV, the costs are particularly salient and the amygdala encodes cost-domain-specific 

representations of pain and effort. Our other finding, that the amygdala encodes cost-specific 

voxel responses patterns during AccAmb and AccCon, is consistent with a recent report that 

the amygdala tracks the rewards of effort costs – although in that study, the effort costs of 

mention were cognitive efforts (Chong et al., 2017).  

 

aIC,   

Cost-specific voxel response patterns were observed in aIC for both ambivalent 

conditions, but only during one time point for each. In GLM2b (Chapter 3) BOLD responses 

in aIC were stronger during the commit phase of ambivalent trials versus confident trials, 
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suggesting sustained conflict resolution processes. Again, the relative magnitudes of these 

contrasts did not differ between the bike and shock tasks. However, in the RDA analysis using 

the same conditions, the FIR bins during which we observed cost-specific patterns in voxel 

activation, which were relatively later in the trial, likely overlap in time with the commit phase 

in GLM2b. Taken together, the RDA and GLM2b results suggest that cost-specific patterns of 

activation (RDA) co-occurred with amplification of ambivalence signals (GLM2b) within aIC. 

That is, not only did aIC preferentially respond to ambivalent decisions over confident 

decisions, but ambivalence-related activation in this region seems to be cost-domain-specific. 

Interestingly, cost-specific patterns of activation arose relatively later for ambivalent 

accepts than ambivalent rejects. Given that aIC sends projects efferent inputs to the 

parasympathetic nervous system, cost-specific representations in aIC while the participant 

accepts an offer may encode cost-specific preparative information – that is, what the body 

needs to do in order to face pain or effort costs. Future research may explore this hypothesis 

more directly. We collected simultaneous physiological recordings. Incorporating this 

physiological data with the neural data presented here may reveal a link between the emergence 

cost-specific patterns of activation in aIC and bodily physiological responses.  

 

pIC  

pIC demonstrated only one instance of cost-specific neural response patterns – in the 

AccAmb condition, relatively late in the trial (FIR bin 7). This was unexpected given  pIC’s 

known role in receiving and processing visceral afferents (Craig, 2002; 2009)– which 

suggested that the processing of prospective pain and effort costs could also be encoded in 

unique representations. Moreover, in GLM2b we observed highly similar activation in pIC as 
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we observed in vmPFC, suggesting that the two regions were tracking similar information. 

However, here we found that whereas vmPFC shows cost-domain-specific patterns of voxel 

responses in all conditions pIC shows few. Taken together, it seems that whereas both vmPFC 

and pIC track SV, decision outcomes, and confidence – in vmPFC these choice variables are 

encoded in a cost-domain-specific manner, whereas in pIC they are almost exclusively encoded 

in a cost-domain-general manner.  

 

Nucleus Accumbens 

nAcc demonstrated only one difference in response pattern similarity between pain and 

effort costs, during FIR bin 7 of AccCon trials. It is unsurprising that nAcc selectively encodes 

cost-specific information with respect to offers with the largest rewards. nAcc has long been 

understood to respond to reward stimuli (Ikemoto and Panksepp, 1999), but as the field 

progresses we are understanding more about how costs modulate those responses. nAcc is 

critical for motivating efforts to obtain rewards  (Phillips et al., 2006; Botvinick et al., 2009; 

Talmi and Pine, 2012) and it is also sensitive to the anticipation and avoidance of pain (Jensen 

et al., 2003; Shackman et al., 2011). One of its key associations in this process is responding 

to the prospective prediction of rewards (Knutson et al., 2001). Such anticipatory reward 

responses may explain our observation that nAcc encodes cost specific information about 

AccCon trials – as on these trials the participant expects a relatively large reward but one that 

is accompanied by a task. Above, we hypothesized that late cost-domain-specific confidence 

signals in vmPFC may be driven by predictions about the consequences of one’s choices. Here, 

we extend the same idea to our results in nAcc. Cost-domain-specific responses during the late 
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stages of AccCon trials suggest strong predictions about large rewards, that are specific to the 

nature of the contingent cost.  

 

Limitations 

Our experimental paradigm had relatively brief inter-trial intervals (ITIs) of .91 – 2.7s 

which maximized the number of samples we collected, but can make it difficult to interpret the 

results of fine-grained temporal analyses. We extended our FIR time bins to last until the offset 

of the feedback stimulus (the end of the trial), when we could be sure that any BOLD responses 

recorded would be associated with the stimulus on the current trial. Given the delay of the 

hemodynamic response, it is likely that neural responses occurring towards the end of the trial 

were eliminated from analysis. We observed an overall trend through which distances between 

costs gradually increased from their smallest values at baseline, peaked, and then decreased 

back towards their initial baseline near the end of the trial. In fact, we observed no distances 

that were significantly different from baseline from the final two FIR bins (8 and 9), suggesting 

that most of the differences in cost representations had occurred relatively early in the trial and 

resolved by the point at which we stopped measuring them. Nonetheless, it is possible that 

there were differences in cost representations very late in the trial that we did not measure. 

Future variations of our paradigm that incorporate longer ITIs could test for the presence of 

differences in voxel response patterns with later onsets. 

We also performed the bike and shock versions of the decision making task on separate 

days. This meant that we could never make within-run or within-session comparisons between 

bike and shock trials. Therefore, any observations that we make about cost-specific neural 

responses may also be influenced by differences between the shock and the bike session, such 
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as overall arousal and mood, physical fatigue or residual effects following familiarization with 

the shock and bike costs (that preceded the experimental task), or the order in which 

participants completed the sessions. Future research may seek to integrate both types of cost 

stimuli into individual runs or sessions, although this could pose significant logistical 

challenges.  
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Chapter V: Individual Differences in Preferences and Value Transformations 

 

The analyses conducted in Chapters 2-4 explored behavioral and neural signatures of 

SV at the group level. Correlating model-based value estimates with neural responses allowed 

us to control for individual differences in how a given cost-reward pair is perceived. For 

example, an individual who is intrinsically motivated to exercise may not weigh bike costs as 

strongly as another individual who doesn’t share this motivation, even when controlling for 

the individuals’ physical capacities for exercise. Estimating SV separately for each individual 

and for each task enabled us to isolate behavioral and neural responses with respect to 

perceived value, regardless of the underlying features of the stimulus. This methodology was 

useful for highlighting the shared properties of subjective value representations across cost 

types and individuals and irrespective of the objective value attributes from which they were 

derived. However, it is unclear whether there are likewise individual differences in relative 

preferences, or if there is some extrinsic or systematic relationship between individuals’ 

preferences and neural valuation mechanisms for pain versus effort costs.  

In the present chapter, we use behavioral and neural measures to look more closely at 

how individuals arrived at their choices in both tasks and the extent to which these mechanisms 

differ between individuals. We specifically aim to determine whether individuals vary in the 

types of information they prioritize when making decisions about different types of costs. In 

Chapters 3 and 4 we investigated whether neural representations of value were cost-domain-

specific or cost-domain general, which led to somewhat mixed results. One reason this might 

occur is if there were large individual differences in the relative decision strategies applied 

between the two tasks. For example, if some individuals prioritized costs in the bike task and 
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rewards in the shock task whereas others showed the reverse pattern, meaningful cost-domain-

specific signals could be washed out by taking an average across the group. Here, we inspect 

individual differences in both behavioral and neuroimaging  recordings to test for individual 

differences in cost-domain-specific preferences, valuation strategies, and neural value 

transformations.  

 

Individual differences in preferences 

In the academic literature and in everyday life, humans and even non-human primates 

exhibit remarkably different preferences and choice behaviors when given full freedom to 

choose subjectively (Premack, 1963; Schunk and Betsch, 2006). The profound individual 

differences in choice behavior is strong evidence that perceived value is informed not only by 

objective value information, but also by the individuals’ unique experiences, preferences, 

motivations. However, it is unclear whether individuals likewise vary in the extent to which 

they use consistent decision strategies across various domains.  

One suggestion is that individuals are largely domain-general in their application of 

decision strategies: while there may be individual differences in preferred decision strategies, 

individuals are largely consistent with themselves (Betsch, 2011). An example of this principle 

could be that participants vary in the relative weights and rewards they attribute to costs and 

rewards, however any one individual always attributes the same reward and cost weights 

regardless of what they entail (i.e. an individual would give equal priority to bike costs and 

shock costs).  

A second suggestion is that there are individual differences in decision strategies and 

individuals exhibit domain-specific decision strategies, but all participants make the same 
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relative adjustments between domains. An example of this principle could be that individuals 

assign different weights to exercise costs, but all individuals perceive effort costs to be twice 

as aversive as pain costs. While this may not fit one’s intuitions about subjective preferences 

more generally, within the constraints of a controlled experiment with identical offer stimuli 

for both costs, it was quite possible that individuals employed a general-purpose valuation 

heuristic in both tasks or that they used similar value transformations between bike and shock 

costs.   

A third suggestion is that there are individual differences in both decision strategies and 

the domain-specific application of those strategies. An example of this principle could be that 

individuals vary in the weight they assign to pain costs, and the weights they assign to effort 

costs vary independently of that. Previous research about  has reported individual differences 

in domain-specific preferences for decision strategies (Pachur and Spaar, 2015). That study 

asked participants how they make different types of preference-based decisions such as 

choosing a dress or choosing a doctor. They found that individuals varied not only in whether 

they would rely on intuitive versus deliberative strategies within choice domains, but that 

individuals varied in the extent to which their decision strategies changed between tasks. 

Another study concerning preferences for risky decision making similarly reported that 

individuals’ preferences for risk-taking “was highly domain-specific, i.e. not consistently risk-

averse or consistently risk-seeking across all content domains” (Weber et al., 2002).  

To test these competing hypotheses, we correlated behavioral model parameters related 

to individuals’ decision boundaries, as well as the proportion of offers they accepted in both 

the bike and the shock tasks. If individuals’ decision strategies are domain-general (e.g. same 

decisions in both the bike and shock tasks) or if individuals’ strategies are domain-specific but 
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all individuals make the same adjustment between domains (e.g. participants equally adjust the 

slope of their decision boundary between the bike and shock tasks), then there should be strong 

correlations between model parameters and decision outcomes at the group level. If there are 

individual differences both in the relationship between decision strategies on the two tasks, 

then we should observe no correlation between model correlations or decision outcomes.  

 

Individual differences in neural value transformations  

Beyond the behavioral choice data, another way to measure individual differences in 

the application of valuation strategies is to identify where and how strongly value information 

is being represented in the brain at the individual level. Here, we aimed to understand whether 

individuals differ with respect to the decision strategies applied at the neural level. We adopted 

the following logic: Given that individuals’ valuation models diverge both from the objective 

utility of offer stimuli and from one another, at some point during neural value processing, the 

objective features of offer stimuli must be transformed into a different subjective value. If the 

extent to which a brain region’s response to a value stimulus changes between the bike and 

shock tasks predicts the extent to which behavior in response to the stimulus changes between 

the two tasks, this would suggest that responses in this region track value transformations from 

objective stimulus features to subjective value information that guides behavior. For example, 

if for a given individual, a particular brain region were twice as responsive to costs in the bike 

task than the shock task and the participant’s behavioral choice models reveal that they 

weighted bike costs twice as strongly as shock costs, we would have reason to believe that this 

brain region was encoding information about the transformation of the objective value of a 

stimulus into its subjective utility.  
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Our previous analyses parameterized offers by decision outcomes and model-estimated 

SV, therefore they could not detect such objective to subjective value transformations because 

we were dealing only with the outputs of those transformations (as estimated by behavioral 

models). Furthermore, because our previous analyses only parameterized SV we could only 

identify regions that tracked offer’s overall subjective valuation, accounting for both its cost 

and reward attributes. If a module in the value network is specifically involved in the 

computation or representation of SV, then it would not differentially respond to offers with 

qualitatively different cost attributes (i.e. pain and exercise) with different objective utility (i.e. 

40% vs. 80%), so long as they had equitable overall subjective value. These approaches were 

also insensitive to individual differences in value transformations, which we additionally 

aimed to explore here.  

To identify potential sites of such value transformations, we compared the relative 

neural responses to objective cost and rewards in the bike and shock tasks with the relative 

subjective valuation of bike and shock offers identified from decision behavior. Specifically, 

we correlated model weights from analysis of neural data (tracking objective value) with model 

weights from the analysis of behavioral data (tracking subjective value). We predicted that the 

amplitude of neural responses to objective value information would be correlated with the 

influence of those value attributes on decision behavior in regions involved in value 

transformation. In this way, individual differences in the strength of neural responses to the 

objective features of value stimuli would predict individual differences in the influence of those 

attributes on behavior.   

To test this, we built a third model for analysis of our fMRI dataset that tested for neural 

responses tracking the objective cost and reward attribute of offer stimuli (irrespective of their 
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SV or decision outcomes). Then, we extracted those parameter estimates from several a priori 

anatomical ROIs within the value network and correlated them with cost and reward weights 

from behavioral valuation models. We were particularly interested in the relative 

transformations of bike and shock value information, and therefore focused our analyses on 

comparisons between the two. 

 

Methods 

Group-wide Cost Preferences in Decision Behavior 

In order to quantify preferences between exercise and pain costs, we examined 

individuals’ decision outcomes and their individual valuation model parameters. We first tested 

for group-wide pattern in the bike versus shock task by comparing group means for overall 

proportion of offers accepted as well as model terms for the slope and intercept of the decision 

boundaries with paired sample t-tests, Bonferroni corrected for (3) multiple comparisons. 

Before running statistics on the behavioral comparisons, one participant was removed from 

analyses of model coefficients as their decision boundary intercept and slope coefficients were 

beyond three SD of the group mean. 

 

Behavior-Behavior Correlations (Individual Differences in Cost Preferences) 

While group mean differences between decision behavior and modeled preferences 

from the bike and shock tasks could reveal overall biases, they might also obscure more 

nuanced variation at the individual level. We were particularly interested in individual 

differences in subjective preferences, and specifically whether they could be revealed in our 

tasks. Notably, because the offer stimuli and trial set were identical in the bike and shock 
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versions of the task, differences in decision behavior could only be explained by varying 

subjective valuation of objectively equal pain and exercise costs.  The way that participants 

computed the relative values of bike and shock costs might have been driven by subjective 

preferences, determined by their unique histories, biases, and internal goals. Conversely, if 

there were no ostensible differences in valuation strategies or decision behavior between 

individuals, this may be indicative of a more universal value transformation between pain and 

exercise costs that is insensitive to subjective preferences.  

To test this, we ran three correlations with the same variables (percent of shock offers 

accepted versus percent of bike offers accepted, decision bound slope in the shock task versus 

the bike task, and the decision bound intercept in the shock task versus bike task). Confidence 

intervals were corrected for multiple (3) comparisons.  If there were systematic value 

transformations at the group level, then there should be a strong correlation between observed 

preferences on the bike and shock tasks. However, if preferences for pain versus exercise costs 

are truly subjective, then decision behavior and model terms in one cost task should not predict 

decision behavior on the other at the group level. We additionally provide comparison plots of 

all individuals’ complete choice sets on the bike and shock versions of the task (as in Ch. 2). 

