
UC Irvine
ICS Technical Reports

Title
An information-based approach to integrating empirical and explanation-based learning

Permalink
https://escholarship.org/uc/item/6w37d73s

Authors
Pazzani, Michael J.
Brunk, Clifford A.
Silverstein, Glenn

Publication Date
1991-04-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w37d73s
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An information-based approach to integrating
,---·

empirical and explanation-based learning

Michael J. J'azzani/
pazzani@ics.uci.edu
Clifford A. Brunk
brunk@ics.uci.edu

Glenn Silverstein
silverst@ics.uci.edu

Technical Report 91-38

April 25, 1991

We would like to thank Ross Quinlan for his advice on FOIL, Dennis Kibler for helping with
a complexity analysis of FOIL, Kamal Ali for helping with the implementation, and Tim
Cain and Caroline Ehrlich for commenting on an earlier draft of this paper.

' " ;.

1 Introduction
Recent research has shown that learning, like many other artificial intelligence problems, can be

viewed as a knowledge-intensive activity. In this paper, we address two issues in knowledge-intensive
learning:

• Taking advantage of domain knowledge that may be incomplete and incorrect. Rajamoney and
DeJong (1987) call a <Iomamtheocy--''iricompTe~_'JI]ll.efe are--some posilive-exampfes of a concept

clhat cannQt _be explained by the domain theory, and "incorrecl"-iflher~aresomeffegative-examples
that are explained as positive-examples by the donfaiil-the0ry.

• Learning when there is noise in the training data. Here, we focus on learning when there is the
possibility that training data is incorrectly classified.

These problems are particularly imporlanfsmce iheii Solution will increase the class of problems that
can be addressed by knowledge-intensive learning algorithms. Many applications have training data that
are incorrectly classified Fmthermore, there are many problems in which the encoding of the domain
knowledge results in some form of incompleteness and incorrectness. Explanation-based learning (De.Tong
& Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986), an initial formulation of knowledge
intensive learning, did not address either of these issues.

More recently, a variety of systems have integrated explanation-based learning with some form of
empirical learning (e.g., Ali, 1989; Bergadano & Giordana, 1988; Danyluk, 1989; Fawcett, 1989; Fiann &
Dietterich, 1989; Hirsh, 1989; Lebowitz, 1986; Michalski & Ko, 1988; Mooney & Ourston, 1989; Ourston
& Mooney. 1990; Pazzani, 1990; Shavlik & Towell, 1989; Van Lehn, 1987; Wilkins & Tan, 1989).
However, none of these systems provide a systematic analysis of the effect of noise in the training data. 1

In addition, some of the systems can deal with domain theories that are incomplete, but not incorrect,
while others deal with domain theories that are incorrect, but not incomplete. Furthermore, ~9-

J!!!!_~tations of the empirical learning algorithm they use, m0st of tlJ.e systems require that the domain theory
~representoo~fu-:-proposiff011af1ogic, a language tfiaf iSless-eipressive- ilian the Hom-clause representa-
JionsJypically used to represent domain theQriesforEBL. -

We present an integrated learning system wh0se empirical component is based on FOIL (Quinlan,
1990), a recent advance in Hom-clause learning and whose explanation-based component has been
designed to work in a manner compatible with FOIL. In particular, the proof and operationalii:ation
process used by the explanation-based component is guided by the same information-based metric used to
select hypotheses in the empirical component.

In the remainder of this paper, we first review the FOIL algorithm. Next, we introduce FOCL (first:
Orc1.~~J:;of!!!?_L@4~er)., Finally, we report on a series of experiments in which we test FOCL by sup
plying it with incorrect and incomplete domain theories (formed by mutating a correct domain theory) and
by introducing noise into training examples. The experiments are centered around two problem don:iains.
The first problem is to determine if a chess board containing a white king, white rook, and black king is in
an illegal board configuration. 2 The second problem domain involves determining if a student is required
to pay back a student loan based on student enrollment and background information. In these experiments
we demonstrate that providing domain knowledge to FOCL can decrease the amount of search required
during learning and increase the accuracy of learned concepts even when the domain knowledge is
incorrect and incomplete and there is noise m the training data.

2FOIL
FOIL learns constant-free Hom-clause theories that serve as intensional definitions of a concept, P

0
•

The defmition of a concept consists of a set of clauses of the form:
Po(Vo,1, ... , Vo,.J :- P1(V1,1, ... , V1,111), ... ,Pm(Vm,1, ... , V,,.,,.,,J.

where each clause represents an alternative method of proving that an example is instance of P
0

• The
clauses consist of a conjunction of literals, which are each composed of a particular predicate (e.g., P;)
and an ordering of variables for the predicate (e.g., V;,1, ... , V;,,.1). The variables of the literal are classifie'd

1. One exception is desaibed in Shavlit and Towell (1989). Their system has the potential of handling incomplete and
incorrect domain theories and noisy data. However, the system requiies that domain theories be represented in propositional logic so
that they can be transformed in neural networla.

2. A board coofiguration is illegal if either king is in check or more than one piece occupies ~e same space.

1

as new and old as follows: a variable of a literal is called "new" if it does not appear in the head of the cur
rent clause or in any literal to the left of the current literal; otherwise, the variable is called "old."

An example in FOIL is represented as a tuple, which contains values for the variables of the
predicates to be learned. For example, when learning the definition of i 11ega1 (A, B, c, o, E, F) , A and B
are the position of the white king (i.e., the rank and file which are represented by a number between 1 and
8), C and Dare the white rook's position, and E and Fare the black king's position. Training examples for
this problem would consist of a set of 6-tuples whose elements correspond to the ranks and files of the
three pieces. Each tuple is identified as a positive or negative instance of i 11ega1 (A, B, c, o, E, F) .

