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Abstract

Advances in cryo-electron microscopy (cryo-EM) for high-resolution imaging of biomolecules 

in solution have provided new challenges and opportunities for algorithm development for 

3D reconstruction. Next-generation volume reconstruction algorithms that combine generative 

modelling with end-to-end unsupervised deep learning techniques have shown promise, but 

many technical and theoretical hurdles remain, especially when applied to experimental cryo-EM 

images. In light of the proliferation of such methods, we propose here a critical review of recent 

advances in the field of deep generative modelling for cryo-EM reconstruction. The present review 

aims to (i) provide a unified statistical framework using terminology familiar to machine learning 

researchers with no specific background in cryo-EM, (ii) review the current methods in this 

framework, and (iii) outline outstanding bottlenecks and avenues for improvements in the field.
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1. Introduction

Advances in cryo-electron microscopy (cryo-EM) for high-resolution imaging of 

biomolecules in solution have driven a revolution in structural biology (Nakane et al., 

2020; EMDB, 2022), facilitating breakthroughs in our ability to understand fundamental 
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biological mechanisms and engineer macromolecular function (Ourmazd, 2019; Renaud et 

al., 2018). However, the estimation of the imaged molecules’ 3-dimensional (3D) structure 

from cryo-EM imaging data poses a major computational challenge. In single particle 

cryo-EM, molecules have been flash-frozen in a thin layer of vitreous ice; raw observations 

from the microscope are limited to the 2D projections of individual molecules (also 

called particles) relative to an incoming electron beam (Fig. 1). The resulting cryo-EM 

reconstruction task aims to recover the unknown 3D volumes of the imaged molecules from 

their 2D projections, a challenging inverse problem complicated by the unknown pose of 

each particle relative to the electron beam, the variability in the shape of any given molecule 

(also referred to as structural heterogeneity), the non-linear physics of the data acquisition 

process, as well as extremely low signal-to-noise ratios.

Reconstruction algorithms are typically formulated as the statistical estimation of an 

underlying 3D density volume along with additional unknown latent variables, such as 

the image pose. Reconstructing molecular volumes thus becomes a highly non-convex 

optimization problem, putting algorithms at risk of being overly sensitive to initialization 

and converging to local minima (Boyd et al., 2004). The difficulty of this task is further 

compounded by the fact that each molecule has its own unknown conformation (or shape). 

Methods that account for this heterogeneity are called heterogeneous reconstruction 
methods. While a challenge for 3D reconstruction, this heterogeneity presents a major 

advantage of cryo-EM relative to other approaches in structural biology, such as X-ray 

crystallography, that produce ensemble averages. Furthermore, advances in the microscope 

automation are resulting in much larger datasets; modern algorithms can take advantage 

of the increased data to improve resolution and resolvability of structures, yet they must 

overcome the associated computational challenges in dealing with large amounts of imaging 

data. In this context, recent efforts have turned to unsupervised deep learning for cryo-EM 

reconstruction. These approaches present new opportunities to model heterogeneity through 

expressive deep neural network architectures, enabled through the use of gradient-based 

optimization and GPU compute. Given their potential to advance the field by addressing the 

challenges mentioned here, we propose here a critical review of deep generative modeling 

for cryo-EM volume reconstruction.

Our objective is to overview the similarities and differences among recent state-of-the-

art, deep-generative reconstruction methods, which we classify according to (i) their 
parametrization of the generative model (Section 2) and (ii) the inference tools deployed 

to fit this generative model (Section 3). This unification of recent works along a consistent 

statistical framework allows us to highlight trends, outstanding challenges, and avenues for 

improvements in the field (Section 4). The reviews by Singer et al. (2020) and Bendory 

et al. (2020) provide a complete description of cryo-EM reconstruction, but focus on 

mathematical foundations of general computational methods, rather than specifically on 

deep learning approaches. Reviews by Si et al. (2021), Ede (2021) and Wu et al. (2021) 

describe applications of deep learning methods along all steps of the cryo-EM pipeline, 

without specialising to 3D volume reconstruction. By contrast, our review is a deep dive 

into the theory and methods of recent deep generative models for cryo-EM reconstruction. 

Through this review, we hope to catalyze deep learning advances by providing machine 
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learning practitioners and computer vision experts a thorough overview of the challenges 

that are unique to cryo-EM.

2. Generative Modeling for Cryo-EM

The objective of cryo-EM imaging algorithms is to produce a 3D reconstruction of a given 

molecule from a dataset of images Xi i = 1⋯n, where each image corresponds to a “2D 

projection” of a unique instance of the molecule at a different (unknown) pose (Fig. 1). 

A major design choice in reconstruction algorithms involves the parameterization of the 

volume and the conformational space for modeling heterogeneity. This section reviews the 

trade-offs in these choices, their inductive biases, and how they yield different formulations 

of the cryo-EM image formation model.

2.1. Image formation model

The process of image formation in cryo-EM involves several physical phenomena, including 

pairwise interactions between atoms, interactions between the electron beam and the 

molecule’s electrostatic potential, and microscope effects. We refer the reader to Dill et 

al. (2010), Kohl and Reimer (2008), and Vulović et al. (2013) for in-depth descriptions of 

these phenomena. Nonetheless, in most cases (Scheres, 2012; Vulović et al., 2013), each 

image Xi in a dataset of n images of single particles can be modeled as a random sample 

from the following generative model:

Xi = PSFi * ti ∘ Π2D ∘ Ri V (i) + ∈i , for i = 1⋯n . (1)

Here, Ri is a 3D rotation representing the 3D orientation of the volume V i  with respect to 

the direction of the electron beam. The oriented volume is subsequently “pierced through” 

by the electron beam and projected onto the detector — an operation represented in Eq. 

(1) by the 2D-projection operator Π2D. The variable ti represents the 2D translation of the 

projected volume with respect to the center of the image. The effect of the microscope’s 

lens is modeled through the convolution ∗ of the 2D projection by an image-dependent 

operator PSFi called the Point Spread Function (PSF) of the microscope whose parameters 

can depend on the image. We note here that an initial estimate PSF, shared across images i
from a given acquisition (called “micrograph”), is usually computed before reconstruction, 

and then refined as an estimate of PSFi per image. Finally, additional noise ∈i is introduced 

in the observed image, and typically assumed to be Gaussian with zero mean and variance 

σi
2. Note that the underlying volume V i  is allowed to depend on i. This allows us to account 

for “conformational heterogeneity”, a concept whereby a molecule does not necessarily exist 

in a single state, but rather, that its volume corresponds in fact to one of several stable 

geometries that can be achieved by this molecule.

An equivalent generative model can be formulated via the Fourier transform of Eq. (1) 

which we present in the supplementary material. In Fourier Space, the convolution ∗ of the 

projected volume by the PSF becomes a computationally lightweight element-wise matrix 

multiplication ⊙ between the 2D Fourier transform of the projected image and that of the 
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PSF (known as the Contrast Transfer Function, or CTF). Operating in Fourier space is thus 

common in many cryo-EM volume reconstruction algorithms.

