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1 Introduction 
Recent research has shown that learning, like many other artificial intelligence problems, can be 

viewed as a knowledge-intensive activity. In this paper, we address two issues in knowledge-intensive 
learning: 

• Taking advantage of domain knowledge that may be incomplete and incorrect. Rajamoney and 
DeJong (1987) call a <Iomamtheocy--''iricompTe~_'JI]ll.efe are--some posilive-exampfes of a concept 

clhat cannQt _be explained by the domain theory, and "incorrecl"-iflher~aresomeffegative-examples 
that are explained as positive-examples by the donfaiil-the0ry. 

• Learning when there is noise in the training data. Here, we focus on learning when there is the 
possibility that training data is incorrectly classified. 

These problems are particularly imporlanfsmce iheii Solution will increase the class of problems that 
can be addressed by knowledge-intensive learning algorithms. Many applications have training data that 
are incorrectly classified Fmthermore, there are many problems in which the encoding of the domain 
knowledge results in some form of incompleteness and incorrectness. Explanation-based learning (De.Tong 
& Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986), an initial formulation of knowledge
intensive learning, did not address either of these issues. 

More recently, a variety of systems have integrated explanation-based learning with some form of 
empirical learning (e.g., Ali, 1989; Bergadano & Giordana, 1988; Danyluk, 1989; Fawcett, 1989; Fiann & 
Dietterich, 1989; Hirsh, 1989; Lebowitz, 1986; Michalski & Ko, 1988; Mooney & Ourston, 1989; Ourston 
& Mooney. 1990; Pazzani, 1990; Shavlik & Towell, 1989; Van Lehn, 1987; Wilkins & Tan, 1989). 
However, none of these systems provide a systematic analysis of the effect of noise in the training data. 1 

In addition, some of the systems can deal with domain theories that are incomplete, but not incorrect, 
while others deal with domain theories that are incorrect, but not incomplete. Furthermore, ~9-

J!!!!_~tations of the empirical learning algorithm they use, m0st of tlJ.e systems require that the domain theory 
~representoo~fu-:-proposiff011af1ogic, a language tfiaf iSless-eipressive- ilian the Hom-clause representa-
JionsJypically used to represent domain theQriesforEBL. -

We present an integrated learning system wh0se empirical component is based on FOIL (Quinlan, 
1990), a recent advance in Hom-clause learning and whose explanation-based component has been 
designed to work in a manner compatible with FOIL. In particular, the proof and operationalii:ation 
process used by the explanation-based component is guided by the same information-based metric used to 
select hypotheses in the empirical component. 

In the remainder of this paper, we first review the FOIL algorithm. Next, we introduce FOCL (first:
Orc1.~~J:;of!!!?_L@4~er)., Finally, we report on a series of experiments in which we test FOCL by sup
plying it with incorrect and incomplete domain theories (formed by mutating a correct domain theory) and 
by introducing noise into training examples. The experiments are centered around two problem don:iains. 
The first problem is to determine if a chess board containing a white king, white rook, and black king is in 
an illegal board configuration. 2 The second problem domain involves determining if a student is required 
to pay back a student loan based on student enrollment and background information. In these experiments 
we demonstrate that providing domain knowledge to FOCL can decrease the amount of search required 
during learning and increase the accuracy of learned concepts even when the domain knowledge is 
incorrect and incomplete and there is noise m the training data. 

2FOIL 
FOIL learns constant-free Hom-clause theories that serve as intensional definitions of a concept, P

0
• 

The defmition of a concept consists of a set of clauses of the form: 
Po(Vo,1, ... , Vo,.J :- P1(V1,1, ... , V1,111), ... ,Pm(Vm,1, ... , V,,.,,.,,J. 

where each clause represents an alternative method of proving that an example is instance of P
0

• The 
clauses consist of a conjunction of literals, which are each composed of a particular predicate (e.g., P;) 
and an ordering of variables for the predicate (e.g., V;,1, ... , V;,,.1). The variables of the literal are classifie'd 

1. One exception is desaibed in Shavlit and Towell (1989). Their system has the potential of handling incomplete and 
incorrect domain theories and noisy data. However, the system requiies that domain theories be represented in propositional logic so 
that they can be transformed in neural networla. 

2. A board coofiguration is illegal if either king is in check or more than one piece occupies ~e same space. 
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as new and old as follows: a variable of a literal is called "new" if it does not appear in the head of the cur
rent clause or in any literal to the left of the current literal; otherwise, the variable is called "old." 

An example in FOIL is represented as a tuple, which contains values for the variables of the 
predicates to be learned. For example, when learning the definition of i 11ega1 (A, B, c, o, E, F) , A and B 
are the position of the white king (i.e., the rank and file which are represented by a number between 1 and 
8), C and Dare the white rook's position, and E and Fare the black king's position. Training examples for 
this problem would consist of a set of 6-tuples whose elements correspond to the ranks and files of the 
three pieces. Each tuple is identified as a positive or negative instance of i 11ega1 (A, B, c, o, E, F) . 

(l,2,1,5,1,3) would be a positive instance of illegal (A, B, c, D, E, F), since the kings at 1,2 and 1,3 are 
in check. 