(l,2,1,5,1,3) would be a positive instance of illegal (A, B, c, D, E, F), since the kings at 1,2 and 1,3 are
in check.

FOIL also takes as input a set of predicates {P 1, ... , P n} which are extensionally defined. For
example, adjacent(X,Y) 1s defined by the set {(1,2) (2,1) (2,3) (3,2) (3,4) (4,3) (4,5) (5,4)

(s , 6) (6 , s) (6 , 7) (7 , 6) (7 , s) (s , 7) } . These predicates can be used to form the literals that make up
the clauses for PP. For example, the predicates be tween (x , Y , z l (Y is greater than x and less than z),
equal (X, Y) (Y 1S equal to x) and adjacent (X, Y) (Y is either one less than or one greater than x) are
useful in learning illegal. In FOIL, these predicates must be defined extensionally.

In effect, ~~~~tors: sfa!t a 11e~ empty_cl~se, and add a literal to the encl of the cll1Te~t\
slause._fQII. performs the secona operator until no negative examples are-covereQ. by theclause,_and
"performs the first ope~~ding~~new _~l::t_µ§e§~_ !!fltil all positive e_xamp!~v:U:tLGPYyJe<!JD'~soffie_gf!_us~· :,
FOIL cOiiij)uiestlie~ffiformation gain of the legal vanabilizations3 of each extensionally defined predicate~~
in order to determine which literal to add to the end of a clause. A variabilization is a particular ordering
of new and old variables. The information gain of the addition of a new literal to the current clause is
defined. as f?llows: ++ *

Gam(L1teral) = T log2(p/p1+n1)-log2(po(p0+no)
where p0 and n0 are the current number of positive and negative tuples, p and n1 are the number of
positive and negative tuples that would remain after adding the literal, and T~ is the number of current
positive tuples that have at least one corresponding tuple4 in the positive tuples after adding the literal
(Quinlan, 1990).

Table 1 presents an overview of the FOIL algorithm. Pazz.ani and Kibler (1990) argue that the number
of times that the information gain of a literal is computed is a good metric for indicating the size of the
search space explored by FOIL.

An additional feature of FOIL is that it contaim a stopping criteria for deciding whether there is
sufficient data to support adding a literal to a clause (or creatinf a new clause). The stopping condition
compares the number of bits needed to explicitly encode the data to the number of bits required to encode
the new literal. 6 For brevity, this feature of FOIL was not included in Table 1, which should read ''un ti 1
Pos (or Neg) is almost empty, as determined by the stopping criteria."

3FOCL
FOCL extends FOIL in a variety of ways to take advantage of domain knowledge. Pazzani and Kibler

(1990) describe how adding knowledge about the extensional predicates (e.g., the types of variables, and
information about commutativity of predicates) can be used to reduce the search space. Here, we
concentrate on how adding knowledge in the fonn of a domain theory can increase the accuracy of
concepts learned and decrease the search space explored. We first describe how intensionally defined
predicates can be used by FOCL and how they are operationalized. Finally, we discuss how providing a
goal concept can limit the amount of search used by FOIL.

3. A legal variabi.liDtion must include at leut one old variable, and not cauae infinite rerunion (Quinlan, 1990).
4. Note thll the size cl the tuples may grow in FOIL when a litenl introduce• new variables. For e:umple, when

learning illec;ral(A,a,c,o,E,rl, if the fmt literal selected is between(A,G,Cl, then for the remainder of the clause the 6-tuples used
will be extended to 7-tuplea by adding those values of G for which between(A,G,Cl is true. Furthennore, not every 6-tuple may have a
corresponding 7-tuple in the extended set, and some 6-tuples may have more than extension in the new set of 7-tuples.

5. given by lopp+n)+lo~ 1;0
}} where p is the number of positive example• and n i1 the number of negative examples.

6. given by 1 + logz(r) +~(4p) where r is the number of pn:dicatea and ap is the number of possible variabilization of

the predicate.

2

Input
Fred:
Vars:
Pos:
Negs:
Preds:

Table 1. An Overview of FOIL

Name of the predicate to learn
An ordered tuple of variable names for the predicate
A set of tuples for the positive examples of the predicate
A set of tuples for the negative examples of the predicate
A set of extensionally defined predicates

Set Clauses to empty
Until Pos is empty {

Set NewClause to empty
Set Old to Vars
Until Negs is empty {

For each Predicate in Preds (
For each V in variabilizations(Pred,Old)

create a Literal from Predicate and V
compute_gain(Literal,Pos,Neg) }}

Conjoin the literal with the maximum gain to NewClause
Add any new variables in the literal to Old
Set Pos to the extensions of Pos satisfied by Literal
Set Neg to the extensions of Neg satisfied by Literal

Remove from Pos all tuples that satisfy the NewClause
Reset Negs to the original negative tuples
Add NewClause to Clauses }

3.1 Intensionally defined predicates
In order to compute the information gain of a literal, it is necessary to count the number of tuples that

would result from adding the literal to the current clause. If the literal is formed from a predicate that is
defined extensionally (as in FOIL), this can be accomplished by a relational join operator. For example, if
the current set of positive tuples consists of the (x , Y) pairs: { (2 , 1) (3 , 1) (5 , 2) } and the predicate
be tween is defined extensionally as: { (1 , 2 , 3) (1 , 2 , 4) (1 , 2 , 5) (1 , 3 , 4) (1 , 3 , 5) (2 , 3 , 4) (2 , 3 , 5)
(2, 4, 5) (3, 4, 5) } then the literal be tween (Y, z, x) would extend the set of positive tuples to include
all values of z such that bet we en (Y, z, x) is true. This produces { (3 , 1, 2) (5 , 2 , 3) c 5 , 2 , 4) } as the
new set of positive tuples. The first tuple, (3 , 1 , 2) is added since 2 is the only value for which
between (1, z, 3) is true. The other two tuples are possible values for between (2, z, 5). There is no
value of z for which between (1, z, 2) is true, so there are no extensions of this tuple that are included in
the new set of tuples.