2.2. Conformation variable z.

Heterogeneous reconstruction methods introduce an additional variable zi for each image i
within the formation model of Eqs. (1), which we call the conformation variable. Depending 

on whether conformation heterogeneity is modeled through a discrete number of states 

or as a continuous variable, the conformational landscape can be encoded as a discrete 

family of volumes V = V z, z ∈ 1, …, K  (discrete heterogeneity), or as a continuous 

family V = V z , z ∈ ℝL  for some integer L (continuous heterogeneity) (Jonić, 2017). 

In both cases, the family is indexed by the variable z. We use the notations V z and V z
interchangeably. Homogeneous reconstruction can in fact be taken as the special case where 

V only comprises a single volume, so that K = 1 or L = 0 (i.e. forcing z = 0). We now write 

V i = V zi  in Eq. (1).

Interpretation of the Conformation Variable—From a statistical mechanics 

perspective, the conformation variable zi encodes the location of any given single particle 

along the conformational landscape (Dill et al., 2010). For example, if zi ∈ ℝ, zi can be 

used to sort conformations along a “reaction coordinate”, that is, a sequence of small 

transformations that would interpolate two main preferred, dynamically stable states. When 

continuous, the dimension L of this cursor variable z could in principle take any value 

between 0 (no heterogeneity) and O N , with N the number of atoms in the molecule. 

However, two factors tend to drastically limit the number of dimensions of z. First, most of 

the main global dynamics of a molecule are captured by a few collective variables associated 

with its low-frequency motion, effectively averaging out a lot of the effects of the high 

number of degrees of freedom associated with faster motions (Noe and Clementi, 2017). 

Second, limitations of imaging apparatus, as well as imprecision in the determination of the 

point spread function PSF often reduce the ability to resolve the remaining motions, thus 

reducing the effective dimensionality of z (Katsevich et al., 2015). In other words, limits in 

the imaging technology itself restrict the dimension of the variable z. In the case of discrete 

heterogeneity, z ∈ 1, …, K  is an index of minimum energy wells (conformations) in the 

conformational landscape. Imaging conditions also reduce the ability to resolve too many 

metastable states, thereby restricting practitioners to choose a low value for K. Finally, we 

note that the interpretation of z should be performed in the context of the parameterization of 

the molecular volume (Section 2.3).

Discrete vs Continuous Conformational Heterogeneity: Pros, Cons and 
Discussion.—Discrete heterogeneity has a rich history in cryo-EM. Popularized by 

the ”3D classification” (Scheres, 2012; Scheres, 2010) extension of RELION (Scheres, 

2012), it offers the advantage of delivering readily interpretable results: a set of K
volumes, representing K main stable states of the molecules. Discrete heterogeneity is thus 

particularly adequate in certain (common) scenarios where the conformation landscape has 

local energy minima that produce distinct states. However, one of the main drawbacks of this 
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method consists in the necessary selection of the number K of appropriate conformations. 

Theoretically, this could be done by cross-validation. In practice, due to the significant 

computing costs that cross-validation implies, K is chosen in an ad hoc fashion by the 

experimenter and rarely motivated by strong quantitative arguments (see Haselbach et al. 

(2018) for a rare example). Furthermore, the final reconstructed volumes are severely biased 

by the initialization of the K volumes, leading to very ad-hoc tuning procedures.

Consequently, many recent methods have turned to a continuous representation of 

heterogeneity which does not require specifying a number K of conformations. This 

representation is also often deemed to be closer to the underlying biology, as molecules 

do not exist as finite/discrete sets of shapes. Rather, a more realistic analogy is to think of 

molecules as random samples from the equilibrium distribution over their conformational 

space (Dill et al., 2010). However, while a continuous representation could be more 

scientifically relevant, it remains to be determined how accurate the reconstruction of the 

conformational space by the space indexed by z truly is. This latter point will be critical to 

address for heterogeneous reconstruction methods to become more quantitative and directly 

comparable to other measures from biophysicists and biochemists. We discuss in Section 4 

the challenges of assessing the precision of such approaches, which probably constitutes one 

of the main open questions in the field. Additionally, despite its initial appeal, continuous 

conformation heterogeneity comes with significant theoretical and practical caveats. From 

a physics perspective, it is still unclear whether the full landscape (at room temperature) is 

sufficiently well sampled by cryo-EM to justify modeling conformations with a continuous 

rather than discrete distribution: the sample preparation process in cryo-EM — and most 

specifically the grid-freezing step—affects the distribution of conformations which might 

not reflect the heterogeneity of conformations at room temperature (Bock and Grubmüller, 

2021). From a statistical perspective, using a continuous distribution necessitates the 

generative model to be able to sample from the full conformation landscape, a requirement 

that is itself a considerable challenge for large molecules: the strong constraints, e.g. on 

bond lengths and torsion angles, make up for a complex, non-convex landscape that is 

difficult to sample from. Despite these caveats, Fig. 3 shows that continuous heterogeneity is 

gaining traction amongst the most recent reconstruction advances.

2.3. Molecular volume V z
The heterogeneous cryo-EM reconstruction problem can thus be understood as recovery of 

the underlying conformational landscape V and the corresponding probability distribution. 

The next critical step thus consists of choosing a parametrization for each volume V z ∈ V. 

This requires choosing first an “input domain” (continuous vs. discrete), second, an “output 

space” (image space vs. Fourier space, inducing real vs complex values), and third, an 

“encoding style” (reference-free vs. reference-based).

2.3.1. Defining the input domain: discrete or continuous—The volume V z
represents a scalar 3D field (i.e. an electrostatic potential, or its Fourier transform) and 

is defined as a function from the input domain Ω ⊂ ℝ3 to an output space ℝ (or ℂ). We 
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now describe the parametrization of Ω and distinguish two cases, depending on whether the 

volume is defined as a discretized or as a continuous scalar field.

Discretized Domain and Explicit Parametrization.: The first class of approaches models 

the electrostatic potential as a discrete 3D map. In this case, the function V z  is defined on 

a discretized subspace (a grid) of ℝ3, namely Ω = 1, …, D 3, where D represents the length 

of the 3D voxel grid or frequency grid. V z  is explicitly parametrized by the values it takes 

at each location (or voxel) of Ω. This choice is also called an explicit parametrization, a 

term that will become clear in the next paragraph. Using a vectorial formalism, the vector 

V z  corresponds to voxels’ intensity values, with V z ∈ ℝD3
 or ∈ ℂD3

. In this case, the 

resolution of the reconstructed volume is fixed by the choice of the granularity of the grid. 

However, the vectorial formalism would imply that V z  becomes an infinite-dimensional 

vector when it is represented continuously (see next paragraph). For this reason, we prefer 

to use a functional formalism and define the volume V z  as a function (not as a vector), 

whether it is modeled as a discrete or continuous field. Discrete domains are adopted by 

methods like RELION-Refine3D (Scheres, 2012) and RELION-Class3D (Scheres, 2012) 

— which associate voxels with corresponding intensities in Fourier space—, and like 

CryoPoseNet (Nashed et al., 2021) or 3DFlex (Punjani and Fleet, 2021) in image space.

