
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Spectral analysis of sparse random graphs and hypergraphs

Permalink
https://escholarship.org/uc/item/6w31b2xx

Author
Zhu, Yizhe

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w31b2xx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Spectral analysis of sparse random graphs and hypergraphs

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Yizhe Zhu

Committee in charge:

Professor Ioana Dumitriu, Chair
Professor Mikhail Belkin
Professor Todd Kemp
Professor Rayan Saab
Professor Jason Schweinsberg

2021



Copyright

Yizhe Zhu, 2021

All rights reserved.



The dissertation of Yizhe Zhu is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically.

University of California San Diego

2021

iii



DEDICATION

Dedicated to my parents and grandparents.

iv



EPIGRAPH

A mathematician is a person who can find analogies between theorems; a better mathe-

matician is one who can see analogies between proofs and the best mathematician can notice

analogies between theories. One can imagine that the ultimate mathematician is one who can see

analogies between analogies.

—Stefan Banach
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ABSTRACT OF THE DISSERTATION

Spectral analysis of sparse random graphs and hypergraphs

by

Yizhe Zhu

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Ioana Dumitriu, Chair

This thesis concerns the spectral and combinatorial properties of sparse random graphs

and hypergraphs. We present three models, including inhomogeneous random graphs, random

bipartite biregular graphs, and the hypergraph stochastic block model, emphasizing the limiting

spectral distributions, eigenvalue fluctuations, and top eigenvalues and eigenvectors, respectively.

We first present a graphon approach to finding the limiting spectral distribution of Wigner-type

matrices, building a connection between random matrices and graph limits. For random bipartite

biregular graphs, we analyze their cycle structure and compute the global eigenvalue fluctuations.

Finally, we study a spectral algorithm for community detection in sparse hypergraph stochastic

block models using a new matrix that counts self-avoiding walks on hypergraphs.
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Chapter 1

Introduction

1.1 Sparse graph-based random matrices

The spectral analysis of random graphs is in the intersection of random matrix theory and

graph theory. It combines tools from combinatorics, probability, statistics, and numerical linear

algebra and has various applications in coding theory, network analysis, and machine learning.

The synergy of combinatorics and probability in the study of spectra of random graphs

has been successfully developed in the past decade. From the random matrix perspective, we

would like to understand how the structure of the random graphs is reflected in their spectral

properties and how the universality phenomenon can be extended to sparse random graph models

[82, 83, 108, 117, 27, 29, 28]. For dense graphs, the similarities with their adjacency matrices

and classical random matrices are so great that one can extend the universality results over

from random matrix theory; however, the dense graphs are less interesting from an application

perspective. A real-world social or collaborative network is rarely dense; on the contrary, the

degrees of vertices remain bounded or grow very slowly as the size of the network increases. So

it makes sense to examine those graph-based matrices whose models are not dense but sparse.

The sparsity creates an immediate issue: sparse graph-based random matrices do not
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satisfy the bounded moments assumption in many results of the Wigner and Wishart ensembles.

As such, new tools and methods have been developed to understand their spectra [39, 40, 170,

108, 78, 31, 32, 14]. Often, these new methods still necessitate concentration results that are not

true in very sparse regimes (corresponding to bounded expected degree or O(logn) expected

degrees), when few entries per row are nonzero [39, 81, 121, 14, 15]. In such regimes, one has to

try and exploit the combinatorial properties of the model. Powerful tools from combinatorics,

including graph limits [34], non-backtracking operators [167], switchings [144], etc., have been

successfully applied to various sparse random matrix problems [39, 40, 37, 48, 67, 90, 66].

From an application perspective, sparse random matrix techniques have been widely used

to analyze the structure of random graphs and provide the theoretical foundation for applications

in statistics, theoretical computer science, and data science, including community detection [1],

matrix completion [122], matrix sketching [174], error-correcting codes [114], etc. A remarkable

achievement in the last decade is the success of proving the community detection threshold

conjecture for the stochastic block model in different sparsity regimes [145, 146, 141, 40, 145, 2].

Many efficient algorithms that achieve the information-theoretical thresholds are spectral, and

their analysis is based on random matrix theory [141, 40, 4].

1.1.1 Random graph and random hypergraph models

Many random graph and hypergraph models have been extensively studied from a random

matrix perspective in the last decade. We briefly introduce several models that will be studied in

this thesis. A more detailed discussion can be found in each chapter.

Inhomogeneous Erdős-Rényi random graphs

One of the most basic models for random graphs is the Erdős-Rényi random graph,

denoted by G(n, p), where every edge between two vertices appears with probability p. The

inhomogeneous Erdős-Rényi model G(n,(pi j)), where edges exist independently with given
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probabilities pi j, is a generalization of the classical Erdős-Rényi model G(n, p).

Many popular graph models arise as special cases of G(n,(pi j)) such as random graphs

with given expected degrees [64], stochastic block models [113], and W -random graphs [136, 42].

It is a popular topic attracting attention from different areas: the limiting spectral distribution

and generalization of the universality phenomenon beyond Wigner matrices in random matrix

theory [178, 56, 8]; the study of graph limits and inhomogeneous random graph models beyond

the Erdős-Rényi graphs in random graph theory [135, 36]; community detection and network

analysis in statistics and machine learning [1, 97].

Stochastic block models

The Stochastic Block Model (SBM) represents a generalization of Erdős-Rényi graphs to

allow for more heterogeneity. This model is designed to produce graphs containing communities

and to serve as a benchmark for clustering algorithms. Specifically, let A be the adjacency matrix

of an SBM. Suppose we have a partition of [n] =V1∪V2∪ . . .∪Vd for some integer d, and that

|Vi| = ni for i = 1, . . . ,d. For any pair (k, l) ∈ [d]× [d], there is a pkl ∈ [0,1] such that for any

i ∈Vk, j ∈Vl ,

ai j =

 1, with probability pkl,

0, otherwise.

The task for community detection is to find the unknown partition of a random graph

sampled from the SBM. In the last decade, there has been considerable activity [129, 40, 1, 31, 32]

in understanding the spectral properties of matrices associated with the SBM and other generalized

graph models, in particular in connection to spectral clustering methods.

Random regular and bipartite biregular graphs

An expander graph is a sparse graph with connectivity properties which exhibits rapid

mixing [63]. Expander graphs play an important role in computer science, including sampling,

3



complexity theory, and the design of error-correcting codes (see [114]).

When a graph is d-regular, i.e., each vertex has degree d, quantification of expansion

is possible based on the eigenvalues of the adjacency matrix. By random d-regular graph on

n vertices, we mean a random graph chosen uniformly from the space of all simple d-regular

graphs on n vertices. The adjacency matrix of a random d-regular graph is a random matrix

model with dependent entries. This has been extensively analyzed in the last decade with respect

to global and local statistics and universality [77, 170, 76, 27, 29, 28, 117], and the spectral gap

[49, 37, 67, 168].

In many applications, one would like to construct bipartite expander graphs with two

unbalanced disjoint vertex sets, among which bipartite biregular graphs are of particular interest.

An (n,m,d1,d2)-bipartite biregular graph is a bipartite graph G = (V1,V2,E) where |V1| =

n, |V2|= m and every vertex in V1 has degree d1 and every vertex in V2 has degree d2. Note that

we must have nd1 = md2 = |E|. The spectra of random bipartite biregular graphs have been

studied in [75, 169, 175, 48, 179, 80].

Random hypergraphs

A hypergraph H consists of a set V of vertices and a set E of hyperedges such that each

hyperedge is a nonempty set of V . A hypergraph H is k-uniform for an integer k ≥ 2 if every

hyperedge e ∈ E contains exactly k vertices. The degree of i, denoted deg(i), is the number

of hyperedges incident to i. A hypergraph is d-regular if all of its vertices have degree d. A

hypergraph is (d,k)-regular if it is both d-regular and k-uniform.

Many clustering methods are based on graphs, which represent pairwise relationships

among objects. However, in many real-world problems, pairwise relations are not sufficient, while

higher-order relations between objects cannot be fully described as edges on graphs. Hypergraphs

can be used to represent more complex relationships among data, and they have been shown

empirically to have advantages over graphs; see [176, 152]. Thus, it is of practical interest to
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develop algorithms based on hypergraphs, and much work has already been done to that end; see,

for example, [176, 130, 172, 100, 50, 109, 11]. There are two natural generalizations of random

graph models to random hypergraphs: Erdős-Rényi random hypergraphs and random regular

hypergraphs.

A k-uniform Erdős-Rényi random hypergraph Hk(n, p) is a random hypergraph on n

vertices, where each hyperedge is of size k and appears independently with probability p. The

spectra of the Laplacian, adjacency matrix, and the adjacency tensor for Erdős-Rényi random

hypergraphs have been studied in [137, 177]. Inhomogeneous random hypergraphs and hyper-

graph stochastic block models are popular in the fields of network modeling and clustering

[131, 124, 98, 20, 65, 151].

Random regular hypergraphs, where each hyperedge has the same size and each vertex

has the same degree, serve as a natural model for the study of hypergraphs with regularity and

dependency [74, 127]. They have been used to study the average behavior of optimization

algorithms on hypergraphs [154, 72]. The spectra of such random hypergraph models have been

analyzed through their adjacency matrix [91, 132, 79] and adjacency tensor [95].

1.1.2 Spectral statistics

In this section, we define the spectral statistics that will be discussed in this thesis.

Empirical spectral distribution

For any n× n Hermitian matrix A with eigenvalues λ1, . . . ,λn, the empirical spectral

distribution (ESD) of A is defined by

µA(x) =
1
n

n

∑
i=1

δλi(x). (1.1.1)

The limiting spectral distribution, or the global law, describes the limit shape of the
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spectrum. A Wigner matrix is a Hermitian random matrix whose entries are i.i.d. random

variables up to the symmetry constraint and have zero expectation and variance 1. As has been

known since Wigner’s seminal paper [173] in various formats, for Wigner matrices, the empirical

spectral distribution converges almost surely to the semicircle law, with a density function

µ(x) =
1

2π

√
4− x21[−2,2](x).

Global eigenvalue fluctuations

A linear statistic of an n×n matrix A with eigenvalues λ1, . . . ,λn is a functional of the

form

L( f ) =
n

∑
i=1

f (λi),

where f is a function belonging to a certain class. When f is a suitable test function, the first

order behavior of L( f ), is given by

1
n

L( f ) =
1
n

n

∑
i=1

f (λi)→
∫
R

f (x)dµA(x),

where µA the limiting spectral distribution of A. The global fluctuation for linear statistics, is

another spectral statistic of interest, which examines the second order behavior of L( f ), given by

X f = L( f )−EL( f ).

Under a suitable scaling, one would like to prove that X f converges in distribution to a certain

random variable whose variance depends on f . The term “global” in “global fluctuation” refers

to the fact that all eigenvalues contribute similarly to L( f ).
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Spectral gap

Let A be the adjacency matrix of a d-regular graph. The first eigenvalue λ1(A) is always

d. The second eigenvalue in absolute value λ(A) = max{λ2(A),−λn(A)} is of particular interest,

since the difference between d and λ, also known as the spectral gap, provides an estimate on the

expansion property of the graph [12, 63, 114].

For a bipartite biregular graph, its first eigenvalue is
√

d1d2. The difference between
√

d1d2 and λ2(A) is called the spectral gap. The spectral gap of bipartite biregular graphs has

found applications in error-correcting codes, matrix completion and community detection, see for

example [165, 160, 96, 48, 51].

For inhomogeneous Erdős-Rényi graphs, the spectral gap is referred to separation between

the few largest eigenvalues outside the bulk of the spectrum (the outliers) and the edge of the bulk

spectrum [40, 57, 55, 14].

1.2 The moment method

The three different results we present in the thesis share the same philosophy: the spectral

statistics of a random matrix can be studied through the analysis of certain combinatorial objects

in the random graph or random matrix model. An important tool of the analysis is the moment

method.

Compared to the Stieltjes transform method in the study of local statistics, the moment

method has some advantages in the study of global statistics and the edge behavior of the

spectrum. For example, in the very sparse regime, including Erdős-Rényi graphs with bounded

expected degrees [40, 38], random regular graphs and quasi-regular graphs with fixed degrees

[37, 47, 48], many variants of the classical moment method provides stronger results and more

precise information of the spectrum compared to the Stieltjes transform method. The advantage

is that it incorporates the information of the combinatorial structures even when concentration
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tools fail.

We give a quick illustration of the moment method in the study of Wigner matrices (see

[18] for more details). Let Wn be a random Hermitian matrix with i.i.d. entries of mean zero

and variance one, and we assume all moments are finite for simplicity. Denote An =
1√
nWn with

eigenvalues λ1, . . . ,λn. Denote the empirical spectral distribution of An by µn. Then the k-th

moment of µAn satisfies

∫
xkµAn(x)dx =

1
n

tr(Ak
n). (1.2.1)

The moment method to show µAn has a limit is by first proving the convergence of the expected

trace of Ak
n for each fixed k:

1
n
E[trAk

n] =
1
n ∑

i1,...,ik∈[n]
E[(An)i1i2 · · ·(An)iki1]. (1.2.2)

When k is even, the leading order of the above expression is given by the number of closed walks

on rooted planar trees, which matches the moment of a semicircle distribution, i.e., the Catalan

number.

For global eigenvalue fluctuations, the goal is to find the limiting law for the linear statistic

of a suitable test function f , given by

n

∑
i=1

f (λi)−
n

∑
i=1

E f (λi). (1.2.3)

The moment method can be used to examine the fluctuation of linear statistics for a test function

f (x) = xk with a fixed k. The linear statistic of f can be written as

Xk := tr(Ak
n)−Etr(Ak

n). (1.2.4)
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The moments of Xk can be interpreted as counting cycles in a certain graph, and they match the

moments of a Gaussian random variable with an explicit variance. This calculation implies a

central limit theorem. Then one can extend the CLT to polynomial test functions.

The moment method is also a powerful tool to estimate the spectral norm, defined by

‖An‖= sup
x:‖x‖2=1

‖Anx‖2.

Consider the following inequality:

E‖An‖ ≤ E[tr(An)
2k]

1
2k ≤ n

1
2kE‖An‖.

When k is on the order of logn, the three quantities are of the same order. Therefore we can

bound the spectral norm ‖A‖ by counting a certain type of closed walk of length k = O(logn).

We have developed and generalized the moment method to three different random graph

and random hypergraph models in order to analyze the three different types of spectral statistics

mentioned above. The new challenges, beyond the Wigner matrix example, are inhomogeneity,

edge dependence, and sparsity.

In Chapter 2, we consider random matrices An =
1√
nWn, where entries wi j are independent,

wtih mean zero and variance si j. This type of random matrix is called a Wigner-type matrix with

a variance profile [8]. We give a new formula for the moments of the limiting spectral distribution

for Wigner-type matrices, in terms of homomorphism densities, a quantity that is well studied in

the dense graph limit (i.e., the graphon theory [135]). This is an inhomogeneous generalization of

the Catalan number expression for the moments of Wigner matrices.

In Chapter 3, we study the global eigenvalue fluctuation for random bipartite biregular

graphs. In this case, the linear eigenvalue statistic L( f ) has a closed-form expression when f is a

Chebyshev polynomial, which counts the number of cyclically non-backtracking closed walks

in a bipartite biregular graph. Such closed walks can be analyzed through the cycle counts in
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the graph. In this random graph model with edge dependence, we are able to analyze the law

of cycle counts through switching operations [143, 144], a tool from random graph theory. The

fluctuations of cycle counts essentially determine the global eigenvalue fluctuations.

In Chapter 4, we develop the moment method for sparse random hypergraphs, to solve a

community detection problem in the hypergraph block model [20, 101]. We apply this method to

a new matrix that counts self-avoiding walks on hypergraphs, whose spectral norm is analyzed by

counting concatenations of self-avoiding walks of length O(logn).

1.3 Contribution of this thesis

We summarize the main results in each chapter as follows. More detailed introductions

will be given in each chapter.

Chapter 2: A graphon approach to the limiting spectral distributions of

Wigner-type matrices

We analyze the limiting spectral distributions of general Wigner-type matrices. Such

random matrices have independent entries up to symmetry, but with different variances. This

approach determines the moments of the limiting measures and the equations of their Stieltjes

transforms explicitly with weaker assumptions on the convergence of variance profiles than

previous results in [157, 19]. As applications, we determine the limiting spectral distributions

for three sparse inhomogeneous random graph models with sparsity ω(1/n): inhomogeneous

random graphs with roughly equal expected degrees, W -random graphs, and stochastic block

models with a growing number of blocks. Our theorems can also be applied to study random

Gram matrices with a variance profile for which we can find the limiting spectral distributions

under weaker assumptions than previous results in [105].
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Chapter 3: Global eigenvalue fluctuations for random bipartite biregular

graphs

We compute the global eigenvalue fluctuations for the spectral statistic L( f ) of uniformly

distributed random biregular bipartite graphs with fixed and growing degrees, for a large class of

analytic functions f . As a key step in the proof, we obtain a total variation distance bound for the

Poisson approximation of the number of cycles and cyclically non-backtracking walks in random

biregular bipartite graphs. As an application, we translate the results to adjacency matrices of

uniformly distributed random regular hypergraphs.

Chapter 4: Community detection in the sparse hypergraph stochastic block

model

We consider the community detection problem in sparse random hypergraphs. Angelini

et al. in [20] conjectured the existence of a sharp threshold on model parameters for community

detection in the hypergraph stochastic block model. We settled the positive part of the conjecture

for the case of two blocks: above the threshold, there is a spectral algorithm that asymptotically

almost surely constructs a partition of the hypergraph which correlated with the true partition. Our

method is a generalization to sparse random hypergraphs of the method developed by Massoulié

in [141] for sparse random graphs.
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Chapter 2

A graphon approach to limiting spectral

distributions of Wigner-type matrices

2.1 Introduction

Eigenvalue Statistics of Random Matrices

Classically, as has been known since Wigner’s seminal paper [173] in various formats,

the empirical spectral distribution for Wigner matrices converges almost surely to the semicircle

law. The i.i.d. requirement and the constant variance condition are not essential for proving the

semicircle law, as can be seen from the fact that generalized Wigner matrices, whose entries

have different variances but each column of the variance profile is stochastic, turned out to obey

the semicircle law [19, 86, 102], under various conditions as well. Beyond the semicircle law,

the Wigner matrices exhibit universality [85, 166], a phenomenon that has been recently shown

to hold for other models, including generalized Wigner matrices [86], adjacency matrices of

Erdős-Rényi random graphs [82, 83, 170, 116] and general Wigner-type matrices [8].

A slightly different direction of research is to investigate structured random matrix models

whose limiting spectral distribution is not the semicircle law. One such example is random block

12



matrices, whose limiting spectral distribution has been found in [157, 89] using free probability.

Ding [73] used moment methods to derive the limiting spectral distribution of random block

matrices for a fixed number of blocks (a claim in [73] that the method extends to the growing

number of blocks case is unfortunately incorrect). Recently Alt et al. [17] provided a unified way

to study the global law for a general class of non-Hermitian random block matrices including

Wigner-type matrices.

Graphons and Convergence of Graph Sequences

Understanding large networks is a fundamental problem in modern graph theory and to

properly define a limit object, an important issue is to have good definitions of convergence for

graph sequences. Graphons, introduced in 2006 by Lovász and Szegedy [136] as limits of dense

graph sequences, aim to provide a solution to this question. Roughly speaking, the set of finite

graphs endowed with the cut metric (See Definition 2.2.3) gives rise to a metric space, and the

completion of this space is the space of graphons. These objects may be realized as symmetric,

Lebesgue measurable functions from [0,1]2 to R. They also characterize the convergence of

graph sequences based on graph homomorphism densities [44, 45]. Recently, graphon theory has

been generalized for sparse graph sequences [42, 43, 93, 126].

The most relevant results for our endeavor are the connections between two types of

convergences: left convergence in the sense of homomorphism densities and convergence in

cut metric. In our approach, for the general Wigner-type matrices, we will regard the variance

profile matrices Sn as a graphon sequence. The convergence of empirical spectral distributions

is connected to the convergence of this graphon sequence associated with Sn in either left

convergence sense or in cut metric.

For inhomogeneous random graphs with bounded expected degree introduced by Bollobás,

Janson and Riordan [36], their graphon limits will be 0 and our main result will not cover this

regime. This is because the graphon limit is only suitable for graph sequences with unbounded
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degrees. Instead, the spectrum of random graphs with bounded expected degrees was studied in

[39] by local weak convergence [34, 10], a graph limit theory for graph sequences with bounded

degrees.

Contribution of this chapter

We obtained a formula to compute the moments of limiting spectral distributions of general

Wigner-type matrices from graph homomorphism densities, and we derived quadratic vector

equations as in [7] from this formula. Previous approaches to the problem require the variance

profiles to converge to a function whose set of discontinuities has measure zero [157, 19, 105],

we make no such requirement here. The method in [157] is based on free probability theory, and

it is assumed that all entries of the matrix are Gaussian, while our Theorem 2.3.2 and Theorem

2.3.4 work for non-i.i.d. entries with general distributions. Especially, we cover a variety of

sparse matrix models (see Section 2.4-2.7). The argument in [19] is based on a sophisticated

moment method for band matrix models, and our moment method proof based on graphon theory

is much simpler and can be applied to many different models including random Gram matrices.

For random Gram matrices, in [105], it is assumed that all entries have (4+ ε) moments and the

variance profile is continuous. The continuity assumption is used to show the Stieltjes transform

of the empirical measure converges to the Stieltjes transform of the limiting measure. We remove

the technical higher moments and the continuity assumptions since our combinatorial approach

requires less regularity.

All the previous results above assume the limiting variance profile exists and is continuous.

This assumption is used to have an error control under L∞-norm between the n-step variance

profile and the limiting variance profile, which will guarantee that either the moments of the

empirical measure converge or the Stieltjes transform the empirical measure converges. However,

this L∞-convergence is only a stronger sufficient condition compared to our condition in Theorem

2.3.2 and Theorem 2.3.4. The key observation in our approach is that permuting a random matrix
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does not change its spectrum, but the continuity of the variance is destroyed. The cut metric in

the graphon theory is a suitable tool to exploit the permutation invariant property of the spectrum

(see Theorem 2.3.4).

Moreover, we realize that to make the moments of the empirical measure converge, we

don’t need to assume the moments of the limiting measure is an integral in terms of the limiting

variance profile. All we need is the convergence of homomorphism density from trees. We show

two examples in Section 2.4 where we don’t have a limiting variance profile but the moments of

the empirical measure still converge: generalized Wigner matrices and inhomogeneous random

graphs with roughly equal expected degrees.

Besides, if the limiting distribution is not the semicircle law, previous results only implic-

itly characterize the Stieltjes transform of the limiting measure by the quadratic vector equations

(see (2.3.2), (2.3.3)), which are not easy to solve. Our combinatorial approach explicitly de-

termines the moments of the limiting distributions in terms of sums of graphon integrals. Our

convergence condition (see Theorem 2.3.2 (1)) is the weakest so far for the existence of limiting

spectral distributions and covers a variety of models like generalized Wigner matrices, adjacency

matrices of sparse stochastic block models with a growing number of blocks, and random Gram

matrices.

The organization of this chapter is as follows: In Section 2.2, we introduce definitions

and facts that will be used in our proofs. In Section 2.3, we state and prove the main theorems

for general Wigner-type matrices and then specialize our results to different models in Section

2.4-2.7. In Section 2.8, we extend our results to random Gram matrices with a variance profile.

2.2 Preliminaries

Our main task in this chapter is to investigate the convergence of the sequence of empirical

spectral distribution to the limiting spectral distribution for a given sequence of structured random
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matrices. A useful tool to study the convergence of measure is the Stieltjes transform. Let µ be a

probability measure on R. The Stieltjes transform of µ is a function s(z) defined on the upper half

plane C+ by the formula:

s(z) =
∫
R

1
z− x

dµ(x), z ∈ C+.

Suppose that µ is compactly supported, and denote r := sup{|t| | t ∈ supp(µ)}. We then have a

power series expansion

s(z) =
∞

∑
k=0

βk

zk+1 , |z| ≥ r, (2.2.1)

where βk :=
∫
R xkdµ(x) is the k-th moment of µ for k ≥ 0.

Definition 2.2.1. The rooted planar tree is a planar graph with no cycles, with one distinguished

vertex as a root, and with a choice of ordering at each vertex. The ordering defines a way to

explore the tree starting at the root. Depth-first search is an algorithm for traversing rooted planar

trees. One starts at the root and explores as far as possible along each branch before backtracking.

An enumeration of the vertices of a tree is said to have depth-first search order if it is the output

of the depth-first search.

The Dyck paths of length 2k are bijective to rooted planar trees of k+1 vertices by the

depth-first search (see Lemma 2.1.6 in [18]). Hence the number of rooted planar trees with k+1

vertices is the k-th Catalan number Ck := 1
k+1

(2k
k

)
.

We introduce definitions from graphon theory. For more details, see [135].

Definition 2.2.2. A graphon is a symmetric, integrable function W : [0,1]2→ R.

Here symmetric means W (x,y) =W (y,x) for all x,y ∈ [0,1]. Every weighted graph G has

an associated graphon W G constructed as follows. First divide the interval [0,1] into intervals
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0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

Figure 2.1: A graphon representation of a cycle of length 4

I1, . . . , I|V (G)| of length 1
|V (G)| , then give the edge weight βi j on Ii× I j, for all i, j ∈V (G). In this

way, every finite weighted graph gives rise to a graphon (see Figure 2.1).

The most important metric on the space of graphons is the cut metric. The space that

contains all graphons taking values in [0,1] endowed with the cut metric is a compact metric

space.

Definition 2.2.3. For a graphon W : [0,1]2→ R, the cut norm is defined by

‖W‖� := sup
S,T⊆[0,1]

∣∣∣∣∫S×T
W (x,y)dxdy

∣∣∣∣ ,
where S, T range over all measurable subsets of [0,1]. Given two graphons W,W ′ : [0,1]2→ R,

define d�(W,W ′) := ‖W −W ′‖� and the cut metric δ� is defined by

δ�(W,W ′) := inf
σ

d�(W σ,W ′),

where σ ranges over all measure-preserving bijections [0,1]→ [0,1] and

W σ(x,y) :=W (σ(x),σ(y)).

Using the cut metric, we can compare two graphs with different sizes and measure their

similarity, which defines a type of convergence of graph sequences whose limiting object is the

graphon we introduced. Another way of defining the convergence of graphs is to consider graph

17



homomorphisms.

Definition 2.2.4. For any graphon W and multigraph F = (V,E) (without loops), define the

homomorphism density from F to W as

t(F,W ) :=
∫
[0,1]|V |

∏
i j∈E

W (xi,x j)∏
i∈V

dxi.

One may define homomorphism density from partially labeled graphs to graphons, as

follows.

Definition 2.2.5. Let F = (V,E) be a k-labeled multigraph. Let V0 =V \ [k] be the set of unlabeled

vertices. For any graphon W , and x1, . . . ,xk ∈ [0,1], define

tx1,...,xk(F,W ) :=
∫

x∈[0,1]|V0|
∏

i j∈E
W (xi,x j) ∏

i∈V0

dxi. (2.2.2)

This is a function of x1, . . . ,xk.

It is natural to think two graphons W and W ′ are similar if they have similar homomor-

phism densities from any finite graph G. This leads to the following definition of left convergence.

Definition 2.2.6. Let Wn be a sequence of graphons. We say Wn is convergent from the left if

t(F,Wn) converges for any finite simple (no loops, no multi-edges, no directions) graph F .

The importance of homomorphism densities is that they characterize convergence under

the cut metric. Let W0 be the set of all graphons such that 0 ≤W ≤ 1. The following is a

characterization of convergence in the space W0, known as Theorem 11.5 in [135].

Theorem 2.2.7. Let {Wn} be a sequence of graphons in W0 and let W ∈W0. Then t(F,Wn)→

t(F,W ) for all finite simple graphs if and only if δ�(Wn,W )→ 0.
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2.3 Main results for general Wigner-type matrices

2.3.1 Set-up and main results

Let An be a Hermitian random matrix whose entries above and on the diagonal of An are

independent. Assume a general Wigner-type matrix An with a variance profile matrix Sn satisfies

the following conditions:

1. Eai j = 0,E|ai j|2 = si j.

2. (Lindeberg’s condition) for any constant η > 0,

lim
n→∞

1
n2 ∑

1≤,i, j≤n
E[|ai j|21(|ai j| ≥ η

√
n)] = 0. (2.3.1)

3. supi j si j ≤C for some constant C ≥ 0.

Remark 2.3.1. If we assume entries of An are of the form ai j = si jξi j where the ξi j’s have mean

0, variance 1 and are i.i.d. up to symmetry, then the Lindeberg’s condition (2.3.1) holds by the

Dominated Convergence Theorem.

To begin with, we associate a graphon Wn to the matrix Sn in the following way. Consider

Sn as the adjacency matrix of a weighted graph Gn on [n] such that the weight of the edge

(i, j) is si j, then Wn is defined as the corresponding graphon to Gn. We say Wn is a graphon

representation of Sn. We define Mn := 1√
nAn and denote all rooted planar tree with k+1 vertices as

T k+1
j ,1≤ j≤Ck. Now we are ready to state our main results for the limiting spectral distributions

of general Wigner-type matrices.

Theorem 2.3.2. Let An be a general Wigner-type matrix and Wn be the corresponding graphon

of Sn. The following holds:
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1. If for any finite tree T , t(T,Wn) converges as n→ ∞, the empirical spectral distribution of

Mn converges almost surely to a probability measure µ such that for k ≥ 0,

∫
x2kdµ =

Ck

∑
j=1

lim
n→∞

t(T k+1
j ,Wn),

∫
x2k+1dµ = 0.

2. If δ�(Wn,W )→ 0 for some graphon W as n→ ∞, then for all k ≥ 0,

∫
x2kdµ =

Ck

∑
j=1

t(T k+1
j ,W ),

∫
x2k+1dµ = 0.

Remark 2.3.3. Similar moment formulas appear in the study of traffic distributions in free

probability theory [138, 139].

Using the connection between the moments of the limiting spectral distribution and its

Stieltjes transform described in (2.2.1), we can derive the equations for the Stieltjes transform of

the limiting measure by the following theorem.

Theorem 2.3.4. Let An be a general Wigner-type matrix and Wn be the corresponding graphon of

Sn. If δ�(Wn,W )→ 0 for some graphon W, then the empirical spectral distribution of Mn := An√
n

converges almost surely to a probability measure µ whose Stieltjes transform s(z) is an analytic

solution defined on C+ by the following equations:

s(z) =
∫ 1

0
a(z,x)dx, (2.3.2)

a(z,x)−1 = z−
∫ 1

0
W (x,y)a(z,y)dy, x ∈ [0,1], (2.3.3)

where a(z,x) is the unique analytic solution of (2.3.3) defined on C+× [0,1].
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Moreover, for |z|> 2‖W‖1/2
∞ ,

a(z,x) =
∞

∑
k=0

β2k(x)
z2k+1 , β2k(x) :=

Ck

∑
j=1

tx(T k+1
j ,W ), (2.3.4)

where tx1(T
k+1
j ,W ) : =

∫
[0,1]k

∏
uv∈E(T k+1

j )

W (xu,xv)
k+1

∏
i=2

dxi. (2.3.5)

Remark 2.3.5. In (2.3.5), tx1(T
k+1
j ,W ) is a function of x1, and in (2.3.4) tx(T k+1

j ,W ) is the

function evaluated at x1 = x.

Theorem 2.3.4 holds under a stronger condition compared to Theorem 2.3.2. We provide

two examples in Section 2.4 to show that it’s possible to have tree densities converge but the

empirical graphon does not converge under the cut metric. We show that the limiting spectral

distribution can still exist. However, to have the equations (2.3.2) and (2.3.3), we need a well-

defined measurable function W that Wn converges to, therefore we need the condition of graphon

convergence under the cut metric.

(2.3.2) and (2.3.3) have been known as quadratic vector equations in [7, 9], where the

properties of the solution are discussed under more assumptions on variance profiles to prove

local law and universality. A similar expansion as (2.3.4) and (2.3.5) has been derived in [84].

The central role of (2.3.3) in the context of random matrices has been recognized by many authors,

see [103, 157, 110].

Wigner-type matrices is a special case for the Kronecker random matrices introduced in

[17], and the global law has been proved in Theorem 2.7 of [17], which states the following:

let Hn be a Kronecker random matrix and µH
n be its empirical spectral distribution, then there

exists a deterministic sequence of probability measure µn such that µH
n −µn converges weakly

in probability to the zero measure as n→ ∞. In particular, for Wigner-type matrices, the global

law holds under the assumptions of bounded variances and bounded moments. Our Theorem

2.3.2 and Theorem 2.3.4 give a moment method proof of the global law in [17] for Wigner-type
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matrices under bounded variances and Lindeberg’s condition. Our new contribution is a weaker

condition for the convergence of the empirical spectral distribution µM
n of Mn.

In Section 2.3.2 and Section 2.3.3 we provide the proofs for Theorem 2.3.2 and Theorem

2.3.4 respectively. We briefly summarize the proof ideas here. In the proof of Theorem 2.3.2, we

revisit the standard path-counting moment method proof for the semicircle law (see for example

[23]). Since our matrix model has a variance profile, we encode different variances as weights

on the paths and represent the moments of the empirical measure as a sum of homomorphism

densities. Then if the tree homomorphism densities converge, the limiting spectral distribution

exists.

For the proof of Theorem 2.3.4, since we assume that the variance profile convergences

under the cut norm, we can obtain a limiting graphon W . To obtain (2.3.3) We expand a(z,x) in

(2.3.3) as a power series of homomorphism density from partially labeled trees to graphon W

denoted by β2k(x) in (2.3.4). Then we prove a graphon version of the Catalan number recursion

formula for β2k(x) in (2.3.11) and show that this essentially implies the quadratic vector equations

(2.3.2) and (2.3.3). This recursion formula (2.3.11) for tree homomorphism densities to a graphon

could be of independent interest.

2.3.2 Proof of Theorem 2.3.2

Using the truncation argument as in [23, 73], we can first apply moment methods to a

general Wigner-type matrix with bounded entries in the following lemma.

Lemma 2.3.6. Assume a Hermitian random matrix An with a variance profile Sn satisfies

1. Eai j = 0,E|ai j|2 = si j. {ai j}1≤i, j≤n are independent up to symmetry.

2. |ai j| ≤ ηn
√

n for some positive decreasing sequence ηn such that ηn→ 0.

3. supi j si j ≤C for a constant C ≥ 0.
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Let Wn be the graphon representation of Sn. Then for every fixed integer k ≥ 0, we have the

following asymptotic formulas:

1
n
E[trM2k

n ] =
Ck

∑
j=1

t(T k+1
j ,Wn)+o(1), (2.3.6)

1
n
E[trM2k+1

n ] = o(1), (2.3.7)

where {T k+1
j ,1≤ j ≤Ck} are all rooted planar trees of k+1 vertices.

Proof. We start with expanding the expected normalized trace. For any integer h≥ 0,

1
n
E[trMh

n] =
1

nh/2+1Etr(Ah
n) =

1
nh/2+1 ∑

1≤i1,...,ih≤n
E[ai1i2ai2i3 · · ·aihi1].

Each term in the above sum corresponds to a closed walk (with possible self-loops) (i1, i2, . . . , ih)

of length h in the complete graph Kn on vertices {1, . . . ,n}. Any closed walk can be classified

into one of the following three categories.

• C1: All closed walks such that each edge appears exactly twice.

• C2: All closed walks that have at least one edge which appears only once.

• C3: All other closed walks.

By independence, it’s easy to see that every term corresponding to a walk in C2 is zero. We call a

walk that is not in C2 a good walk. Consider a good walk that uses p different edges e1, . . . ,ep

with corresponding multiplicity t1, . . . , tp and each ti ≥ 2, such that t1+ · · ·+ tp = h. Now the term

corresponding to a good walk has the form E[at1
e1 · · ·a

tp
ep]. Such a walk uses at most p+1 vertices

and an upper bound for the number of good walks of this type is np+1 ph. Since |ai j| ≤ ηn
√

n,

and supi j Var(ai j) = supi j si j ≤C, we have

Eat1
e1
· · ·atp

ep ≤ E[a2
e1
] · · ·E[a2

ep
](ηn
√

n)t1+···+tp−2p ≤ η
h−2p
n nh/2−pCp.
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When h = 2k+1, we have

1
n
E[trM2k+1

n ] =
1

nh/2+1

k

∑
p=1

∑
good walks of p edges

E[at1
e1
· · ·atp

ep]

≤ 1
nk+3/2

k

∑
p=1

np+1 ph(ηh−2p
n nh/2−p)Cp

=
k

∑
p=1

ph
η

h−2p
n Cp = O(ηn) = o(1).

When h = 2k, let Si denote the sum of all terms in Ci,1≤ i≤ 3. By independence, we have S2 = 0.

Each walk in C3 uses p different edges with p≤ k−1. We then have

S3 =
1

nh/2+1

k−1

∑
p=1

∑
good walk of p edges

Eat1
e1
· · ·atp

ep

≤ 1
nk+1

k−1

∑
p=1

np+1 ph
(

η
h−2p
n nh/2−p

)(
sup

i j
si j

)p

=
k−1

∑
p=1

ph
η

h−2p
n Cp = o(1).

Now it remains to compute S1. For the closed walk that contains a self-loop, the number

of distinct vertices is at most k, which implies the total contribution of such closed walks is O(nk),

hence such terms are negligible in the limit of S1. We only need to consider closed walks that use

k+1 distinct vertices. Each closed walk in C1 with k+1 distinct vertices in {1, . . .n} is a closed

walk on a tree of k+ 1 vertices that visits each edge twice. Given an unlabeled rooted planar

tree T and a depth-first search closed walk with vertices chosen from [n], there is a one-to-one

correspondence between such walk and a labeling of T (See Figure 2.2). There are Ck many

rooted planar trees with k+1 vertices and for each rooted planar tree T k+1
j , the ordering of the

vertices from 1 to k+ 1 is fixed by its depth-first search. Let T k+1
l, j be any labeled tree with

the unlabeled rooted tree T k+1
j and a labeling l = (l1, . . . , lk+1),1 ≤ li ≤ n,1 ≤ i ≤ k+1 for its

vertices from 1 to k+1. For terms in C1, any possible labeling l must satisfy that l1, . . . , lk+1 are
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a

b

c d e

Figure 2.2: A closed walk abcbdbeba corresponds to a labeling of the rooted planar tree.

distinct. Let E(T k+1
l, j ) be the edge set of T k+1

l, j . Then S1 can be written as

S1 =
1

nk+1

Ck

∑
j=1

∑
l=(l1,...,lk+1)

E ∏
e∈E(T k+1

l, j )

a2
e =

Ck

∑
j=1

1
nk+1 ∑

l=(l1,...,lk+1)
∏

e∈E(T k+1
l, j )

se. (2.3.8)

Consider

S′1 :=
Ck

∑
j=1

1
nk+1 ∑

1≤l1,...,lk+1≤n
∏

e∈E(T k+1
l, j )

se,

where l now stands for every possible labelling which allows some of l1, . . . lk+1 to coincide, then

we have

|S1−S′1| ≤
1

nk+1Ck(k+1)nk(sup
i j

si j)
k = O

(
1
n

)
.

On the other hand,

t(T k+1
j ,Wn) =

∫
[0,1]k+1

∏
uv∈E(T k+1

j )

Wn(xu,xv)dx1 . . .dxk+1

=
1

nk+1 ∑
1≤l1,...,lk+1≤n

∏
uv∈E(T k+1

l, j )

slulv =
1

nk+1 ∑
1≤l1,...,lk+1≤n

∏
e∈E(T k+1

l, j )

se. (2.3.9)

Note that S′1 =
Ck

∑
j=1

t(T k+1
j ,Wn). From (2.3.8) and (2.3.9), we get S1 =

Ck

∑
j=1

t(T k+1
j ,Wn)+ o(1).
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Combining the estimates of S1,S2 and S3, the conclusion of Lemma 2.3.6 follows.

Lemma 2.3.6 connects the moments of the trace of Mn to homomorphism densities from

trees to the graphon Wn. To proceed with the proof of Theorem 2.3.2, we need the following

lemma.

Lemma 2.3.7. In order to prove the conclusion of Theorem 2.3.2, it suffices to prove it under the

following conditions:

1. Eai j = 0, E|ai j|2 = si j and {ai j}1≤i, j≤n are independent up to symmetry.

2. |ai j| ≤ ηn
√

n for some positive decreasing sequence ηn such that ηn→ 0.

3. supi j si j ≤C. for some constant C ≥ 0.

The proof of Lemma 2.3.7 follows verbatim as the proof of Theorem 2.9 in [23], so we

do not give it here. The followings are two results that are used in the proof and will be used

elsewhere in the paper, so we give them here. See Section A in [23] for further details.

Lemma 2.3.8 (Rank Inequality). Let An,Bn be two n×n Hermitian matrices. Let FAn,FBn be

the empirical spectral distributions of An and Bn, then

‖FAn−FBn‖ ≤ rank(An−Bn)

n
,

where ‖ · ‖ is the L∞-norm.

Lemma 2.3.9 (Lévy Distance Bound). Let L be the Lévy distance between two distribution

functions, we have for any n×n Hermitian matrices An and Bn,

L3(FAn,FBn)≤ 1
n

tr[(An−Bn)(An−Bn)
∗].

With Lemma 2.3.7, we will prove Theorem 2.3.2 under assumptions in Lemma 2.3.7.
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Proof of Theorem 2.3.2. By Lemma 2.3.7, it suffices to prove Theorem 2.3.2 under the conditions

(1)-(3) in Lemma 2.3.7. We now assume these conditions hold. Then (2.3.6) and (2.3.7) in Lemma

2.3.6 can be applied here.

(1) Since for any finite tree T , t(T,Wn) converges as n→ ∞, we can define

β2k := lim
n→∞

1
n
E[trM2k

n ] = lim
n→∞

Ck

∑
j=1

t(T k+1
j ,Wn), β2k+1 := lim

n→∞

1
n
E[trM2k+1

n ] = 0.

With Carleman’s Lemma (Lemma B.1 and Lemma B.3 in [23]), in order to to show the limiting

spectral distribution of Mn is uniquely determined by the moments, it suffices to show that for

each integer k ≥ 0, almost surely we have

lim
n→∞

1
n

trMk
n = βk, and liminf

k→∞

1
k

β
1/2k
2k < ∞.

The remaining of the proof is similar to proof of Theorem 2.9 in [23], and we include it here

for completeness. Let G(i) be the graph induced by the closed walk i = (i1, . . . ik). Define

A(G(i)) := ai1i2ai2i3 · · ·aiki1 . Then

E
∣∣∣∣1n trMk

n−
1
n
E[trMk

n]

∣∣∣∣4 = 1
n4+2k ∑

i j,1≤ j≤4
E

4

∏
j=1

[A(G(i j))−EA(G(i j))]

Consider a quadruple closed walk i j,1 ≤ j ≤ 4. By independence, for the nonzero

term, the graph ∪4
j=1G(i j) has at most two connected components. Assume there are q edges

in ∪4
j=1G(i j) with multiplicity v1, . . . ,vq, then v1 + · · ·+ vq = 4k. The number of vertices in

∪4
j=1G(i j) is at most q+2.

To make every term in the expansion of E∏
4
j=1
(
A(G(i j))−EA(G(i j))

)
nonzero, the
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multiplicity of each edge is at least 2, so q≤ 2k and the corresponding term satisfies

E
4

∏
j=1

[A(G(i j))−EA(G(i j))]≤Cq(ηn
√

n)4k−2q. (2.3.10)

If q= 2k, we have v1 = · · ·= vq = 2. Since the graph ∪4
j=1G(i j) has at most two connected

components with at most 2k+1 vertices, there must be a cycle in ∪4
j=1G(i j). So the number of

such graphs is at most n2k+1. Therefore from (2.3.10),

E
∣∣∣∣1n trMk

n−
1
n
E[trMk

n]

∣∣∣∣4 = 1
n4+2k ∑

i j,1≤ j≤4
E

4

∏
j=1

[A(G(i j))−EA(G(i j))]

≤ 1
n4+2k

(
C2kn2k+1 + ∑

q<2k
Cqnq+2(ηn

√
n)4k−2q

)
= o

(
1
n2

)
.

Then by Borel-Cantelli Lemma,

lim
n→∞

1
n

trMk
n = βk a.s.

Moreover, since we have

β2k = lim
n→∞

Ck

∑
j=1

t(T k+1
j ,Wn)≤CkCk,

which implies liminf
k→∞

1
k

β
1/2k
2k = 0.

(2) Since δ�(Wn,W )→ 0, by Theorem 2.2.7, we have

lim
n→∞

t(T k+1
j ,Wn) = t(T k+1

j ,W )

for any rooted planar tree T k+1
j with k ≥ 1,1≤ j ≤Ck. Therefore for all k ≥ 0,

lim
n→∞

1
n

trM2k
n =

Ck

∑
j=1

t(T k+1
j ,W ), lim

n→∞

1
n

trM2k+1
n = 0 a.s.
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This completes the proof.

2.3.3 Proof of Theorem 2.3.4

Proof. Since

limsup
k→∞

(β2k(x))1/(2k+1) ≤ 2‖W‖1/2
∞

for all x ∈ [0,1], we have for |z|> 2‖W‖1/2
∞ , a(z,x) =

∞

∑
k=0

β2k(x)
z2k+1 converges. Note that

∫ 1

0
β2k(x)dx =

Ck

∑
j=1

∫ 1

0
tx(T k+1

j ,W )dx =
Ck

∑
j=1

t(T k+1
j ,W ) = β2k,

which implies for |z|> 2‖W‖1/2
∞ , s(z) =

∞

∑
k=0

β2k

z2k+1 =
∫ 1

0
a(z,x)dx.