In FOCL, predicates may also be defined intensionally (as in Prolog rules). The intensionally defined
. predicates are def!fied by rufos that indicate.ho\V.the P~edicate may be inferre<l.from extens1onaIIfderuled
~c@~ (0r-oflier-1iltensionfilWaeffiied preaicatesr -For-eiampie,-J;-~1: ;e en-could re aefiriea ill _terms of

c-1;; s:th~n as follows:
between(A,B,C) :-less_than(A,B), less_than(B,C).

where less_than is defined extensionally as: {(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4)
(3, 5) (4, 5)}. To compute the information gain of intensionally defined predicates such as between,
FOCL makes use of a backward chaining proof procedure similar to the prolog predicate set of. For ex
ample, the Prolog goal setof ((5, 2, z), between (2, 5, Z) , T) will bind T to those extensions of (5, 2)
for which be tween (2, z, s > is true. FOCL computes the information gain of the literals formed from an
intensionally defined predicate by computing the size of the sets of positive and negative examples that
arise from adding the literal to the current clause using a mechanism similar to set of •7 As with the
extensionally defined predicates, FOCL computes the information gain of every variabilization of the
intensionally defined predicates in an attempt to find a literal (i.e., a predicate and associated
variabilization) which maximizes information gain. Furthermore, it is possible to directly compare the
informational gain of literals formed from intentionally defined predicates to the literals formed from ex
tensionally defined predicates to find the literal with the maximum overall information gain.

7. FOCL ia implemented in Common Lisp and makes uae of a back.ward dtaining rule inte.rpreter whose semantics are
identical to that of pure Prolog. Thia allows us to take advantage of Prolog's expressiveness when appropriate, while having control
over the unification and indexing used by the interpreter.

3

Table 2. The operationalization process in FOCL.

operationalize(Literal, Pos, Neg):
Initialize Conjuncts to the empty set
For each Clause in the definition of Literal

compute_gain(Clause, Pos, Neg)
Let Clause be the clause with the maximum gain
For each literal L in Clause

if L is operational
then Set Pos to the extensions of Pos satisfied by L

Set Neg to the extensions of Neg satisfied by L
Add L to Conjuncts

else add operationalize{L, Pos, Neg) to Conjuncts
Return Conjuncts

3.2 Operationalization
If the literal which maximizes information gain is formed from an intensionally defined predicate, it is

possible for FOCL to add this literal to a clause. However, typically we run FOCL in a mode in which it
operationalizes (Keller, 1987) such a literal, by expressing it in terms of extensionally defined predicates.
Note that in FOCL, we i;onsicl~rJ.11.eJ~rms. '_'o~rational" ancL''~xtensiQnally:_defmed'' tQ _b<!_ equivalent.,
Similarly, ~~quate. '_'no!l~:Q~tat!.Qm!l:JYith-'.~intensionany:delined~"

Unlike EBL.iiie operation~!!OJ!JJr~-~.S in FO~t!~ a_seLoLPQ§_itiv(! ~J! 11egwve e:xamples,
rather th@ a sm~I~ poSffiVe-exainple. A non-operational literal is operationalized by producing an
Spectalization' that iS -a conjunctloii-ofoperational literals. When there are several ways of operationalizing
a literal (i.e., there are multiple, disjunctive clauses), the information gain metric is used to determine
which clause should be used. The same backward chaining proof process that computes the information
gain of literals formed from an intensionally defined predicates is used to compute the information gain of
a clause (since a clause is simply a conjunction of literals). Table 2 summarizes the operationalization
process. The goal is to find the conjunction of operational literals with the maximum information gain.See
Section 3.5 for an example and Section 4 for experimental results.

Providing domain knowledge in the form of intensionally defined predicates supplies an important
form of guidance to the learning process. In particular, it is possible that a conjunction of extensionally
defmed literals will have positive information gain, while the individual literals do not. Such a conjunction
cannot be found by hill-climbing search. For example, on 10 trials of 1000 training examples, FOCL was
unable to obtain 100% accuracy when learning i 11 egal in terms of the extensionally defmed predicates
less_ than, adjacent and equal. However, when the intesionally defined predicate between was
added, FOCL learned a 100% accurate definition of illegal in terms of the extensionally defined
predicates in all 10 trials.

Unfortunately, there is also a disadvantage of adding intensionally defined predicates. In particular,
each additional predicate added increases the amount of search performed during learning. If the arity of
all intensionally defmed predicates is no greater than the maximum arity of the extensionally defined
predicates, then search is increased by at most a linear factor. However, if the arity of any intensionally
defined predicate is greater than that of all extensionally defined predicates, search is increased by an
exponential amount. This occurs because the size of the search space explored is dominated by the
predicate with the largest number of arguments (Pammi & Kibler, 1990). In any event, adding
intensionally defined predicates in this manner has the undesirable consequence that as the number of
predicates the system knows (or learns) increases, the amount of work required to learn a new predicate
increases. In the next section, we address this problem.

