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ABSTRACT
The high-energy forward scattering of a pseudoscalar meson (u)
and a baryon (B) is discussed on the basis of the ABFST multiper~
inheral model. Assﬁming that the low-energy upB amplitude is
dominated by the baryon pole plus -the first elastic resonance, and
using the approximate solution to the pp integral equation proposed

wy Abarbanel, Chew, Goldberger, and Saunders, we derive an expression

tot

uB A numerical estimate based on

for the high energy limit of o

SU(3) symmetry is given.
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I. INTRODUCTION
Qur purpose here is to study, in a crude way, the forward
scattering between a pseudoscalar meson (u) and a baryon (B) at

very high energy on the basis of the ABFST model,]'_3

with an internal
symmetry SU{(n). We shall represent the input low-energy uB kernel
by a B pole (which coﬁtrols the production of even numbers of final
u';), and a prominent elastic (uB) resonance (which controls the

production of odd numbers of finél p's). This approach is motivated

by known facts about ozé, like the curves shown in Fig. 1.

For the pu-B-B vertex in this kernel, it is necessary to

tot
uB

is negative. This is in contrast to the usual assumption (of course not

introduce off-shell contimia,‘o:i.on,l-L otherwise this contribution to o

a necéssity) that we can keep all the low-energy vertices on-shell.

With regard té the possible modification of this vertex and/or other
vertices, a plausible rule is to be guided by experimental distributions
in singly-peripheral reactions. We study this question briefly in our
Appendix A. The off-shell dependence of the vertices assumed in the
main portion of the paper is partially justified by this material in the
Appendix.- Otherwise we shall use the solution to the pu integral
equation suggested by Abarbanel, Chew, Goldberger, and Saunders.5 Even

though such a solution is only approximate--both mathematically6 and

physically,7 because of its appealing simplicity we can elucidate the

various factors that control the magnitudes of asymptotic total cross
sections.
Based on these assumptions and approximations, and making use of

the {assumed) smallness of the u mass in comparison with all other rel-

Utot_

evant masses, we shall derive an expression for uB

as § — o, Wemmake:
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3z numerical estimate assuming SU(B) symmetry and in the last section

some discussion is given of the results.

e

IT. THE FORWARD ABFST EQUATION FOR pu SCATTERING
AND THE APPROXIMATE SOLUTION
t 1s natural to begin.with consideration of the pp scattering
equation.8 Let us briefly review the approximaste solution from Ref. 5,
for completeness as well as for introducing notations and conventions. .

- The imaginary part of the forward elastic amplitude for up

high-energy scattering satisfies the equation (c.f. Fig. 2):

Y. 2. 2 ‘2 < s, 2
m?T (-2 0 %) = jrdso 8 [(p" - 2")" - sl

~ 2 L I 2 2 "2
X 18 Hep) v @ [dr mr 1o - 2600"0)

= " 2 ~
X [161];3 (o" - u2)2 fdso 5+((P' -p")" - so) Im Tqu(so)] s

(11-1)

where in pérticular we consider only the amplitude which corresponds to
the identity representation of the internal symmetry in the crossed

channel (the superscript "I" signifies this), and Im Equ(sO); being
used as input, is related to the low-energy pu elastic cross section

by : )

~ I _ 2 2 y _el;y _
I T, (s) = Msguu™w®) ) X 02V (sy), (11-2)
¥

where A(x,y,z) = [x2-+ y2 + 20 - 2(xy + yz + zx)]%, XY is the :t-s

internal symmetry érossing matrix, and u2 is the pseudoscalar-meson

mass squared. We have neglected the off-shell dependence of Im Euul'
Now Eq. (II-1) can be diagonalized by projecting it onto the

unitary irreducible representation of S50(1,3):



0

I ' ~IA ' 1 IN " KI)\. 1
Im T T,T Im T T, T + dt" Im T T,T "o Tt
u“( 2 ) uu( J ) u“'( 2 ) ( 2 ))