Continuous Domain and Implicit Parametrization.: The second class of methods model 

the volume V z  as a continuous field, i.e. as a function on a continuous domain (Ω = ℝ3 or 

Ω = −0.5, 0.5 3). The domain Ω is infinite, and one cannot explicitly maintain in memory 

the values that V z  takes on Ω. The solution is then to adopt an explicit parametrization 

for V z  using parameters θ ∈ Θ ∈ ℝp. Depending on whether or not these parameters have a 

physical meaning (e.g. centroids of pseudo-atoms), the function V z  can be encoded:

i. Using Neural Networks. Some methods use neural networks to represent V z
as a (real or complex) function of a 3D position vector. The parametrization is 

called “implicit” because the values of V z  are not stored in memory; instead, 

the practitioner can “query” the neural network by inputing any location x ∈ ℝ3

and receiving a value for V z  at x. In this case, the parameters θ — i.e. the 

weights of the neural network — do not have a physical meaning. Examples of 

this approach include CryoDRGN (Zhong et al., 2019) and CryoAI (Levy et al., 

2022), both operating in Fourier space using a reference-free volume encoding.

ii. Using Gaussian Mixtures. Other approaches constrains the volume V z  by 

modeling the source of the electrostatic potential: its individual atoms or pseudo-

atoms. Indeed, at a granular level, the molecular volume can be approximated 

by a mixture of N Gaussian functions (called scattering form factors (Kohl and 

Reimer, 2008)) of the form:

V z x = ∑
j = 1

N
Aj exp − cj − x 2

2σj
2 , (2)
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where x ∈ ℝ3 represents a 3D position, and cj ∈ ℝ3 are the 3D coordinates of the 

N individual atoms or pseudo-atoms. The parameters Aj ∈ ℝ and σj
2 ∈ ℝ describe 

how each (pseudo-) atom contributes to the electrostatic potential. In practice, 

these approaches always implement conformational heterogeneity, and do so 

through a continuous conformation variable z ∈ ℝL that passes through a neural 

network to output cj, and possibly Aj and σj
2. This approach also models V z as a 

continuous field, as defined by Eq. (2), but the parameters defining each volume 

θ = cj, Aj, σj
2) j = 1, …, J  now have a physical meaning. Among this general class 

of methods, works differ in whether Aj, σj
2 are assumed to be known, and in the 

interpretation given to the variable cj. E2GMM (Chen and Ludtke, 2021) uses a 

conformation variable z that encodes the coefficients cj, Aj, σj
2 and defines the cj

as coordinates of “coarse grained atoms” (reference-free). CryoFold (Zhong et 

al., 2021) assumes Aj = A and σj = σ known and fixed while using cj to represent 

“groups of atoms”. AtomVAE (Rosenbaum et al., 2021) also assumes and σj = σ
known and fixed, models the cj as the coordinates of the atoms, and uses the 

conformation variable z to encode heterogeneous deviations Δcj.

Discretized and Continuous Domains: Pros, Cons and Discussion.: Contrary to the 

discretized domains, approaches using continuous domains potentially allow to achieve 

sharper, enhanced resolutions (within the Nyquist limit), as any coordinate of ℝ3 can be 

fed to V z . Moreover, within continuous approaches, pseudo-atomic methods effectively 

add constraints to V z  by modeling it as a mixture of Gaussians, and even more so when 

assuming a reference conformation V 0. The increasing availability of folded protein shapes 

— traditionally from the Protein Data Bank (Rose et al., 2021) and more recently through 

the advent of AlphaFold (AlQuraishi, 2019) — have indeed enabled access to relatively 

reliable atom coordinates of reference conformations V 0, that can enrich the recovery of the 

molecular volume. We also note that reference-based representation such as that proposed in 

AtomVAE (Rosenbaum et al., 2021) and CryoFold (Zhong et al., 2021) are more amenable 

to the inclusion of molecular dynamics information to the volume reconstruction process.

2.3.2. Defining the output space: image space or Fourier space—The image 

formation model can be described equivalently in image space or Fourier space, as shown by 

Eq. (1) and its corresponding Fourier formulation provided in the supplementary material. 

Thus, each volume within the family of conformations V can be described either in terms of 

its pixel intensities or its Fourier coefficients. In either case, the volume V z  associated to 

the conformation variable z is defined on an input domain Ω ⊂ ℝ3 (the space of coordinates) 

and outputs values in an output space that is either ℝ for pixel intensities representing the 

electron scattering potential of the molecule, or ℂ to encode the amplitude and phase of the 

Fourier coefficients.

Image versus Fourier space: Pros, Cons and Discussion.: From a practical standpoint, 

the choice of the output space is guided by the set of properties and constraints that the 

analyst wishes to use to guide volume reconstruction. Historically, the Fourier approach 

has been preferred. As summarized by Punjani and Fleet (2021), working in Fourier space 
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has the benefits of (a) reducing the computational cost of the image formation model 

(see discussion of the generative model in Fourier space), and (b) allowing closed-form 

maximum likelihood reconstructions when molecules’ orientations and positions are known. 

However, recent methods such as 3DFlex (Punjani and Fleet, 2021) have favored image 

space, where constraints (e.g. smoothness of the deformation, conservation of energy, etc.) 

are more interpretable and where operations such as interpolation and deformation of the 

molecule’s density map are more naturally parametrized — whereas the same operations 

require a careful treatment in Fourier space. For example, interpolation in Fourier space 

can introduce unwanted artifacts. As highlighted in Fig. 3, image space computations 

constitute a promising and increasingly popular avenue for future developments in cryo-EM 

reconstruction.

2.3.3. Defining an encoding: reference-free or reference-based volume—
Finally, different algorithms typically make a choice of an “encoding” for the volume 

V z  either (i) using a reference-based parametrization, which encodes the conformation 

landscape through its deviation ΔV z  from a reference conformation V 0, such that 

V z = V 0 + ΔV z ; or (ii) using a reference-free parametrization which directly describes 

each V z , for instance as a set of atomic coordinates or a low-dimensional embedding, but 

with no notion of “reference” conformation.

Reference-based versus reference-free: Pros, Cons and Discussion: If the Fig. 3 reflects 

the historical popularity of reference-free encodings, the most recent methods relying on 

deep-learning seem to have favored a reference-based approach. For instance, E2GMM 

(Chen and Ludtke, 2021) first learns a reference V 0 called the “neutral representation” 

which then serves in a reference-based encoding of V z  to further refine the reconstruction 

by accounting for conformational variability. In AtomVAE (Rosenbaum et al., 2021), 

Rosenbaum et al. uses a V 0 called a “base conformation” described as a set of atom 

coordinates obtained from an auxiliary method, such as an homogeneous reconstruction or a 

set of atom coordinates predicted by AlphaFold (AlQuraishi, 2019). The existing reference 

acts as a statistical prior on the molecular volume, thereby further constraining and guiding 

the recovery of the conformation landscape. By contrast, 3DFlex (Punjani and Fleet, 2021) 

uses a reference volume V 0, called a “canonical density”, which is learned jointly with the 

conformational heterogeneity. This has the advantage of foregoing the need to split the 

pipeline in sequential steps, while allowing to borrow strength from the joint estimation of 

all parameters.

