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ABSTRACT 

* 

The high-energy forward scattering of a pseudoscalar meson (J.L) 

&l!ld a baryon (B) is discussed on the basis of the ABFST multiper­

ipheral model. Assuming that the low-energy ~ amplitude is 

dominated by the baryon pole plus.the first elastic resonance, and 

using the approximate solution to the Jlll integral equation proposed 

by Abarbanel, Chew, Goldberger, and Saunders, we derive an expression 

:fo·r the high energy limit of o ~~t. A numerical estimate based on 

SU(3) symmetry is given. 
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I. INTRODUCTION 

our purpose here is to study, in a crude way, the forward 

scattering between a pseudoscalar meson (J.L) and a baryon (B) at 

very high energy on the basis of the ABFST model, 1 - 3 with an internal 

symmetry SU(n). We shall represent the input low-energy ~ kernel 

by a B pole (Which controls the production of even numbers of final 

ll's), and a prominent elastic (~) resonance (which controls the 

production of odd numbers of final ll's). This approach is motivated 

by known facts about oet, like the curves shown in Fig. 1 • 
. J.LB 

For the 11-B-B vertex in this kernel, it is necessary to 

introduce off-shell continuation, 4 otherwise this contribution to 
tot 

0
11B 

is negative. This is in contrast to the usual assumption (of course not 

a necessity) that we can keep all the low-energy vertices on-shell. 

With regard to the possible modification of this vertex and/or other 

vertices, a plausible rule is to be guided by experimental distributions 

in singly-peripheral reactions. We study this question briefly in our 

Appendix A. The off-shell dependence of the vertices assumed in the 

main portion of the paper is partially justified by this material in the 

Appendix. Otherwise we shall use the solution to the Jlll integral 

5 equation suggested by Abarbanel, Chew, Goldberger, and Saunders. Even 

though such a solution is only approximate--both mathematically6 and 

physically,7 because of its appealing simplicity we can elucidate the 

various factors that control the magnitudes of asymptotic total cross 

sections. 

Based on these assumptions and approximations, and making use of 

the (assumed) smallness of the ll mass in comparison with all other rel-

evant masses, we shall derive an expression for as 
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~ numerical estimate assuming SU(3) symmetry and in the last section 

some discussion is given of the results. 
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II. THE FORWARD ABFST EQUATION FOR llll SCATTERING 

AND THE APPROXIMATE SOLUTION 

It is natural to begin with consideration of the llll scattering 

equation. 8 Let us briefly review the approximate solution from Ref. 5, 

for completeness as well as for introducing notations and conventions. 

The imaginary part of the forward elastic amplitude for llll 

high-energy scattering satisfies the equation (c.f. Fig. 2): 

X 

I~( 1 )2 2 '2) Im T p - p ,p ,p 
llll 

~ I 
Im T (s

0
) + 

llll 
2 f 4 IG 2 2 "2) (-) d p" Im T (p - p") ,p ,p 
1( J..IJ..I 

where in particular we consider only the amplitude which corresponds to 

the identity representation of the internal symmetry in the crossed 

channel (the superscript "I" 
~ I 

signifies this), and Im T (s
0
), being 

llll . 

used as input, is related to the low-energy llll elastic cross section 

by 

~ I 
Im T (s0 ) 

J.1J.1 

( ) [x2 2 2 where A x,y,z = + y + z 

_..Iy e£ Y x- CJ ' (s ) 
llJ.1 0 ' 

(II-2) 

y 

2(xy + yz + zx)]~, XIy is the t-s 

"tal . t" d 2 1n ern symmetry cross1ng ma r1x, an J.1 is the pseudoscalar-meson 

mass squared. 
~ I 

We have neglected the off-shell dependence of Im T 
llJ.1 

Now Eq. (II-1) can be diagonalized by projecting it onto the 

unitary irreducible representation of 80(1,3): 

• 

.. 

I~ 
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dT 11 Im T~~(T,T 11 ) ~A.(-i"",T'), 

(II-3) 

2 
~~re T = p etc., 

(II-4) 

(II-6) 

al!l!d the "f'u.ll" Im T I is related to the "partial wave" 
llll 

Im ~A. by 
llll 

I A 

Im T (s,T,T') 
1111 

= ~JdA.(A. + 1) 2n~. 