3.3 Goal concepts
The problem of intensionally defmed predicates increasing the search space occurs because in addition

to checking the variabilizations of the extensionally defmed predicates, the variabilizations of the inten
sionally defined predicates must be checked as well. For example, consider the definition of same_loc
from the illegal domain theory in Table 3. Since there are a minimum of 6 old variables when learning
illegal, and same_loc has 4 arguments, there are 29,168 distinct variabilizations of same_loc.
However, only 3 of these variabilizations make sense in this domain. In particular, if
(R 1 , F 1 , R2 , F 2 , R3 , F 3) represent the rank and file of the white king, white rook and black king, then

4

same_loc(Rl,Fl,R2,F2) detennines if the white king and white rook ~cupy the same square.
Similarly, same_loc (Rl, Fl, R3, F3) determines if the kings are on the same square and
same_loc (R2, F2, R3, F3) determines if the white rook and black king are on the same square. It is
possible that same_loc (R3, R2, Rl, Nl) will have some infohnation gain when tested. However, this
variabilization does not have a very meaningful interpretation in this domain and testing it is not likely to
yield maximum infonnation gain. Even if this variabilization has the maximum infonnation gain, it is
unlikely that the domain knowledge was intended to have this interpretation. '

Goals concepts can be used to concentrate FOCL' s search on the relevant variabilizations of the
intensionally defined predicates. Mitchell, Keller, and Kedar-Cabelli (1986) call a non-operational
definition of the concept to be learned a goal concept. Notice that the domain theory contains a non
operational (i.e., intensional) definition of the predicate i 11ega1: The clauses for i 11ega1 indicate
which variabilization of which predicates should be tested to create an operational (i.e., extensional)
definition of i 11ega1. When a goal concept is provided to FOCL, it computes the infonnation gain of
the goal concept If the goal concept has positive infonnation gain, FOCL fonns a conjunction of literals
to add to the current clause by operationalizing the goal concept Otherwise, it computes the infonnation
gain of all variabilizations of all predicates. 8

A goal concept may be operationalized in more than one way to produce separate clauses. When the
goal concept has been operationalized and the clause has been completed (i.e., it excludes all negative ex
amples), the set of positive tuples accounted for by a clause are removed If the goal concept still has
infonnation gain, it is operationalized again in the next clause. A different operationalization must occur
since the positive tuples covered by the prior operationalization are removed, and that path through the
proof tree will not cover any of the remaining positive tuples. If any negative tuples are also accounted for
by an operationalization, additional literals are added to the clause by induction until no negative examples
are covered

There is no fixed order in which empirical and explanation-based learning are perfonned Instead, a
unifonn application of the infonnation gain metric determines whether a conjunction of extensional literals
is added to the current clause by operationalizing the goal concept, a single extensional literal is added by
checking all variabilizations of the extensionally defined predicates, or a conjunction of literals is added by
operationalizing a variabilization of one of the intensionally defined predicates. It can occur that the first
literal of a clause must be learned empirically (i.e., by checking all variabilizations of the extensionally de:
fined predicates) before the goal concept may have positive information gain. The next addition to the
clause would be the conjunction of literals fonned by operationalizing the goal concept The final literals
might be added empirically by operationalizing an intensionally defined predicate.

Table 3. ill• gal domain theory.
illegal (Rl,Fl,R2,F2,R3,F3) :- same_loc(Rl,Fl,R2,F2).
illegal(Rl,Fl,R2,F2,R3,F3) same_loc(Rl,Fl,R3,F3).
illegal(Rl,Fl,R2,F2,R3,F3) :- same_loc(R2,F2,R3,F3).
illegal(Rl,Fl,R2,F2,R3,F3) :- king~attack_king(Rl,Fl,R3,F3).

illegal(Rl,Fl,R2,F2,R3,F3) :- rook_attack_king(Rl,Fl,R2,F2,R3,F3).
same_loc (Rl, Fl, R2, F2) : - equal (Rl, R2), equal (Fl ,F2).
king_attack_king(Rl,Fl,R2,F2) :- adjacent(Rl,R2), adjacent(Fl,F2)
king_attack_king(Rl,Fl,R2,F2) :- adjacent(R1,R2), equal(Fl,F2)
king_attack_king(Rl,Fl,R2,F2) :- equal(Rl,R2), adjacent(Fl,F2)
rook_attack_king(Rl,Fl,R2,F2,R3,F3) :- equal(R2,R3), king_not_between(Rl,Fl,R2,F2,F3).
rook_attack_king(Rl,F1,R2,F2,F3,R3) :- equal(F2,F3),king_not_between(Fl,Rl,F2,R2,R3).
king_not_between(Xl,Yl,X2,Y2,Y3) :- not(equal(Xl,X2)).
king_not_between(Xl,F1,X2,Y2,Y3) :- equal(Xl,X2),not(between(Y2,Yl,Y3)).
between(X,Y,Z) :- less_than(X,Y) ,less_than(Y,Z).

8. Actually, FOCL operates in two modes. The mode describe here is tMory mo<Je. In information nsode, FOCL
compares the infonnation gain c:J. the goal concept to the maximum information gain of literals formed from extensionally defined
predicates, and adds the literal (or operationalized literals) with maximum information gain. In our experience, the mode does not
have a significant effect on the accuracy of the hypotheses produced by FOCL unless the domain theory is extremely inacrurate (i.e.,
less than 60% accurate), in which information mode resulta in more accurate hypotheses. When the domain theory is more accurate,
theory-mode reaults in less search than information-mode. When the domain theory is less accunite, theory-mode results in more
search because the operatiooali2Jed concepts tend to be overly specialized and more clauses are needed to cover the training example1.
All experiments reported in this paper will be done in theory-mode.

5

3.4 Selective operationalization
A slight modification to the operationalization procedure described so far increases FOCL 's ability to

tolerate overly specific domain theories caused by clauses having one or more extra literals. In particular,
the information gain of the conjunction of literals produced by operationalization may be increased by the
deletion of one of the literals of the conjunction. When deleting a literal increases the information gain and
the ratio of negative tuples to total tuples is decreased by the deletion, then the literal is deleted from the
operationalization. This process is repeated until no deletion results in additional information gain.