4

(11-3)
' 2
where T =p etc.,
N, 1) = 123( —= =7 In T (<", 1) (11-4)
. 7 (" - p
® -(M)n(sy,T,7')
, . 1. . 0 e T

Im ﬁﬁﬁ(T,T ) = ds, e © Im Tup1($5L

1,2 - (11-5)

. so -7 -1
cosh 1(s,,7,7') = ———p—x
° (-2v)E(-ev)2

(11-6)

and the "full” Im Tqu is related to the "partial wave" Im Tiﬁ by

e+()\+1)'l'|('s\,“|.',-r' )

I 1
ImT “(s,7T,7') = =— a(n + 1) —
_ o eni [ - sinh n(s,T,1)
c

1

I '
—_—Tp Im T (7,%')
(-er)z(-ev)z W

where c¢ is a contour of integration in the ) "plane running from

-io» to0 +iw, passing to the right of all A singula.ritiés of Im T‘IB‘
The approximate solution to Eg. (3) ,5 in the neighborhood of

the leading singularity of Im Tfl:; in the )\ plane, takes the simple

Form

Im ;fIK( T,7')
—_—he

o
In T N(7,7') e

(11-8)

(11-7)
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where
. 1 [° N ° L ~0s)n(sgs7,1)
Tr KI = di 3 dso _ e
165 (v - o) o (»+1)
by

X I T(sp). | (11-9)

This solution would be exact if the kernel KIK(T",T') were factoriz-
able in T" and 7T'. Next we approximate the low-energy forward
elastic pp amplitude by a pole corresponding to a resonance. Thus

we put
ImT I 2 2yeo Y 2
Ton (59) = M5 )X amx 1 t:!phu(ma@i‘x)]c 8(sy - m, )

- 21 2y
= m R, 6(s0 m, ),

. (11-10)

where mc2 is the squared mass and x, is the elasticity of the

resonance. Then from Eq. (II-9), we get9

I .
2R
A 1 c 1
mEt . v16n3 M+ 1)+ 2) ' 16x°

& 2N 2lg T W2
X |"@m 2 )T D s T -0 \ L2 )]
. c c

(11-11)

Thus, from Eqs. (II-8)to (II-11), we obtain the leading contribution to
L .

Im T H
KK

(@) [n(E, 7,7 )-n(m %,7,77)]

3 2
165 mc J(a) e

(-20)2(-21" )2

- Im T I(g)T;T')‘ ~ ~
HH sinh n(s,Tt,t')

(11-12)
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wheré « 1is the rightmost singularity of Im Tiﬁ in the ) plane, ITI. THE pB FORWARD ELASTIC AMPLITUDE AND TOTAL CROSS

and SECTION AT ASYMPTOTIC ENERGY
-1
d l6n3 KIX ) ) We now consider pB scattering. We assume that the production
J(a) = THTTIr . (11-13) . v ‘ ‘ '
R, ' . amplitude is given by Fig. 3(a) for even numbers of final u's, and by
A=C : ’ B

Fig. 3(b) for odd numbers of final u's. The physical absorptive part

of the forward elastic . pB amplitude at high energy is given by

: +r 2 .
y , O k(pg - )" - s I, 2 12
- 3, 1D PN Im Tup (S,u »D )
1657 (p © - 1)

1 (e 0) = ()

X d-SB Im Tp.B (SB:P ),

S A~ oo
= 1 3 ;E du 5.0 Im'Tqu(g,p?,-u)
16q° o (u + p%) )
by u*
~ I
X dsy Im TuB (sB,-u_), B | (11I-1)
'2
where u = -1T' = -p ,
. . 6 . . v _ | .
w =3 ~ " 1 s (111-2) .
1 -8
s
'M2 is the baryon mass squared, and A g
~ T ~ I ) .
Im_TpB (sB,-u)v = Im TuB (sB,-u)lB_pole .