+(/..+l)Tt(~,T 1 T') e 

sinh l)(s, T, T' ) 

X 

-ia> to 

c 

is a contour of integration in the 

+ioo, passing to the right of all A. 

A. plane running from 

singularities of Im TIA.. 
llll 

The approximate solution to Eq. (3),5 in the neighborhood of 

the leading singularity of Im ~A. in the A. plane, takes the simple 
llll 

form 

Im TIA.(T T') 
_I;>,. · llll ' Im r (T 1 T') - --

llll . . 1 - Tr If" (II-8) 
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where 

12 2foo dso _...:1:......_ 
- ll ) (A. + 1) 

411
2 

-(t..+l)l){s0,T,T) 
e 

This .solution would be exact if the kernel ~X(T 11 1 T') were factoriz-

able in T11 and T'. Next we approximate the low-energy forward 

elastic 1111 amplitude by a pole corresponding to a resonance. Thus 

we put 

= m 
2 R I 5{s - m 

2), c c 0 c (II-10) 

where mc2 is the squared mass and xc is the elasticity of the 

resonance. Then from Eq. (II-9), we get9 

1{ c 24R I 
c ( RI02)A. 

---- 1!._ + sin n/.. m 2 A.{A. + l)(t.. + 2)(t.. + 3)(1 - t..) (~)]. 
c 

(II-11) 

Thus, from Eqs. (II-8)to· {II-11), we obtain the leading contribution to 

Im T 
1

: 
llll 

I "' . Im T (s,T,T') 
llll 

16n3 m 2· J(o:) 
c 

. 2 
(O:+l)[l)(S1 T1 T1 )-l)(mC 1 T1 T1 

)] 

e 

sinh 1)(S1T1T 1
) 

(II-12) 
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-Nhere a is the rightmost singularity of Im TI\ in the \ plane, 
~~ 

S.Ild 

J(a) (II-13) 
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III. THE ~B FORWARD ELASTIC AMPLITUDE AND TOTAL CROSS 

SECTION AT ASYMPTOTIC ENERGY 

We now consider ~ scattering. We assume that the production 

amplitude is given by Fig. 3(a) for even numbers of final ~·s, and by 

Fig. 3(b) for odd numbers of final ~·s. The physical absorptive part 

of the forward elastic ~ amplitude at high energy is given by 

I 2 2 
Im T~ (s,1-1 ,~) 

where u = -T' 
'2 

-p 

I A 2 '2 
Im T (s,l-1 ,p ) 

1-11-1 

du . I(" 2 ) -_;;;;;;....,
2

:--::::-
2 

Im T s, 1-1 , -u 
( u + 1-1 ) 1-11-1 

X }•• Im ~ .. '<•,,-u), (III-1) 

(III-2) 

~ is the baryon mass squared, and 

I ~ I I Im T~B (sB,-u) Im TllB (sB,-u) B-pole 

+ A(sB,I-12 ,~) L xiY c!J·Y (sB) • 

y 

(III-3) 

A discussion of expression (III-3) will be given shortly. In Eq. 

(III-1), we shall use Eq. (II-12) for Im T I and find an explicit 
• 1-11-1 

integrated form for the whole expression. In doing so we employ 



.. 

.. 
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following simplifications: 

2 2 as well as W1'th (1) We shall neglect ~ in comparison with me , 
~ 

s. In the integrand, we shall put the factor 1/(u + ~2 ) 2 ·~ lju2 • This 

simplification introduces little error as long as the integral is finite 

1 and Re a > 2 .. Correspondingly we neglect the second term (square 

bracket) in Eq. {II-11), giving 

J(a) for a = i, 

(2) From Eq. (II-6) we have 

independent of R 1 • 
c (III-4) 

Observe that the expression 
2 l 

(X-~ + u)ju2 diverges both for u ~o 

and u ~oo whenever (X - ~2 ) /: Q and has a minimum value 
2 l 

2(x. - J.1 )2 

2 " 2 2 at u = (X.- J.1 ). So, for X.= s, me >> J.1 , we can expand the square 

root term iri Eq. (III-5) in terms of 4(-J.L2)/[(X. - J.1
2 + u)/ut]2 for all 

u in the integration range, and from the leading term obtain 

(III-6) 

therefore, Eq. (III-1) with Eq. (II-12), becomes 

(III-7) 
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_.r_(a_L_ ( 1 :\a+ 1 