 

GLM3: Parametric analysis of objective rewards and costs 

Whereas GLM1(b) and GLM2(b) modeled BOLD responses associated with 

participants’ subjective preferences and decision outcomes, GLM3 measured neural activity 

modulated by the objective quantities of rewards and costs offered on each trial:  
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This analysis is analogous to GLM1(b), described in full detail in Chapters 2 and 3, 

except the baseline decision phase regressors were parametrically modulated by the reward (

) and costs ( ) offered on each trial, irrespective of 

how the participant valued or decided about them. Notably, because the stimuli in the bike and 

shock versions of the ApAv task were perceptually identical, significant differences in neural 

responses correlating with each between the bike and shock tasks would indicate cost-context-

specific processing. That is, the neural response to a given offer stimulus was influenced by 

the type of  cost under consideration. This could manifest both in the representation of the cost 

itself, as well as in the representation of the reward. While both reward stimuli and the meaning 

of the reward were identical in the bike and shock tasks (rewards always ranged $0.01-$1.50), 

how the reward is perceived and neurally represented may be differentially modulated by the 

cost with which it is paired.  

 

Anatomical ROIs 

Subject-level parameter estimates for the reward and cost regressors of GLM3 were 

extracted from the same ROIs used in Chapter 4 (vmPFC, ACC, amygdala, aIC, and pIC) and 

we additionally included the nucleus accumbens (nAcc), also extracted from the Harvard-

Oxford atlas (thresholded at 50%) because we predicted this region would be particularly 

responsive to objective reward stimuli. 

 

Brain-Behavior correlations (Individual Differences in Value Computations) 

To test if the strength of neural responses to objective value information from the bike 

and shock tasks predicted differences in decision behavior, we extracted cost and reward 
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parameter estimates from the offer phase in GLM3 ( ; note the 

difference in notation from the description in GLM3 above, these terms now represent 

parameter estimates from the offer phase) and cost and reward weights from individuals 

decision behavior models ( ). Specifically, for each individual we 

calculated relative differences in weights from the neural data 

and  

with relative differences in weights from the behavioral data 

(  and  

and then correlated the analogous pairs (brain costs with behavior costs; brain rewards with 

behavior rewards), correcting for multiple comparisons. We predicted that if these regions 

played a universal and uniform role in transforming objective value of offer stimuli into 

subjective value representations that inform decision behavior, then there should be a strong 

correlation between the selected brain and behavioral model terms. However, if individuals 

differ not only in their relative preferences between bike and shock costs, but also in the neural 

bases of those preferences, then there should not be a relationship between the brain and 

behavior terms from the two tasks.  

 

Results 

Behavior-Behavior Correlations (Individual Differences in Cost Preferences) 

Overall, the exercise costs seemed to be perceived as more aversive than the bike costs.  

Fewer bike offers were accepted (M = .532, SD = .111) than shock offers (M = .618, SD = 
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.104; t(20) = -2.816, p = 0.011, CIadj[-0.165, -0.006]. On average, the intercept of the decision 

boundary in the shock task (M = -8.166, SD = 21.412) was greater than boundary intercepts in 

the bike task (M = -21.053, SD = 37.813), but not significantly so (t(19) = -1.585, p = 1.29, 

CIadj[-34.226, 8.451]) and there was far more variance in the bike task. The boundary intercept 

is often an index of one’s baseline tendency to accept offers relative to rejecting them, therefore 

this is a second demonstration that participants were more inclined to accept offers with pain 

costs than they were to accept offers with exercise costs. Decision boundaries were steeper in 

the bike task (M = 1.36, SD = .546) than the shock task (M = .937, SD = .427; t(19) = 3.99, p 

= .0009, CIadj[0.144, 0.699]), indicating that the influence of costs relative to rewards was 

greater in the bike task. Notably, in the shock task the slope of the decision boundary was < 1, 

suggesting that rewards were more influential than pain costs in participants’ decisions. 

However, in the bike task, the slope of the decision boundary was < 1, suggesting that effort 

costs were more influential than rewards  

Beyond group trends, we specifically wanted to know the extent to which individual 

differences in preferences for exercise versus pain costs were apparent in their decision 

behavior and valuation strategies. Although we observed wide variation in preferences within 

a task (Chapter 2), it was unclear whether these differences reflected cost-independent (i.e. 

common-currency) valuation strategies or if there were even further diversity in cost-specific 

preferences. Visual inspection of comparison plots did suggest that there were substantial 

individual differences in the extent to which individuals adapted their decision strategies to the 

cost context, suggesting that while some individuals preferences were cost-domain-specific, 

others were cost-domain-general (Figs. 20 and 21).  



 94 

To investigate this quantitatively, we correlated individuals’ accept rates, and decision 

boundary slopes and intercepts from the bike task with those from the shock task. There was 

no meaningful relationship between the proportion of offers a participant accepted in the bike 

task and the proportion of offers accepted in the shock task (r = .158, p = .494, CIadj[-.384, 

.619], nor were their decision boundary intercepts significantly correlated (r = .35, p = .130, 

CIadj[-.212, .738]). However, there was a modestly significant relationship between the slopes 

of the decision boundaries from the two tasks, after correcting for multiple comparisons (r = 

.55, p = .0112, CIadj[.040, .834]) (Fig. 22).  

 

Brain-Behavior correlations (Individual Differences in Value Computations) 

We found no significant correlations between relative influence of value attributes on 

decision behavior between the bike and shock tasks and the relative influence of value 

attributes on neural responses in our anatomical ROIs (Figure 23 for scatter plots and statistics). 

In fact, only the correlation between and from the posterior 

insula was significant before correction. The general trend of our results showed little 

relationship between brain and behavior reward weights, however there were more promising 

patterns in the cost data. The relative differences in cost parameter estimates from the bike and 

shock tasks in posterior insula, nAcc, and the amygdala showed positive relationships with the 

relative cost weights in behavioral data from the bike and shock tasks (post. insula r = .526; 

nAcc  r = .395; amygdala r = .397), however these effects failed to reach significance after 

correcting for multiple comparisons.  
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Discussion 

While individuals acceptance rates and decision boundary intercepts in the bike and 

shock tasks were unrelated, there was a meaningful relationship between individuals’ decision 

boundary slopes in the two tasks. That is, a participants’ decision boundary slope in one task 

significantly predicted the boundary slope in the other. This may be evidence of a common 

tendency across individuals to preserve similar cost/reward exchange rates across different 

types of costs but to adjust one’s baseline acceptance rate in a context-dependent manner, 

according to the subjective averseness of type of cost one is offered.  

We did not find strong relationships between behavioral and neural cost 

transformations between the bike and shock tasks. This was unpredicted given the strong 

theoretical bases we had for selecting task-relevant ROIs, many of which were recruited for 

various aspects of the decision making task, as demonstrated in GLM1b and GLM2b. With 

only twenty-one participants, and in some cases even fewer observations (after removing 

outlier cases > 3SD outside the group mean), our data was rather noisy, making it difficult to 

draw definitive conclusions from the analysis.  

Still, we believe that the introduction of a novel approach for investigating value 

transformations with analysis of neuroimaging data will prove to be fruitful in future research. 

Furthermore, as an exploratory analysis, our results hint at very promising results, 

demonstrating relationships between neural value transformations in key ROIs and the 

behaviors they might inspire, opening a couple interesting avenues for further investigation.  

First, is possible that the suggestions of relationships between neural and behavioral cost 

representations that failed to reach statistical significance were indicative of true but 

underpowered effects. First, the observation that differences in reward weights on behavior 
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between the bike and shock tasks were ostensibly unrelated to differences in neural responses 

to objective rewards in the value network suggests that changing the type of cost did not 

influence the neural transformation of objective rewards into subjective reward value in these 

regions. Second, we observed a tentative relationship between behavioral cost representations 

and neural cost representations in regions that are sensitive to aversive stimuli, the amygdala 

and posterior insula, and cost representations. Specifically, as the difference between the 

relative influences of bike shocks and shock costs grew, so did the difference between the 

relative neural responses to the objective cost stimuli. In other words, stronger responses in 

these regions were associated with stronger influences of cost stimuli on decision behavior. 

Surprisingly, we also observed this pattern in nAcc, which is typically understood to respond 

primarily to reward stimuli. However, we are not the first to observe such an effect. A previous 

study found that nAcc responded to aversive conditioning, increasing activation in anticipation 

of pain stimuli (Jensen et al., 2003), even in the absence of rewards or any possibility of 

evading the pain stimulus.  Other studies have reported that responses in this region track 

rewards discounted by different types of costs, including effort costs (Botvinick et al., 2009; 

Croxson et al., 2009; Prevost et al., 2010). It is possible that pattern we see with respect to 

costs is only one half of the equation. Regardless of what’s driving this effect, it may be 

important to update conceptions about this region’s role in value-based decision making.   

Alternatively, it is possible that our results were veridical and there isn’t a universal 

value transformation mechanism, at least not within our ROIs. This may indicate that there are 

significant individual differences in the neural mechanisms recruited for value transformations 

in value-based decision making. For example, individuals who are motivated by exercise and 

weary of pain costs may exhibit different patterns neural cost transformations from individuals 
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who are equally averse to both. Another possibility is that, neural cost transformations are more 

complex than linear gain functions, as computed in our behavioral models, and therefore the 

true relationship was undermined by a linear correlation. More sophisticated models of neural 

value transformations, perhaps drawing non-linear discounting functions documented in 

neuroeconomic literature will provide a better fit with the observed data.   
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Chapter VI: General Discussion 

Summary of Key Results 

The present body of work investigated how the human brain resolves cost/benefit 

choices. While many forms of value imbue such choices, we paid particular attention to three: 

SV, confidence, and costs. In Experiment 1, participants underwent fMRI while performing an 

ApAv decision making task that offered monetary rewards in exchange for enduring painful 

electrical shocks. In Experiment 2, participants performed the same task, but with a novel 

implementation of physical costs. This was the first study to use intervals of cardiovascular 

exercise as cost stimuli in a value-based decision making task. Behavioral and neuroimaging 

data from Experiments 1 and 2 were analyzed separately (Chapters 2 and 3). Then, these two 

studies were considered together and in contrast with one another (Chapter 3) in terms of the 

magnitude of brain activation. Then we reconsidered potential differences of the costs in these 

experiments by quantifying representational dissimilarity of voxel response patterns (Chapter 

4), and characterized individual differences with respect to preferences and neural value 

transformations (Chapter 5).  

Our key novel finding was that value-based decision making entails a dynamic process 

by which vmPFC shifts from valuation of external stimuli (SV) to valuation of internal signals 

(confidence). We also found that the magnitudes of neural signals tracking SV, confidence, 

and decision outcomes did not differ between choices with pain costs and choices with effort 

costs, consistent with shared neural faculties for value computation. On the other hand, within 

those faculties, a more sensitive analysis using representational dissimilarity of voxel response 

patterns between the two costs suggested cost-domain-specific value processing. Specifically, 



 99 

vmPFC encodes costs differently earlier on in ambivalent decisions than confident decisions, 

suggesting that early scrutiny of value information is exclusive to conditions of ambivalence.  

Analysis of behavior at the individual level revealed a correlation between the relative 

weights participants assigned to costs and rewards in the bike and shock tasks but no 

correlation between their general tendencies for approach behavior (proportion accepted offers 

and decision boundary intercept), suggesting domain-general valuation strategies and domain-

specific approach criteria.  

 

Summary of Theoretical Implications 

The overall series of results within vmPFC suggest qualitatively different decision 

processes for ambivalent versus confident decisions. When the environment affords easy 

choices, careful valuation of the opportunity may be initially bypassed, but value information 

is later examined to make high-fidelity predictions about the outcomes of a decision, 

amounting to strong choice confidence. When the environment presents more ambiguous 

opportunities, value information is promptly scrutinized in detail, but predictions about 

decision outcomes remain relatively poor, amounting to choice ambivalence.  

 

Discussion 

In Experiment 1 (Chapter 2), participants underwent fMRI while performing an ApAv 

decision making task that offered monetary rewards in exchange for enduring painful electrical 

shocks. This study was motivated by recent research reporting that vmPFC, a region well 

understood to mediate SV computations in cost-benefit opportunities (Park et al., 2011; Talmi 

and Pine, 2012), also tracked decision confidence in both perceptual (Heereman et al., 2015; 
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Bang and Fleming, 2018; Gherman and Philiastides, 2018) and value-based decisions (De 

Martino et al., 2013; Lebreton et al., 2015).  This led to a useful reframing of the nature of 

confidence signals. It was suggested that confidence, like SV, is a valuation in its own right 

measuring the extent to which one can believe that they are making the best choice (Lebreton 

et al., 2015). Given that accurate decisions are valuable, vmPFC may perform valuations of 

internal judgments similarly to how it performs valuations of external stimuli.  

The results of Experiment 1 showed that while participants evaluated the offer (offer 

phase), vmPFC tracked SV and decision outcomes but not confidence. When participants 

submitted a decision (commit phase), vmPFC tracked confidence but not SV or decision 

outcomes. In Experiment 2, we found that this generalized to a different type of decision cost, 

cardiovascular exercise, indicating that vmPFC carries similar SV and confidence signals 

across different domains of value stimuli. These results provide evidence supporting the recent 

hypothesis that confidence signals in vmPFC are valuations of judgments (Lebreton et al., 

2015) and generalize the hypothesis to two new types of decision making tasks.  

Note that the matter of timing isn’t a trivial one. There has been extensive debate in the 

literature concerning when confidence emerges over the course of decision making. Some have 

proposed that confidence evolves concurrently with a decision and therefore emerges relatively 

early (Kepecs et al., 2008; Lebreton et al., 2009; Chib et al., 2012; Kiani et al., 2014; Gherman 

and Philiastides, 2015; Dotan et al., 2018; Gherman and Philiastides, 2018), others have 

reported evidence suggesting that confidence lags behind decision variables and value 

estimates, emerging closer to the time of choice commitment or even later (Resulaj et al., 2009; 

Pleskac and Busemeyer, 2010; Hilgenstock et al., 2014; Moran et al., 2015; Yu et al., 2015; 

Fleming et al., 2018; Morales et al., 2018). Our results decidedly endorse the latter argument, 
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however given the sizable amount of evidence in support of each hypothesis, it seems 

worthwhile to consider exactly what is being measured.  