Note that this scheme is a greedy means of finding the subset of an operationalization with the
maximum information gain. An optimal algorithm that is guaranteed to find the subset with the maximum
information gain would operate by finding the information gain of all subsets of the operationalization.
However, this expensive scheme is not practical in large applications. In Section 4.3, we provide
experimental evidence on the ability of the greedy technique to approximate the optimal solution.

3.5 Learning in spite of incorrect and incomplete domain theories: An example
Table 4 displays a domain theory for a problem involving repayment of student loans. Four errors

were deliberately introduced into a correct domain theory (deleting a clause, deleting a literal from a
clause, adding a new clause, and adding a literal to a clause). In addition, 50 training examples (25
positive, 25 negative) were used in this illustration. One of the positive examples is represented by the
following operational predicates: longes t_absence_from_school (mary, 3), enrol led (mary,
ucla, SJ, and(disabled,mary) and one of the negative examples is represented by
enrolled(bob,uci,10), male(bob) and longest_absence_from_school(bob,12). Note that
mary is erroneously classified by the domain theory as a negative example (because the rule for disability
deferment has been modified by adding an extra condition) and bob is incorrectly classified as a positive
example (because an extra clause has been added that states that students enrolled at UCI are eligible for a
financial deferment). '

To solve this problem, FOCL tries to operationalize the concept no_payment_due. There are two
clauses that can be used to prove that no payment is due. FOCL computes the information gain of both
and selects the alternative with the highest information gain. The predicate eligible_for_deferment
is true of 16 positive and no negative examples (information gain = 16.0) and the predicate
continuously _enrolled is true of 15 positive and 14 negative examples (information gain = 0.7).
Hence, the predicate eligible_for_deferment is selected to be operationalized. There are five
alternative ways of proving eligible_for_deferment. military_deferment has the highest infor
mation gain. Since there is only one way to operationalize military_deferment and its definition is
already operational, the con junction of literals en li s t (A, B) & a rm e d_ forces (B) is used to start the
first clause for no_payment_due (AJ. No negative examples are covered by this operationalization, so the

Table 4. Domain theory for repayment of student loans.
Clauses and literals that were deleted to deliberately introduce errors are stricken. Oauses and literals
that were added are shown in bold.

no_payment_due(S) :- continuously_enrolled(S).
no_payment_due(S) :- eligible_for_deferment(S).
cont inuously_enrol led(S) : - neo eZ_left_scltool (:!!) , enrol led_in_more_than_f i ve_uni ts (S) .
eligible_for_deferment(S) :- military_deferment(S)
eligible_for_deferment(S) :- peace_corps_deferment(S).
eligible_for_deferment(S) :- financial_deferment(S).
eligible_for_deferment(S) :- student_deferment(S).
eligible_for_deferment(S) 1- disability_deferment(S).
military_deferment(S) :- enlist(S,A) ,armed_forces(A).
peace_corps_deferment(S) :- enlist(S,A),peace_corps(A).
financial_deferment(S) :- filed_for_bankruptcy(S).
financial_defezment (!) . unemployed(:!).
financial_deferaent(8) 1- enrolled(S,C,U),uci(C).
student_deferment(S) :-enrolled_in_more_than_eleven_units(S).
disability_deferment(S) :- aale(S),disabled(S).
never_left_school(S) :- longest_absence_from_school(s,a) ,6>A.
enrolled_in_more_than_N_units(S,N) :- enrolled(S,SCH,U),school(SCH),U>N.

6

process of building the first clause terminates. The second, third and fourth clauses of no_payment_due
are formed by a similar manner, operationalizing financial_deferment, peace_corps_deferment,
and student deferment.

FOCL starts the fifth clause in a similar fashion. The predicate eligible_for_deferment is true of
two positive examples and no negative examples, and has the maximum information gain. The clause
disability_deferment is true of the two positive examples and no negative examples, and is
operationalized to produce the conjunction ma 1 e (A) & dis ab 1 e d (A) . FOCL then tries to improve the
information gain of this conjunction by deleting literals from it as described in the previous section. When
the literal ma 1 e (A) is deleted, the information gain is increased Since dis ab 1 e d (A) covers four positive
examples and no negative examples. Therefore, the fifth clause is no_payment_due (Al
disabled(A).

For the sixth clause, there are no remammg positive examples explained by
eligible_for_deferment. However, continuously_enrolled explains four of the six remaining
positive examples and fourteen of the twenty-five negative examples, so it is operationalized and the con
junction enrolled(A, B, CJ, school (B), C>S is added as the first part of the sixth clause. Since the
conjunction of literals formed by operationalizing continuously_enrolled covers some negative exam
ples, FOCL tries to induce other literals that exclude these negative examples, and satisfies at least some
of the positive examples. The non-operational predicate, never_left_school, has the highest
information gain of the available predicates. Because this predicate is not operational, it too is operational
ized and the resulting literals are conjoined with the operationalization of continuously_enrolled to
produce the conjunction: enrolled (A, B, C), school (B), C>S, longes t_absence_from_school (A,

D) , 6 >D which excludes the remaining negative examples. Note that the first part of this clause was
formed by EBL (operationalizing a goal concept with positive information gain) and the second part was
formed inductively (by searching all variabilizations of all intensionally and all extensionally defined
predicates).

At this point, the goal concept no longer has positive infonnation gain. This occurs because the set of
positive examples has been .reduced by eliminating those positive examples that are satisfied by each new
clause created. Since the goal concept can no longer correctly classify the remaining positive examples,
FOCL must rely on inductive techniques to complete the definition. FOCL induces that unemployed
persons are not required to make loan payments. At this point, all positive examples are covered by some
clause, and no negative examples are covered by any clause, so the learning process terminates.