TCi+I} -2tl) 

X 

Next we assumeS that the value of R I 
c 

gives a = 1 for the 

Pomeranchuk pole, thus 

I 2 2 
Im TJ.11! (s,~ ,~) 

where 8 = sB- tl, r = sB + tl. 
Let us now consider the input Eq. (III-3): 

(III-8) 

(III-9) 

1. For the baryon pole contribution, suppose for the moment 

we have only one type of coupling for the internal symmetry under 

consideration. Then the most general form for the J.L-B-B transition 

amplitude is 

. 2 2 '2 -= ~ G(q ,p ,p ) u(q) r
5 

TiU(p), (III-10) 

where G is a real function of the invariants, and in our case 

2 2 2 1 
q = p = ~; 2 Ti is one of the generators of the infinitesimal 

transformation of the internal symmetry group and i denotes the 

quantum number of J.L; when ~ = pion, B = nucleon, in our normalization 
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is just the n-N-N coupling constant g2 ~ 14.4X 4n. 

Thus, from Fig. 4 (cr.' Appendix B for our conventions), 

Im T I i-L£3 B-pole 
4 4 (2n) 5 (p - p' - q) 

(III-11) 

a result which, when evaluated with Eq. (III-10) becomes (after spin 

averaged), 

'2 2 
Notice that an "on-shell treatment" of Im T BtB 1 , setting p = J..lt 

J..1 -po e 

would give the absurd result of a negative cross section for production 

of' any even number of J..I'S. So we must make some off-shell continuation 

here. In order to agree with singly peripheral experiments, we shall 

keep the factor p
12 

and use a DUrr-Pilkuhn form factor21 for the 

vertex function G2 : 

2 2 2 '2 2 r-2 
G (~ ,~,p ) ~ g --...;;2-- (III-13) 

r + u 

lihere 
'2 . u = -p as before, and r may be described as the 11radius" 

of' the J..I-B-B vertex. This 11radius" is expected to be roughly equal 

to the Compton wavelength of the lightest particle that 

exchange. Therefore we have 

Im T II J..IB B-pole 

-2 r u 
-2 

r + u 

J..l and B can 

(III-14) 

where 
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z measures the contribution of the factor y to the 

amplitude with internal quantum number y in the direct channe1.10 

~ II Notice that Im T B B 1 becomes independent of u as u ~oo. 
J..1 -po e 

2. The (J..!B) resonance contribution to Eq. (III-3). we 

approximate by taking only one prominent resonance: 

2 
~ ), 

(III-15) 

where both 
~ I ei,J_{ 

Im T B IR and o· B (max) are referred to spin averaged 
J..l . J..l 

quantities: This (~) resonance contribution we evaluate on-shell, 

in the same sense as the (J..IJ..I) elastic resonance contribution,given by 

Eq. (II-10). 

Putting Eq. (III-14) and Eq. (III-15) into Eq. (III-9), we can 

I 2 2 calculate Im TJ..IB {s,J..I ,Ml) explicitly. Now, recall that, as far as 

internal symmetry SU(n) is concerned, any elastic amplitude in the 

direct channel at high energy and at or near the forward direction is 

related to the crossed channel amplitude which corresponds to the 

identity representation byll,5 

(III-16) 

when TJ..!BI dominates other amplitudes in the crossed channel. The 
_.!_ 1 

factor NJ..I2 N~2 comes from s-t internal symmetry crossing matrix and 

NJ..I (NB) is the dimension of the. subspace to which J..l (B) belongs. 

Coml:lining all these ingredients, we obtain the expression for 

the spin-averaged total cross section 
~ 

• 



• 
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tot 
cr~ 
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1 
2 2 Im Tl-lB 

A(.s,l-1 ,M ) 

1 
+~ 

N2N2 
1-1 B 

l 
\ I 2 IB L X y zy rr g 2 

m 
y c 

(III-17) 

~ere the dimensionless quantities 

J(l)mc 4 J 1 -2 "' 2 "' 1 
I 1 = . 2 du 2 2 2 u r 2 ([u2 + ru]- u{u +2ru)2), 

B (-2Mf) u {u +me ) {u + r- ) 
(III-18) 