We found it useful to conceptualize confidence as a valuation process. Other 

conceptions of confidence, often described in studies of perceptual decision making, concern 

degrees of certainty about information in the environment and the reliability of perceptual 

signals (Kiani and Shadlen, 2009). Note that the two descriptions of confidence mentioned are 

not mutually exclusive nor are they necessarily different in intended meaning. For both, 

confidence is the extent to which one can believe they’re making the best choice (Pouget et al., 

2016; Lebreton et al., 2018), but each takes a slightly different perspective. In perceptual 

decision making tasks, one is attempting to discern a ground truth about the environment. The 

ultimate goal is to get an accurate reading of that environment, irrespective of oneself. In these 

cases, one’s sense of confidence is largely dependent on the quality or reliability of information 

to which one has access – the extent to which they can believe they have accurately perceived 

the environment. In subjective value-based decision making tasks, in which there are no 

“correct” answers nor latent optimal strategies, one is attempting to discern a value with respect 

to their own subjective needs and preferences. The ultimate goal is to maximize future value 

for oneself. In these cases, one’s sense of confidence is largely dependent on predicted 

outcomes with respect to oneself – the extent to which they can believe that their choice 

promises a satisfying outcome. With these considerations in mind, it becomes clear that 

defining confidence in a general way (e.g. the extent to which one can believe they’re making 

the best choice) can take different meanings with respect to the task at hand. This has important 

implications for how we might interpret results regarding timing of confidence.  
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In Chapter 4, we measured the representational dissimilarity of voxel response patterns 

associated with different decision costs during confident and ambivalent decisions to accept or 

reject offers. In this analysis, vmPFC was the only ROI that encoded cost-domain-specific 

representations in all four trial conditions, indicating that value representations consistently 

encoded information about the specific cost consequence of the current offer. Importantly, 

ambivalent and confident decisions showed systematically different patterns in the timing at 

which cost information was available.  

Offer valuation is obviously a major contributor to the factors that can challenge a 

choice and lead to ambivalence. Notably, for our task ambivalence is not driven by other 

contributors, such as a perceptual uncertainty. Instead, the overall SV of the offer under 

consideration approaches 0 – it is hard to know whether it amounts to a net loss or gain. Due 

to the difficulty of estimating SV during ambivalent choices, it is likewise difficult to predict 

the consequences of accepting such an offer with respect to one’s future satisfaction. On the 

other hand, offer valuation is relatively easy during confident choices. The overall SV of the 

offer under consideration approaches extremely negative and positive values and consequently, 

one can accurately predict how this will influence one’s future satisfaction.  

During ambivalent choices, vmPFC encoded unique representations of pain and effort 

costs early in the decision making process. During confident choices, such differences didn’t 

emerge until relatively later. This aligned with results from Chapters 2 and 3, showing that 

vmPFC first tracked value information about the offer early in the trial, and then tracked 

information about confidence later in the trial. The similar time courses of these representations 

suggest that domain-specific cost information informs vmPFC representations of SV, decision 

outcomes, and confidence. That is, vmPFC may represent both decision outcomes and choice 
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confidence in a cost-domain-specific manner but at different time points over the course of a 

decision. 

While this is still somewhat indirect evidence of such a relationship, we offer the 

following interpretations that we believe are consistent with our previous observations and the 

relevant literature: For ambivalent choices, the offer stimuli are closer to the decision boundary 

and require careful consideration of exactly what accepting the offer would entail. On these 

trials, the SV of the offer and ultimately the participant’s decision cannot be determined by 

simple cost-domain-general heuristics (e.g. choose accept if the reward is X times larger than 

the cost).  Instead, cost-domain-specific computations of SV and the decision outcome are 

computed in real time.  

For confident choices, the offer stimuli are farther from the decision boundary and may 

not require precise valuation in order for the participant to make a decision.  The participant 

could instead rely on automated responses, quick estimations, or heuristics (Korn and Bach, 

2019) such as the example given above. These strategies may be cost-domain-general. 

Participants are more likely to repeat confident decisions in both the bike and shock tasks than 

they are to repeat ambivalent decisions (details about decision behavior are provided in Chapter 

5). Alternatively, decision strategies for confident choices could be set towards the beginning 

of the task, after which the participant doesn’t need to invoke representations of the type of 

cost under consideration. Note that because we collected the bike and shock data in separate 

sessions, the participant could use the same strategies throughout a session. In either case, cost-

domain-specific representations would not be critical for valuation of the offer stimulus on 

confident trials, or at least not to the extent that they are required for ambivalent decisions.  
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We observed that cost-domain-specific representations emerge relatively later (closer 

to choice commitment) on confident trials. As described in previous chapters, it has been 

suggested that confidence signals in vmPFC are related to the valuation of one’s judgment – 

assessing how strongly one can believe they’ve made the right decision (Lebreton et al., 2015). 

If on confident trials participants took a valuation shortcut to arrive at a decision, bypassing 

cost-specific information, cost representations could become crucial for assessing confidence 

insofar as they guide predicting the specific consequences of one’s decision. That is, to assess 

the quality of a decision, a representation of what specifically that decision will entail is 

needed. In our task, decisions entail costs of pain or effort. Confidence signals may thus invoke 

cost-specific representations that had been bypassed in the original determination of the 

decision in order to assess its quality.  

These interpretations refine the hypothesis that confidence is a valuation of one’s 

judgment by suggesting that such a mechanism is particularly important for predicting the 

consequences of one’s actions. Accurate decisions are valuable decisions because they 

facilitate the learning of associations between actions and outcomes, allow us to adapt 

dynamically to what’s ahead, and to maximize the likelihood of future satisfaction.  
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Tables and Figures 

Figure 1: Experimental task and variables of interest 

 
(A) Experimental Task: On each trial, the participant was offered one monetary reward ($ bar 
width represents amount, ranging continuously $0.01-$1.50) contingent on enduring 1 painful 
shock (lightning bolt bar width represents pain intensity, ranging continuously from minimally 
to maximally painful). Participants were instructed to use the offer phase to evaluate the offer 
and to decide if they would accept or reject it, but they were not yet able to respond. During 
the commit phase, response mappings appeared and participants made a left or right button 
press according to the location of the triangle representing their choice (up triangle = accept, 
down triangle = reject), which varied randomly between trials to prevent preparation of motor 
responses during the offer phase. After submitting a response, the corresponding triangle was 
highlighted. Finally, feedback indicating whether the offer was accepted or rejected was added. 
On payout trials (10 random trials of 189 total), a payout alert followed the feedback. If the 
participant had accepted the offer, they would receive the monetary reward and also endure the 
shock at the end of the task, otherwise the participant would receive neither. (B) Illustration of 
variables of interest: We were interested in two types of value inherent in economic decision 
making: the perceived value of the offer stimulus (SV) accounting for its cost and reward 
attributes, and the value of one’s judgment (confidence), which measures the extent to which 
one believes they are making the best decision. For accept decisions (blue bars), there is a 
positive relationship between SV and confidence: as SV increases, one becomes increasingly 
confident that accepting the offer is the best decision. However, for reject decisions (red bars), 
there is an inverse relationship between SV and confidence: one becomes increasingly 
confident about rejecting offers as SV decreases. We tested whether they are evaluated 
simultaneously or during different phases of decision making. 
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Figure 2: Observed decisions and model-based estimates of confidence and value  
 

 
Individuals’ choice outcomes are plotted over the decision space, which is shaded according 
to model-based P(Acc). Each coordinate is a possible offer, with the x-dimension representing 
percent maximum reward and the y-dimension representing the percent maximum pain cost. 
Observed choices are overlaid points, the filled color represents the observed decision (red = 
reject, blue = accept). The point outline represents model-based confidence (yellow = 
ambivalent, purple = confident). Decision boundaries are overlaid in white. There were 
substantial individual differences in choice behavior and model-estimated value, as well as 
differences in choice consistency (indicated by the width of the band of neutral color 
surrounding the decision boundary). Note that decision boundaries diverged considerably from 
objective perceptual equality (where reward = cost, not displayed). 
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Figure 3: GLM1: Parametric correlation with SV and –Confidence 
 

 
During the offer phase, vmPFC tracked SV but not confidence and during the commit phase, 
vmPFC tracks confidence but not SV. Figures display all statistically significant results at 
p<.05 TFCE-corrected at the whole-brain level. (A) BOLD responses during the offer phase 
that correlated positively with model-estimated SV. During the offer phase, a large cluster of 
voxels in vmPFC tracked SV while participants evaluated the offer. Slice images show local 
peak activation in vmPFC, along with the MNI coordinates and t-value of the local maximum 
in this cluster. There was also significant activation throughout the value network including 
within posterior cingulate cortex, the basal ganglia, insula, and hippocampus; regions involved 
with value-comparison such as angular gyrus and lateral temporal cortex; and visual cortex. 
No voxels correlated positively with SV during the commit phase, suggesting that value-
responses, particularly in vmPFC, emerge relatively early in the decision making process. (B) 
BOLD responses positively correlated with ambivalence (inversely correlated with 
confidence) during the offer phase. Areas involved with cognitive control and response 
competition, such as lPFC and dACC tracked ambivalence while participants deliberated 
accepting or rejecting the offer. Slice images show local maxima in regions of theoretical 
interest (lPFC and dACC). No voxels in vmPFC or elsewhere responded positively with choice 
confidence during the offer phase, suggesting that neural responses corresponding to high 
confidence emerge relatively later than SV and ambivalence. (C) BOLD responses correlated 
positively with model-estimated confidence during the commit phase. During the commit 
phase, while participants submitted a response and viewed feedback about their decision, a 
cluster of voxels in vmPFC tracked decision confidence, as well as regions including posterior 
insula and lateral temporal cortex. Slices images show peak activation in vmPFC.  
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Figure 4: GLM2: Contrasts of decisions and confidence conditions 

 
vmPFC encodes decision variables during the offer phase but not the commit phase, and 
encodes decision confidence during the commit phase, but not the offer phase. Figures display 
all statistically significant results at p<.05 TFCE-corrected at the whole-brain level. (A) 
Contrasts of response magnitudes from the offer phase of accept trials > reject trials: During 
the offer phase, clusters of voxels in vmPFC and other regions in the value network, many of 
which were also parametrically correlated with SV, had stronger response magnitudes 
preceding accept decisions than reject decisions. Slices images show peak coordinates in 
vmPFC. No voxels exhibited this contrast during the commit phase, nor were there any regions 
with stronger responses during rejected trials than accepted trials during either phase. (B) 
Contrasts of response magnitudes from the offer phase of confident trials <  ambivalent trials. 
Slice images illustrate peak activation in lPFC and dACC. (C) Contrasts of response 
magnitudes from the commit phase of confident > ambivalent trials (purple) were observed in 
vmPFC were stronger for confident trials than ambivalent trials. No regions showed the same 
contrast during the offer phase. Clusters of voxels in lateral OFC, the anterior insula, and dACC 
showed the reverse pattern, with stronger response magnitudes during the commit phase of 
ambivalent trials than confident trials. Note that, several regions (dACC, lPFC, lateral OFC, 
and anterior insula) show the confident < ambivalent contrast during both the offer and commit 
phases. Slice images show peak coordinates for confident > ambivalent in vmPFC and peak 
coordinates for confident < ambivalent in lateral OFC, dACC, and anterior insula.  
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Figure 5: vmPFC ROI analysis 
 

 
(A) anatomical vmPFC ROI (B) AccCon > AccAmb and RejCon > RejAmb contrasts of 
BOLD responses during the commit phase. Figures display all statistically significant results 
at p<.05 TFCE-corrected within the vmPFC ROI. During the commit phase, vmPFC responses 
are stronger for high confidence choices, even for reject choices when confidence is inversely 
related with SV. (C) vmPFC Parameter estimates from the offer (left) and commit phase 
(right). Small points are individuals’ raw vmPFC parameter estimates with respect to their 
mean P(Acc)-P(Rej) of each trial condition. Large points are group mean vmPFC parameter 
estimates with respect to the group mean P(Acc)-P(Rej) of each condition. The fit line indicates 
regression predictions and 95% CI from the winning model for that decision phase. During the 
offer phase, vmPFC responses increased linearly across trial conditions with increasing value. 
During the commit phase, they increased quadratically. (D) Comparison of mixed effects 
regression models predicting vmPFC parameter estimates (GLM2) from the and quadratic 
(bottom) extensions of value. Model estimates and 95% confidence intervals show fixed effects 
of linear and quadratic model terms, confidence intervals not spanning 0 are considered 
significant. vmPFC parameter estimates from the offer phase (left) were best fit with a linear 
model, indicating that during the offer phase, vmPFC tracks value. vmPFC parameter estimates 
from the commit phase (right) were best fit with a quadratic model, indicating that during the 
commit phase vmPFC tracks confidence. 
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Figure 6: RT analysis 
 

 
Individual and group mean RTs (small lines) are plotted with respect to value (P(Acc)-P(Rej)). 
Fit lines represent model predicted RTs and 95% CIs. RTs take an inverse quadratic function 
with respect to model-estimated value. The time it took participants to commit to decisions 
was negatively correlated with model-estimated confidence (the quadratic extension of value). 
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Figure 7:  Schematic of experimental session procedures for Experiments 1 and 2 
 

 
Both the bike and the shock task followed nearly identical procedures. The main difference 
between the two was that the bike task required cost thresholding to be completed on a separate 
day, prior to the experimental task. Both pain and effort costs were calibrated to the 
individual’s capacity, with shocks ranging from minimally painful to maximally painful and 
bike intervals ranging from minimally effortful to maximally effortful. Decision costs ranged 
continuously between these values and varied independently of decision rewards. The task 
design, stimuli, and trial order were identical for the two tasks, however the trials randomly 
selected as payouts differed. 
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Thresholding

     BIKE     SHOCK   OVERALL

CPET_PSYCH       1  / 1

Cardio-Pulmonary Exercise Testing

Last Name: B124 First Name: B124
Age: 19 Years Gender: female
Height: 64.0 Inch Weight: 128.0 lbs
BMI: 22
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• Decision making entails evaluating the costs 
and benefits of one’s choice alternatives. The 
overall subjective value (SV) of a given option is 
a combination of its positively- and negatively-
valued attributes.  

• Previous literature has surveyed neural 
representations of different types of costs 
including probabilistic risk, pain, cognitive effort 
and grip-force effort.  

• Few neuroimaging studies have posed 
deterministic choices with significant material 
consequences, such as pain and cardiovascular 
exercise.

• When the SV of a choice alternative is extremely high or 
extremely low, one can be highly confident in making a 
choice about it. When SV is close to 0 there is more 
ambivalence. 

• Much progress has been made in understanding vmPFC’s 
critical role in representing SV in value-based decision-
making (Grabenhorst & Rolls, 2011; Park, Kahnt, Rieskamp, 
Heekeren, 2011; Hunt et al., 2012; Levy & Glimcher, 2012). 

• More recent work is beginning to show that this region may 
also represent choice confidence (De Martino et al., 2013; 
Lebreton et al., 2015). However, there is still much to be 
explored: 
• how and whether vmPFC integrates confidence and value 
• the time course of these signals 
• to what extent are they carrying the same information?