Constraining the conformation recovery using a reference offers significant advantages 

for ensuring the success (and convergence) of these methods given the non-convexity of 

the problem. This template can be either learned (ab initio methods), or chosen from 

existing data (refinement methods — more on this in the supplementary material). The 

general agreement across all methods consists in tackling this hierarchically, starting with 

parameters which have the strongest impact on the signal, such as defocus or pose, and 

gradually focusing on those whose effect is more subtle, such as local deformations. As 

such, biasing the solution V  towards a reference V 0, such that ΔV z = 0 implies V z = V 0, 

can provide an interesting way of ensuring a more reliable and consistent — but potentially 
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biased — solution. Depending on the optimization method used, this can in fact be critical 

to the success of the pipeline: Rosenbaum et al. (2021) report that adopting a reference 

template and warm-starting their algorithm is indispensable to ensure the recovery of good 

conformations. However, because they fundamentally bias conformations V z  to “hover” 

around V 0, the success of such methods necessitates a reliable V 0. This can also incur higher 

computational costs, since such methods typically require running a first reconstruction 

method. This explains the interest for alternative, reference-free methods: three out of 

the six heterogeneous methods in Fig. 3 allow to recover molecular volumes without any 

prior template. The extent to which these reference-free methods are likely to succeed on 

real-images still remains to be characterized.

3. Inference

We now turn to the description of the inference methods used in deep generative modeling 

for cryo-EM reconstruction. These methods recover the volume V  by finding optimal 

parameters θ, conformation variables zi and nuisance variables (PSFi, Ri, ti) of the generative 

model in Eq. (1). In this section, θ collectively denotes the parameters that describe the 

conformational landscape as a function of z, and the parameters of the function V z : x Ω
that associates a position x to an output intensity. We refer to the conformation variable 

and poses jointly as the “hidden variables” and denote them as Hi = zi, PSFi, Ri, ti . This 

section overviews general inference methods with a description of their variations given in 

the supplementary material.

Setting Up the Inference Problem: Observed Likelihood vs Full Likelihood

In the context of deep generative modelling for cryoEM, the cornerstone of inference 

is simply the observed likelihood pθ x = p x|θ  associated with each image x. This 

likelihood is computed from the generative model in Eq. (1) (or its Fourier counterpart 

provided in the supplementary material), which we seek to maximize as a function 

of θ. However, the generative model depends on hidden variables Hi = PSFi, ti, Ri, zi . 

In most cases, the optimization of the full likelihood of each observation p xi, ℎi, θ
would be quite simple, if only the Hi were observed. Thus, given n observed images 

x1, …, xn, one solution could be to jointly recover the parameters θ and hidden variables H
(considered here as fixed quantities, as opposed to random variables) that maximize the log-

likelihood ℓ X, θ = ∑i = 1
n log pθ xi, ℎi . Mathematically, this requires solving the following 

optimization problem:

θ∗, H∗ = argmaxθ, H ∑
i = 1

n
log pθ xi, ℎi (3)

It is in fact a classical exercise in statistics to show that in this case, as the number of 

estimated variables grows with the number of data points, the estimate of θ is no longer 

guaranteed to converge to the true underlying value as n goes to infinity: limn ∞E θ∗ ≠ θtrue. 

We thus have to resort to strategies that treat hidden variables as random variables, and that 
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fit the parameters θ based on the “observed likelihood” L X, θ . In this case, the objective 

becomes:

θ∗ = argmaxθL X, θ where L X, θ = ∑
i = 1

n
logp xi|θ

= ∑
i = 1

n
log

ℎi

p xi, ℎi|θ dμ ℎi

(4)

where dμ ℎ = p ℎ dℎ is the probability measure associated to the hidden variables H. 

However, this marginal likelihood requires an integral over all possible values of Hi. 

This quantity is difficult to compute directly, or in statistical terminology, “intractable”. 

Consequently, the crux of the optimization pipeline is to find a way to effectively 

approximate it.

3.1. Unifying inference methods

Since the observed log-likelihood L X, θ  in the objectives of Eq. (4) (and its maximum 

a posteriori version provided in the supplementary material) is intractable, optimization 

is usually performed by targeting a proxy for L X, θ , called the Evidence Lower Bound 

(ELBO). For the sake of clarity and concision, we highlight here the common statistical 

thread of cryo-EM reconstruction methods leveraging deep generative modeling, that all use 

an ELBO-based optimization and refer the reader to the supplementary material for further 

discussion on their variations.

Evidence Lower Bound (ELBO)—The trick behind the Evidence Lower Bound (ELBO) 

consists in proposing a series of distributions q 0 , …, q t  for the hidden variables H, and 

maximizing a series of “easily” computable lower-bounds ℒ q 0 , X, θ , …, ℒ q t , X, θ  for 

L X, θ  in an iterative fashion — see Fig. 2. By iteratively maximizing these lower bounds 

with respect to θ, the true likelihood L X, θ  also increases. The hope is that the value of 

θ obtained through their maximization will be close to the value realizing the maximum of 

L X, θ , if the lower bounds are tight enough — i.e. for small “gaps” in Fig. 2.

The lower bounds ℒ q, X, θ  are found by showing that, for any probability distribution 

qi on the variables ℎi, the observed log-likelihood can be written as the sum of two terms 

(derivations provided in the supplementary material):

L X, θ = ℒ q, X, θ + ∑
i = 1

n
KL qi ℎi ∥ pθ ℎi|xi

= ∑
i = 1

n
ℒi qi, xi, θ + KL qi ℎi ∥ pθ ℎi|xi

(5)

where KL is the Kullback–Leibler divergence KL  defined as KL q ∥ p = ∫ q x log q x
p x dx, 

and the terms ℒi write:
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ℒi qi, xi, θ =
ℎi

qi ℎi logpθ xi|ℎi dℎi − KL qi ℎi ∥ pθ ℎi . (6)

The divergences KL q ℎi ∥ pθ ℎi|xi  in Eq. (5) are always non-negative. Thus, for any joint 

distribution q = qi i = 1 ⋅ n, the function ℒ q, X, θ  provides a valid lower-bound to L X, θ  (see 

Fig. 2), called the Evidence Lower Bound (ELBO):

∀q, ∀θ, ℒ q, X, θ ⩽ L X, θ .

The lower-bounds ℒ q t , X, θ  are proxies for L X, θ , that - in contrast to L X, θ  - can be 

computed and maximized in θ.