2
a

2 

2 
((r -1) iog-

2
Y + __.::2~Y--....::1'-r_ (in -l (1 - !.) + sin -l(l)] 

{a - 1) (2r - 1)2 \ r 'JJ · 

+ a2 [r + log f - r -1 - (,,. -1 (, -~) + •'• -1(1011 ' 
(a2 - 1) (2Y - 1) 2 ~ ~ ~ 

(III-19) 

+ ,,.->(1~ _} ,(III-20) 

with 

I 1 
R 

y 
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·a.f y 
- 2 2' a -

m m c c 

J(l)mc4 ·~ "' 
-_--..,.-2~2 du 2 2 2 
(-~) u (u +me ) 

-2 r and 2 ' m 
c 

2 A "'- A2 A 2. A -"2 1. X ([u + (13 + r)u + 13 ] - (f3 + u)(u + 2ru + 13 )2 }, (III-21) 

= ,lll {2(e.- r) + <e + r - 2e2J1og @ ~/ 

( -13 - y + 3Yf3 + f32 - 2133) ·~ . -1 y - 1 . -1 y - f32 ]~ 
+ 2 I nn 2 2 1. + s1n -(...;,--2_--t::,(32,.....).,.._2t 

(2Y - 1 - e )2 (~ - e )2 r 

with 

"' .J?_ 
2 m 

c 

r r 
2 m 

c 

2 2 
~ M 
2+2 
m m 

c c 

(III-22) 

It is noteworthy that the behaviors of' the integrands in Eq. 

(III-18) and Eq. {III-21) are similar. In the two limits of' integration: 

1 -2 "2 
A - r r 

Integrand of' Eq. (III-18) ----;;. Y -;;;. 2 . 
U--> 0 ~ 1 U"* co · ' 

Integrand of' Eq. (III-21) 

A 2 2 
(3 = ~ - ~, 

m u 
c 

A 2 .2 
Y=~ +M. 

(III-23) 

~(? + ~2) 
---;;. _2_--.-__ 

(III-24) 
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'::hey both decrease monotonically from a finite value to ~ero, falling 

off asymptotically -4 o:::u Thus B and R contribute to the last 

link with the same degree of ''peripherali ty." Without the help of the 

f'orm factor (III-13), the integrand of Eq. (III-18) would fall off like 

u-3 and thus make the B contribution much less peripheral than the 

R -contribution. 

-16-

IV. NUMERICAL VALUE OF THE ASYMPTOTIC c ~~t 

IN A SU ( 3) SYMMETRIC MODEL 

We now evaluate the numerical value of o-~~t given by Eq. 

(III-17) when the internal symmetry group is SU(3). 'Obviously, besides 

the fact that this symmetry is rather badly broken, the continuing 

_neglect of the ~ mass in comparison with the-other-relevant masses_ 

seems not too sound. Nevertheless, as an illustrative example, we shall -

adopt the following as our ''best input" for this hypothetical exact 

symmetry limit. 

Let us consider ~, M, mn to be the o-~(K,n,~,K), _ 
-+ + 
~-~{N,t,A,~), and ~ ~(6,E,~,n) respectively,. and take me to be 

mvt-~(K*,p,p,i*) for definiteness. 12 We ignore the mixing of ! and 

~ here. For the ~-B-B vertex, we have now/3 ins,tead of Eq. (III-10), 

Thus 

- II Im T~ B-pole n L xiY(4[ciD~i + (1 - a)
2
F?i 

y 

where Y = 8ss'8aa'8sa' and 8as' and DrDi = ~(G?Bss)fi' 

(IV-2) 

F?i = 3(@8 )fi etc. (the @ 's are projection operators for the 
aa 

corresponding subspaces). 

We use the D/F ratio a = 2/3 and g
2 = 14.4 X 4n. For the 

mass in each multiplet we use the first term in the corresponding 

14 . 
Gell-Ma.nn-Qkubo mass formula. Thus M = 1.15 GeV, mn = 1.385 GeV, 

j 



• 

• 
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~ ~ 0.852 GeV. We furthermore choose -2 
r 2 15 m . 

c 

w:!.dth r R of 

16 static model 

R, we use the calculated value from the SU(3) 

2 8 l l 3 17 
2 X 3 X 3 0:(3 - 2o:) 4;( 4ifpCM "" 0.107 GeV, 

and finally we put ~ = 1. Recall also that N~ = 8, NB = 8, 

For the 

Chew-Low 

I8ss 18 
X = X aa = 1, 

18 . 8 116 
X sa = X as = 0 (thus ~zy = ~), __ no 5 

r = 4' 

and remember Eq. (III-4). Feeding all these ingredients into the right-

hand side of Eq. (III-17), we obtain 

tot 
a~B r.._j 22.6mb + 4.1 mb 

s~ oo 
(IV-3) 

The large B to R ratio mainly comes from the factors zy which 

represent the crossing complication associated with internal quantum 

lllllll!lbers. 