FOIL also takes as input a set of predicates {P 1, ... , P n} which are extensionally defined. For 
example, adjacent(X,Y) 1s defined by the set {(1,2) (2,1) (2,3) (3,2) (3,4) (4,3) (4,5) (5,4) 

( s , 6 ) ( 6 , s ) ( 6 , 7 ) ( 7 , 6 ) ( 7 , s ) ( s , 7 ) } . These predicates can be used to form the literals that make up 
the clauses for PP. For example, the predicates be tween ( x , Y , z l ( Y is greater than x and less than z), 
equal (X, Y) (Y 1S equal to x) and adjacent (X, Y) (Y is either one less than or one greater than x) are 
useful in learning illegal. In FOIL, these predicates must be defined extensionally. 

In effect, ~~~~tors: sfa!t a 11e~ empty_cl~se, and add a literal to the encl of the cll1Te~t\ 
slause._fQII. performs the secona operator until no negative examples are-covereQ. by theclause,_and 
"performs the first ope~~ding~~new _~l::t_µ§e§~_ !!fltil all positive e_xamp!~v:U:tLGPYyJe<!JD'~soffie_gf!_us~· :, 
FOIL cOiiij)uiestlie~ffiformation gain of the legal vanabilizations3 of each extensionally defined predicate~~ 
in order to determine which literal to add to the end of a clause. A variabilization is a particular ordering 
of new and old variables. The information gain of the addition of a new literal to the current clause is 
defined. as f?llows: ++ * 

Gam(L1teral) = T log2(p/p1+n1)-log2(po(p0+no) 
where p0 and n0 are the current number of positive and negative tuples, p and n1 are the number of 
positive and negative tuples that would remain after adding the literal, and T~ is the number of current 
positive tuples that have at least one corresponding tuple4 in the positive tuples after adding the literal 
(Quinlan, 1990). 

Table 1 presents an overview of the FOIL algorithm. Pazz.ani and Kibler (1990) argue that the number 
of times that the information gain of a literal is computed is a good metric for indicating the size of the 
search space explored by FOIL. 

An additional feature of FOIL is that it contaim a stopping criteria for deciding whether there is 
sufficient data to support adding a literal to a clause (or creatinf a new clause). The stopping condition 
compares the number of bits needed to explicitly encode the data to the number of bits required to encode 
the new literal. 6 For brevity, this feature of FOIL was not included in Table 1, which should read ''un ti 1 
Pos (or Neg) is almost empty, as determined by the stopping criteria." 

3FOCL 
FOCL extends FOIL in a variety of ways to take advantage of domain knowledge. Pazzani and Kibler 

(1990) describe how adding knowledge about the extensional predicates (e.g., the types of variables, and 
information about commutativity of predicates) can be used to reduce the search space. Here, we 
concentrate on how adding knowledge in the fonn of a domain theory can increase the accuracy of 
concepts learned and decrease the search space explored. We first describe how intensionally defined 
predicates can be used by FOCL and how they are operationalized. Finally, we discuss how providing a 
goal concept can limit the amount of search used by FOIL. 

3. A legal variabi.liDtion must include at leut one old variable, and not cauae infinite rerunion (Quinlan, 1990). 
4. Note thll the size cl the tuples may grow in FOIL when a litenl introduce• new variables. For e:umple, when 

learning illec;ral(A,a,c,o,E,rl, if the fmt literal selected is between(A,G,Cl, then for the remainder of the clause the 6-tuples used 
will be extended to 7-tuplea by adding those values of G for which between(A,G,Cl is true. Furthennore, not every 6-tuple may have a 
corresponding 7-tuple in the extended set, and some 6-tuples may have more than extension in the new set of 7-tuples. 

5. given by lopp+n)+lo~ 1;0 
}} where p is the number of positive example• and n i1 the number of negative examples. 

6. given by 1 + logz(r) +~(4p) where r is the number of pn:dicatea and ap is the number of possible variabilization of 

the predicate. 
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Input 
Fred: 
Vars: 
Pos: 
Negs: 
Preds: 

Table 1. An Overview of FOIL 

Name of the predicate to learn 
An ordered tuple of variable names for the predicate 
A set of tuples for the positive examples of the predicate 
A set of tuples for the negative examples of the predicate 
A set of extensionally defined predicates 

Set Clauses to empty 
Until Pos is empty { 

Set NewClause to empty 
Set Old to Vars 
Until Negs is empty { 

For each Predicate in Preds ( 
For each V in variabilizations(Pred,Old) 

create a Literal from Predicate and V 
compute_gain(Literal,Pos,Neg) }} 

Conjoin the literal with the maximum gain to NewClause 
Add any new variables in the literal to Old 
Set Pos to the extensions of Pos satisfied by Literal 
Set Neg to the extensions of Neg satisfied by Literal 

Remove from Pos all tuples that satisfy the NewClause 
Reset Negs to the original negative tuples 
Add NewClause to Clauses } 