+ A(SB,ue,Me) Z X oeué’_y(sB) . (111-3)
y

A discussion of expression (III-3) will be given shortly. In Eg.
(I1I-1), we shall use Eq. (II;lZ) for Im TwI and find an explicit

integrated form for the whole expression. 1In doing so we employ



following simplifications:

(1) We shall neglect pg in comparison with mce, as well as with
§. In the integrand, we shall put the factor 1/(u + pz)z'z 1/u2. This
simplification introduces little error as léng as the intégral is finite
and Re o > %._ Correspondingly we neglect the second term (square

bracket) in Eq. (II-11), giving

J(@) =

(11) for o =1, independent of RCI. ‘ (I11-4)

5]

(1115

(2) From Eq. (II-6) we have

2
EMX T, -0) X -
'U )2
i

Observe that the expression (X - pe + u)/u? diverges both for u -0

N'H n

1

and u —e whenever (% - p2) #Q and has a minimum value 2(x - p2)2

at u=(x - ue). So, for X = 8, mc2 >> pz, we can expand the square
1

root term in Eq. (III-5) in terms of h(—pz)/[(x - p2 + u)/u2]2 for all

u in the integration range, and from the leading term obtain

- [-u = (5 u)}ﬂ | (rr-6)

therefore, Eq. (III-1) with Eq. (II-12), becomes

s co 2 ~ a
2 m ~J(a)(s+u)
I ds du c¢ I
Im T g (s,m ’M2) ~ I 2 2 O+l dsp Im TuB (sp,-u)
0 (m “+u) ‘
"H_L2 R u c
(T11-7)
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@ 2
o du %o J) /1 o+l

2 (u + mcz)a+l (a+1) <;2M2

X Im TuB (s u). (111-8)

Next we assume5 that the value of RcI gives a =1 for the
Pomeranchuk pole, thus

2
J(l)mc

s, ,M2 o du
Im T y ) sb$@+¢¥“ﬁﬁ

; ~ N A ~ ~ ”~, 'L
[2 + B« Du+ 2] - B+ W+ ohu+ 872

X /'dsB Im T@I(SB,-u), (111-9)

where é = S, - M2, ¥=s,+ M2.
B B
Let us now consider the input Eq. (III-3):
1. For the baryon pole contribution, suppose for the moment
we have only one type of coupling for the internal symmetry under
consideration. Then the most general form for the u-B-B transition

amplitude is
M ey g2 2 2y =
Tp(e pp") = 1 6(a7,0%p ) ule) % 1), (111-10)

where G is a real function of the invariants, and in our case

2 2 1
qQq =P =M2; -2"1'1

transformation of the internal symmetry group and i denotes the

is one of the generators of the infinitesimal

guantum number of u; when p = pion, B = nucleon, in our normalization
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G;(M?,Mg,ug) is just the x-N-N coupling constant g2 ~ 1. X by

. Thus, from Fig. 4 (cf.‘ Appendix B for our conventions),

1 djq

-
= J—23 _ (2)" 8 -p' -
2 [ o3 2 ;s (ex)” 8'(p - p  q)

m EpBlB-poie

X @ pp) Tples pe'), (tr1-11)

a result which, when evaluated with Eq. (III-10) becomes (after spin

averaged),

m QuB.B-poie. =

Botice that an "on-shell treatment” of Im fuBfB_pole, setting p 2= 2
would givé the aﬁsurd result of a negative cross sectipn‘for production
of any even number of p’'s. ‘So we must mﬁke some‘off;shell cohtiﬁuatibn
here. In order to.agree with siagiy peripheral experiments, we shall
keep the factor p'2 and use a DﬁrrfPilkuhn‘fprm factor2l for the
verfex function G2: '
| -2

»Ge(szMz)P'z) = 82-2'2__—- )‘

’ (III-l})
r +u B ’