Value-based Decision Making

Costs

• participants:  
•Bike & shock: 21 healthy participants (18-25 y/o, 14 w) 
•Shock only: 28 healthy participants (18-26 y/o, 18 w)  

•Shock stimuli: 
•PowerLab 26T, intensities depended on individual’s 
measured pain threshold with maxima ranging 
5mv-48mv 

•Stationary bike: 
•Ergoline 900 bike with a Vyntus CPX/ECG metabolic 
cart  

•Standard VO2max protocol to determine load for 
minimum and maximum costs

•Anatomical ROI selection 
• Harvard-Oxford Atlas, combined mPFC & sgACC for 
vmPFC  

•Imaging: Siemens 3T Magnetom Prisma Fit (64-channel 
phased-array head coil). 

•Structural: high-res. 0.94 mm isotropic T1 and T2*-weighted 
• Functional: multiband T2*-weighted echo planar gradient-

echo imaging sequence (TR=910 ms, multiband factor 8, 
coronal slices, 2 mm thick; 2x2 mm in-plane resolution).  

• Linear mixed-effects model of vmPFC parameter estimates 
performed with LME4 package for R

SVoffer =β0+βrroffer +βccoffer = log
P(accept |offer)
1−P(accept |offer)

P(accept |offer)= 1
1+e−SVoffer

Subjective Value • Logistic regression fit 
individuals’ choice 
outcomes and 
predicted SV of each 
cost/reward offer 

• Additive SV model and 
interactive SV model fit 
choice outcomes 
equally well

Cost preferences 
% bike offers accepted 
% shock offers accepted

Su
bj

ec
t

Ratio of Model Coefficients 
 coffer/roffer bike 

  coffer/roffer shock

Costs GLM 1: Parametric modulation by objective costs and rewards (bike & shock, n=21)

              BIKE                 SHOCK                 OVERALL

Costs GLM 2: Parametric modulation by subjective value (bike & shock, n=21)

Confidence GLM 3:  
Parametric modulation w/ SV & 
confidence, during offer and 
commit phases (shock only, n=28)

• Accept Confident = upper 
50th percentile SV of all 
accepted offers 

• Accept Ambivalent = lower 
50th percentile SV of all 
accepted offers 

• Reject Confident = lower 
50th percentile SV of all 
rejected offers 

• Reject Ambivalent = upper 
50th percentile of all 
rejected offers 

• Individual differences in 
choice x certainty bin for 
identical stimuli

Categorical  
Choice X Confidence

Confidence = SVoffer
2

Parametric

• defined confidence as second-
order extension of SV estimate 
on each trial
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CONCLUSIONS
• There are substantial individual the perceived SV, choice confidence, confidence, costs preferences, and choice outcomes of 

deterministic choices with mixed outcomes of significant pain and exercise costs 
• Both bike and exercise tasks elicited similar responses related to objective rewards and costs and subjective value. There were no 

magnitude-based differences observed between the two tasks, potentially suggesting that costs are perceived and evaluated 
similarly across exercise and pain modalities, however future multivariate analyses will examine this hypothesis more rigorously 

• Activity in regions associated with conflict resolution and response competition, such as lPFC, ACC, and the anterior insula is 
correlated with choice ambivalence during the offer stage. However, no regions varied with choice confidence during the offer stage.  

• Brain regions associated with value, pain, and emotion vary with subjective value during the offer stage. vmPFC and posterior insula 
also vary with choice confidence during the commit phse.  

• Activity in vmPFC seems to represent both confidence and value, however on different timecourses. Earlier in decision making, 
vmPFC varies with the SV of the offer under consideration. Later, during choice commitment, vmPFC varies with choice confidence. 

• Comparison of vmPFC parameter estimates during the offer phase and the commit phase 
• Fit linear mixed effects model predicting vmPFC response from p(acc) (centered at 0), to 

data from each phase 
• Fixed effects of p(acc) (linear and quadratic extensions) with a random intercept 

• Linear model included only p(acc), quadratic model also included the quadratic extension 
• During the offer phase, vmPFC responses were best fit with a linear model, suggesting that 

these responses signal SV 
• during the commit phase vmPFC responses were best fir with a quadratic model, 

suggesting that they are signaling choice confidence

Behavioral and Neural Signatures of the Subjective Value of Pain and Exercise 
Allison Shapiro, Gold Okafor, Viktoriya Babenko, Tom Bullock, Neil Dundon, Barry Giesbrecht, Scott T. Grafton  

Department of Psychological and Brain Sciences, University of California, Santa Barbara Contact: shapiro@psych.ucsb.edu

This work supported by Grant W911NF-16-1-0474 and Contract W911NF-09-0001 from the Army Research Office

• Offer stage: regions associated 
with subjective value (vmPFC, 
posterior insula), and value 
comparison (STG & IPL) vary with 
subjective value. No regions vary 
with choice confidence, however 
ACC and lPFC vary with 
ambivalence.  

• Commit stage: vmPFC, posterior 
insula, and anterior STS vary with 
confidence, no regions vary 
positively or negatively with  SV

-7.5
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Figure 8: GLM1b offer phase: parametric correlation with SV and –confidence 
 

 
During the offer phase, vmPFC tracked SV but not confidence. dACC tracked ambivalence. 
The top panel shows analysis of BOLD responses from the offer phase, combining data from 
both the bike and shock tasks (domain-general). The bottom panel is the results of each task 
separately. Figures display all statistically significant results at p<.05 TFCE-corrected at the 
whole-brain level. (A) BOLD responses during the offer phase that correlated positively with 
model-estimated SV. During the offer phase, a large cluster of voxels in vmPFC tracked SV 
while participants evaluated the offer. Slice images show local activation throughout the value 
network including within vmPFC, pIC, nAc and other structures in the basal ganglia, OFC, 
lPFC, and posterior cingulate cortex. (B) BOLD responses positively correlated with 
ambivalence (inversely correlated with confidence) during the offer phase. dACC tracked 
ambivalence while participants deliberated accepting or rejecting the offer. No voxels in 
vmPFC or elsewhere responded positively with choice confidence during the offer phase, 
suggesting that neural responses corresponding to high confidence emerge relatively later than 
SV and ambivalence.  
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Figure 9: GLM1b commit phase: parametric correlation with confidence   
 

 
 
 BOLD responses correlated positively with model-estimated confidence during the commit 
phase. On the left are voxels passing the reduced statistical threshold of p < .1, tfce whole-
brain corrected. On the right are voxels passing the original statistical threshold of p < .05, tfce 
whole-brain corrected. Top panels are combined analyses (domain-general), bottom panels are 
from the bike- and shock-only analyses. During the commit phase, while participants submitted 
a response and viewed feedback about their decision, a cluster of voxels in vmPFC tracked 
choice confidence, as well as local activation in pIC, lateral temporal cortex and inferior 
parietal cortex, and precuneus. No voxels correlated positively with SV during the commit 
phase, suggesting that positive value signals within in vmPFC, emerge and then fade relatively 
early in the decision making process.  
 
  

shock-only

domain-
general

Confidence
Commit Phase

p (confidence)
p < .1, tfce whole-brain corrected

.90          .93           .96          .99
2                                 6

t (confidence)

p < .05, tfce 
whole-brain corrected

bike-only



 124 

Figure 10: GLM1b commit phase: parametric correlation with -SV  
 

 
BOLD responses correlated negatively with model-estimated SV during the commit phase. 
Figures display all statistically significant results at p<.05 TFCE-corrected at the whole-brain 
level, from the domain-general analysis only. Clusters of voxels in the amygdala, inferior ACC 
and mid-cingulate, aIC, pIC, precuneus, and lateral parietal cortex responded inversely to 
subjective value. Slice images show local activation in the amygdala and rendered cortex with 
cutout shows activation throughout the insula.  
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Figure 11: GLM2b offer phase: contrasts of decisions and confidence conditions  
 

 
During the offer phase, vmPFC encodes decision variables and dACC and rlPFC respond more 
strongly to ambivalent trials than confident trials. Top panel is combined analysis, bottom 
panel is separate bike and shock analyses. Figures display all statistically significant results at 
p<.05 TFCE-corrected at the whole-brain level. (A) Contrasts of response magnitudes from 
the offer phase of accept trials > reject trials: During the offer phase, clusters of voxels in 
vmPFC and other regions in the value network, many of which were also parametrically 
correlated with SV, had stronger response magnitudes preceding accept decisions than reject 
decisions. Slice images show local activation in the value network including within vmPFC, 
pIC, nAc and throughout the basal ganglia, OFC, lPFC, and posterior cingulate cortex. No 
voxels exhibited this contrast during the commit phase, nor were there any regions with 
stronger responses during rejected trials than accepted trials during either phase. (B) Contrasts 
of response magnitudes from the offer phase of confident trials <  ambivalent trials. Slice 
images illustrate peak activation in lPFC and dACC.  
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Figure 12: GLM2b commit phase: contrasts of decisions and confidence conditions 
 

 
Left: Commit phase contrasts of confident > ambivalent (purple) and confident < ambivalent 
(orange) significant at original statistical threshold of p < .05 tfce, whole brain corrected. Right: 
Voxels passing reduced statistical threshold of p < .1 tfce, whole brain corrected for the 
confident > ambivalent contrast only.  
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Figure 13: GLM2b commit phase: vmPFC ROI analysis 
 

 
AccCon > AccAmb and RejCon > RejAmb contrasts of BOLD responses during the commit 
phase. Figures display all statistically significant results at p<.05 TFCE-corrected within the 
vmPFC ROI. During the commit phase, vmPFC responses are stronger for high confidence 
choices, even for reject choices when confidence is inversely related with SV. 
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Figure 14: Illustration of ROIs 
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Figure 15: Representational dissimilarity distance normalization 
 

 
 
 
Example data from a single participant, during single FIR, within a single ROI. Voxel response 
pattern distances were estimated for all pairwise comparisons of observations (2 Choice X 2 
Confidence X 2 Cost X 6 runs). Red diagonal illustrates identity condition – comparison of a 
single observation to itself yields 0 distance. Surrounding the red diagonal are baseline 
distances, the distance between a condition and itself in another run.  Gridlines illustrate 
individual trial conditions. The mean distance between a pair of conditions (average across 
pixels within a grid square) is the cross-validated distance. Then normalization was applied to 
control for between-run variance within a trial condition.  
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Figure 16: Illustration of representational dissimilarity comparisons of interest 
 

 
 
 
Plots contain basic predictions about relative distances, not data. This figure illustrates 
comparisons of interest to help guide interpretations of actual data presented in Figure 17. 
Further explanation is provided in the main body text. 
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Figure 17: Pairwise representational dissimilarity across all trial conditions  
 

 
 
 
(Left): Comparisons of potential interest over basic predictions (not data). (Right) Plot displays 
representational dissimilarity results, shown in normalized distances (a.u.) with darker colors 
indicating smaller distances and brighter colors indicating larger distances. Rows are 
individual ROIs (control ROI, A1, in bottom row), columns are FIR bins 1-9 (FIR bin 1 is the 
baseline time point). Within each grid square are pairwise comparisons of all trial conditions 
observed within the corresponding ROI during the corresponding FIR bin. Trial conditions are 
noted on bottom and right with B = bike, S = shock, A = accept, R = reject, a = ambivalent, c 
= confident. Timeline displayed across top of plot indicates trial events. Note that at the 
beginning of the trial (leftmost columns) distances between trial conditions are relatively small, 
indicating that there are no meaningful differences in voxel response patterns between trial 
conditions. Gradually over the course of the trial (moving rightward across columns), 
differences between trial conditions begin to emerge (brighter shades) across all ROIs, and 
then diminish back to baseline values. A detailed description is provided in the main body of 
the text. 
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Figure 18: Representational dissimilarity of decision costs across all conditions 
 

 
 
 
The mean normalized distance across all trial conditions that differ only by cost are plotted 
with respect to FIR time bin for each ROI and the control region. A significant difference from 
baseline indicates representational dissimilarity of decision costs within that ROI at that time 
point. Error bars are 95% confidence intervals around model fitted mean. Shaded regions mark 
significant differences from baseline (FIR bin 1) when the fixation cue was on the display (*** 
p < .005;  **p < .01;  *p < .05;  . p <.1; Dunnett’s test corrected). All ROIs differ from baseline 
during at least one FIR bin, whereas the control region does not.  
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Figure 19: Representational dissimilarity of decision costs within each condition 
 

 
 
Mean normalized distances for each trial condition are plotted with respect to FIR time bin for 
each ROI and the control region. A significant difference from baseline indicates 
representational dissimilarity of decision costs within that ROI, at that time point, for that 
condition. Error bars are 95% confidence intervals around model fitted mean. Shaded regions 
mark significant differences from baseline, FIR bin 1 (*** p < .005;  **p < .01;  *p < .05;  . p 
<.1; Dunnett’s test corrected). Black outlines indicate the trial conditions where there is a 
significant effect.  Arrows overlaid on vmPFC plot illustrate relative onsets of cost differences 
in vmPFC – differences in voxel response patterns corresponding to pain and effort costs 
emerge relatively earlier during ambivalent choices than during confident choices.  
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Figure 20: Comparison of behavioral choices in bike and shock tasks for an example 
participant 
 

 
Behavioral choice data from an individual subject in the bike task (left), shock task (middle), 
and a comparison plot (right). Interaction plots (left and middle) are as described in Figure 2. 
Note that now, blue corresponds to bike data and green/yellow corresponds to shock data. The 
comparison plot overlays the decision boundaries from both tasks (yellow = shock, blue = 
bike) with a summary of decisions from the two tasks (light blue = offer was accepted in both 
tasks, dark blue = offer was only accepted in bike task, yellow = offer was only accepted in 
shock task, red = offer was rejected in both tasks). This participant’s choices suggest that the 
bike costs were perceived as more aversive than the shock costs as several trials that were 
accepted in the shock task were rejected in the bike task. Furthermore, the slope of the decision 
boundary is less steep in the bike task than the shock task. This indicates that in order to cancel 
out the value of a reward (at the bound, the relative values of costs and reward are equal), the 
magnitude of a shock cost needs to be much greater than the magnitude of a bike cost that 
would cancel out the same reward.  
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Figure 21: Comparison of behavioral choices in bike and shock tasks – all participants 

 
  

bike shock
accepted both
accepted bike
accepted shock
rejected both bike shock

accepted both
accepted bike
accepted shock
rejected both bike shock

accepted both
accepted bike
accepted shock
rejected both

0   25  50   75 100 0  25  50   75 1000  25  50   75 1000   25  50   75 100 0  25  50   75 1000  25  50   75 1000   25  50   75 100 0  25  50   75 1000  25  50   75 100



 136 

Figure 22: Individual differences in choice behavior for bike and shock tasks 

 
 