Next we show (2.3.3) holds for |z|> 2‖W‖1/2
∞ , which is equivalent to show

a(z,x)
∫ 1

0
W (x,y)a(z,y)dy = za(z,x)−1, ∀x ∈ [0,1]. (2.3.11)

We order the vertices in each rooted planar tree T k+1
j from 1 to k+1 by depth-first search

order (the root for each T k+1
j is always denoted by 1). Define a function

f j,k(x1,x2, . . . ,xk+1) =: ∏
uv∈E(T k+1

j )

W (xu,xv).

Now we expand a(z,x) as follows

a(z,x) =
∞

∑
k=0

1
z2k+1

Ck

∑
j=1

tx(T k+1
j ,W ) =

∞

∑
k=0

1
z2k+1

Ck

∑
j=1

∫
[0,1]k

f j,k(x,x2, . . . ,xk+1)
k+1

∏
i=2

dxi.
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1

2

3 4 5

6

Figure 2.3: A rooted planar tree with a new edge attached with a new vertex labeled 6

Then we can write
∫ 1

0
W (x,y)a(z,y)dy as

∞

∑
k=0

1
z2k+1

Ck

∑
j=1

∫
[0,1]k+1

W (x,y) f j,k(y,x2, . . . ,xk+1)dy
k+1

∏
i=2

dxi. (2.3.12)

Denote

B j,k(x) :=
∫
[0,1]k+1

W (x,y) f j,k(y,x2, . . . ,xk+1)dy
k+1

∏
i=2

dxi.

Let T k+1∗
j be the rooted planar tree T k+1

j with a new edge attached to the root and the new vertex

ordered k+2 (See Figure 2.3). Let tx(T k+1∗
j ,W ) be the homomorphism density from partially

labeled graph T k+1∗
j to W with the new vertex labeled x. With this notation, B j,k(xk+2) can be

written as

∫
[0,1]k+1

W (xk+2,x1) f j,k(x1,x2 . . . ,xk+1)
k+1

∏
i=1

dxi

=
∫
[0,1]k+1

∏
uv∈E(T k+1∗

j )

W (xu,xv)
k+1

∏
i=1

dxi = txk+2(T
k+1∗
j ,W ). (2.3.13)

So (2.3.12) and (2.3.13) implies
∫ 1

0
W (x,y)a(z,y)dy =

∞

∑
k=0

1
z2k+1

Ck

∑
j=1

tx(T k+1∗
j ,W ).
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Figure 2.4: Combining T k+1
i with T l+1∗

j yields a new rooted planar tree of k+ l +2 vertices.

Therefore

a(z,x)
∫ 1

0
W (x,y)a(z,y)dy =

(
∞

∑
k=0

1
z2k+1

Ck

∑
i=1

tx(T k+1
i ,W )

)(
∞

∑
l=0

1
z2l+1

Cl

∑
j=1

tx(T l+1∗
j ,W )

)

=
∞

∑
k=0

∞

∑
l=0

1
z2(k+l)+2

Ck

∑
i=1

Cl

∑
j=1

tx(T k+1
i ,W )tx(T l+1∗

j ,W ). (2.3.14)

Let {T k+l+2
i, j ,1 ≤ i ≤ Ck,1 ≤ j ≤ Cl} be all rooted planar trees with k+ l + 2 vertices

generated by combining T k+1
i and T l+1∗

j in the following way.

1. First of all, by attaching the new labeled vertex of T l+1∗
j to the root of T k+1

i , we get a new

tree T of k+ l +2 vertices.

2. Choose the root of T to be the root of T k+1
i . Order all vertices coming from T k+1

i with

1,2, . . . ,k+1 and order vertices coming from T l+1
j with k+2,k+3, . . . ,k+ l +2 both in

depth-first search order. Then T becomes a rooted planar tree T k+l+2
i, j of k+ l +2 vertices

(See Figure 2.4).

Let tx(T k+l+2
i, j ,W ) be the homomorphism density from partially labeled tree T k+l+2

i, j to W

with the root labeled x. Using our notation, we have

tx(T k+1
i ,W )tx(T l+1∗

j ,W ) = tx(T k+l+2
i, j ,W ).

31



Now let s = k+ l +1, then (2.3.14) can be written as

∞

∑
s=1

1
z2s ∑

k+l+1=s
k,l≥0

Ck

∑
i=1

Cl

∑
j=1

tx(T s+1
i, j ,W ). (2.3.15)

Since all rooted planar trees in the set {T s+1
i, j 1 ≤ i ≤ Cl,1 ≤ j ≤ Ck} are different, from the

Catalan number recurrence, there are

∑
k+l=s−1

k,l≥0

CkCl =
s−1

∑
k=0

CkCs−1−k =Cs

many, which implies {T s+1
i, j 1≤ i≤Cl,1≤ j ≤Ck} are all rooted planar trees of s+1 vertices.

Now (2.3.15) can be written as

∞

∑
s=1

1
z2s

Cs

∑
i=1

tx(T s+1
i ,W ) = za(z,x)−1.

Therefore (2.3.11) holds for |z|> 2‖W‖1/2
∞ . Since (2.3.11) has a unique analytic solution on C+

(see Theorem 2.1 in [7]), by analytic continuation, a(z,x) has a unique extension on C+× [0,1]

such that (2.3.11) holds for all z ∈ C+. This completes the proof.

2.4 Generalized Wigner matrices

The semicircle law for generalized Wigner matrices whose variance profile is doubly

stochastic and comes from discretizing a function with zero-measure discontinuities was proved

in [149, 19]. The local semicircle law and universality of generalized Wigner matrices have been

studied in [86, 87] with a lower bound on the variance profile and conditions on the distributions

of entries. With Theorem 2.3.2, we can have a quick proof of the semicircle law for generalized

Wigner matrices under Lindeberg’s condition. Compared to [149, 19], where the L∞-convergence
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of the variance profile is assumed, we don’t even need to assume the variance profile converges

under the cut metric. We will only need the weaker condition: the convergence of t(T,Wn) for any

finite tree T . In this section, we will show that the condition in Theorem 2.3.2, the convergence

of tree integrals, is indeed a weaker condition than the convergence of the variance profile under

the cut metric. Below we provide two examples where assumptions in [19, 157] fail, but our

Theorem 2.3.2 holds.

We make the following assumptions for our generalized Wigner matrices. Let An be a

random Hermitian matrix such that entries are independent up to symmetry, and satisfies the

following conditions:

1. E[ai j] = 0,E
[
|ai j|2

]
= si j,

2.
1
n

n

∑
j=1

si j = 1+o(1) for all 1≤ i≤ n.

3. for any constant η > 0, lim
n→∞

1
n2 ∑

1≤,i, j≤n
E
[
|ai j|21(|ai j| ≥ η

√
n)
]
= 0.

4. supi j si j ≤C for a constant C > 0.

We use our general formula in Theorem 2.3.2 to get the semicircle law. An important

observation is, when the variance profile is almost stochastic, the homomorphism densities in

Theorem 2.3.2 are easy to compute, as shown in the following lemma. The main idea is that we

can start computing the homomorphism density integral from leaves on the tree.

Lemma 2.4.1. Let {Wn}n≥1 be any sequence of graphons such that 0 ≤Wn(x,y) ≤ C almost

everywhere for some constant C > 0. If for x ∈ [0,1] almost everywhere,

lim
n→∞

∫ 1

0
Wn(x,y)dy = 1,

then lim
n→∞

t(T,Wn) = 1 for any finite tree T .
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Proof. We induct on the number of vertices of a tree. Let k = |V |. For k = 2, by Dominated

Convergence Theorem,

lim
n→∞

t(T,Wn) =
∫ 1

0
Wn(x,y)dxdy = 1. (2.4.1)

Assume for any trees with k− 1 vertices the statement holds. For any tree T with k

vertices, we order the vertices in T by depth-first search. Then the vertex with label k is a leaf.

Note that

t(T,Wn) =
∫
[0,1]k

∏
i j∈E

Wn(xi,x j)dx1 . . .dxk

=
∫
[0,1]k

Wn(xk−1,xk) ∏
i j∈E\{k−1,k}

Wn(xi,x j)dx1 . . .dxk

=
∫
[0,1]k−1

(∫
[0,1]

Wn(xk−1,xk)dxk

)
∏

i j∈E\{k−1,k}
Wn(xi,x j)dx1 . . .dxk−1

Let T ′ be the tree T with the edge {k−1,k} removed, then we have

t(T ′,Wn) =
∫
[0,1]k−1

∏
i j∈E\{k−1,k}

Wn(xi,x j)dx1 . . .dxk−1,

t(T,Wn)− t(T ′,Wn) =
∫
[0,1]k−1

(∫
[0,1]

Wn(xk−1,xk)dxk−1
)

∏
i j∈E\{k−1,k}

Wn(xi,x j)dx1 . . .dxk−1.

By Dominated Convergence Theorem and (2.4.1) we obtain

lim
n→∞
|t(T,Wn)− t(T ′,Wn)|= 0.

Moreover, by our assumption of the induction, lim
n→∞

t(T ′,Wn) = 1, therefore lim
n→∞

t(T,Wn) = 1.

This completes the proof.

Now we can give a quick proof of the semicircle law for generalized Wigner matrices in
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the following theorem, which is a quick consequence of Lemma 2.4.1 and Theorem 2.3.2.

Theorem 2.4.2. Let An be a generalized Wigner matrix with assumptions above. The limiting

spectral distribution of Mn := An√
n converges weakly almost surely to the semicircle law.

Proof. Let Wn be the graphon representation of the variance profile for An. From Condition (2),

we have

lim
n→∞

∫
[0,1]

Wn(x,y)dy = 1

for x ∈ [0,1] almost everywhere. Then by Lemma 2.4.1, lim
n→∞

t(T,Wn) = 1 for any finite tree T .

By part (1) in Theorem 2.3.2, the empirical spectral distribution of Mn converges almost

surely to a probability measure µ such that for all k ≥ 0.

∫
x2kdµ =Ck,

∫
x2k+1dµ = 0. (2.4.2)

It’s known that the semicircle law is uniquely determined by its moments, therefore the limiting

spectral distribution for Mn is the semicircle law.

Theorem 2.4.2 can be applied to study the spectrum of inhomogeneous random graphs

with roughly equal expected degrees. This is a sparse random graph model where no limiting

variance profile is assumed, so the theorems in [157, 19] do not apply here. Consider the

inhomogeneous Erdős-Rényi model G(n,(pi j)) with adjacency matrix An, where edges exist

independently with given probabilities pi j such that pi j = p ji. Assume

n

∑
i=1

pi j = (1+o(1))nα for all j ∈ [n] (2.4.3)

with some α→ 0,α = ω
(1

n

)
, and

max
i j

pi j ≤Cα for some constant C ≥ 1. (2.4.4)
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Corollary 2.4.3. Under the assumptions (2.4.3) and (2.4.4), the empirical spectral distribution of

the scaled adjacency matrix An√
nα

converges almost surely to the semicircle law.

Proof. Consider the matrix Mn =
An−EAn√

α
. Then by (2.4.3) and (2.4.4), one can check that Mn

satisfies the assumptions (1)-(4) above for the generalized Wigner matrices. By Theorem 2.4.2,

the empirical spectral distribution of An−EAn√
nα

converges to the semicircle law almost surely. By

Lemma 2.3.9, we have almost surely

L3
(

F
An√
nα ,F

An−EAn√
nα

)
≤ 1

n
tr

[(
EAn√

nα

)2
]
=

1
n2α

n

∑
i, j=1

(Eai j)
2

=
∑

n
i, j=1 p2

i j

n2α
≤ n2C2α2

n2α
=C2

α = o(1), (2.4.5)

where the last line of inequalities are from (2.4.4). Then An√
nα

and An−EAn√
nα

have the same limiting

spectral distribution almost surely. This completes the proof.

2.5 Sparse W–random graphs

Given a graphon W : [0,1]2→ [0,1], following the definitions in [42], one can generate a

sequence of sparse random graphs Gn in the following way. We choose a sparsity parameter ρn

such that

sup
n

ρn < 1 with ρn→ 0 and nρn→ ∞.

Let x1, . . . ,xn be i.i.d. chosen uniformly from [0,1]. For a graph Gn, i and j are connected with

probability ρnW (xi,x j) independently for all i 6= j. We define Gn to be a sparse W-random graph,

and the sequence {Gn} is denoted by G(n,W,ρn). Note that we use the same i.i.d. sequence

x1, . . . ,xn when constructing Gn for different values of n without resampling the xi’s. We determine

the limiting spectral distributions for the adjacency matrices of sparse W -random graphs in the

following theorem. This is a novel application of our theorem that cannot be covered by any
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previous results, since W can be any bounded measurable function.

Theorem 2.5.1. Let G(n,W,ρn) be a sequence of sparse W-random graphs with adjacency

matrices {An}n≥1. The limiting spectral distribution of An√
nρn

converges almost surely to a

probability measure µ such that

∫
R

x2kdµ =
Ck

∑
j=1

t(T k+1
j ,W ),

∫
R

x2k+1dµ = 0.

Moreover, its Stieltjes transform s(z) satisfies the following equation:

s(z) =
∫ 1

0
a(z,x)dx, a(z,x)−1 = z−

∫ 1

0
W (x,y)a(z,y)dy, ∀x ∈ [0,1].

Proof. Let

Bn :=
An−E[An|x1, . . . ,xn]√

ρn
= (bi j)1≤i, j≤n.

Note that Bn is now a function of x1, . . . ,xn. Since nρn→ ∞ and |bi j| ≤ 2√
ρn

, , we have that for

any constant η > 0.

lim
n→∞

1
n2 ∑

1≤,i, j≤n
E
[
|bi j|21(|bi j| ≥ η

√
n) | x1, . . . ,xn

]
= 0,

then the Lindeberg’s condition (2.3.1) holds for Bn. Let Sn be the variance profile matrix of Bn.

Then we have sii = 0,1≤ i≤ n and for all i 6= j,

si j =
ρnW (xi,x j)(1−ρnW (xi,x j))

ρn
=W (xi,x j)+o(1).

Let Wn be the graphon representation of the matrix Sn and let W̃n be the graphon of a weighted

complete graph on [n] with edge weights W (xi,x j) for each edge i j. It implies that

Wn(x,y) = W̃n(x,y)+o(1), ∀(x,y) ∈ [0,1]2.
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By Dominated Convergence Theorem, we get lim
n→∞

δ�(W̃n,Wn) = 0. From Theorem 4.5 (a) in

[44], we have lim
n→∞

δ�(W̃n,W ) = 0 almost surely, which implies lim
n→∞

δ�(Wn,W ) = 0 almost surely.

Therefore from Theorem 2.3.2 (2), the limiting spectral distribution of Bn√
n exists almost surely

and its moments and Stieltjes transform are given by Theorem 2.3.2 and Theorem 2.3.4. Next we

show Bn√
n and An√

nρn
have the same limiting spectral distribution.

By Lemma 2.3.9, we have almost surely

L3(F
An√
nρn ,F

Bn√
n )≤ 1

n
tr

[(
An√
nρn
− Bn√

n

)2
]
=

1
n2ρn

tr(E[An|x1, . . . ,xn])
2 . (2.5.1)

By the way we generate our W -random graphs, we have for all i 6= j,

E[(An)i j | x1, . . . ,xn] = ρnW (xi,x j).

Therefore the right hand side in (2.5.1) is almost surely bounded by

ρn

n2 ∑
i 6= j

W 2(xi,x j)≤ ρn = o(1),

which implies lim
n→∞

L3(F
An√
nρn ,F

Bn√
n ) = 0 almost surely. This completes the proof.

2.6 Random block matrices

Consider an n×n random Hermitian matrix An composed of d2 many rectangular blocks

as follows. We can write An as An := ∑
d
k,l=1 Ekl⊗A(k,l)

n , where ⊗ denotes the Kronecker product

of matrices, Ekl are the elementary d×d matrices having 1 at entry (k, l) and 0 otherwise. The

blocks A(k,l)
n ,1 ≤ k ≤ l ≤ d are of size nk× nl and consist of independent entries subject to

symmetry. To summarize, we consider a random block matrix An with the following assumptions:

1. lim
n→∞

nk

n
= αk ∈ [0,1],1≤ k ≤ d.
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2. Eai j = 0,1≤ i, j≤ n, E|ai j|2 = skl if ai j is in the (k, l)-th block. All entries are independent

subject to symmetry.

3. supkl skl <C for some constant C > 0.

4. lim
n→∞

1
n2 ∑

i j
E
[
(|ai j|21(|ai j| ≥ η

√
n)
]
= 0, for any positive constant η.

For random block matrices with fixed d, the limiting spectral distributions are determined in

[89, 73, 21] under various assumptions. However, explicit moment formulas were not known.

With Theorem 2.3.2, we can compute the moments of the limiting spectral distribution. Let Wn be

the graphon of the variance profile for An. Let β0 = 0,βi = ∑
i
j=1 α j, i≥ 1. Then we can define

the graphon W such that

W (x,y) = skl, if (x,y) ∈ [βk−1,βk)× [βl−1,βl). (2.6.1)

Note that W is a step function defined on [0,1]2. Below is a version of Theorem 2.3.2, written

specifically to address this model.

Theorem 2.6.1. Let An be a random block matrix satisfying the assumptions above. Let Mn =
An√

n

and W be the graphon defined in (2.6.1). Then the limiting spectral distribution of Mn converges

almost surely to a probability measure µ such that

∫
R

x2kdµ(x) =
Ck

∑
j=1

t(T k+1
j ,W ),

∫
R

x2k+1dµ(x) = 0, (2.6.2)

and its Stieltjes transform s(z) satisfies s(z) =
d

∑
k=1

αkak(z), where for all 1≤ k ≤ d,

ak(z)−1 = z−
d

∑
i=1

αisikai(z).

Proof. From the definition, we have Wn(x,y)→W (x,y) as n→ ∞ for (x,y) ∈ [0,1]2 almost
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everywhere. Hence

‖Wn−W‖� = sup
S,T∈[0,1]

∣∣∣∣∫S×T
Wn(x,y)−W (x,y)dxdy

∣∣∣∣
≤

∫
[0,1]2
|Wn(x,y)−W (x,y)|dxdy.

Since |Wn(x,y)| ≤ C, by the Dominated Convergence Theorem, we have ‖Wn−W‖� → 0 as

n→ ∞. (2.6.2) follow from Theorem 2.3.2. The existence and uniqueness of ak(z),1 ≤ k ≤ d

follows from Theorem 2.1 in [7].

Now we consider the case where the number of blocks d depends on n such that d→

∞ as n→ ∞. We partition the n vertices into d classes: [n] =V1∪V2∪·· ·∪Vd. Let m0 = 0,mi =

∑
i
j=1 n j and

Vi = {mi−1 +1,mi−1 +2, . . . ,mi}

for i = 1, . . . ,d. We say the class Vi is small if ni
n → αi = 0, and Vi is big if ni

n → αi > 0.

It’s not necessary that ∑
∞
i=1 αi = 1. For example, if ni ≤ logn for each i, we have ni

n → 0

for all i = 1,2, . . . , then ∑
∞
i=1 αi = 0. In such case, a limiting graphon might not be well defined

for general variance profiles. However, if we make all variances for the off-diagonal blocks to be

s0 for some constant s0, then the limiting graphon will be a constant function s0 on [0,1]2 since

all diagonal blocks will vanish to a zero measure set in the limit. With these observations, we can

extend our result to the case for d→ ∞ and ∑
∞
i=1 αi ≤ 1 under more assumptions on the variance

profile.

Theorem 2.6.2. Let An be a random block matrix with d→ ∞ as n→ ∞ satisfying assumptions

(1)-(4), then the empirical spectral distribution of An√
n converges almost surely to a probability

measure µ if one of the extra conditions below holds.

1. ∑
∞
i=1 αi = 1 and α1 ≥ α2 ≥ ·· · ≥ 0, or
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Figure 2.5: The limiting graphon with infinite many small classes

2. ∑
∞
i=1 αi = α < 1, α1 ≥ α2 ≥ ·· · ≥ 0; also, for any two small classes Vk,Vl,k 6= l, skl = s0

for some constant s0. For any large class Vk and small class Vl , skl = sk0 for some constant

sk0.

We illustrate the limiting graphon for case (2) in Figure 2.5. Different colors represent

different variances, and with our assumptions, all blocks of size |Vk|× |Vl| where Vk,Vl are small

converge to a diagonal line inside the last big block.

Proof of Theorem 2.6.2. For case (1), assume ∑
∞
i=1 αi = 1. Define β0 = 0,βi = ∑

i
j=1 α j, i ≥ 1.

Then we can define a graphon W as

W (x,y) = si j, ∀(x,y) ∈ [βi−1,βi)× [β j−1,β j)

if βi−1 6= βi,β j−1 6= β j. Then W (x,y) is defined on [0,1]2 almost everywhere. From our con-

struction, Wn(x,y)→W (x,y) point-wise almost everywhere. By the Dominated Convergence

Theorem, ‖Wn−W‖�→ 0. For case (2), similarly, we define W in the following way,

W (x,y) =


si j, if (x,y) ∈ [βi−1,βi)× [β j−1,β j),αi,α j 6= 0,

s0, if (x,y) ∈ [α,1]2,

si0, if (x,y) ∈ [βi−1,βi)× [α,1] or [α,1]× [βi−1,βi).

Then W is a graphon defined on [0,1]2. Note that limn→∞Wn(x,y) =W (x,y) for all (x,y) ∈ [0,1]2

outside the subset of the diagonal {(x,y) : x = y,x ∈ [α,1]}, which is a zero measure set on [0,1]2.
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So we have δ�(Wn,W )→ 0. Then the result follows from Theorem 2.3.4.

2.7 Stochastic block models

The adjacency matrix An of a stochastic block model(SBM) with a growing number of

classes is a random block matrix. A new issue here is EAn 6= 0, which does not fit our assumptions

in Section 2.6. However some perturbation analysis of the empirical measures can be applied to

address this issue. In this section, we consider the adjacency matrix An for both sparse and dense

SBMs with the following assumptions:

1. nk
n → αk ∈ [0,∞),1≤ k ≤ d, where d depends on n.

2. Diagonal elements in An are 0. Entries in the block Vi×Vi are independent Bernoulli

random variables with parameter pii depending on n up to symmetry. Entries in the block

Vk×Vl,k 6= l are independent Bernoulli random variables with parameter pkl depending on

n.

3. Let p = supi j pi j. Assume p = ω(1
n) and supn p < 1.

4. Denote σ2 := p(1− p), and assume

lim
n→∞

pi j(1− pi j)

σ2 = si j ∈ [0,1] for some constant si j.

If p→ 0 (the sparse case), by the same argument in (2.4.5), An−EAn
σ
√

n and An
σ
√

n have the same

limiting spectral distribution, we then have the following corollary from Theorem 2.6.2.

Corollary 2.7.1. Let An be the adjacency matrix of a sparse SBM with p→ 0, d→ ∞ as n→ ∞.

The empirical spectral distribution of An√
n converges almost surely to a probability measure µ if

one of the extra conditions below holds.
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1. ∑
∞
i=1 αi = 1 and α1 ≥ α2 ≥ ·· · ≥ 0, or

2. ∑
∞
i=1 αi = α < 1, α1 ≥ α2 ≥ ·· · ≥ 0; also, for any two small classes Vk,Vl,k 6= l, skl = s0

for some constant s0. For any large class Vk and small class Vl , skl = sk0 for some constant

sk0.

If p 6→ 0 (the dense case), to get the limiting spectral distribution of the non-centered

matrix An, we need to consider the effect of EAn. If EAn is of relatively low rank, we can still do

a perturbation analysis from Lemma 2.3.8. The following theorem is a statement for the dense

case.

Corollary 2.7.2. The empirical spectral distribution of the adjacent matrix An√
nσ

for a SBM with

p > c for a constant c > 0 converges almost surely if d = o(n) and one of the following holds:

1. ∑
∞
i=1 αi = 1, α1 ≥ α2 ≥ ·· · ≥ 0, or

2. ∑
∞
i=1 αi = α < 1, α1 ≥ α2 ≥ ·· · ≥ 0. For any two small classes Vk,Vl,k 6= l, skl = s0 for

some constant s0. For any large class Vk and small class Vl , skl = sk0 for some constant sk0.

Proof. Let Ãn be a random block matrix such that ãi j = ai j for i 6= j and {ãii}1≤i≤n be independent

Bernoulli random variables with parameter pkk if i ∈Vk. Then rank(EÃn) = d.

Let L
(

F Ãn/σ
√

n,FAn/σ
√

n
)

be the Lévy distance between the empirical spectral measures

of An
σ
√

n and Ãn
σ
√

n , then by Lemma 2.3.9,

L3
(

F
Ãn

σ
√

n ,F
An

σ
√

n

)
≤ 1

σ2n2 tr
(
Ãn−An

)2
=

1
σ2n2

n

∑
i=1

ã2
ii. (2.7.1)

The right hand side of (2.7.1) is bounded by
1

nσ2 = o(1) almost surely. So we have almost surely

lim
n→∞

L3
(

F
Ãn

σ
√

n ,F
An

σ
√

n

)
= 0. (2.7.2)
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Recall that the limiting distribution of Ãn−EÃn
σ
√

n exists from Theorem 2.6.2 for random block

matrices. By the Rank Inequality (Lemma 2.3.8), we have almost surely

∥∥∥∥F
Ãn−EÃn

σ
√

n −F
Ãn

σ
√

n

∥∥∥∥≤ rank(Ãn−EÃn− Ãn)

n
=

rank(EÃn)

n
=

d
n
= o(1). (2.7.3)

Then combining (2.7.2) and (2.7.3), almost surely An
σ
√

n has the same limiting spectral distribution

as Ãn−EÃn
σ
√

n . The conclusion then follows.

Below, we give an example showing how to construct dense SBMs with a growing number

of blocks which satisfies one of the assumptions in Corollary 2.7.2. Below is a lemma to justify

that our two examples work.

Lemma 2.7.3. Assume ∑
∞
i=1 αi = α≤ 1 and 1≥ α1 ≥ α2 ≥ ·· ·> 0. Let

k(n) := sup
{

k : αk ≥
1
n

}
,

then
k(n)

n
= o(1).

Proof. If not, there exists a subsequence {nl} such that k(nl)
nl
≥ ε > 0 for some ε. Then

1
nl
≤ αk(nl) and

k(nl)− k(nl−1)

nl
≤

k(nl)

∑
i=k(nl−1)+1

αi.

Hence

∞

∑
l=1

k(nl)− k(nl−1)

nl
≤

∞

∑
i=1

αi = α,

∞

∑
l=1

k(nl+1)− k(nl)

k(nl+1)
≤ α

ε
< ∞. (2.7.4)
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This implies k(nl+1)−k(nl)
k(nl+1)

→ 0, so k(nl+1)
k(nl)

→ 1 as n→ ∞, therefore (2.7.4) implies

∞

∑
l=1

k(nl+1)− k(nl)

k(nl)
< ∞. (2.7.5)

However,
∞

∑
l=1

k(nl+1)− k(nl)

k(nl)
≥

∫
∞

k(n1)

1
x

dx = ∞,

which is a contradiction to (2.7.5). Lemma 2.7.3 is then proved.

Example 2.7.4. Let α1 ≥ α2 ≥ ·· · > 0 and ∑
∞
i=1 αi = 1. For each n, we generate the class Vi

with size ni = bnαic for i = 1,2, . . . until ni = 0. Then we generate the last class Vd with size

nd = n−∑
d−1
i=1 ni. Note that for every fixed i, ni

n → αi. From Lemma 2.7.3, the number of blocks

satisfies d ≤ k(n)+1 = o(n). In particular, we have the following examples for the choice of αi’s:

1. αi =
C
γi for some constant C,γ > 0 with ∑

∞
i=1 αi = 1.

2. αi =
C
iβ

for some C > 0,β > 1 with ∑
∞
i=1 αi = 1.

Example 2.7.5. Let α1 ≥ α2 ≥ ·· ·> 0 and ∑
∞
i=1 αi = α < 1. For each n, we can generate a class

Vi with size ni = bnαic for i = 1,2, . . . , until ni = 0. Then generate o(n) many small classes of

size o(n). By Lemma 2.7.3, d = o(n).

2.8 Random Gram matrices

Let X be a m×n random matrix with independent, centered entries with unit variance,

where m
n converges to some positive constant as n→ ∞. It is known that the empirical spectral

distribution converges to the Marčenko-Pastur law [140]. However, some applications in wireless

communication require understanding the spectrum of 1
nXX∗ where X has a variance profile

[106, 69]. Such matrices are called random Gram matrices. The limiting spectral distribution of

a random Gram matrix with non-centered diagonal entries and a variance profile was obtained

45



in [105] under the assumptions that the (4+ ε)-th moments of entries in X are bounded and the

variance profile comes from a continuous function. The local law and singularities of the density

of states of random Gram matrices were analyzed in [16, 13].

We use the symmetrization trick to connect the eigenvalues of 1
nXX∗ to eigenvalues of a

Hermitian matrix

H :=

 0 X

X∗ 0

 .
As a corollary from our main theorem in Section 2.3, when EX = 0, we obtain the moments and

Stieltjes transforms of the limiting spectral distributions under weaker assumptions than [105]. In

particular, we only need entries in X to have finite second moments, and the variance profile of

Hn converges in terms of homomorphism densities.

Let Xn be a m× n complex random matrix whose entries are independent. Consider a

random Gram matrix Mn := 1
nXnX∗n with a variance profile matrix Sn = (si j)1≤i≤m,1≤ j≤n satisfies

the following conditions:

1. Exi j = 0,E|xi j|2 = si j, for all 1≤ i≤ m,1≤ j ≤ n.

2. (Lindeberg’s condition) for any constant η > 0,

lim
n→∞

1
nm

m

∑
i=1

n

∑
j=1

E[|xi j|21(|xi j| ≥ η
√

n)] = 0.

3. supi j si j ≤C for some constant C ≥ 0.

4. lim
n→∞

m
n
= y ∈ (0,∞).

Let

Hn :=

 0 Xn

X∗n 0

 . (2.8.1)
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We first find the relation between the trace of Mn and the trace of Hn in the following lemma.

Lemma 2.8.1. For any integer k ≥ 1, the following holds:

1
m

trMk
n =

(m+n)k

2mnk tr
(

Hn√
n+m

)2k

. (2.8.2)

Proof. Nonzero eigenvalues of H come in pairs {−
√

λ,
√

λ}where λ> 0 is a non-zero eigenvalue

of XnX∗n . Therefore for k ≥ 1,

tr(H2k
n ) = 2tr(XnX∗n )

k. (2.8.3)

We then have for k ≥ 1,

1
m

trMk
n =

1
m

tr
(

1
n

XnX∗n

)k

=
1

2nkm
·2tr(XnX∗n )

k =
(m+n)k

2mnk tr
(

Hn√
n+m

)2k

. (2.8.4)

Since Hn is a (n+m)× (n+m) general Wigner-type matrix with a variance profile

Σn :=

 0 Sn

ST
n 0

 , (2.8.5)

we can decide the moments of the limiting spectral distribution of Mn from Theorem 2.3.2 and

Lemma 2.8.1 in the following theorem.

Theorem 2.8.2. Let Mn be a random Gram matrix with the assumptions above and Wn be the

corresponding graphon of Σn. If for any finite tree T , t(T,Wn) converges as n→ ∞, then the

empirical spectral distribution of Mn converges almost surely to a probability measure µ such
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that for k ≥ 1,

∫
xkdµ =

(1+ y)k+1

2y

Ck

∑
j=1

lim
n→∞

t(T k+1
j ,Wn).

Proof. From Lemma 2.8.1, for k ≥ 1,

1
m

trMk
n =

(m+n)k+1

2mnk · 1
n+m

tr
(

Hn√
n+m

)2k

. (2.8.6)

From Theorem 2.3.2, almost surely

lim
n→∞

1
n+m

tr
(

Hn√
n+m

)2k

=
Ck

∑
j=1

lim
n→∞

t(T k+1
j ,Wn).

Since limn→∞
m
n = y > 0, The result follows from (2.8.6).

Finally, we derive the Stieltjes transform of the limiting spectral distribution from Theorem

2.3.4.

Theorem 2.8.3. Let Mn be a random Gram matrix with a variance profile Sn and Wn be the

corresponding graphon of Σn defined in (2.8.5). If δ�(Wn,W )→ 0 for some graphon W, then the

empirical spectral distribution of Mn√
n converges almost surely to a probability measure µ whose

Stieltjes transform s(z) is an analytic solution defined on C+ by the following equations:

s(z) =
1+ y

y

∫ y
1+y

0
b(z,u)du, (2.8.7)

b(z,u)−1 = z−
∫ 1

y
1+y

W (u,v)

(1+ y)−1−
∫ y

1+y
0 W (u, t)b(z, t)dt

dv, (2.8.8)

where b(z,u) is an analytic function defined on C+×
[
0, y

1+y

]
.

Remark 2.8.4. Up to notational differences, (2.8.7), (2.8.8) are the centered case(EMn = 0) of

the equations in [105] (see Section 5.1 in [105]), where a non-centered form of the equations
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were also derived under the assumptions of (4+ ε)-bounded moments and the continuity of the

variance profile. Recently, (2.8.7), (2.8.8) were also studied in [16, 13], where the local law for

the centered case was proved under stronger assumptions including bounded k-moments of each

entry for each k and irreducibility condition on the variance profile. Our Theorem 2.8.2 and

Theorem 2.8.3 give the weakest assumption so far for the existence of the limiting distribution

and the quadratic vector equations only for the centered case.

Proof. Let s(z) be the Stieltjes transform of the limiting spectral distribution of Mn√
n . Let

γk :=
∫

xkdµ, m2k :=
Ck

∑
j=1

t(T k+1
j ,W ), and m(z) :=

∞

∑
k=0

m2k

z2k+1 .

By Theorem 2.8.2, for k ≥ 1,

γk =
(1+ y)k+1

2y
m2k.

Note that m0 = γ0 = 1, we have for |z| sufficiently large,

s(z) =
∞

∑
k=0

γk

zk+1 =
1
z
+

∞

∑
k=1

m2k

zk+1
1
2y

(1+ y)k+1

=
∞

∑
k=0

m2k

zk+1
1
2y

(1+ y)k+1 +
y−1
2yz

=
1
2y

√
1+ y

z
m
(√

z
1+ y

)
+

y−1
2yz

. (2.8.9)

From Theorem 2.3.2 and (2.2.1), we know m(z) is the Stieltjes transform of the limiting spectral

distribution of Hn√
n+m . Moreover, from Theorem 2.3.4, we have

m(z) =
∫ 1

0
a(z,u)du, (2.8.10)

a(z,u)−1 = z−
∫ 1

0
W (u,v)a(z,v)dv, (2.8.11)

for some analytic function a(z,u) defined on C+× [0,1]. It remains to translate the equations
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above to an equation for s(z). Let

a1(z,x) : = a(z,x), for x ∈
[

0,
y

1+ y

]
,

a2(z,x) : = a(z,x), for x ∈
[

y
1+ y

,1
]
.

Since m
n → y ∈ (0,∞), and Wn is the corresponding graphon of Σn, its limit W will have a

bipartite structure, i.e., W (u,v) = 0 for (u,v)∈
[
0, y

1+y

]2
∪
[

y
1+y ,1

]2
. Then we have the following

equations from (2.8.11):

a1(z,u)−1 = z−
∫ 1

y
1+y

W (u,v)a2(z,v)dv, (2.8.12)

a2(z,u)−1 = z−
∫ y

1+y

0
W (u,v)a1(z,v)dv. (2.8.13)

Combing (2.8.12) and (2.8.13), we have the following self-consistent equation for a1(z,u):

a1(z,u)−1 = z−
∫ 1

y
1+y

W (u,v)

z−
∫ y

1+y
0 W (u, t)a1(z, t)dt

dv. (2.8.14)

Let b(z,u) :=
a1

(√
z

1+y ,u
)

√
z(1+ y)

. Then b(z,u) is an analytic function defined on C+×
[
0, y

1+y

]
. From

(2.8.14), we can substitute a1(z,u) with b(z,u) and get

b(z,u)−1 = z−
∫ 1

y
1+y

W (u,v)

(1+ y)−1−
∫ y

1+y
0 W (u, t)b(z, t)dt

dv. (2.8.15)

By multiplying with a1(z,u), a2(z,u) on both sides in (2.8.12) and (2.8.13) respectively, we have

1 = za1(z,u)−a1(z,u)
∫ 1

y
1+y

W (u,v)a2(z,v)dv, (2.8.16)

1 = za2(z,u)−a2(z,u)
∫ y

1+y

0
W (u,v)a1(z,v)dv. (2.8.17)
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From (2.8.16) and (2.8.17), by integration with respect to u, we have

y
1+ y

= z
∫ y

1+y

0
a1(z,u)du−

∫ y
1+y

0

∫ 1

y
1+y

W (u,v)a1(z,u)a2(z,v)dudv,

1
1+ y

= z
∫ 1

y
1+y

a1(z,u)du−
∫ 1

y
1+y

∫ y
1+y

0
W (u,v)a2(z,u)a1(z,v)dudv.

Therefore we have

∫ y
1+y

0
a1(z,u)du−

∫ 1

y
1+y

a2(z,u)du =
y−1

z(1+ y)
. (2.8.18)

From (2.8.10) and (2.8.18), we have the following relation between m(z) and a1(z,u):

m(z) =
∫ y

1+y

0
a1(z,u)du+

∫ 1

y
1+y

a2(z,u)du = 2
∫ y

1+y

0
a1(z,u)du− y−1

z(1+ y)
. (2.8.19)

With (2.8.9) and (2.8.19), we obtain the following equation for s(z):

s(z) =
1+ y

y

∫ y
1+y

0
b(z,u)du,

where b(z,u) satisfies the equation (2.8.15). This completes the proof.
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Chapter 3

Global eigenvalue fluctuations of random

bipartite biregular graphs

3.1 Introduction

3.1.1 Eigenvalue fluctuations of random matrices

The study of fluctuations from the limiting empirical spectral distributions (ESDs) for

random matrices is a well-established topic of interest in random matrix theory, originated in

[120, 123, 159], see also [18] and all references therein. More recently, it has been extended to

sparse random matrices and random graph-related matrices in various regimes of sparsity and

independence ([155, 156, 33, 76, 30]).

The ultimate goal in these studies is to see the equivalent of the one-dimensional Central

Limit Theorem (CLT) emerge, when examining linear statistics of the spectra of random matrices

and random graphs. More precisely, denote by λ1, . . . ,λn the eigenvalues of the random matrix,

suitably scaled to put them with high probability on a compact set, and let f be a suitably smooth

function. When the matrices in question are not extremely sparse, one can almost invariably
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prove that the linear statistic

L( f ) =
n

∑
i=1

f (λi)

has the property that, when centered, it converges to a normal distribution whose variance depends

on f :

L( f )−E(L( f )) → N(0,σ2
f ) .

Dense and not-too-sparse Wigner cases.

There is an interesting phenomenon taking place with respect to sparsity; the variance σ2
f

is the same in the case of Gaussian Orthogonal Ensembles (GOEs) as in the case of the random

regular graph under the permutation model with growing degrees [76]:

σ
2
f = 2

∞

∑
k=1

ka2
k , (3.1.1)

where ak is the k-th coefficient of f in the Chebyshev polynomial basis expansion. Small variations

of this expression occur also in dense Wigner variants and the uniform regular graph model, as

follows. For real Wigner and generalized Wigner matrices in the dense case [118, 25, 19, 58, 162],

σ f also depends on the fourth moments of the off-diagonal entries and the variance of the diagonal

entries, which yields corrections to the constants in front of a2
1,a

2
2 (see Theorem 1.1 in [25] for

an explicit expression). Similarly, in the uniform regular graph model [119], a correction must

be introduced as there are no one- or two-cycles (as the graph is simple) and so the terms

corresponding to k = 1 and k = 2 in the sum (3.1.1) are not present.

However, in the case of sparse Wigner matrices (corresponding to Erdős-Rényi graphs

G(n, p) with p→ 0,np→ ∞, [156]), the fluctuations are impacted by the fact that the number

of nonzero entries in each row (i.e., the degree of each vertex) fluctuates, and the 4th moment

of the scaled adjacency matrix entries grows. The variance σ2
f blows up, necessitating another

multiplicative scaling of the linear statistic L( f )−E(L( f )) by
√

p, and extracting only part of
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the expression (3.1.1) (see Theorem 1 in [156]).

Dense Wishart cases.

A similar phenomenon occurs in the Wishart case, i.e., for sample covariance matrices

(corresponding to bipartite graphs); in the case of dense matrices with converging aspect ratio,

the variance is given in different forms in [22, 24]. Although these expressions are not explicit in

terms of a Chebyshev polynomial expansion, in [52, 128] it is shown that the covariance between

two linear statistics is diagonalized by shifted Chebyshev polynomials. When the aspect ratio

goes to ∞, [60] computes the variance which is consistent with the Wigner case in [25]. So far we

are not aware of any CLT results for sparse bipartite Erdős-Rényi graphs, but a similar argument

as in [156] should apply.

For dependent entries (biregular bipartite graphs), we obtain here the variance of the

eigenvalue fluctuation in Theorem 3.4.7, and it matches the one in [60], except for the first

coefficient.

Constant (expected or deterministic) degree.

When p = c
n , the explicit limiting spectral distribution for Erdős-Rényi graphs G(n, p) is

not known, although it is known that the measure µc exists for every c (given, e.g., by a Stieltjes

transform equation as in [39]), and if c > 1 it consists of a continuous part and an atomic part

[41]. Convergence of µc to the semicircular distribution is studied in [81, 121], where asymptotic

expressions for the moments of µc with an o(1/c) term are computed (as c→ ∞, µc converges to

the semicircle law).

However, a CLT for Erdős-Rényi graphs G(n, c
n) still holds [155, 33] with a more com-

plicated variance that does not follow the same expression as in (3.1.1), see Theorem 2.2 in

[33].

By contrast, in the random d-regular graph case with d finite, the fluctuations are no longer
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Gaussian. Instead, they are modeled by an infinitely divisible distribution, expressed as a sum of

Poisson variables (see [76] for the permutation model and [119] for the uniform model). Notably,

in the case when the matrix is not symmetric and corresponds to (directed) cycle structure of a

random permutation, [30] showed that the global fluctuations can be computed, and whether or

not the limiting distribution is Gaussian depends on how smooth the test function is.

For the bipartite Erdős-Rényi case, once again the limiting distribution is not known but

results similar to [81] can be found in [150]. We are not aware of any CLT-like results for the

fluctuations in this case.

We compute here the fluctuations for the uniformly random biregular bipartite with fixed

degrees. Just like in the regular case [76], we see that the fluctuations are modeled by a sum of

Poisson variables (Theorem 3.4.4).

Remark 3.1.1. In all cases where a formula for the variance has been obtained by expressing f

in a polynomial basis which diagonalizes the covariance, the correct basis has been given by the

orthogonal polynomials with respect to the limiting distribution, [161, 76].

Random biregular bipartite graphs

The adjacency matrix of a (d1,d2)-biregular bipartite graph G(V1 ∪V2,E) with V1 =

[n],V2 = [m] can be written as

A =

 0 X

X> 0

 ,
where X ∈ {0,1}n×m is a matrix indexed by V1×V2 such that Xi j = 1 if and only if (i, j) ∈ E. All

eigenvalues of A come in pairs as {−λ,λ}, where |λ| is a singular value of X , along with extra

|n−m| zero eigenvalues. It’s easy to see λ1(A) =−λn+m(A) =
√

d1d2.

In this chapter, instead of examining the spectrum of A, we will be looking at the spectrum
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of the matrix XX>− d1I. This serves two purposes: one, it allows for an immediate parallel

to the sample covariance matrix (Wishart) case, and two, it allows us to deal with all regimes

in a unitary fashion. The eigenvalues of XX>− d1I are the shifted squares of the eigenvalues

of A. Any result on global fluctuations for linear statistics of the spectrum of XX>− d1I is

automatically converted into an equivalent result for the spectrum of A. However, because any

result of fluctuations must necessarily put most of the eigenvalues (with the exception of the

deterministic outliers) on a compact interval, scaling must be involved. This works perfectly fine

when the ratio d1/d2 is bounded, but it becomes tricky when it is not, and the matrix XX>−d1I

allows us to do the scaling in a more natural way, similarly to the sample covariance (Wishart)

matrix with unbounded aspect ratio in [60].

To prove a result on eigenvalue fluctuations, we need two special ingredients: eigenvalue

confinement on a compact interval and asymptotic behavior of cycle counts. For the former, we

make use of the spectral gap shown in [48] for the fixed degree case and [179] for the growing

degree case. Previous results of this kind were obtained for random regular graphs [94, 37] for

fixed degree, and [49, 67, 168, 28] for growing degrees.

For the latter, we use Stein’s method to approximate cycle counts as Poisson random

variables by bounding the total variation distance (Theorem 3.2.10) and obtain a Poisson ap-

proximation of the number of cyclically non-backtracking walks (Corollary 3.2.15). Note that

computing cycle counts is a fundamental problem in the study of random graphs, ever since the

seminal papers of [142] and more general [143, 144].

To prove our results, we follow the recipe of [119] by using switching to construct

exchangeable pairs of graphs that allow us to estimate cycle counts. The switching we use here is

different from [119] and is suitable for biregular bipartite graphs. In the analysis of switchings, a

new challenge is the imbalance between the parameters d1,d2 when the aspect ratio is unbounded.

Our results on cycle counts hold for a large range of d1,d2, and are notably independent of

the aspect ratio as long as the cycle length is small. It is also worth noting that the method of
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switching has been applied to other problems on random biregular bipartite graphs, for example,

[54, 53, 153].