Lt
shere u = -p 2

as before, and 'r may be described as the "radius”
of the p-B-B vertex. This "radius" is expected to be roughly equal
to the Compton wavelength of the lightest particle that u 'and B can

exchange. Therefore we have

. i ) :
~ I _ Iy 2 r u o -1k
Im TuB' B-pole = + E X 2, 7 ¢ ;:5—:—; 8(sB ME), (I11-1%)
: Yy

~(7pT3)py @ Gg(MQ,ME,P'a) Pfe 5(8B - 32); (111-12)

«]12a

where zy measures the contribution of the factor (TfTi) to the
amplitude with internal quantum number y in the direct channél.lo
s ~ Iy
Notice that Im T o |B-pole
2. The (uB) resonance contribution to Eq. (III-3) we

becomes independent of u as u = w.

approximate by taking only one prominent resonance:
~ I _ 2 JIR ef,R 3 2
mE Ty = Alepn M) X gz 1 0% (max) 8(s - mD),
_ ’ (111-15)

where both Im E;BI|R.‘and @:%R(max) are referred to spin averaged
gquantities. This  (uB) _resonaﬁce contribution we evaluate.on-sheli;
in the same sense as the (up) elastic resonance contribution.given by
Eq. (II-10).

 Putting Eq. (III-14) and Bq. (ITI-15) into Eq. (III-9), we can
calculate Im TuBI(s,pz,Mz) explicitly. Now, recall that, as far as
internal symmetry SU(n) is concerned, any elastic amplitude in the
direct cﬁannel at high energy and at or near the forward direction is

related to the crossed channel amplitude which éorresponds to the

identity representatidn'byll’5

T I (111-16)
58— & Nu NB .

when TpBI‘ dominates other amplitudes in the crossed channel. The
-1 1 '

factor Nu2 NB2 comes from s-t internal symmetry crossing matrix and

Nu (NB) is the dimension of the subspace to which u (B) belongs.

Combining all these ingredients, we obtain the expression for

the spin-averaged total cross section
N :



-1%-
tot 1
= Im T
2.2 B
wB A(ss:u M ) "
I 1
1 Ty o Iy
N THRE LY e
S— ® NU NB Y c
1
—_ X (max) ® (111-17)
+ r. o _“(max) == , -
g %R *% IR s 5
p B . c
where the dimensionless guantities
. J(l)m "2 A ~ _1_
L TE? L 8T (nf + Tl - (o)),
) w(u+m ") (w+r?)
- ¢ . (111-18)
2 2 Y
= 'Jll)' .23. 2(Y‘a') log—-e—
12 (a“ -~ 1) 2a

2 N 2
278" - a . -1 . s =1
+ sin -~ —J+ s8in (ID
2
a - Y 2y - 1 -1
-2 (r - 1) Yogs + ( -=}) + sin” (1

(a” -
2 | | BN
+'(—;—a—;—13 Y+log%- r-1 1<'lr>+sj-nl(lD‘ ’
(1I1-19)
w) £
r-e=m62 B eer- 1)3/2
k Gin-l(l - %} + sin-'l(lb ,(IT1-20) -

-1k~

with
"; -2
r s —5 =
m
c

h "N
: 1 J(].)mc : e 5
R (-af)? Zla s mcg)e

X (v + (B + Tu + @2]‘ - (B + u)(u2.+ 2 + 322},

and

o IE\)
o
-

(TII-21)
= 2008 Lo - 1)+ (p + 1 - 26%)108 BT
@ 28
(-p-71+3m+ 62>' 26%) -1_r-1 1_r-g°
+ e sin ———-——1-2_+sin 5T
(er - 1 - 6°) (¥ - 8°)° (* - 8°)2
(T11-22)
with
2 N 2
T WS GV S W /ol
B = 5 = =3 3 = "5 = T3 5
m m m m m m
c [« [+ [§] C

It is noteworthy that the behaviors of the integrands in Eq.