3.1 Intensionally defined predicates 
In order to compute the information gain of a literal, it is necessary to count the number of tuples that 

would result from adding the literal to the current clause. If the literal is formed from a predicate that is 
defined extensionally (as in FOIL), this can be accomplished by a relational join operator. For example, if 
the current set of positive tuples consists of the ( x , Y) pairs: { ( 2 , 1 ) ( 3 , 1 ) ( 5 , 2 ) } and the predicate 
be tween is defined extensionally as: { ( 1 , 2 , 3 ) ( 1 , 2 , 4 ) ( 1 , 2 , 5 ) ( 1 , 3 , 4 ) ( 1 , 3 , 5 ) ( 2 , 3 , 4 ) ( 2 , 3 , 5 ) 
( 2, 4, 5) ( 3, 4, 5) } then the literal be tween ( Y, z, x) would extend the set of positive tuples to include 
all values of z such that bet we en ( Y, z, x) is true. This produces { ( 3 , 1, 2 ) ( 5 , 2 , 3 ) c 5 , 2 , 4 ) } as the 
new set of positive tuples. The first tuple, ( 3 , 1 , 2 ) is added since 2 is the only value for which 
between ( 1, z, 3) is true. The other two tuples are possible values for between ( 2, z, 5). There is no 
value of z for which between ( 1, z, 2) is true, so there are no extensions of this tuple that are included in 
the new set of tuples. 

In FOCL, predicates may also be defined intensionally (as in Prolog rules). The intensionally defined 
. predicates are def!fied by rufos that indicate.ho\V.the P~edicate may be inferre<l.from extens1onaIIfderuled 
~c@~ (0r-oflier-1iltensionfilWaeffiied preaicatesr -For-eiampie,-J;-~1: ;e en-could re aefiriea ill _terms of 

c-1;; s:th~n as follows: 
between(A,B,C) :-less_than(A,B), less_than(B,C). 

where less_than is defined extensionally as: {(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) 
( 3, 5) ( 4, 5)}. To compute the information gain of intensionally defined predicates such as between, 
FOCL makes use of a backward chaining proof procedure similar to the prolog predicate set of. For ex
ample, the Prolog goal setof ( ( 5, 2, z), between ( 2, 5, Z) , T) will bind T to those extensions of ( 5, 2) 
for which be tween ( 2, z, s > is true. FOCL computes the information gain of the literals formed from an 
intensionally defined predicate by computing the size of the sets of positive and negative examples that 
arise from adding the literal to the current clause using a mechanism similar to set of •7 As with the 
extensionally defined predicates, FOCL computes the information gain of every variabilization of the 
intensionally defined predicates in an attempt to find a literal (i.e., a predicate and associated 
variabilization) which maximizes information gain. Furthermore, it is possible to directly compare the 
informational gain of literals formed from intentionally defined predicates to the literals formed from ex
tensionally defined predicates to find the literal with the maximum overall information gain. 

7. FOCL ia implemented in Common Lisp and makes uae of a back.ward dtaining rule inte.rpreter whose semantics are 
identical to that of pure Prolog. Thia allows us to take advantage of Prolog's expressiveness when appropriate, while having control 
over the unification and indexing used by the interpreter. 
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Table 2. The operationalization process in FOCL. 

operationalize(Literal, Pos, Neg): 
Initialize Conjuncts to the empty set 
For each Clause in the definition of Literal 

compute_gain(Clause, Pos, Neg) 
Let Clause be the clause with the maximum gain 
For each literal L in Clause 

if L is operational 
then Set Pos to the extensions of Pos satisfied by L 

Set Neg to the extensions of Neg satisfied by L 
Add L to Conjuncts 

else add operationalize{L, Pos, Neg) to Conjuncts 
Return Conjuncts 

3.2 Operationalization 
If the literal which maximizes information gain is formed from an intensionally defined predicate, it is 

possible for FOCL to add this literal to a clause. However, typically we run FOCL in a mode in which it 
operationalizes (Keller, 1987) such a literal, by expressing it in terms of extensionally defined predicates. 
Note that in FOCL, we i;onsicl~rJ.11.eJ~rms. '_'o~rational" ancL''~xtensiQnally:_defmed'' tQ _b<!_ equivalent., 
Similarly, ~~quate. '_'no!l~:Q~tat!.Qm!l:JYith-'.~intensionany:delined~" 

Unlike EBL.iiie operation~!!OJ!JJr~-~.S in FO~t!~ a_seLoLPQ§_itiv(! ~J! 11egwve e:xamples, 
rather th@ a sm~I~ poSffiVe-exainple. A non-operational literal is operationalized by producing an 
Spectalization' that iS -a conjunctloii-ofoperational literals. When there are several ways of operationalizing 
a literal (i.e., there are multiple, disjunctive clauses), the information gain metric is used to determine 
which clause should be used. The same backward chaining proof process that computes the information 
gain of literals formed from an intensionally defined predicates is used to compute the information gain of 
a clause (since a clause is simply a conjunction of literals). Table 2 summarizes the operationalization 
process. The goal is to find the conjunction of operational literals with the maximum information gain.See 
Section 3.5 for an example and Section 4 for experimental results. 