Finally, we also obtain an algebraic relation between linear eigenvalue statistics on

modified Chebyshev polynomials and cyclically non-backtracking walks (Theorem 3.2.17). Then

based on the spectral gap results in [48, 179] and approximation theory for Chebyshev polynomials

[171], we extend the eigenvalue fluctuation results to a general class of analytic functions.

3.1.2 Main results

Our main contributions are represented by Theorems 3.4.4, 3.4.7, establishing the behavior

of the global fluctuations for the linear statistics of eigenvalues of RBBGs in the fixed d1,d2,

respectively, in the d1 · d2→ ∞ cases. Note that Theorem 3.4.7 describes the behavior of the

fluctuations even in the case when the limiting ESD does not exist, since it merely requires d1/d2

to be bounded, rather than to converge to a number in [1,∞) (which would be the necessary

condition for the ESD to converge). In addition, we show that the covariance between two linear

statistics with different test functions is given by the coefficients in their Chebyshev expansions.

As part of the proofs for our main results, we also describe the asymptotic behavior

of the cycle counts (Theorem 3.2.10). Based on the cycle counts estimates, we then use the

locally tree-like structure of RBBGs to prove a global semicircle law in the case when the degree

goes slowly and d1/d2 is unbounded. Finally, as an important application, we obtain equivalent

results for uniformly distributed random regular hypergraphs, including cycle counts, global laws,

spectral gaps, and eigenvalue fluctuations.

In Section 3.2 we prove our results on cycle counts in random biregular bipartite graphs.

Section 3.3 collects relevant results for the spectral gap and eigenvalue confinement on a compact

interval from the literature. Section 3.4 proves our main results, Theorems 3.4.4 and 3.4.7. Section

3.5 proves a global semicircle law for RBBGs when d1/d2 is unbounded. In Section 3.6, we

uses the connections established in [79] to prove several results on uniformly distributed regular
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hypergraphs.

3.2 Cycle counts

3.2.1 Counting switchings

In this section, we estimate the number of switchings that create or delete a cycle in a

biregular bipartite graph. The precise definitions of switchings for our purposes are given in

Definition 3.2.4 and Definition 3.2.5. These estimates will be used in Section 3.2.2 to show that

cycle counts converge in distribution to Poisson random variables.

Definition 3.2.1 (cycle). Throughout the paper, when we say a cycle, we mean a simple cycle,

i.e., all vertices in a cycle are distinct.

Let Kn,m be the complete bipartite graph on n+m vertices with V1 = [n],V2 = [m]. Let

H ⊆Kn,m be a subgraph with v vertices. For any i∈Kn,m, let gi,hi denote the degree of i considered

as a vertex in a biregular bipartite graph G = (V1,V2,E) and the subgraph H, respectively. Let

hmax be the largest value of hi and |H| be the number of edges of H. Denote by

[x]a = x(x−1) · · ·(x−a+1)

the falling factorial. The following estimate is given in [143].

Proposition 3.2.2 (Theorem 3.5 in [143]). Assume d1 ≥ d2 and nd1 ≥ 2d1(d1+hmax−2)+ |H|+

1. Then

P(H ⊆ G)≤ ∏
v
i=1[gi]hi

[nd1−4d2
1−1]|H|

.

We first prove several estimates on random biregular bipartite graphs based on Proposition

3.2.2.

Lemma 3.2.3. Let G be a random (d1,d2)-biregular bipartite graph with d2 ≤ d1 ≤ n1/3.
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1. Suppose H is a subgraph of the complete graph Kn,m in which every vertex has degree at

least 2. Let e be the number of edges in H. Suppose e = o(n1/3). Then

P(H ⊆ G)≤ c1

(
(d1−1)(d2−1)

nm

)e/2

. (3.2.1)

2. Let α be a cycle of length 2k in the complete bipartite graph Kn,m. Suppose k ≤ n1/10, then

P(α⊆ G)≤ c1

(
(d1−1)(d2−1)

nm

)k

. (3.2.2)

3. Let β be another cycle of length 2 j ≤ 2n1/10 in the complete bipartite graph Kn,m. Suppose

α,β share f edges. Then

P(α∪β⊆ G)≤ c1

(
(d1−1)(d2−1)

nm

) j+k− f/2

. (3.2.3)

Proof. It suffices to prove (3.2.1). Then (3.2.2) and (3.2.3) follow as special cases. Since H has

e edges, and H is bipartite, it satisfies

∑
i∈V1

hi = ∑
i∈V2

hi = e.

Since hi ≥ 2 for all i ∈V (H), we know [gi]hi ≤ (gi(gi−1))hi/2. Therefore from Proposition 3.2.2,

P(H ⊆ G)≤ (d1(d1−1))e/2(d2(d2−1))e/2

[nd1−4d2
1−1]e

=

(
(d1−1)(d2−1)

nm

)e/2 (nd1)
e

[nd1−4d2
1−1]e

.

Recall d1 ≤ n1/3,e = o(n1/3), and (1+ x)r = 1+O(rx) if rx→ 0. We have for some
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absolute constant c1 > 0,

(nd1)
e

[nd1−4d2
1−1]e

≤
(

nd1

nd1−4d2
1− e

)e

=

(
1+

4d2
1 + e

nd1−4d2
1− e

)e

≤ c1. (3.2.4)

This proves (3.2.1).

Let G be a (d1,d2)-biregular bipartite graph. Let C j be the number of cycles of length 2 j

in G. We will always represent a cycle by a vertex sequence starting from a vertex in V1. Suppose

α = (x1,y1, · · · ,xk,yk) is a cycle of length 2k in G with xi ∈ V1,yi ∈ V2, 1 ≤ i ≤ k, where yk is

connected to x1 in the cycle α.

Let ei = uivi,e′i = u′iv
′
i be the edges with with ui,u′i ∈ V1,vi,v′i ∈ V2, 1 ≤ i ≤ k such that

neither ui,u′i is adjacent to yi for 1≤ i≤ k and neither vi,v′i is adjacent to xi. See the left part of

Figure 3.1 for an example.

We now introduce our definitions of switching for biregular bipartite graphs.

Definition 3.2.4 (forward α-switching). Consider the action of deleting all 4k edges ẽi,1≤ i≤ 2k

and ei,e′i,1≤ i≤ k, and replacing them by the edges xivi,xiv′i,yiui,yiu′i for 1≤ i≤ k. We obtain

a new biregular bipartite graph G′ with the cycle α deleted. We call this action induced by the

6 sequences (xi),(yi),(ui),(u′i),(vi),(v′i),1≤ i≤ k a forward α-switching. See Figure 3.1 for an

example. We will consider forward α-switchings only up to cyclic rotation and inversion of

indices in [k]; that is, we identify the 2k different forward α-switchings obtained by applying the

same cyclic rotation or inversion on [k] to the 6 sequences (xi),(yi),(ui),(u′i),(vi),(v′i),1≤ i≤ k.

Definition 3.2.5 (backward α-switching). Suppose G contains paths vixiv′i and uiyiu′i for 1≤ i≤ k,

where xi,ui,u′i ∈V1,yi,vi,v′i ∈V2. Consider deleting all 4k edges vixi,v′ixi,uiyi,u′iyi for 1≤ i≤ k,

and replacing them with uivi,u′iv
′
i, xiyi,yixi+1 for 1≤ i≤ k. We obtain a new graph G′ with a cycle

α = (x1,y1, · · · ,xk,yk). Such action is called a backward α-switching induced by the sequences

(xi),(yi),(ui),(u′i),(vi),(v′i),1≤ i≤ k. We also identify the 2k different backward α-switchings

obtained by applying the same cyclic rotation or inversion on the index set [k].
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Figure 3.1: A forward α switching from the left to the right, where α = (x1,y1,x2,y2).

Definition 3.2.6 (short cycles). Let r be an integer; we say that a cycle is short if its length is less

than or equal to 2r.

We call a α-switching valid if α is the only short cycle created or destroyed by the

switching. For each forward α-switching from G to G′, there is a corresponding backward

α-switching from G′ to G by simply reversing the operation (i.e. from the right to the left in

Figure 3.1).

Let Fα be the number of all valid forward α-switchings from G to some G′ and let Bα be

the number of all valid backward α-switchings from some G′ to G. In the following two lemmas,

we estimate Fα and Bα for biregular bipartite graphs.

Lemma 3.2.7. Let G be a deterministic (d1,d2)-biregular bipartite graph with d1 ≥ d2 and cycle

counts Ck,2≤ k ≤ r. For any short cycle α⊆ G of length 2k, we have

Fα ≤ [n]k[m]kdk
1dk

2. (3.2.5)

If α does not share an edge with another short cycle, then for an absolute constant c1 > 0, we

have

Fα ≥ [n]k[m]kdk
1dk

2

(
1−

4k ∑
r
j=2 jC j + c1k(d1−1)r(d2−1)r

nd1

)
. (3.2.6)
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Proof. Consider a cycle denoted by α = (x1,y1, · · · ,xk,yk). Denote edges

ẽi = xiyi, ẽi+k = yixi+1,1≤ i≤ k, (3.2.7)

where xk+1 := x1. There are at most [n]kdk
1[m]kdk

2 many ways to choose edges ei = uivi and

e′i = u′iv
′
i for 1 ≤ i ≤ k, which gives the upper bound (3.2.5). For the k edges ei,1 ≤ i ≤ k, we

require distinct ui ∈V1,1≤ i≤ k, and we have d1 choices for each vi, given the degree constraint

on ui. This gives [n]kdk
1 many choices altogether. For the remaining edges e′i,1≤ i≤ k we require

distinct v′i ∈V2,1≤ i≤ k and each for each u′i we have d2 choices, giving us a factor of [m]kdk
2.

Therefore (3.2.5) holds.

For the rest of the proof, we always use the same way to count α-switchings by counting

the choices of ei,e′i. We use the parameter d1 to control the choices from ei,1 ≤ i ≤ k and the

parameter d2 for the choices from e′i,1≤ i≤ k.

To prove the lower bound in (3.2.6), we choose a subset of configurations that are

guaranteed to have a valid forward α-switching. Consider ei,e′i,1≤ i≤ k such that the following

holds:

1. ei and e′i are not contained in any short cycle in G for 1≤ i≤ k.

2. The distance from any vertex in {ei,e′i} to any vertex in ẽi is at least 2r for any 1≤ i≤ k.

3. The distance between any two different edges among the 2k edges {ei,e′i,1≤ i≤ k} is at

least r.

4. For all 1≤ i≤ k, the distance between vi and v′i is at least 2r, and the distance between ui

and u′i is at least 2r.

Recall the definition of ẽi in (3.2.7). By Condition (2), for all 1 ≤ i ≤ k, ui,u′i are not

adjacent to yi, also vi,v′i are not adjacent to xi, which satisfies the definition of a forward α-

switching. Let G′ be the graph obtained by applying the forward α-switching from G. We need to
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check that α is the only cycle deleted in G by this switching and no other short cycles are created

in G′.

Since α shares no edges with other short cycles by our assumptions, deleting α will not

destroy other short cycles. From Condition (1), deleting ei,e′i will not destroy any short cycles

either.

Next we show no other short cycles are created in G′. Suppose there exists a new short

cycle β in G′ created by the switching. Then β contains paths in G∩G′ separated by edges created

in the forward switching in G′ (β must contain at least such edge because it is created). Any such

path in G∩G′ must have length at least r, because

• if it starts and ends at vertices in α and has length less than r, then combining this path

with a path in α gives a short cycle in G that intersects α, which is a contradiction to our

assumption on α;

• if it starts in α and ends in {ui,vi,u′i,v
′
i} for some i and has length less than r, then combining

this path with a path in α gives a path between ẽi, ei or between ẽi, e′i of length less than 2r,

which violates Condition (2);

• if it starts and ends in different edges among {ei,e′i,1≤ i≤ k}, then it must have length at

least r by Condition (3);

• if it starts at some vertex in ei and ends at some vertex in ei, then the path must start and

end at different vertices in ei, otherwise β is not a cycle in the sense of Definition 3.2.1.

Then the path combined with ei is a cycle. By Condition (1), it has length at least r, a

contradiction. In the same way, it cannot start at some vertex in e′i and end at some vertex

in e′i.

This implies β contains exactly one path in G∩G′. If not, the two separated paths together with

new edges in G′ have length greater than 2r, a contradiction to the condition that β is a short cycle.

Given the path in G∩G′, the remainder of β has two cases:
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• a single edge that can be xivi, xiv′i, yiui, or yiu′i for some 1≤ i≤ k, then by Condition (2),

the path in G∩G′ connecting the two vertices in the edge has length at least 2r, which is a

contradiction to the fact that β is a short cycle;

• a single path vixiv′i or uiyiu′i, which is impossible by Condition (4).

From the analysis above, no such β can exist, hence any α-switching satisfying Conditions

(1)-(4) is valid.

Next we find the number of all switchings satisfying Conditions (1) to (4) to have a lower

bound on Fα. We will do this by bounding from above the number of switchings out of the

[n]k[m]kdk
1dk

2 many choices counted in (3.2.5) that fail one of the Conditions (1)-(4). We treat the

4 conditions in the following (a)-(d) parts.

(a) There are a total of at most ∑
r
i=2 2 jC j edges in all short cycles of G. For some 1≤ i≤ k,

if we choose one edge ei from a short cycle and the other (2k−1) edges arbitrarily, we obtain a

forward α-switching that fails Condition (1). The number of all possible choices is at most

k
r

∑
j=2

2 jC j · [n−1]k−1[m]kdk−1
1 dk

2.

And if we choose e′i from a short cycle and the other (2k−1) edges arbitrarily, the number of all

possible choices is at most

k
r

∑
j=2

2 jC j · [n]k[m−1]k−1dk
1dk−1

2 .

Altogether the number of choices is at most

4
nd1

[n]k[m]k(d1d2)
kk

r

∑
j=2

jC j. (3.2.8)

(b) To fail Condition (2), we can obtain α-forward switchings by choosing (2k−1) edges
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arbitrarily, and then choose one edge ei or e′i that is at most of distance 2r−1 from ẽi for some

1≤ i≤ k. From the degree constraints, the number of edges of distance less than 2r from some

edge is at most O((d1− 1)r(d2− 1)r). Similar to Part (a), by considering whether ei or e′i is

chosen for 1≤ i≤ k, the number of such switchings is at most

(
[n−1]k−1[m]kdk−1

1 dk
2 +[n]k[m−1]kdk

1dk−1
2

)
· k ·O((d1−1)r(d2−1)r)

=
1

nd1
[n]k[m]k(d1d2)

kkO((d1−1)r(d2−1)r). (3.2.9)

(c) For Condition (3), there are three cases to consider depending on whether the pair is

(ei,e j), (e′i,e
′
j) or (ei,e′j).

Suppose the pair ei,e j violates Condition (3). We pick the pair of edges that are within

distance r−1 and pick the remaining (2k−2) edges arbitrarily. There are (nd1) many ways to

choose ei. When ei is fixed, there are at most O((d1− 1)(r+1)/2(d2− 1)(r+1)/2) choices for e j.

Hence the number of switchings that fail Condition (3) is at most

(nd1) · [O((d1−1)(r+1)/2(d2−1)(r+1)/2)] · k(k−1) · ([n−2]k−2[m]kdk−2
1 dk

2)

=
1

nd1
[n]k[m]kdk

1dk
2 · k2 ·O

(
(d1−1)(r+1)/2(d2−1)(r+1)/2

)
.

By the same argument, if the pair is (e′i,e
′
j), the number of switchings that fail Condition (3) is at

most

1
nd1

[n]k[m]kdk
1dk

2k2 ·O
(
(d1−1)(r+1)/2(d2−1)(r+1)/2

)
.

When the two edges of the pair violating Condition (3) are ei,e′j for some i, j, the number is at
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most

(nd1) · [O((d1−1)(r+1)/2(d2−1)(r+1)/2)] · (2k2) · ([n−1]k−1[m−1]k−1dk−1
1 dk−1

2 )

=
1

nd1
[n]k[m]kdk

1dk
2k2O

(
(d1−1)(r+1)/2(d2−1)(r+1)/2

)
.

Combining the three cases in Part (c), the number of switchings that violate Condition (3) is at

most

1
nd1

[n]k[m]k(d1d2)
kk2 ·O

(
(d1−1)(r+1)/2(d2−1)(r+1)/2

)
. (3.2.10)

(d) Since the distance between a pair of vertices in V1 or V2 must be even, to violate

Condition (4), we can choose a pair ui,u′i ∈V1 or vi,v′i ∈V2 that are within distance 2r−2 first,

then choose other edges arbitrarily. Similar to the cases above, the number of switchings that fail

Condition (4) is at most

1
nd1

[n]k[m]kdk
1dk

2kO((d1−1)r(d2−1)r). (3.2.11)

Combining the 4 Cases (a)-(d) above, from (3.2.8), (3.2.9),(3.2.10), and (3.2.11), we have

at most

4
nd1

[n]k[m]k(d1d2)
k

(
k

r

∑
j=2

jC j +O(k(d1−1)r(d2−1)r)

)

many switchings that fail one of the Conditions (1)-(4) among the [n]k[m]k(d1d2)
k possible

switchings. Then for an absolute constant c1 > 0,

Fα ≥ [n]k[m]kdk
1dk

2

(
1−

4k ∑
r
j=2 jC j + c1k(d1−1)r(d2−1)r

nd1

)
.
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Therefore (3.2.6) holds.

For the number of backward switchings, we obtain a similar upper bound, but the lower

bound is only in expectation.

Lemma 3.2.8. Let G be a random (d1,d2)-biregular bipartite graph and let α be a cycle of length

2k ≤ 2r in the complete bipartite graph Kn,m. Let Bα be the number of valid backward switchings

from G that create α. Then

Bα ≤ (d1(d1−1))k(d2(d2−1))k, (3.2.12)

and there is an absolute constant c2 > 0 such that

EBα ≥ (d1(d1−1))k(d2(d2−1))k
(

1− c2k(d1−1)r(d2−1)r

nd1

)
. (3.2.13)

Proof. Given α, from the degree constraints, the number of choices for ui,u′i,vi,v′i,1≤ i≤ k that

yield a valid backward α switching is at most (d1(d1−1))k(d2(d2−1))k, which gives (3.2.12).

For the lower bound, we consider the quantity B := ∑β Bβ, where β is summing over all

possible cycles of length 2k in the complete bipartite graph Kn,m. As in the proof of Lemma 3.2.7,

we give conditions that guarantee a valid backward switching.

Assume β = (x1,y1, · · · ,xk,yk). We first consider backward switchings that create β.

Suppose the paths vixiv′i,uiyiu′i,1≤ i≤ k in G satisfy the following conditions:

1. The edges xivi,xiv′i,yiui, and yiu′i are not contained in any short cycles.

2. For 1≤ i≤ k, the distance between any vertex in the path vixiv′i and any vertex in the path

uiyiu′i is at least 2r.

3. For all 1≤ i≤ k and 1≤ j ≤ k/2, the distance between the paths vixiv′i and vi+ jxi+ jv′i+ j

(the index i+ j is calculated modulo k) and the distance between uiyiu′i and ui+ jyi+ ju′i+ j
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are at least 2r−2 j+1.

4. For 1≤ i≤ k,1≤ j ≤ k/2, the distance between vixiv′i and ui+ jyi+ ju′i+ j, and the distance

between uiyiu′i and vi+ jxi+ jv′i+ j are at least 2r−2 j+2.

We will show the four conditions above guarantee a valid backward β-switching.

By Condition (1), no short cycles are deleted. We denote x 6∼ y if two vertices x,y are not

connected in G. An immediate consequence of Condition (2) ensures that xi 6∼ yi and ui 6∼ vi,

u′i 6∼ v′i, and Condition (4) ensures that yi 6∼ xi+1. Therefore such switching can be applied.

Let G′ be the graph obtained by applying the backward β-switching. We need to check

that no short cycles other than β are created in G′.

Suppose a short cycle β′ 6= β is created. Then β′ possibly consists of paths in G∩G′,

portions of β, and edges uivi,u′iv
′
i for some 1≤ i≤ k. Any such path in G∩G′ must have length

at least r because

• if it starts in one of the sets {xi,vi,v′i} or {yi,ui,u′i} for 1≤ i≤ k, and ends at a different set

{x j,v j,v′j} or {y j,u j,u′j} for 1≤ j ≤ k, then Conditions (2), (3) and (4) imply this;

• if it starts and ends in the same set {xi,vi,v′i} or {yi,ui,u′i}, then it follows from Condition

(1) that the path must have length at least r.

It follows that β′ must contain exactly one such path, otherwise if two such paths are included in

β′, the length of β′ is greater than 2r, a contradiction to the fact that β′ is a short cycle.

Besides this path in G∩G′, the remainder of β′ must either be an edge uivi or u′iv
′
i, or a

portion of β. If the remainder is some uivi, then the distance between ui and vi in G is at most

2r−1, a contradiction to Condition (2). The same holds if the remainder is some u′iv
′
i.

If the remainder is a portion of β, then there exists two vertices in β connected by the path

in G∩G′ contained in β′. If the two vertices are xi,xi+ j for some 1 ≤ i ≤ k,1 ≤ j ≤ k/2, then

from Condition (3), the path in G∩G′ contained in β′ that connects the two vertices has length at
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least 2r−2 j+1. Since the path in β connecting xi,xi+ j has length 2 j, this implies β′ has length at

least (2r−2 j+1)+2 j = 2r+1, a contradiction. In the same way, if the two vertices are yi,yi+ j

for some 1≤ i≤ k,1≤ j ≤ k/2, we can find a contradiction for β′ from Condition (3).

If the two vertices connected by the path are xi,yi+ j with 1≤ i≤ k,1≤ j ≤ k/2, then the

path in β connecting the two vertices has length at least 2 j−1. Combining the path in G∩G′

contained in β′, from Condition (4), we conclude that β′ has length at least (2r−2 j+2)+(2 j−

1) = 2r+1, a contradiction. By the same argument, if the two vertices connected by the path are

yi,xi+ j for some 1≤ i≤ k,1≤ j ≤ k/2, we can find a contradiction that β′ is not a short cycle.

Therefore such β′ does not exist, and all backward switchings satisfying Conditions (1)-(4)

are valid.

There are [n]k[m]k/(2k) choices for the 2k-cycle β in the complete bipartite graph Kn,m,

and at most (d1(d1−1))k(d2(d2−1))k choices for ui,u′i,vi,v′i,1≤ i≤ k given β. We now count

how many possible backward switchings violate one of the four Conditions (1)-(4) to get a lower

bound on B. We treat the Conditions (1)-(4) in 4 parts.

(a) Suppose Condition (1) is violated. We estimate the number of switchings by choosing

one edge from the set of edges in short cycles and the other edges arbitrarily. Note that by our

definition of switchings, we identify 2k different switchings by applying the cyclic rotation or

inversion on [k]. Suppose we choose an edge xivi or xiv′i from short cycles, similar to the analysis

in Lemma (3.2.7), the number of switchings is at most

(
2k

r

∑
j=2

2 jC j · (d1−1)

)
·
(

1
2k

[n−1]k−1(d1(d1−1))k−1 · [m]k(d2(d2−1))k
)

=
2

nd1
[n]k[m]k[d1(d1−1)d2(d2−1)]2k

r

∑
j=2

jC j.
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Similarly, if we choose an edge yiui or yiu′i from short cycles, the number of switchings is at most

(
2k

r

∑
j=2

2 jC j · (d2−1)

)
·
(

1
2k

[m−1]k−1(d2(d2−1))k−1 · [n]k(d1(d1−1))k
)

=
2

nd1
[n]k[m]k[d1(d1−1)d2(d2−1)]2k

r

∑
j=2

jC j.

Combining two parts, the number of switchings that violate Condition (1) is at most

8k
nd1

[n]k[m]k[d1(d1−1)d2(d2−1)]k
r

∑
j=2

jC j. (3.2.14)

(b) Suppose for some 1≤ i≤ k, two paths vixiv′i and uiyiu′i are within distance 2r−1. The

number of switching is at most

[n−1]k−1[m−1]k−1

2k
[d1(d1−1)d2(d2−1)]k−1 · (knd1(d1−1)) ·O((d1−1)r(d2−1)r+1)

=
1

nd1
[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r). (3.2.15)

(c) Suppose for some 1≤ i≤ k,1≤ j ≤ k/2, two paths {vixiv′i,vi+ jxi+ jv′i+ j} are within

distance 2r−2 j. The number of switchings is at most

[n−2]k−2[m]k
2k

(d1(d1−1))k−2(d2(d2−1))k ·nd1(d1−1)
k

∑
i=1

bk/2c

∑
j=1

O((d1−1)r− j+2(d2−1)r− j)

=
1

nd1
[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r−1).

Suppose for some 1 ≤ i ≤ k,1 ≤ j ≤ k/2, two paths {uiyiu′i,ui+ jyi+ ju′i+ j} are within distance

2r−2 j. Similarly, the number of switchings is bounded by

1
nd1

[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r−1).
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Therefore the number of switchings that violate Condition (3) is at most

1
nd1

[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r−1). (3.2.16)

(d) Suppose two paths vixiv′i,ui+ jyi+ ju′i+ j for some 1 ≤ i ≤ k,1 ≤ j ≤ k/2 are within

distance 2r−2 j+1. The number of choices is at most

[n]k[m−1]k−1

2k
(d1(d1−1))k(d2(d2−1))k−1

k

∑
i=1

bk/2c

∑
j=1

O((d1−1)r− j+1(d2−1)r− j+2

=
1

nd1
[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r) .

Suppose two paths uiyiu′i,vi+ jxi+ jv′i+ j for some 1 ≤ i ≤ k,1 ≤ j ≤ k/2 are within distance

2r−2 j+1. By the same argument, the number of choices is at most

1
nd1

[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r) .

Then the number of switchings that violate Condition (4) is at most

1
nd1

[n]k[m]k(d1(d1−1))k(d2(d2−1))kO((d1−1)r(d2−1)r) . (3.2.17)

From (3.2.14), (3.2.15), (3.2.16) and (3.2.17), the lower bound of B is given by

B≥ [n]k[m]k
2k

(d1(d1−1))k(d2(d2−1))k
(

1−
8k ∑

r
j=2 jC j +O(k(d1−1)r(d2−1)r)

nd1

)
.

(3.2.18)

By Lemma 3.2.3 (b),

ECk ≤
[n]k[m]k

2k
c1(d1−1)k(d2−1)k

nkmk ≤ c1(d1−1)k(d2−1)k

2k
.

71



Applying the inequality above to (3.2.18), we obtain

EB≥ [n]k[m]k
2k

(d1(d1−1))k(d2(d2−1))k
(

1− O(k(d1−1)r(d2−1)r)

nd1

)
.

By the exchangeability of the vertex labels in the uniformly distributed RBBG model, the

law of Bβ is the same for any 2k-cycle β. Then

EBα =
2k

[n]k[m]k
EB≥ (d1(d1−1)d2(d2−1))k

(
1− c2k(d1−1)r(d2−1)r

nd1

)
,

for an absolute constant c2 > 0. This completes the proof.

3.2.2 Poisson approximation of cycle counts

In this section, we prove the cycle counts in RBBGs are asymptotically distributed as

Poisson random variables. The main tool we will use is the following total variation distance

bound from [59].

Lemma 3.2.9 (Proposition 10 in [59]). Let W = (W1, . . . ,Wr) be a random vector taking values

in Nr, and let the coordinates of Z = (Z1, . . . ,Zr) be independent Poisson random variables

with EZk = µk. Let W ′ = (W ′1, . . . ,W
′
r ) be defined on the same space as W, with (W,W ′) an

exchangeable pair. For any choice of σ-algebra F with respect to which W is measurable and

any choice of constants ck, we have

dTV(W,Z)≤
r

∑
k=1

ξk
(
E|µk− ckP(∆+

k | F )|+E|Wk− ckP(∆−k | F )|
)
, (3.2.19)
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where ξk := min{1,1.4µ−1/2
k } and

∆
+
k :={W ′k =Wk +1,Wj =W ′j ,k < j ≤ r}, (3.2.20)

∆
−
k :={W ′k =Wk−1,Wj =W ′j ,k < j ≤ r}. (3.2.21)

We apply Stein’s method to obtain the following Poisson approximation in total variation

distance.

Theorem 3.2.10. Let G be a random (d1,d2)-biregular bipartite graph with cycle counts (Ck,k≥

2). Let (Zk,k ≥ 2) be independent Poisson random variables with

µk := EZk =
(d1−1)k(d2−1)k

2k
.

For any n,m≥ 1 and r ≥ 2,d1 ≥ 3, there exists an absolute constant c6 > 0 such that

dTV((C2, . . . ,Cr),(Z2, . . . ,Zr))≤
c6
√

r(d1−1)3r/2(d2−1)3r/2

nd1
.

Proof. If d1 > n1/3 or r > n1/10, then

c6
√

r(d1−1)3r/2(d2−1)3r/2

nd1
> 1

for sufficiently large choice of c6 and the theorem holds trivially. Thus we assume d1 ≤ n1/3 and

r ≤ n1/10. We now construct an exchangeable pair of random biregular bipartite graphs by taking

a step in a reversible Markov chain.

Define a graph G whose vertex set consists of all (d1,d2)-biregular bipartite graphs. If

there is a valid forward or backward α-switching from a (d1,d2)-biregular bipartite graph G0

to another graph G1 with the length of α being 2k, we make an undirected edge in G between
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G0,G1 and place a weight of
1

[n]k[m]k(d1d2)k

on each such edge. Define the degree of a vertex in G to be the sum of weights from all adjacent

edges. Let d0 be the largest degree in G . To make G regular, we add a weighted loop to each

vertex if necessary to increase the degree of all vertices to d0.

Now consider the simple random walk on G . This is a reversible Markov chain with

respect to the uniform distribution on (d1,d2)-biregular bipartite graphs. Thus suppose G is a

uniformly chosen random biregular bipartite graph, we can obtain another random biregular

bipartite graph G′ by taking an extra step in the random walk from G, and the pair (G,G′) is

exchangeable.

Let Jk be the collection of cycles of length 2k in Kn,m with k ≤ r. We have |Jk| =

[n]k[m]k/2k. Define Iα = 1{α ⊆ G}. Then Ck = ∑α∈Jk
1α. Let I′α,C

′
k be defined on G′ in the

same way. Since G and G′ are exchangeable, the vectors (C2, . . . ,Cr) and (C′2, . . . ,C
′
r) are also

exchangeable. We can then apply Lemma 3.2.9 to this exchangeable pair of vectors. Now define

two events

∆
+
k :={C′k =Ck +1,C j =C′j,k < j ≤ r},

∆
−
k :={Ck =C′k +1,C j =C′j,k < j ≤ r}.

By our construction of the exchangeable pair,

P(∆+
k | G) = ∑

α∈Jk

Bα

d0[n]k[m]k(d1d2)k ,

P(∆−k | G) = ∑
α∈Jk

Fα

d0[n]k[m]k(d1d2)k .
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Applying Lemma 3.2.9 with all ck = d0,1≤ k ≤ r, we have

dTV((C3, . . . ,Cr),(Z3, . . . ,Zr))

≤
r

∑
k=2

ξkE

∣∣∣∣∣µk− ∑
α∈Jk

Bα

[n]k[m]k(d1d2)k

∣∣∣∣∣+ r

∑
k=2

ξkE

∣∣∣∣∣Ck− ∑
α∈Jk

Fα

[n]k[m]k(d1d2)k

∣∣∣∣∣
=

r

∑
k=2

ξkE

∣∣∣∣∣ ∑
α∈Jk

(d1−1)k(d2−1)k

[n]k[m]k
− Bα

[n]k[m]k(d1d2)k

∣∣∣∣∣+ r

∑
k=2

ξkE

∣∣∣∣∣ ∑
α∈Jk

Iα−
Fα

[n]k[m]k(d1d2)k

∣∣∣∣∣
≤

r

∑
k=2

ξk

(
∑

α∈Jk

E
∣∣∣∣(d1−1)k(d2−1)k

[n]k[m]k
− Bα

[n]k[m]k(d1d2)k

∣∣∣∣+ ∑
α∈Jk

E
∣∣∣∣Iα−

Fα

[n]k[m]k(d1d2)k

∣∣∣∣
)
.

(3.2.22)

For the rest of the proof, we estimate the following two sums

∑
α∈Jk

E
∣∣∣∣(d1−1)k(d2−1)k

[n]k[m]k
− Bα

[n]k[m]k(d1d2)k

∣∣∣∣ , (3.2.23)

∑
α∈Jk

E
∣∣∣∣Iα−

Fα

[n]k[m]k(d1d2)k

∣∣∣∣ (3.2.24)

from (3.2.22) in different ways.

(1) The upper bound on (3.2.23). From Lemma 3.2.8, for all α ∈ Jk,

E
∣∣∣∣(d1−1)k(d2−1)k

[n]k[m]k
− Bα

[n]k[m]k(d1d2)k

∣∣∣∣= (d1−1)k(d2−1)k

[n]k[m]k
− EBα

[n]k[m]k(d1d2)k

≤ c2k(d1−1)r+k(d2−1)r+k

nd1[n]k[m]k
,

where the first line is from (3.2.12) and the second line is from (3.2.13). Therefore (3.2.23)

satisfies

∑
α∈Jk

E
∣∣∣∣(d1−1)k(d2−1)k

[n]k[m]k
− Bα

[n]k[m]k(d1d2)k

∣∣∣∣≤ c2[(d1−1)(d2−1)]r+k

2nd1
. (3.2.25)

(2) The upper bound on (3.2.24). To bound the summation in (3.2.24), for a given short
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cycle α, we consider a partition of G in the following way:

Aα
1 = {G does not contain α},

Aα
2 = {G contains α, which does not share an edge with another short cycle in G},

Aα
3 = {G contains α, which shares an edge with another short cycle in G}.

Conditioned on Aα
1 , we have Iα = Fα = 0. Conditioned on Aα

2 , both the upper and lower

bounds in Lemma 3.2.7 can apply, which yield the following inequality:

∣∣∣∣Iα−
Fα

[n]k[m]k(d1d2)k

∣∣∣∣≤ 4k ∑
r
j=2 jC j + c1k(d1−1)r(d2−1)r

nd1
. (3.2.26)

Conditioned on Aα
3 , we have Iα = 1,Fα = 0.

With the partition of G , the following inequality holds:

E
∣∣∣∣Iα−

Fα

[n]k[m]k(d1d2)k

∣∣∣∣= E
[

1Aα
2

∣∣∣∣Iα−
Fα

[n]k[m]k(d1d2)k

∣∣∣∣]+P(Aα
3 )

≤ 2k
nd1

E

[
1Aα

2

r

∑
j=2

2 jC j

]
+

c1k(d1−1)r(d2−1)r

nd1
P(Aα

2 )+P(Aα
3 ).

(3.2.27)

Let Jα be the set of all short cycles in Kn,m that share no edges with α. On the event Aα
2 ,

the graph G contains no short cycles outside Jα except for α. Define |β| be the length of the cycle

β. Then
r

∑
j=2

2 jC j = 2k+ ∑
β∈Jα

|β|Iβ.
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Therefore the right hand side of (3.2.27) can be bounded by

4k2

nd1
P(Aα

2 )+
2k
nd1

∑
β∈Jα

|β|EIαIβ +
c1k(d1−1)r(d2−1)r

nd1
P(Aα

2 )+P(Aα
3 )

≤4k2

nd1
P(α⊆ G)+

c1k(d1−1)r(d2−1)r

nd1
P(α⊆ G)+

2k
nd1

∑
β∈Jα

|β|EIαIβ +P(Aα
3 ). (3.2.28)

By Lemma 3.2.3(1),

4k2

nd1
P(α⊆ G) = O

(
k2[(d1−1)(d2−1)]k

nd1(nm)k

)
,

c1k(d1−1)r(d2−1)r

nd1
P(α⊆ G) = O

(
k[(d1−1)(d2−1)]k+r

nd1(nm)k

)
.

Hence the first and the second term in (3.2.28) combine to yield a corresponding upper bound in

(3.2.24) of

∑
α∈Jk

(
4k2

nd1
P(α⊆ G)+

c1k(d1−1)r(d2−1)r

nd1
P(α⊆ G)

)
= O

(
[(d1−1)(d2−1)]k+r

nd1

)
.

(3.2.29)

From Lemma 3.2.3 (3), we have for any β ∈ Jα with |β|= 2 j,

EIαIβ = P(α∪β ∈ G)≤ c1[(d1−1)(d2−1)] j+k

(nm) j+k .

For 2≤ j ≤ r, there are at most [n] j[m] j/(2 j) cycles in Jα of length 2 j. The third term in (3.2.28)

then satisfies

2k
nd1

∑
β∈Jα

|β|EIαIβ ≤
2k
nd1

r

∑
j=2

[n] j[m] j

2 j
·2 j · c1[(d1−1)(d2−1)] j+k

(nm) j+k

= O
(

k[(d1−1)(d2−1)]r+k

nd1(nm)k

)
.
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Summing over all possible α ∈ Jk, we obtain a corresponding term in (3.2.24) of

∑
α∈Jk

2k
nd1

∑
β∈Jα

|β|EIαIβ = O
(
[(d1−1)(d2−1)]r+k

nd1

)
. (3.2.30)

Now given (3.2.29) and (3.2.30), to control (3.2.24), it remains to estimate ∑α∈Jk
P(Aα

3 ).

Let Kα be the set of all short cycles in Kn,m that share an edge with α, not including α itself. By a

union bound,

∑
α∈Jk

P(Aα
3 )≤ ∑

α∈Jk

∑
β∈Kα

P(α∪β⊂ G). (3.2.31)

From (3.2.3) in Lemma 3.2.3, the upper bound for P(α∪β⊂ G) depends on the lengths

of α,β, and the number of edges that α,β share. To get an upper bound on (3.2.31), we will

classify and count the number of pairs (α,β) based on the structure of α∪β.

Recall α has length 2k. Suppose β has length 2 j. Let H = (V (α)∩V (β),E(α)∩E(β)) be

the intersection of α and β. Suppose H has p components and f edges. Since H is the intersection

of two different cycles, H must be a forest with p+ f vertices. So α∪β has 2 j+ 2k− p− f

vertices and 2 j+2k− f edges. Let a,b be the number of vertices in α∪β that are from V1 and

V2, respectively. Then

a+b = 2 j+2k− p− f . (3.2.32)

Let v1,v2 be the number of vertices in V1 and V2 for H, respectively. Then we have

a = j+ k− v1,b = j+ k− v2, and |a−b|= |v1− v2|. Note that each component in H is a path.

For each path, the difference between the number of vertices from V1 and V2 is at most 1. This

implies

|a−b|= |v1− v2| ≤ p. (3.2.33)
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From the proof of Corollary 21 in [75], the number of all possible isomorphism types of

α∪β given |α|, |β| ≤ 2r and p, f ≤ 2r is at most

(16r3)p−1

((p−1)!)2 .

For each isomorphism type, as a subgraph in Kn,m, the number of ways to label it is at most

[n]a[m]b +[n]b[m]a, where the two terms come from assigning vertices in V1,V2 in two ways (pick

an arbitrary starting vertex, decide whether it is from V1 or V2, then choose labels accordingly).

From (3.2.32), (3.2.33), and the assumption that n≤ m, we have that when f is even,

[n]a[m]b +[n]b[m]a ≤ 2n j+k−p− f/2m j+k− f/2 = 2n−p(nm) j+k− f/2.

And when f is odd,

[n]a[m]b +[n]b[m]a ≤ 2n−p+1(nm) j+k− f/2−1/2.

By (3.2.3) in Lemma 3.2.3, the probability of any realization of an the isomorphism type

as a subgraph in G is bounded by

c1[(d1−1)(d2−1)] j+k− f/2

(nm) j+k− f/2 .

79



With all the estimates above, the right hand side of (3.2.31) is now bounded by

r

∑
j=2

∑
1≤p, f≤2r

(16r3)p−1

((p−1)!)2 · ([n]a[m]b +[n]b[m]a) ·
c1[(d1−1)(d2−1)] j+k− f/2

(nm) j+k− f/2

≤
r

∑
j=2

∑
1≤p, f≤2r

(16r3)p−1

((p−1)!)2 · (2n−p(nm) j+k− f/2) · c1[(d1−1)(d2−1)] j+k− f/2

(nm) j+k− f/2 1{ f is even}

+
r

∑
j=2

∑
1≤p, f≤2r

(16r3)p−1

((p−1)!)2 · (2n−p+1(nm) j+k− f/2−1/2)

· c1[(d1−1)(d2−1)] j+k− f/2

(nm) j+k− f/2 1{ f is odd}

=O
(
[(d1−1)(d2−1)]k+r−1

n

)
+O

(
[(d1−1)(d2−1)]r+k−1/2

(nm)1/2

)

=O
(
[(d1−1)(d2−1)]k+r

nd1

)
. (3.2.34)

Combining all estimates from (3.2.29), (3.2.30) and (3.2.34), we finally obtain

∑
α∈Jk

E
∣∣∣∣Iα−

Fα

[n]k[m]k(d1d2)k

∣∣∣∣= O
(
[(d1−1)(d2−1)]r+k

nd1

)
. (3.2.35)

This provides an upper bound for (3.2.24).

(3) The upper bound on (3.2.22). Now the upper bounds on (3.2.23) and (3.2.24) have

been provided in (3.2.25) and (3.2.35), respectively. We are ready to estimate (3.2.22). Recall

ξk = min{1,1.4µ−1/2
k }= 2.8

√
k

[(d1−1)(d2−1)]k/2 .

Then from (3.2.25) and (3.2.35), there is an absolute constant c7 > 0 such that (3.2.22) is bounded

by

r

∑
k=2

c7
√

k[(d1−1)(d2−1)]r+k/2

nd1
= O

(√
r[(d1−1)(d2−1)]3r/2

nd1

)
. (3.2.36)
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This completes the proof.

3.2.3 Cyclically non-backtracking walks and the Chebyshev polynomials

In this section, we study non-backtracking walks in biregular bipartite graphs and relate

them to the Chebyshev polynomials. The relation will be used in Section 3.4 to study eigenvalue

fluctuations for random biregular bipartite graphs.

Definition 3.2.11 (non-backtracking walk). We define a non-backtracking walk of length 2k in a

biregular bipartite graph to be a walk (u1,v1, . . . ,uk,vk,uk+1) such that ui ∈V1,vi ∈V2, ui+1 6= ui,

for all 1 ≤ i ≤ k and vi+1 6= vi for all 1 ≤ i ≤ k−1. Note that in our definition, all such walks

start and end at some vertices from V1.

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

Figure 3.2: In this example, (u2,v2,u3,v3,u4,v4,u5,v5,u2) is a cyclically non-backtracking
walk. (u1,v1,u2,v2,u3,v3,u4,v4,u5,v5,u2,v1,u1) is a closed non-backtracking walk, but it is not
cyclically non-backtracking.

Definition 3.2.12 (cyclically non-backtracking walk). A walk of length 2k denoted by

(u1,v1, . . . ,uk,vk,uk+1)

is closed if uk+1 = u1. A cyclically non-backtracking walk is a closed non-backtracking walk such

that its last two steps are not the reverse of its first two steps. Namely, (u1,v1,u2) 6= (uk+1,vk,uk).

Figure 3.2 gives an example of a closed non-backtracking walk that is not cyclic non-backtracking.
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Let Gn be a random (d1,d2)-biregular bipartite graph and C(n)
k be the number of cycles

of length 2k in Gn. Denote NBW(n)
k to be the number of non-backtracking walk of length 2k,

and CNBW(n)
k to be the number of cyclically non-backtracking walks of length 2k in Gn. Let

(C(∞)
k ,k ≥ 2) be independent Poisson random variables with mean

µk =
[(d1−1)(d2−1)]k

2k
.

We also define C(∞)
1 =C(n)

1 = 0. For k ≥ 1, denote

CNBW(∞)
k = ∑

j|k
2 jC(∞)

j . (3.2.37)

For any cycle of length 2 j in Gn with j | k, we can obtain 2 j cyclically non-backtracking

walks by choosing a starting point from V1, fixing a direction and then walking around the cycle

of length 2k repeatedly. The next lemma shows that CNBW(n)
k can be approximated by the count

of those repeated walks around cycles.

Lemma 3.2.13. Let Gn be a random (d1,d2)-biregular bipartite graph. Suppose d1 ≤ n1/3,k ≤

n1/10, define

B(n)
k = CNBW(n)

k −∑
j|k

2 jC(n)
j (3.2.38)

to be the number of cyclically non-backtracking walks of length 2k in Gn that are not repeated

walks around cycles. Then

EB(n)
k ≤

c7k7[(d1−1)(d2−1)]k

n
.

We call a cyclically non-backtracking walk bad if it’s not a repeated walk on a cycle.

Then from (3.2.38), B(n)
k counts the number of bad cyclically non-backtracking walks of length
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2k.

Let (w0,w1, . . . ,w2k) with w2k = w0 ∈ V1 be a bad cyclically non-backtracking walk in

Kn,m of length 2k. For any 1≤ i≤ 2k, we say that the i-th step of the walk is

• free if wi did not previously occur in the walk;

• a coincidence if wi previously occurred in the walk, but the edge wi−1wi didn’t;

• forced if the edge wi−1wi previously occurred in the walk.

Let χ+1 be the number of coincidences and f be the number of forced steps in the walk.

Let χ1 +1 and χ2 be the number of coincidence steps ending at a vertex from V1 and V2, respec-

tively. Let f1, f2 be the number of forced steps ending at a vertex from V1 and V2, respectively.

Denote v,e the number of distinct vertices and edges in the cyclically non-backtracking walk,

respectively. We now have the following relations:

χ+1 = χ1 +χ2 +1,

f = f1 + f2,

v = (2k+1)− (χ+1)− f = 2k−χ− f ,

e = 2k− f .