(II1-18) and Eq. (III-Ql) are similar. In the two limits of integration:

_ R i
Integrand of Eq. (III-18) o T = A
u_)om—;: uww'-_’r—u H T—ZMQ,
¢ (1I1-23)
1407 -8Y L2
13(152) $F + 8°)
Integrand of Eq. (III-21) =~ T y —> .__T____
u- 0 m U—

{1I1-24)
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They both decrease mdnotonically from a finite value to zero, falling'

off asymptotically oo u-h. Thus B and R  contribute to the last

link with the same degree of "peripherality.” Without the help of the .

form factor (III-13), the integrand of Eq. (III-18) would fall off like

u-3 and thus make the B contribution much less peripheral than the

R -contribution.

;16_

tot

IV. NUMERICAL VALUE OF THE ASYMPTOTIC ch

IN A sU(3) SYMMETRIC MODEL
We now evaluate the numerical value of czgt given by Eq.
(III-17) when the internal symmetry group is SU(3). Obviously, Besides_

the fact that this symmetry is rather badly broken, the contiﬁuing

_neglect of the [ mass in comparison with the. other.relevant masses.

»

seems not too:sound. Nevertheless, as an illﬁstrative exemple, we shall
adopt the following as our "best input" for this hypothetiecal exact '
symmetry limit.

Let us con31der W, M, m tobe the O 8(K,n,ﬂ;K),‘.

+
% 8(N,x,A,3), and lO(AbZ,_,Q) respectively,. and take m, to be

va_Q(K*;p,¢,ﬁ*) for definiteness.’> We ignore the mixing of 1 and
8 here. For the u-B-B vertex, we have now,13 instead of Eq. (III-10),
Tp(a psp'). = ioGu(a)n2Diu(p) + 1(1 - a)Gu(a)r2F;ulp) - (1v-1)

Thus

In THBI[B_Pole = x 2: XIy{h[qufDi RIS X | ;  -
+o(1 - a)(ogr + P D)1, ) y.Ggus(s:'B ), (w-e)

where y = 835’8aa’88a’

-2
and 8as’ and DD, = 3((?Sss)fi,
;= 3«5>8 )fi etc. (the GP’s are projection operators for the
cofresponding subspaces ).
_We use the D/P ratio a =2/3 and g2 = 14.4 X Ly, For the

mass in each multiplet we use the first term in the corresponding

Gell-Mann-Okubo mass formula.lh Thus M = 1.15 GeV, me = 1.385 GeV,
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23 W, = My o= 0.852 GeV. We furthermore choose 1'-2 = mcz.15 For the

width Tp of R, we use the calculated value from the Su(3) Chew-Low
static model16

, _
- 2y8 1. 3. 17
g = 2X 35 X3 - ) %:Mﬁpm ~ 0.107 GeV,

and finally we put = 1. Recall also that N =8, N_ =8,
R n

B .
I8 18 18 8
ss aa sa . -as 116 10 5
x Fox o1, x PTox oo (s na -5 X0 - 2,

and remember Eq. (III-4). Feeding all these ingredients into the right-

hand side of Eq. (III-17), we obtain

tot
o

B ~L 22.6mb +L4.lmb = 26.7 mb. " (TIv-3)

§-> o
The large B to R rétio mainly comes from the factors zy which
represent the crossing complication associated with inteinal quantum
nﬂmﬁers.
Two further points deserve mention:
1. The B and R"conﬁributions are about equally peripheral.
We can calculate the average u values in the integrals Egs. (III-18)

and (ITI-21). It is found that

(u)E = 0.54 mc2 for the B contribution , (Tv-4)

1

{u)

R 0.l mc2 for the R contribution , (Tv-5)

where mce = O.72§ GeVg.
2. The value of the integral Eg. (III-18) is not sensitive to our
. . -2 2 . -2 -2
particular choice of r = =m ", since the form factor (7)Y (x™° + u)

is close to unity in the small u region where the integrand contrib- .