Two further points deserve mention: 

l. The B and R · contributions are about equally peripheral. 

We can calculate the average u values in the integrals Eqs. (III-18) 

and (III-21). It is found that 

(u)B o.54 
2 for the B contribution , (rv-4) m c 

(u)R 0.41 
2 

for the R contribution ·, (IV-5) m 
c 

where 2 ' 2 m 0.729 GeV . c 

2. The value of the integral Eq. (III-18) is not sensitive to our 

particular choice of r-2 = m 2 , since the form factor (r-2 )/(r-2 + u) c 

is close to unity in the small u region where the integrand contrib-

utes most to the integral, the tail of the integrand (with the factor 

-2 
~E-) 

u 

change 

-18-

not contributing much. Indeed it can be shown that if we 

-2 2 
r by ±50% relative to me , then the value of the inte-

grals changes only ±10')(,. For example, choosing 
-2 

r we find 

a~t r-V (18.4 + 4.l)mb, while 
s~oo 

(u) = 0.44 m 
2 

for the B contribu-B c 

tion. On the other band, had we used no form factor at all, we would 

have 
2 . 

(u)B = 3·3 me , evidently unacceptable .for a model based on the 

assumed peripheral nature of high-energy reactions. 
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V. DISCUSSION AND CONCLUSION 

We have treated the bound state pole and the resonance pole in 

the ~ input kernel in an effectively parallel way, as depicted by 

E~- (!II-14) and Eq. (III-15). That these two contributions enjoy 

~ivalent status in the contribution to atBot is shown in Eq. (III-17). 
~ . 

Our numerical result based on the SU(3) symme.t.ric model of 

thi: last section 
· tot 

is reasonably close to the values a ~ 21.0 mb 
:n:N 

tot 18 
au:td EJKN' ~ 17. 2 mb projected by Barger and Cline. This result, of 

~aurse, crucially depends on the factor 2
1 21 . 

N NB , 1.e., on our 
~ . 

kl:wwledge of the multiplet structure of the ~ and the B. An SU(2~ 

~tric model, ignoring the existence of strange mesons and baryons, 

woeld give a result for atot almost an order of magnitude greater, 

in addition to suffering from the well-known difficulty that the :n::n: 

kernel is. too weak to build up ap(O) ~ 1.2•3 

In conclusion, although the model employed here is an over-

simplification, we have again demonstrated, with multiperipheral 

~ics, that it is conceivable, for the properties of a few low-lying 

states to control decisively the magnitude of total cross sections at 

4 
very high energy. 
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APPENDIX A. SINGLY-PERIPHERAL MODEL AT LOW ENERGY: 

SOME EXAMPLES 

We discuss here briefly the off-shell problem in the singly-

peripheral model. This question, by the method of construction, relates 

closely to the ABFST multiperipheral model. We will attempt to give 

support to the input ~B kernel we used in the text. 

The differential cross section for a two-body 'quasi-,Hastk 

~ction ab ~ 12 via one pion exchange (OPE) is given by (cf. Fig. 

A-1) 

1 vl v2 

6 3 2( 2 2) (A2 + 
11

2)2 J 1 n: . A s,ma ,~ u ,... 

(A-1) 

where 6
2 = -t, the momentum transfer; A is the triangle function; 

and vl = Im Tan:(sl,6
2

), the imaginary part of the forward elastic 

( m. 2) amplitude for the scattering of a particle with mass a and a 

pion (with mass -6
2

) at their CM energy square, s1 • A similar rela­

tion for v2 is implied. 