(A) Changes in behavior between the bike (blue circles) and shock (yellow arrows; arrow tip 
denotes data value) for individual participants, which are row-aligned in both plots for ease of 
comparison, and group means in top row. Left: Change in proportion of offers accepted in the 
bike and shock tasks. Right: Change in ratio of model weights (cost weight/reward weight) 
between bike and shock tasks. Note that there is no obvious relationship between the two plots 
– the change in the proportion of offers accepted between the two tasks does not meaningfully 
correspond to the change in the ratio of model weights. (B) Correlations between behavior on 
bike and shock tasks with respect to proportion of offers accepted (Left), decision boundary 
intercept (Middle), and decision boundary slope (Right). There was a correlation between 
individuals’ decision boundary slopes in the bike and shock tasks, but not between the 
proportion of offers accepted in the two tasks, nor the decision boundary intercept.  
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Figure 23: Value transformations in ROIs 
 

 
Correlations between change in behavioral model weights and change in ROI parameter 
estimates for objective costs (top) and objective rewards (bottom). Text on figure provides 
person’s R and p values, along with a 95% confidence interval that has been Bonferroni 
corrected for multiple comparisons. A strong correlation between the change in the behavioral 
cost (or reward) weights between the two tasks and the change in parameter estimates in an 
ROI would suggest that the extent to which an ROI responds to a given stimulus modulates the 
extent to which behavior is influenced by that stimulus. There were no significant correlations 
after corrections for multiple comparisons.  
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Table 1: Significant cluster activation from GLM1 and GLM2 

Full details of significant task-related activation. Clusters <10 voxels excluded. Sub-headings 
give the analysis and decision phaseThe first three columns identify the analysis, decision 
phase when BOLD responses were measured, and the variable measured in the statistic (Con. 
= confiden(t)ce, Amb.=ambivalen(t)ce. The next column specifies each cluster and indicates 
the total number of voxels in that cluster. The remaining columns are details about local 
maxima within that cluster, including t-value (* signifies cluster peaks illustrated in figures), 
MNI coordinates, region from AAL of MNI space, and Brodmann area (- signifies peak 
voxel falls outside of labelled cortex, region provided is the closest). 
. 
GLM1: SV, Offer Phase 
    MNI         

Voxels t x y z     Region   
19370 7.13 42 -66 32   R Angular gyrus   BA39   

5.99 -16 -52 42   L Precuneus  - BA31   

5.97 -38 -66 30   L Middle occipital gyrus   BA39   

5.79 66 -28 -4   R Middle temporal gyrus   BA21   

5.26 28 -14 10   R Lenticular nucleus, putamen     

5.23 32 -16 10   R Insula   BA13  - 
6613 7.28 32 20 52   R Middle frontal gyrus   BA8   

6.69 8 44 -8 † R Superior frontal gyrus, medial orbital   BA10   

6.13 -12 4 -22   L Parahippocampal gyrus     

5.79 -8 44 0   L Anterior cingulate and paracingulate gyri   BA32   

5.09 -4 38 -16   L Gyrus rectus   BA11   

4.95 10 16 -8   R Caudate nucleus      
1106 5.04 -60 -34 -26   L Inferior temporal gyrus   BA20   

5.02 -42 -22 10   L Heschl gyrus   BA41   

4.92 -66 -30 -16   L Inferior temporal gyrus   BA21   

4.51 -62 -56 -18   L Inferior temporal gyrus   BA37   

4.38 -62 -44 -12   L Middle temporal gyrus   BA37   

4.26 -64 -50 -14   L Inferior temporal gyrus   BA37   
480 6.51 -24 18 44   L Middle frontal gyrus   BA8   

4.53 -26 28 36   L Middle frontal gyrus   BA9   

4.32 -26 24 48   L Middle frontal gyrus   BA8   

4.02 -20 24 32   L Middle frontal gyrus  - BA8  - 

3.87 -24 24 26   L Middle frontal gyrus  - BA9  - 

3.79 -28 28 42   L Middle frontal gyrus   BA9   
249 4.97 0 -6 34   L Median cingulate and paracingulate gyri   BA24   

4.36 -2 -4 38   L Median cingulate and paracingulate gyri   BA24   
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2.95 12 0 42   R Median cingulate and paracingulate gyri   BA32  - 

2.81 10 2 38   R Median cingulate and paracingulate gyri   BA32   

2.71 6 2 40   R Median cingulate and paracingulate gyri   BA32   
75 3.15 -36 28 -22   L Inferior frontal gyrus, orbital part   BA47   

3.05 -32 28 -18   L Inferior frontal gyrus, orbital part   BA47   

2.78 -36 38 -18   L Inferior frontal gyrus, orbital part   BA47   

2.74 -38 38 -12   L Inferior frontal gyrus, orbital part   BA47   

2.63 -34 40 -12   L Middle frontal gyrus, orbital part   BA47   
72 3.48 -38 4 -16   L Temporal pole: superior temporal gyrus  - BA13  - 

3.02 -36 -4 -10   L Insula   BA13  - 

2.87 -30 6 -16   L Amygdala  - BA34   
58 4.66 -38 -68 -44   L Crus II of cerebellar hemisphere     

4.03 -32 -66 -48   L Lobule VIIB of cerebellar hemisphere     
44 4.37 -42 -54 10   L Middle temporal gyrus   BA37   

3.72 -44 -52 0   L Middle temporal gyrus   BA37  - 

3.59 -42 -50 16   L Middle temporal gyrus   BA39  - 

3.38 -42 -52 20   L Middle temporal gyrus   BA39  - 

3.31 -44 -46 0   L Middle temporal gyrus  - BA21  - 
22 2.78 -32 -10 -14   L Hippocampus     

2.64 -30 -10 -4   L Lenticular nucleus, putamen      

2.60 -30 -6 -8   L Lenticular nucleus, putamen  -    
15 3.03 12 -22 48   R Median cingulate and paracingulate gyri   BA6   

2.94 12 -24 42   R Median cingulate and paracingulate gyri   BA31   
6 3.31 8 -54 -12   R Lobule IV, V of cerebellar hemisphere     
6 3.38 -38 52 2   L Middle frontal gyrus   BA10   
6 2.99 28 12 32   R Inferior frontal gyrus, opercular part  - BA8   
4 2.81 30 10 -12   R Olfactory cortex  - BA13  - 
3 4.08 -42 -16 28   L Postcentral gyrus  - BA1  - 
3 3.03 -24 -26 76   L Postcentral gyrus   BA1  - 
1 2.85 38 -68 -34   R Crus I of cerebellar hemisphere     
                  

GLM1: Confidence (negative), Offer Phase 
    MNI         

Voxels t x y z     Region  BA  
2043 -7.14 16 -90 0   R Calcarine fissure and surrounding cortex   BA17   

-6.63 -10 -96 -6   L Calcarine fissure and surrounding cortex   BA18   

-6.50 -14 -92 2   L Superior occipital gyrus   BA18   

-6.35 16 -88 -8   R Lingual gyrus   BA18   
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-6.10 0 -80 8   L Calcarine fissure and surrounding cortex   BA17   

-5.46 -8 -82 4   L Calcarine fissure and surrounding cortex   BA17   
2035 -6.65 46 -32 36   R Supramarginal gyrus  - BA40   

-6.35 50 -28 46   R Postcentral gyrus   BA1   

-6.33 38 -42 38   R Inferior parietal  - BA7  - 

-6.25 42 -42 42   R Inferior parietal  BA40   

-6.02 46 -32 46   R Supramarginal gyrus   BA40   

-5.94 44 -46 48   R Inferior parietal  BA40   
2030 -6.42 22 8 44   R Middle frontal gyrus  - BA8   

-6.13 2 20 36 † R Median cingulate and paracingulate gyri   BA8   

-6.04 2 16 40   R Median cingulate and paracingulate gyri   BA8   

-5.54 -10 28 28   L Anterior cingulate and paracingulate gyri   BA32   

-5.44 -4 28 28   L Anterior cingulate and paracingulate gyri   BA32   

-5.32 24 -2 42   R Superior frontal gyrus, dorsolateral  - BA6  - 
131 -6.41 40 42 6 † R Middle frontal gyrus   BA46   

-4.38 44 44 16   R Middle frontal gyrus   BA10   
14 -3.89 10 -74 42   R Precuneus   BA7   
11 -4.02 38 52 -6   R Middle frontal gyrus, orbital part   BA10   
6 -3.79 12 -66 46   R Precuneus   BA7   
5 -4.21 10 -62 54   R Precuneus   BA7   
3 -5.57 16 -54 -38   R Lobule VIII of cerebellar hemisphere  -   
                  

GLM1: Confidence, Commit Phase 
    MNI         

Voxels t x y z     Region  BA  
3894 4.91 -52 -38 14   L Superior temporal gyrus   BA22   

4.73 -64 -18 -6   L Middle temporal gyrus   BA21   

4.57 -64 -24 0   L Middle temporal gyrus   BA22   

4.49 -40 -56 14   L Middle temporal gyrus   BA39   

4.40 -60 6 -22   L Middle temporal gyrus   BA38  - 

4.38 -48 -2 -26   L Middle temporal gyrus   BA38   
2160 4.73 62 -20 8   R Superior temporal gyrus   BA41   

4.49 64 -20 2   R Superior temporal gyrus   BA22   

4.43 50 0 -6   R Superior temporal gyrus   BA22  - 

4.36 48 -34 18   R Superior temporal gyrus   BA22   

4.34 38 4 -26   R Amygdala  - BA38  - 

4.33 48 12 -34   R Temporal pole: middle temporal gyrus   BA38   
585 5.29 -10 -72 -8   L Lingual gyrus   BA18   
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4.91 -4 -86 18   L Cuneus   BA18   

4.00 -8 -92 24   L Cuneus   BA18   

3.90 -14 -88 16   L Superior occipital gyrus   BA18   

3.79 -4 -86 26   L Cuneus   BA19   

3.73 -8 -88 22   L Cuneus   BA18   
349 4.38 10 -66 -2   R Lingual gyrus   BA18   

4.34 14 -68 -8   R Lingual gyrus   BA19   

3.80 20 -84 0   R Lingual gyrus   BA18   

3.66 10 -62 -12   R Lobule VI of cerebellar hemisphere     

3.42 12 -74 0   R Lingual gyrus   BA18   

3.41 8 -66 4   R Lingual gyrus   BA18   
237 5.30 -30 -18 -30   L Fusiform gyrus   BA36   

5.25 -26 -18 -28   L Parahippocampal gyrus   BA36   

3.92 -20 -12 -28   L Parahippocampal gyrus   BA36   

3.90 -34 -18 -24   L Fusiform gyrus   BA36  - 

3.30 -24 -6 -26   L Parahippocampal gyrus      
183 3.84 -38 -16 42   L Postcentral gyrus   BA4   

3.73 -38 -14 28   L Insula  - BA4  - 

3.72 -48 -18 42   L Postcentral gyrus   BA1   

3.56 -44 -22 30   L Postcentral gyrus  - BA1   

3.36 -44 -16 46   L Postcentral gyrus   BA4   

3.30 -48 -16 32   L Postcentral gyrus   BA1   
137 5.05 2 38 -20 † R Gyrus rectus   BA11   

5.00 2 34 -18   R Gyrus rectus   BA11   

4.97 2 38 -24   R Gyrus rectus   BA11   

4.58 -2 34 -12   L Superior frontal gyrus, medial orbital   BA11   

4.39 -6 34 -12   L Superior frontal gyrus, medial orbital   BA11   

4.35 4 30 -10   R Superior frontal gyrus, medial orbital   BA11   
136 5.47 2 -24 54   R Supplementary motor area   BA6   

4.45 -4 -32 56   L Paracentral lobule   BA1   

3.26 4 -20 62   R Supplementary motor area   BA6   
51 3.15 -34 2 0   L Lenticular nucleus, putamen  -   

3.10 -28 0 6   L Lenticular nucleus, putamen      

3.02 -38 6 -2   L Insula   BA13   

3.00 -30 2 2   L Lenticular nucleus, putamen      
45 3.93 -4 -60 20   L Precuneus   BA31   

3.89 -10 -58 10   L Calcarine fissure and surrounding cortex   BA23   

3.83 -6 -60 14   L Calcarine fissure and surrounding cortex   BA31   
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45 4.18 18 -74 26   R Cuneus   BA19   

3.77 24 -68 22   R Superior occipital gyrus   BA18  - 
42 3.56 36 -30 46   R Postcentral gyrus   BA1   

3.46 28 -28 46   R Postcentral gyrus  - BA4  - 

3.42 30 -32 44   R Postcentral gyrus   BA1   
39 4.05 48 -10 52   R Precental gyrus   BA6   

3.19 54 -10 44   R Precental gyrus   BA6   
39 3.95 48 -24 54   R Postcentral gyrus   BA1   
37 4.28 28 -22 -20   R Parahippocampal gyrus   BA36   

3.90 22 -18 -24   R Parahippocampal gyrus   BA36   

3.80 18 -10 -24   R Parahippocampal gyrus   BA36  - 

3.79 18 -6 -26   R Parahippocampal gyrus   BA36  - 
32 3.52 60 8 22   R Precental gyrus   BA6   

3.48 60 2 24   R Postcentral gyrus   BA6   

3.35 60 -2 24   R Postcentral gyrus   BA6   
26 3.75 62 -10 32   R Postcentral gyrus   BA1   
23 4.23 8 -58 12   R Calcarine fissure and surrounding cortex   BA18   
10 3.84 20 -58 14   R Calcarine fissure and surrounding cortex   BA18   

3.76 18 -56 8   R Calcarine fissure and surrounding cortex   BA23   
6 3.33 44 22 -34   R Temporal pole: middle temporal gyrus   BA38   

3.09 40 24 -36   R Temporal pole: middle temporal gyrus   BA38   
3 4.26 16 -52 4   R Lingual gyrus   BA18   
2 3.54 -14 -44 40   L Precuneus   BA31   
1 3.52 -16 -96 26   L Superior occipital gyrus   BA18   

                  
GLM2: Acc > Rej, Offer Phase 
    MNI         

Voxels t x y z     Region  BA  
22910 7.08 -38 -72 34   L Middle occipital gyrus   BA39   

6.38 -38 -74 42   L Inferior parietal  BA39   

6.10 -34 -76 42   L Inferior parietal  BA39   

6.02 68 -28 -4   R Middle temporal gyrus   BA21   

5.89 28 -46 70   R Postcentral gyrus   BA5  - 

5.87 -24 28 36   L Middle frontal gyrus   BA9   
4829 6.93 -10 62 20   L Superior frontal gyrus, medial   BA10   

5.96 8 44 -12 † R Superior frontal gyrus, medial orbital   BA11   

5.84 12 46 -16   R Gyrus rectus   BA11   

5.83 -4 40 -12   L Superior frontal gyrus, medial orbital   BA11   
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5.81 16 34 -12   R Superior frontal gyrus, orbital part  - BA11  - 

5.70 30 24 52   R Middle frontal gyrus   BA8   
2416 4.97 -6 -50 38   L Precuneus   BA31   

4.76 -8 -42 38   L Median cingulate and paracingulate gyri   BA31   

4.75 -4 -66 22   L Calcarine fissure and surrounding cortex   BA18   

4.62 -12 -50 40   L Precuneus   BA31   

4.54 10 -60 18   R Calcarine fissure and surrounding cortex   BA18   

4.50 10 -58 22   R Precuneus   BA23   
205 3.85 10 -92 12   R Calcarine fissure and surrounding cortex   BA17   