Providing domain knowledge in the form of intensionally defined predicates supplies an important 
form of guidance to the learning process. In particular, it is possible that a conjunction of extensionally 
defmed literals will have positive information gain, while the individual literals do not. Such a conjunction 
cannot be found by hill-climbing search. For example, on 10 trials of 1000 training examples, FOCL was 
unable to obtain 100% accuracy when learning i 11 egal in terms of the extensionally defmed predicates 
less_ than, adjacent and equal. However, when the intesionally defined predicate between was 
added, FOCL learned a 100% accurate definition of illegal in terms of the extensionally defined 
predicates in all 10 trials. 

Unfortunately, there is also a disadvantage of adding intensionally defined predicates. In particular, 
each additional predicate added increases the amount of search performed during learning. If the arity of 
all intensionally defmed predicates is no greater than the maximum arity of the extensionally defined 
predicates, then search is increased by at most a linear factor. However, if the arity of any intensionally 
defined predicate is greater than that of all extensionally defined predicates, search is increased by an 
exponential amount. This occurs because the size of the search space explored is dominated by the 
predicate with the largest number of arguments (Pammi & Kibler, 1990). In any event, adding 
intensionally defined predicates in this manner has the undesirable consequence that as the number of 
predicates the system knows (or learns) increases, the amount of work required to learn a new predicate 
increases. In the next section, we address this problem. 

3.3 Goal concepts 
The problem of intensionally defmed predicates increasing the search space occurs because in addition 

to checking the variabilizations of the extensionally defmed predicates, the variabilizations of the inten
sionally defined predicates must be checked as well. For example, consider the definition of same_loc 
from the illegal domain theory in Table 3. Since there are a minimum of 6 old variables when learning 
illegal, and same_loc has 4 arguments, there are 29,168 distinct variabilizations of same_loc. 
However, only 3 of these variabilizations make sense in this domain. In particular, if 
( R 1 , F 1 , R2 , F 2 , R3 , F 3 ) represent the rank and file of the white king, white rook and black king, then 
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same_loc(Rl,Fl,R2,F2) detennines if the white king and white rook ~cupy the same square. 
Similarly, same_loc ( Rl, Fl, R3, F3) determines if the kings are on the same square and 
same_loc (R2, F2, R3, F3) determines if the white rook and black king are on the same square. It is 
possible that same_loc ( R3, R2, Rl, Nl) will have some infohnation gain when tested. However, this 
variabilization does not have a very meaningful interpretation in this domain and testing it is not likely to 
yield maximum infonnation gain. Even if this variabilization has the maximum infonnation gain, it is 
unlikely that the domain knowledge was intended to have this interpretation. ' 

Goals concepts can be used to concentrate FOCL' s search on the relevant variabilizations of the 
intensionally defined predicates. Mitchell, Keller, and Kedar-Cabelli (1986) call a non-operational 
definition of the concept to be learned a goal concept. Notice that the domain theory contains a non
operational (i.e., intensional) definition of the predicate i 11ega1: The clauses for i 11ega1 indicate 
which variabilization of which predicates should be tested to create an operational (i.e., extensional) 
definition of i 11ega1. When a goal concept is provided to FOCL, it computes the infonnation gain of 
the goal concept If the goal concept has positive infonnation gain, FOCL fonns a conjunction of literals 
to add to the current clause by operationalizing the goal concept Otherwise, it computes the infonnation 
gain of all variabilizations of all predicates. 8 

A goal concept may be operationalized in more than one way to produce separate clauses. When the 
goal concept has been operationalized and the clause has been completed (i.e., it excludes all negative ex
amples), the set of positive tuples accounted for by a clause are removed If the goal concept still has 
infonnation gain, it is operationalized again in the next clause. A different operationalization must occur 
since the positive tuples covered by the prior operationalization are removed, and that path through the 
proof tree will not cover any of the remaining positive tuples. If any negative tuples are also accounted for 
by an operationalization, additional literals are added to the clause by induction until no negative examples 
are covered 

There is no fixed order in which empirical and explanation-based learning are perfonned Instead, a 
unifonn application of the infonnation gain metric determines whether a conjunction of extensional literals 
is added to the current clause by operationalizing the goal concept, a single extensional literal is added by 
checking all variabilizations of the extensionally defined predicates, or a conjunction of literals is added by 
operationalizing a variabilization of one of the intensionally defined predicates. It can occur that the first 
literal of a clause must be learned empirically (i.e., by checking all variabilizations of the extensionally de: 
fined predicates) before the goal concept may have positive information gain. The next addition to the 
clause would be the conjunction of literals fonned by operationalizing the goal concept The final literals 
might be added empirically by operationalizing an intensionally defined predicate. 