In this example, FOCL first operationalized as much of the domain theory as possible. Note that the
first few clauses did not require any induction. Later clauses operationalized part of the domain theory, but
used induction to add extra literals. This is a sign that the domain theory is close to being correct. Finally,
FOCL used only inductive techniques to learn the fmal clause. This behavior is common and is a
consequence of using infonnation gain as a metric to guide a greedy search for a complete set of clauses
that covers all positive and no negative examples.

4 Experimental Evaluation of FOCL
In this section, we report on three experiments with FOCL. These experiments are designed to test the

following hypotheses:
• FOCL learning with domain theories that are incomplete and incorrect performs less work and

produces more accurate concepts than FOCL learning with no domain theory.
• An incomplete and incorrect domain theory allows FOCL to tolerate classification noise better than no

domain theory.
• The greedy algorithm for deleting literals from clauses is an efficient approximation of the optimal

algorithm.

7

4.1 Learning with incomplete and incorrect
domain theories

The following experiments are intended to
determine whether FOCL' s combination of
explanation-based and empirical learning
methods performs less work and produces more
accurate concepts when learning is performed
using an incomplete and incorrect domain theory
than FOCL with no domain theory. Errors are
introduced into the domain theory for il 1ega1
by using the following four operators:

• Randomly deleting a literal from a clause of
a rule. This modification will cause the rule
to make errors on negative training
examples.

• Randomly deleting a clause from a rule.
This modification will cause the rule to make
errors on positive training examples.
Randomly adding a literal to a clause of a
rule. The added literal is constructed
randomly from the set of operational
predicates and from the existing variables of
the current clause. This modification will
cause the rule to make errors on positive
training examples.

• Randomly adding a clause to a rule. The
added clause is constructed with random
literals. All clauses are at least 1 literal long
and there is a 0.5 probability that clauses will
have at least 2 literals, a .25 probability of at
least 3, etc. This modification will cause the
rule to make errors on negative training
examples.

The design of this experiment follows a 2
algorithm (purely empirical vs. combined
empirical and explanation) x 12 modification (0,
1, 2, 4, 6, 8, 10, 12, 14, 16, 20 and 24
modifications to the domain theory) design. The
dependent variables measured were the accuracy
of the learned concept and the number of times
the infonnation gain of a literal is computed. We
ran 20 trials of FOCL with and without the
domain theory. On each trial, 40 positive and 40
negative examples of illegal were randomly
generated. Next, we randomly introduced a

>u

1.00

0.95

~ 0.90
::J
u
u
<(0.85

-+- Without DT
-a-- With DT

0.80 ------------

"C 5000
Q.)

'cu
"C

4000

en 3000
c
0
u 2000
en
C'O 1000
'-
Q.)

"'"'
......J

>u
C'O
'
~
u
u
<(

I
Q

1.0

0.9

0.8

0.7

0.6

0

0

0

4 8 12 16 20 24
Number of Mod1f1cat1ons

-+- Without OT
-C- With OT

4 8 12 16 20 24
Number of Mod1f1cat1ons

4 8 12 16 20 24
Number of Mod1f1cat1ons

Figure 1. Accuracy of FOCL with and without a
domain, number of literals tested during learning,
and accuracy of domain as a function of the number
of modifications randomly made to the domain
theory.

number of errors into the domain theory. Each operator had a .25 probability of being selected. We then
ran FOCL with the modified domain theory and FOCL with no domain theory, and recorded the accuracy
of the concept learned by each version (calculated by testing on 500 positive and 500 negative examples)
and the number of times the infonnation gain of a literal was computed. Figure 1 plots the accuracy of
FOCL (top), the amount of work perfonned during learning (middle) and the accuracy of the modified
domain theory used by FOCL (bottom--calculated by using the domain theory to classify 500 positive and
500 negative examples).

The figure shows that FOCL with an incomplete and incorrect domain theory is at least as accurate as
FOCL with no domain theory (even when the domain theory is less than 70% accurate). Fmthermore,

8

FOCL does less work when using an incomplete
and incorrect theory than when using no domain
theory. Of course, it is more expensive to
compute the infonnation gain of an intensionally
defined predicate (when using a domain theory)
than an extensionally defined predicate (when
using only empirical methods). Nonetheless,
there is also a savings in CPU time even when
using an incorrect domain theory. For example,
with an incomplete and incorrect domain theory
fonned by applying eight mutations to a correct
theory, FOCL takes 21.1 CPU seconds while
FOCL with no domain theory takes 30.4 CPU
seconds (on a Sun 4). An analysis of variance
indicates that, for accuracy, there was a main
effect for the algorithm variable F(l,456) = 83.1
(p < .0001). This shows that the accuracy of
FOCL with a domain theory is significantly
different than the accuracy of FOCL with no
domain theory. In addition, there was an
interaction between the algorithm and the number
of modifications F(l,11) = 6.47 (p <.0001). For
the dependent variable representing the number of
times the infonnation gain of a literal is
computed, there was also a main effect for the
algorithm F(l,456) = 792.0 (p <.0001) and an
interaction between the algorithm and the number
of modifications F(l,11) = 14.6 (p <.0001).

In order to gain insight into how FOCL deals
with each type of error in the domain theory' we
also ran each operator separately. Figure 2 plots
the accuracy of FOCL (top), the amount of work
perfonned during learning (middle), and the
accuracy of the modified domain theory used by
FOCL (bottom). As in Figure 1, the dependent
variables are averaged over 20 trials.

Through a single mechanism, FOCL
responds to each type of modified domain theory
in a different manner. If these modifications pro
duce a rule in the domain theory with negative
gain, FOCL will not operationalize this rule and
instead builds a concept definition using the parts
of the domain theory that have positive gain and
fills in the remainder with its empirical method.
In general, FOCL responds to the four types of
modifications as follows:

• Literal Deletion: If the clause with the
literal deleted has positive gain, then FOCL
can operationalize this clause and then use
empirical methods to complete the clause by
finding a literal that correctly classifies some
remaining positive tuples and doesn't cover
any negative tuples.