For any repeated walk on a cycle, the the number of coincidences is 1 and χ = 0. Therefore if the

walk is bad, we must have χ≥ 1.

The following lemma bounds the number of cyclically non-backtracking walks with given

parameters χ1,χ2, f1, and f2.

Lemma 3.2.14. Consider cyclically non-backtracking walks of length 2k on Kn,m such that in the

subgraph spanned by this walk, all vertices from V1 have degrees at most d1 and vertices from V2

have degrees at most d2. Then the number of such walks with given χ1,χ2, f1, f2 satisfying χ≥ 1
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is at most

(2k)3(χ1+χ2)+2(d1−1) f2(d2−1) f1nk−χ1− f1mk−χ2− f2.

Moreover, we must have | f1− f2| ≤ χ+1.

Proof. We count the number of such cyclically non-backtracking walks by choosing the coin-

cidences, forced steps, and free steps separately. Given that there are χ+1 coincidences, there

are
( 2k

χ+1

)
many possible subsets of indices in {1, . . . ,2k} where coincidences can happen. The

vertices at a coincidence has already occurred in the walk, so there are at most 2k choices for

each of them, giving us a total of
( 2k

χ+1

)
(2k)χ+1 ≤ (2k)2χ+2 many choices.

For forced steps, they can only occur after a coincidence or another forced step. After

each coincidence, imagine assigning some number of steps to be forced. The number of ways

to do this is at most the number of weak compositions of f elements into χ+ 1 parts, which

is
( f+χ

χ

)
≤ (2k)χ. For each forced step ending at a vertex from V1, the walk can only move

along an edge that has already been traversed, so there are at most (d2− 1) possible choices

at every step due to the non-backtracking property. Similarly, for each forced step ending at

a vertex from V2 there are at most d1− 1 possible choices. Altogether this gives us at most

(2k)χ(d1−1) f2(d2−1) f1 choices for all forced steps.

There are k−χ−1− f1 many free steps ending at a vertex from V1, we have at most n

choices for the next vertex, and we have an additional n choices for w0 ∈V1, which gives a total

of at most nk−χ1− f1 many choices. Similarly, the number of free steps ending at a vertex from V2

is at most mk−χ2− f2 . Multiplying together every parts from coincidences, forced steps and free

steps gives us at most

(2k)3χ+2(d1−1) f2(d2−1) f1nk−χ1− f1mk−χ2− f2

many such cyclically non-backtracking walks.

Next we bound | f1− f2|. Recall forced steps can only occur after a coincidence or another
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forced step. Then there are at most χ+1 many consecutive forced steps starting from a certain

coincidence step. In each consecutive forced steps, the number of vertices from V1 and V2 differ

by at most 1, since the subgraph spanned by any consecutive forced steps is a path. Hence we

have | f1− f2| ≤ χ+1.

Equipped with Lemma 3.2.14, we continue to prove Lemma 3.2.13.

Proof of Lemma 3.2.13. By Part (a) in Lemma 3.2.3, the probability that a given bad walk appears

in Gn is at most

c1

(
(d1−1)(d2−1)

nm

)k− f/2

.

From the upper bound on the number of such walks in Lemma 3.2.14, summing over all possibili-

ties of χ1,χ2, f1, f2, we have

EB(n)
k ≤

∑
χ1,χ2:

χ1+χ2≥1

∑
0≤ f1, f2≤k−1
| f1− f2|≤χ+1

(2k)3χ+2(d1−1) f2(d2−1) f1nk−χ1− f1mk−χ2− f2 · c1

(
(d1−1)(d2−1)

nm

)k− f
2

=c1[(d1−1)(d2−1)]k ∑
χ1+χ2≥1

n−χ1m−χ2(2k)3(χ1+χ2)+2
∑

0≤ f1, f2≤k−1
| f1− f2|≤χ+1

(
(d2−1)m
(d1−1)n

)( f1− f2)/2

.

Since (d2−1)d1 ≤ (d1−1)d2, the following inequality holds:

∑
0≤ f1, f2≤k−1
| f1− f2|≤χ+1

(
(d2−1)m
(d1−1)n

)( f1− f2)/2

= ∑
0≤ f1, f2≤k−1
| f1− f2|≤χ+1

(
(d2−1)d1

(d1−1)d2

)( f1− f2)/2

(3.2.39)

≤k2
(
(d1−1)d2

(d2−1)d1

)(χ+1)/2

.
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Since d1 ≤ n1/3,k ≤ n1/10, (3.2.39) implies

EB(n)
k ≤ c1k2[(d1−1)(d2−1)]k ∑

χ1+χ2≥1
n−χ1m−χ2(2k)3(χ1+χ2)+2

(
(d1−1)d2

(d2−1)d1

)(χ+1)/2

= k2[(d1−1)(d2−1)]kO
(
(2k)5(d1−1)d2

n(d2−1)d1

)
= O

(
k7(d1−1)k(d2−1)k

n

)
.

This completes the proof of Lemma 3.2.13.

Recall the definition of CNBW(∞)
k from (3.2.37). The following corollary holds.

Corollary 3.2.15. Suppose d1 ≤ n1/3 and r ≤ n1/10. There exists a constant c8 > 0 such that

dTV

(
(CNBW(n)

k ,2≤ k ≤ r),(CNBW(∞)
k ,2≤ k ≤ r)

)
≤ c8
√

r[(d1−1)(d2−1)]3r/2

nd1
. (3.2.40)

Proof. By the definition of total variation distance, for any measurable map f and random variable

X ,Y , we have

dTV( f (X), f (Y ))≤ dTV(X ,Y ). (3.2.41)

It follows from Theorem 3.2.10 that

dTV

((
∑
j|k

2 jC(n)
j ,2≤ k ≤ r

)
,
(

CNBW(∞)
k ,2≤ k ≤ r

))
≤ c6
√

r[(d1−1)(d2−1)]3r/2

nd1
.

(3.2.42)

By Markov’s inequality and Lemma 3.2.13,

P(B(n)
k ≥ 1)≤ c7k7[(d1−1)(d2−1)]k

n
. (3.2.43)
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Summing these probabilities for k = 2, . . . ,r implies

(
∑
j|k

2 jC(n)
j ,2≤ k ≤ r

)
= (CNBW(n)

k ,2≤ k ≤ r) (3.2.44)

with probability 1−O
(

r7[(d1−1)(d2−1)]r
n

)
. Therefore by the coupling inequality,

dTV

((
∑
j|k

2 jC(n)
j ,2≤ k ≤ r

)
,(CNBW(n)

k ,2≤ k ≤ r)

)
= O

(
r7[(d1−1)(d2−1)]r

n

)
.

(3.2.45)

From (3.2.42) and (3.2.45),

dTV

(
(CNBW(n)

k ,2≤ k ≤ r),(CNBW(∞)
k ,2≤ k ≤ r)

)
≤c6
√

r[(d1−1)(d2−1)]3r/2

nd1
+O

(
r7[(d1−1)(d2−1)]r

n

)
= O

(√
r[(d1−1)(d2−1)]3r/2

nd1

)
.

Let λ1 ≥ ·· · ≥ λn be the eigenvalues of XX>−d1I√
(d1−1)(d2−1)

. For the rest of this section,

we connect the spectrum of XX>−d1I√
(d1−1)(d2−1)

with Chebyshev polynomials and cyclically non-

backtracking walks. Define

Γ0(x) = 1, Γ2k(x) = 2T2k

(x
2

)
+

d1−2
(d1−1)k , (3.2.46)

Γ2k+1(x) = 2T2k+1

(x
2

)
. (3.2.47)
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Here {Tk(x)} are the Chebyshev polynomials of the first kind on [−1,1] which satisfy

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2xTk(x)−Tk−1(x). (3.2.48)

Let {Uk(x)} be the Chebyshev polynomials of the second kind on [−1,1] such that

U−1(x) = 0, U0(x) = 1,

Uk+1(x) = 2xUk(x)−Uk−1(x).

Define

pk(x) =Uk

(x
2

)
− 1

d1−1
Uk−2

(x
2

)
. (3.2.49)

We begin with representing closed non-backtracking walks with pk(x). The following lemma

gives a deterministic identity. Recall in our Definition 3.2.11, all closed non-backtracking walks

start and end at vertices in V1.

Lemma 3.2.16. Let NBW(n)
k be the number of closed non-backtracking walks of length 2k in a

(d1,d2)-biregular bipartite graph G. Let λ1 ≥ ·· · ≥ λn be the eigenvalues of XX>−d1I√
(d1−1)(d2−1)

. We

have

n

∑
i=1

pk(λi) = (d1−1)−k/2(d2−1)−k/2NBW(n)
k . (3.2.50)

Proof. Let A(k) be the n×n matrix such that A(k)
i j is the number of non-backtracking walks of

88



length 2k from i to j, where i, j ∈V1. We have the following relations:

A(1) = XX>−d1I, A(2) = (A(1))2−d1(d2−1)I,

A(k+1) = A(1)A(k)− (d1−1)(d2−1)A(k−1), ∀k ≥ 2. (3.2.51)

The expressions of A(1) and A(2) follow from the definition of non-backtracking walks.

Since a non-backtracking walk of length 2k+2 can be decomposed as a non-backtracking walk

of length 2k and a non-backtracking walk of length 2 which avoid backtracking at the 2k-th step,

the expression (3.2.51) holds. We now claim that for k ≥ 1,

pk

(
XX>−d1I√

(d1−1)(d2−1)

)
= [(d1−1)(d2−1)]−k/2A(k), (3.2.52)

and prove it by induction. Note that from (3.2.49),

p1(x) = x, p2(x) = x2−1− 1
d1−1

.

It is easy to check (3.2.52) holds for k = 1,2. Since pk(x) is a linear combination of Uk(x/2) and

Uk−2(x/2), it satisfies the recursive relation for Uk(x/2), which is

pk(x) = xpk(x)− pk−1(x).
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Assume (3.2.52) holds for k ≤ s. Let M = XX>−d1I. Then

ps+1

(
M√

(d1−1)(d2−1)

)

=M[(d1−1)(d2−1)]−(s+1)/2A(s)− [(d1−1)(d2−1)]−(s−1)/2A(s−1)

=[(d1−1)(d2−1)]−(s+1)/2
(

MA(s)− (d1−1)(d2−1)A(s−1)
)

=[(d1−1)(d2−1)]−(s+1)/2A(s+1),

where the last equality is from (3.2.51). Therefore (3.2.52) holds. Taking trace on both sides in

(3.2.52), we obtain (3.2.50).

The next theorem is an algebraic relation between Γk and the number of cyclic non-

backtracking walks. Together with Lemma 3.2.15, it implies the polynomials Γk(x) of the

eigenvalues for RBBGs converges in distribution to a sum of Poisson random variables.

Theorem 3.2.17. Let G be a (d1,d2)-biregular bipartite graph and λ1 ≥ ·· · ≥ λn be the eigen-

values of XX>−d1I√
(d1−1)(d2−1)

. Then for any k ≥ 1, we have

n

∑
i=1

Γk(λi) = (d1−1)−k/2(d2−1)−k/2CNBW(n)
k . (3.2.53)

Proof. We first relate the number of cyclically non-backtracking closed walks CNBW(n)
k to the

number of closed non-backtracking walks NBW(n)
k .

A closed non-backtracking walk of length 2k is either cyclically non-backtracking or it

can be obtained from a closed non-backtracking walk of length 2(k−2) by adding a new walk of

length 2 (which we call a tail) to the beginning of the walk and its reverse to the end (see Figure

3.2 for an example). For any cyclically non-backtracking walk of length 2(k−2), we can add a

tail in (d1−2)(d2−1) many ways. For any closed non-backtracking walk of length 2(k−2) that

is not cyclically non-backtracking, we can add a tail in (d1−1)(d2−1) many ways. Therefore
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for k ≥ 3, we have the following equation

NBW(n)
k = CNBW(n)

k +(d1−2)(d2−1)CNBW(n)
k−2 +(d1−1)(d2−1)(NBW(n)

k−2−CNBW(n)
k−2)

= CNBW(n)
k +(d1−1)(d2−1)NBW(n)

k−2− (d2−1)CNBW(n)
k−2,

which can be written as

CNBW(n)
k − (d2−1)CNBW(n)

k−2 = NBW(n)
k − (d1−1)(d2−1)NBW(n)

k−2. (3.2.54)

Note that CNBW(n)
k = NBW(n)

k for k = 1,2. Applying (3.2.54) recursively, we have when

k is even,

CNBW(n)
k (3.2.55)

=NBW(n)
k − (d1−2)[(d2−1)NBW(n)

k−2 +(d2−1)2NBW(n)
k−4 + · · ·+(d2−1)

k−2
2 NBW(n)

2 )].

And when k is odd,

CNBW(n)
k (3.2.56)

=NBW(n)
k − (d1−2)[(d2−1)NBW(n)

k−2 +(d2−1)2NBW(n)
k−4 + · · ·+(d2−1)

k−3
2 NBW(n)

3 ].

Denote

NBW(n)
k :=(d2−1)−k/2NBW(n)

k , CNBW(n)
k := (d2−1)−k/2CNBW(n)

k .

We can simplify the above equations (3.2.55) and (3.2.56) as

CNBW(n)
k = NBW(n)

k − (d1−2)
(

NBW(n)
k−2 +NBW(n)

k−4 + · · ·+NBW(n)
a

)
, (3.2.57)
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where a = 2 if k is even and a = 1 if k is odd. Also (3.2.50) can be written as

n

∑
i=1

pk(λi) = (d1−1)−k/2NBW(n)
k . (3.2.58)

From the proof of Proposition 32 in [76], we have the following relation between Γk(x)

and pk(x) for k ≥ 1:

Γ2k(x) = p2k(x)− (d1−2)
(

p2k−2(x)
d1−1

+
p2k−4(x)
(d1−1)2 + · · ·+

p2(x)
(d1−1)k−1

)
, (3.2.59)

Γ2k−1(x) = p2k−1(x)− (d1−2)
(

p2k−3(x)
d1−1

+
p2k−5(x)
(d1−1)2 + · · ·+

p1(x)
(d1−1)k−1

)
. (3.2.60)

Then from (3.2.58) and (3.2.57),

(d1−1)−kCNBW(n)
2k

=
n

∑
i=1

(
p2k(λi)− (d1−2)

(
p2k−2(λi)

d1−1
+ · · ·+ p2(λi)

(d1−1)k−1

))
=

n

∑
i=1

Γ2k(λi),

where the last equality is from (3.2.59). Similarly, from (3.2.60),

(d1−1)(2k−1)/2CNBW(n)
2k−1 =

n

∑
i=1

Γ2k−1(λi).

Therefore for all k ≥ 1,

n

∑
i=1

Γk(λi) = (d1−1)−k/2CNBW(n)
k = [(d1−1)(d2−1)]−k/2CNBW(n)

k .

This completes the proof of Theorem 3.2.17.
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3.3 Spectral gap

In this section, we provide some estimates on the second largest eigenvalue of the random

biregular bipartite graphs that will be used to study eigenvalue fluctuations in Section 3.4. Note

that the largest eigenvalue of XX>− d1I is λ1 = d1(d2− 1). In the next theorem, we provide

upper bounds on |λ| for all eigenvalues λ 6= λ1.

Theorem 3.3.1. Let G be a (d1,d2)-random biregular bipartite graph with d1 ≥ d2. Let λ1 ≥

·· · ≥ λn be the eigenvalues of XX>−d1I.

1. For fixed d1,d2, there exists a sequence εn→ 0 such that for any eigenvalue λ 6= λ1,

P(|λ− (d2−2)| ≥ 2
√
(d1−1)(d2−1)+ εn)→ 0 (3.3.1)

as n→ ∞.

2. Suppose d2 ≤ 1
2n2/3, d1 ≥ d2 ≥ cd1 for some constant c ∈ (0,1). Then for some constant

α1 > 0 depending on c and any eigenvalue λ 6= λ1,

P
(
|λ| ≥ α1

√
(d1−1)(d2−1)

)
≤ 1

n2 . (3.3.2)

3. Suppose d2 ≤C1, d1 ≤ n2, there exists a constant α2 depending on C1 such that for any

eigenvalue λ 6= λ1,

P
(
|λ| ≥ α2

√
(d1−1)(d2−1)

)
≤ 1

n2 . (3.3.3)

Remark 3.3.2. The probability estimates in (3.3.2) and (3.3.3) can be improved, see [179]. In

order to prove the main theorems in Section 3.4, we only include a weaker version for simplicity.

proof of Theorem 3.3.1. Theorem 4 in [48] states that for a random biregular bipartite graph with
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d1 ≥ d2, the eigenvalues of the adjacency matrix A satisfy the following estimates with high

probability:

1. the second eigenvalue of A satisfies λ2(A)≤
√

d1−1+
√

d2−1+o(1),

2. the smallest positive eigenvalue of A satisfies λ
+
min(A)≥

√
d1−1−

√
d2−1−o(1).

Since eigenvalues of XX> are the squares of the eigenvalues for A, we have with high probability,

λ2(XX>)−d1− (d2−2)≤ 2
√

(d1−1)(d2−1)+o(1),

λn(XX>)−d1− (d2−2)≥−2
√

(d1−1)(d2−1)−o(1),

therefore (3.3.1) holds.

Theorem 1.1 in [179] states that if d2 ≤ 1
2n2/3 and d1 ≥ d2, there exists a constant α > 0

such that λ2(A)≤ α
√

d1 with probability at least 1−m−2. This implies for any eigenvalue λ of

XX>−d1I with λ 6= d1(d2−1), we have

P
(
−d1 ≤ λ≤ α

2d1−d1
)
≥ 1−m−2 ≥ 1−n−2.

Since d1 ≥ d2 ≥ cd1, we can find a constant α1 > 0 depending on α and c such that

P
(
|λ| ≤ α1

√
(d1−1)(d2−1)

)
≥ 1−n−2.

Therefore (3.3.2) holds. Theorem 1.5 in [179] states that if d2 ≤ C1,d1 ≤ n2, there exists a

constant α2 depending on C1 such that

P
(

max
2≤i≤m+n−1

|λ2
i (A)−d1| ≥ α2

√
(d1−1)(d2−1)

)
≤ n−2.

Then (3.3.3) follows from the algebraic relation between the spectra of A and XX>−d1I.
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3.4 Eigenvalue fluctuations

Lemma 3.2.17 and Corollary 3.2.15 imply the limiting laws for ∑
n
i=1 Γk(λi) are given by

a sum of Poisson random variables. In this section we extend the results to a more general class

of function f and study the behavior of ∑
n
i=1 f (λi) for RBBGs with fixed and growing degrees.

The following set-up for weak convergence will be used in Section 3.4.2 to prove Theorem

3.4.7. We will closely follow the definitions and notations used in [76]. See Section 2 in [76] for

more details.

Denote N := {1,2, . . .}. Let ~w=(wm)m∈N be a sequence of positive weights. Let L2(~w) be

the space of sequences (xm)m∈N that are square-integrable with respect to ~w, i.e., ∑
∞
m=1 x2

mwm < ∞.

We define a complete separable metric space X = (L2(~w),‖ ·‖), where for any sequence (xm)m∈N,

‖x‖=

(
∞

∑
m=1

x2
mwm

)1/2

.

Denote the space of probability measures on the Borel σ-algebra of X by P (X ). We use

the Prokhorov metric for weak convergence as the metric on P (X ). The following results are

proved in Section 2 of [76].

Proposition 3.4.1 (Lemma 2-4 in [76]). The following holds for the complete separable metric

space X .

1. Let (am)m∈N ∈ L2(~w) be such that am ≥ 0 for every m. Then the set

{(bm)m∈N ∈ L2(~w) : 0≤ |bm| ≤ am,∀m ∈ N}

is compact in (L2(~w),‖ · ‖).

2. Suppose {Xn} and X are random sequences taking values in L2(~w) such that Xn converges

in distribution to X . Then for any b ∈ L2(~w), the random variables 〈b,Xn〉 converges in
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distribution to 〈b,X〉.

3. Let x ∈ X and P,Q be two probability measures in P (X ). Suppose for any finite collection

of indices (i1, . . . , ik), the law of random vector (xi1, . . . ,xik) is the same under both P and

Q. Then P = Q on the entire Borel σ-algebra of X .

We also need the following results from the approximation theory.

Definition 3.4.2 (Bernstein ellipse). For ρ > 1, let Eρ be the image of the map z 7→ (z+ z−1)/2

of the open disc of radius ρ in the complex plain centered at the origin. We can Eρ the Bernstein

ellipse of radius ρ. The ellipse has foci at ±1 and the sum of the major semi-axis and minor

semi-axis is exactly ρ.

Proposition 3.4.3 ([171], Theorem 8.1). Suppose f : [−1,1]→ R can be analytically extended

to Eρ and is bounded by M on Eρ. Then f has a unique expansion on [−1,1] as

f (x) =
∞

∑
k=0

akTk(x),

where Tk(x) is the Chebyshev polynomial of the first kind defined in (3.2.48), and the coefficients

of this expansion satisfy

|a0| ≤M, |ak| ≤
2M
ρk .

Define fk(x) = ∑
k
i=0 akTk(x). Applying the bound |Tk(x)| ≤ 1 when x ∈ [−1,1] and

Proposition 3.4.3, we obtain for all x ∈ [−1,1],

| f (x)− fk(x)| ≤
2M

ρk(ρ−1)
. (3.4.1)

3.4.1 Poisson fluctuations with fixed degrees

Now fix d1 and d2 as constants. We are ready to extend our results in Section 3.2.3 to

a more general class of functions as follows. Note that the following theorem is given for a
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sequence of RBBGs with growing n. For the ease of notations, we drop the dependence on n

when writing the matrix X and eigenvalues λ1, . . . ,λn.

Theorem 3.4.4. For fixed d1 ≥ d2 ≥ 2 and (d1,d2) 6= (2,2), let Gn be a sequence of random

(d1,d2)-biregular bipartite graph. Let λ1≥ ·· · ≥ λn be the eigenvalues of XX>−d1I√
(d1−1)(d2−1)

. Suppose

f is a function such that f (2z) is analytic on Eρ, where ρ = [(d1−1)(d2−1)]α for some α > 7
2 .

Then f (x) can be expanded on [−2,2] as

f (x) =
∞

∑
k=0

akΓk(x), (3.4.2)

and the random variable

Y (n)
f :=

n

∑
i=1

f (λi)−na0 (3.4.3)

converges in distribution as n→ ∞ to the infinitely divisible random variable

Yf :=
∞

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k , (3.4.4)

where CNBW(∞)
k is defined in (3.2.37).

Proof. Define

fk(x) :=
k

∑
i=0

aiΓi(x).

We first show that fk(x) is a good approximation of f (x). Applying Proposition 3.4.3 to f (2x)

gives an expansion (3.4.2) with

|ak| ≤C[(d1−1)(d2−1)]−αk (3.4.5)

for some constant C that depends only on d1,d2 and the constant M given in Proposition 3.4.3.
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By the proprieties of Chebyshev polynomials, on any interval [−K,K], we have

max
|x|≤K
|Tk(x)|=

(K−
√

K2−1)k +(K +
√

K2−1)k

2
. (3.4.6)

From (3.2.46) and (3.2.47), we have Γ1(x) = x, and for any k ≥ 2,

|Γk(x)| ≤ 2
∣∣∣Tk

(x
2

)∣∣∣+ d1−2
(d1−1)k/2 ≤ 2

∣∣∣Tk

(x
2

)∣∣∣+1. (3.4.7)

From (3.4.6),

max
|x|≤3

2
∣∣∣Tk

(x
2

)∣∣∣=(3
2
−
√

5
2

)k

+

(
3
2
+

√
5

2

)k

,

Then for all k ≥ 2, with (3.4.7) we obtain

sup
|x|≤3
|Γk(x)| ≤

(
3
2
+

√
5

2

)k

+2≤ 3k+1, (3.4.8)

and the same bound holds when k = 1. From (3.4.5) and (3.4.8), for all x ∈ [−3,3],

∞

∑
k=0
|akΓk(x)| ≤ 3C

∞

∑
k=0

[3((d1−1)(d2−1))−α]k < ∞,

where the last inequality comes from the fact that (d1− 1)(d2− 1) ≥ 2 and α > 7
2 . Hence the

series ∑
∞
k=0 akΓk(x) is absolutely convergent on [−3,3], which implies the expansion of f in

(3.4.2) is valid on [−3,3]. Then we have for a constant C1 > 0 depending on C,

sup
|x|≤3
| f (x)− fk(x)| ≤ sup

|x|≤3

∞

∑
i=k+1

|aiΓi(x)| ≤C1[3(d1−1)(d2−1)−α]k+1. (3.4.9)
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Denote

K1 := λ1 =
d1
√

(d2−1)√
d1−1

.

For sufficiently large k, from (3.4.6) and (3.4.7),

sup
|x|≤K1

|Γk(x)| ≤ (2K1)
k.

And from (3.4.5) and the assumption α > 7/2,

∞

∑
k=0
|akΓk(x)| ≤C

∞

∑
k=0

[2K1((d1−1)(d2−1))−α]k < ∞.

It implies the series ∑
∞
k=0 akΓk(x) is also absolutely convergent on [−K1,K1], and the expansion

of f in (3.4.2) is valid on [−K1,K1].

Since 2K1 ≤ 4[(d1−1)(d2−1)]1/2 and (d1−1)(d2−1)≥ 2, for a constant C2 > 0,

sup
|x|≤K1

| f (x)− fk(x)| ≤C2[2K1((d1−1)(d2−1))−α]k+1

≤C2

[
4((d1−1)(d2−1))−α+ 1

2

]k+1
≤C2

[
((d1−1)(d2−1))−α+ 5

2

]k+1
.

(3.4.10)

Therefore fk converges to f uniformly on [−K1,K1], and the interval [−K1,K1] deterministically

contains all eigenvalues of XX>−d1I√
(d1−1)(d2−1)

.

By the definition of CNBW(∞)
k in (3.2.37), Equation (3.4.4) can be written as

Y f :=
∞

∑
j=1

∞

∑
i=1

ai j

[(d1−1)(d2−1)]i j/2 2 jC(∞)
j ,

where Yf is a sum of independent random variables, and E|Yf |2 < ∞ by (3.4.5).
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Denote α′ := α−2 > 3
2 . Choose β satisfying 1

α′ < β < 2
3 and define

rn =

⌊
β logn

log[(d1−1)(d2−1)]

⌋
,

X (n)
f =

rn

∑
k=1

ak

[(d1−1)(d2−1)]k/2 CNBW(n)
k ,

Ỹ (n)
f =

rn

∑
k=1

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k .

Note that CNBW(n)
1 = 0, from (3.2.53),

X (n)
f =

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(n)
k =

n

∑
i=1

frn(λi)−na0. (3.4.11)

By Corollary 3.2.15,

dTV

(
(CNBW(n)

k ,2≤ k ≤ rn),(CNBW(∞)
k ,2≤ k ≤ rn)

)
≤

c8
√

rn[(d1−1)(d2−1)]3rn/2

nd1
= o(1).

Since X (n)
f and Ỹ (n)

f are measurable functions of

(CNBW(n)
k ,2≤ k ≤ rn) and (CNBW(∞)

k ,2≤ k ≤ rn),

respectively, we have

dTV

(
X (n)

f ,Ỹ (n)
f

)
≤ dTV

(
(CNBW(n)

k ,2≤ k ≤ rn),(CNBW(∞)
k ,2≤ k ≤ rn)

)
= o(1).

Note that Ỹ (n)
f converges almost surely to Yf by (3.4.5), so X (n)

f converges in distribution to Yf .

By Slutsky’s theorem, to show Y (n)
f defined in (3.4.3) converges in distribution to Yf ,

it remains to show that Y (n)
f −X (n)

f converges to zero in probability. The largest eigenvalue of

100



XX>−d1I√
(d1−1)(d2−1)

is K1, so from (3.4.10) we have

lim
k→∞

fk(λ1) = f (λ1).

Then for any δ > 0 and sufficiently large n,

| f (λ1)− frn(λ1)| ≤ δ/2. (3.4.12)

From (3.4.3), (3.4.11) and (3.4.12), we have for sufficiently large n,

∣∣∣Y (n)
f −X (n)

f

∣∣∣≤ n

∑
i=1
| f (λi)− frn(λi)| ≤

δ

2
+

n

∑
i=2
| f (λi)− frn(λi)|. (3.4.13)

Suppose that all the non-trivial eigenvalues λ 6= λ1 are contained in [−3,3], from (3.4.9),

n

∑
i=2
| f (λi)− frn(λi)| ≤C1(n−1)[3(d1−1)(d2−1)−α]rn+1

≤C1n[(d1−1)(d2−1)−α+2]rn ≤C1n1−α′β = o(1),

which combining (3.4.13) implies for sufficiently large n,

∣∣∣Y (n)
f −X (n)

f

∣∣∣≤ δ.

Recall (3.3.1) and the assumption d1 ≥ d2. With high probability, for a sequence εn→ 0,

we have the nontrivial eigenvalues of XX>−d1I√
(d1−1)(d2−1)

is contained in

[
−2− εn +

d2−2√
(d1−1)(d2−1)

,2+ εn +
d2−2√

(d1−1)(d2−1)

]
⊆ [−3,3]
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for sufficiently large n. Therefore

P
(∣∣∣Y (n)

f −X (n)
f

∣∣∣≥ δ

)
≤ P

(
max

2≤i≤n
|λi| ≥ 3

)
= o(1).

This finishes the proof.

As a corollary of Theorem 3.4.4, we obtain eigenvalue fluctuations for the adjacency

matrices of RBBGs as follows.

Corollary 3.4.5. For fixed d1 ≥ d2 ≥ 2 and (d1,d2) 6= (2,2), let Gn be a sequence of random

(d1,d2)-biregular bipartite graph. Let λ1 ≥ ·· · ≥ λn+m be the eigenvalues of its adjacency matrix

A. Suppose f satisfies the same conditions as in Theorem 3.4.4. Then the random variable

Y (n)
f :=

1
2

[
n+m

∑
i=1

f

(
λ2

i −d1√
(d1−1)(d2−1)

)
− (m−n) f

(
−d1√

(d1−1)(d2−1)

)]
−na0

converges in distribution as n→ ∞ to the infinitely divisible random variable

Yf :=
∞

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k ,

where CNBW(∞)
k is defined in (3.2.37).

Proof. Recall that all eigenvalues of A consist of two parts. There are 2n eigenvalues in pair as

{−λ,λ} where λ is a singular value of X . In addition, there are (m−n) extra zero eigenvalues.

the result then follows from the algebraic relation between eigenvalues of A and eigenvalues of

XX>−d1I.

3.4.2 Gaussian fluctuations with growing degrees

In this section, we consider the eigenvalue fluctuations of RBBGs when d1 ·d2→ ∞.
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We first prove the following weak convergence result for a normalized and centered

version of CNBW(∞)
k .

Lemma 3.4.6. Suppose that d1 ·d2→ ∞, rn→ ∞ as n→ ∞. For k ≥ 2, define

N(n)
k :=

1
[d1−1)(d2−1)]k/2

(
CNBW(∞)

k −ECNBW(∞)
k

)
1{k≤rn}. (3.4.14)

Let {Zk}k≥2 be independent Gaussian random variables with EZk = 0 and EZ2
k = 2k. Define the

weight wk = bk/(k2 log(k+1)), where (bk)k∈N is any fixed positive summable sequence.

Let Pn be the law of the sequence (N(n)
k )k≥2. Then as an element in P (X ), Pn converges

weakly to the law of the random vector (Zk)k≥2.

Proof. We first prove the following Claim (1): for any fixed r, (N(n)
k )2≤k≤r converges in distribu-

tion to (Zk)2≤k≤r.

For any fixed k, when n is sufficiently large, we can write (3.4.14) as

N(n)
k =

1
[d1−1)(d2−1)]k/2

(
2kC(∞)

k − [(d1−1)(d2−1)]k
)

(3.4.15)

+
1

[d1−1)(d2−1)]k/2 ∑
j|k, j<k

(
2 jC(∞)

j − [(d1−1)(d2−1)] j
)
.

Recall C(∞)
k is a Poisson random variable with mean (d1−1)k(d2−1)k

2k . The first term in

(3.4.15) converges in distribution to a centered Gaussian random variable Zk with variance 2k as

n→ ∞ from the Gaussian approximation of Poisson distribution.

To show the convergence of N(n)
k for a fixed k, it remains to show the second term in

(3.4.15) converges to zero in probability. Note that the second term in (3.4.15) has mean zero and
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its variance is given by

Var

[
1

[d1−1)(d2−1)]k/2 ∑
j|k, j<k

(
2 jC(∞)

j − [(d1−1)(d2−1)] j
)]

= ∑
j|k, j<k

2 j[(d1−1)(d2−1)] j−k,

which goes to 0 as n→∞. Then by Chebyshev’s inequality, this term converges to 0 in probability.

Therefore Claim (1) holds.

We further define N(n)
1 = 0,Z1 = 0, and consider the weak convergence of (N(n)

k )k∈N as

an element in L2(~w). Since

E
∞

∑
k=1

(Zk)
2wk =

∞

∑
k=2

bk

k log(k+1)
< ∞,

(Zk)k∈N ∈ L2(~w) almost surely. From Claim (1), every sub-sequential limit of Pn has the same

finite dimensional distributions as (Zk)k∈N. From Proposition 3.4.1 (3), every sub-sequential

weak limit of Pn in P (X ) is equal to the law of (Zk)k∈N.

By Prokhorov’s Theorem (see for example [158, Chapter 14, Theorem 1.5]), if {Pn}n∈N is

tight, and every weakly convergent sub-sequence has the same limit µ in P (X ), then the sequence

{Pn}n∈N converges weakly to µ. Since we have already shown every sub-sequential weak limit of

Pn is the law of (Zk)k∈N in P (X ), to finish the proof, it remains to show {Pn}n∈N is tight.

From the description of compact sets in L2(~w) given in Proposition 3.4.1 (1), it suffices to

show for any ε > 0, there exists an element (ak)k∈N ∈ L2(~w) with ak > 0,∀k ∈ N, such that

sup
n
P

[⋃
k∈N

{
|N(n)

k |> ak

}]
= sup

n
P

[
rn⋃

k=1

{
|N(n)

k |> ak

}]
< ε, (3.4.16)

where
⋃

k∈N

{
|N(n)

k |> ak

}
is the complement of a compact set in L2(~w).

For any fixed ε > 0, choose ak = αk
√

log(k+1) for a constant α2 > 32 depending on
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ε, then (ak)k∈N ∈ L2(~w) and ak > 0,∀k ∈ N. According to the definition of N(n)
k in (3.4.14), the

above Condition (3.4.16) is equivalent to

sup
n
P

[
rn⋃

k=1

{
|CNBW(∞)

k −ECNBW(∞)
k |> ak[(d1−1)(d2−1)]k/2

}]
< ε. (3.4.17)

From the proof of Theorem 22 in [76], CNBW(∞)
k , as a sum of independent Poisson

random variables, satisfies the following concentration inequality: for any t > 0,

P
(
|CNBW(∞)

k −ECNBW(∞)
k |> t

)
≤ 2exp

(
− t

8k
log
(

1+
t

2k[(d1−1)(d2−1)]k

))
.

(3.4.18)

Since log(1+ x)≥ x/2 for x ∈ [0,1], we have from (3.4.18), for sufficiently large n and

all k ≤ rn,

P
(
|CNBW(∞)

k −ECNBW(∞)
k |> ak[(d1−1)(d2−1)]k/2

)
≤2exp

(
−ak[(d1−1)(d2−1)]k/2

8k
log
(

1+
ak

2k[(d1−1)(d2−1)]k/2

))

≤2exp
(
−

a2
k

32k2

)
= 2(k+1)−α2/32.

With the assumption α2 > 32, we can make ∑
∞
k=1 2(k+1)−α2/32 < ε by choosing a sufficiently

large constant α depending on ε, which guarantees (3.4.16). Hence {Pn}n∈N is tight. This

completes the proof.

We now continue to study the eigenvalue fluctuation for XX>−d1I√
(d1−1)(d2−1)

when d1 ·d2→ ∞.

Before stating the main result, we make several assumptions on the test function f . Define

Φ0(x) = 1, Φk(x) = 2Tk(x/2), ∀k ≥ 1.
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Assume f is an entire function on C. Let K1 = max{α1,α2}, where α1 and α2 are the constants

in (3.3.2), (3.3.3), respectively. Then from Proposition 3.4.3, f has the expansion

f (x) =
∞

∑
i=0

aiΦi(x) (3.4.19)

on [−K1,K1]. Denote

fk(x) :=
k

∑
i=0

aiΦi(x).

Suppose the following conditions hold for f :

1. For some α > 3/2 and M > 0,

sup
|x|≤K1

| f (x)− fk(x)| ≤M exp(−αkh(k)), (3.4.20)

where h is a function such that h(rn)≥ log[(d1−1)(d2−1)] for a sequence

rn =

⌊
β logn

log[(d1−1)(d2−1)]

⌋
(3.4.21)

with a constant β < 1/α.

2.

lim
n→∞

∣∣∣∣∣ frn

(
d1(d2−1)√

(d1−1)(d2−1)

)
− f

(
d1(d2−1)√

(d1−1)(d2−1)

)∣∣∣∣∣= 0. (3.4.22)

Let µk(d1,d2) := ECNBW(∞)
k . We define the following sequence:

m(n)
f := na0 +

rn

∑
k=1

ak

[(d1−1)(d2−1)]k/2

(
µk(d1,d2)−n(d1−2) · (d2−1)k/21{k is even}

)
.

(3.4.23)

106



Now we are ready to state our results for eigenvalue fluctuations when d1 ·d2→ ∞. Here

d1,d2, (λi)1≤i≤n and the matrix X are quantities depending on n, but for simplicity of notations,

we drop the dependence on n.

Theorem 3.4.7. Let Gn be a sequence of random (d1,d2)-biregular bipartite graphs with

d1d2→ ∞, d1d2 = no(1).

Let λ1 ≥ ·· · ≥ λn be the eigenvalues of XX>−d1I√
(d1−1)(d2−1)

. Suppose one of the following two assump-

tions holds:

1. There exists a constant c≥ 1 such that 1≤ d1
d2
≤ c.

2. There exists a constant c1 such that d2 ≤ c1 for all n.

Let f be an entire function on C satisfying (3.4.20) and (3.4.22). Then as n→ ∞, the random

variable

Y (n)
f =

n

∑
i=1

f (λi)−m(n)
f (3.4.24)

converges in distribution to a centered Gaussian random variable with variance σ f = 2∑
∞
k=2 ka2

k .

Moreover, for any fixed t, consider the entire functions g1, . . . ,gt satisfying (3.4.20) and

(3.4.22). The corresponding random vector (Y (n)
g1 , . . . ,Y (n)

gt ) converges in distribution to a centered

Gaussian random vector (Zg1, . . . ,Zgt ) with covariance

Cov(Zgi,Zg j) = 2
∞

∑
k=2

kak(gi)ak(g j) (3.4.25)

for 1≤ i, j ≤ t, where ak(gi),ak(g j) are the k-th coefficients in the expansion (3.4.19) for gi,g j,

respectively.
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Proof. We first prove the CLT for a single test function f . Define

X (n)
f :=

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(n)
k −E

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k ,

X̃ (n)
f :=

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k −E

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k .

Recall the definition of m f (n) in (3.4.23). From (3.2.46), (3.2.47), and (3.2.53), X (n)
f can

be written as

X (n)
f =

rn

∑
k=2

n

∑
i=1

akΓk(λi)−
rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 µk(d1,d2)

=
rn

∑
k=2

n

∑
i=1

(
2akTk(λi/2)+

ak(d1−2)
(d1−1)k/2 1{k is even}

)
−

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 µk(d1,d2)

=
n

∑
i=1

frn(λi)−na0 +
rn

∑
k=2

nak(d1−2)
(d1−1)k/2 1{k is even}−

rn

∑
k=2

ak

[(d1−1)(d2−1)]k/2 µk(d1,d2)

=
n

∑
i=1

frn(λi)−m(n)
f ,

where in the third line we use the fact given in (3.2.53) that

n

∑
i=1

2a1T1(λi/2) =
n

∑
i=1

a1Γ1(λi) = a1[(d1−1)(d2−1)]−1/2CNBW(n)
1 = 0.

From the definition of N(n)
k in (3.4.14),

X̃ (n)
f =

rn

∑
k=2

akN(n)
k .

By Lemma 3.4.6 and Proposition 3.4.1 (2), X̃ (n)
f converges in distribution to a centered Gaussian

random variable with variance σ f = ∑
∞
k=2 2ka2

k .
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From Corollary 3.2.15, the total variation distance between X (n)
f and X̃ (n)

f satisfies

dTV(X
(n)
f , X̃ (n)

f )≤ dTV

(
(CNBW(n)

k ,2≤ k ≤ rn),(CNBW(∞)
k ,2≤ k ≤ rn)

)
≤

c8
√

rn[(d1−1)(d2−1)]3rn/2

nd1
,

which converges to 0 as n→ ∞ from the assumption (3.4.21). Therefore X (n)
f and X̃ (n)

f converge

to the same limit.

It remains to show Y (n)
f and X (n)

f converge in distribution to the same limit. We have

frn(λ1)→ f (λ1) as n→ ∞ from (3.4.22). Then for any δ > 0, | f (λ1)− frn(λ1)| ≤ δ/2 for

sufficiently large n.

Suppose that all the non-trivial eigenvalues are contained in [−K1,K1]. From Condition

(3.4.20), we have for sufficiently large n,

∣∣∣Y (n)
f −X (n)

f

∣∣∣≤ n

∑
i=1
| f (λi)− frn(λi)| ≤

δ

2
+(n−1)M exp(−αrnh(rn))≤

δ

2
+Mn1−αβ < δ.

Therefore

P
(∣∣∣Y (n)

f −X (n)
f

∣∣∣≥ δ

)
≤ P

(
max

2≤i≤n
|λi| ≥ K1

)
= o(1), (3.4.26)

where the last inequality is from part (2) and (3) in Theorem 3.3.1. Hence Y (n)
f and X (n)

f converges

in distribution to the same limit. This proves the CLT for (3.4.24).

We now extend the results to a random vector (Yg1, . . . ,Ygt ). By Lemma 3.4.6 and part (2)

in Proposition 3.4.1, the random vector (X̃ (n)
g1 , . . . , X̃ (n)

gt ) converges in distribution to the Gaussian

random vector (Zg1 , . . . ,Zgt ) with covariance given in (3.4.25). Note that each entry in the vector

(X (n)
g1 , . . . ,X (n)

gt ) is a measurable function of (CNBW(n)
k )2≤k≤rn , and we can find a measurable map
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ψ such that

ψ((CNBW(n)
k )2≤k≤rn) = (X (n)

g1 , . . . ,X (n)
gt ), ψ((CNBW(∞)

k )2≤k≤rn) = (X̃ (n)
g1 , . . . , X̃ (n)

gt ).

Since any measurable map reduces total variation distance between two random variables, we

obtain from (3.2.41),

dTV

(
(X (n)

g1 , . . . ,X (n)
gt ),(X̃ (n)

g1 , . . . , X̃ (n)
gt )
)

≤dTV

(
(CNBW(n)

k ,2≤ k ≤ rn),(CNBW(∞)
k ,2≤ k ≤ rn)

)
≤

c8
√

rn[(d1−1)(d2−1)]3rn/2

nd1
= o(1).

Therefore
(

X (n)
g1 , . . . ,X (n)

gt

)
converges in distribution to (Zg1, . . . ,Zgt ). Finally, according to

(3.4.26),
(

X (n)
g1 , . . . ,X (n)

gt

)
and

(
Y (n)

g1 , . . . ,Y (n)
gt

)
converge in distribution to the same limit. This

finishes the proof.

Remark 3.4.8. In [60], the authors proved a CLT for linear spectral statistics for normalized

sample covariance matrices A = 1√
np(XX>− pI), where p/n→ ∞ and X = (Xi j)n×p has i.i.d.

entries with mean 0 variance 1. It is shown in Theorem 1 of [60] that the fluctuations of linear

statistics for two analytic functions g1,g2 converge in distribution to a centered Gaussian vector

with covariance given by (ν4−3)a1(g1)a1(g2)+2∑
∞
k=1 kak(g1)ak(g2), where ν4 = EX4

11. The

covariance given in (3.4.25) is the same, except for the fact that the coefficient in front of

a1( f1)a1( f2) is 0. This can be explained by the fact that the number of 2-cycles is 0 in RBBGs,

whereas in the model used in [60] it is not. The same phenomenon was also observed in uniform

random regular graphs [119], where the limiting variance is the same as the eigenvalue fluctuations

for the GOE except for the first two terms, see Remark 22 in [119].
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3.5 Global semicircle law

Consider a random (n,m,d1,d2)-biregular bipartite graph with d1 ≥ d2. We assume d1,d2

satisfy the following:

lim
n→∞

d1 = ∞, (3.5.1)

d1 = o(nε), ∀ε > 0, (3.5.2)

d1

d2
→ ∞. (3.5.3)

Here d2 can be fixed or a parameter depending on n. In this section, we prove a semicircle law for

the matrix XX>−d1I√
(d1−1)(d2−1)

under the assumptions (3.5.1)-(3.5.3).

For RBBGs in this regime, we have the locally tree-like structure in the following sense.

Let R be fixed and τ1 be the set of vertices in V1 without any cycles in the R-neighborhood. The

following lemma holds.

Lemma 3.5.1. Then under Condition (3.5.2),

P
(

n−|τ1|
n

> n−1/4
)
= o(n−5/4).

To prove Lemma 3.5.1, the following estimates on the expectation and variance of the

cycle counts of RBBGs given in [75] are needed.