utes most to the integral, the téil of the integrand (with the factor

-18-

-2
~ EE—) not contributing much. Indeed it can be shown that if we

change r-2 by 0% relative to mcz, then the value of the inte-

grals changes only tlo%. For example, choosing 15'-2 = % mc2, we find

°§gt ~/ (18.4 + k.1)mb, while (u), = 0.h4 mc2 for the B contribu-
8— o0

tion. On the other hand, had we used no form factor at all, we would

have (u)B = 3.3 mcz, evidently unacceptable.for a model based on the

assumed peripheral nature of high-energy reactions.
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V. DISCUSSION AND CONCLUSION
We have treated the bound state pole and the resonance pole in
the pB input kernel in an effectively parallel way; as depicfed by

Eg. (III-14) and Eq. (III-15). That these two contributions enjoy

equivalent status in the contribution to Uigt is shown in Eq. (III-17).

Our numerical result based on the SU(3) symmetric = model of

) tot
the last section is reasonably close to the values UuN ~ 21.0 mb -

and 0;&? ~ 17.2'mb projected by Barger and Cline.18 This resﬁlt, of

I'\)1P-‘

-1
course, crucially depends on the factor Nu 2N ; i.e., on our

B
knowledge of the multiplet structure of the u and the B. An Su(2)
symmetfic model, ignoring the existence of strgnge mesons and baryons,

womld give a result for UtOt

almost an order of magnitude gréater,
in addition to suffering from the well-known difficulty that the mx
kernel is too weak to build up aP(O) ~1.23

- In conclusion, glthough the model employed here is an over-
simplification, ‘we have again demonstrated, with multiperipheral
dynamics, that it is conceivable, for the properties'of a few low-lying

states to control decisively the magnitude of total cross sections at

wery ﬁigh energy.

=20~
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' 2 2 2 2
where A oo = A(sy,u",-4%), A = A(s;,u",u%), and
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APPENDIX A. SINGLY-PERIPHERAL MODEL AT LOW ENERGY:

SOME EXAMPLES

We discuss here briefly the off-shell problem in the singly-

peripheral model. This question, by the method of construction, relates

closely to the ABFST multiperipheral model. We will attempt to give
support ‘to the input (B kernel we used in the text.
The differential cross section for a two-body guasi-élastic

reaction ab — 12 via one pion exchange (OPE) is given by (cf. Fig..

A-1)
o . 1 AL (a-1)
2 2 2 2 2 2y2 "’ -
da” ds) ds, 160 A (s,ma Iy Y (&7 + )
where A2 = =-t, the momentum transfer; A is the triangle function;

and V; = Im Taﬂ(sl,ég), the imaginary part of the forward elastic
amplitude for the scattering of a particle (with mass 'mhz) and a

pion (with mass -A?) at their CM energy square, s A similar rela-

1
tion for V2 is implied.
' Knowing the spin (jl) and parity of systém number 1, one can

cajculate Vl from lowest-order perturbation thebry (the Born term

model: BTM). In case particle a is spinless, for example, BTM

iy - |
A 1
B off on
Vo= (A j v _ (a-2)
on

on
A

wvertex if the exchangéd pion were on-shell. It is well known that such

gives

o is the

& primitive OPE model is not sufficiently peripheral to cope with

experimental data when jl = 1. Improvements can be made, e.g., by

-00-

or Dirr-Pilkuhn form factors.-0

1
introducing absorption corrections, ?
Here we shall consider the latter type only.

The Diirr-Pilkuhn (DP) method is to introduce in each vertex a-

form factor which depends on an additional parameter r (the "radius”

of the vertex), e.g.,

23
A 1

2 2 O]
v o op (s 05K f ) v (a-3)

1 171 A 1

on
such that Fl ——> 1 and gives adequate damping as A? - o, We
A?—;-ua

‘remark that the precise way to construct such form factors is not

unambiguous.eo In fact, more sophisticated form factors which decrease
faster than those of DP for high values of momentum transfer were
provided by Benecke and Dirrst (BD). G. Wolf2o demonstrated the
success of those form factors in a variety of reactions.