Inference Methods Based on an ELBO.—While the ELBO holds for any q, some 

choices are more judicious than others. In fact, the goal is to select an optimal q, such 

that the gap between ℒ q, X, θ ⩽ L X, θ  is small: this will insure that the maximization of 

ℒ q, X, θ  with respect to θ yields estimates θ∗ that are also appropriate (and close to the true 

optimum θtrue) for maximizing L X, θ  — see Fig. 2 (right). Inference methods in cryo-EM 

subsequently differ in the choices of the distributions qi
t  for each i and at each iteration t, 

thereby yielding different lower bounds ℒ q, X, θ :

i. Using the posteriors given current parameters (EM algorithm): Computing 

the posteriors pθ ℎi|xi  using the current estimated value θ t  of θ allows choosing 

qi
t ℎi = pθ t ℎi|xi  for each i at iteration t — see Figure on the posterior 

distributions in the supplementary material. The inequality:

ℒi pθ t ℎi|xi , X, θ ⩽ Li X, θ ,

becomes an equality for θ t = θ. This makes the lower-bound ℒ q, X, θ  tangent 

to L X, θ  at θ = θ t : progressively maximizing ℒ q, X, θ  with respect to θ will 

induce convergence to a local maximum of L X, θ  in θ, as seen in Fig. 2 (left). 

This is the strategy adopted by Expectation–Maximization (EM) algorithm (more 

details in the supplementary material). The EM is an iterative algorithm which 

consists of two steps. In the first step (called the expectation step), given current 

parameters values θ t , we compute the posterior qi
t ℎi = pθ t ℎi|xi  to plug into our 

ELBO. In the second (the maximization step), θ t + 1  is taken to be the value 

of θ that maximizes the ELBO. This sequence of two steps is usually repeated 

until convergence. As explained in the supplementary material, while the EM 

algorithm does not have any convergence guarantees, it nonetheless guarantees to 

increase the likehood at each step.

ii. Approximating the posteriors given current parameters (Variational EM 
algorithm): In certain cases, the choice of qi

t ℎi  as the posterior pθ t ℎi|xi  is 

neither computationally attractive nor feasible. In this case, we might prefer 
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approximating each posterior by finding its “best approximation” qi
∗ within a 

family of functions called variational family Q. Cryo-EM reconstruction methods 

consider two choices that include approximating the posteriors by (i) their 
“mode”, i.e. the value ℎ i of ℎi that maximizes pθ t x, ℎ . In this case, each qi

effectively becomes a Dirac distribution at ℎ i; or (ii) or a general distribution 

qi within a family Q: qi is for example a Gaussian distribution – see Figure 

presenting the posterior distributions in the supplementary material.

Exact or Approximate Posteriors: Pros, Cons, Discussion.—The EM algorithm, 

that uses exact posteriors, holds several advantages: it is simple and stable, since all updates 

can only improve the observed log-likelihood. However, it is also potentially slow: the rate 

of convergence is known to be linear with rate proportional to the fraction of information 

about θ in L θ, X  (Dempster et al., 1977). Variational EM algorithms can be faster; yet 

they potentially loose in accuracy as their ELBOs do not provide tight lower-bounds to the 

log-likehood L X, θ  (Fig. 2, right). As a result, we do not have any guarantee that they 

converge to an (even local) maximum of L X, θ .

3.2. Introducing amortized inference

While potentially more computationally attractive than the original EM algorithm, 

Variational EM requires solving n optimization problems to find an approximate posterior 

qi for each image i in 1, …, n. This is computationally expensive, as the number of qi to 

estimate increases as the number of images n increases. Consequently, recent methods 

have resorted to using an additional approximation called Amortized Inference (AI), which 

collapses the n optimizations problems into one. Instead of finding the best corresponding 

qi
∗ for each i, AI optimizes the parameters ξ of a function Encξ that predicts the parameters 

of the distribution qi
∗ ℎi  when given xi as input, i.e.: Encξ xi ≃ E ℎi , Var ℎi , where, in 

this example, the variational family Q is chosen to be the set of Gaussian distributions. 

In other words,instead of solving n separate problems, Amortized Inference predicts the 

parameters of the posterior of image i using the observed image as input. The function 

Encξ is traditionally called an encoder. More details — including a description of updates 

performed in AI — can be found in the supplementary material.

Implementation of Amortized Inference with Variational Autoencoders—In 

cryo-EM reconstruction, amortized inference is deployed in the context of variational 

autoencoders, denoted VAEs. VAEs are deep architectures that model the parameters of 

the variational family Encξ described above as a neural network with weights ξ — therefore 

leveraging the expressivity of this class of functions to get an optimal (amortized) variational 

approximation. The entire VAE pipeline thus consists of two steps: an encoder, which is 

simply a neural network with weights ξ corresponding to the function Encξ described above, 

and a decoder, which allows to create “mock samples” that will then be compared with the 

observed ones based the generative model with parameter θ chosen in Section 2. Here, the 

encoder is either a variant of a convolutional neural network (if the input xi is in the image 

domain), or variants of fully connected networks (if the input xi is in the Fourier domain). 

The decoder is almost entirely dictated by the process described in Eq. 1 and goes beyond 
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the conventional fully connected networks or convolutional neural networks used in image 

processing.

The learnable parameters ξ and θ of the encoder and the decoder are fitted through stochastic 

gradient descent via backpropagation of the ELBO through the neural network. Compared 

to traditional cryo-EM reconstruction methods leveraging the EM algorithm, variational 

Autoencoders can be interpreted as extending the E-step (encoder) and the M-step (decoder) 

of the EM algorithm. The VAE architectures of cryo-EM reconstruction methods using 

amortized inference are given in Fig. 3. In this review, we have also included for comparison 

purposes a non-variational version of this procedure: the autodecoder from 3DFlex (Punjani 

and Fleet, 2021). Here, the authors consider the hidden variables as non-random variables, 

but add a fix amount of gaussian noise to regularise the embeddings. While the final loss is 

therefore adapted, this is essentially a VAE where the variance is fixed, while only the mean 

is learned.

Amortized Inference: Pros, Cons, Discussion—Amortized inference is faster than 

its non-amortized counterparts, but adds an additional error (called the amortization error). 

We observe that several methods use amortized inference, but often to estimate one hidden 

variable: e.g. only the rotation R or only the conformation variable z. Fig. 3 classifies 

the reconstruction methods by the type of inference chosen for each variable within 

ℎi = Ri, ti, PSFi, zi  and indeed, we note that this choice does not have to be consistent 

across all hidden variables. Many methods “mix and match” inference techniques, using for 

example a variational EM for the hidden rotation variable Ri and a VAE for the conformation 

variable zi. Moreover, it becomes apparent from Fig. 3 that (variational) autoencoders are the 

most common type of approaches implemented for cryo-EM reconstruction.