3.40 -6 -100 14   L Cuneus   BA18   

3.24 -2 -96 8   L Calcarine fissure and surrounding cortex   BA17   

3.11 -10 -102 4   L Middle occipital gyrus   BA18   
27 3.59 -10 46 48   L Superior frontal gyrus, medial   BA8   

3.11 -14 42 52   L Superior frontal gyrus, dorsolateral   BA8   
7 3.42 20 -86 2   R Calcarine fissure and surrounding cortex   BA18   
4 3.42 34 -86 34   R Middle occipital gyrus   BA39   
3 2.73 -58 16 12   L Inferior frontal gyrus, opercular part   BA44   
1 3.30 20 -102 10   R Cuneus  - BA18   
1 2.64 -30 6 62   L Middle frontal gyrus   BA6  - 
                  

GLM2: Confident < Ambivalent, Offer Phase 
    MNI         

Voxels t x y z     Region  BA  
20543 -10.50 28 -64 46   R Angular gyrus   BA39   

-10.40 34 -74 32   R Middle occipital gyrus   BA39   

-9.89 42 -42 44   R Inferior parietal  BA40   

-9.15 44 -34 40   R Supramarginal gyrus   BA40   

-8.93 44 -34 36   R Supramarginal gyrus  - BA40   

-8.78 38 -52 36   R Angular gyrus   BA39  - 
12133 -10.50 4 16 40 † R Median cingulate and paracingulate gyri   BA8   

-8.49 -8 12 44   L Median cingulate and paracingulate gyri   BA32   

-8.01 -4 30 18   L Anterior cingulate and paracingulate gyri   BA24   

-7.77 26 4 44   R Superior frontal gyrus, dorsolateral  - BA6   

-7.76 38 48 4 † R Middle frontal gyrus   BA10   

-7.50 28 4 48   R Middle frontal gyrus   BA6   
118 -6.83 -42 14 -8   L Insula   BA13  - 

-6.74 -28 22 0   L Insula  - BA13   
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GLM2: Confident > Ambivalent, Commit Phase 
    MNI         

Voxels t x y z     Region  BA  
4192 5.65 2 -18 46   R Median cingulate and paracingulate gyri   BA24   

5.45 6 -34 56   R Paracentral lobule   BA1   

5.30 -58 -12 -2   L Superior temporal gyrus   BA22   

5.26 -52 -12 12   L Heschl gyrus   BA1   

5.15 6 -34 52   R Paracentral lobule   BA5   

5.12 -44 -22 30   L Postcentral gyrus  - BA1   
936 4.93 64 -18 0   R Superior temporal gyrus   BA22   

4.69 50 0 -4   R Superior temporal gyrus   BA22  - 

4.68 64 2 -6   R Superior temporal gyrus   BA22   

4.59 54 -6 -2   R Superior temporal gyrus   BA22   

4.46 38 -28 18   R Rolandic operculum   BA40   

4.36 56 -32 14   R Superior temporal gyrus   BA41   
767 5.59 14 -70 18   R Calcarine fissure and surrounding cortex   BA18   

4.98 -4 -60 16   L Precuneus   BA31   

4.94 -12 -58 8   L Calcarine fissure and surrounding cortex   BA23   

4.92 18 -56 12   R Calcarine fissure and surrounding cortex   BA23   

4.72 18 -72 24   R Cuneus   BA19   

4.72 -12 -62 10   L Calcarine fissure and surrounding cortex   BA23   
416 5.80 2 40 -20 † R Gyrus rectus   BA11   

5.71 4 40 -26   R Gyrus rectus  - BA11   

5.65 8 26 -10   R Olfactory cortex  - BA11  - 

5.62 10 30 -10   R Superior frontal gyrus, medial orbital  - BA11  - 

5.58 -4 44 -18   L Gyrus rectus   BA11   

5.45 6 28 -18   R Gyrus rectus   BA11   
394 5.90 38 -28 46   R Postcentral gyrus   BA1   

5.07 32 -24 42   R Postcentral gyrus  - BA1  - 

4.28 46 -22 56   R Postcentral gyrus   BA1   

3.80 42 -12 44   R Precental gyrus   BA6   

3.74 44 -10 58   R Precental gyrus   BA6   

3.71 52 -10 46   R Precental gyrus   BA6   
192 5.07 -4 -86 20   L Cuneus   BA18   

5.01 -8 -90 18   L Cuneus   BA18   

5.01 -8 -90 24   L Cuneus   BA18   

4.64 -8 -84 20   L Cuneus   BA18   
79 5.44 -14 -66 -12   L Lobule VI of cerebellar hemisphere     
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5.30 -10 -72 -10   L Lobule VI of cerebellar hemisphere     

4.80 -18 -72 -12   L Lobule VI of cerebellar hemisphere     
53 4.30 -16 -10 68   L Precental gyrus   BA6   

4.04 -16 -14 78   L Precental gyrus   BA6   

3.42 -20 -10 60   L Superior frontal gyrus, dorsolateral  - BA6  - 
41 6.72 0 12 -18   R Olfactory cortex  - BA25  - 

5.88 0 6 -14   L Olfactory cortex  -   
31 4.15 42 -4 -24   R Inferior temporal gyrus  - BA21  - 

4.00 42 4 -24   R Temporal pole: superior temporal gyrus  - BA38  - 
31 3.57 36 -16 12   R Insula   BA13   

3.46 32 -14 10   R Insula  - BA13  - 

3.26 42 -20 10   R Heschl gyrus   BA41   
22 5.49 60 6 22   R Precental gyrus   BA6   
15 3.76 50 12 -32   R Temporal pole: middle temporal gyrus   BA38   
                  

GLM2: Confident < Ambivalent, Commit Phase 
    MNI         

Voxels t x y z     Region  BA  
10993 -7.95 6 36 24 † R Anterior cingulate and paracingulate gyri   BA9   

-7.32 36 48 -14 † R Middle frontal gyrus, orbital part   BA10   

-6.79 32 50 12   R Middle frontal gyrus   BA10   

-6.62 36 22 -12 † R Inferior frontal gyrus, orbital part   BA47   

-6.51 42 20 -12   R Inferior frontal gyrus, orbital part   BA47   

-6.34 10 40 14   R Anterior cingulate and paracingulate gyri   BA32   
2403 -7.16 48 -54 40   R Angular gyrus   BA39   

-6.55 46 -48 36   R Angular gyrus   BA39   

-5.90 42 -54 44   R Inferior parietal  BA39   

-5.76 16 -78 56   R Superior parietal gyrus   BA7   

-5.68 44 -52 48   R Inferior parietal  BA39   

-5.60 26 -74 48   R Superior occipital gyrus   BA7   
1895 -7.78 -30 -70 -34   L Crus I of cerebellar hemisphere     

-7.12 -26 -72 -32   L Crus I of cerebellar hemisphere     

-6.63 -34 -68 -30   L Crus I of cerebellar hemisphere     

-6.32 -42 -70 -30   L Crus I of cerebellar hemisphere     

-6.30 -40 -78 -30   L Crus I of cerebellar hemisphere     

-5.87 -38 -64 -48   L Lobule VIIB of cerebellar hemisphere     
1008 -5.32 40 -78 -26   R Crus I of cerebellar hemisphere     

-5.28 50 -54 -24   R Inferior temporal gyrus   BA37   
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-5.25 50 -56 -36   R Crus I of cerebellar hemisphere     

-5.19 50 -56 -32   R Crus I of cerebellar hemisphere     

-5.15 38 -84 -32   R Crus I of cerebellar hemisphere     

-5.13 62 -60 -12   R Inferior temporal gyrus  - BA37   
                  

GLM2 vmPFC ROI: Accept Confident > Accept Ambivalent, Commit Phase 
    MNI         

Voxels t x y z     Region  BA  
678 4.54 -10 44 -10 † L Superior frontal gyrus, medial orbital  - BA10   

4.29 0 42 -16   R Gyrus rectus  BA11  

4.17 2 42 -24   R Gyrus rectus  BA11  

4.11 6 22 -22   R Gyrus rectus  BA11  

4.09 0 38 -30   L Gyrus rectus - BA11 - 

3.94 -6 46 -12   L Superior frontal gyrus, medial orbital  BA10   
49 4.18 0 12 -18 † L Olfactory cortex - BA25 - 
                  

GLM2 vmPFC ROI: Reject Confident > Reject Ambivalent, Commit Phase 
    MNI         

Voxels t x y z     Region  BA  
698 4.98 2 12 -18 † R Olfactory cortex - BA25 - 

4.39 6 28 -22   R Gyrus rectus  BA11  

4.14 2 36 -16   R Gyrus rectus  BA11  

3.87 2 38 -20   R Gyrus rectus  BA11  

3.84 8 28 -10   R Superior frontal gyrus, medial orbital - BA11  

3.77 -2 38 -20   L Gyrus rectus  BA11  
5 3.27 4 30 -2   R Anterior cingulate and paracingulate gyri  BA24   
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Table 2: Comparison of linear mixed models predicting vmPFC responses from value 

The first column identifies the model and variables specified as fixed effects from that 
model. Columns 2-7 give the model estimate, 95% confidence interval (95CI), standard error 
(SE), and t statistic and p value estimated from Satterthwaite approximation. Column 8 is the 
standard deviation (SD) of the random effect (Intercept | Subject). Columns 9-12 are overall 
model statistics: variance explained by fixed effects (Marg. = marginal R2), variance 
explained by fixed and random effects together (Cond. = conditional R2), and overall model 
AIC, and BIC. The final two columns are with χ2 statistics and p values from likelihood ratio 
tests (after refitting models with maximum likelihood estimates), describing improvement of 
fit from adding quadratic term to the original linear model. 
 
 

Fixed Effects Rand. 
Effect Model Fit Model 

Comparison 
 

Est. 95CI 
lower 

95CI 
upper SE t p SD Marg. R2 

Cond.R2 
AIC 
BIC χ2 p 

Offer Phase 

Lin. Model 
        14.58 0.05 901.1   
          0.7 911.98   

Intercept -19.08 -24.74 -13.28 2.91 -6.56 <0.001        
P(accept)-P(reject) 5.1 2.73 7.41 1.17 4.38 <0.001        

Quad. Model 
            14.57 0.05 903.1 0.002 0.966 
          0.7 916.69   

Intercept -19 -25.78 -12.2 3.45 -5.50 <0.001        
P(accept)-P(reject) 5.11 2.76 7.4 1.18 4.33 <0.001        
(P(accept)-P(reject))2 -0.12 -5.76 5.44 2.86 -0.04 0.967        

Commit Phase 

Lin. Model 
        19.17 0.01 1014.5   
          0.55 1025.3   

Intercept -9.07 -17.08 -1.02 3.98 -2.28 0.031        
P(accept)-P(reject) 3.63 -0.48 7.78 2.06 1.76 0.082        

Quad. Model 
            19.18 0.07 1002 14.43 < 0.001 
          0.61 1015.6   

Intercept -20.86 -30.57 -10.96 4.96 -4.2 <0.001        
P(accept)-P(reject) 2.87 -0.96 6.63 1.92 1.49 0.14        
(P(accept)-P(reject))2 18.16 9.21 27.27 4.65 3.91 <0.001        
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Table 3: Cost distances varying from baseline (all conditions together) 

Results of linear mixed analysis predicting cost distances from categorical time bin. P values 
were adjusted with Dunnett’s correction for multiple comparisons.  
 

Model Fixed Effects Model Fit Contrast 
with 
FIR1 

Model Term Estimate SE t  
Satterthwaite's   95CI 
df Pr(>|t|) fit lower upper P (adj.) 

ACC / dACC   
(Intcpt) 0.040 0.012 3.443 34.54 0.002 0.040 0.017 0.063     
FIR2 0.007 0.009 0.802 727 0.423 0.047 0.024 0.070 0.845   
FIR3 0.025 0.009 2.921 727 0.004 0.065 0.042 0.088 0.024 * 
FIR4 0.025 0.009 2.888 727 0.004 0.065 0.042 0.088 0.024 * 
FIR5 0.027 0.009 3.186 727 0.002 0.067 0.045 0.090 0.012 * 
FIR6 0.023 0.009 2.65 727 0.008 0.063 0.040 0.086 0.040 * 
FIR7 0.022 0.009 2.551 727 0.011 0.062 0.039 0.085 0.043 * 
FIR8 0.010 0.009 1.11 727 0.267 0.050 0.027 0.072 0.801   
FIR9 0.005 0.009 0.64 727 0.523 0.046 0.023 0.068 0.845   

             
Amygdala 

(Intcpt) 0.053 0.013 4.047 34.23 2.80E-04 0.053 0.027 0.079     
FIR2 0.005 0.010 0.507 727 0.612 0.058 0.032 0.084 1   
FIR3 0.027 0.010 2.827 727 0.005 0.080 0.054 0.106 0.033 * 
FIR4 0.024 0.010 2.554 727 0.011 0.078 0.052 0.103 0.053 . 
FIR5 0.033 0.010 3.433 727 0.001 0.086 0.060 0.112 0.005 ** 
FIR6 0.025 0.010 2.649 727 0.008 0.078 0.053 0.104 0.049 * 
FIR7 0.021 0.010 2.213 727 0.027 0.074 0.049 0.100 0.108   
FIR8 0.008 0.010 0.867 727 0.386 0.061 0.036 0.087 1   
FIR9 -0.005 0.010 -0.531 727 0.596 0.048 0.022 0.074 1   

             
aIC 

(Intcpt) 0.047 0.011 4.144 36.24 1.96E-04 0.047 0.025 0.070     
FIR2 0.008 0.009 0.955 727 0.340 0.056 0.033 0.078 0.680   
FIR3 0.025 0.009 2.873 727 0.004 0.072 0.050 0.095 0.020 * 
FIR4 0.026 0.009 3.014 727 0.003 0.074 0.051 0.096 0.015 * 
FIR5 0.030 0.009 3.39 727 0.001 0.077 0.055 0.099 0.006 ** 
FIR6 0.022 0.009 2.5 727 0.013 0.069 0.047 0.092 0.050 * 
FIR7 0.028 0.009 3.196 727 0.001 0.075 0.053 0.098 0.010 ** 
FIR8 0.013 0.009 1.461 727 0.144 0.060 0.038 0.083 0.432   
FIR9 0.007 0.009 0.786 727 0.432 0.054 0.032 0.077 0.680   

             
pIC 

(Intcpt) 0.050 0.012 4.284 37.58 1.23E-04 0.050 0.027 0.073     
FIR2 0.004 0.009 0.395 727 0.693 0.054 0.031 0.077 1   
FIR3 0.023 0.009 2.534 727 0.012 0.074 0.051 0.097 0.047 * 