Knowing the spin (j
1

) and parity of system number 1, one can 

calculate v1 from lowest-order perturbation theory (the Born term 

model: BTM). In case particle a is spinless, for example, BTM 

gives 

w"here 

VB 
1 

Von 
1 ' 

(A-2) 

is the 

>ertex if the exchanged pion were on-shell. It is well known that such 

a primitive OPE model is not sufficiently peripheral to cope with 

experimental data when jl = 1. Improvements can be made, e.g., by 

-22-

introducing absorption corrections,19 or Durr-PilkUhn form factors. 20 

Here we shall consider the latter type only. 

The Diirr-Pilkuhn (DP) method is to introduce in each vertex a 

form factor which depends on an additional parameter r (the "radius" 

of the vertex), e.g,, 

V DP 
1 

such that F1 

V on 
1 

~ 1 and gives adequate damping as 
2 2 

LS ~ -!l 

(A-3) 

We 

remark that the precise way to construct such form factors is not 

ib
• 20 unam ~guous. In fact, more sophisticated form factors which decrease 

faster than those of DP for high values of momentum transfer were 

provided by Benecke and DUrr21 (BD). G. Wol~2 demonstrated the 

success of those form factors in a variety of reactions. 

On the other band, it seems empirically true that in many cases 

one can also achieve a fairly satisfactory description of the data by 

keeping the vertices on the mass shell of the exchanged pion. Such a 

simple recipe, already advocated by ABFST, maY be used if we do not 

demand a high degree of accuracy and want to avoid the introduction of 

additional parameters. There are, however, exceptional situations. 

For example, when the emitted particle is p-wave and lies below the 

threshold of the pion and the incoming particle, the on-shell vertex is 

negative, e.g., the n~N-N vertex. 4 Then some form of off-shell 

continuation is inevitable. 

We shall not go into this dilemma in detail but consider two 

experimental examples: 
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(l) + 0 ++ 
1l p ,.-l>P 6 at 4 GeV/c from Ref. 23. 

0 ++ Let us keep the vertices at p and 6 on-shell and use the 

narrow width approximation 

(A-4) 

(A-5) 

where ~(max) = 231mb, the unitarity limit on the isospin-1 amplitude. 

SO our prediction for the differential cross section is 

(A-6) 

where we use 2 2 
~ = 0.02 GeV The curve is shown in Fig. A-2, lying 

$()1!lewhat but not grossly higher than tile data. Using a DP form factor 

f'«Jr the p 
0 

vertex amounts to multiplying Eq. (A-6) by a factor 

( 
2 -2 2) ( )2 4m r + A A ff p p on _o_ 

4mp 
2 

rp -
2 

+ A~ff Aon 
(A-7) 

Then we will obtain even a larger (dcr)j(dl), since Eq. (A-7) is 

a.lways larger than 1 in the physical region, no matter what the magni-
. -2 

tl:Ide of the parameter r • A similar argument holds if we use a DP p 

.:fi''arm factor for the fl++ vertex. If we use more strongq convergent 
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form factors, like those ED form factors employed by G. Wolf, 22 we can 

fit the experimental distribution somewhat better [cf. Fig. 6(c) of 

Ref. 22]. 

(2) 1l-P -+P p. at 4 GeV7c from Ref. 24. 

- 0 -) ( 4) For v1 (p -+Jl 1l , we use the expression in Eq. A- • For 

0 B 2 2 · p·· 
v2(p --+ J( p), we notice that v2 = Jlg Ls 8(s2 - ~) is not adequate. 

So we adopt a DP form factor for. this vertex, 

( -2 2) 2 2 rN - ~ 
ng A -2 2 

rN +A 
(A-8) 

-2 2 2 ( ) . Choosing rN = 10 1-L = 0.2 GeV as they did in Ref. 20 , and with 

g2 = 14.4X 4n, the prediction for the differential cross section is 

2 
2 0.0682 A 2 mb/GeV. 

(A + o~2)(A + 0.02) 
(A-9) 

This curve is shown as line I in Fig. A-3. 

Thus the simple prescription employed in this paper gives 

satisfactory description of the magnitudes and shapes of the data in 

these two examples. Indeed a rationale for keeping vertices on-shell 

(whenever possible) has been given by the OPE-5 prescription of 

Williams. 26 We refer the reader to Williams' paper for details. 