Lemma 3.5.2 (Proposition 4 in [75]). Let Ck be the number of cycles of length 2k in a random

(d1,d2)-biregular bipartite graph. Denote µk =
[(d1−1)(d2−1)]k

2k . If d1 = o(n),k = O(logn) and

kd1 = o(n), then

ECk = µk

(
1+O

(
k(k+d1)

n

))
, (3.5.4)

Var[Ck] = µk

(
1+O

(
d2k

1 (k(d1/d2)
2k−1 +(d1/d2)

−kd2)

n

))
. (3.5.5)
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Proof of Lemma 3.5.1. From Lemma 3.5.2, for each fixed k, under Condition (3.5.2),

ECk = (1+o(1))µk, Var[Ck] = (1+o(1))µk. (3.5.6)

If a vertex v1 ∈ V1 is not in τ1, then for some s with 2 ≤ s ≤ R, there exists a 2s-cycle

within (R− s)-neighborhood of v1. Hence the size of all (R− s)-neighborhoods of 2s-cycles from

V1 gives an upper bound on (n−|τ1|).

For any 2s-cycle, the size of its (R− s)-neighborhood from V1 is bounded by

c1s[(d1−1)(d2−1)](R−s)/2+1

with an absolute constant c1. Define

NR := c1

R

∑
s=2

s[(d1−1)(d2−1)](R−s)/2+1Cs.

We then have n− τ1 ≤ NR. From (3.5.6), ENR = O([(d1−1)(d2−1)]R+1).

Recall R is fixed. By Cauchy inequality,

Var[NR]≤ c2
1R

R

∑
s=2

s2[(d1−1)(d2−1)]R−s+2Var[Cs] = O([(d1−1)(d2−1)]R+2).

Then from Markov’s inequality, together with our assumptions (3.5.1)-(3.5.3),

P
(

n−|τ1|
n

> n−1/4
)
= P(n−|τ1|> n3/4)≤ P(NR ≥ n3/4)

≤ E[N2
R]

n3/2 = O([(d1−1)(d2−1)]2R+2n−3/2) = o(n−5/4).

We now state our main result in this section. The proof is based on the moment method
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and the tree approximation of local neighborhoods, which were previously applied to random

regular graphs in [77].

Theorem 3.5.3. Let Gn be a sequence of random (d1,d2)-biregular bipartite graph. Under

assumptions (3.5.1)-(3.5.3), the empirical spectral distribution of XX>−d1I√
(d1−1)(d2−1)

converges weakly

to the semicircle law almost surely.

Remark 3.5.4. Recall in [75], when the ratio d1/d2 ≥ 1 converges to a positive constant, the

ESD of XX>
d1

converges to Marčenko-Pastur law. With different scaling parameters, we obtain a

different semicircle law when d1/d2→ ∞. This can be seen as an analog of the semicircle law for

sample covariance matrices proved in [26] when the aspect ratio is unbounded.

Proof of Theorem 3.5.3. Note that for all i ∈V1, by the degree constraint,

(XX>)ii = ∑
j

Xi jX ji = ∑
j

Xi j = deg(i) = d1. (3.5.7)

Denote M = XX>−d1I√
(d1−1)(d2−1)

. We start with the trace expansion of M.

1
n

trMk =
1

n((d1−1)(d2−1))k/2 tr(XX>−d1I)k

=
1

n((d1−1)(d2−1))k/2 ∑
i1,...,ik∈[n]

i1 6=i2,...,ik 6=i1
j1,..., jk∈[m]

Xi1 j1Xi2 j1 · · ·Xik jkXi1 jk . (3.5.8)

From (3.5.7), the diagonal entries of XXT − d1I are 0, therefore we have the constraint that

i1 6= i2, . . . , ik 6= i1 in (3.5.8).

Let Ar,c
k (v,v) be the number of all closed walks of length 2k in G starting from v ∈V1 that

use r distinct vertices from V1, c distinct vertices from V2, with the restriction that i1 6= i2, . . . , ik 6=

i1. We have r ≤ k+1 and c≤ k, since there are at most k+1 vertices in V1 and k vertices in V2

that are visited in one closed walk of length 2k. From (3.5.8), the k-th moment of the empirical
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spectral distribution µn satisfies

∫
xkdµn(x) =

1
n

trMk =
1

n((d1−1)(d2−1))k/2 ∑
v∈V1

k+1

∑
r=1

k

∑
c=1

Ar,c
k (v,v). (3.5.9)

Since d1 ≥ d2, for any fixed v ∈V1, we have

∑
r≤k+1,c≤k

Ar,c
k (v,v)≤ d2k

1 .

For the ease of notations, in the following equations we often omit the range of r,c in the

summation.

We may decompose the sum in (3.5.9) into two parts depending on whether v ∈ τ1 or not.

For any v ∈ τ1, we write Ar,c
k =: Ar,c

k (v,v) since all neighborhood of v ∈ τ1 of radius k looks the

same and the number of such closed walks is independent of v. Now we have the following upper

bound on (3.5.9):

∫
xkdµn(x)≤

1
n((d1−1)(d2−1))k/2 ∑

v∈τ1

∑
r,c

Ar,c
k (v,v)+

(n−|τ1|)d2k
1

n((d1−1)(d2−1))k/2

=
|τ1|

n((d1−1)(d2−1))k/2 ∑
r,c

Ar,c
k +

(n−|τ1|)d2k
1

n((d1−1)(d2−1))k/2

≤ 1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k +
(n−|τ1|)d2k

1

n((d1−1)(d2−1))k/2 .

Similarly, a lower bound holds by only counting closed walks starting with vertices in τ1:

∫
xkdµn(x)≥

1
n((d1−1)(d2−1))k/2 ∑

v∈τ1

∑
r

∑
c

Ar,c
k (v,v) =

|τ1|
n((d1−1)(d2−1))k/2 ∑

r
∑
c

Ar,c
k .

From Lemma 3.5.1 and assumption (3.5.2), with probability at least 1−o(n−5/4), for any
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fixed k ≥ 0,

(n−|τ1|)
n((d1−1)(d2−1))k/2 d2k

1 = o(1), and
|τ1|
n

= 1−o(n−1/4).

To show the almost sure convergence of the empirical measure to semicircle law, by the upper

and lower bounds above, it suffices to show

lim
n→∞

1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k =


0 if k is odd,

Ck/2 if k is even,
(3.5.10)

where Ck := 1
k+1

(2k
k

)
is the k-th Catalan number.

Recall Ar,c
k counts the closed walks of length 2k on a rooted (d1,d2)-biregular tree starting

from the a root with degree d1, ending at the same root. Now we consider the quantity

1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k

more carefully. We first consider possible ranges of r and c in the expression above.

The walk (i1, j1, i2, j2, . . . , ik, jk, i1) in the summation satisfies i1 6= i2, · · · , ik−1 6= ik, ik 6= i1.

This implies when a walk goes from it to jt for some t, it cannot backtrack immediately to it .

Namely, any such walk is not allowed to backtrack at even depths (here we define the depth of

the root in a tree is 1). To have a closed walk of length 2k on a tree, each edge is repeated at least

twice, so the number of distinct edges is at most k, therefore number of distinct vertices satisfies

r+ c≤ k+1. (3.5.11)

For fixed r and c, the number of such unlabeled rooted tree with r+ c−1 distinct edges

is Cr+c−1. Let I be the set of vertices in the odd depths of the biregular tree and J be the set of
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vertices in the even depths. Since the first vertex of the walk is fixed (we always start from the

fixed root), for any closed walk, there are at most dc
1 many ways to choose distinct vertices from

J and dr−1
2 many ways to choose distinct vertices from I. Therefore we have

Ar,c
k ≤ dc

1dr−1
2 Cr+c−1 ≤ dc

1dr−1
2 Ck, (3.5.12)

where the last inequality is from (3.5.11). We also know that r−1≥ c, because whenever a new

vertex in J is reached by the walk, the walk cannot backtrack, so it must reach a new vertex in I.

Therefore we have

c≤ r−1 and r+ c≤ k+1,

which implies the following conditions on c and r:

c≤ k/2 and r−1≤ k− c. (3.5.13)

From (3.5.12), for any (r,c) satisfying (3.5.13), the following holds:

Ar,c
k

((d1−1)(d2−1))k/2 ≤
dc

1

(d1−1)k/2

dr−1
2

(d2−1)k/2Ck ≤
dc

1

(d1−1)k/2

dk−c
2

(d2−1)k/2Ck. (3.5.14)

Now we discuss two cases depending on the parity of k. When k is odd, from (3.5.13),

c≤ k−1
2 . Since d1/d2→ ∞, we obtain

1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k ≤
(

d1

d2

)c dk
2Ck

[(d1−1)(d2−1)]k/2 ≤
(

d1

d2

)c−k/2

2kCk = o(1).

(3.5.15)

When k is even, to have a non-vanishing term in the limit for Ar,c
k , we must have c = k/2
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and r = k/2+1. Then we have

1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k =
1

((d1−1)(d2−1))k/2 Ak/2+1,k/2
k +o(1). (3.5.16)

We continue our proof with a more refined estimate on Ak/2+1,k/2
k . Since every edge is

repeated exactly twice in the closed walk, it’s a depth-first search on the biregular tree.

If the root is at level 1, and subsequent vertices are at a level i+1 where i is the distance

from the root, then all leaves must be at odd levels, since we can never backtrack at an even level.

This implies that every vertex at an even level has at least one child, which means r ≥ c+1, with

equality if and only if every vertex at an even level has exactly one child. Thus, one can see the

tree as a subdivision of a smaller tree, where a vertex has been introduced on each edge (the

“new” vertices being the vertices on an even level in the bigger tree). This is clearly a bijection

between the kind of planar rooted tree on k+1 vertices we are trying to count, and the set of all

planar rooted trees on k/2+1 vertices. There are precisely Ck/2 of the latter. See Figure 3.3 for

an example of a valid closed walk and an illustration of the aforementioned bijection.

1

2

3

4

5
6

7

8

9

1

2

3 4

5

Figure 3.3: On the left we have a closed walk (1,2,3,4,5,4,3,6,7,6,3,2,1,8,9,8,1) on a
rooted planar tree which only backtracks at odd depths and the tree has no new branches
at any even depth along the walk. Its correspondent under the bijection is the closed walk
(1,2,3,2,4,2,1,5,1) on the smaller rooted planar tree induced by the depth-first search on the
right.

Moreover, given a fixed root with a vertex label, the number of all possible ways to

label the tree with vertices in a biregular bipartite graph is between dk/2
1 (d2− 1)k/2 and (d1−

117



k/2)k/2(d2−1)k/2, so the following inequality for Ak/2+1,k/2
k holds:

(d1− k/2−1)k/2(d2−1)k/2Ck/2 ≤ Ak/2+1,k/2
k ≤ dk/2

1 (d2−1)k/2Ck/2. (3.5.17)

From (3.5.16) and (3.5.17), we obtain for even k,

lim
n→∞

1
((d1−1)(d2−1))k/2 ∑

r,c
Ar,c

k =Ck/2. (3.5.18)

With (3.5.15) and (3.5.18), the asymptotic behavior of moments given in (3.5.10) holds. This

completes the proof of Theorem 3.5.3.

3.6 Random regular hypergraphs

We first describe a bijection between a subset of biregular bipartite graphs and the set of

regular hypergraphs studied in [79]. We will use the map given in Definition 3.6.1 to apply some

of our results for RBBGs to random regular hypergraphs, see [79] for more details.

Definition 3.6.1 (incidence matrix and associated bipartite graph). A vertex i is incident to a

hyperedge e if and only v is an element of e. We can define the incidence matrix X of a hypergraph

H = (V,E) to be a |V |× |E| matrix indexed by elements in V and E such that Xi,e = 1 if i ∈ e and

0 otherwise. Moreover, if we regard X as the adjacency matrix of a graph, it defines a bipartite

graph G with two vertex sets V and E. We call G the bipartite graph associated to H, given by a

map Φ (so Φ(H) = G). See Figure 3.4 for an example.

Definition 3.6.2 (adjacency matrix). For a hypergraph H with n vertices, we associate a n×n

symmetric matrix A called the adjacency matrix of H. For i 6= j, we define Ai j as the number of

hyperedges containing both i and j; we define Aii = 0 for all 1≤ i≤ n. When the hypergraph is

2-uniform (i.e., it is a graph), this is the usual definition for the adjacency matrix of a graph.
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Figure 3.4: a (2,3)-regular hypergraph and its associated biregular bipartite graph

The following lemma connects the adjacency matrix of a regular hypergraph with its

associated biregular bipartite graph. It formally appears in [132, 79], and it is also informally

mentioned in [91].

Lemma 3.6.3 (Lemma 4.5 in [79]). Let H be a (d1,d2)-regular hypergraph, and let G be the

corresponding (d1,d2)-biregular bipartite graph. Let AH be the adjacency matrix of H and AG

be the adjacency matrix of G given by

AG =

 0 X

X> 0

 . (3.6.1)

Then AH = XX>−d1I.

Definition 3.6.4 (walks and cycles). A walk of length l on a hypergraph H is a vertex-hyperedge

sequence (i0,e1, i1, · · · ,el, il) such that i j−1 6= i j and {i j−1, i j} ⊂ e j for all 1≤ j ≤ l. A walk is

closed if i0 = il . A cycle of length l in a hypergraph H is a closed walk (v0,e1, . . . ,vl−1,el,vl+1)

such that all edges are distinct and all vertices are distinct subject to vl+1 = v0. In the associated

bipartite graph G, a cycle of length 2l corresponds to a cycle of length l in H.

Let G(n,m,d1,d2) be the set of all simple biregular bipartite random graphs with vertex

set V = V1 ∪V2 such that |V1| = n, |V2| = m, and every vertex in Vi has degree di for i = 1,2.
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Without loss of generality, we assume d1 ≥ d2. Let H (n,d1,d2) be the set of all simple (without

multiple hyperedges) (d1,d2)-regular hypergraphs with labeled vertex set [n] and nd1
d2

many labeled

hyperedges denoted by {e1, . . . ,end1/d2}.

Remark 3.6.5. We can also consider all (d1,d2)-regular hypergraphs with labeled vertices and

unlabeled hyperedges. Since all hyperedges are distinct, any such regular hypergraph with

unlabeled hyperedges corresponds to (nd1/d2)! regular hypergraphs with labeled hyperedges.

e1

e2

v1

v2

v3

Figure 3.5: a subgraph in a biregular bipartite graph which gives multiple hyperedges e1 and e2
in the corresponding regular hypergraph

It is well known (see for example [91]) that the map Φ defined can be extended to a

bijection Φ̃ between labeled regular multi-hypergraphs and biregular bipartite graphs. See Figure

3.4 as an example of the bijection. For a given biregular bipartite graph, if there are two vertices

in V2 that have the same set of neighbors in V1, the corresponding regular hypergraph will have

multiple hyperedges, see Figure 3.5. Let G ′(n,m,d1,d2) be a subset of G(n,m,d1,d2) such that

for any G ∈ G ′(n,m,d1,d2), any two vertices in V2 have different neighborhoods in V1. The

following lemma holds.

Lemma 3.6.6 (Lemma 4.2 in [79]). Φ is the restriction of the bijection Φ̃ to H (n,d1,d2) and its

image is G ′ (n,m,d1,d2). Hence |H (n,d1,d2)|= |G ′ (n,m,d1,d2) |.

From Lemma 3.6.6, the uniform distribution on G ′ (n,m,d1,d2) for biregular bipartite

graphs induces the uniform distribution on H (n,d1,d2) for regular hypergraphs. With this
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observation, we are able to translate some of the results for spectra of random biregular bipartite

graphs into results for spectra of random regular hypergraphs. A similar approach was applied in

[35] to enumerate uniform hypergraphs with given degrees.

Lemma 3.6.7 (Lemma 4.8 in [79]). Let G be a random biregular bipartite graph sampled

uniformly from G (n,m,d1,d2) such that 3 ≤ d2 ≤ d1 ≤ n
32 . Let G ′ (n,m,d1,d2) be the set of

biregular bipartite graphs that corresponds to simple regular hypergraphs. Then

P
(
G ∈ G ′ (n,m,d1,d2)

)
≥ 1−

(
nd1

d2

)2(4ed2

n

)d2

. (3.6.2)

In particular,

P
(
G ∈ G ′ (n,m,d1,d2)

)
= 1−O

(
d2

1

nd2
2

)
. (3.6.3)

Lemma 3.6.7 implies the following total variation bound.

Lemma 3.6.8 (total variation bound). Let µn be the probability measure of the random (d1,d2)-

regular hypergraph with n vertices induced on the set of all (n,m,d1,d2)-biregular bipartite

graphs, and let µ′n be the uniform measure on the set of all (n,m,d1,d2)-biregular bipartite

graphs. We have

dTV(µn,µ′n)≤
(

nd1

d2

)2(4ed2

n

)d2

. (3.6.4)

Proof. Since G ′(n,m,d1,d2) is the set of all biregular bipartite graphs that are bijective to regular

hypergraphs. We have µn(G ′(n,m,d1,d2)) = 1 and µ′n(G ′(n,m,d1,d2)) =
|G′(n,m,d1,d2)|
|G(n,m,d1,d2)| . Let F

be the power set of G(n,m,d1,d2). Taking into account the fact that both µn and µ′n are uniform
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measures, we obtain that

dTV(µn,µ′n) = sup
A∈F
|µn(A)−µ′n(A)|= |1−µ′n(G

′(n,m,d1,d2))|

= P
(
G 6∈ G ′ (n,m,d1,d2)

)
≤
(

nd1

d2

)2(4ed2

n

)d2

,

where the last inequality is from Lemma 3.6.7.

Equipped with Lemma 3.6.8, we obtain several corollaries for random regular hypergraphs

in the following subsections.

Cycle counts

Recall the definition of cycles in a hypergraph given in Definition 3.6.4. Let Ck be the

number of cycles of length k in a (d1,d2)-regular hypergraph. The following result holds.

Corollary 3.6.9. Let H be a (d1,d2)-random regular hypergraph with cycle counts (Ck,k ≥ 2).

Let (Zk,k≥ 2) be independent Poisson random variables with EZk =
(d1−1)k(d2−1)k

2k
. For any

n,m≥ 1, r ≥ 3, and 3≤ d2 ≤ d1 ≤ n
32 ,

dTV((C2, . . . ,Cr),(Z2, . . . ,Zr))≤
c6
√

r(d1−1)3r/2(d2−1)3r/2

nd1
+

(
nd1

d2

)2(4ed2

n

)d2

.

Proof. Let C̃k be the number of cycles with length 2k in a uniform random (d1,d2)-biregular

bipartite graph. From Lemma 3.6.8,

dTV((C2, . . . ,Cr),(C̃2, . . . ,C̃r))≤ dTV(µn,µ′n)≤
(

nd1

d2

)2(4ed2

n

)d2

. (3.6.5)

Then the conclusion follows from Theorem 3.2.10 and the triangle inequality.
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Global laws

The limiting spectral distributions for the adjacency matrix of a random regular hypergraph

can be summarized in the following corollary.

Corollary 3.6.10. Let H be a random (d1,d2)-regular hypergraph.

1. If d1,d2 are fixed, the empirical spectral distribution of A−(d2−2)√
(d1−1)(d2−1)

converges in proba-

bility to a measure µ with density function given by

f (x) :=
1+ d2−1

q

(1+ 1
q −

x√
q)(1+

(d2−1)2

q + (d2−1)x√
q )

1
π

√
1− x2

4
dx, (3.6.6)

where q = (d1−1)(d2−1).

2. For d1,d2 → ∞ with d1
d2
→ α ≥ 1 and d1 ≤ n

32 , the empirical spectral distribution of
A−(d2−2)√
(d1−1)(d2−1)

converges in probability to a measure supported on [−2,2] with a density

function given by

g(x) =
α

1+α+
√

αx
1
π

√
1− x2

4
. (3.6.7)

3. If d1→ ∞,d1 = o(nε) for any ε > 0 and d1
d2
→ ∞, the ESD of A√

(d1−1)(d2−1)
converges to

the semicircle law in probability.

Proof of Corollary 3.6.10. Claim (1) is proved in Theorem 6.4 of [79] based on a result for

deterministic regular hypergraphs in Theorem 5 of [91].

Claim (2) is a combination of several results. When d1 = o(n1/2), it is proved in Theorem

6.6 of [79] based on the global law for random biregular bipartite graphs in [75] and [169]. When

d1 = ω(log4 n), the optimal local law for RBBGs was recently proved in [175], which also implies
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the global law for RBBGs. When d1 ≤ n
32 and d1

d2
→ α, from Lemma 3.6.7,

P
(
G ∈ G ′ (n,m,d1,d2)

)
→ 1.

Therefore by the same proof of Theorem 6.6 in [79], the ESD of A−(d2−2)√
(d1−1)(d2−1)

for random regular

hypergraphs converges in probability.

Under the assumptions d1→∞,d1 = o(nε) for any ε > 0 and d1
d2
→∞, from Lemma 3.6.7,

we have again P(G ∈ G ′ (n,m,d1,d2))→ 1. Then Claim (3) follows from Theorem 3.5.3 and

Lemma 3.6.8.

Remark 3.6.11. The ESD in Corollary 3.6.10 (2) is a shifted and scaled Marčenko-Pastur law.

Taking α→ ∞, g(x) converges to the density function of the semicircle law. The transition from

Marčenko-Pastur law to the semicircle law was also proved for sample covariance matrices in

[26] when the aspect ratio goes to infinity.

Remark 3.6.12. A semicircle law for the adjacency matrix of d2-uniform Erdős-Rényi random

hypergraphs with growing expected degrees was proved in Theorem 5 of [137] when d2 is

a constant. Part (3) of Corollary 3.6.10 proves a corresponding semicircle law for random

d2-uniform d1-regular hypergraphs where d2 can be a parameter depending on n.

Spectral gaps

The spectral gap for random regular hypergraphs with fixed d1,d2 was studied in [79].

Here we include the results for the case when d1,d2 are growing with n.

Corollary 3.6.13. Let H be a random (d1,d2)-regular hypergraph with d1≥ d2. Let λ1≥ ·· · ≥ λn

be the eigenvalues of A. Let λ = max2≤i≤n |λi|.
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1. Suppose d1 ≥ d2 ≥ 3 is fixed. There exists a sequence εn→ 0 such that

P(|λ− (d2−2)| ≥ 2
√
(d1−1)(d2−1)+ εn)→ 0

as n→ ∞.

2. Suppose 3≤ d2 ≤ 1
2n2/3, d1 ≥ d2 ≥ cd1 for some c ∈ (0,1). Then for some constant K > 0

depending on c, for all n≥ 1,

P
(

λ≥ K
√

(d1−1)(d2−1)
)
= O

(
1
n

)
.

3. Suppose 3 ≤ d2 ≤ C1 for a constant C1, and d1 = o(n1/2). There exists a constant C

depending on C1 such that

P
(

λ≥C
√
(d1−1)(d2−1)

)
= O

(
d2

1
n2

)
.

Proof. Claim (1) is proved in Theorem 4.3 in [79]. Claim (2) and (3) follow from part (2) and (3)

in Theorem 3.3.1 with Lemma 3.6.7.

Remark 3.6.14. Results in [179] that Claim (2) and (3) are based on have stronger probability

estimates. However, Lemma 3.6.7 we used here yields a weaker failure probability.

Eigenvalue fluctuations

The following eigenvalue fluctuation results for random regular hypergraphs can be

derived from Lemma 3.6.3, Lemma 3.6.8, and the eigenvalue fluctuations results for random

biregular bipartite graphs in Section 3.4.

Corollary 3.6.15. For fixed d1 ≥ d2 ≥ 3, let H be a random (d1,d2)-regular hypergraph with

adjacency matrix A. Let λ1 ≥ ·· · ≥ λn be the eigenvalues of A√
(d1−1)(d2−1)

. Suppose f is
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a function satisfying the same conditions in Theorem 3.4.4. Then Y (n)
f := ∑

n
i=1 f (λi)− na0

converges in distribution as n→ ∞ to the infinitely divisible random variable

Yf :=
∞

∑
k=2

ak

[(d1−1)(d2−1)]k/2 CNBW(∞)
k ,

where CNBW(∞)
k is defined in (3.2.37).

Proof. Let Ỹ (n)
f be the corresponding random variable of Y (n)

f for the uniform random biregular

bipartite graphs considered in Theorem 3.4.4. From the total variation distance bound in Lemma

3.6.8, we have

dTV(Y
(n)
f ,Ỹ (n)

f )≤ dTV(µn,µ′n)≤
(

nd1

d2

)2(4ed2

n

)d2

= o(1).

Therefore Ỹ (n)
f and Y (n)

f converge in distribution to the same law.

Corollary 3.6.16. Let H be a random (d1,d2)-regular hypergraph with d1d2→ ∞ as n→ ∞ and

d1d2 = no(1). Let λ1≥ ·· · ≥ λn be the eigenvalues of A√
(d1−1)(d2−1)

. Let f be a function satisfying

(3.4.20) and (3.4.22). Suppose one of the two assumptions holds:

1. there exists a constant c≥ 1 such that 1≤ d1
d2
≤ c,

2. 3≤ d2 ≤ c1 for a constant c1 ≥ 3.

Then the random variable

Y (n)
f =

n

∑
i=1

f (λi)−m(n)
f

converges in law to a Gaussian random variable with mean zero and variance σ f = ∑
∞
k=2 2ka2

k .

Moreover, for any fixed t, consider the entire functions g1, . . . ,gt satisfying (3.4.20) and (3.4.22).

The corresponding random vector (Y (n)
g1 , . . . ,Y (n)

gt ) converges in distribution to a centered Gaussian
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random vector (Zg1, . . . ,Zgt ) with covariance

Cov(Zgi,Zg j) = 2
∞

∑
k=2

kak(gi)ak(g j)

for 1≤ i, j ≤ t, where ak(gi),ak(g j) are the k-th coefficients in the expansion (3.4.19) for gi,g j,

respectively.

Proof. Recall Lemma 3.6.8 and our assumption d1d2 = no(1). Under Case (1), we have d2→ ∞

and

dTV(µn,µ′n)≤
(

nd1

d2

)2(4ed2

n

)d2

= O(n2)(n(−1+o(1))d2) = o(1).

Under Case (2), we have

dTV(µn,µ′n)≤
(

nd1

d2

)2(4ed2

n

)d2

= O(n2d2
1)

(
4ec1

n

)3

= o(1).

Then with Lemma 3.6.8, in both cases Y (n)
f converges in distribution to the same limiting

random variable defined in Theorem 3.4.7. The proof of the covariance part follows in the same

way.
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Chapter 4

Community detection in the sparse

hypergraph block model

4.1 Introduction

Clustering is an important topic in network analysis, machine learning, and computer

vision [111]. Many clustering algorithms are based on graphs, which represent pairwise rela-

tionships among data. Hypergraphs can be used to represent higher-order relationships among

objects, including co-authorship and citation networks, and they have been shown empirically to

have advantages over graphs [176]. Recently hypergraphs have been used as the data model in

machine learning, including recommender system, image retrieval and bioinformatics [134, 6].

The stochastic block model (SBM) is a generative model for random graphs with community

structures, which serves as a useful benchmark for clustering algorithms on graph data. It is

natural to have an analogous model for random hypergraphs to model higher-order relations.

In this chapter, we consider a higher-order SBM called the hypergraph stochastic block

model (HSBM). Before describing HSBMs, we first recall clustering on graph SBMs.
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The Stochastic block model for graphs

In this section, we summarize the state-of-the-art results for graph SBM with two blocks

of roughly equal size. Let Σn be the set of all pairs (G,σ), where G = ([n],E) is a graph with

vertex set [n] and edge set E, σ = (σ1, . . . ,σn) ∈ {+1,−1}n are spins on [n], i.e., each vertex

i ∈ [n] is assigned with a spin σi ∈ {−1,+1}. From this finite set Σn, one can generate a random

element (G,σ) in two steps.

1. First generate i.i.d random variables σi ∈ {−1,+1} equally likely for all i ∈ [n].

2. Then given σ = (σ1, . . . ,σn), we generate a random graph G where each edge {i, j} is

included independently with probability p if σi = σ j and with probability q if σi 6= σ j.

The law of this pair (G,σ) will be denoted by G(n, p,q). In particular, we are interested in the

model G(n, pn,qn) where pn,qn are parameters depending on n. We use the shorthand notation

PGn to emphasize that the integration is taken under the law G(n, pn,qn).

Imagine C1 = {i : σi =+1} and C2 = {i : σi =−1} as two communities in the graph G.

Observing only G from a sample (G,σ) from the distribution G(n, pn,qn), the goal of community

detection is to estimate the unknown vector σ up to a sign flip. Namely, we construct label

estimators σ̂i ∈ {±1} for each i and consider the empirical overlap between σ̂ and unknown σ

defined by

ovn(σ̂,σ) :=
1
n ∑

i∈[n]
σiσ̂i. (4.1.1)

We may ask the following questions about the estimation as n tends to infinity:

1. Exact recovery (strong consistency):

lim
n→∞

PGn ({ovn(σ̂,σ) = 1}∪{ovn(σ̂,σ) =−1}) = 1.
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2. Almost exact recovery (weak consistency): for any ε > 0,

lim
n→∞

PGn ({|ovn(σ̂,σ)−1|> ε}∩{|ovn(σ̂,σ)+1|> ε}) = 0.

3. Detection: Find a partition which is correlated with the true partition. More precisely, there

exists a constant r > 0 such that it satisfies the following: for any ε > 0,

lim
n→∞

PGn({|ov(σ̂,σ)− r|> ε}∩{|ov(σ̂,σ)+ r|> ε}) = 0. (4.1.2)

There are many works on these questions using different tools, we list some of them. A

conjecture of [70] based on non-rigorous ideas from statistical physics predicts a threshold of

detection in the SBM, which is called the Kesten-Stigum threshold. In particular, if pn =
a
n and

qn =
b
n where a,b are positive constants independent of n, then the detection is possible if and only

if (a−b)2 > 2(a+b). This conjecture was confirmed in [146, 148, 141, 40] where [148, 141, 40]

provided efficient algorithms to achieve the threshold. Very recently, two alternative spectral

algorithms were proposed based on distance matrices [163] and a graph powering method in [3],

and they both achieved the detection threshold.

Suppose pn =
a logn

n ,qn =
b logn

n where a,b are constant independent of n. Then the exact

recovery is possible if and only if (
√

a−
√

b)2 > 2, which was solved in [2, 107] with efficient

algorithms achieving the threshold. Besides the phase transition behavior, various algorithms were

proposed and analyzed in different regimes and more general settings beyond the 2-block SBM

[47, 61, 104, 5, 125, 147, 65, 164, 38, 68], including spectral methods, semidefinite programming,

belief-propagation, and approximate message-passing algorithms. We recommend [1] for further

details.
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Hypergraph stochastic block models

The hypergraph stochastic block model (HSBM) is a generalization of the SBM for

graphs, which was first studied in [98], where the authors consider hypergraphs generated by the

stochastic block models that are dense and uniform. A faithful representation of a hypergraph

is its adjacency tensor (see Definition 4.2.1). However, most of the computations involving

tensors are NP-hard [112]. Instead, they considered spectral algorithms for exact recovery

using hypergraph Laplacians. Subsequently, they extended their results to sparse, non-uniform

hypergraphs [99, 100, 101]. For exact recovery, it was shown that the phase transition occurs

in the regime of logarithmic average degrees in [133, 62, 61] and the exact threshold was given

in [124], by a generalization of the techniques in [2]. Almost exact recovery for HSBMs was

studied in [61, 62, 101].

For detection of the HSBM with two blocks, the authors of [20] proposed a conjecture that

the phase transition occurs in the regime of constant average degree, based on the performance

of the belief-propagation algorithm. Also, they conjectured a spectral algorithm based on non-

backtracking operators on hypergraphs could reach the threshold. In [92], the authors showed an

algorithm for detection when the average degree is bigger than some constant by reducing it to

a bipartite stochastic block model. They also mentioned a barrier to further improvement. We

confirm the positive part of the conjecture in [20] for the case of two blocks: above the threshold,

there is a spectral algorithm which asymptotically almost surely constructs a partition of the

hypergraph correlated with the true partition.

Now we specify our d-uniform hypergraph stochastic block model with two clusters.

Analogous to G(n, pn,qn), we define H (n,d, pn,qn) for d-uniform hypergraphs. Let Σn be the set

of all pair (H,σ), where H = ([n],E) is a d-uniform hypergraph with vertex set [n] and hyperedge

set E, σ = (σ1, . . . ,σn) ∈ {+1,−1}n are the spins on [n]. From this finite set Σn, one can generate

a random element (H,σ) in two steps.

1. First generate i.i.d random variables σi ∈ {−1,+1} equally likely for all i ∈ [n].
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Figure 4.1: An HSBM with d = 3. Vertices in blue and red have spin + and −, respectively.

2. Then given σ = (σ1, . . . ,σn), we generate a random hypergraph H where each hyper-

edge {i1, . . . id} is included independently with probability pn if σi1 = · · ·= σid and with

probability qn if the spins σi1, . . .σid are not the same.

The law of this pair (H,σ) will be denoted by H (n,d, pn,qn). We use the shorthand notation PHn

and EHn
to emphasize that integration is taken under the law H (n,d, pn,qn). Often we drop the

index n from our notation, but it will be clear from PHn
.

We consider the detection problem of the HSBM in the constant expected degree regime.

Let

pn :=
a( n

d−1

) , qn :=
b( n

d−1

)
for some constants a≥ b > 0 and a constant integer d ≥ 3. Let

α := (d−1)
a+(2d−1−1)b

2d−1 , β := (d−1)
a−b
2d−1 . (4.1.3)

Here α is a constant which measures the expected degree of any vertex, and β measures the
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discrepancy between the number of neighbors with + sign and − sign of any vertex. For d = 2,

α,β are the same parameters for the graph case in [141]. Now we are able to state our main result

which is an extension of the result of for graph SBMs in [141]. Note that with the definition of

α,β, we have α > β. The condition β2 > α in the statement of Theorem (2.3.2) below implies

α,β > 1, which will be assumed for the rest of the chapter.

Theorem 4.1.1. Assume β2 > α. Let (H,σ) be a random labeled hypergraph sampled from

H (n,d, pn,qn) and B(l) be its l-th self-avoiding matrix (see Definition 4.2.5 below). Set l =

c log(n) for a constant c such that c log(α) < 1/8. Let x be a l2-normalized eigenvector corre-

sponding to the second largest eigenvalue of B(l). There exists a constant t such that, if we define

the label estimator σ̂i as

σ̂i =


+1 if xi ≥ t/

√
n,

−1 otherwise,

then detection is possible. More precisely, there exists a constant r > 0 such that the empirical

overlap between σ̂ and σ defined similar to (4.1.1) satisfies the following: for any ε > 0,

lim
n→∞

PHn

(
{|ovn(σ̂,σ)− r|> ε}

⋂
{|ovn(σ̂,σ)+ r|> ε}

)
= 0.

Remark 4.1.2. If we take d = 2, the condition β2 > α is the threshold for detection in graph

SBMs proved in [141, 146, 148]. When d ≥ 3, the conjectured detection threshold for HSBMs is

given in Equation (48) of [20]. With our notations, in the 2-block case, Equation (48) in [20] can

be written as α−β

α+β
=
√

α−1√
α+1 , which says β2 = α is the conjectured detection threshold for HSBMs.

This is an analog of the Kesten-Stigum threshold proved in the graph case [70, 146, 148, 141, 40].

Our Theorem 2.3.2 proves the positive part of the conjecture.

Our algorithm can be summarized in two steps. The first step is a dimension reduction:
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B(l) has n2 many entries from the original adjacency tensor T (see Definition 4.2.1) of nd many

entries. Since the l-neighborhood of any vertex contains at most one cycle with high probability

(see Lemma 4.4.4), by breadth-first search, the matrix B(l) can be constructed in polynomial time.

The second step is a simple spectral clustering according to leading eigenvectors as the common

clustering algorithm in the graph case.

Unlike graph SBMs, in the HSBMs, the random hypergraph H we observe is essentially a

random tensor. Getting the spectral information of a tensor is NP-hard [112] in general, making

the corresponding problems in HSBMs very different from graph SBMs. It is not immediately

clear which operator to associate to H that encodes the community structure in the bounded

expected degree regime. The novelty of our method is a way to project the random tensor into

matrix forms (the self-avoiding matrix B(l) and the adjacency matrix A) that give us the community

structure from their leading eigenvectors. In practice, the hypergraphs we observed are usually not

d-uniform, which can not be represented as a tensor. However, we can still construct the matrix

B(l) since the definition of self-avoiding walks does not depend on the uniformity assumption. In

this chapter, we focus on the d-uniform case to simplify the presentation, but our proof techniques

can be applied to the non-uniform case.

The analysis of HSBMs is harder than the original graph SBMs due to the extra dependency

in the hypergraph structure and the lack of linear algebra tools for tensors. To overcome these

difficulties, new techniques are developed in this chapter to establish the desired results.

There are multiple ways to define self-avoiding walks on hypergraphs, and our definition

(see Definition 4.2.3) is the only one that works for us when applying the moment method. We

develop a moment method suitable for sparse random hypergraphs in Section 4.7 that controls

the spectral norms by counting concatenations of self-avoiding walks on hypergraphs. The

combinatorial counting argument in the proof of Lemma 4.7.1 is more involved as we need to

consider labeled vertices and labeled hyperedges. The moment method for hypergraphs developed

here could be of independent interest for other random hypergraph problems.
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The growth control of the size of the local neighborhood (Section 4.4) for HSBMs turns

out to be more challenging compared to graph SBMs in [141] due to the dependency between the

number of vertices with spin + and −, and overlaps between different hyperedges. We use a new

second-moment estimate to obtain a matching lower bound and upper bound for the size of the

neighborhoods in the proof of Theorem 4.8.4. The issues mentioned above do not appear in the

sparse random graph case.

To analyze the local structure of HSBMs, we prove a new coupling result between a typical

neighborhood of a vertex in the sparse random hypergraph H and a multi-type Galton-Watson

hypertree described in Section 4.5, which is a stronger version of local weak convergence of

sparse random hypergraphs (local weak convergence for hypergraphs was recently introduced

in [71]). Compared to the classical 2-type Galton-Watson tree in the graph case, the vertex ±

labels in a hyperedge is not assigned independently. We carefully designed the probability of

different types of hyperedges that appear in the hypertree to match the local structure of the

HSBM. Combining all the new ingredients, we obtain the weak Ramanujan property of B(l) for

sparse HSBMs in Theorem 4.6.1 as a generalization of the results in [141]. We conclude the

proof of our Theorem 4.1.1 in Section 4.6.

Our Theorem 4.1.1 deals with the positive part of the phase transition conjecture in [20].

To have a complete characterization of the phase transition, one needs to show an impossibility

result when β2 < α. Namely, below this threshold, no algorithms (even with exponential running

time) will solve the detection problem with high probability. For graph SBMs, the impossibility

result was proved in [146] based on a reduction to the broadcasting problem on Galton-Watson

trees analyzed in [88]. To answer the corresponding problem in the HSBMs, one needs to establish

a similar information-theoretical lower bound for the broadcasting problem on hypertrees and

relate the problem to the detection problem on HSBMs. To the best of our knowledge, even

for the very first step, the broadcasting problem on hypertrees has not been studied yet. The

multi-type Galton-Watson hypertrees described in Section 4.5 can be used as a model to study
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this type of problem on hypergraphs. We leave it as a future direction.

4.2 Preliminaries

Definition 4.2.1 (adjacency tensor). Let H = (V,E) be a d-uniform hypergraph with V = [n]. We

define T to be the adjacency tensor of H such that for any set of vertices {i1, i2, . . . , id},

Ti1,...,id =


1 if {i1, . . . , id} ∈ E,

0 otherwise.

We set Tσ(i1),σ(i2),...,σ(id) = Ti1,...,id for any permutation σ. We may write Te in place of Ti1,...,id

where e = {i1, . . . , id}.

Definition 4.2.2 (adjacency matrix). The adjacency matrix A of a d-uniform hypergraph H =

(V,E) with vertex set [n] is a n×n symmetric matrix such that for any i 6= j, Ai j is the number of

hyperedges in E which contains i, j and Aii = 0 for i ∈ [n]. Equivalently, we have

Ai j =


∑e:{i, j}∈e Te if i 6= j,

0 if i = j.

Definition 4.2.3 (walk). A walk of length l on a hypergraph H is a sequence (i0,e1, i1, · · · ,el, il)

such that i j−1 6= i j and {i j−1, i j} ⊂ e j for all 1≤ j ≤ l. A walk is closed if i0 = il and we call it a

circuit. A self-avoiding walk of length l is a walk (i0,e1, i1, · · · ,el, il) such that

1. |{i0, i1, . . . , il}|= l +1.

2. Any consecutive hyperedges e j−1,e j satisfy e j−1∩ e j = {i j−1} for 2≤ j ≤ l.

3. Any two hyperedges e j,ek with 1≤ j < k ≤ l,k 6= j+1 satisfy e j∩ ek = /0.
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v0
e1
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v2

e2

e3

e4v3

v4

Figure 4.2: a self-avoiding walk of length 4 denoted by (v0,e1,v1,e2,v2,e3,v3,e4,v4)

See Figure 4.2 for an example of a self-avoiding walk in a 3-uniform hypergraph. Recall

that a self-avoiding walk of length l on a graph is a walk (i0, . . . , il) without repeated vertices.

Our definition is a generalization of the self-avoiding walk to hypergraphs.

Definition 4.2.4 (cycle and hypertree). A cycle of length l with l ≥ 2 in a hypergraph H is a walk

(i0,e1, . . . , il−1,el, i0) such that i0, . . . il−1 are distinct vertices and e1 . . .el are distinct hyperedges.

A hypertree is a hypergraph which contains no cycles.

Let
([n]

d

)
be the collection of all subsets of [n] with size d. For any subset e ∈

([n]
d

)
and

i 6= j ∈ [n], we define

Ae
i j =


1 if {i, j} ∈ e and e ∈ E,

0 otherwise,

and we define Ae
ii = 0 for all i ∈ [n]. With our notation above, Ai j = ∑e∈([n]d )

Ae
i j. We have the

following expansion of the trace of Ak for any integer k ≥ 0:

trAk = ∑
i0,i2,...,ik−1∈[n]

Ai0i1Ai2i3 · · ·Aik−1i0 = ∑
i0,i1,...,ik−1∈[n]
e1,...,ek∈([n]d )

Ae1
i0i1 · · ·A

ek−1
ik−2ik−1

Aek
ik−1i0.

Therefore, trAk counts the number of circuits (i0,e1, i1, . . . , ik−1,ek, i0) in the hypergraph H of

length k. This connection was used in [137] to study the spectra of the Laplacian of random
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hypergraphs. From our definition of self-avoiding walks on hypergraphs, we associate a self-

avoiding adjacency matrix to the hypergraph.

Definition 4.2.5 (self-avoiding matrix). Let H = (V,E) be a hypergraph with V = [n]. For any

l ≥ 1, a l-th self-avoiding matrix B(l) is a n× n matrix where for i 6= j ∈ [n], B(l)
i j counts the

number of self avoiding walks of length l from i to j and B(l)
ii = 0 for i ∈ [n].

B(l) is a symmetric matrix since a time-reversing self avoiding walk from i to j is a self

avoiding walk from j to i. Let SAWi j be the set of all self-avoiding walks of length l connecting i

and j in the complete d-uniform hypergraph on vertex set [n]. We denote a walk of length l by

w = (i0,ei1, . . . , il−1,eil , il). Then for any i, j ∈ [n],

B(l)
i j = ∑

w∈SAWi j

l

∏
t=1

Aeit
it−1it . (4.2.1)

4.3 Matrix expansion and spectral norm bounds

Consider a random labeled d-uniform hypergraph H sampled from H (n,d, pn,qn) with

adjacency matrix A and self-avoiding matrix B(l). Let A := EHn
[A | σ]. Let

ρ(A) := sup
x:‖x‖2=1

‖Ax‖2

be the spectral norm of a matrix A Recall (4.2.1), define

∆
(l)
i j := ∑

w∈SAWi j

l

∏
t=1

(Aeit
it−1it −Aeit

it−1it ), (4.3.1)

where Aeit
it−1it = EHn

[Aeit
it−1it | σ]. ∆(l) can be regarded as a centered version of B(l). We will apply

the classical moment method to estimate the spectral norm of ∆(l), since this method works well

for centered random variables. Then we can relate the spectrum of ∆(l) to the spectrum of B(l)
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through a matrix expansion formula which connects A, B(l) and ∆(l) in the following theorem.

Recall the definition of α in (4.1.3).

Theorem 4.3.1. Let H be a random hypergraph sampled from H (n,d, pn,qn) and B(l) be its l-th

self avoiding matrix. Then the following holds.

1. There exist some matrices {Γ(l,m)}l
m=1 such that for any l ≥ 1, B(l) satisfies the identity

B(l) = ∆
(l)+

l

∑
m=1

(∆(l−m)AB(m−1))−
l

∑
m=1

Γ
(l,m). (4.3.2)

2. For any sequence ln = O(logn) and any fixed ε > 0,

lim
n→∞

PHn

(
ρ(∆(ln))≤ nε

α
ln/2
)
= 1, (4.3.3)

lim
n→∞

PHn

(
ln⋂

m=1

{
ρ(Γ(ln,m))≤ nε−1

α
(ln+m)/2

})
= 1. (4.3.4)

Theorem 4.3.1 is one of the main ingredients to show B(l) has a spectral gap. Together

with the local analysis in Section 4.4, we will show in Theorem 4.6.1 that the bulk eigenvalues of

B(l) are separated from the first and second eigenvalues. The proof of Theorem 4.3.1 is deferred

to Section 4.7. The matrices {Γ(l,m)}l
m=1 in Theorem 4.3.1 record concatenations of self-avoiding

walks with different weights, which will be carefully analyzed in Lemma 4.7.2 of Section 4.7.