While deep generative methods for cryo-EM volume reconstruction can be unified with 

the framework described above (as well as with traditional Expectation Maximization 

approaches), we observe that each of them has its own specificities or “implementation 

tricks”. They differ, for example, in their choice of variational family, or loss function that 

adapts the ELBO to facilitate convergence of the optimization procedure, see supplementary 

material. These testify to the difficulties encountered in training these algorithms in the 

context of cryo-EM images with low signal–noise ratios.

4. Discussion

Given the wide number of options to reconstruct molecular volumes from cryo-EM images, 

it is natural to ask: which reconstruction method is in fact the most promising? In this last 

section, we focus on the need for establishing a set of metrics and benchmark tasks that can 

be used to quantitatively compare the performance of these methods. Starting with a review 

of the tools currently available, the first take-away of this section is the urgent need for new 

metrics and benchmarks. The evaluation of these methods’ performance is currently difficult 

and inherently limited. We nonetheless highlight, as a second take-away, promising features 

in current developments, which, in our opinion, these developments pave the way for future 

improvements in cryo-EM reconstruction.
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4.1. Assessing reconstruction performances: need for new metrics

Performance metrics can be categorized in two classes: (a) those that assess a method’s 

ability to provide good spatial resolution (i.e. distinguishing different atoms), and, in the 

case of heterogeneous methods, (b) those that assess a method’s ability to provide good 

conformation resolution (i.e. distinguishing different conformations).

4.1.1. Assessing spatial resolution

Resolution of discretized reconstructions (3D maps).: When the reconstructed volume is 

parametrized as an explicit 3D map, the most widespread measure used to evaluate its spatial 

resolution is the Fourier Shell Correlation (FSC) (Harauz and Heel, 1986). As described 

by Singer et al. (2020), this quantity measures the correlation over a 3D shell between two 

reconstructed volumes:

FSCk U, V =
∑s ∈ Sk UsV s

∗

∑s ∈ Sk Us
2∑s ∈ Sk V s

2 . (7)

Here, Sk is the set of Fourier voxels in a spherical shell at distance k from the origin, and 

U and V  are the Fourier transforms of the 3D volumes that we compare. Typically, U and 

V  correspond to two independent reconstructions on separate halves of the dataset, in which 

case, the criterion for a method to be deemed to perform well is for the two reconstructed 

volumes to be similar. The method’s resolution is then defined as the highest resolution 

for which U and V  agree “enough”. This is precisely what the FSC (Eq. 7) captures: the 

FSC is close to 1 when the two maps are close. This is usually the case for small k, as 

low-frequency signal is strong, but the FSC generally decays to zero as the signal-to-noise 

decreases. The result is often plotted as a curve, with axis x = k. The resolution of the 

reconstruction corresponds to the maximum value of k such that FSCk ⩾ 0.143 — a criterion 

chosen to match resolution criteria used in X-ray crystallography (Marin and Schatz, 2005). 

For synthetic datasets where a ground-truth volume is available, the FSC is measured 

between the reconstruction and the ground-truth; in which case the resolution criterion 

correspond to the maximum value of k such that FSCk ⩾ 0.5.

Resolution of continuous reconstructions.: Methods that represent the volume as a 

continuous field are relatively new, and it might be worth reassessing appropriate metrics for 

evaluating spatial accuracy in this case.

i. Implicit Parametrizations While interpolation between image pixels and 

map voxels is necessary in the discrete case, both for projection and for 

backprojection, implicit representations of the volume (e.g., through an neural 

network) enable sampling without interpolation during training. It would 

be interesting to investigate whether this provides a benefit in terms of 

reconstruction quality. We do not expect implicit representations to suddenly 

unlock information, since the information content is determined by the discrete 

nature of the images and their pixel size, but they might provide new actionable 
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ways to implement prior informations about the volume, such as smoothness and 

stereochemistry, that would result in reconstructions of higher quality.

ii. Atomic Parametrizations Parametrizations of the volume with atomic models 

represents an opportunity to revisit the notion of spatial resolution. The 

traditional measure of similarity between two atomic models that only differ 

in the cartesian coordinates U and V  of their N constituting atoms (using a 

consistent orientation of the molecule for U and V ) is the Root Mean Square 

Deviation (RMSD). This quantity is defined as:

RMSD U, V = 1
N ∑

i = 1

N
Ui − V i

2, (8)

However, it was soon recognized that this metric had a very narrow range 

for interpretability (Kufareva and Abagyan, 2011): it is a global measure of 

similarity, which is not suited to capture the local — but meaningful— changes 

in protein structure. To complicate the matter, measuring the RMSD between two 

atomic models assumes that they are both in the same reference frame, which 

might not always be defined. To improve the sensitivity of the metric, atomic 

models are routinely reduced to features with desired properties, e.g. vectors of 

internal coordinates independent of the reference frames. For example, reducing 

the atomic model to its backbone dihedral angles or to a list of atomic contacts 

has been shown to yield better clustering of conformations (Scherer et al., 2019). 

The development of new established metrics to evaluate these models is thus an 

important avenue of development.

4.1.2. Assessing conformation resolution: an Ill-Defined Problem—While not 

flawless, the evaluation of spatial resolution is a relatively well-characterized task. By 

contrast, evaluating conformation heterogeneity is a more ambiguous problem. To evaluate 

the quality of the reconstructions allowing continuous heterogeneity, methods such as 

3DFlex (Punjani and Fleet, 2021) or CryoDRGN (Zhong et al., 2019) perform a post hoc 

analysis of the recovered latent space, showing the flexible deformation that are induced 

by sweeping through the space of possible zs and visually inspecting the corresponding 

deformations. However, proper objective and quantitative measures of conformation 

heterogeneity remain to be established: there currently exists no standardized measure or 

gold-standard task to evaluate how well a method is able to capture it.

We could design a new metric, inspired by the high-level idea of the FSC. Using two 

halves of the dataset to infer two independent continuous distributions of conformations, 

we evaluate whether the distributions agree using a metric such as the Wasserstein distance 

- modulo change of coordinate system for the conformation variable z. In the case where 

a ground-truth conformation is available for each image (e.g. in simulations), the inferred 

distribution could be compared to the true distribution. In the case of methods able to 

generate one 3D volume for each image in the dataset, one could consider a hierarchical 

clustering approach where depth in the hierarchy tree corresponds to the conformational 

Donnat et al. Page 15

J Struct Biol. Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution. In more concrete terms, for all resolution k, the FSC between each volume 

pairs would be measured and the resulting distance matrix used for clustering. Data points 

that fall within the same clusters would be indistinguishable at k while images that would 

fall in different clusters would correspond to conformations that differ by at least k. The 

development of such metrics is key to make sustainable advances in next-generation cryo-

EM reconstructions.