 149 

FIR4 0.024 0.009 2.657 727 0.008 0.075 0.052 0.098 0.047 * 
FIR5 0.028 0.009 3.002 727 0.003 0.078 0.055 0.101 0.021 * 
FIR6 0.024 0.009 2.663 727 0.008 0.075 0.052 0.098 0.047 * 
FIR7 0.026 0.009 2.833 727 0.005 0.076 0.053 0.100 0.032 * 
FIR8 0.009 0.009 0.99 727 0.323 0.059 0.036 0.083 0.967   
FIR9 0.001 0.009 0.138 727 0.890 0.052 0.029 0.075 1   

             
nAcc 

(Intcpt) 0.075 0.013 5.927 41.64 0.000 0.075 0.050 0.100     
FIR2 0.006 0.011 0.55 727 0.582 0.081 0.056 0.106 1.000   
FIR3 0.023 0.011 2.138 727 0.033 0.098 0.073 0.122 0.227   
FIR4 0.012 0.011 1.163 727 0.245 0.087 0.062 0.112 0.979   
FIR5 0.031 0.011 2.927 727 0.004 0.106 0.081 0.131 0.027 * 
FIR6 0.019 0.011 1.837 727 0.067 0.094 0.070 0.119 0.331   
FIR7 0.022 0.011 2.083 727 0.038 0.097 0.072 0.122 0.227   
FIR8 0.003 0.011 0.247 727 0.805 0.078 0.053 0.102 1.000   
FIR9 -0.009 0.011 -0.851 727 0.395 0.066 0.041 0.091 1.000   

             
vmPFC 

(Intcpt) 0.041 0.011 3.638 36.03 0.001 0.041 0.019 0.063     
FIR2 0.004 0.009 0.472 727 0.637 0.045 0.023 0.067 1   
FIR3 0.022 0.009 2.557 727 0.011 0.063 0.041 0.085 0.053 . 
FIR4 0.022 0.009 2.633 727 0.009 0.063 0.041 0.085 0.051 . 
FIR5 0.032 0.009 3.783 727 1.67E-04 0.073 0.051 0.095 0.001 ** 
FIR6 0.023 0.009 2.756 727 0.006 0.064 0.042 0.086 0.041 * 
FIR7 0.021 0.009 2.506 727 0.012 0.062 0.040 0.084 0.053 . 
FIR8 0.008 0.009 0.935 727 0.350 0.049 0.027 0.071 1   
FIR9 0.001 0.009 0.128 727 0.898 0.042 0.020 0.064 1   

             
control (A1) 

(Intcpt) 0.063 0.011 5.867 48.17 3.96E-07 0.063 0.042 0.084     
FIR2 0.002 0.010 0.253 727 0.800 0.065 0.044 0.086 1.000   
FIR3 0.021 0.010 2.161 727 0.031 0.084 0.063 0.105 0.154   
FIR4 0.024 0.010 2.501 727 0.013 0.087 0.066 0.108 0.099 . 
FIR5 0.023 0.010 2.433 727 0.015 0.086 0.065 0.107 0.105   
FIR6 0.016 0.010 1.63 727 0.104 0.079 0.058 0.100 0.412   
FIR7 0.023 0.010 2.415 727 0.016 0.086 0.065 0.107 0.105   
FIR8 0.001 0.010 0.068 727 0.946 0.064 0.043 0.085 1.000   
FIR9 0.001 0.010 0.132 727 0.895 0.064 0.043 0.085 1.000   
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Table 4: Cost distances varying from baseline ( separate conditions) 

Results of linear mixed analysis predicting cost distances from categorical time bin. P values 
were adjusted with Dunnett’s correction for multiple comparisons.  
 

  Model Fixed Effects Model Fit Contrast with 
FIR1   Model 

Term Est. SE t  
Satterthwaite   95CI 

cond df Pr(>|t|) fit lower upper P (adj.) 

ACC / dACC 

Acc 
Amb 

(Intcpt) 0.062 0.02 2.865 25.23 0.008 0.062 0.019 0.105     
FIR2 0.001 0.01 0.123 160 0.902 0.063 0.021 0.106 1.000   
FIR3 0.026 0.01 2.384 160 0.018 0.088 0.045 0.131 0.137   
FIR4 0.022 0.01 2.026 160 0.044 0.084 0.041 0.127 0.256   
FIR5 0.025 0.01 2.354 160 0.020 0.088 0.045 0.130 0.137   
FIR6 0.012 0.01 1.143 160 0.255 0.074 0.032 0.117 1.000   
FIR7 0.022 0.01 1.992 160 0.048 0.084 0.041 0.126 0.256   
FIR8 -0.005 0.01 -0.490 160 0.625 0.057 0.014 0.100 1.000   
FIR9 -0.011 0.01 -1.026 160 0.307 0.051 0.008 0.094 1.000   

Acc 
Con 

(Intcpt) 0.043 0.01 2.921 28.89 0.007 0.043 0.014 0.073     
FIR2 0.009 0.01 1.018 160 0.310 0.053 0.023 0.082 0.458   
FIR3 0.022 0.01 2.413 160 0.017 0.066 0.036 0.095 0.079 . 
FIR4 0.023 0.01 2.507 160 0.013 0.066 0.037 0.096 0.073 . 
FIR5 0.026 0.01 2.849 160 0.005 0.070 0.040 0.099 0.031 * 
FIR6 0.029 0.01 3.155 160 0.002 0.072 0.043 0.102 0.013 * 
FIR7 0.021 0.01 2.321 160 0.022 0.065 0.035 0.094 0.081 . 
FIR8 0.017 0.01 1.868 160 0.064 0.061 0.031 0.090 0.185   
FIR9 0.011 0.01 1.204 160 0.231 0.054 0.025 0.084 0.458   

Rej 
Amb 

(Intcpt) 0.029 0.01 2.049 28.55 0.050 0.029 0.001 0.056     
FIR2 0.007 0.01 0.870 160 0.385 0.036 0.008 0.064 0.404   
FIR3 0.028 0.01 3.292 160 0.001 0.057 0.029 0.084 0.005 *** 
FIR4 0.035 0.01 4.138 160 5.64E-05 0.064 0.036 0.091 2.80E-04 *** 
FIR5 0.034 0.01 3.988 160 1.01E-04 0.062 0.035 0.090 4.66E-04 *** 
FIR6 0.031 0.01 3.680 160 3.18E-04 0.060 0.032 0.087 0.001 ** 
FIR7 0.027 0.01 3.219 160 0.002 0.056 0.028 0.083 0.005 *** 
FIR8 0.014 0.01 1.612 160 0.109 0.042 0.015 0.070 0.321   
FIR9 0.011 0.01 1.276 160 0.204 0.039 0.012 0.067 0.404   

Rej 
Con 

(Intcpt) 0.026 0.01 2.807 40.48 0.008 0.026 0.008 0.045     
FIR2 0.009 0.01 1.208 160 0.229 0.036 0.017 0.054 0.328   
FIR3 0.024 0.01 3.101 160 0.002 0.050 0.032 0.069 0.015 * 
FIR4 0.019 0.01 2.415 160 0.017 0.045 0.027 0.064 0.094 . 
FIR5 0.024 0.01 3.035 160 0.003 0.050 0.031 0.068 0.017 * 
FIR6 0.018 0.01 2.332 160 0.021 0.044 0.026 0.063 0.099 . 
FIR7 0.017 0.01 2.207 160 0.029 0.044 0.025 0.062 0.109   



 151 

FIR8 0.012 0.01 1.601 160 0.111 0.039 0.020 0.057 0.328   
FIR9 0.011 0.01 1.427 160 0.156 0.037 0.019 0.056 0.328   

              
Amygdala 

Acc 
Amb 

(Intcpt) 0.065 0.02 2.684 28.48 0.012 0.065 0.017 0.113     
FIR2 0.004 0.01 0.269 160 0.788 0.069 0.021 0.117 1.000   
FIR3 0.041 0.01 2.806 160 0.006 0.107 0.059 0.155 0.035 * 
FIR4 0.039 0.01 2.618 160 0.010 0.104 0.056 0.152 0.053 . 
FIR5 0.049 0.01 3.308 160 0.001 0.114 0.066 0.162 0.008 ** 
FIR6 0.025 0.01 1.718 160 0.088 0.091 0.043 0.139 0.343   
FIR7 0.028 0.01 1.894 160 0.060 0.093 0.045 0.141 0.291   
FIR8 0.018 0.01 1.216 160 0.226 0.083 0.035 0.131 0.672   
FIR9 -0.008 0.01 -0.543 160 0.588 0.057 0.009 0.105 1.000   

Acc 
Con 

(Intcpt) 0.055 0.02 3.052 31.52 0.005 0.055 0.019 0.090     
FIR2 0.015 0.01 1.262 160 0.209 0.070 0.035 0.105 0.621   
FIR3 0.029 0.01 2.367 160 0.019 0.084 0.048 0.119 0.107   
FIR4 0.028 0.01 2.303 160 0.023 0.083 0.047 0.118 0.107   
FIR5 0.040 0.01 3.237 160 0.001 0.094 0.059 0.129 0.010 ** 
FIR6 0.033 0.01 2.740 160 0.007 0.088 0.053 0.123 0.043 * 
FIR7 0.022 0.01 1.784 160 0.076 0.076 0.041 0.112 0.297   
FIR8 0.008 0.01 0.661 160 0.509 0.063 0.027 0.098 1.000   
FIR9 0.001 0.01 0.110 160 0.912 0.056 0.021 0.091 1.000   

Rej 
Amb 

(Intcpt) 0.041 0.01 2.812 35.07 0.008 0.041 0.012 0.070     
FIR2 0.006 0.01 0.562 160 0.575 0.048 0.019 0.077 1.000   
FIR3 0.028 0.01 2.537 160 0.012 0.069 0.040 0.099 0.078 . 
FIR4 0.019 0.01 1.763 160 0.080 0.061 0.032 0.090 0.312   
FIR5 0.025 0.01 2.301 160 0.023 0.067 0.038 0.096 0.128   
FIR6 0.031 0.01 2.831 160 0.005 0.073 0.044 0.102 0.037 * 
FIR7 0.022 0.01 1.973 160 0.050 0.063 0.034 0.092 0.243   
FIR8 0.011 0.01 1.000 160 0.319 0.052 0.023 0.082 0.951   
FIR9 -0.003 0.01 -0.284 160 0.777 0.038 0.009 0.067 1.000   

Rej 
Con 

(Intcpt) 0.051 0.01 5.181 53.98 3.37E-06 0.051 0.032 0.070     
FIR2 -0.006 0.01 -0.652 160 0.515 0.045 0.025 0.064 1.000   
FIR3 0.010 0.01 1.041 160 0.299 0.061 0.041 0.080 1.000   
FIR4 0.011 0.01 1.218 160 0.225 0.063 0.043 0.082 1.000   
FIR5 0.018 0.01 1.866 160 0.064 0.069 0.049 0.088 0.497   
FIR6 0.011 0.01 1.195 160 0.234 0.062 0.043 0.082 1.000   
FIR7 0.013 0.01 1.392 160 0.166 0.064 0.045 0.084 1.000   
FIR8 -0.004 0.01 -0.416 160 0.678 0.047 0.028 0.067 1.000   
FIR9 -0.011 0.01 -1.113 160 0.268 0.040 0.021 0.060 1.000   

              
aIC 

(Intcpt) 0.060 0.02 2.740 29.73 0.010 0.060 0.017 0.102     
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Acc 
Amb 

FIR2 0.016 0.01 1.177 160 0.241 0.076 0.033 0.119 0.694   
FIR3 0.037 0.01 2.645 160 0.009 0.096 0.053 0.139 0.057 . 
FIR4 0.028 0.01 1.995 160 0.048 0.087 0.044 0.130 0.230   
FIR5 0.030 0.01 2.191 160 0.030 0.090 0.047 0.133 0.171   
FIR6 0.017 0.01 1.197 160 0.233 0.076 0.033 0.119 0.694   
FIR7 0.041 0.01 2.937 160 0.004 0.100 0.058 0.143 0.027 * 
FIR8 0.024 0.01 1.708 160 0.090 0.083 0.040 0.126 0.351   
FIR9 0.000 0.01 0.018 160 0.986 0.060 0.017 0.103 0.986   

Acc 
Con 

(Intcpt) 0.047 0.02 2.976 36.59 0.005 0.047 0.016 0.078     
FIR2 0.010 0.01 0.802 160 0.424 0.056 0.025 0.087 0.423   
FIR3 0.030 0.01 2.504 160 0.013 0.077 0.046 0.108 0.074 . 
FIR4 0.032 0.01 2.667 160 0.008 0.079 0.048 0.110 0.056 . 
FIR5 0.033 0.01 2.698 160 0.008 0.079 0.048 0.110 0.056 . 
FIR6 0.028 0.01 2.344 160 0.020 0.075 0.044 0.106 0.095 . 
FIR7 0.023 0.01 1.923 160 0.056 0.070 0.039 0.101 0.218   
FIR8 0.017 0.01 1.405 160 0.162 0.064 0.033 0.095 0.329   
FIR9 0.019 0.01 1.599 160 0.112 0.066 0.035 0.097 0.329   

Rej 
Amb 

(Intcpt) 0.041 0.01 3.251 40.93 0.002 0.041 0.016 0.065     
FIR2 0.005 0.01 0.465 160 0.643 0.046 0.021 0.070 0.674   
FIR3 0.022 0.01 2.110 160 0.036 0.063 0.038 0.088 0.140   
FIR4 0.026 0.01 2.530 160 0.012 0.067 0.042 0.092 0.069 . 
FIR5 0.037 0.01 3.507 160 0.001 0.077 0.053 0.102 0.004 *** 
FIR6 0.024 0.01 2.268 160 0.025 0.064 0.040 0.089 0.117   
FIR7 0.027 0.01 2.612 160 0.010 0.068 0.043 0.093 0.063 . 
FIR8 0.010 0.01 0.960 160 0.338 0.051 0.026 0.076 0.674   
FIR9 0.016 0.01 1.493 160 0.137 0.056 0.032 0.081 0.407   