Table 3. ill• gal domain theory. 
illegal (Rl,Fl,R2,F2,R3,F3) :- same_loc(Rl,Fl,R2,F2). 
illegal(Rl,Fl,R2,F2,R3,F3) same_loc(Rl,Fl,R3,F3). 
illegal(Rl,Fl,R2,F2,R3,F3) :- same_loc(R2,F2,R3,F3). 
illegal(Rl,Fl,R2,F2,R3,F3) :- king~attack_king(Rl,Fl,R3,F3). 

illegal(Rl,Fl,R2,F2,R3,F3) :- rook_attack_king(Rl,Fl,R2,F2,R3,F3). 
same_loc (Rl, Fl, R2, F2) : - equal (Rl, R2), equal (Fl ,F2). 
king_attack_king(Rl,Fl,R2,F2) :- adjacent(Rl,R2), adjacent(Fl,F2) 
king_attack_king(Rl,Fl,R2,F2) :- adjacent(R1,R2), equal(Fl,F2) 
king_attack_king(Rl,Fl,R2,F2) :- equal(Rl,R2), adjacent(Fl,F2) 
rook_attack_king(Rl,Fl,R2,F2,R3,F3) :- equal(R2,R3), king_not_between(Rl,Fl,R2,F2,F3). 
rook_attack_king(Rl,F1,R2,F2,F3,R3) :- equal(F2,F3),king_not_between(Fl,Rl,F2,R2,R3). 
king_not_between(Xl,Yl,X2,Y2,Y3) :- not(equal(Xl,X2)). 
king_not_between(Xl,F1,X2,Y2,Y3) :- equal(Xl,X2),not(between(Y2,Yl,Y3)). 
between(X,Y,Z) :- less_than(X,Y) ,less_than(Y,Z). 

8. Actually, FOCL operates in two modes. The mode describe here is tMory mo<Je. In information nsode, FOCL 
compares the infonnation gain c:J. the goal concept to the maximum information gain of literals formed from extensionally defined 
predicates, and adds the literal (or operationalized literals) with maximum information gain. In our experience, the mode does not 
have a significant effect on the accuracy of the hypotheses produced by FOCL unless the domain theory is extremely inacrurate (i.e., 
less than 60% accurate), in which information mode resulta in more accurate hypotheses. When the domain theory is more accurate, 
theory-mode reaults in less search than information-mode. When the domain theory is less accunite, theory-mode results in more 
search because the operatiooali2Jed concepts tend to be overly specialized and more clauses are needed to cover the training example1. 
All experiments reported in this paper will be done in theory-mode. 
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3.4 Selective operationalization 
A slight modification to the operationalization procedure described so far increases FOCL 's ability to 

tolerate overly specific domain theories caused by clauses having one or more extra literals. In particular, 
the information gain of the conjunction of literals produced by operationalization may be increased by the 
deletion of one of the literals of the conjunction. When deleting a literal increases the information gain and 
the ratio of negative tuples to total tuples is decreased by the deletion, then the literal is deleted from the 
operationalization. This process is repeated until no deletion results in additional information gain. 

Note that this scheme is a greedy means of finding the subset of an operationalization with the 
maximum information gain. An optimal algorithm that is guaranteed to find the subset with the maximum 
information gain would operate by finding the information gain of all subsets of the operationalization. 
However, this expensive scheme is not practical in large applications. In Section 4.3, we provide 
experimental evidence on the ability of the greedy technique to approximate the optimal solution. 

3.5 Learning in spite of incorrect and incomplete domain theories: An example 
Table 4 displays a domain theory for a problem involving repayment of student loans. Four errors 

were deliberately introduced into a correct domain theory (deleting a clause, deleting a literal from a 
clause, adding a new clause, and adding a literal to a clause). In addition, 50 training examples (25 
positive, 25 negative) were used in this illustration. One of the positive examples is represented by the 
following operational predicates: longes t_absence_from_school (mary, 3), enrol led (mary, 
ucla, SJ, and(disabled,mary) and one of the negative examples is represented by 
enrolled(bob,uci,10), male(bob) and longest_absence_from_school(bob,12). Note that 
mary is erroneously classified by the domain theory as a negative example (because the rule for disability 
deferment has been modified by adding an extra condition) and bob is incorrectly classified as a positive 
example (because an extra clause has been added that states that students enrolled at UCI are eligible for a 
financial deferment). ' 

To solve this problem, FOCL tries to operationalize the concept no_payment_due. There are two 
clauses that can be used to prove that no payment is due. FOCL computes the information gain of both 
and selects the alternative with the highest information gain. The predicate eligible_for_deferment 
is true of 16 positive and no negative examples (information gain = 16.0) and the predicate 
continuously _enrolled is true of 15 positive and 14 negative examples (information gain = 0.7). 
Hence, the predicate eligible_for_deferment is selected to be operationalized. There are five 
alternative ways of proving eligible_for_deferment. military_deferment has the highest infor
mation gain. Since there is only one way to operationalize military_deferment and its definition is 
already operational, the con junction of literals en li s t ( A, B ) & a rm e d_ forces ( B ) is used to start the 
first clause for no_payment_due (AJ. No negative examples are covered by this operationalization, so the 

Table 4. Domain theory for repayment of student loans. 
Clauses and literals that were deleted to deliberately introduce errors are stricken. Oauses and literals 
that were added are shown in bold. 