4.2. Quantitative comparison of performances: lack of common benchmarks

Beyond the need for new performance metrics that are better adapted to new advancements 

in the field, it is most certainly the lack of established benchmarks that, to this day, make 

reconstruction methods very hard to compare. Such benchmarks are dramatically needed, 

as we cannot rely on statistical theory since the convergence properties of estimations 

relying on (amortized) variational inference are not completely characterized. In fact, the 

quantitative assessment of the methods’ relative performance has yet to overcome three main 

hurdles:

i. Lack of benchmark datasets: Current methods are developed and tested on a 

wide range of synthetic and experimental datasets that differ in the nature of the 

biomolecule being imaged, the dataset size, image size and associated resolution 

— with very little overlap across methods - see Table summarizing existing 

experiments in the supplementary material. There is unfortunately no MNIST 

(Deng, 2012) or Imagenet (Deng et al., 2009) for cryo-EM. Most methods resort 

to evaluating their performance on synthetic data, yet no cryo-EM simulator acts 

as a standard to generate simulated images in a unified way. Synthetic datasets 

vary in the realism of the image formation model used for simulation, e.g. in 

the noise model, the signal-to-noise ratio or the distribution of nuisance variables 

(e.g. poses). Subsequent experiments are typically performed on real “in house” 

data — but there too, the important diversity within the characteristics of these 

evaluation datasets therefore makes the comparison of these methods a strenuous 

task.

ii. Lack of benchmarking procedures: Reconstruction methods vary in the 

complexity of the task that they set out to accomplish, assuming more or less 

nuisance variables (such as poses or PSF) to be known – see Fig. 3. This makes 

it difficult to compare methods on a fair ground. We need to establish modular 

benchmarking procedure that would enforce a fair comparison of reconstruction 

performances, eg, testing the recovery of the pose, volume or conformations, 

with other nuisance variables being known and fixed.

iii. Lack of benchmark codebase and infrastructure: Finally, reconstructions 

methods are not necessarily publicly accessible, are implemented across 

different programming languages, and/or are tested on different software or 

hardware. Creating a codebase that re-implements these methods for a proper 

evaluation using a unified infrastructure would unfortunately represent a gigantic 

implementation effort. Currently, this lack of codebase poses a significant hurdle 

in the accessibility and comparison of the methods: it is currently impossible 
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to disentangle the effect of their proposed statistical learning problem, their 

programming language, implementation tricks, or software infrastructure.

4.3. Qualitative comparison of performances

Despite the hurdles associated with performing quantitative comparisons, we propose a 

qualitative evaluation of the different methods based on both published results and our 

personal experience. This allows us to highlight promising directions — to the least, in the 

authors’ opinion — for further developments.

4.3.1. Accuracy—Despite encouraging accuracy results, some methods seem to face 

considerable challenges when applied to real cryo-EM images, as they have not been 

properly vetted and stress-tested in experimental conditions (Ullrich et al., 2019; Zhong 

et al., 2021; Rosenbaum et al., 2021; Nashed et al., 2021) – see Table summarizing the 

experiments in the supplementary material. We consider the lack of results on experimental 

data as a proxy for a limited applicability in the context of real signal–noise ratios regimes. 

In order to be adopted by cryo-EM practitionners, these methods will need to overcome the 

signal–noise regime and demonstrate the accuracy reported in the papers on a larger set of 

(benchmark) datasets.

Despite the difficulty of the task and lack of standardized benchmarks, recent developments 

in deep generative modeling have shown impressive promise in overcoming the current 

computational and accuracy bottlenecks in all three following directions:

i. Poses: Poses are important nuisance variables that have the potential to damage 

the reconstruction, if incorrectly predicted. Accuracy of the predicted rotation 

is measured on synthetic datasets with a mean/median square error (MSE) 

against the corresponding ground-truth. Historically, preference was given to 

methods that did not use amortized inference for the rotation estimation (e.g. 

CryoSPARC (Punjani et al., 2017) or CryoDRGN (Zhong et al., 2019)), as 

they outperformed their amortized counterparts predicting rotations with an 

encoder (e.g. CryoPoseNet (Nashed et al., 2021) and CryoAI (Levy et al., 

2022)): AtomVAE (Rosenbaum et al., 2021) was for instance one of the only 

methods using amortized inference for the recovery of the poses, and reported 

difficulties in the joint training of poses and conformation — highlighting the 

difficulty of accurate amortized inference in this setting. However, the accuracy 

gap between methods is closing: CryoAI (Levy et al., 2022) now showcases 

an rotation accuracy at the same order of magnitude compared to CryoSPARC 

(Punjani et al., 2017) and CryoDRGN (Zhong et al., 2019) on a real dataset. 

This was facilitated by the theoretical insights drawn from CryoAI (Levy et al., 

2022), who show that amortized inference techniques tend to get stuck in local 

minima where the predicted molecule contains unwanted planar symmetries due 

to their projections on a 2D surface. The solution that they propose to alleviate 

this problem is to use the symmetrized loss:
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ℓsym = ∑
i

min Xi − PSFi * ti ∘ Π2D ∘ Ri V i 2, Rπ Xi − PSF i * ti ∘ Π2D ∘ Ri Rπ V i 2 .

where Rπ is a rotation with angle π. This has recently opened the door to 

significant gains in accuracy in the prediction of the poses, allowing for the 

first time pose estimation to be done through amortized inference. We anticipate 

that it is through such developments and theoretical insights that reconstruction 

algorithms will be able to fully leverage amortized inference for rotation 

prediction, hereby providing significant speed-ups.

ii. Volumes: Methods based on (pseudo-) atomic volume parametrizations - 

E2GMM (Chen and Ludtke, 2021), CryoFold (Zhong et al., 2021) and AtomVAE 

(Rosenbaum et al., 2021) - do not compare themselves to their counterparts, 

probably due to the fact that they were published concurrently in 2021 and/or 

do not use the same definition of “pseudo-atoms” that are respectively: means 

of 3D Gaussian distributions, residues or actual atoms. As a consequence, we do 

not comment on them. For methods generating 3D maps, it has been reported by 

Punjani and Fleet (2021) that amortized inference can translate into resolution 

loss. Yet, recent methods such as CryoDRGN (Zhong et al., 2019) and CryoAI 

(Levy et al., 2022) publish examples of reconstructed volumes as 3D maps 

whose resolution is visually comparable to the ones obtained by CryoSPARC 

(Punjani et al., 2017), on downsampled imaged. Our opinion is that amortized 

methods can reach near-atomic resolution reconstructions, but this has not been 

demonstrated yet. If so, we expect them to replace traditional reconstruction 

pipelines in the long run, since they offer the promise to be significantly 

faster and to tackle much larger datasets - a desired feature to enable sufficient 

sampling of the conformational landscape.

iii. Conformations: Methods based on pseudo-atomic volumes parametrizations do 

not provide examples of conformation trajectories that allow us to compare them. 

For methods generating 3D maps, CryoDRGN (Zhong et al., 2019) and 3DFlex 

(Punjani and Fleet, 2021) seem to be some of the most promising approaches, as 

they seem to allow greater resolutions in the recovered trajectories, based on our 

personal visual assessment of the examples of conformation trajectories shown 

in the corresponding papers. This remains to be confirmed by a quantitative 

assessment over a larger number of conformation trajectories.