4.4 Local analysis

In this section, we study the structure of the local neighborhoods in the HSBM. Namely,

what the neighborhood of a typical vertex in the random hypergraph looks like.

Definition 4.4.1. In a hypergraph H, we define the distance d(i, j) between two vertices i, j to be

the minimal length of walks between i and j. Define the t-neighborhood Vt(i) of a fixed vertex i
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to be the set of vertices which have distance t from i. Define V≤t(i) :=
⋃

k≤t Vk(i) to be the set all

of vertices which have distance at most t from i and V>t = [n]\V≤t . Let V±t (i) be the vertices in

Vt(i) with spin ± and define it similarly for V±≤t(i).

For i ∈ [n], define

St(i) := |Vt(i)|, Dt(i) := ∑
j:d(i, j)=t

σ j.

Let 1 = (1 . . . ,1)∈Rn and recall σ ∈ {−1,1}n. We will show that when l = c logn

with c logα < 1/8, Sl(i),Dl(i) are close to the corresponding quantities (B(l)1)i,(B(l)σ)i (see

Lemma 4.11.1). In particular, the vector (Dl(i))1≤i≤n is asymptotically aligned with the second

eigenvector of B(l), from which we get the information on the partitions. We give the following

growth estimates of St(i) and Dt(i). The proof of Theorem 4.4.2 is given in Section 4.8.

Theorem 4.4.2. Assume β2 >α> 1 and l = c logn, for a constant c such that c logα< 1/4. There

exists constants C,γ > 0 such that for sufficiently large n, with probability at least 1−O(n−γ) the

following holds for all i ∈ [n] and 1≤ t ≤ l:

St(i)≤C log(n)αt , (4.4.1)

|Dt(i)| ≤C log(n)βt , (4.4.2)

St(i) = α
t−lSl(i)+O(log(n)αt/2), (4.4.3)

Dt(i) = β
t−lDl(i)+O(log(n)αt/2). (4.4.4)

The approximate independence of neighborhoods of distinct vertices is given in the

following lemma. It will be used later to analyze the martingales constructed on the Galton-

Watson hypertree defined in Section 4.5. The proof of Lemma 4.4.3 is given in Appendix

4.12.
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Lemma 4.4.3. For any two fixed vertices i 6= j, let l = c log(n) with constant c log(α)< 1/4. Then

the total variation distance between the joint law L((U±k (i))k≤l,(U±k ( j))k≤l) and the law with

the same marginals and independence between them, denoted by L((U±k (i))k≤l⊗ (U±k ( j))k≤l),

is O(n−γ) for some γ > 0.

Now we consider number of cycles in V≤l(i) of any vertex i∈ [n]. We say H is l-tangle-free

if for any i ∈ [n], there is no more than one cycle in V≤l(i).

Lemma 4.4.4. Assume l = c logn with c log(α)< 1/4. Let (H,σ)∼H (n,d, pn,qn). Then

lim
n→∞

PHn

(
|{i ∈ [n] : V≤l(i) contains at least one cycle}| ≤ log4(n)α2l

)
= 1,

lim
n→∞

PHn
(H is l-tangle-free) = 1.

The proof of Lemma 4.4.4 is given in Appendix 4.12. In the next lemma, we translate the

local analysis of the neighborhoods to the control of vectors B(m)1,B(m)σ. The proof is similar to

the proof of Lemma 4.3 in [141], and we include it in Appendix 4.12. For any event An, we say

An happens asymptotically almost surely if limn→∞PHn
(An) = 1.

Lemma 4.4.5. Let B be the set of vertices i whose l−neighborhood contains a cycle. For

l = c logn with c log(α)< 1/4, asymptotically almost surely the following holds:

1. for all m≤ l and all i 6∈ B the following holds

(B(m−1)1)i = α
m−1−l(B(l)1)i +O(α(m−1)/2 logn), (4.4.5)

(B(m−1)
σ)i = β

m−1−l(B(l)
σ)i +O(α(m−1)/2 logn). (4.4.6)

2. For all i ∈ B:

|(B(m)
σ)i| ≤ |(B(m)1)i| ≤ 2

m

∑
t=0

St(i) = O(αm logn). (4.4.7)
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Combining Theorem 4.3.1, Theorem 4.4.2, and Lemma 4.4.5, we are able to prove the

following theorem.

Theorem 4.4.6. Assume β2 > α > 1 and l = c logn with c log(α) < 1/8. Then the following

holds: for any ε > 0

lim
n→∞

PHn

(
sup

‖x‖2=1,x>(B(l)1)=x>(B(l)σ)=0
‖B(l)x‖2 ≤ nε

α
l/2

)
= 1.

Theorem 4.4.6 is a key ingredient to prove the bulk eigenvalues of B(l) are O(nεαl/2) in

Theorem 4.6.1. The proof of Theorem 4.4.6 is given in in Section 4.9.

4.5 Coupling with multi-type Poisson hypertrees

Recall the definition of a hypertree from Definition 4.2.4. We construct a hypertree growth

process in the following way. The hypertree is designed to obtain a coupling with the local

neighborhoods of the random hypergraph H.

• Generate a root ρ with spin τ(ρ) = +, then generate Pois
(

α

d−1

)
many hyperedges that only

intersects at ρ. Call the vertices in these hyperedges except ρ to be the children of ρ and of

generation 1. Call ρ to be their parent.

• For 0 ≤ r ≤ d− 1, we define a hyperedge is of type r if r many children in the hyper-

edge has spin τ(ρ) and (d − 1− r) many children has spin −τ(ρ). We first assign a

type for each hyperedge independently. Each hyperedge will be of type (d− 1) with

probability (d−1)a
α2d−1 and of type r with probability

(d−1)b(d−1
r )

α2d−1 for 0 ≤ r ≤ d− 2. Since
(d−1)a
α2d−1 +∑

d−2
r=0

(d−1)b(d−1
r )

α2d−1 = 1, the probabilities of being various types of hyperedges add

up to 1. Because the type is chosen i.i.d for each hyperedge, by Poisson thinning, the

number of hyperedges of different types are independent and Poisson.
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Figure 4.3: A Galton-Watson hypertree with d = 3. The vertices with spin + are in blue and
vertices with spin − are in red.

• We draw the hypertree in a plane and label each child from left to right. For each type

r hyperedge, we uniformly randomly pick r vertices among d− 1 vertices in the first

generation to put spins τ(ρ), and the rest d−1− r many vertices are assigned with spins

−τ(ρ).

• After defining the first generation, we keep constructing subsequent generations by induc-

tion. For each children v with spin τ(v) in the previous generation, we generate Pois
(

α

d−1

)
many hyperedges that pairwise intersects at v and assign a type to each hyperedge by the

same rule with τ(ρ) replaced by τ(v). We call such random hypergraphs with spins a

multi-type Galton-Watson hypertree, denoted by (T,ρ,τ) (see Figure 4.3).

Let W±t be the number of vertices with ± spins at the t-th generation and W (r)
t be the

number of hyperedges which contains exactly r children with spin + in the t-th generation.

Let Gt−1 := σ(W±k ,1 ≤ k ≤ t−1) be the σ-algebra generated by W±k ,1 ≤ k ≤ t−1. From our

definition, W+
0 = 1,W−0 = 0 and {W (r)

t }0≤r≤d−1 are independent conditioned on Gt−1, and the
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conditioned laws of W (r)
t are given by

L(W (d−1)
t |Gt−1) = Pois

(
a

2d−1W+
t−1 +

b
2d−1W−t−1

)
, (4.5.1)

L(W (0)
t |Gt−1) = Pois

(
a

2d−1W−t−1 +
b

2d−1W+
t−1

)
, (4.5.2)

L(W (r)
t |Gt−1) = Pois

(
b
(d−1

r

)
2d−1 (W−t−1 +W+

t−1)

)
, 1≤ r ≤ d−2. (4.5.3)

We also have

W+
t =

d−1

∑
r=0

rW (r)
t , W−t =

d−1

∑
r=0

(d−1− r)W (r)
t . (4.5.4)

Definition 4.5.1. A rooted hypergraph is a hypergraph H with a distinguished vertex i ∈V (H),

denoted by (H, i). We say two rooted hypergraphs (H, i) and (H ′, i′) are isomorphic and if and

only if there is a bijection φ : V (H)→ V (H ′) such that φ(i) = i′ and e ∈ E(H) if and only if

φ(e) := {φ( j) : j ∈ e} ∈ E(H ′).

Let (H, i,σ) be a rooted hypergraph with root i and each vertex j is given a spin σ( j) ∈

{−1,+1}. Let (H ′, i′,σ′) be a rooted hypergraph with root i′ where for each vertex j ∈V (H ′), a

spin σ′( j) ∈ {−1,+1} is given. We say (H, i,σ) and (H ′, i′,σ′) are spin-preserving isomorphic

and denoted by (H, i,σ)≡ (H ′, i′,σ′) if and only if there is an isomorphism φ : (H, i)→ (H ′, i′)

with σ(v) = σ′(φ(v)) for each v ∈V (H).

Let (H, i,σ)t ,(T,ρ,τ)t be the rooted hypergraphs (H, i,σ),(T,ρ,τ) truncated at distance t

from i,ρ, respectively, and let (T,ρ,−τ) be the corresponding hypertree growth process where the

root ρ has spin −1. We prove a local weak convergence of a typical neighborhood of a vertex in

the hypergraph H to the hypertree process T we described above. In fact, we prove the following

stronger statement. The proof of Theorem 4.5.2 is given in Section 4.5.

Theorem 4.5.2. Let (H,σ) be a random hypergraph H with spin σ sampled from Hn. Let i ∈ [n]
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be fixed with spin σi. Let l = c log(n) with c log(α) < 1/4, the following holds for sufficiently

large n.

1. If σi = +1, there exists a coupling between (H, i,σ) and (T,ρ,τ) such that (H, i,σ)l ≡

(T,ρ,τ)l with probability at least 1−n−1/5.

2. If σi =−1, there exists a coupling between (H, i,σ) and (T,ρ,−τ) such that (H, i,σ)l ≡

(T,ρ,−τ)l with probability at least 1−n−1/5.

Now we construct two martingales from the Poisson hypertree growth process. Define

two processes

Mt : = α
−t(W+

t +W−t ), ∆t := β
−t(W+

t −W−t ).

Lemma 4.5.3. The two processes {Mt},{∆t} are Gt-martingales. If β2 > α > 1, {Mt} and {∆t}

are uniformly integrable. The martingale {∆t} converges almost surely and in L2 to a unit mean

random variable ∆∞. Moreover, ∆∞ has a finite variance and

lim
t→∞

E|∆2
t −∆

2
∞|= 0. (4.5.5)

The following Lemma will be used in the proof of Theorem 4.1.1 to analyze the correlation

between the estimator we construct and the correct labels of vertices based on the random variable

∆∞. The proof is similar to the proof of Theorem 4.2 in [141], and we include it in Appendix

4.12.

Lemma 4.5.4. Let l = c logn with c logα < 1/8. For any ε > 0,

lim
n→∞

PHn

(∣∣∣∣∣1n n

∑
i=1

β
−2lD2

l (i)−E[∆2
∞]

∣∣∣∣∣> ε

)
= 0. (4.5.6)
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Let y(n) ∈ Rn be a random sequence of l2-normalized vectors defined by

y(n)i :=
Dl(i)√

∑
n
j=1 Dl( j)2

,1≤ i≤ n.

Let x(n) be any sequence of random vectors in Rn such that for any ε > 0,

lim
n→∞

PHn
(‖x(n)− y(n)‖2 > ε) = 0.

For all τ ∈ R that is a point of continuity of the distribution of both ∆∞ and −∆∞, for any ε > 0,

one has the following

lim
n→∞

PHn

(∣∣∣∣∣1n ∑
i∈[n]:σi=+

1
{

x(n)i ≥ τ/
√

nE[∆2
∞]

}
− 1

2
P(∆∞ ≥ τ)

∣∣∣∣∣> ε

)
= 0, (4.5.7)

lim
n→∞

PHn

(∣∣∣∣∣1n ∑
i∈[n]:σi=−

1
{

x(n)i ≥ τ/
√

nE[∆2
∞]

}
− 1

2
P(−∆∞ ≥ τ)

∣∣∣∣∣> ε

)
= 0.

4.6 Proof of the main result

Let ~Sl := (Sl(1), . . . ,Sl(n)) and ~Dl := (Dl(1), . . . ,Dl(n)). We say the the sequence of

vectors {vn}≥1 is asymptotically aligned with the sequence of vectors {wn}n≥1 if

lim
n→∞

|〈vn,wn〉|
‖vn‖2 · ‖wn‖2

= 1.

With all the ingredients in Sections 4.3-4.5, we establish the following weak Ramanujan

property of B(l). The proof of Theorem 4.6.1 is given in Section 4.11.

Theorem 4.6.1. For l = c log(n) with c log(α)< 1/8, asymptotically almost surely the two lead-

ing eigenvectors of B(l) are asymptotically aligned with vectors ~Sl,~Dl , where the first eigenvalue

is of order Θ(αl) up to some logarithmic factor and the second eigenvalue is of order Ω(βl). All
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other eigenvalues are of order O(nεαl/2) for any ε > 0.

Theorem 4.6.1 connects the leading eigenvectors of B(l) with the local structures of the

random hypergraph H and shows that the bulk eigenvalues of B(l) are separated from the two top

eigenvalues. Equipped with Theorem 4.6.1 and Lemma 4.5.4, we are ready to prove our main

result.

Proof of Theorem 4.1.1. Let x(n) be the l2-normalized second eigenvector of B(l), by Theorem

4.6.1, x(n) is asymptotically aligned with the l2-normalized vector

y(n)i =
Dl(i)√

∑
n
j=1 Dl( j)2

,1≤ i≤ n

asymptotically almost surely. So we have ‖x(n)−y(n)‖2→ 0 or ‖x(n)+y(n)‖2→ 0 asymptotically

almost surely. We first assume ‖x(n)− y(n)‖2→ 0. Since E∆∞ = 1, from the proof of Theorem

2.1 in [141], there exists a point τ ∈ R, in the set of continuity points of both ∆∞ and −∆∞, that

satisfies r := P(∆∞ ≥ τ)−P(−∆∞ ≥ τ)> 0. Take t = τ/
√

E(∆2
∞) and let N +,N − be the set of

vertices with spin + and −, respectively. From the definition of σ̂, we have

1
n ∑

i∈[n]
σiσ̂i =

1
n ∑

i∈[n]
σi

(
1{

x(n)i ≥t/
√

n
}−1{

x(n)i <t/
√

n
}) (4.6.1)

=− 1
n ∑

i∈[n]
σi +

2
n ∑

i∈N +

1{
x(n)i ≥τ/

√
nE∆2

∞

}− 2
n ∑

i∈N −
1{

x(n)i ≥τ/
√

nE∆2
∞

}.

Note that 1
n ∑i∈[n]σi → 0 in probability by the law of large numbers. From (4.5.7) in

Lemma 4.5.4, we have (4.6.1) converges in probability to P(∆∞ ≥ τ)−P(−∆∞ ≥ τ) = r. If

‖x(n)+ y(n)‖2→ 0, similarly we have 1
n ∑i∈[n]σiσ̂i converges to −r in probability. From these

two cases, for any ε > 0,

lim
n→∞

PHn

(
{|ovn(σ̂,σ)− r|> ε}

⋂
{|ovn(σ̂,σ)+ r|> ε}

)
= 0.
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This concludes the proof of Theorem 4.1.1.

4.7 Proof of Theorem 4.3.1

Proof of (4.3.2) in Theorem 4.3.1

For ease of notation, we drop the index n from ln in the proof, and it will be clear from the

law Hn. For any sequences of real numbers {at}l
t=1,{bt}l

t=1, we have the following expansion

identity for l ≥ 2 (see for example, Equation (15) in [141] and Equation (27) in [40]):

l

∏
t=1

(at−bt) =
l

∏
t=1

at−
l

∑
m=1

(
l−m

∏
t=1

(at−bt)

)
bl−m+1

l

∏
t=l−m+2

at .

Therefore the following identity holds.

l

∏
t=1

(Aeit
it−1it −Aeit

it−1it ) =
l

∏
t=1

Aeit
it−1it −

l

∑
m=1

(
l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

)
A

eil−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it .

Summing over all w ∈ SAWi j, ∆
(l)
i j can be written as

B(l)
i j −

l

∑
m=1

∑
w∈SAWi j

(
l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

)
A

eil−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it . (4.7.1)

Introduce the set Qm
i j of walks w defined by concatenations of two self-avoiding walks

w1,w2 such that w1 is a self-avoiding walk of length l−m from i to some vertex k, and w2

is a self-avoiding walk of length m from k to j for all possible 1 ≤ m ≤ l and k ∈ [n]. Then

SAWi j ⊂ Qm
i j for all 1≤ m≤ l. Let Rm

i j = Qm
i j \SAWi j. Define the matrix Γ(l,m) as

Γ
(l,m)
i j := ∑

w∈Rm
i j

l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )A
etl−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it . (4.7.2)
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From (4.7.1), ∆
(l)
i j can be expanded as

B(l)
i j −

l

∑
m=1

∑
w∈Qm

i j\Rm
i j

(
l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

)
A

eil−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it .

It can be further written as

B(l)
i j −

l

∑
m=1

∑
w∈Qm

i j

l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )A
eil−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it +

l

∑
m=1

Γ
(l,m)
i j .

From the definition of matrix multiplication, we have

∑
w∈Qm

i j

l−m

∏
t=1

(Aeit
it−1it −Aeit

it−1it )A
eil−m+1
il−mil−m+1

l

∏
t=l−m+2

Aeit
it−1it

= ∑
1≤u,v≤n

∆
(l−m)
iu AuvB(m−1)

v j =
(

∆
(l−m)AB(m−1)

)
i j
. (4.7.3)

Combining the expansion of ∆
(l)
i j above and (4.7.3), we obtain

∆
(l)
i j =B(l)

i j −
l

∑
m=1

(∆(l−m)AB(m−1))i j +
l

∑
m=1

Γ
(l,m)
i j . (4.7.4)

Since (4.7.4) is true for any i, j ∈ [n], it implies (4.3.2).

Proof of (4.3.3) in Theorem 4.3.1

We first prove the following spectral norm bound on ∆(l).

Lemma 4.7.1. For l = O(logn) and fixed k, we have

EHn
[ρ(∆(l))2k] = O(nα

kl log6k n). (4.7.5)

Proof. Note that EHn
[ρ(∆(l))2k]≤ EHn

[tr(∆(l))2k]. The estimation is based on a coding argument,
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and we modify the proof in [141] to count circuits in hypergraphs. Let W2k,l be the set of all

circuits of length 2kl in the complete hypergraph Kn,d which are concatenations of 2k many self-

avoiding walks of length l. For any circuits w ∈W2k,l , we denote it by w = (i0,ei1, i1, . . .ei2kl , i2kl),

with i2kl = i0. From (4.3.1), we have

EHn

[
tr(∆(l))2k

]
= ∑

j1,..., j2k∈[n]
EHn

[
∆
(l)
j1 j2∆

(l)
j2 j3 · · ·∆

(l)
j2k j1

]
= ∑

w∈W2k,l

EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

]
.

(4.7.6)

For each circuit, the weight it contributes to the sum is the product of (Ae
i j−Ae

i j) over all the

hyperedges e traversed in the circuits. In order to have an upper bound on EHn
[tr(∆(l))2k], we

need to estimate how many such circuits are included in the sum and what are the weights they

contribute.

We also write w = (w1,w2, . . .w2k), where each wi is a self-avoiding walk of length l. Let

v and h be the number of distinct vertices and hyperedges traversed by the circuit, respectively.

The idea is to bound the number of all possible circuits w in (4.7.6) with given v and h, and then

sum over all possible (v,h) pairs.

Fix v and h, for any circuit w we form a labeled multigraph G(w) with labeled vertices

{1, . . . ,v} and labeled multiple edges {e1, . . . ,eh} by the following rules:

• Label the vertices in G(w) by the order they first appear in w, starting from 1. For any

pair vertices i, j ∈ [v], we add an edge between i, j in G(w) whenever a hyperedge appears

between the ith and jth distinct vertices in the circuit w. G(w) is a multigraph since it is

possible that for some i, j, there exists two distinct hyperedges connecting the ith and jth

distinct vertices in w, which corresponds to two distinct edges in G(w) connecting i, j.

• Label the edges in G(w) by the order in which the corresponding hyperedge first appears

in w from e1 to eh. Note that the number of edges in G(w) is at least h since distinct

edges in G(w) can get the same hyperedge labels. At the end we obtain a multigraph
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G(w) = (V (w),E(w)) with vertex set {1, . . . ,v} and edge set E(w) with hyperedge labels

in {e1, . . .eh}.

It is crucial to see that the labeling of vertices and edges in G(w) is in order, and it tells

us how the circuit w is traversed. Consider any edge in G(w) such that its right endpoint (in the

order of the traversal of w) is a new vertex that has not been traversed by w. We call it a tree

edge. Denote by T (w) the tree spanned by those edges. It is clear for the construction that T (w)

includes all vertices in G(w), so T (w) is a spanning tree of G(w). Since the labels of vertices and

edges are given in G(w), T (w) is uniquely defined. For example, in Figure 4.4, we have

w1 = (1,e1,2,e2,3,e3,4,e4,5,e5,6),

w2 = (6,e5,5,e4,4,e6,7,e7,8,e8,3),

w3 = (3,e2,2,e1,1,e9,9,e10,10,e11,11),

w4 = (11,e12,10,e10,9,e13,12,e14,13,e15,1).

Edges that are not included in T (w) are {e8,e12,e15}. The triplet sequences associated to the 4

self-avoiding walks {wi}4
i=1 are given by

(0,6,0); (4,2,3),(0,0,0); (1,3,0); (0,0,10),(9,2,1),(0,0,0),

respectively.

For a given w ∈W2k,l with distinct hyperedges e1, . . . ,eh, define end(ei) to be the set of

vertices in V (w) such that they are the endpoints of edges with label ei in G(w). For example,

consider a hyperedge e1 = {1,2,3,4} such that {1,2},{1,3} are all the edges in G(w) with labels

e1, then end(e1) = {1,2,3}. We consider circuits w in three different cases and estimate their

contribution to (4.7.6) separately.

Case (1). We first consider w ∈W2k,l such that
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• each hyperedge label in {ei}1≤i≤h appears exactly once on the edges of G(w);

• vertices in ei \ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in

V (w).

The first condition implies the number of edges in G(w) is h. The second condition implies that

there are exactly (d−2)h+ v many distinct vertices in w. We will break each self-avoiding walk

wi into three types of successive sub-walks where each sub-walk is exactly one of the following 3

types, and we encode these sub-walks as follows.

• Type 1: hyperedges with corresponding edges in G(w)\T (w). Given our position in the

circuit w, we can encode a hyperedge of this type by its right-end vertex. Hyperedges of

Type 1 breaks the walk wi into disjoint sub-walks, and we partition these sub-walks into

Type 2 and 3 below.

• Type 2: sub-walks such that all their hyperedges correspond to edges of T (w) and have

been traversed already by w1, . . . ,wi−1. Each sub-walk is a part of a self-avoiding walk, and

it is a path contained in the tree T (w). Given its initial and its end vertices, there will be

exactly one such path in T (w). Therefore these walks can be encoded by the end vertices.

• Type 3: sub-walks such that their hyperedges correspond to edges of T (w) and they are

being traversed for the first time. Given the initial vertex of a sub-walk of this type, since

it is traversing new edges and knowing in what order the vertices are discovered, we can

encode these walks by their length, and from the given length, we know at which vertex the

sub-walk ends.

We encode any Type 1, Type 2, or Type 3 sub-walk by 0 if the sub-walk is empty. Now

we can decompose each wi into sequences characterizing by its sub-walks:

(p1,q1,r1),(p2,q2,r2), . . . ,(pt ,qt ,rt). (4.7.7)
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Figure 4.4: A multigraph G(w) associated to a circuit w = (w1, . . . ,w4) of length 2kl with
k = 2, l = 5

Here r1, . . .rt−1 are codes from sub-walks of Type 1. From the way we encode such hyperedges,

we have ri ∈{1, . . .v} for 1≤ i≤ t−1. Type 2 and Type 3 sub-walks are encoded by p1, . . . , pt and

q1, . . . ,qt , respectively. Since Type 1 hyperedges break w into disjoint pieces, we use (pt ,qt ,rt) to

represent the last piece of the sub-walk and make rt = 0. Each pi represents the right-end vertex

of the Type 2 sub-walk, and pi = 0 if it the sub-walk is empty, hence pi ∈ {0, . . .v} for 1≤ i≤ t.

Each qi represents the length of Type 3 sub-walks, so qi ∈ {0, . . . l} for 1≤ i≤ t. From the way

we encode these sub-walks, there are at most (v+1)2(l +1) many possibilities for each triplet

(p j,q j,r j).

We now consider how many ways we can concatenate sub-walks encoded by the triplets

to form a circuit w. All triples with r j ∈ [v] for 1 ≤ j ≤ t− 1 indicate the traversal of an edge

not in T (w). Since we know the number of edges in G(w) \T (w) is (h− v+ 1), and within a

self-avoiding walk wi, edges on G(w) can be traversed at most once, the length of the triples

in (4.7.7) satisfies t − 1 ≤ h− v+ 1, which implies t ≤ h− v+ 2. Since each hyperedge can

be traversed at most 2k many times by w due to the constraint that the circuits w of length 2kl

are formed by self-avoiding walks, so the number of triple sequences for fixed v,h is at most

[(v+1)2(l +1)]2k(2+h−v).

There are multiple w with the same code sequence. However, they must all have the same

number of vertices and edges, and the positions where vertices and hyperedges are repeated must
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be the same. The number of ordered sequences of v distinct vertices is at most nv. Given the

vertex sequence, the number of ordered sequences of h distinct hyperedges in Kn,d is at most( n
d−2

)h. Therefore, given v,h, the number of circuits that share the same triple sequence (4.7.7) is

at most nv( n
d−2

)h.

Combining the two estimates, the number of all possible circuits w with fixed v,h in Case

(1) is at most

nv
(

n
d−2

)h

[(v+1)2(l +1)]2k(2+h−v). (4.7.8)

Now we consider the expected weight of each circuit in the sum (4.7.6). Given σ, if

i, j ∈ e, we have Ae
i j ∼ Ber

(
pσ(e)

)
, where pσ(e) =

a
( n

d−1)
if vertices in e have the same ± spins and

pσ(e) =
b

( n
d−1)

otherwise. For a given hyperedge appearing in w with multiplicity m ∈ {1, . . . ,2k},

the corresponding expectation EHn

[
(Ae

i j−Ae
i j)

m
]

is 0 if m = 1. Since 0≤ Ae
i j ≤ 1, for m≥ 2, we

have

EHn

[
(Ae

i j−Ae
i j)

m | σ
]
≤ EHn

[
(Ae

i j−Ae
i j)

2 | σ
]
≤ pσ(e). (4.7.9)

For any hyperedge e corresponding to an edge in G(w)\T (w) we have the upper bound

pσ(e) ≤
a∨b( n
d−1

) . (4.7.10)

Taking the expectation over σ we have

Eσ[pσ(e)] =
a+(2d−1−1)b

2d−1
( n

d−1

) =
α

(d−1)
( n

d−1

) . (4.7.11)
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Recall the weight of each circuit in the sum (4.7.6) is given by

EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

]
.

Conditioned on σ, (Aeit
it−1it −Aeit

it−1it ) are independent random variables for distinct hyperedges.

Denote these distinct hyperedges by e1, . . .eh with multiplicity m1, . . .mh and we temporarily

order them such that e1, . . .ev−1 are the hyperedges corresponding to edges on T (w). Introduce

the random variables Aei ∼ Ber
(

pσ(ei)

)
for 1 ≤ i ≤ h and denote Aei = EHn

[Aei | σ]. Therefore

from (4.7.9) we have

EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

]
= Eσ

[
EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it ) | σ

]]

= Eσ

[
∏

h
i=1EHn

[
(Aei−Aei)mi | σ

]]
≤ Eσ

[
h

∏
i=1

pσ(ei)

]
.

We use the bound (4.7.10) for pσ(ev), . . . , pσ(eh), which implies

Eσ

[
h

∏
i=1

pσ(ei)

]
≤

(
a∨b( n
d−1

))h−v+1

Eσ

[
v−1

∏
i=1

pσ(ei)

]
. (4.7.12)

From the second condition for w in Case (1), any two hyperedges among {e1, . . .ev−1}

share at most 1 vertex, and pσ(ei), pσ(e j) are pairwise independent for all 1 ≤ i < j ≤ v− 1.

Moreover, since the corresponding edges of e1, . . .ev−1 forms the spanning tree T (w), taking any

e j such that the corresponding edge in T (w) is attached to some leaf, we know e j and
⋃

i6= j,1≤i≤v ei

share exactly one common vertex, therefore pσ(e j) is independent of ∏1≤i≤v−1,i 6= j pσ(ei). We then

have

Eσ

[
v−1

∏
i=1

pσ(ei)

]
= Eσ[pσ(e j)] ·Eσ

[
∏

1≤i≤v−1,i6= j
pσ(ei)

]
. (4.7.13)
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Now the corresponding edges of all hyperedges {e1, . . .ev−1}\{e j} form a tree in G(w) again and

the factorization of expectation in (4.7.13) can proceed as long as we have some edge attached to

leaves. Repeating (4.7.13) recursively, with (4.7.11), we have

Eσ

[
v−1

∏
i=1

pσ(ei)

]
=

v−1

∏
i=1

Eσ[pσ(ei)] =

(
α

(d−1)
( n

d−1

))v−1

. (4.7.14)

Since every hyperedge in w must be visited at least twice to make its expected weight

nonzero, and w is of length 2kl, we must have h ≤ kl. In the multigraph G(w), we have the

constraint v≤ h+1≤ kl+1. Since the first self-avoiding walk in w of length l takes l+1 distinct

vertices, we also have v≥ l +1. So the possible range of v is l +1≤ v≤ kl +1 and h satisfies

v−1≤ h≤ kl.

Putting all the estimates above together, for fixed v,h, the total contribution of self-avoiding

walks from Case (1) to the sum is bounded by

nv
(

n
d−2

)h

[(v+1)2(l +1)]2k(2+h−v)

(
α

(d−1)
( n

d−1

))v−1(
a∨b( n
d−1

))h−v+1

.

Denote S1 to be the sum of all contributions from self-avoiding walks in Case (1). Then

S1 ≤
kl+1

∑
v=l+1

kl

∑
h=v−1

nv
(

d−1
n−d +2

)h(
α

d−1

)v−1

[(v+1)2(l +1)]2k(2+h−v)(a∨b)h−v+1.

(4.7.15)

When l = O(logn) and d,k are fixed, for sufficiently large n,
( n

n−d+2

)h ≤ 2. Then from (4.7.15),

S1 ≤
kl+1

∑
v=l+1

kl

∑
h=v−1

2nv−h(d−1)h−v+1[(v+1)2(l +1)]2k(2+h−v)
α

v−1 (a∨b)h−v+1

≤2
kl+1

∑
v=l+1

kl

∑
h=v−1

n
[
(a∨b)(d−1)

n

]h−v+1

[(kl +2)2(l +1)]2k(2+h−v)
α

v−1.
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Hence

S1

nαkl[(kl +2)2(l +1)]2k ≤2
kl+1

∑
v=l+1

α
v−1−kl

kl

∑
h=v−1

[
n−1(a∨b)(d−1)((kl +2)2(l +1))2k

]h−v+1
.

(4.7.16)

Since for fixed d,k and l = O(logn), n−1(a∨b)(d−1)((kl +2)2(l +1))2k = o(1) for n

sufficiently large, the leading term in (4.7.16) is the term with h = v−1. For sufficiently large n,

we have

S1

nαkl[(kl +2)2(l +1)]2k ≤ 3
kl+1

∑
v=l+1

α
v−1−kl = 3 · α−α(1−k)l

α−1
≤ 3α

α−1
.

It implies that S1 = O(nαkl log6k n).

Case (2). We now consider w ∈W2k,l such that

• the number of edges in G(w) is greater than h;

• vertices in ei \ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in

V (w).

Let h̃ be the number of edges in G(w) with h̃≥ h+1. Same as in Case (1), the number of triple

sequence is at most [(v+1)2(l +1)]2k(2+h̃−v). Let si,1≤ i≤ h be the size of end(ei). We have

∑
h
i=1 si = 2h̃. Note that when si > 3, there are more than 2 vertices in ei contained in V (w),

therefore given the choices of vertices with labels in V (w), we have fewer possibilities to choose

the rest of vertices in ei. Compared with (4.7.8), the number of all possible circuits in Case (2)

with fixed v,h, h̃ is now bounded by

[(v+1)2(l +1)]2k(2+h̃−v)nv
(

n
d− s1

)
· · ·
(

n
d− sh

)
.
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When k is fixed and l = O(logn), for large n, the quantity above is bounded by

2[(v+1)2(l +1)]2k(2+h̃−v)nv
(

d−1
n

)2h̃−h( n
d−1

)h

.

Now we consider the expected weight of each circuit in Case (2). In the spanning tree

T (w), we keep edges with distinct hyperedge labels that appear first in the circuit w and remove

other edges. This gives us a forest denoted F(w) inside T (w), with at least v−1− h̃+h many

edges. We temporarily label those edges in the forest as e1, . . . ,eq with q≥ v−1− h̃+h. Then

similar to the analysis of (4.7.14) in Case (1), we have

Eσ

[
q

∏
i=1

pσ(eq)

]
=

(
α

(d−1)
( n

d−1

))q

,

and

EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

]
≤ Eσ

[
h

∏
i=1

pσ(ei)

]
≤

(
a∨b( n
d−1

))h̃−v+1(
α

(d−1)
( n

d−1

))v−1−h̃+h

.

Since every hyperedge in w must be visited at least twice to make its expected weight

nonzero, we must have l ≤ h ≤ kl. In the multigraph G(w), we have the constraint v ≤ h̃+ 1.

Since the first self-avoiding walk in w of length l takes l + 1 distinct vertices, we also have

v≥ l +1. So the possible range of v is l +1≤ v≤ h̃+1 and h satisfies l ≤ h≤ kl. Therefore we

have
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S2 ≤2
kl

∑
h=l

2kl

∑
h̃=h+1

h̃+1

∑
v=l+1

[(v+1)2(l +1)]2k(2+h̃−v)nv
(

d−1
n

)2h̃−h( n
d−1

)h

·

(
a∨b( n
d−1

))h̃−v+1(
α

(d−1)
( n

d−1

))v−1−h̃+h

=O(αkl log6k n).

Case (3). We now consider w∈W2k,l not included in Cases (1) or Case (2), which satisfies

that

• for some i 6= j, there are common vertices in ei \ end(ei) and e j \ end(e j);

• or there are vertices in ei \ end(ei) with labels in V (w).

Let v,h, h̃ be defined in the same way as in Case (2). The number of triple sequence is at

most [(v+1)2(l +1)]2k(2+h̃−v). Consider the forest F(w) introduced in Case (2) as a subgraph

of T (w), which has at least (v− 1− h̃+ h) many edges with distinct hyperedge labels. We

temporarily denote the edges by e1, . . . ,eq, and the ordering is chosen such that e1 is adjacent to a

leaf in F(w), and each ei, i ≤ 2 is adjacent to a leaf in F(w)\{e1, . . . ,ei−1}. For 1 ≤ i ≤ q, we

call ei a bad hyperedge if the set ei \ end(ei) share a vertex with some set e j \ end(e j) for j > i,

or there are vertices in ei \ end(ei) with labels in V (w). In both cases, we have fewer choices for

the vertices in ei.

Suppose among ei,1≤ i≤ q, there are t bad hyperedges. Let si,1≤ i≤ h be the size of

end(ei) in G(w). Then the number of all possible circuits in Case (3) with fixed v,h, h̃, and t, is

bounded by

[(v+1)2(l +1)]2k(2+h̃−v)nv
(

n
d− s1−δ1

)
· · ·
(

n
d− sh−δh

)
, (4.7.17)
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where δi ∈ {0,1} and δi = 1 if ei is a bad hyperedge. Note that ∑
h
i=1 sh = 2h̃ and ∑

h
i=1 δi = t. For

large n, the number in (4.7.17) is at most

2[(v+1)2(l +1)]2k(2+h̃−v)nv
(

d−1
n

)2h̃−h+t( n
d−1

)h

.

After removing the t edges with bad hyperedge labels from the forest F(w), we can do the same

analysis as in Case (2). The expected weight of each circuit in Case (3) with given v,h, h̃, t now

satisfies

EHn

[
2kl

∏
t=1

(Aeit
it−1it −Aeit

it−1it )

]
≤

(
a∨b( n
d−1

))h̃−v+1+t(
α

(d−1)
( n

d−1

))v−1−h̃+h−t

.

Let S3 be the total contribution from circuits in Case (3) to (4.7.6) . Then

S3 ≤
kl

∑
h=l

2kl

∑
h̃=h

h̃+1

∑
v=l+1

v−1

∑
t=0

2[(v+1)2(l +1)]2k(2+h̃−v)nv
(

d−1
n

)2h̃−h+t( n
d−1

)h

·

(
a∨b( n
d−1

))h̃−v+1+t(
α

(d−1)
( n

d−1

))v−1−h̃+h−t

=O(nα
kl log6k n).

From the estimates on S1,S2 and S3, Lemma 4.7.1 holds.

With Lemma 4.7.1, we are able to derive (4.3.3). For any fixed ε > 0, choose k such that

1−2kε < 0, using Markov inequality, we have

PHn
(ρ(∆(l))≥ nε

α
l/2)≤

EHn
(ρ(∆(l))2k)

n2kεαkl = O(n1−2kε log6k n).

This implies (4.3.3) in the statement of Theorem 4.3.1.
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Proof of (4.3.4) in Theorem 4.3.1

Using a similar argument as in the proof of Lemma 4.7.1, we can prove the following

estimate of ρ(Γ(l,m)). The proof is given in Appendix 4.12.

Lemma 4.7.2. For l = O(logn), fixed k, and any 1≤ m≤ l, there exists a constant C > 0 such

that

EHn
[ρ(Γ(l,m))2k]≤Cn1−2k

α
k(l+m−2) log14k n. (4.7.18)

With Lemma 4.7.2, we can apply the union bound and Markov inequality. For any ε > 0,

choose k > 0 such that 1−2kε < 0, we have

PHn

(
l⋃

m=1

{
ρ(Γ(l,m))≥ nε−1

α
(l+m)/2

})
≤

l

∑
m=1

PHn

(
ρ(Γ(l,m))≥ nε−1

α
(l+m)/2

)
≤

l

∑
m=1

EHn
ρ(Γ(l,m))2k

n2k(ε−1)αk(l+m)
≤

l

∑
m=1

C log14k(n) ·n1−2kαk(l+m−2)

n2k(ε−1)αk(l+m)
= O

(
(log14k+1(n) ·n1−2kε

α
−2k
)
.

This proves (4.3.4) in Theorem 4.3.1.

4.8 Proof of Theorem 4.4.2

Let n± be the number of vertices with spin ±, respectively. Consider the event

Ω̃ := {|n±− n
2
| ≤ log(n)

√
n}. (4.8.1)

By Hoeffding’s inequality,

Pσ

(
|n±− n

2
| ≥ log(n)

√
n
)
≤ 2exp(−2log2(n)), (4.8.2)
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which implies Pσ(Ω̃)≥ 1−2exp(−2log2(n)). In the rest of this section we will condition on the

event Ω̃, which will not effect our conclusion and probability bounds, since for any event A, if

PHn
(A | Ω̃) = 1−O(n−γ) for some γ > 0, we have

PHn
(A) =PHn

(A | Ω̃)PHn
(Ω̃)+PHn

(A | Ω̃c)PHn
(Ω̃c) = 1−O(n−γ).

The following identity from Equation (38) in [141] will be helpful in the proof.

Lemma 4.8.1. For any nonnegative integers i, j,n and nonnegative numbers a,b such that

a/n,b/n < 1, we have

ai+b j
n
− 1

2

(
ai+b j

n

)2

≤ 1− (1−a/n)i(1−b/n) j ≤ ai+b j
n

. (4.8.3)

We will also use the following version of Chernoff bound (see [46]):

Lemma 4.8.2. Let X be a sum of independent random variables taking values in {0,1}. Let

µ = E[X ]. Then for any δ > 0, we have

P(X ≥ (1+δ)µ)≤ exp(−µh(1+δ)), (4.8.4)

P(|X−µ| ≤ δµ)≥ 1−2exp(−µh̃(δ)), (4.8.5)

where

h(x) : = x log(x)− x+1, h̃(x) := min{(1+ x) log(1+ x)− x,(1− x) log(1− x)+ x}.

For any t ≥ 0, the number of vertices with spin ± at distance t (respectively ≤) of vertices

i is denoted U±t (i) (respectively, U±≤t(i)) and we know St(i) =U+
t (i)+U−t (i). We will omit index

i when considering quantities related to a fixed vertex i. Let n± be the number of vertices with
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V<k

Q1

Q2

Figure 4.5: d = 5, Q1 is a connected 3-subsets in Vk and Q2 is a connected 4-subsets in Vk.

spin ± and N ± be the set of vertices with spin ±. For a fixed vertex i. Let

Ft := σ(U+
k ,U−k ,k ≤ t,σi,1≤ i≤ n) (4.8.6)

be the σ-algebra generated by {U+
k ,U−k ,0 ≤ k ≤ t} and {σi,1 ≤ i ≤ n}. In the remainder

of the section we condition on the spins σi of all i ∈ [n] and assume Ω̃ holds. We denote

P(·) := PHn
(· | Ω̃).

A main difficulty to analyze U+
t ,U−t compared to the graph SBM in [141] is that U±k

are no longer independent conditioned on Fk−1. Instead, we can only approximate U±k by

counting subsets connected to Vk−1. To make it more precise, we have the following definition

for connected-subsets.

Definition 4.8.3. A connected s-subset in Vk for 1 ≤ s ≤ d− 1 is a subset of size s which is

contained in some hyperedge e in H and the rest d− s vertices in e are from Vk−1 (see Figure

4.5 for an example). Define U (r)
k,s ,0≤ r ≤ s to be the number of connected s-subsets in Vk where

exactly r many vertices have + spins. For convenience, we write U (r)
k :=U (r)

k,d−1 for 0≤ r≤ d−1.

Let Uk,s = ∑
s
r=0U (r)

k,s be the number of all connected s-subsets in Vk.

We will show that ∑
d−1
r=0 rU (r)

k is a good approximation of U+
k and ∑

d−1
r=0 (d−1−r)U (r)

k is a

good approximation of U−k , then the concentration of U (r)
k ,0≤ r≤ d−1 implies the concentration

of U±k .
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Since each hyperedge appears independently, conditioned on Fk−1, we know {U (r)
k ,0≤

r ≤ d−1} are independent binomial random variables. For U (d−1)
k , the number of all possible

connected (d−1)-subsets with d−1 many + signs is
(n+−U+

≤k−1
d−1

)
, and each such subset is included

in the hypergraph if and only if it forms a hyperedge with any vertex in Vk−1. Therefore each

such subset is included independently with probability

1−

(
1− a( n

d−1

))U+
k−1
(

1− b( n
d−1

))U−k−1

.

Similarly, we have the following distributions for U (r)
k ,1≤ r ≤ d−1:

U (d−1)
k ∼ Bin

(n+−U+
≤k−1

d−1

)
,1−

(
1− a( n

d−1

))U+
k−1
(

1− b( n
d−1

))U−k−1
 , (4.8.7)

U (0)
k ∼ Bin

(n−−U−≤k−1
d−1

)
,1−

(
1− a( n

d−1

))U−k−1
(

1− b( n
d−1

))U+
k−1
 , (4.8.8)

and for 1≤ r ≤ d−2,

U (r)
k ∼ Bin

(n+−U+
≤k−1

r

)(
n−−U−≤k−1

d−1− r

)
,1−

(
1− b( n

d−1

))Sk−1
 . (4.8.9)

For two random variable X ,Y , we denote X � Y if X is stochastically dominant by Y ,

i.e., P(X ≤ x) ≥ P(Y ≤ x) for any x ∈ R. We denote U∗k := ∑
d−2
s=1 Uk,s to be the number of all

connected s-subsets in Vk for 1≤ s≤ d−2.

For each 1 ≤ s ≤ d− 2, conditioned on Fk−1, the number of possible s-subsets is at

most
(n

s

)
, and each subset is included in the hypergraph independently with probability at most
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(
a∨b
( n

d−1)

(Sk−1
d−s

))
∧1, so we have

Uk,s � Bin

((
n
s

)
,

a∨b( n
d−1

)(Sk−1

d− s

)
∧1

)
. (4.8.10)

With the definitions above, we have the following inequality for U±k by counting the

number of ± signs from each type of subsets:

U+
k ≤

d−1

∑
r=0

rU (r)
k +(d−2)U∗k , (4.8.11)

U−k ≤
d−1

∑
r=0

(d−1− r)U (r)
k +(d−2)U∗k . (4.8.12)

To obtain the upper bound of U±k , we will show that U∗k is negligible compared to the

number of ± signs from U (r)
k . Since U (r)

k ,1 ≤ r ≤ d − 1 are independent binomial random

variables, we can prove concentration results of these random variables. For the lower bound of

U±k , we need to show that only a negligible portion of (d−1) connected subsets are overlapped,

therefore U+
k is lower bounded by ∑

d−1
r=0 rU (r)

k minus some small term, and we can do it similarly

for U−k . We will extensively use Chernoff bounds in Lemma 4.8.2 to prove the concentration of

U±k in the following theorem.

Theorem 4.8.4. Let ε ∈ (0,1), and l = c log(n) with c log(α)< 1/4. For any γ ∈ (0,3/8), there

exists some constant K > 0 and such that the following holds with probability at least 1−O(n−γ)

for all i ∈ [n].