no_payment_due(S) :- continuously_enrolled(S). 
no_payment_due(S) :- eligible_for_deferment(S). 
cont inuously_enrol led( S) : - neo eZ_left_scltool ( :!! ) , enrol led_in_more_than_f i ve_uni ts ( S) . 
eligible_for_deferment(S) :- military_deferment(S) 
eligible_for_deferment(S) :- peace_corps_deferment(S). 
eligible_for_deferment(S) :- financial_deferment(S). 
eligible_for_deferment(S) :- student_deferment(S). 
eligible_for_deferment(S) 1- disability_deferment(S). 
military_deferment(S) :- enlist(S,A) ,armed_forces(A). 
peace_corps_deferment(S) :- enlist(S,A),peace_corps(A). 
financial_deferment(S) :- filed_for_bankruptcy(S). 
financial_defezment (!) . unemployed(:!). 
financial_deferaent(8) 1- enrolled(S,C,U),uci(C). 
student_deferment(S) :-enrolled_in_more_than_eleven_units(S). 
disability_deferment(S) :- aale(S),disabled(S). 
never_left_school(S) :- longest_absence_from_school(s,a) ,6>A. 
enrolled_in_more_than_N_units(S,N) :- enrolled(S,SCH,U),school(SCH),U>N. 
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process of building the first clause terminates. The second, third and fourth clauses of no_payment_due 
are formed by a similar manner, operationalizing financial_deferment, peace_corps_deferment, 
and student deferment. 

FOCL starts the fifth clause in a similar fashion. The predicate eligible_for_deferment is true of 
two positive examples and no negative examples, and has the maximum information gain. The clause 
disability_deferment is true of the two positive examples and no negative examples, and is 
operationalized to produce the conjunction ma 1 e ( A) & dis ab 1 e d (A) . FOCL then tries to improve the 
information gain of this conjunction by deleting literals from it as described in the previous section. When 
the literal ma 1 e (A) is deleted, the information gain is increased Since dis ab 1 e d ( A) covers four positive 
examples and no negative examples. Therefore, the fifth clause is no_payment_due (Al 
disabled(A). 

For the sixth clause, there are no remammg positive examples explained by 
eligible_for_deferment. However, continuously_enrolled explains four of the six remaining 
positive examples and fourteen of the twenty-five negative examples, so it is operationalized and the con
junction enrolled(A, B, CJ, school (B), C>S is added as the first part of the sixth clause. Since the 
conjunction of literals formed by operationalizing continuously_enrolled covers some negative exam
ples, FOCL tries to induce other literals that exclude these negative examples, and satisfies at least some 
of the positive examples. The non-operational predicate, never_left_school, has the highest 
information gain of the available predicates. Because this predicate is not operational, it too is operational
ized and the resulting literals are conjoined with the operationalization of continuously_enrolled to 
produce the conjunction: enrolled (A, B, C), school ( B), C>S, longes t_absence_from_school (A, 

D) , 6 >D which excludes the remaining negative examples. Note that the first part of this clause was 
formed by EBL (operationalizing a goal concept with positive information gain) and the second part was 
formed inductively (by searching all variabilizations of all intensionally and all extensionally defined 
predicates). 

At this point, the goal concept no longer has positive infonnation gain. This occurs because the set of 
positive examples has been .reduced by eliminating those positive examples that are satisfied by each new 
clause created. Since the goal concept can no longer correctly classify the remaining positive examples, 
FOCL must rely on inductive techniques to complete the definition. FOCL induces that unemployed 
persons are not required to make loan payments. At this point, all positive examples are covered by some 
clause, and no negative examples are covered by any clause, so the learning process terminates. 

In this example, FOCL first operationalized as much of the domain theory as possible. Note that the 
first few clauses did not require any induction. Later clauses operationalized part of the domain theory, but 
used induction to add extra literals. This is a sign that the domain theory is close to being correct. Finally, 
FOCL used only inductive techniques to learn the fmal clause. This behavior is common and is a 
consequence of using infonnation gain as a metric to guide a greedy search for a complete set of clauses 
that covers all positive and no negative examples. 

4 Experimental Evaluation of FOCL 
In this section, we report on three experiments with FOCL. These experiments are designed to test the 

following hypotheses: 
• FOCL learning with domain theories that are incomplete and incorrect performs less work and 

produces more accurate concepts than FOCL learning with no domain theory. 
• An incomplete and incorrect domain theory allows FOCL to tolerate classification noise better than no 

domain theory. 
• The greedy algorithm for deleting literals from clauses is an efficient approximation of the optimal 

algorithm. 
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4.1 Learning with incomplete and incorrect 
domain theories 

The following experiments are intended to 
determine whether FOCL' s combination of 
explanation-based and empirical learning 
methods performs less work and produces more 
accurate concepts when learning is performed 
using an incomplete and incorrect domain theory 
than FOCL with no domain theory. Errors are 
introduced into the domain theory for il 1ega1 
by using the following four operators: 

• Randomly deleting a literal from a clause of 
a rule. This modification will cause the rule 
to make errors on negative training 
examples. 

• Randomly deleting a clause from a rule. 
This modification will cause the rule to make 
errors on positive training examples. 
Randomly adding a literal to a clause of a 
rule. The added literal is constructed 
randomly from the set of operational 
predicates and from the existing variables of 
the current clause. This modification will 
cause the rule to make errors on positive 
training examples. 

• Randomly adding a clause to a rule. The 
added clause is constructed with random 
literals. All clauses are at least 1 literal long 
and there is a 0.5 probability that clauses will 
have at least 2 literals, a .25 probability of at 
least 3, etc. This modification will cause the 
rule to make errors on negative training 
examples. 