Rej 
Con 

(Intcpt) 0.043 0.01 4.280 51.16 8.22E-05 0.043 0.023 0.063     
FIR2 0.002 0.01 0.250 160 0.803 0.045 0.025 0.065 1.000   
FIR3 0.011 0.01 1.173 160 0.243 0.054 0.034 0.074 0.964   
FIR4 0.019 0.01 1.985 160 0.049 0.061 0.042 0.081 0.330   
FIR5 0.018 0.01 1.964 160 0.051 0.061 0.041 0.081 0.330   
FIR6 0.018 0.01 1.965 160 0.051 0.061 0.041 0.081 0.330   
FIR7 0.020 0.01 2.134 160 0.034 0.063 0.043 0.083 0.263   
FIR8 0.000 0.01 0.014 160 0.989 0.043 0.023 0.063 1.000   
FIR9 -0.008 0.01 -0.836 160 0.404 0.035 0.015 0.055 1.000   

              
pIC 

Acc 
Amb 

(Intcpt) 0.054 0.02 2.501 31.46 0.018 0.054 0.011 0.096     
FIR2 0.008 0.01 0.542 160 0.588 0.062 0.019 0.104 1.000   
FIR3 0.035 0.01 2.370 160 0.019 0.089 0.046 0.131 0.089 . 
FIR4 0.033 0.01 2.221 160 0.028 0.086 0.044 0.129 0.105   
FIR5 0.038 0.01 2.624 160 0.010 0.092 0.050 0.135 0.061 . 
FIR6 0.036 0.01 2.447 160 0.015 0.090 0.047 0.132 0.086 . 
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FIR7 0.047 0.01 3.224 160 0.002 0.101 0.059 0.144 0.010 * 
FIR8 0.013 0.01 0.909 160 0.365 0.067 0.025 0.110 1.000   
FIR9 0.005 0.01 0.344 160 0.732 0.059 0.016 0.101 1.000   

Acc 
Con 

(Intcpt) 0.061 0.02 3.535 36.01 0.001 0.061 0.027 0.095     
FIR2 -0.002 0.01 -0.155 160 0.877 0.059 0.025 0.093 1.000   
FIR3 0.022 0.01 1.654 160 0.100 0.083 0.049 0.117 0.765   
FIR4 0.018 0.01 1.338 160 0.183 0.079 0.045 0.113 1.000   
FIR5 0.022 0.01 1.666 160 0.098 0.083 0.049 0.118 0.765   
FIR6 0.012 0.01 0.878 160 0.381 0.073 0.039 0.107 1.000   
FIR7 0.015 0.01 1.149 160 0.252 0.076 0.042 0.111 1.000   
FIR8 -0.001 0.01 -0.080 160 0.936 0.060 0.026 0.094 1.000   
FIR9 -0.010 0.01 -0.753 160 0.452 0.051 0.017 0.085 1.000   

Rej 
Amb 

(Intcpt) 0.044 0.01 2.953 38.36 0.005 0.044 0.015 0.073     
FIR2 0.001 0.01 0.118 160 0.906 0.045 0.016 0.074 1.000   
FIR3 0.022 0.01 1.889 160 0.061 0.066 0.037 0.095 0.236   
FIR4 0.030 0.01 2.526 160 0.013 0.074 0.045 0.103 0.081 . 
FIR5 0.030 0.01 2.555 160 0.012 0.074 0.045 0.103 0.081 . 
FIR6 0.031 0.01 2.571 160 0.011 0.074 0.045 0.104 0.081 . 
FIR7 0.024 0.01 2.014 160 0.046 0.068 0.038 0.097 0.220   
FIR8 0.011 0.01 0.923 160 0.358 0.055 0.025 0.084 1.000   
FIR9 0.007 0.01 0.601 160 0.548 0.051 0.022 0.080 1.000   

Rej 
Con 

(Intcpt) 0.043 0.01 4.671 61.60 1.67E-05 0.043 0.025 0.061     
FIR2 0.007 0.01 0.786 160 0.433 0.050 0.032 0.068 0.864   
FIR3 0.014 0.01 1.532 160 0.128 0.057 0.039 0.075 0.503   
FIR4 0.017 0.01 1.893 160 0.060 0.060 0.042 0.078 0.319   
FIR5 0.020 0.01 2.124 160 0.035 0.062 0.044 0.080 0.244   
FIR6 0.020 0.01 2.164 160 0.032 0.063 0.045 0.081 0.244   
FIR7 0.018 0.01 1.934 160 0.055 0.060 0.042 0.078 0.319   
FIR8 0.013 0.01 1.432 160 0.154 0.056 0.038 0.074 0.503   
FIR9 0.003 0.01 0.314 160 0.754 0.046 0.028 0.064 0.864   

              
nAcc 

Acc 
Amb 

(Intcpt) 0.074 0.02 3.626 36.47 0.001 0.100 0.053 0.146     
FIR2 0.015 0.02 0.931 160 0.353 0.101 0.054 0.147 1.000   
FIR3 0.025 0.02 1.571 160 0.118 0.121 0.074 0.167 1.000   
FIR4 0.037 0.02 2.320 160 0.022 0.104 0.057 0.150 1.000   
FIR5 0.022 0.02 1.373 160 0.172 0.152 0.106 0.199 0.083 . 
FIR6 0.028 0.02 1.773 160 0.078 0.116 0.069 0.162 1.000   
FIR7 0.021 0.02 1.306 160 0.193 0.111 0.064 0.157 1.000   
FIR8 -0.012 0.02 -0.748 160 0.456 0.086 0.040 0.133 1.000   
FIR9 -0.002 0.02 -0.112 160 0.911 0.075 0.029 0.121 1.000   

Acc 
Con 

(Intcpt) 0.070 0.02 3.639 42.73 0.001 0.070 0.032 0.107     
FIR2 0.029 0.02 1.798 160 0.074 0.099 0.061 0.137 0.434   
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FIR3 0.030 0.02 1.849 160 0.066 0.100 0.062 0.137 0.434   
FIR4 0.022 0.02 1.318 160 0.189 0.091 0.053 0.129 0.563   
FIR5 0.031 0.02 1.866 160 0.064 0.100 0.062 0.138 0.434   
FIR6 0.025 0.02 1.550 160 0.123 0.095 0.057 0.133 0.484   
FIR7 0.045 0.02 2.779 160 0.006 0.115 0.077 0.153 0.044 * 
FIR8 0.014 0.02 0.848 160 0.398 0.083 0.046 0.121 0.793   
FIR9 0.005 0.02 0.309 160 0.758 0.075 0.037 0.112 0.793   

Rej 
Amb 

(Intcpt) 0.070 0.01 5.391 67.81 9.55E-07 0.070 0.044 0.095     
FIR2 -0.009 0.01 -0.646 160 0.519 0.061 0.035 0.086 1.000   
FIR3 0.014 0.01 1.020 160 0.309 0.083 0.058 0.109 1.000   
FIR4 0.004 0.01 0.330 160 0.741 0.074 0.049 0.100 1.000   
FIR5 0.006 0.01 0.476 160 0.635 0.076 0.051 0.102 1.000   
FIR6 0.005 0.01 0.336 160 0.737 0.074 0.049 0.100 1.000   
FIR7 0.008 0.01 0.595 160 0.553 0.078 0.052 0.103 1.000   
FIR8 0.003 0.01 0.218 160 0.828 0.073 0.047 0.098 1.000   
FIR9 -0.017 0.01 -1.273 160 0.205 0.052 0.027 0.078 1.000   

Rej 
Con 

(Intcpt) 0.061 0.01 4.262 91.60 4.92E-05 0.061 0.033 0.090     
FIR2 0.001 0.02 0.087 160 0.931 0.063 0.034 0.091 1.000   
FIR3 0.025 0.02 1.546 160 0.124 0.087 0.058 0.115 0.733   
FIR4 0.019 0.02 1.159 160 0.248 0.080 0.052 0.109 0.986   
FIR5 0.034 0.02 2.078 160 0.039 0.095 0.067 0.124 0.302   
FIR6 0.032 0.02 1.922 160 0.056 0.093 0.064 0.121 0.382   
FIR7 0.024 0.02 1.440 160 0.152 0.085 0.056 0.113 0.750   
FIR8 0.007 0.02 0.434 160 0.665 0.068 0.040 0.097 1.000   
FIR9 0.001 0.02 0.055 160 0.956 0.062 0.034 0.090 1.000   

              
vmPFC 

Acc 
Amb 

(Intcpt) 0.052 0.02 2.612 27.58 0.014 0.052 0.013 0.092     
FIR2 0.012 0.01 1.057 160 0.292 0.065 0.025 0.104 0.871   
FIR3 0.028 0.01 2.421 160 0.017 0.081 0.041 0.120 0.077 . 
FIR4 0.032 0.01 2.709 160 0.007 0.084 0.044 0.124 0.047 * 
FIR5 0.050 0.01 4.282 160 0.000 0.102 0.063 0.142 1.48E-04 *** 
FIR6 0.026 0.01 2.208 160 0.029 0.078 0.039 0.118 0.109   
FIR7 0.031 0.01 2.698 160 0.008 0.084 0.044 0.124 0.047 * 
FIR8 0.010 0.01 0.848 160 0.398 0.062 0.023 0.102 0.871   
FIR9 -0.007 0.01 -0.569 160 0.570 0.046 0.006 0.085 0.871   

Acc 
Con 

(Intcpt) 0.050 0.02 3.302 28.66 0.003 0.050 0.020 0.081     
FIR2 -0.004 0.01 -0.393 160 0.695 0.047 0.017 0.077 1.000   
FIR3 0.017 0.01 1.859 160 0.065 0.068 0.038 0.098 0.315   
FIR4 0.019 0.01 2.016 160 0.045 0.069 0.039 0.099 0.263   
FIR5 0.026 0.01 2.761 160 0.006 0.076 0.046 0.106 0.046 * 
FIR6 0.025 0.01 2.700 160 0.008 0.076 0.046 0.106 0.049 * 
FIR7 0.014 0.01 1.540 160 0.126 0.065 0.035 0.095 0.494   
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FIR8 0.004 0.01 0.437 160 0.662 0.055 0.024 0.085 1.000   
FIR9 0.005 0.01 0.527 160 0.599 0.055 0.025 0.086 1.000   

Rej 
Amb 

(Intcpt) 0.032 0.01 2.223 28.74 0.034 0.032 0.004 0.060     
FIR2 0.005 0.01 0.545 160 0.587 0.037 0.008 0.065 1.000   
FIR3 0.026 0.01 2.984 160 0.003 0.058 0.030 0.086 0.020 * 
FIR4 0.022 0.01 2.489 160 0.014 0.054 0.025 0.082 0.064 . 
FIR5 0.033 0.01 3.701 160 2.96E-04 0.064 0.036 0.093 0.001 *** 
FIR6 0.024 0.01 2.756 160 0.007 0.056 0.028 0.084 0.035 * 
FIR7 0.017 0.01 1.952 160 0.053 0.049 0.021 0.077 0.204   
FIR8 0.010 0.01 1.142 160 0.255 0.042 0.014 0.070 0.760   
FIR9 0.004 0.01 0.428 160 0.669 0.036 0.007 0.064 1.000   

Rej 
Con 

(Intcpt) 0.029 0.01 3.140 41.13 0.003 0.029 0.011 0.046     
FIR2 0.003 0.01 0.346 160 0.730 0.031 0.013 0.049 1.000   
FIR3 0.015 0.01 2.000 160 0.047 0.044 0.026 0.062 0.182   
FIR4 0.017 0.01 2.279 160 0.024 0.046 0.028 0.064 0.113   
FIR5 0.021 0.01 2.697 160 0.008 0.049 0.031 0.067 0.049 * 
FIR6 0.019 0.01 2.446 160 0.016 0.047 0.029 0.065 0.087 . 
FIR7 0.022 0.01 2.935 160 0.004 0.051 0.033 0.069 0.027 * 
FIR8 0.008 0.01 1.027 160 0.306 0.036 0.018 0.054 0.913   
FIR9 0.002 0.01 0.304 160 0.762 0.031 0.013 0.049 1.000   

              

control (A1) 

Acc 
Amb 

(Intcpt) 0.074 0.02 3.626 36.47 0.001 0.074 0.034 0.115     
FIR2 0.015 0.02 0.931 160 0.353 0.089 0.049 0.130 1.000   
FIR3 0.025 0.02 1.571 160 0.118 0.099 0.059 0.140 0.697   
FIR4 0.037 0.02 2.320 160 0.022 0.111 0.071 0.152 0.163   
FIR5 0.022 0.02 1.373 160 0.172 0.096 0.056 0.137 0.849   
FIR6 0.028 0.02 1.773 160 0.078 0.102 0.062 0.143 0.534   
FIR7 0.021 0.02 1.306 160 0.193 0.095 0.055 0.136 0.849   
FIR8 -0.012 0.02 -0.748 160 0.456 0.063 0.022 0.103 1.000   
FIR9 -0.002 0.02 -0.112 160 0.911 0.073 0.032 0.113 1.000   

Acc 
Con 

(Intcpt) 0.065 0.02 4.063 60.08 1.42E-04 0.065 0.033 0.096     
FIR2 0.003 0.02 0.210 160 0.834 0.068 0.037 0.099 1.000   
FIR3 0.020 0.02 1.230 160 0.220 0.084 0.053 0.115 1.000   
FIR4 0.043 0.02 2.706 160 0.008 0.108 0.076 0.139 0.055 . 
FIR5 0.032 0.02 2.040 160 0.04 0.097 0.066 0.128 0.290   
FIR6 0.009 0.02 0.578 160 0.564 0.074 0.042 0.105 1.000   
FIR7 0.021 0.02 1.320 160 0.189 0.086 0.054 0.117 1.000   
FIR8 0.000 0.02 0.007 160 0.994 0.065 0.033 0.096 1.000   
FIR9 -0.003 0.02 -0.161 160 0.872 0.062 0.031 0.093 1.000   

Rej 
Amb 

(Intcpt) 0.060 0.01 4.212 53.39 9.77E-05 0.060 0.032 0.088     
FIR2 -0.007 0.01 -0.495 160 0.621 0.053 0.025 0.081 1.000   
FIR3 0.022 0.01 1.599 160 0.112 0.082 0.054 0.110 0.769   
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FIR4 0.010 0.01 0.706 160 0.481 0.069 0.041 0.097 1.000   
FIR5 0.019 0.01 1.437 160 0.15 0.079 0.051 0.107 0.905   
FIR6 0.007 0.01 0.510 160 0.611 0.067 0.039 0.095 1.000   
FIR7 0.029 0.01 2.121 160 0.036 0.089 0.061 0.117 0.271   
FIR8 0.001 0.01 0.061 160 0.951 0.061 0.033 0.089 1.000   
FIR9 0.007 0.01 0.514 160 0.608 0.067 0.039 0.095 1.000   

Rej 
Con 

(Intcpt) 0.053 0.01 4.473 82.35 2.45E-05 0.053 0.030 0.076     
FIR2 -0.002 0.01 -0.125 160 0.900 0.051 0.028 0.074 1.000   
FIR3 0.017 0.01 1.303 160 0.195 0.070 0.047 0.093 0.963   
FIR4 0.007 0.01 0.532 160 0.595 0.060 0.036 0.083 1.000   
FIR5 0.020 0.01 1.531 160 0.128 0.073 0.050 0.096 0.880   
FIR6 0.019 0.01 1.418 160 0.158 0.071 0.048 0.095 0.937   
FIR7 0.023 0.01 1.721 160 0.087 0.075 0.052 0.099 0.682   
FIR8 0.014 0.01 1.033 160 0.303 0.066 0.043 0.090 1.000   
FIR9 0.002 0.01 0.186 160 0.853 0.055 0.032 0.079 1.000   

 