1.00

>-
~ 0.94
'
::J
u
u
<

0.92

0.90

0 2 4 6

5000 .._~N~um ____ b_e~r_o_r_M~o~d-1_r_1c.a_t_1o_n.s __ _....
"O

~ 4000
Q)

"O

iii 3000
c
0

u 2000
(/)

~ 1000
Q),

>u
('O

'
:::J
u
u
<
I-
Cl

0.9

0.8

0.7

0.6

0 2 4

0 2 4

Number of Mod1f1cat1ons
+ Without D1
-o- Del. Literal~
+ Del. Clauses
+ Add Clauses
+ Add Literal~

Figure 2. Accuracy of FOCI with and without a
domain theory for each type of perturbation to the
domain theory, number of literals tested during
learning, and accuracy of domain theory as a
function of the number of modifications randomly
made to the domain theory.

6

6

• Clause Deletion: FOCL operationalizes the clauses that are not deleted. If these clauses do not cover
the positive tuples covered by the deleted clause, then a clause equivalent to the operationalization of

9

the deleted clause can be learned empiri
cally.

• Lireral Addition: If the altered clause
has positive gain, FOCL will operational
ize it and attempt to delete literals to
increase the information gain of the
clause. If the altered clause has negative
information gain, empirical learning is
used to learn literals equivalent to the
operationalization of the clause.

• Clause Addition: FOCL operationalizes
clauses with maximum gain and it is
unlikely that randomly added clauses will
have more gain. Hence, this clause is like
ly to be ignored. FOCL serially finds op
erational specializations with the highest
positive gain on all remaining tuples.

The easiest problem for FOCL occurs
when additional clauses are added to the

0.88

0.86

>- 0.84
u
E o.82
::J
u
~ 0.80

0.78

0.76

-+- With Out DT
-o- With DT

0. 7 4,... __ ,.......,..._ -...---...--
0 200 400 600 800 1 000

Number of examp 1 es

Figure 3. Accuracy of FOCI with and without a
domain theory when there is 10% noise in training
data and a 70.2% accurate domain theory.

domain theory. This problem can be solved entirely by explanation-based means. A subset of the possible
operationalizations of the goal concept are chosen in a greedy manner to cover the positive examples and
exclude the negative examples. The more difficult problems for FOCL occur when the empirical
component of FOCL is required to make up for domain theory errors. The empirical method is needed
when no subset of the possible operationalizations of the domain theory will result in a correct hypothesis.

4.2 Learning from noisy data with incomplete and incorrect domain theories
In order to test the hypothesis that an incomplete and incorrect domain theory allows FOCL to tolerate

classification noise better than no domain theory, we generated training sets of the illegal concept in
which 10% of the data was assigned to a random class (rather than the correct class). In addition, we
created one domain theory that was 70.2% accurate by using the mutation operators of the previous
section. The design of this experiment follows a 2 algorithm (purely empirical vs. combined empirical and
explanation) x 10 training set size (100, 200, ... , 1000) design. The dependent variable measured was the
accuracy of the learning algorithm. Figure 3 shows the accuracy of FOCL with and without a domain
theory as a function of the size of the training set. An analysis of variance indicates that there was a main
effect for the algorithm variable F(l,180) = 33.4 (p < .0001). This shows that even when 10% noise is
introduced into the training data, and the domain theory is 70% accurate, the accuracy of FOCL with a
domain theory is significantly different than the accuracy of FOCL with no domain theory.

4.3 Greedy deletion of literals
To test the hypothesis that the greedy algorithm for deleting literals efficiently approximates the opti

mal algorithm, an experiment was run using FOCL with each of the two deletion algorithms. The design
of this experiment follows a 2 algorithm (FOCL with greedy literal deletion vs. FOCL with optimal literal
deletion) x 4 modification (1, 3, 5, and 7 modifications) design. The only modification to the domain
theory in this experiment was randomly adding one or more literals to a clause (using the algorithm
described under adding clauses in Section 4.1). The dependent variables measured on 20 trials were the
accuracy of the two learning algorithms and the number of times the information gain was computed
during deletion of literals. In addition, the outputs of the two simplification algorithms were compared and
the number of times they produced identical results was recorded.

An analysis of variance indicates that there is a significant difference in the amount of work performed
by the two deletion algorithms. F(l,152) = 9.03 (p < .005). However, the algorithm did not have a
significant effect on the accuracy of the hypothesis (F(l,152) < 1.0). During these runs, the more
expensive optimal algorithm made 126 deletions during the operationalization process. Of these, the
greedy algorithm performed the same deletion 124 times.

10

5 Related Work
In this section, we compare FOCL to several systems that combine explanation-based and empirical

learning.

5.1 A-EBL
The A-EBL system (Cohen, 1990) is designed to handle overly general domain theories. It operates

by finding all proofs of all positive examples, and using a greedy set covering algorithm to find a set of
operational definitions that cover all positive examples and no negative examples. A similar set covering
behavior occurs in FOCL when it deals with overly general domain theories which arise from superfluous
clauses (see Figure 2). However, FOCL does not need to find every proof of every positive example.
Furthermore, due to its induction component, FOCL can learn from overly specific domain theories as well
as overly general theories caused by missing preconditions in clauses (i.e., a missing literal), and overly
general domain theories caused by additional clauses

5.2 ML-SMART
In many respects, FOCL is similar to ML-SMART (Bergadano & Giordana, 1988). ML-SMART also

is designed to deal with both overly general and overly specific domain theories. The major differenceS
between ML-SMART and FOCL lie in the search control strategies they employ. FOCL uses a
hill-climbing approach while ML-SMART uses best-first search. The best-first search may allow ML
SMART to solve some problems that cannot be solved with hill climbing. However the cost of running a
best-first algorithm is very high, since the branching factor is a function of the number of variabilizations
of all predicates (Pazzani & Kibler, 1990) and the best-first search algorithm requires saving all previous
states.