The design of this experiment follows a 2 
algorithm (purely empirical vs. combined 
empirical and explanation) x 12 modification (0, 
1, 2, 4, 6, 8, 10, 12, 14, 16, 20 and 24 
modifications to the domain theory) design. The 
dependent variables measured were the accuracy 
of the learned concept and the number of times 
the infonnation gain of a literal is computed. We 
ran 20 trials of FOCL with and without the 
domain theory. On each trial, 40 positive and 40 
negative examples of illegal were randomly 
generated. Next, we randomly introduced a 
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Figure 1. Accuracy of FOCL with and without a 
domain, number of literals tested during learning, 
and accuracy of domain as a function of the number 
of modifications randomly made to the domain 
theory. 

number of errors into the domain theory. Each operator had a .25 probability of being selected. We then 
ran FOCL with the modified domain theory and FOCL with no domain theory, and recorded the accuracy 
of the concept learned by each version (calculated by testing on 500 positive and 500 negative examples) 
and the number of times the infonnation gain of a literal was computed. Figure 1 plots the accuracy of 
FOCL (top), the amount of work perfonned during learning (middle) and the accuracy of the modified 
domain theory used by FOCL (bottom--calculated by using the domain theory to classify 500 positive and 
500 negative examples). 

The figure shows that FOCL with an incomplete and incorrect domain theory is at least as accurate as 
FOCL with no domain theory (even when the domain theory is less than 70% accurate). Fmthermore, 
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FOCL does less work when using an incomplete 
and incorrect theory than when using no domain 
theory. Of course, it is more expensive to 
compute the infonnation gain of an intensionally 
defined predicate (when using a domain theory) 
than an extensionally defined predicate (when 
using only empirical methods). Nonetheless, 
there is also a savings in CPU time even when 
using an incorrect domain theory. For example, 
with an incomplete and incorrect domain theory 
fonned by applying eight mutations to a correct 
theory, FOCL takes 21.1 CPU seconds while 
FOCL with no domain theory takes 30.4 CPU 
seconds (on a Sun 4). An analysis of variance 
indicates that, for accuracy, there was a main 
effect for the algorithm variable F(l,456) = 83.1 
(p < .0001). This shows that the accuracy of 
FOCL with a domain theory is significantly 
different than the accuracy of FOCL with no 
domain theory. In addition, there was an 
interaction between the algorithm and the number 
of modifications F(l,11) = 6.47 (p <.0001). For 
the dependent variable representing the number of 
times the infonnation gain of a literal is 
computed, there was also a main effect for the 
algorithm F(l,456) = 792.0 (p <.0001) and an 
interaction between the algorithm and the number 
of modifications F(l,11) = 14.6 (p <.0001). 

In order to gain insight into how FOCL deals 
with each type of error in the domain theory' we 
also ran each operator separately. Figure 2 plots 
the accuracy of FOCL (top), the amount of work 
perfonned during learning (middle), and the 
accuracy of the modified domain theory used by 
FOCL (bottom). As in Figure 1, the dependent 
variables are averaged over 20 trials. 

Through a single mechanism, FOCL 
responds to each type of modified domain theory 
in a different manner. If these modifications pro
duce a rule in the domain theory with negative 
gain, FOCL will not operationalize this rule and 
instead builds a concept definition using the parts 
of the domain theory that have positive gain and 
fills in the remainder with its empirical method. 
In general, FOCL responds to the four types of 
modifications as follows: 

• Literal Deletion: If the clause with the 
literal deleted has positive gain, then FOCL 
can operationalize this clause and then use 
empirical methods to complete the clause by 
finding a literal that correctly classifies some 
remaining positive tuples and doesn't cover 
any negative tuples. 
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• Clause Deletion: FOCL operationalizes the clauses that are not deleted. If these clauses do not cover 
the positive tuples covered by the deleted clause, then a clause equivalent to the operationalization of 
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the deleted clause can be learned empiri
cally. 

• Lireral Addition: If the altered clause 
has positive gain, FOCL will operational
ize it and attempt to delete literals to 
increase the information gain of the 
clause. If the altered clause has negative 
information gain, empirical learning is 
used to learn literals equivalent to the 
operationalization of the clause. 

• Clause Addition: FOCL operationalizes 
clauses with maximum gain and it is 
unlikely that randomly added clauses will 
have more gain. Hence, this clause is like
ly to be ignored. FOCL serially finds op
erational specializations with the highest 
positive gain on all remaining tuples. 

The easiest problem for FOCL occurs 
when additional clauses are added to the 
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Figure 3. Accuracy of FOCI with and without a 
domain theory when there is 10% noise in training 
data and a 70.2% accurate domain theory. 

domain theory. This problem can be solved entirely by explanation-based means. A subset of the possible 
operationalizations of the goal concept are chosen in a greedy manner to cover the positive examples and 
exclude the negative examples. The more difficult problems for FOCL occur when the empirical 
component of FOCL is required to make up for domain theory errors. The empirical method is needed 
when no subset of the possible operationalizations of the domain theory will result in a correct hypothesis. 