On the other hand, it seems empirically true that in many cases
one can also achieve a fairly satisfactory description of the data by
keeping the vertices on the mass shell of the exchanged pion. Such a
simple recipe,>already advocated by ABFST, may be used if we do not
demand a high.degree of accuracy and want to avoid the introduection of
additional parameters. There are, however, exceptional situations.

For example, when the emitted particle is p-wave and lies below the
threshold of the pion and the incoming particle, the on-shell vertex is
negative, e.g., the g-N-N Vertex.h Then some form of Bff-shell '
continuation is inevitable.

We shall not go into this dilemma in detail but consider two

experimental examples:
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(l) + O ++ . ’ . 22
nP —=p A ath GeV/c from Ref. 23, form factors, like those BD form factors employed by G. Wolf,” we can
Let us keep the vertices at po and A" on-shell and use the fit the experimental distribution somewhat better [e¢f. Fig. 6(c) of
narrow width approximation , Ref. 22].

(2) xpopp ath GeV/c from Ref. 2h.

2 2y .0 -+ :
V., = A(s g
1 ( 178 k) oo "# ) For V. (p - on "), we use the expression in Eq..(A-4). For
-. 0 B :
2 2 2 1 . : i = : i t
_ A(mp 12,0°) x n, Pp : o (max) B(sl _ mpz), (a-k) v, (p > p), we notice that V2 ng A‘S(s M2) s no adequate
' ' So we adopt a DP form factor for. this vertex,
2 ++ + ‘ ' ' r 2.2 : ‘ '
V, = Als; M2 o » . i
2 ( osk ) ola g p) X : v2 = ﬂgEAQ '————N_2 5 5(32 - M2). (A-8)
_ o+ A
2 2 2 '
= A(m B LU ) nm, T OA(mx).S(s - m 2) . (A-5)
A AA 2 AT : _ -0 5 o »

Choosing rp = =10 u” = 0.2 GeV (as they did in Ref. 20), and with
where GP(max) = 231 mb, the unitarity limit on the iéospin-l amplitude. g2 = 1b.4 X by, the prediction for the differential cross section is
5S¢ our prediction for the differential cross seetion is |

4 ; | L - — 0'0682A 5 mb /GeV. (8-9)
do  _ 0.0855 2 _ . daa (& + 0:.2)(& + 0.02)
7 < T3 5 mb/GeV", ‘ (a-6) -
aA (a” +0.02) :

> 5 ' This curve is shown as line I in Fig. A-3.
where we use u = 0.02 GeV . The curve is shown in Fig. A-2, lying
: Thus the simple prescription employed in this paper gives
somewhat but not grossly higher than the data. Using a DP form factor : ’
' satisfactory description of the magnitudes and shapes of the data in.

o .
for the p° vertex amounts to multiplying Eq. (A-6) by a factor : ‘ ' :
' : ) these two examples. Indeed a rationale for keeping vertices on-shell

hm r ‘ {(whenever possible) has been given by the OPE-8 prescription of
hm . °n :) <: Of{> (a-7) Williams.26 We refer thevreader to Williams' paper for details..
. : A more consistent approach to the singly-periphefal model and
Then we will obtain even a larger (da)/(dA?)’ since Eq. (A'7) is - . thus for the'inpﬁt of the multiperipheral model wouid seem to be to use
always larger than 1 in the physical region, no matter what the magni- a DP or BD éorm factqr'in ééch vertex so that every emitted particle is.

: -2
tude of th _ ; . . _
° ¢ parameter o A simllar argument holds if we use a DP treated on the same footing. In practlce, however, any two prescrlptlons

: +4- -
for _ .
Qrm‘factor for the A verte*.. If we use morestrpng1y conve?gent for these vertlces whlch both give adequate descrlptlon» of singly-

= S

. perlpheral data w1ll glve essentlally the same input for the:
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multiperipheral model. Encouraged by the success shown above, and in

view of the crudity of other aspects of our model, we believe that our

- hybrid approach to the vertices, motivated by simplicity, is justified.
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APPENDIX B. THE CONVENTIONS WE USED AND THE EQUATIONS
FOR THE INVARIANT AMPLITUDES