A more consistent approach to the singly-peripheral model and 

thus for the input of the mul tiperipberal model would seem to be to use 

a DP or BD fo·rm factor in each vertex so that every emitted particle is 

treated on the same footing. In pr~ctice, however, any two prescriptions 

for these v~rtices which both give a~equate descrilltions of singly-
~ ,~···· . . . . .·. 

peripheral data will giVe essentially the same input for the· 

" 

' 

\ 
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multiperipheral model. Encouraged by the success shown above, and in 

view of the crudity of other aspects of our model, we believe that our 

- hybrid approach to the vertices, motivated by simplicity, is justified. 

• 

• 
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APPENDIX B. THE CONVENTIONS WE USED AND THE EQUATIONS 

FOR THE INVARIANT AMPLITUDES 

We have 

s (B-1) 

The phase space factor 

fermions. Thus crtot 

(d3p)/[(2rr)32E ] is used for both bosons and 
p 

(1/A)Im ~ for ali cases. For ~ scattering 

u(A + r·QB)u; with (r·p - M)u(p) = O, and uu = 2M , 

(B-2) 

Im T B(s,O) "-' [2M Im A(s,O) + s Im B(s,O)]. 
J.L ' 

8~ 00 

(B-3) 

Instead of Eq. (III-1), we have two separate equations for the invariant 

amplitudes. At t = o, we have 

where 

x* 

1 2 

dx xcx 9(x - x*) 2 2 CX+1 L 
du J(cx) me 

. u (u + me ) 

)( J••,[Im A1 - Mx Im ~1 ], 
1 . r1 

,a-1 L dx xa o(x - x*) Jo 

2 
du J(cx) me 

. 2( . 2)CX+1 u u + m c 

X J ""'[(8 + u + ai'x)Im lr'l, 

A A2 A 2)1 
(B + u) - (~ + 2ru + u2 

(-~) ' 

A 

s 
X=­

S 

(B-4) 

(B-5) 

(B-6) 
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L For the B-pole contribution: 

Im AI 0 ' 

Im BI rY rr G
2 

5(sB -if'). 
(B-7) 

l: z y 
y 

2. For the (!-LB) resonance, R contribution, 27 

Im p;I xll'Hfi•:.7l + ~~ : :!] Im fR} ( ... $) 

Im jji = xil'{4•[(E ~ M) - (E : M)] Im fR} (B-9) 

.1. 
_,._-~e W = ·sB2 and E 1.· th b · tbe · ~~ s e aryon energy 1.n CM system of the 1-1 

(bere off-shell) and the baryon. We have used the fact that R is a 

~ = 3/2+ resonance, and, in the narrow resonance approximation we have 

(B-10) 

Substituting Eqs. (B-7) - (B-10) into Eq. (B-4) and Eq. (B-5), 

~can calculate· Im AI and Im BI separately at high energy. 

On the other hand, we can recapture our previous formula Eq. 

(III-7) by using relation (B-3). Notice, however, that we have to put 

{Y ;tM)
2 

2W(E± M)- u in Eqs. ~B-8) and (B-9) [or, alternatively, 

2M Im A + (~ + u) Im B = Im T1-1B], in order get exact agreement. 
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Fig. 

Fig. 

Fig. 

FIGURE CAPTIONS 

1. Schematic representation of artN's. 

2. Production amplitude of ~~ scattering. 

3. Production amplitude of ~ scattering of 

(a) even numbers of final ~·s, and 

(b) odd numbers of final J..l' s. 

4. B-pole contribution to the unitarity sum. 

Fig. A-1. Single peripheral model for two-body quasi-elastic 

scattering. 

+ o++ 4 I Fig. A-2. Differential cross section of :n: p -> p b. at GeV c, 

taken from Ref. 23. The sharp theoretical lower limit to 

2 
~ , not present in experimental data, is due to our use of 

a sharp mass for each of the resonances. Notice that this 

figure should not be compared with Fig. 4 of Ref. 20 or Fig. 

13 of Ref. 19, since those figures are fits to a distribution 

with arbitrary normalization. 

Fig. A-3· Differential cross section of :n:-p ->P-P at 4 GeV/c. The 

data are taken from Ref. 24. The figure is adapted from Ref. 

25. Curve I is from Eq. (A-9). Curve II is the prediction 

from a full DP model, i.e., in addition to Eq. (A-8), a form 

factor Eq. (A-7) is also used in the p- vertex with 

r 
p 

-2 10 ~2 Curve III is the prediction from OPE with 

absorption correction from Ref. 25. Curve IV is the 

prediction from the unmodified Born term model. 
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