4.2 Learning from noisy data with incomplete and incorrect domain theories 
In order to test the hypothesis that an incomplete and incorrect domain theory allows FOCL to tolerate 

classification noise better than no domain theory, we generated training sets of the illegal concept in 
which 10% of the data was assigned to a random class (rather than the correct class). In addition, we 
created one domain theory that was 70.2% accurate by using the mutation operators of the previous 
section. The design of this experiment follows a 2 algorithm (purely empirical vs. combined empirical and 
explanation) x 10 training set size (100, 200, ... , 1000) design. The dependent variable measured was the 
accuracy of the learning algorithm. Figure 3 shows the accuracy of FOCL with and without a domain 
theory as a function of the size of the training set. An analysis of variance indicates that there was a main 
effect for the algorithm variable F(l,180) = 33.4 (p < .0001). This shows that even when 10% noise is 
introduced into the training data, and the domain theory is 70% accurate, the accuracy of FOCL with a 
domain theory is significantly different than the accuracy of FOCL with no domain theory. 

4.3 Greedy deletion of literals 
To test the hypothesis that the greedy algorithm for deleting literals efficiently approximates the opti

mal algorithm, an experiment was run using FOCL with each of the two deletion algorithms. The design 
of this experiment follows a 2 algorithm (FOCL with greedy literal deletion vs. FOCL with optimal literal 
deletion) x 4 modification (1, 3, 5, and 7 modifications) design. The only modification to the domain 
theory in this experiment was randomly adding one or more literals to a clause (using the algorithm 
described under adding clauses in Section 4.1). The dependent variables measured on 20 trials were the 
accuracy of the two learning algorithms and the number of times the information gain was computed 
during deletion of literals. In addition, the outputs of the two simplification algorithms were compared and 
the number of times they produced identical results was recorded. 

An analysis of variance indicates that there is a significant difference in the amount of work performed 
by the two deletion algorithms. F(l,152) = 9.03 (p < .005). However, the algorithm did not have a 
significant effect on the accuracy of the hypothesis (F(l,152) < 1.0). During these runs, the more 
expensive optimal algorithm made 126 deletions during the operationalization process. Of these, the 
greedy algorithm performed the same deletion 124 times. 
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5 Related Work 
In this section, we compare FOCL to several systems that combine explanation-based and empirical 

learning. 

5.1 A-EBL 
The A-EBL system (Cohen, 1990) is designed to handle overly general domain theories. It operates 

by finding all proofs of all positive examples, and using a greedy set covering algorithm to find a set of 
operational definitions that cover all positive examples and no negative examples. A similar set covering 
behavior occurs in FOCL when it deals with overly general domain theories which arise from superfluous 
clauses (see Figure 2). However, FOCL does not need to find every proof of every positive example. 
Furthermore, due to its induction component, FOCL can learn from overly specific domain theories as well 
as overly general theories caused by missing preconditions in clauses (i.e., a missing literal), and overly 
general domain theories caused by additional clauses 

5.2 ML-SMART 
In many respects, FOCL is similar to ML-SMART (Bergadano & Giordana, 1988). ML-SMART also 

is designed to deal with both overly general and overly specific domain theories. The major differenceS 
between ML-SMART and FOCL lie in the search control strategies they employ. FOCL uses a 
hill-climbing approach while ML-SMART uses best-first search. The best-first search may allow ML
SMART to solve some problems that cannot be solved with hill climbing. However the cost of running a 
best-first algorithm is very high, since the branching factor is a function of the number of variabilizations 
of all predicates (Pazzani & Kibler, 1990) and the best-first search algorithm requires saving all previous 
states. 

ML-SMART has a number of statistical, domain independent, and domain dependent heuristics for 
selecting whether to extend a rule using inductive or deductive methods. In contrast, FOCL applies a 
uniform information-gain metric to all extensions. The heuristics in ML-SMART have not been subject to 
systematic experimentation of the type we performed in Section 4. As a consequence, it is unclear how 
well they deal with various types of incomplete and incorrect domain theories and whether they tolerate 
noise in the training data. 

5.3EITHER 
Like FOCL, the EITHER system (Ourston & Mooney, 1990) is one of the few systems designed to 

work with either overly general or overly specific domain theories. Furthermore, unlike FOCL, EITHER 
revises incorrect domain theories, rather than just learning in spite of incorrect domain theories. EITHER 
contains specific operators for generalizing a domain theory by removing literals from clauses and adding 
new clauses and operators for specializing a domain theory by adding literals to a clause. However, due to 
its induction component and the algorithm EITHER uses to assign blame for proving a negative example 
or failing to prove a positive example, EITHER is restricted to using propositional domain theories and 
training examples represented as attribute-value pairs. 

6 Conclusions 
In this paper we have described a concept learner, FOCL, that integrates empirical and explanation

based learning in a unifonn manner. We have focused on how the learning algorithms are integrated and 
ignored features of FOCL such as typing of variables, pruning search spaces, and learning numeric 
thresholds. As a result of the integration of learning methods and a uniform evaluation function applied to 
each method, FOCL advantageously uses both incorrect and incomplete theories and tolerates 
classification noise in the training data. 
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