ML-SMART has a number of statistical, domain independent, and domain dependent heuristics for
selecting whether to extend a rule using inductive or deductive methods. In contrast, FOCL applies a
uniform information-gain metric to all extensions. The heuristics in ML-SMART have not been subject to
systematic experimentation of the type we performed in Section 4. As a consequence, it is unclear how
well they deal with various types of incomplete and incorrect domain theories and whether they tolerate
noise in the training data.

5.3EITHER
Like FOCL, the EITHER system (Ourston & Mooney, 1990) is one of the few systems designed to

work with either overly general or overly specific domain theories. Furthermore, unlike FOCL, EITHER
revises incorrect domain theories, rather than just learning in spite of incorrect domain theories. EITHER
contains specific operators for generalizing a domain theory by removing literals from clauses and adding
new clauses and operators for specializing a domain theory by adding literals to a clause. However, due to
its induction component and the algorithm EITHER uses to assign blame for proving a negative example
or failing to prove a positive example, EITHER is restricted to using propositional domain theories and
training examples represented as attribute-value pairs.

6 Conclusions
In this paper we have described a concept learner, FOCL, that integrates empirical and explanation

based learning in a unifonn manner. We have focused on how the learning algorithms are integrated and
ignored features of FOCL such as typing of variables, pruning search spaces, and learning numeric
thresholds. As a result of the integration of learning methods and a uniform evaluation function applied to
each method, FOCL advantageously uses both incorrect and incomplete theories and tolerates
classification noise in the training data.

Acknowledgements
We would like to thank Ross Quinlan for his advise on FOIL, Dennis Kibler for helping with a

complexity analysis of FOIL, Kamal Ali for helping with the implementation, and Tim Cain and Caroline
Ehrlich for commenting on an earlier draft of this paper.

11

References

Ali, K. (1989). Augmenting domain theory for explanation-based generalization. Proceedings of the
Sixth International Workshop on Machine Learning (pp. 40-42). Ithaca, NY: Morgan Kaufmann.

Bergadano, F., & Giordana, A. (1988). A knowledge intensive approach to concept induction.
Proceedings of the Fifth International Conference on Machine Learning (pp. 305-317). Ann Arbor, MI:
Morgan Kaufmann.

Cohen, W. (1990). Abductive explanation-based learning: A solution to the multiple
explanation-problem (W..-TR-29). New Brunswick, NJ: Rutgers University.

Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for induction with
contextual information. Proceedings of the Sixth International Workshop on Machine Learning (pp.
34-36). Ithaca, NY: Morgan Kaufmann.

DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternate view. Machine
Learning, 1, 145-176.

Fawcett, T. (1989). Learning from plausible explanations. Proceedings of the Sixth International
Workshop on Machine Learning (pp. 37-39). Ithaca, NY: Morgan Kaufmann.

Fiann, N., & Dietterich, T. (1989). A study of explanation-based methods for inductive learning.
Machine Learning, 4, 187-226.

Hirsh, H. (1989). Combining empirical and analytical learning with version spaces. Proceedings of
the Sixth International Workshop on Machine Learning (pp. 29-33). Ithaca, NY: Morgan Kaufmann.

Keller, R. (1987). Defining operationality for explanation-based learning. Proceedings of the Sixth
National Conference on Artificial Intelligence (pp. 482-487). Seattle, WA: Morgan Kaufmann.

Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive Science, 10, 219-240.
Michalski, R., & Ko, H. (1988). On the nature of explanation or why did the wine bottle shatter?

Proceedings of the AAA/ Symposium on Explanation-based Learning (pp. 12-16). Stanford, CA: Morgan
Kaufmann.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based learning: A unifying view.
Machine Learning, 1, 47-80.

Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated learning of concepts
with both explainable and conventional aspects. Proceedings of the Sixth International Workshop on
Machine Learning (pp. 5-7). Ithaca, NY: Morgan Kaufmann.

Pazzani, M. J. (1990). Creating a memory of causal relationships: An integration of empirical
and explanation-based learning methods. Hillsdale, NJ: Lawrence Erlbaum.

Pazzani, M., & Kibler, D. (1990). The utility of knowledge in inductive learning (Technical Report
No. 90-18). Irvine: University of California, Department of Information & Computer Science. .

Ourston, D., & Mooney, R. (1990). Chaining the rules: A comprehensive approach to theory
refinement. Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 815-820).
Boston, MA: Morgan Kaufmann.

Quinlan, R. (1990). Leaming logical definitions from relations. Machine Learning, 5, 239-266.
Rajamoney, S., & DeJong, G. (1987). The classification, detection and handling of imperfect theory

problems. Proceedings of the Tenth International Joint Conference on Artificial Intelligence (pp.
205-207). Milan: Italy: Morgan Kaufmann.

Shavlik, J., & Towell, G. (1989). Combining explanation-based learning and artificial neural
networks. Proceedings of the Sixth International Workshop on Machine Learning (pp. 90-93). Ithaca,
NY: Morgan Kaufmann.

VanLehn, K. (1987). Leaming one subprocedure per lesson. Artificial Intelligence, 31, 1-40.
Wilkins, D., & Tan, K. (1989). Knowledge base refinement as improving an incorrect, inconsistent

and incomplete domain theory. Proceedings of the Sixth International Workshop on Machine Learning
(pp. 332-337). Ithaca, NY: Morgan Kaufmann.

12