4.3.2. Reproducibility—Adoption of these methods by practitioners will require their 

reproducibility, or robustness to different initializations, implementation tricks or choice of 

hyperparameters:

i. Initialization: The non-convex nature of the problem puts it at very high-risk 

of being non robust and sensitive to initialization — this is a phenomenon 

sometimes referred to as “Einstein from noise” (Henderson, 2013), also 

described in Singer et al. (2020). Luckily, most of the current methods show 

encouraging signs of robustness to perturbations. In our experience, CryoDRGN 
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(Zhong et al., 2019) seems consistent for different random initializations of the 

neural model when fixing the poses: the conformation space does not seem to 

be vastly affected. This robustness can however be challenged by extremely low 

signal and/or heterogeneous datasets, in which case certain conformations can go 

missing.

ii. Tricks: The inference methods presented often make use of additional 

implementation tricks (e.g. warm-starting with a known conformation), and 

specific regularization schemes: e.g. AtomVAE (Rosenbaum et al., 2021) 

suggests starting with an initial phase of pose-only training, which, once 

realized, ensures that the further joint learning of poses and volume is successful. 

Both AtomVAE (Rosenbaum et al., 2021) and CryoFold (Zhong et al., 2021) 

regularize the recovered structure by penalizing bond lengths, but the impact 

of the regularization yet remains to be properly characterized, and in particular, 

its potential to frustrate the optimization landscape. The importance of tricks 

and regularizations, and combinations thereof, is still ill-understood and would 

require an in-depth analysis, as it hints towards a difficult optimization landscape 

for this method, and its sensitivity to initial conditions.

iii. Hyperparameters: Choosing hyperparameters such as the dimension of the 

latent space in algorithms such as CryoDRGN (Zhong et al., 2019) induces more 

or less regularization: too small and it regularizes the model too much; too large 

leads to underfitting of the 3D model. CryoDRGN (Zhong et al., 2019) usually 

sets it to d = 8, but, given how heterogeneity arises, this is necessarily molecule 

dependent. The field will need — to the least— rule-of-thumb guidelines on 

how to choose these hyperparameters if these methods are to be adopted by 

practitioners.

The robustness of these new methods needs to be confirmed on a wider set of datasets, 

including datasets with high levels of noise. The fact that they rely on user-defined 

implementation tricks and hyperparameters might not be an obstacle to their adoption, as 

conventional methods such as RELION (Scheres, 2012) or CryoSPARC (Punjani et al., 

2017) also do.

4.3.3. Efficiency—Our last axis of comparison is computational efficiency: both in time 

and memory requirements. First, if we take the size of the datasets used in experiments as 

a proxy for efficiency, then 3DFlex (Punjani and Fleet, 2021), CryoAI (Levy et al., 2022), 

E2GMM (Chen and Ludtke, 2021), and CryoDRGN (Zhong et al., 2019) seem to be able 

to process remarkable amounts of information. Additionally, we offer our own practical 

experience by-way of rule of thumb. With datasets typically of more than 100 GB, training 

times can take up to 10 h (including the required pre-processing steps) for methods like 

RELION (Scheres, 2012) — that is, for a run that has little hyperparameter tuning compared 

to alternative deep learning methods. Newer methods like CryoDRGN (Zhong et al., 2019) 

hold great promise in terms of reconstruction: however, such sophisticated methods can 

further benefit from gains in efficiency, both from the computational side and in terms of 

memory requirements. Efficient updates of a model’s parameters can thus be seen as a 

current computational bottleneck and offers an interesting avenue for future research.
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5. Conclusion

This review provides a critical comparison of recent cryo-EM reconstruction methods that 

are based on deep generative modeling, focusing on explaining their relative advantages 

or drawbacks. We have unified, compared and contrasted existing methods through their 

parametrization of the volume, as well as through the optimization procedure chosen to 

recover this volume and associated hidden variables. While the use of amortized inference 

is crucial to make inference tractable in this high-data, high-dimensional setting, there 

seems to be much room for improvement and research on methods allowing both faster 

and better inference. On a practical side, we note that recent methods suffer from a lack of 

benchmarks which severely impedes their comparison and development. From our practical 

experience, beyond a necessity for benchmark datasets, we also highlight a severe need for 

the development of a diagnostic toolbox tailored to the analysis of cryo-EM data. Current 

methods rely on a set of choices and hyperparameters that raise a number of questions 

for the practitioner: have I chosen my hyperparameters adequately? Is this choice going 

to impact the accuracy of the recovery? Is there any physical or biological meaning or 

interpretation in the distance between the latent space of conformation variables? How does 

error on pose or PSF affect the rest of the volume recovery process? There is therefore a 

pressing need for more in-depth and systematic quantitative comparison of these methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of single particle cryo-EM. Acquisition of 2D cryo-EM images (2D projections) 

from 3D biomolecular volumes, flash frozen in an unknown orientation.
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Fig. 2. 
Maximization of the log-likelihood θ L X, θ  in θ by maximizations of a series of 

lower bounds: ℒ q 0 , X, θ , ℒ q 1 , X, θ , etc. The θ t  s across iterations t = 0, 1, 2,…are 

represented by colored dots and correspond to successive maxima of the lower bounds. Left: 

The lower bounds are tangent to θ L X, θ , which is realized when q is the posterior of the 

hidden variables. Right: The lower bounds are not tangent to θ L X, θ , but show a “gap” 

that corresponds to the KL divergence between q and the posterior of the hidden variables, 

see Eq. (5).
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Fig. 3. Comparison of generative reconstruction methods.
Volume Representation (see Section 2): methods parameterizing volumes with a discretized 

domain and explicit parameterization are shown with a voxel grid (VG) pictogram; methods 

parameterizing volumes with a continuous domain and implicit parameterization are shown 

with either a neural network (NN) or a Gaussian mixture (GM) pictogram; the pictogram 

is outlined in blue for volumes represented in image space and in orange for volumes 

represented in Fourier space. Inference (seeSection 3): Each method is shown with the 

hidden variables of its generative model, i.e., which are some combination of 3D rotation 

R, 2D translation t, contrast transfer function C, standard deviation of measurement noise 

σ, and conformation variable z. In each method: hidden variables assumed known are 

shown in gray; hidden variables sampled from a fixed prior, in generative adversarial 

network (GANs) architectures, are shown in blue; hidden variables computed with the 

expectation–maximization algorithm (EM) are shown in red: dark red for a variational EM 

that produces an approximation of their posterior distribution, and light red for a modal 

EM that produces a single mode; hidden variables computed with amortized inference 

through an encoder are shown in green: dark green for a variational encoder that predicts 

the parameters of an approximation of their posterior distribution, light green for a regular 

encoder that predicts a single mode Remark: CryoDRGN (Zhong et al., 2021) is similar to 

cryoDRGN2 (Zhong et al., 2021), except rotations and translations are given by an upstream 

homogeneous reconstruction. CryoVAEGAN (Miolane et al., 2019) does not explicitly store 

a representation of the volume and therefore does not appear in the figure.
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