1. Let T := inf{t ≤ l : St ≥ K logn}, then ST = Θ(logn).

2. Let εt := εα−(t−T )/2 for some ε > 0 and

M :=
1
2

α+β α−β

α−β α+β

 . (4.8.13)

165



Then for all t, t ′ ∈ {T, . . . l}, t > t ′, the vector ~Ut := (U+
t ,U−t )> satisfies the coordinate-wise

bounds:

U+
t ∈

[
t−1

∏
s=t ′

(1− εs),
t−1

∏
s=t ′

(1+ εs)

]
(Mt−t ′~Ut ′)1, (4.8.14)

U−t ∈

[
t−1

∏
s=t ′

(1− εs),
t−1

∏
s=t ′

(1+ εs)

]
(Mt−t ′~Ut ′)2, (4.8.15)

where (Mt−t ′~Ut ′) j is the j-th coordinate of the vector Mt−t ′~Ut ′ for j = 1,2.

Proof. In this proof, all constants Ci’s, C,C′ are distinct for different inequalities unless stated

otherwise. By the definition of T , ST−1 ≤ K log(n). Let ZT be the number of all hyperedges in H

that are incident to at least one vertices in VT−1. We have ST ≤ (d−1)ZT , and since the number

of all possible hyperedges including a vertex in VT−1 is at most ST−1
( n

d−1

)
, ZT is stochastically

dominated by

Bin

(
K log(n)

(
n

d−1

)
,

a∨b( n
d−1

)) ,

which has mean (a∨b)K log(n). Let K1 = (a∨b)K. By (4.8.4) in Lemma 4.8.2, we have for any

constant K2 > 0,

P(ZT ≥ K2 log(n)|FT−1)≤ exp(−K1 log(n)h(K2/K1)) (4.8.16)

Taking K2 > K1 large enough such that K1h(K2/K1)≥ 2+ γ, we then have

P(ZT ≥ K2 log(n)|FT−1)≤ n−2−γ. (4.8.17)

So with probability at least 1− n−2−γ, for a fixed i ∈ [n], ST ≤ K3 log(n) with K3 = (d− 2)K2.

Taking a union bound over i ∈ [n], part (1) in Lemma 4.8.4 holds. We continue to prove (4.8.14)
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and (4.8.15) in several steps.

Step 1: base case. For the first step, we prove (4.8.14) and (4.8.15) for t = T +1, t ′ = T ,

which is

U±T+1 ∈ [1− ε,1+ ε]

(
α+β

2
U±T +

α−β

2
U±T

)
. (4.8.18)

This involves a two-sided estimate of U±T+1. The idea is to show the expectation of U±T+1

conditioned on FT is closed to α+β

2 U±T + α−β

2 U±T , and U±T+1 is concentrated around its mean.

(i) Upper bound. Define the event AT := {ST ≤ K3 logn}. We have just shown for a

fixed i,

P(AT )≥ 1−n−2−γ. (4.8.19)

Recall |n±−n/2| ≤
√

n logn and conditioned on AT , for some constant C > 0,

U+
≤T ≤

T

∑
t=0

St ≤ 1+T K3 logn≤ 1+ lK3 logn≤CK3 log2 n.

Conditioned on FT and AT , for sufficiently large n, there exists constants C1 > 0 such that

(
n+−U+

≤T
d−1

)
≥C1

( n
2

d−1

)
.

From inequality (4.8.3), there exists constant C2 > 0 such that

1−

(
1− a( n

d−1

))U+
T
(

1− b( n
d−1

))U−T

≥
aU+

T +bU−T( n
d−1

) − 1
2

(
aU+

T +bU−T( n
d−1

) )2

≥
C2(aU+

T +bU−T )( n
d−1

) ≥ C2(a∧b)K logn( n
d−1

) .

167



Then from (4.8.7), for some constant C3 > 0,

E[U (d−1)
T+1 | FT ,AT ] =

(
n+−U+

≤T
d−1

)1−

(
1− a( n

d−1

))U+
T
(

1− b( n
d−1

))U−T


≥C1

( n
2

d−1

)
·C2(a∧b)K logn( n

d−1

) ≥C3K logn.

We can choose K large enough such that C3Kh̃(ε/(2d)) ≥ 2+ γ, then from (4.8.5) in Lemma

4.8.2, for any given ε > 0 and γ ∈ (0,1),

P
(
|U (d−1)

T+1 −E[U (d−1)
T+1 |FT ]| ≤

ε

2d
E[U (d−1)

T+1 |FT ]
∣∣FT

)
≥P
(
|U (d−1)

T+1 −E[U (d−1)
T+1 |FT ]| ≤

ε

2d
E[U (d−1)

T+1 |FT ]
∣∣FT ,AT

)
P(AT )

≥
[
1− exp

(
−E[U (d−1)

T+1 |FT ,AT ]h̃(ε/2d)
)]

(1−n−2−γ)≥ (1−n−2−γ)2 ≥ 1−2n−2−γ.

From the symmetry of ± labels, the concentration of U (0)
T+1 works in the same way. Similarly,

there exists a constant C1 > 0 such that E[U (r)
T+1 | FT ],1≤ r ≤ d−2:

E[U (r)
T+1 | FT ] =

(
n+−U+

≤T
r

)(
n−−U−≤T
d−1− r

)1−

(
1− b( n

d−1

))ST
≥C1K logn.

We can choose K large enough such that for all 0≤ r ≤ d−1,

P
(∣∣∣U (r)

T+1−E[U (r)
T+1 | FT ]

∣∣∣≤ ε

2d
E[U (r)

T+1|FT ] | FT

)
≥ 1−2n−2−γ.

Next, we estimate U∗T+1 = ∑
d−2
s=1 UT+1,s. Recall from (4.8.10), we have UT+1,s � ZT+1,s

where

ZT+1,s ∼ Bin

((
n
s

)
,

a∨b( n
d−1

)( ST

d− s

))
.
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Conditioned on AT we know K logn≤ ST ≤ K3 logn, and

E[ZT+1,s | AT ,FT ] =

(
n
s

)
a∨b( n
d−1

)( ST

d− s

)
≤C2 logd−s(n)n1+s−d

for some constant C2 > 0. Using the fact that h(x)≥ 1
2x log(x) for x large enough, from (4.8.4),

we have for any constant λ > 0, 1≤ s≤ d−2, there exists a constant C3 > 0 such that for large n,

P(UT+1,s ≥ λST |FT ,AT )≤ P(ZT+1,s ≥ λST |FT ,AT )

≤exp
(
−E[ZT+1,s | AT ,FT ]h

(
λST

E[ZT+1,s | AT ,FT ]

))
≤exp

(
−1

2
λST log

(
λST

E[ZT+1,s | AT ,FT ]

))
≤ exp(−λC3 log2 n)≤ n−2−γ. (4.8.20)

Therefore with (4.8.19) and (4.8.20),

P(UT+1,s < λST |FT )≥ P(UT+1,s < λST |FT ,AT )P(AT )≥ (1−n−2−γ)2 ≥ 1−2n−2−γ.

Taking λ = (α−β)ε
4d2 , we have UT+1,s ≤ (α−β)ε

4d2 ST with probability at least 1− 2n−2−γ for any

γ ∈ (0,1).

Taking a union bound over 2≤ r ≤ d−1, it implies

U∗T+1 ≤
(α−β)ε

4d
ST (4.8.21)

with probability 1−O(n−2−γ) for any γ ∈ (0,1).

Note that n± = n
2 +O(

√
n logn) and U±≤T = ∑

T
k=1 Sk = O(log2(n)). From (4.8.3),

(
1−

aU+
T +bU−T
2
( n

d−1

) )
aU+

T +bU−T( n
d−1

) ≤ 1−

(
1− a( n

d−1

))U+
T
(

1− b( n
d−1

))U−T

≤
aU+

T +bU−T( n
d−1

) .
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It implies that

E[U (d−1)
T+1 |FT ,AT ] =

(n
2 +O(

√
n logn)

d−1

)(
1+O

(
log(n)
nd−1

))
aU+

T +bU−T( n
d−1

)
=

(
1

2d−1 +O
(

log(n)√
n

))
(aU+

T +bU−T ). (4.8.22)

Similarly, for 1≤ r ≤ d−2.

E[U (0)
T+1|FT ,AT ] =

(
1

2d−1 +O
(

log(n)√
n

))
(bU+

T +aU−T ),

E[U (r)
T+1|FT ,AT ] =

(
1

2d−1 +O
(

log(n)√
n

))(
d−1

r

)
(bU+

T +bU−T ).

Therefore from the estimations above, with the definition of α,β from (4.1.3),

E[
d−1

∑
r=0

rU (r)
T+1|FT ,AT ] (4.8.23)

=

(
1+O

(
log(n)√

n

))
1

2d−1

(
(d−1)(aU+

T +bU−T )+
d−2

∑
r=1

r
(

d−1
r

)
b(U+

T +U−T )

)

=

(
1+O

(
log(n)√

n

))(
α+β

2
U+

T +
α−β

2
U−T

)
. (4.8.24)

Since we have shown ∑
d−1
r=0 U (r)

T+1 concentrated around its mean by ε

2d with probability at

least 1−O(n−2−γ), conditioned on AT , we obtain

∣∣∣∣∣d−1

∑
r=0

rU (r)
T+1−E[

d−1

∑
r=0

rU (r)
T+1|FT ]

∣∣∣∣∣≤d−1

∑
r=0

r
∣∣∣U (r)

T+1−E[U (r)
T+1 | FT ]

∣∣∣≤ ε

2d

d−1

∑
r=1

rE[U (r)
T+1 | FT ]

≤ε

4

(
1+O

(
log(n)√

n

))(
α+β

2
U+

T +
α−β

2
U−T

)
(4.8.25)

with probability 1−O(n−2−γ). Therefore from (4.8.24), conditioned on AT , for large n, with
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probability 1−O(n−2−γ),

d−1

∑
r=0

rU (r)
T+1 ∈

[
1− ε

3
,1+

ε

3

](
α+β

2
U+

T +
α−β

2
U−T

)
. (4.8.26)

From (4.8.11), (4.8.21) and (4.8.26), conditioned on AT and FT , with probability 1−

O(n−2−γ),

U+
T+1 ≤

d−1

∑
r=0

rU (r)
T+1 +(d−2)U∗T+1 ≤

d−1

∑
r=0

rU (r)
T+1 +(d−2)

(α−β)εST

4d

≤ (1+ ε)

(
α+β

2
U+

T +
α−β

2
U−T

)
.

Since P(AT ) = 1−n−2−γ, and by symmetry of ± labels, with probability 1−O(n−2−γ),

U±T+1 ≤ (1+ ε)

(
α+β

2
U±T +

α−β

2
U±T

)
. (4.8.27)

(ii) Lower bound. To show (4.8.14), (4.8.15) for t ′ = T + 1, t = T , we cannot directly

bound U±T+1 from below by U (r)
T+1,1 ≤ r ≤ d− 1 since from our definition of the connected

(d−1)-subsets, they can overlap with each other, which leads to over-counting of the number

vertices with ± labels. In the following we show the overlaps between different connected

(d−1)-sets are small, which gives us the desired lower bound.

Let W±t+1,i be the set of vertices in V>t with spin± and appear in at least i distinct connected

(d−1)-subsets in V>t for i≥ 1. Let Wt+1,i =W+
t+1,i∪W−t+1,i. From our definition, W+

T+1,1 are the

vertices with spin + that appear in at least one connected (d−1)-subsets, so |W+
T+1,1| ≤U+

T+1.

By counting the multiplicity of vertices with spin +, we have the following relation

d−1

∑
r=1

rU (r)
T+1 = |W

+
T+1,1|+∑

i≥2
|W+

T+1,i| ≤U+
T+1 +∑

i≥2
|WT+1,i|. (4.8.28)
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This implies a lower bound on U+
T+1:

U+
T+1 ≥

d−1

∑
r=1

rU (r)
T+1−∑

i≥2
|WT+1,i|. (4.8.29)

Next we control |WT+1,2|. Let m = n−|V≤T |. We enumerate all vertices in V>T from 1

to m temporarily for the proof of the lower bound. Let Xi,1 ≤ i ≤ m be the random variables

that Xi = 1 if i ∈WT+1,2 and 0 otherwise, we then have |WT+1,2|= ∑
m
i=1 Xi. A simple calculation

yields

|WT+1,2|2−|WT+1,2|=

(
m

∑
i=1

Xi

)2

−
m

∑
i=1

Xi = 2 ∑
1≤i< j≤m

XiX j. (4.8.30)

The product XiX j is 1 if i, j ∈WT+1,2 and 0 otherwise.

We further consider 3 events, Es
i j for s = 0,1,2, where E0

i j is the event that all (d− 1)-

subsets in V>T containing i, j are not connected to VT , E1
i j is the event that there is only one

(d−1)-subset in V>T containing i, j connected to VT and E2
i j is the event that there are at least

two (d−1)-subsets in V>T containing i, j connected to VT . Now we have

E[XiX j | FT ,AT ] = P(i, j ∈WT+1,2 | FT ,AT )

=
2

∑
r=0

P
(
i, j ∈WT+1,2 | Er

i j,FT ,AT
)
P(Er

i j | FT ,AT ). (4.8.31)

We estimate the three terms in the sum separately. Conditioned on E0
i j, FT , and AT , the two

events that i ∈WT+1,2 and j ∈WT+1,2 are independent. And the probability that i ∈WT+1,2 is

bounded by (
n

d−2

)2
(

a∨b( n
d−1

))2

S2
T ≤

C1 log2(n)
n2
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for some constant C1 > 0. So we have

P
(
i, j ∈WT+1,2 | E0

i j,FT ,AT
)
P(E0

i j | FT ,AT )≤ P
(
i, j ∈WT+1,2 | E0

i j,FT ,AT
)

=P
(
i ∈WT+1,2 | E0

i j,FT ,AT
)
P
(

j ∈WT+1,2 | E0
i j,FT ,AT

)
≤

C2
1 log4 n

n4 . (4.8.32)

For the term that involves E1
i j, we know for some C2 > 0,

P(E1
i j | FT ,AT )≤

(
n

d−3

)
a∨b( n
d−1

)ST ≤
C2 logn

n2 ,

and conditioned on E1
i j and FT ,AT , the two events that i∈WT+1,2 and j ∈WT+1,2 are independent

again, since we require i, j to be contained in at least 2 connected-subsets. We have

P
(
i ∈WT+1,2 | E1

i j,FT ,AT
)
≤
(

n
d−2

)
ST

a∨b( n
d−1

) ≤ C2 logn
n

.

Therefore we have

P
(
i, j ∈WT+1,2 | E1

i j,FT ,AT
)
P(E1

i j | FT ,AT )

=P
(
i ∈WT+1,2 | E1

i j,FT ,AT
)
P
(

j ∈WT+1,2 | E1
i j,FT ,AT

)
P(E1

i j | FT ,AT )

≤
C2

2 log2 n
n2 ·C2 logn

n2 =
C3

2 log3 n
n4 . (4.8.33)

Conditioned on E2
i j, i, j have already been included in 2 connected (d−1) subsets, so

P
(
i, j ∈WT+1,2 | E2

i j,FT ,AT
)
= 1.
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We then have for some C3 > 0,

P
(
i, j ∈WT+1,2 | E2

i j,FT ,AT
)
P(E2

i j | FT ,AT )

=P(E2
i j | FT ,AT )≤

(
n

d−3

)2

S2
T

(
a∨b( n
d−1

))2

≤ C3 log2 n
n4 . (4.8.34)

Combining (4.8.32)-(4.8.34), we have for some constant C′ > 0,

E[XiX j | FT ,AT ]≤
C′ log4 n

n4 . (4.8.35)

Taking conditional expectation in (4.8.30), we have

E
[
|WT+1,2|2−|WT+1,2| | FT ,AT

]
= 2 ∑

1≤i< j≤m
E[XiX j | FT ,AT ]≤

C′ log4 n
n2 .

By Markov’s inequality, there exists a constant C > 0 such that for any constant λ > 0

and sufficiently large n,

P(|WT+1,2|> λST | FT ,AT )≤ P(|WT+1,2|(|WT+1,2|−1)> λST (λST −1) | FT ,AT )

(4.8.36)

≤
E[|WT+1,2|(|WT+1,2|−1) | FT ,AT ]

λST (λST −1)
≤ C log2 n

λ2n2 ,

where in the last inequality we use the fact that ST ≥ K logn. Taking λ = (α−β)ε
4 , we have for all

large n and for any γ ∈ (0,1),

P
(
|WT+1,2|>

(α−β)ε

4
ST | FT ,AT

)
= O

(
log2 n

n2

)
≤ n−1−γ. (4.8.37)

For a fixed vertex j ∈V>T , the probability that j ∈WT+1,i is at most
( n

d−2

)iSi
T

(
a∨b
( n

d−1)

)i

,
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then we have for sufficiently large n,

E[|WT+1,i| | FT ,AT ]≤ n
(

n
d−2

)i

Si
T

(
a∨b( n
d−1

))i

≤ n
(

C4 logn
n

)i

for some C4 > 0. For the rest of the terms in (4.8.28), we have for some constant C > 0,

E

[
∑
i≥3
|WT+1,i|

∣∣∣ FT ,AT

]
≤ n

∞

∑
i=3

(
C4 logn

n

)i

≤ C log3(n)
n2 .

By Markov’s inequality,

P

(
∑
i≥3
|WT+1,i| ≥

(α−β)ε

4
ST | FT ,AT

)
≤ C log2(n)

n2 ≤ n−1−γ.

Together with (4.8.37), we have conditioned on AT , ∑i≥2 |W+
T+1,2| ≤

(α−β)ε
2 ST with probability

at least 1−2n−1−γ for any γ ∈ (0,1) and all large n. Note that

(α−β)ε

2
ST ≤

ε

2

(
α+β

2
U+

T +
α−β

2
U−T

)
.

With (4.8.26), (4.8.29), and (4.8.19), we have

U+
T+1 ≥

d−1

∑
r=1

rU (r)
T+1−

ε

2

(
α+β

2
U+

T +
α−β

2
U−T

)
≥ (1− ε)

(
α+β

2
U+

T +
α−β

2
U−T

)

with probability 1−O(n−1−γ). By symmetry, the argument works for U−T+1, therefore with

probability 1−O(n−1−γ) for any γ ∈ (0,1), we have

U±T+1 ≥ (1− ε)

(
α+β

2
U±T +

α−β

2
U∓T

)
. (4.8.38)

From (4.8.27) and (4.8.38), we have with probability 1−O(n−1−γ) for any γ ∈ (0,1),

(4.8.18) holds.
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Step 2: Induction. It remains to extend this estimate in Step 1 for all T ≤ t ′ < t ≤ l. We

now define the event

At :=
{

U±t ∈ [1− εt−1,1+ εt−1]

(
α+β

2
U±t−1 +

α−β

2
U±t−1

)}
(4.8.39)

for T +1≤ t ≤ l, and recall εt = εα−(t−T )/2,AT = {ST ≤ K3 logn}.

From the proof above, we have shown AT+1 holds with probability 1−O(n−1−γ). Condi-

tioned on AT , AT+1, · · · ,At for some fix t with T +2≤ t ≤ l, the vector ~Ut = (U+
t ,U−t ) satisfies

(4.8.14), (4.8.15) for any T ≤ t ′ < t.

Set t ′ = T +1. From [141], for any integer k > 0, Mk = 1
2

αk +βk αk−βk

αk−βk αk +βk

. (4.8.14)

implies that

U±t ≥

(
t−1

∏
s=T+1

(1− εs)

)(
αt−T−1 +βt−T−1

2
U±T+1 +

αt−T−1−βt−T−1

2
U∓T+1

)
≥ (1−O(ε))

αt−T−1

2
(1− ε)

(
α+β

2
U±T +

α−β

2
U∓T

)
≥ (1−O(ε))αt−T (1− ε)(α−β)

4α
ST ≥C1α

t−T log(n), (4.8.40)

for some constant C1 > 0. For any t with T ≤ t, conditioned on AT , AT+1, · · · ,At , since β < α,

U±t ≤

(
t−1

∏
s=T

(1+ εs)

)(
αt−T +βt−T

2
U±T +

αt−T −βt−T

2
U∓T

)
≤ (1+O(ε))

αt−T +βt−T

2
ST ≤ (1+O(ε))αt−T K3 log(n)≤C2α

t−T logn (4.8.41)

for some C2 > 0. Combining lower and upper bounds on U±t , we obtain

St =U+
t +U−t = Θ(αt−T logn). (4.8.42)
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We now show by induction that At+1 holds with high probability conditioned on {A j,T ≤ j ≤ t}.

(i) Upper bound. Note that αl = o(n1/4), for some constant C > 0

U+
≤t ≤

t

∑
i=1

Si ≤Cα
t−T log2 n≤Cα

l logn = o(n1/4 logn).

Recall |n±− n
2 | ≤
√

n logn. From (4.8.7)-(4.8.9), similar to the case for t = T , we have

E[U (d−1)
t+1 |∩

t
j=T A j,Ft ] =

(
n+−U+

≤t
d−1

)1−

(
1− a( n

d−1

))U+
t
(

1− b( n
d−1

))U−t


=

(
1

2d−1 +O
(

logn√
n

))
(aU+

t +bU−t ),

and

E[U (0)
t+1|∩

t
j=T A j,Ft ] = (

1
2d−1 +O(

logn√
n
))(bU+

t +aU−t ),

E[U (r)
t+1|∩

t
j=T A j,Ft ] = (

1
2d−1 +O(

logn√
n
))

(
d−1

r

)
(bU+

t +bU−t ),

for 1≤ r ≤ d−2. Hence there exists a constant C0 > 0 such that for all 0≤ r ≤ d−1,

E[U (r)
t+1|∩

t
j=T A j,Ft ]≥C0St .

From (4.8.5) in Lemma 4.8.2, for any 0≤ r ≤ d−1, to show

P
(∣∣∣U (r)

t+1−E[U (r)
t+1 | ∩

t
j=T A j,Ft ]

∣∣∣≤ ε

2d
E[U (r)

t+1 | ∩
t
j=T A j,Ft ]

∣∣∣ ∩t
j=T A j,Ft

)
≥ 1−n−2−γ,

(4.8.43)
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it suffices to have

C0St h̃
(

εt

2d

)
≥ (2+ γ) logn. (4.8.44)

From (4.8.5), by a second-order expansion of h̃ around 0, h̃(x) ≥ x2/3 when x > 0 is

small. For γ ∈ (0,1), the left hand side in (4.8.44) is lower bounded by

C1Kα
t−T log(n)h̃

(
εt

2d

)
≥C2α

t−T K log(n)ε2
t =C2K logn≥ (2+ γ) logn,

by taking K large enough. Therefore (4.8.43) holds.

We also have

Ut+1,s � Zt+1,s, Zt+1,s ∼ Bin

((
n
s

)
,

a∨b( n
d−1

)( St

d− s

))
,

and Zt+1,s has mean
(n

s

) a∨b
( n

d−1)

( St
d−s

)
= Θ

(
α(d−s)(t−T ) logd−s(n)

nd−1−s

)
. For 1 ≤ s ≤ d− 2, using the fact

that h(x)≥ 1
2x log(x) for x large enough, similar to (4.8.20), there are constants C1,C2,C3,C4 > 0

such that for any λ > 0,

P(Ut+1,s ≥ λSt | ∩t
j=T A j,Ft)≤ P(Zt+1,s ≥ λSt | ∩t

j=T A j,Ft)

≤exp
(
−C1λα

t−T log(n) log
(

C2λαt−T log(n)
C3α(d−s)(t−T ) logd−s(n)n1+s−d

))
.

Taking λ = (α−β)εt
4d2 = (α−β)εα−(t−T )/2

4d2 , we have

P
(

Ut+1,s ≥
(α−β)εt

4d2 St | ∩t
j=T A j,Ft

)
≤exp

(
−C′1α

(t−T )/2 log(n) · log(C′2α
(s−d+ 1

2 )(t−T ) log1+s−d(n)nd−1−s)
)
.
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Since for some constants C4,C5,C6 > 0,

log(C′2α
(s−d+ 1

2 )(t−T ) log1+s−d(n)nd−1−s)

≥C4−C5(t−T ) log(α)+ log(log1+s−d(n))+(d−1− s) logn≥C6 logn,

we have for all 1≤ s≤ d−2,

P(Ut+1,s ≥
(α−β)εt

4d2 St | ∩t
j=T A j,Ft)≤ exp

(
−C′1C6 log2 n

)
≤ n−2−γ (4.8.45)

for any γ ∈ (0,1). Recall for sufficiently large n,

εt = εα
−(t−T )/2 ≥ εα

−l/2 > n−1/8.

Therefore logn√
n = o(εt). From (4.8.45), conditioned on AT , . . . ,At and Ft ,

U+
t+1 ≤

d−1

∑
r=1

rU (r)
t+1 +(d−2)U∗t+1 ≤ (1+ εt)

(
α+β

2
U+

t +
α−β

2
U−t

)

with probability at least 1−O(n−2−γ). A similar bound works for U−t+1, which implies conditioned

on AT , . . . ,At ,

U±t+1 ≤ (1+ εt)

(
α+β

2
U±t +

α−β

2
U±t

)
(4.8.46)

with probability 1−O(n−2−γ) for any γ ∈ (0,1).

(ii) Lower bound. We need to show that conditioned on AT , . . . ,At ,

U±t+1 ≥ (1− εt)

(
α+β

2
U±t +

α−β

2
U±t

)

with probability 1−O(n−1−γ) for some γ ∈ (0,1). This part of the proof is very similar to the
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case for t = T . Same as (4.8.29), we have the following lower bound on U+
t+1:

U+
t+1 ≥

d−1

∑
r=1

rU (r)
t+1−∑

i≥2
|Wt+1,i|.

Next we control |Wt+1,2|. Let m = n−|V≤t | and we enumerate all vertices in V>t from 1

to m. Let X1, . . .Xm be the random variable that Xi = 1 if i ∈Wt+1,2 and 0 otherwise. Same as

(4.8.30),

|Wt+1,2|2−|Wt+1,2|= 2 ∑
1≤i< j≤m

XiX j. (4.8.47)

Let Es
i j for s = 0,1,2, be the similar events as in (4.8.31) before, now we have

E[XiX j | ∩t
j=T A j,Ft ] = P

(
i, j ∈Wt+1,2 | ∩t

j=T A j,Ft
)

=
2

∑
r=0

P
(
i, j ∈Wt+1,2 | Er

i j,∩t
j=T A j,Ft

)
P(Er

i j | ∩t
j=T A j,Ft).

The three terms in the sum can be estimated separately in the same way as before. By using the

upper bound Cαt−T logn≤ St ≤C0αt−T logn for some C,C0 > 0, and use the same argument for

the case when t = T , we have the following three inequalities for some constants C1,C2,C3 > 0:

P
(
i, j ∈Wt+1,2 | E0

i j,Ft
)
P(E0

i j | ∩t
j=T A j,Ft)≤

C2
1α4(t−T ) log4 n

n4 ,

P
(
i, j ∈Wt+1,2 | E1

i j,Ft
)
P(E1

i j | ∩t
j=T A j,Ft)≤

C3
2α3(t−T ) log3 n

n4 ,

P
(
i, j ∈Wt+1,2 | E2

i j,Ft
)
P(E2

i j | ∩t
j=T A j,Ft)≤

C3α2(t−T ) log2 n
n4 .

This implies E[XiX j | ∩t
j=T A j,Ft ]≤ C′α4(t−T ) log4 n

n4 for some C′> 0. Taking conditional expectation
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in (4.8.47), we have

E
[
|Wt+1,2|2−|Wt+1,2| | ∩t

j=T A j,Ft
]
≤ C′α4(t−T ) log4 n

n2 .

Then by Markov inequality and (4.8.42), similar to (4.8.36), there exists a constant C > 0 such

that for any λ = Ω(α−(t−T )),

P
(
|Wt+1,2|> λSt | ∩t

j=T A j,Ft
)
≤ Cα2(t−T ) log2 n

λ2n2 .

Take λ = (α−β)εt
4 . Since c log(α)< 1/4, we have αl < n1/4, and

P
(
|Wt+1,2|>

(α−β)εt

4
St | ∩t

j=T A j,Ft

)
≤ Cα2(t−T ) log2 n

n2 ≤ n−1−γ

for any γ ∈ (0,1/2).

For each |Wt+1,i| for i≥ 3, we have for sufficiently large n, there exists a constant C4 > 0

E[|Wt+1,i| | ∩t
j=T A j,Ft ]≤ n

(
n

d−2

)i

Si
t

(
a∨b( n
d−1

))i

≤ n
(

C4αt−T logn
n

)i

.

For the rest of the terms, we have for some constant C′4 > 0,

E

[
∑
i≥3
|Wi| | ∩t

j=T A j,Ft

]
≤ n

∞

∑
i=3

(
C4αt−T logn

n

)i

≤
C′4α3(t−T ) log3(n)

n2 .

By Markov’s inequality,

P

(
∑
i≥3
|Wi| ≥

(α−β)εt

4
St | ∩t

j=T A j,Ft

)
≤ C5α2.5(t−T ) log2(n)

n2 ≤ n−1−γ
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for any γ ∈ (0,3/8). Together with the estimate on Wt+1,2, we have

∑
i≥2
|W+

t+1,2| ≤
(α−β)εt

2
St ≤

εt

2

(
α+β

2
U+

t +
α−β

2
U−t

)

with probability 1−2n−1−γ for any γ ∈ (0,3/8).

With (4.8.29) and (4.8.26), U+
t+1 ≥ (1− εt)

(
α+β

2 U+
t + α−β

2 U−t
)

with probability 1−

O(n−1−γ). By symmetry, the argument works for U−t+1. Therefore conditioned on AT , . . . ,At ,

with probability 1−O(n−1−γ) for any γ ∈ (0,3/8),

U±t+1 ≥ (1− εt)

(
α+β

2
U±t +

α−β

2
U∓t

)
. (4.8.48)

This finishes the proof the lower bound part of Step 2. Recall (4.8.39). With (4.8.48) and (4.8.46),

we have shown that conditioned on AT , . . . ,At , with probability 1−O(n−1−γ), At+1 holds. This

finishes the induction step. Finally, for fixed i ∈ [n] and γ ∈ (0,3/8),

P

(
l⋂

t=T

At

)
= P(AT )

l

∏
t=T+1

P(At | At−1, . . . ,AT )

≥ (1−Cn−2−γ)(1−Cn−1−γ)l ≥ 1−C6 log(n)n−1−γ,

for some constant C6 > 0. Taking a union bound over i ∈ [n], we have shown At holds for all

T ≤ t ≤ l and all i ∈ [n] with probability 1−O(n−γ) for any γ ∈ (0,3/8). This completes the

proof of Theorem 4.8.4.

With Theorem 4.8.4, the rest of the proof of Theorem 4.4.2 follows similarly from the

proof of Theorem 2.3 in [141]. We include it for completeness.

Proof of Theorem 4.4.2. Assume all the estimates in statement of Theorem 4.8.4 hold. For t ≤ l,
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if t ≤ T , from the definition of T , we have St , |Dt |= O(logn). For t > T , from [141], M satisfies

Mk =
1
2

αk +βk αk−βk

αk−βk αk +βk

 .
Using (4.8.14) and (4.8.15), we have for t > t ′ ≥ T ,

St ≤

(
t−1

∏
s=t ′

(1+ εs)

)
(1,1)Mt−t ′~Ut ′ ≤

(
t−1

∏
s=t ′

(1+ εs)

)
α

t−t ′St ′, (4.8.49)

St ≥

(
t−1

∏
s=t ′

(1− εs)

)
(1,1)Mt−t ′~Ut ′ ≥

(
t−1

∏
s=t ′

(1− εs)

)
α

t−t ′St ′. (4.8.50)

Setting t ′ = T in (4.8.49), we obtain

St ≤

(
t−1

∏
s=T

(1+ εs)

)
α

t−T ST = O(αt−T logn) = O(αt logn).

Therefore (4.4.1) holds. Let t = l in (4.8.49) and (4.8.50), we have for all T ≤ t ′ < l,

(
l−1

∏
s=t ′

(1− εs)

)
α

l−t ′St ′ ≤ Sl ≤

(
l−1

∏
s=t ′

(1+ εs)

)
α

l−t ′St ′.

And it implies

(
l−1

∏
s=t ′

(1− εs)

)
St ′ ≤ α

t ′−lSl ≤

(
l−1

∏
s=t ′

(1+ εs)

)
St ′. (4.8.51)

Note that

max

{
l−1

∏
s=t ′

(1+ εs)−1,1−
l−1

∏
s=t ′

(1− εs)

}
= O(εt ′) = O(α−t ′/2).

Together with (4.8.51), we have for all T ≤ t ′ < l,

|St ′−α
t ′−lSl| ≤ O(α−t ′/2)St ′ = O(αt ′/2 logn). (4.8.52)
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On the other hand, for t ≤ T , we know St = O(logn). Let t ′ = T in (4.8.52), we have

|ST −α
T−lSl|= O(αT/2 logn). (4.8.53)

So for 1≤ t ≤ T ,

|St−α
t−lSl|= O(logn)+α

t−T (ST +O(log(n)αT/2))

= O(logn)+O(αt−T/2 logn) = O(αt/2 logn). (4.8.54)

The last inequality comes from the inequality t−T/2≤ t/2. Combining (4.8.52) and (4.8.54),

we have proved (4.4.3) holds for all 1≤ t ≤ l.

Using (4.8.14) and (4.8.15), we have

Dt+1 =U+
t+1−U−t+1 ≤ β(U+

t −U−t )+αεt(U+
t +U−t ) = βDt +αεtSt .

Similarly, βDt−αεtSt ≤ Dt+1 ≤ βDt +αεtSt . By iterating, we have for l ≥ t > t ′ ≥ T ,

|Dt−β
t−t ′Dt ′| ≤

t−1

∑
s=t ′

αβ
t−1−s

εsSs. (4.8.55)

Recall Ss = O(log(n)αs−T ), |DT |= O(logn), and εs = α−(s−T )/2. Taking t ′ = T in (4.8.55), for

t > T ,

|Dt |= O
(
log(n)βt)+O

(
t−1

∑
s=T

αβ
t−1−s log(n)α(s−T )/2

)
.
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Since 1 < α < β2, it follows that

t−1

∑
s=T

αβ
t−1−s log(n)α(s−T )/2 =β

t−1
α

1−T/2 log(n)
t−1

∑
s=T

(
α

β2

)s/2

=β
t−1

α
1−T/2 log(n)O(αT/2

β
−T ) = O(log(n)βt).

So we have |Dt |= O(lognβt). The right side of (4.8.55) is of order

t−1

∑
s=t ′

αβ
t−1−s

α
(s−T )/2 log(n) = O(log(n)βt−t ′

α
t ′/2).

Thus setting t = l in (4.8.55), for l > t ′ ≥ T , we obtain Dl − βl−t ′Dt ′ = O(log(n)βl−t ′αt ′/2).

Therefore Dt ′ = βt ′−lDl +O(log(n)αt ′/2) holds for all T ≤ t ′ < l. For t ′ < T , we have Dt ′ =

O(logn) and

|Dt ′−β
t ′−lDl| ≤ O(logn)+β

t ′−T (|DT |+O(log(n)αT/2))

= O(logn)+O(βt ′−T
α

T/2 logn) = O(αt ′/2 logn),

where the last estimate is because βt ′−T < α(t ′−T )/2 under the condition that t ′ < T . Altogether

we have shown (4.4.4) holds for all 1≤ t ′ ≤ l. This completes the proof of Theorem 4.4.2.

4.9 Proof of Theorem 4.4.6

We first state the following lemma before proving Theorem 4.4.6. The proof is included

in Appendix 4.12.

Lemma 4.9.1. For all m∈ {1, . . . , l} with l = c logn, c logα< 1/4, it holds asymptotically almost
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surely that

sup
‖x‖2=1,x>B(l)1=x>B(l)σ=0

‖1>B(m−1)x‖2 = O(
√

nα
(m−1)/2 logn), (4.9.1)

sup
‖x‖2=1,x>B(l)1=x>B(l)σ=0

‖σ>B(m−1)x‖2 = O(
√

nα
(m−1)/2 logn). (4.9.2)

Proof of Theorem 4.4.6. Using matrix expansion identity (4.3.2) and the estimates in Theorem

4.3.1, for any l2-normalized vector x with x>B(l)1 = x>B(l)σ = 0, we have for sufficiently large

n, asymptotically almost surely

‖B(l)x‖2 =

∥∥∥∥∥∆
(l)x+

l

∑
m=1

(∆(l−m)AB(m−1))x−
l

∑
m=1

Γ
(l,m)x

∥∥∥∥∥
2

≤ ρ(∆(l))+
l

∑
m=1

ρ(∆(l−m))‖AB(m−1)x‖2 +
l

∑
m=1

ρ(Γ(l,m))

≤ 2nε
α

l/2 +
l

∑
m=1

nε
α
(l−m)/2‖AB(m−1)x‖2, (4.9.3)

where A = EHn
[A | σ]. We have the following expression for entries of A. If i 6= j and σi = σ j =

+1,

Ai j =
a( n

d−1

)(n+−2
d−2

)
+

b( n
d−1

) ((n−2
d−2

)
−
(

n+−2
d−2

))
=: ã+n .

If i 6= j and σi = σ j =−1,

Ai j =
a( n

d−1

)(n−−2
d−2

)
+

b( n
d−1

) ((n−2
d−2

)
−
(

n−−2
d−2

))
=: ã−n .

If σi 6= σ j,

Ai j =
b( n

d−1

)(n−2
d−2

)
:= b̃n.

We then have ã+n , ã
−
n , b̃n = O(1/n). Conditioned on the event {|n±− n/2| ≤ log(n)

√
n}, we
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obtain

ã−n − ã+n =
a−b( n
d−1

) ((n−−2
d−2

)
−
(

n+−2
d−2

))
= O

(
logn
n3/2

)
.

Let R be a n×n matrix such that

Ri j =


1 σi = σ j =−1 and i 6= j,

0 otherwise.

We then have ‖R‖2 ≤
√

∑i j R2
i j ≤ n. The following decomposition of A holds:

A = ã+n

[
1
2
(1 ·1>+σσ

>)− I
]
+

b̃n

2
(1 ·1>−σσ

>)+(ã−n − ã+n )R (4.9.4)

=
ã+n + b̃n

2
1 ·1>+ ã+n − b̃n

2
σσ
>+

(
(ã−n − ã+n )R− ã+n I

)
. (4.9.5)

Since

‖(ã−n − ã+n )R− ã+n I‖2 ≤ |ã−n − ã+n | · ‖R‖2 + |ã+n |= O(logn/
√

n),

by (4.9.5), we have

‖AB(m−1)x‖2 =O
(

1
n

)
‖1 ·1>B(m−1)x‖2 +O

(
1
n

)
‖σσ

>B(m−1)x‖2 +O
(

logn√
n

)
‖B(m−1)x‖2.

By Cauchy inequality,

‖1 ·1>B(m−1)x‖2 ≤
√

n‖1>B(m−1)x‖2, ‖σσ
>B(m−1)x‖2 ≤

√
n‖σ>B(m−1)x‖2.

Therefore,

‖AB(m−1)x‖2 =O(n−1/2)(‖σ>B(m−1)x‖2 +‖1>B(m−1)x‖2)+O(logn/
√

n)‖B(m−1)x‖2.
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Using (4.9.1) and (4.9.2), the right hand side in the expression above is upper bounded by

O(α(m−1)/2 logn)+O(‖B(m−1)x‖2 · logn/
√

n). (4.9.6)

Since B(m−1) is a nonnegative matrix, the spectral norm is bounded by the maximum row

sum (see Theorem 8.1.22 in [115]), we have that

‖B(m−1)x‖2 ≤ ρ(B(m−1))≤max
i

n

∑
j=1

B(m−1)
i j .

By (4.4.1), (4.4.5) and (4.4.7), the right hand side above is O(αm−1 logn). Combing (4.9.6) and

noting that αm−1/
√

n = o(n−1/4), it implies

‖AB(m−1)x‖2 = O(α(m−1)/2 logn)+O(αm−1 log2 n/
√

n) = O(α(m−1)/2 logn). (4.9.7)

Taking (4.9.7) into (4.9.3), we have for any ε > 0, with high probability, ‖B(l)x‖2 =

O(nεαl/2 log2 n)≤ n2εαl/2 for n sufficiently large. This completes the proof.

4.10 Proof of Theorem 4.5.2

The proof in this section is a generalization of the method in [146] for sparse random

graphs. We now prove the case where σi =+1, and the case for σi =−1 can be treated in the

same way. Recall the definition of Vt from Definition 4.4.1. Let At be the event that no vertex in

Vt is connected by two distinct hyperedges to Vt−1. Let Bt be the event that there does not exist

two vertices in Vt that are contained in a hyperedge e⊂
(Vt

d

)
.

We can construct the multi-type Poisson hypertree (T,ρ,τ) in the following way. For a

vertex v ∈ T , Let Y (r)
v ,0≤ r ≤ d−1 be the number of hyperedges incident to v which among the
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remaining d−1 vertices, r of them have the same spin with τ(v). We have

Y (d−1)
v ∼ Pois

( a
2d−1

)
, Y (r)

v ∼ Pois

((d−1
r

)
b

2d−1

)
,0≤ r ≤ d−2.

Note that (T,ρ,τ) can be entirely reconstructed from the label of the root and the sequence {Y (r)
v }

for v ∈V (T ),0≤ r ≤ d−1.

We define similar random variables for (H, i,σ). For a vertex v∈Vt , let X (r)
v be the number

of hyperedges incident to v, where all the remaining d−1 vertices are in Vt+1 such that r of them

have spin σ(v). Then we have

X (d−1)
v ∼ Bin

((
|V σ(v)

>t |
d−1

)
,

a( n
d−1

)) ,

X (r)
v ∼ Bin

((
|V σ(v)

>t |
r

)(
|V−σ(v)

>t |
d−1− r

)
,

b( n
d−1

)) , 0≤ r ≤ d−2

and conditioned on Ft (recall the definition of Ft from (4.8.6)) they are independent. Recall

Definition 4.5.1. We have the following lemma on the spin-preserving isomorphism. The proof

of Lemma 4.10.1 is given in Appendix 4.12.

Lemma 4.10.1. Let (H, i,σ)t ,(T,ρ,τ)t be the rooted hypergraph truncated at distance t from i,ρ,

respectively. If

1. there is a spin-preserving isomorphism φ such that (H, i,σ)t−1 ≡ (T,ρ,τ)t−1,

2. for every v ∈Vt−1, X (r)
v = Y (r)

φ(v) for 0≤ r ≤ d−1,

3. At ,Bt hold,

then (H, i,σ)t ≡ (T,ρ,τ)t .

To make our notation simpler, for the rest of this section, we will identify v with φ(v).

Recall the event Ωt(i) = {St(i)≤C log(n)αt} where the constant C is the same one as in Theorem
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4.4.2. Now define a new event

Ct :=
⋂
s≤t

Ωs(i). (4.10.1)

From the proof of Theorem 4.4.2, for all t ≤ l, PHn
(Ct) = 1−O(n−1−γ) for any γ ∈ (0,3/8).

Note that conditioned on Ct , there exists C′ > 0 such that

|V≤t | ≤∑
s≤t

C log(n)αt ≤C′ log2(n)αt . (4.10.2)

We now estimate the probability of event At ,Bt conditioned on Ct . The proof is included

in Appendix 4.12.

Lemma 4.10.2. For any t ≥ 1,

P(At |Ct)≥ 1−o(n−1/2), P(Bt |Ct)≥ 1−o(n−1/2).

Before proving Theorem 4.5.2, we also need the following bound on the total variation

distance between binomial and Poisson random variables, see for example Lemma 4.6 in [146].

Lemma 4.10.3. Let m,n be integers and c be a positive constant. The following holds:

∥∥∥Bin
(

m,
c
n

)
−Pois(c)

∥∥∥
TV

= O
(

1∨|m−n|
n

)
.

Proof of Theorem 4.5.2. Fix t and suppose that Ct holds, and (T,ρ)t ≡ (H, i)t . Then for each

v ∈Vt , recall

X (d−1)
v ∼ Bin

((
|V σ(v)

>t |
d−1

)
,

a( n
d−1

)) , X (r)
v ∼ Bin

((
|V σ(v)

>t |
r

)(
|V−σ(v)

>t |
d−1− r

)
,

b( n
d−1

))
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and

Y (d−1)
v ∼ Pois

( a
2d−1

)
, Y (r)

v ∼ Pois

((d−1
r

)
b

2d−1

)
, 0≤ r ≤ d−2.

Recall |n±−n/2| ≤
√

n logn. We have the following bound for V±>t :

|V±>t | ≥ n±−|V≤t | ≥
n
2
−
√

n log(n)−O(log2(n)α2t)≥ n
2
−2
√

n log(n),

|V±>t | ≤ n± ≤ n
2
+
√

n log(n).

Therefore |V±>t− n
2 | ≤ 2

√
n logn. Then from Lemma 4.10.3,

‖X (d−1)
v −Y (d−1)

v ‖TV ≤C

∣∣∣∣(|V σ(v)
>t |

d−1

)
− 1

2d−1

( n
d−1

)∣∣∣∣
1

2d−1

( n
d−1

) = O(n−1/2 logn),

‖X (r)
v −Y (r)

v ‖TV = O(n−1/2 logn), 0≤ r ≤ d−2.