Werhave
S = 1+ i(en)l‘ Sh(pf - pi)T. (B-1)

The phase space facter (dBp)/[(21)32Ep] is used for both bosons and

fermions. Thus o°F - (1/A)Im T for all cases. For uB scattering

TuB = u(A + 7vQBu; with (rp - MJu(p) =0, and wu = M,
(B-2)
Im TpB(s,O) ~—/ [2M Im A(s,0) + s Im B(s,0)]. (B-3)
' 8- :

Instead of Eq. (III-1), we have two separate equations for the invariant

amplitudes. At t = 0, we have -

L A 1 au J@) m 2
Im AI(s,O) ~ % ax x* o(x - x*¥) 5 gca+1
o Jo @ (u + m, )
X [ asplin B - Mx 1m 57, (B-4)
1 : 1 . 2
I . -1 x * du J(a) mc
Im B (.S,O)N s dx x e(x - x*) -V
o o Wlu+m )™
X dsB[(g +u + 2M2x)Im ﬁI], . (B-5)
vwhere
# (§+u)-§§2+2?u+u2)% . A - v
s (-af). » ¥=35 » B=sp-M,

T=s, + M. (8-6)
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1. Fof the B-pole contribution:
. *
mi = o,
o . (B-7)
Im B~ = 2: ¥z nd 5(s, =~ M2). 1.
y B _
2. For the (uB) 'resonance,' R contribuﬁion,27
: 2.
~T W+M)  (W=-M - 5
Im AT = XIR hﬂ[%éTm-l + -(m;- Im fR 3 (B-‘-B) )y .
I R 3 1 '
Im B~ = XI hﬂ[-(Ef_'_ M) - E - M] Im fR 5 . (B-9) 5.
1 o :
attere W = sBav and E _is the baryon energy in the CM system of the v
. 6.
{here off-shell) and the baryon. We have used the fact that R is a
. _ _ , .
JD = 3/2 resonance, and, in the narrow resonance approximation we have
Pegg ™ Mg T aez’R(max) :
Imf, = M R 8(s, - m2)
R = Iy 5 Oleg = mg ). (B-10)
. Substituting Egs. (B-7) - (B-10) into Eq. (B-l) and Eq. (B-5),
we can calculate ' Im AI and- Im BI separately at high energy. 7
On the other hand, we can recapture our previous formula Eq.
{II1-7) by using relation (B-3). Notice, however, that we have to put 8.
2 . .
(W M)" = 2W(E+M) - u in Egs. (B-8) and (B-9) [or, alternatively,
MInk + B+u) InB = Im %pB], in order get exact agreement.
‘ . 9.
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'FIGURE CAPTIONS
Schematic representation of oﬁN'S.

Production amplitude of pp scattering.

" Production amplitude of pB scattering of

(a) even numbers of final p's, and

<

(b) odd numbers of final pu's.

B-pole contribution to the unitarity sum.

Single peripheral model for two-body quasi-elastic
scattering.

Differential cross section of x'p —plA't at hVGeV/c,

taken from Réf. 23. The sharp theoretical lower limit to .
b?, not present in experimental data, is due to our use of

& sharp mass for each of the resonances. Notige that this
figure should not be compared with Fig. L of Réf. 20 or Fig.
13 of Ref. 19, since those figures are fits to a distribution
with arbitrary normalization. . _
Differential cross section of x™p —»p™p at b GeV/ec. The
data are taken from Ref. Bh.' The figure is adapted from Ref.
25. Curve I is from Eq. (A-9). Curve II is the prediction
from & full DP model, i.e., in-addition to Eq. (A-8), a form
factor Eq. (A-7) is also used in the p~ vertex with

rp-e = 10 u2. Curve III is the prediction from OPE with

i

absorption correction from Ref. 25. Curve IV is the

prediction from the unmodified Born term model.
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