We can couple X (r)
v with Y (r)

v ,0≤ r ≤ d−1 such that P
(

X (r)
v 6= Y (r)

v

)
= O(n−1/2 logn). Taking

a union bound over all v ∈Vt , and 0≤ r ≤ d−1 and recall (4.10.2), we can find a coupling such

that with probability at least

1−O(log3(n)αln−1/2)≥ 1−o(n−1/4),

X (r)
v =Y (r)

v for every v∈Vt and 0≤ r≤ d−1. Lemma 4.10.2 implies At ,Bt ,Ct hold simultaneously

with probability at least 1−o(n−1/4). Altogether we have that assumptions (2),(3) in Lemma

4.10.1 hold with probability 1−o(n−1/4), which can be written as

P
(
(H, i,σ)t+1 ≡ (T,ρ,τ)t+1,Ct+1

∣∣∣ (H, i,σ)t ≡ (T,ρ,τ)t ,Ct

)
≥ 1−o(n−1/4).
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Since we can certainly couple i with ρ from our construction, P((H, i,σ)0 ≡ (T,ρ,τ)0,C0) = 1.

Therefore for large n,

P((H, i,σ)l ≡ (T,ρ,τ)l)

=
l

∏
t=1

P
(
(H, i,σ)t ≡ (T,ρ,τ)t ,Ct

∣∣∣ (H, i,σ)t−1 ≡ (T,ρ,τ)t−1,Ct−1

)
·P((H, i,σ)0 ≡ (T,ρ,τ)0,C0)

≥(1−o(n−1/4))l ≥ 1−n−1/5.

This completes the proof.

4.11 Proof of Theorem 4.6.1

The proof of the following Lemma 4.11.1 follows in a similar way as Lemma 4.4 in [141],

and we include it in Appendix 4.12.

Lemma 4.11.1. For l = c log(n),c log(α)< 1/4, the following hold asymptotically almost surely

‖B(l)1−~Sl‖2 = o(‖B(l)1‖2), (4.11.1)

‖B(l)
σ−~Dl‖2 = o(‖B(l)

σ‖2), (4.11.2)

〈B(l)1,B(l)
σ〉= o

(
‖B(l)1‖2 · ‖B(l)

σ‖2

)
. (4.11.3)

The next lemma estimate ‖B(l)x‖2 when x = B(l)σ and B(l)1. The proof of Lemma 4.11.2

is provided in Appendix 4.12.

Lemma 4.11.2. Assume β2 > α > 1 and l = c log(n) with c log(α)< 1/8. Then for some fixed
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γ > 0 asymptotically almost surely one has

Ω(αl)‖B(l)1‖2 ≤ ‖B(l)B(l)1‖2 ≤ O(αl logn)‖B(l)1‖2, (4.11.4)

Ω(βl)‖B(l)
σ‖2 ≤ ‖B(l)B(l)

σ‖2 ≤ O(n−γ
α

l)‖B(l)
σ‖2. (4.11.5)

Together with Lemma 4.11.1 and Lemma 4.11.2, we are ready to prove Theorem 4.6.1.

Proof of Theorem 4.6.1. From Theorem 4.4.6 and Lemma 4.11.2, the top two eigenvalues of B(l)

will be asymptotically in the span of B(l)1 and B(l)σ. By the lower bound in (4.11.4) and the

upper bound in (4.11.5), the largest eigenvalue of B(l) will be Θ(αl) up to a logarithmic factor,

and the first eigenvector is asymptotically aligned with B(l)1.

From (4.11.1), B(l)1 is also asymptotically aligned with ~Sl , therefore our statement for the

first eigenvalue and eigenvector holds. Since B(l)1 and B(l)σ are asymptotically orthogonal from

(4.11.3), together with (4.11.5), the second eigenvalue of B(l) is Ω(βl) and the second eigenvector

is asymptotically aligned with B(l)σ. From (4.11.2), B(l)σ is asymptotically aligned with ~Dl . So

the statement for the second eigenvalue and eigenvector holds. The order of other eigenvalues

follows from Theorem 4.4.6 and the Courant minimax principle (see [115]).

4.12 Proof of auxiliary lemmas

Proof of Lemma 4.4.3

Proof. The two sequences (U±k (i))k≤l , (U±k ( j))k≤l are independent conditioned on the event

{V≤l(i)∩V≤l( j) = /0}. It remains to estimate PHn
({V≤l(i)∩V≤l( j) = /0}). Introduce the events

Jk :=
⋂
t≤k

{St(i)∨St( j)≤C log(n)αt}, Lk := {V≤k(i)
⋂

V≤k( j) = /0},
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where the constant C is the same one as in the statement of Theorem 4.4.2. For any vertex

v ∈ [n]\ (V≤k(i)∪V≤k( j)), Conditioned on Lk and Jk, there are two possible situations where v is

included in Vk+1(i)∩Vk+1( j):

(1) There is a hyperedge containing v and a vertex in Vk(i), and a different hyperedge containing

v and a vertex in Vk( j).

(2) There is a hyperedge containing v, one vertex in Vk(i), and another vertex in Vk( j).

There exists a constant C1 > 0 such that Case (1) happens with probability at most

Sk(i)Sk( j)
(

n
d−2

)2
(

a∨b( n
d−1

))2

≤C1 log2(n)α2k/n2,

and Case (2) happens with probability at most

Sk(i)Sk( j)
(

n
d−3

)
a∨b( n
d−1

) =C1 log2(n)α2k/n2.

Since α2l = n2c logα = o(n1/2), we have for large n,

PHn
(v ∈Vk+1(i)∩Vk+1( j) | Jk,Lk)≤ 2C1 log2(n)α2l/n2 < n−1.5.

Taking a union bound over all possible v, we have for some constant C3 > 0,

PHn
(Vk+1(i)∩Vk+1( j) = /0 | Jk,Lk)≥ 1−C3n−1/2.

From the proof of Theorem 4.4.2, for all 0 ≤ k ≤ l, PHn(Jk) = 1−O(n−1−γ) for any

γ ∈ (0,3/8). We then have

PHn
(Vk+1(i)∩Vk+1( j) = /0 | Lk)≥PHn

(Vk+1(i)∩Vk+1( j) = /0 | Jk,Lk) PHn
(Jk)≥ 1−O(n−1/2).
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Finally, for large n,

PHn
({V≤l(i)∩V≤l( j) = /0}) =PHn

(Ll)≥ PHn
(Vl(i)∩Vl( j) = /0 | Ll−1)PHn

(Ll−1)

≥PHn
(L0)

l−1

∏
k=0

PHn
(Vk+1(i)∩Vk+1( j) = /0 | Lk)

≥(1−O(n−1/2))l ≥ 1−n−1/3.

This completes the proof.

Proof of Lemma 4.4.4

Proof. Consider the exploration process of the neighborhood of a fixed vertex i. Conditioned on

Fk−1, there are two ways to create new cycles in V≥k−1(i):

1. Type 1: a new hyperedge e ⊂ V≥k−1(i) containing two vertices in Vk−1(i) may appear,

which creates a cycle including two vertices in Vk−1(i).

2. Type 2: two vertices in Vk−1(i) may be connected to the same vertex in V≥k(i) by two new

distinct hyperedges.

Define the event

Ωk−1(i) := {Sk−1(i)≤C log(n)αk−1}, (4.12.1)

where the constant C is the same one as in Theorem 4.4.2. From the proof of Theorem 4.4.2,

PHn
(Ωk(i)) = 1−O(n−1−γ) for some γ ∈ (0,3/8). Let E(1)

k (i) be the number of hyperedges of

type 1. Conditioned on Fk−1, E(1)
k (i) is stochastically dominated by Bin

((Sk−1(i)
2

)( n
d−2

)
, a∨b
( n

d−1)

)
.

Then for some constant C1 > 0,

EHn
[E(1)

k (i) |Ωk−1(i)]≤C1 log2(n)α2k−2/n≤C1 log2(n)α2l/n.
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By Markov’s inequality,

PHn
({E(1)

k (i)≥ 1})≤PHn
({E(1)

k (i)≥ 1} |Ωk−1(i))+PHn
(Ωc

k−1(i))

≤EHn
[E(1)

k (i) |Ωk−1(i)]+O(n−1−γ) = O(log2(n)α2l/n).

Taking the union bound, the probability that there is a type 1 hyperedge in the l-neighborhood of

i is

PHn

(
l⋃

k=1

{E(1)
k (i)≥ 1}

)
≤

l

∑
k=1

PHn
({E(1)

k (i)≥ 1}) = O(log3(n)α2l/n).

The number of hyperedge pair (e1,e2) of Type 2 is stochastically dominated by

Bin

nS2
k−1

(
n

d−2

)2

,

(
a∨b( n
d−1

))2
 ,

which conditioned on Ωk−1(i) has expectation O(log2(n)α2l/n). By a Markov’s inequality and

a union bound, in the same way as the proof for Type 1, we have the probability there is a type

2 hyperedge pair in the l-neighborhood of i is O(log2(n)α2l/n). Altogether the probability that

there are at least one cycles within the l−neighborhood of i is O(log3(n)α2l/n).

Let Zi be the random variable such that Zi = 1 if l-neighborhood of i contains one cycle

and Zi = 0 otherwise. From the analysis above, we have E[Zi] = O(log3(n)α2l/n). By Markov’s

inequality,

PHn

(
∑

i∈[n]
Zi ≥ α

2l log4(n)

)
≤ ∑iE[Zi]

log4(n)α2l
=

O(log3(n)α2l)

α2l log4(n)
= O(log−1(n)).

Then asymptotically almost surely the number of vertices whose l-neighborhood contains one

cycle at most log4(n)α2l . It remains to show H is l-tangle free asymptotically almost surely. For

a fixed vertex i ∈ [n], there are several possible cases where there can be two cycles in V≤l(i).
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(1) There is one hyperedge of Type 1 or a hyperedge pair of Type 2 which creates more

than one cycles. We discuss in the following cases conditioned on the event ∩l
t=1Ωt(i).

(a) The number of hyperedge of the first type which connects to more than two vertices in

Vk−1 is stochastically dominated by Bin
((Sk−1

3

)( n
d−3

)
, a∨b
( n

d−1)

)
. The expectation is at most

O(α3l log3(n)/n2).

(b) If the intersection of the hyperedge pair of Type 2 contains 2 vertices in V≥k, it will create

two cycles. The number of such hyperedge pairs is stochastically dominated by

Bin

(n
2

)
S2

k−1

(
n

d−3

)2

,

(
a∨b( n
d−1

))2


with mean O(log2(n)α2l/n2).

Then by Markov’s inequality and a union bound, asymptotically almost surely, there is no

V≤l(i) such that its neighborhood contains Type 1 hyperedges or Type 2 hyperedge pairs which

create more than one cycles.

(2) The remaining case is that there is a V≤l(i) where two cycles are created by two Type

1 hyperedges or two Type 2 hyperedge pairs or one Type 1 hyperedge and another hyperedge

pairs. By the same argument, under the event ∩l
t=1Ωt(i), the probability that such event happens

is O(log6(n)α4l/n2). Since α4l = o(n), by taking a union bound over i ∈ [n], we have H is

l-tangle-free asymptotically almost surely.

Proof of Lemma 4.4.5

Proof. Let i 6∈ B whose l-neighborhood contains no cycles. For any k ∈ [n] and any m≤ l, there

is a unique self-avoiding walk of length m from i to k if and only if d(i,k) = m, so we have
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B(m)
ik = 1d(i,k)=m. For such i we have

(B(m)1)i = Sm(i), (B(m)
σ)i = Dm(i).

Then (4.4.5), (4.4.6) follows from Theorem 4.4.2. By Lemma 4.4.4, asymptotically almost

surely all vertices in B have only one cycle in l-neighborhood. For any m ≤ l, i ∈ B , since

(B(m)1)i = ∑k∈[n]B
(m)
ik , and only vertices at distance at most m from i can be reached by a self-

avoiding walk of length m from i, which will be counted in (B(m)1)i. Moreover, for any k ∈ [n]

with B(m)
ik 6= 0, since the l-neighborhood of i contains at most one cycle, there are at most 2

self-avoiding walks of length m between i and k. Altogether we know

∑
k∈[n]

B(m)
ik ≤ 2

m

∑
t=0

St(i) = O(αm logn)

asymptotically almost surely. Then (4.4.7) follows.

Proof of Lemma 4.5.3

Proof. Recall the definitions of α,β from (4.1.3). From (4.5.1)-(4.5.3),

E(W+
t+1|Gt)

=
d−1

∑
r=0

rE(W (r)
t+1|Gt) =

d−2

∑
r=1

r

(
b
(d−1

r

)
2d−1 (W−t +W+

t )

)
+(d−1)

(
a

2d−1W+
t +

b
2d−1W−t

)
=

α+β

2
W+

t +
α−β

2
W−t =

αt+1

2
Mt +

βt+1

2
∆t .
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Similarly, E[W−t+1|Gt ] =
αt+1

2 Mt− βt+1

2 ∆t . Therefore

E[Mt+1 | Gt ] = α
−t−1E[W+

t+1 +W−t+1 | Gt ] = Mt ,

E[∆t+1 | Gt ] = β
−t−1E[W+

t+1−W−t+1 | Gt ] = ∆t .

It follows that {Mt},{∆t} are martingales with respect to Gt . From (4.5.1)-(4.5.4),

Var(Mt |Gt−1) = Var(α−t(W+
t +W−t )|Gt−1) = α

−2tVar

(
(d−1)

d−1

∑
r=0

W (r)
t |Gt−1

)

= (d−1)2
α
−2t · α

d−1
(W+

t−1 +W−t−1) = (d−1)α−tMt−1.

Sine EM0 = 1, by conditional variance formula,

Var(Mt) = Var(E[Mt |Gt−1])+EVar(Mt |Gt−1) = Var(Mt−1)+(d−1)α−t .

Since Var(M0) = 0, we have for t ≥ 0, Var(Mt) = (d−1)1−α−t

α−1 . So {Mt} is uniformly integrable

for α > 1. Similarly,

Var(∆t |Gt−1) = Var(β−t(W+
t −W−t )|Gt−1) = β

−2t
d−1

∑
r=0

(2r−d +1)2Var(W (r)
t |Gt−1)

= (α/β
2)tMt−1(d−1)α−1 · (d−1)a+(2d−1 +1−d)b

2d−1 =: κ(α/β
2)tMt−1,

where κ := (d−1)(a−b)+2d−1b
a+(2d−1−1)b . And we also have the following recursion:

Var(∆t) = Var(E[∆t |Gt−1])+EVar(∆t |Gt−1) = Var(∆t−1)+κβ
−2t

α
t .
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Since Var(∆0) = 0, we have for t > 0,

Var(∆t) = κ · 1− (β2/α)−t

β2/α−1
. (4.12.2)

So {∆t} is uniformly integrable if β2 > α. From the martingale convergence theorem, E∆∞ =

∆0 = 1, Var(∆∞) =
κ

β2/α−1 , and (4.5.5) holds. This finishes the proof.

Proof of Lemma 4.5.4

Proof. From Theorem 4.5.2, For each i ∈ [n], there exists a coupling such that with probability

1−O(n−ε) for some positive ε, β−lσ(i)Dl(i) = ∆l and we denote this event by C . When the

coupling fails, by Theorem 4.4.2, β−lσ(i)Dl(i) = O(log(n)) with probability 1−O(n−γ) for some

γ > 0. Recall the event

Ωk−1(i) : = {Sk−1(i)≤C log(n)αk−1}. (4.12.3)

We define Ω :=
⋂n

i=1 Ω(i),Ω(i) :=
⋂

k≤l Ωk(i). We have

E

(
1
n

n

∑
i=1

β
−2lD2

l (i) |Ω

)
= O(log2(n))n−ε +E(∆2

l 1C |Ω). (4.12.4)

Moreover,

|E(∆2
l 1C |Ω)−E(∆2

∞)|=
∣∣∣∣E(∆2

l 1C −E(∆2
l 1C 1

Ω
)−P(Ω)E(∆2

∞)

P(Ω)

∣∣∣∣
≤
|E(∆2

l −∆2
∞)|

P(Ω)
+

1−P(Ω)

P(Ω)
E(∆2

∞)+
|E(∆2

l 1C )−E(∆2
l 1C∩Ω

)|
P(Ω)

.

(4.12.5)

Since we know P(Ω∩C )→ 1 and (4.5.5), the first two terms in (4.12.5) converges to 0.
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The third term also converges to 0 by dominated convergence theorem. So we have

E

(
1
n

n

∑
i=1

β
−2lD2

l (i) |Ω

)
→ E(∆2

∞).

We then estimate the second moment. Note that

E

(
1
n

n

∑
i=1

β
−2lD2

l (i) |Ω

)2

=
1
n2E

(
n

∑
i=1

β
−4lD4

l (i) |Ω

)
+

2
n2 ∑

i< j
β
−4lE(Dl(i)2D2

l ( j) |Ω),

(4.12.6)

and from Theorem 4.4.2, the first term is O(log4(n)/n) = o(1). Next, we show the second term

satisfies

2
n2 ∑

i< j
β
−4lE(Dl(i)2D2

l ( j) |Ω) =
2
n2 ∑

i< j
β
−4l 1

P(Ω)
E(1ΩDl(i)2D2

l ( j)) = o(1). (4.12.7)

Since P(Ω) = 1−O(n−γ), it suffices to show

2
n2 ∑

i< j
β
−4lE(1ΩDl(i)2D2

l ( j)) = o(1).

Consider β−4lE(1Ω(i)∩Ω( j)D2
l (i)D

2
l ( j)). From Lemma 4.4.3, when i 6= j, Dl(i),Dl( j) are

asymptotically independent. On the event that the coupling with independent copies fails (recall

the failure probability is O(n−γ)), we bound D2
l (i)D

2
l ( j) by O(β4l log4(n)). When the coupling

succeeds,

β
−4lE(1Ω(i)∩Ω( j)Dl(i)2D2

l ( j)) = β
−4lE(1Ω(i)Dl(i)2)E(1Ω( j)Dl( j)2).
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Then from (4.5.6),

2
n2 ∑

i< j
β
−4lE(1Ω(i)∩Ω( j)Dl(i)2D2

l ( j))

=O

(
1
n2 ∑

i< j
β
−4lE(1Ω(i)Dl(i)2)E(1Ω( j)Dl( j)2)+O(n−2γ log4 n)

)

=O
(
(E(∆2

∞))
2)= O(1). (4.12.8)

Therefore from (4.12.6), (4.12.7), and (4.12.8),

E

(
1
n

n

∑
i=1

β
−2lD2

l (i) |Ω

)2

= O(1).

With (4.12.4), by Chebyshev’s inequality, conditioned on Ω, in probability we have

lim
n→∞

1
n

n

∑
i=1

β
−2lD2

l (i) = E(∆2
∞).

Since P(Ω)→ 1, (4.5.6) follows.

We now establish (4.5.7). Without loss of generality, we discuss the case of + sign. Since

τ is a continuous point of the distribution of ∆∞, for any fixed δ > 0, we can find two bounded

K-Lipschitz function f ,g for some constant K > 0 such that

f (x)≤ (1x≥τ)≤ g(x),x ∈ R, 0≤ E(g(∆∞)− f (∆∞))≤ δ.

Consider the empirical sum 1
n ∑i∈N + f (x(n)i

√
nE(∆2

∞), we have

∣∣∣∣∣1n ∑
i∈N +

f (x(n)i

√
nE∆2

∞)−
1
n ∑

i∈N +

f (β−lDl(i))

∣∣∣∣∣
≤K

n ∑
i∈N +

|(x(n)i − y(n)i )
√

nE∆2
∞|+

K
n ∑

i∈N +

|y(n)i

√
nE∆2

∞−β
−lDl(i)|.
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The first term converges to 0 by the assumption that ‖x− y‖2→ 0 in probability. The second

term converges to 0 in probability from (4.5.6). Moreover, 1
n ∑i∈N + f (β−lDl(i)) converges in

probability to 1
2E f (∆∞). So we have

lim
n→∞

1
n ∑

i∈N +

f (x(n)i

√
nE∆2

∞) =
1
2
E f (∆∞),

and the same holds for g. If follows that

limsup
n→∞

∣∣∣∣∣1n ∑
i∈[n]:σi=+

1{
x(n)i ≥τ/

√
nE[∆2

∞]
}− 1

2
P(∆∞ ≥ τ)

∣∣∣∣∣≤ δ

for any δ > 0. Therefore (4.5.7) holds.

Proof of Lemma 4.7.2

Proof. For any n×n real matrix M, we have ρ(M)2k ≤ tr[(MM>)k], therefore

EHn
[ρ(Γ(l,m))2k]≤ EHn

[
tr
(

Γ
(l,m)

Γ
(l,m)>

)k
]

(4.12.9)

= ∑
i1,...,i2k∈[n]

EHn

[
Γ
(l,m)
i1i2 Γ

(l,m)
i3i2 . . .Γ

(l,m)
i2k−1i2k

Γ
(l,m)
i1i2k

]
.

Recall the definition of Γ
(l,m)
i j from (4.7.2), the sum in (4.12.9) can be expanded to be

the sum over all circuits w = (w1, . . .w2k) of length 2kl which are obtained by concatenation of

2k walks of length l, and each wi,1 ≤ i ≤ 2k is a concatenation of two self-avoiding walks of

length l−m and m−1. The weight that each hyperedge in the circuit contributes can be either

Ae
i j−Ae

i j,A
e
i j or Ae

i j. For all circuits w in (4.12.9) with nonzero expected weights, there is an

extra constraint that each wi intersects with some other w j, otherwise the expected weight that

wi contributes to the sum (4.12.9) will be 0. We want to bound the number of such circuits with

nonzero expectation.
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Let v,h denoted the number of distinct vertices and hyperedges traversed by the circuit.

Here we don’t count the hyperedges that are weighted by Ae
i j. We associate a multigraph G(w)

for each w as before, but the hyperedges with weight Ae
i j are not included. Since EHn

[Γ
(l,m)
i j ] = 0

for any i, j ∈ [n], if the expected weight of w is nonzero, the corresponding graph G(w) must be

connected.

We detail the proof for circuits in Case (1), where

• each hyperedge label in {ei}1≤i≤h appears exactly once on G(w);

• vertices in ei \ end(ei) are all distinct for 1≤ i≤ h, and they are not vertices with labels in

V (w),

and the cases for other circuits follow similarly from the proof of Lemma 4.7.1.

Let m be fixed. For each circuit w, there are 4k self-avoiding walks, and each wi is

broken into two self-avoiding walks of length m−1 and l−m, respectively. We adopt the way

of encoding each self-avoiding walk as before, except that we must also include the labels of

the endpoint j after the traversal of an edge e with weight from Ae
i j, which gives us the initial

vertex of the self-avoiding walk of length l−m within each wi. These extra labels tell us how

to concatenate the two self-avoiding walks of length m−1 and l−m into the walk wi of length

l. For each wi, label is encoded by a number from {1, . . . ,v}. So all possible such labels can be

bounded by v2k. Then the upper bound on the number of valid triplet sequences with extra labels

for fixed v,h is now given by v2k[(v+1)2(l +1)]4k(2+h−v).

The total number of circuits that have the same triplet sequences with extra labels is at

most nv( n
d−2

)h+2k where h+ 2k is the total number of distinct hyperedges we can have in w,

including the hyperedges with weights from Ae
i j.

We also need to bound the possible range of v,h. There are overall 2k(l−1) hyperedges

traversed in w (remember we don’t count the edges with weights from Ae
i j). Out of these, 2k(l−m)

hyperedges (with multiplicity) with weights coming from Ae
i j−Ae

i j must be at least doubled for the
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expectation not to vanish. Then the number of distinct hyperedges in w excluding the hyperedge

weighted by some Ae
i j, satisfies h≤ k(l−m)+(2k(l−1)−2k(l−m)) = k(l +m−2). We have

v≥max{m, l−m+1} since each self-avoiding walk of length m−1 or l−m has distinct vertices.

Moreover, since G(w) is connected, h ≥ v− 1, so we have v− 1 ≤ h ≤ k(l +m− 2). And the

range of v is then given by max{m, l−m+1} ≤ v≤ k(l +m−2)+1.

The expected weight that a circuit contributes can be estimated similarly as before. From

(4.7.14), the expected weights from v−1 many hyperedges that corresponds to edges on T (w)

is bounded by
(

α

(d−1)( n
d−1)

)v−1

. Similar to (4.7.10), the expected weights from h− v+1+2k

many hyperedges that corresponds to edges on G(w) \T (w) together with hyperedges whose

weights are from Ae
i j is bounded by

(
a∨b
( n

d−1)

)h−v+1+2k

.

Putting all estimates together, for fixed v,h, the total contribution to the sum is bounded by

nv
(

n
d−2

)h+2k

v2k[(v+1)2(l +1)]4k(2+h−v)

(
α

(d−1)
( n

d−1

))v−1(
a∨b( n
d−1

))h−v+1+2k

=nv
(

α

d−1

)v−1( d−1
n−d +2

)h+2k

v2k Q(k, l,v,h),

where Q(k, l,v,h) := [(v+1)2(l +1)]4k(2+h−v) (a∨b)h−v+1+2k .

Let S1 be the contribution of circuits in Case (1) to the sum in (4.12.9). We have

S1 ≤
k(l+m−2)+1

∑
v=m∨(l−m+1)

k(l+m−2)

∑
h=v−1

nv
(

α

d−1

)v−1( d−1
n−d +2

)h+2k

v2k Q(k, l,v,h). (4.12.10)

Taking l = O(logn), similar to the discussion in (4.7.16), the leading term in (4.12.10) is given

by the term with h = v−1. So for any 1 ≤ m ≤ l, and sufficiently large n, there are constants
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C1,C2 > 0 such that

S1 ≤
k(l+m−2)+1

∑
v=m∨(l−m+1)

2n1−2k((d−1)v)2k[(v+1)2(l +1)]4k
α

v−1 (a∨b)2k

≤C2 log14k(n) ·n1−2k
α

k(l+m−2).

For circuits not in Case (1), similar to the proof of Lemma 4.7.1, their total contribution is

bounded by C′2n1−2kαk(l+m−2) log14k n for a constant C′2 > 0. This completes the proof of Lemma

4.7.2.

Proof of Lemma 4.9.1

Proof. Let B be the set of vertices such that their l-neighborhood contains a cycle. Let x be a

normed vector such that x>B(l)1 = 0. We then have

1>B(m−1)x = ∑
i∈[n]

xi(B(m−1)1)i = ∑
i6∈B

xiSm−1(i)+ ∑
i∈B

xi(Bm−11)i

= ∑
i∈[n]

xi(α
m−1−l(B(l)1)i +O(α

m−1
2 logn))

−∑
i∈B

xi(α
m−1−l(B(l)1)i +O(α

m−1
2 logn))+ ∑

i∈B
xi(B(m−1)1)i. (4.12.11)

Since we have 1>B(l)x = 0, the first term in (4.12.11) satisfies

∣∣∣∣∣∑
i∈[n]

xi(α
m−1−l(B(l)1)i +O(α

m−1
2 logn))

∣∣∣∣∣=
∣∣∣∣∣∑
i∈[n]

xiO(α
m−1

2 logn)

∣∣∣∣∣= O(
√

nα
m−1

2 logn),

where the last inequality above is from Cauchy inequality.

From Lemma 4.4.4, |B| = O(α2l log4 n). For the second term in (4.12.11), recall from
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(4.4.7), for m≤ l, |(B(m)1)i|= O(αm logn), then by Cauchy inequality

∣∣∣∣∣∑i∈B
xi(α

m−1−l(B(l)1)i +O(α
m−1

2 logn))

∣∣∣∣∣≤√|B|O(αm−1 logn) = O(αl+m−1 log3 n).

Similarly, the third term satisfies

|∑
i∈B

xi(B(m−1)1)i|= O(αl+m−1 log3 n).

Note that αl+m−1 = o(n1/2), altogether we have

|1>B(m−1)x|= O(
√

nα
m−1

2 logn+α
l+m−1 log3 n) = O(

√
nα

m−1
2 logn). (4.12.12)

(4.9.1) then follows. Using the property x>B(l)σ = 0 instead of x>B(l)1 = 0 and following the

same argument, (4.9.2) holds.

Proof of Lemma 4.10.1

Proof. Conditioned on (H, i,σ)t−1≡ (T,ρ,τ)t−1, if At holds, it implies that hyperedges generated

from vertices in Vt−1 do not overlap (except for the parent vertices in Vt−1). If Bt holds, vertices

in Vt that are in different hyperedges generated from Ht−1 do not connect to each other. If both

At Bt holds, (H, i,σ)t is still a hypertree. Since X (r)
v = Y (r)

φ(v) for v ∈ Vt−1, we can extend the

hypergraph isomorphism φ by mapping the children of v ∈Vt to the corresponding vertices in the

t-th generation of children of ρ in T , which keeps the hypertree structure and the spin of each

vertex.
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Proof of Lemma 4.10.2

Proof. First we fix u,v∈Vt . For any w∈V>t , the probability that (u,w),(v,w) are both connected

is O(n−2). We know |V>t | ≤ n and |V≤t |= O(log2(n)αt) conditioned on Ct . Since α2t ≤ α2l =

o(n1/2), taking a union bound over all u,v,w we have

P(At |Ct)≥ 1−O(log4(n)α2tn−1) = 1−o(n−1/2). (4.12.13)

For the second claim, the probability of having an edge between u,v ∈ Vt is O(n−1).

Taking a union bound over all pairs of u,v ∈Vt implies

P(Bt |Ct)≥ 1−O(log4(n)α2tn−1) = 1−o(n−1/2). (4.12.14)

Proof of Lemma 4.11.1

Proof. In (4.11.1), the coordinates of two vectors on the left hand side agree at i if the l-

neighborhood of l contains no cycle. Recall B is the set of vertices whose l-neighborhood

contains a cycle, from Lemma 4.4.4, and (4.4.7), we have asymptotically almost surely,

‖B(l)1−~Sl‖2 ≤
√
|B|O(log(n)αl) = O(log3(n)α2l) = o(

√
n). (4.12.15)

From (4.5.6) we have

‖~Dl‖2 = Θ(
√

nβ
l) (4.12.16)

asymptotically almost surely, and ‖B(l)1‖2 ≥ ‖~Dl‖2, therefore (4.11.1) follows. Similar to
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(4.12.15), we have

‖B(l)
σ−~Dl‖2 = o(

√
n), ‖B(l)

σ‖2 = ‖~Dl‖2 +o(
√

n) = Θ(
√

nβ
l). (4.12.17)

Then (4.11.2) follows. It remains to show (4.11.3). Using the same argument as in Theorem 4.5.4,

we have the following convergence in probability

lim
n→∞

1
n ∑

i∈[n]
α
−2lS2

l (i) = EM2
∞, (4.12.18)

where M∞ is the limit of the martingale Mt . Similarly, the following convergences in probability

hold

lim
n→∞

1
n ∑

i∈[n]
α
−l

β
−lSl(i)Dl(i) = lim

n→∞

1
n ∑

i∈N +

α
−l

β
−lSl(i)Dl(i)+ lim

n→∞

1
n ∑

i∈N −
α
−l

β
−lSl(i)Dl(i)

=
1
2
EM∞D∞−

1
2
EM∞D∞ = 0.

Thus 〈~Sl,~Dl〉= o(nαlβl) asymptotically almost surely. From (4.12.18) we have

‖~Sl‖2 = Θ(
√

nα
l), (4.12.19)

therefore together with (4.12.16), we have ‖~Sl‖2 · ‖~Dl‖2 = Θ(nαlβl). With (4.11.1) and (4.11.2),

(4.11.3) holds.

Proof of Lemma 4.11.2

Proof. For the lower bound in (4.11.4), note that B(l) is symmetric, we have

‖B(l)1‖2
2 = 〈B(l)1,B(l)1〉= 〈1,B(l)B(l)1〉 ≤ ‖1‖2‖B(l)B(l)1‖2. (4.12.20)
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Therefore from (4.12.19) and (4.11.1),

‖B(l)B(l)1‖2 ≥
‖B(l)1‖2

2
‖1‖2

= Θ(αl)‖B(l)1‖2. (4.12.21)

For the upper bound in (4.11.4), from (4.4.1) and (4.4.7), the maximum row sum of B(l) is

O(αl logn). Since B(l) is nonnegative, the spectral norm ρ(B(l)) is bounded by the maximal row

sum, hence (4.11.4) holds. The lower bound in (4.11.5) can be proved similarly as in (4.11.4),

from the inequality ‖B(l)σ‖2
2 ≤ ‖σ‖2‖B(l)B(l)σ‖2 together with (4.12.16) and (4.11.2). Recall B

is the set of vertices whose l-neighborhood contains cycles. Let B = [n]\B . Since

(
B(l)B(l)

σ

)
i
= ∑

j∈[n]
B(l)

i j (B
(l)

σ) j,

we can decompose the vector B(l)B(l)σ as a sum of three vectors z+ z′+ z′′, where

zi := 1B(i) ∑
j:d(i, j)=l

Dl( j)1B( j), z′i := 1B(i) ∑
j:d(i, j)=l

O(αl logn)1B( j),

z′′i := 1B(i)O(α2l log2 n).

The decomposition above depends on whether i, j ∈ B and the estimation follows from (4.4.7).

From Lemma 4.4.4, B = O(α2l log4(n)) asymptotically almost surely, so one has

‖z′‖2
2 =

n

∑
i=1

(z′i)
2 = ∑

i∈B
∑

j:d(i, j)=l
∑

j′:d(i, j′)=l
O(α2l log2 n)1B( j)1B( j′)

= ∑
j∈B

∑
j′∈B

∑
i∈B

d(i, j)=d(i, j′)=l

O(α2l log2 n) = ∑
j, j′∈B

O(α3l log3 n) = O(α7l log11 n),

which implies ‖z′‖2 = O(α7l/2 log11/2 n). And similarly ‖z′′‖2 = O(α3l log2 n). We know from

(4.12.17), ‖B(l)σ‖2 =Θ(βl√n), and since c logα< 1/8, we have α5l/2 = n−γ′√n for some γ′> 0,
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therefore

‖z′+ z′′‖2 = O(α7l/2 log11/2 n) = o(α5l/2
β

2l) = O(n−γ′
β

l‖B(l)
σ‖2). (4.12.22)

It remains to upper bound ‖z‖2. Assume the 2l-neighborhood of i is cycle-free, then the

i-th entry of B(l)B(l)σ, denoted by Xi, can be written as

Xi : = (B(l)B(l)
σ)i =

n

∑
k=1

B(l)
ik (B

(l)
σ)k =

n

∑
k=1

1d(i,k)=l

n

∑
j=1

1d( j,k)=lσ j

=
l

∑
h=0

∑
j:d(i, j)=2h

σ j|{k : d(i,k) = d( j,k) = l}|. (4.12.23)

We control the magnitude of Xi in the corresponding hypertree growth process. Since

2l = 2c logn and 2c log(α)< 1/4, the coupling result in Theorem 4.5.2 can apply. Let Ci be the

event that coupling between 2l-neighborhood of i with the Poisson Galton-Watson hypertree

has succeeded and n−ε be the failure probability of the coupling. When the coupling succeeds,

zi = Xi, therefore

E(‖z‖2
2 |Ω) = ∑

i∈[n]
n−εO(α2l

β
2l log2 n)+ ∑

i∈[n]
E(X2

i 1Ci |Ω)

= n1−εO(α2l
β

2l log2 n)+ ∑
i∈[n]

E(X2
i 1Ci |Ω). (4.12.24)

For any i, j ∈ [n], t ∈ [l], define D(t)
i, j := |{k : d(i,k) = d( j,k) = t}|. From (4.12.23), we

have

X2
i =

l

∑
h,h′=0

∑
j:d(i, j)=2h

∑
j′:d(i, j′)=2h′

σ jσ j′D
(l)
i, j D

(l)
i, j′. (4.12.25)

We further classify the pair j, j′ in (4.12.25) according to their distance. Let d( j, j′) =
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2(h+h′− τ) for τ = 0, . . . ,2(h∧h′). This yields

X2
i =

l

∑
h,h′=0

2(h∧h′)

∑
τ=0

∑
j:d(i, j)=2h

∑
j′:d(i, j′)=2h′

1d( j, j′)=2(h+h′−τ)σ jσ
′
jD

(l)
i, j D

(l)
i, j′.

Conditioned on Ω and Ci, similar to the analysis in Appendix H in [141], we have the

following holds

|{k : d(i,k) = d( j,k) = l}|= O(αl−h logn), (4.12.26)

|{k′ : d(i,k′) = d( j′,k′) = l}|= O(αl−h′ logn), (4.12.27)

|{ j : d(i, j) = 2h}|= O(α2h logn), (4.12.28)

|{ j′ : d(i, j′) = 2h′,d( j, j′) = 2(h+h′− τ)}|= O(α2h′−τ logn). (4.12.29)

We claim that

E[σ jσ j′|Ci]≤
(

β

α

)d( j, j′)−1

, (4.12.30)

and prove (4.12.30) in Cases (a)-(d).

(a) Assume j is the parent of j′ in the hypertree growth process. Then d( j, j′) = 1. Let

Tr be the event that the hyperedge containing j′ is of type r. Given Tr, by our construction of

the hypertree process, the spin of j′ is assigned to be σ j with probability r
d−1 and −σ j with

probability d−1−r
d−1 , so we have

E[σ jσ j′ | Ci] =
d−1

∑
r=0

E[σ jσ
′
j | Tr,Ci]P[Tr | Ci] =

d−1

∑
r=0

(
r

d−1
− d−1− r

d−1

)
P[Tr | Ci].

Recall P[Td−1 | Ci] =
(d−1)a
α2d−1 and P[Tr | Ci] =

(d−1)b(d−1
r )

α2d−1 for 0≤ r ≤ d−2. A simple calculation

implies E[σ jσ j′ | Ci] =
β

α
≤ 1.
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(b) Suppose d( j, j′) = t and there is a sequence of vertices j, j1, . . . , jt−1, j′ such that j1

is a child of j, ji is a child of ji−1 for 1≤ i≤ t, and j′ is a child of jt−1. We show by induction

that for t ≥ 1, E[σ jσ j′ | Ci] =
(

β

α

)t
. When t = 1 this has been approved in part (a). Assume it is

true for all j, j′ with distance ≤ t−1. Then when d( j, j′) = t, we have

E[σ jσ j′ | Ci] =E[σ jσ j′ | σ j1 = σ j,Ci]P(σ j1 = σ j | Ci)

+E[σ jσ j′ | σ j1 =−σ j,Ci]P(σ j1 =−σ j | Ci)

=

(
β

α

)t−1

P(σ j1 = σ j | Ci)−
(

β

α

)t−1

P(σ j1 =−σ j | Ci)

=

(
β

α

)t−1
α+β

2α
−
(

β

α

)t−1
α−β

2α
=

(
β

α

)t

.

Therefore E[σ jσ j′ | Ci]≤
(

β

α

)d( j, j′)
≤
(

β

α

)d( j, j′)−1
. This completes the proof for part (b).

(c) Suppose j, j′ are not in the same hyperedge and there exists a vertex k such that j,k

satisfies the assumption in Case (b) with d( j,k) = t1, and j′,k satisfy the assumption in Case (b)

with d( j′,k) = t2. Conditioned on σk, we know σ j and σ′j are independent. Then we have

E[σ jσ j′ | Ci] = E[E[σ jσ j′σ
2
k | σk,Ci] | Ci] = E

[
E[σ jσk | σk,Ci] ·E[σ j′σk | σk,Ci] | Ci

]
=

(
β

α

)t1+t2
≤
(

β

α

)d( j, j′)−1

,

where the last line follows from the triangle inequality d( j,k)+d( j′,k)≥ d( j, j′) and the condi-

tion β < α.

(d) If j, j′ are in the same hyperedge, then d( j, j′) = 1 and (4.12.30) holds trivially.

Combining Cases (a)-(d), (4.12.30) holds. From (4.12.30) and (4.12.26)-(4.12.29), we
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have

E[X2
i 1Ω | Ci]≤

l

∑
h,h′=0

2(h∧h′)

∑
τ=0

∑
j:d(i, j)=2h

∑
j′:d(i, j′)=2h′

1d( j, j′)=2(h+h′−τ)E[σ jσ
′
j | Ci]R

(l)
i, j R

(l)
i, j′

≤
l

∑
h,h′=0

2(h∧h′)

∑
τ=0

∑
j:d(i, j)=2h

O(α2h′−τ logn)
(

β

α

)2(h+h′−τ)−1

·O(α2l−h−h′ log2 n)

=
l

∑
h,h′=0

2(h∧h′)

∑
τ=0

O(α2l+h+h′−τ log4 n)
(

β

α

)2(h+h′−τ)−1

=
l

∑
h,h′=0

2(h∧h′)

∑
τ=0

O(α2l log4 n) · (β2/α)h+h′−τ = O(β4l log4 n). (4.12.31)

From (4.12.24) and (4.12.31), we have for some ε > 0,

E(‖z‖2
2 |Ω) = n1−εO(α2l

β
2l log2 n)+O(nβ

4l log2 n).

Then by Chebyshev’s inequality, asymptotically almost surely,

‖z‖2 =O(n1/2−ε/2
α

l
β

l log2 n)+O(n1/2
β

2l log2 n) = (
√

nβ
l log2 n) ·O(βl ∨α

ln−ε/2).

Recall l = c logn. We have βl = nc logβ,αl = nc logα. So βl = n−ε′αl for some constant

ε′ > 0. Since from (4.12.17), ‖B(l)σ‖2 = Θ(
√

nβl), we have

‖z‖2 = O(n−γ′′
α

l‖B(l)
σ‖2) (4.12.32)

for some constant γ′′ > 0. Combining (4.12.22) with (4.12.32), it implies for some constant γ > 0,

‖B(l)B(l)
σ‖2 = ‖z+ z′+ z′′‖2 = O(n−γ

α
l)‖B(l)

σ‖2.

Then the upper bound on ‖B(l)B(l)σ‖2 in (4.11.5) holds.
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graphs. arXiv preprint arXiv:2008.08367, 2020.

[58] Sourav Chatterjee. Fluctuations of eigenvalues and second order Poincaré inequalities.
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[82] László Erdős, Antti Knowles, Horng-Tzer Yau, and Jun Yin. Spectral statistics of Erdős-
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Rényi graphs I: local semicircle law. The Annals of Probability, 41(3B):2279–2375,
2013.
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[164] Ludovic Stephan and Laurent Massoulié. Non-backtracking spectra of weighted inhomo-
geneous random graphs. arXiv preprint arXiv:2004.07408, 2020.

[165] R Tanner. A recursive approach to low complexity codes. IEEE Transactions on informa-
tion theory, 27(5):533–547, 1981.

227



[166] Terence Tao and Van Vu. Random matrices: universality of local eigenvalue statistics.
Acta mathematica, 206(1):127–204, 2011.

[167] Audrey Terras. Zeta functions of graphs: a stroll through the garden, volume 128.
Cambridge University Press, 2010.

[168] Konstantin Tikhomirov and Pierre Youssef. The spectral gap of dense random regular
graphs. The Annals of Probability, 47(1):362–419, 2019.

[169] Linh V Tran. Local law for eigenvalues of random regular bipartite graphs. Bulletin of the
Malaysian Mathematical Sciences Society, 43(2):1517–1526, 2020.

[170] Linh V Tran, Van H Vu, and Ke Wang. Sparse random graphs: Eigenvalues and eigenvec-
tors. Random Structures & Algorithms, 42(1):110–134, 2013.

[171] Lloyd N Trefethen. Approximation Theory and Approximation Practice, volume 128.
SIAM, 2013.

[172] Alexei Vazquez. Finding hypergraph communities: a bayesian approach and variational
solution. Journal of Statistical Mechanics: Theory and Experiment, 2009(07):P07006,
2009.

[173] Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions.
Annals of Mathematics, pages 548–564, 1955.

[174] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[175] Kevin Yang. Local Marchenko-Pastur law for random bipartite graphs. arXiv preprint
arXiv:1704.08672, 2017.

[176] Denny Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In Advances in neural information processing
systems, pages 1601–1608, 2007.

[177] Zhixin Zhou and Yizhe Zhu. Sparse random tensors: Concentration, regularization and
applications. Electronic Journal of Statistics, 15(1):2483–2516, 2021.

[178] Yizhe Zhu. A graphon approach to limiting spectral distributions of Wigner-type matrices.
Random Structures & Algorithms, 56(1):251–279, 2020.

[179] Yizhe Zhu. On the second eigenvalue of random bipartite biregular graphs. arXiv preprint
arXiv:2005.08103, 2020.

228


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Sparse graph-based random matrices
	Random graph and random hypergraph models
	Spectral statistics

	The moment method
	Contribution of this thesis

	A graphon approach to limiting spectral distributions of Wigner-type matrices
	Introduction
	Preliminaries
	Main results for general Wigner-type matrices
	Set-up and main results
	Proof of Theorem 2.3.2
	Proof of Theorem 2.3.4

	Generalized Wigner matrices
	Sparse W–random graphs
	Random block matrices
	Stochastic block models
	Random Gram matrices
	Acknowledgment

	Global eigenvalue fluctuations of random bipartite biregular graphs
	Introduction
	Eigenvalue fluctuations of random matrices
	Main results

	Cycle counts
	Counting switchings
	Poisson approximation of cycle counts
	Cyclically non-backtracking walks and the Chebyshev polynomials

	Spectral gap
	Eigenvalue fluctuations
	Poisson fluctuations with fixed degrees
	Gaussian fluctuations with growing degrees

	Global semicircle law
	Random regular hypergraphs
	Acknowledgment

	Community detection in the sparse hypergraph block model
	Introduction
	Preliminaries
	Matrix expansion and spectral norm bounds
	Local analysis
	Coupling with multi-type Poisson hypertrees
	Proof of the main result
	Proof of Theorem 4.3.1
	Proof of Theorem 4.4.2
	Proof of Theorem 4.4.6
	Proof of Theorem 4.5.2
	Proof of Theorem 4.6.1
	Proof of auxiliary lemmas
	Acknowledgment

	Bibliography



