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ABSTRACT OF THE DISSERTATION
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Large-scale Knowledge Graphs (KGs), such as Wikipedia and many enterprises or other

domain-specific KGs, contain large numbers of real-world facts and are ubiquitous and foun-

dational to many downstream knowledge-driven AI applications. Many existing techniques

have applied state-of-the-art machine learning (ML) techniques in knowledge graph modeling

to improve the performance in these applications with the KG backend, but the semantic

structures especially the hierarchical ontological information inside the KGs are sparsely

investigated and therefore relatively less leveraged into KG learning.

In this dissertation, we demonstrate a series of research results that systematically ex-

plores how such hierarchical ontological components in knowledge graphs are incorporated

into KG representation learning. We present multiple practical machine learning meth-

ods, such as hierarchical graph modeling, graph neural networks, self-supervised learning

and language models, that can effectively and efficiently capture ontological information,

given different knowledge graph formulations. As a result, our proposed approaches address

various real-world challenges in multiple domains, from knowledge graph itself, to diverse

disciplines including natural language processing, recommender system, even bioinformatics

and societal studies, and expand ML frontiers to knowledge graphs.
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CHAPTER 1

Introduction

1.1 Knowledge Bases and Graphs

Knowledge Bases (KBs) and Knowledge Graphs (KGs) 1 , such as Wikipedia, have large num-

bers of real-world facts and have rapidly become a mainstream technology that combines

features of databases and AI and are foundational to many knowledge-driven AI applica-

tions. Considering one of the most representative KGs, Wikipedia, is a semi-structured KG

with billions of entities and thousands of relations between entities, covering all aspects of

the world, from tennis tournaments to political figures, from historical places to airports.

Such knowledge can be explicitly constructed by triples as its atomic component formatted

as, such as {Washington D.C., capital city of, the United States}, which is typically

named as RDFs [AH11]. Alternatively, it is more often implicitly stored and represented

as semi-structured “InfoBox” [WW08], sometimes referred to as “Labeled-Property Graph”

with multiple attributes (textual descriptions, along with entity relations. Other examples

are general-purpose KGs (Wikidata [VK14], YAGO [MBS14, SKW07, PWS20, HSB13], DB-

pedia [LIJ15], Freebase [BEP08]), commonsense NLP-related KGs (WordNet [Mil95], Con-

ceptNet [SCH17]), domain-specific KGs (STRING [SMC16]) and enterprise KGs (examples

Amazon Catalog Product Graphs [MPL15], behavior-based Product Graphs [HZL20]) and

many more.

1Knowledge graphs and knowledge bases may have different definitions and references among different
research communities. Typically, knowledge graphs emphasize the “graph” nature with entities (nodes),
relations (edges), and logical triples to represent real-world facts; sometimes knowledge bases can be referred
to as (graph) databases and systems, which may not be in the format of graphs. In this paper, we use
knowledge graphs and knowledge bases interchangeably and in most cases towards the “knowledge graphs”
unless specified otherwise.
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Figure 1.1: Searching results of “Pablo Alborán” returned by Google, as of Aug 31, 2022.

These KBs provide a large amount of high-quality prior knowledge, describe relational

facts or interactions among entities form an important role in knowledge acquisition and

serve as the foundation for many knowledge-driven AI tasks and applications. As one of

the most important applications, knowledge graphs are no doubt one of the foundations in

web-scale search engines which collect and arrange all types of facts of one specific entity

to provide accurate and timely searching results. For example, when one user search for

“Pablo Alborán” (a famous Spanish singer) in Google, you will get the following page in

Figure 1.1 which is a comprehensive collection of his public information across multiple

websites together with social media, sometimes together with multimedia resources (music,

video, images, etc) and new headlines, even with potential matched advertisements. The

knowledge backend, even not in the “graph” format, is essential to make such profiles and

provides highly-related information that aligns with the user’s interest.
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1.2 Machine Learning on Knowledge Graphs

Machine learning techniques have been continuously in development on knowledge graph,

which is an intersection research area among graph machine learning, database and data

management, ontology and semantic web, and natural language processing. With the rise

of deep learning, knowledge graph embedding has been since [BUG13]. In the past decade,

KG embedding models have been widely investigated. As deep learning based techniques

on knowledge graphs, these embedding models, which typically encode KG structures into

low-dimensional embedding spaces, are vital to capturing the latent semantic relations of

entities and concepts and support relational inferences in the form of vector algebra. More

specifically, the aim is to design a score function representing the plausibility of one relational

fact (i.e. triple), including translation-based, similarity-based, or even more complex models

with CNN and Transformers. Some representative examples of methods in this thread are

listed in Table 1.1.

Table 1.1: Representative examples of knowledge graph embedding methods.

Model Score Function Embeddings

TransE (Bordes et al., 2013) −||h + r− t|| h, r, t ∈ Rk

TransX −||gr,1(h) + r− gr,2(t)|| h, r, t ∈ Rk

DistMult (Yang et al., 2014) (h ◦ t) · r h, r, t ∈ Rk

HolE (Nickel et al., 2016) (h ⋆ t) · r h, r, t ∈ Rk

ComplEx (Trouillon et al., 2016) Re⟨r,h, t̄⟩ h, r, t ∈ Ck

ConvE (Dettmers et al., 2017) ⟨σ(vec(σ([r,h] ∗ Ω))W), t⟩ h, r, t ∈ Rk

RotatE (Sun et al., 2019) −||h ◦ r− t||2 h, r, t ∈ Ck, |ri| = 1

In addition, learning knowledge graphs is closely related to heterogeneous information

networks (HIN), such as citation networks with multiple types of nodes (authors, venues

and institutions, etc) and their connections. Many techniques are also transferred and lever-

aged such as meta-path [SHY11, SH12] based methods to perform similarity search, relation

prediction and alternative tasks.

Neural networks have been adapted to leverage the structure and properties of graphs.

Another important advance in knowledge graph modeling is associated with graph neural

3



networks, which originated from network embedding and social network analysis. Originally

from graph convolutional network on homogeneous graphs, many new GNN models are

proposed on heterogeneous graphs [HDW20a, HDW20b] and knowledge graphs [SKB18,

VSN19, LCC19] and also hierarchically structured “taxonomy”-like graphs [NK17, CYR19].

With the recent rapid rise of Transformer [VSP17], which has revolutionized natural

language processing together with other domains and enabled multi-modality learning with

a combination of vision and language, knowledge graphs as one unique format of modality

have also been incorporated into contextual language models [SK21]. This results in many

recent technical breakthrough on KG-augment language models [YTY21, LWH21, LZZ20,

YHZ22], and knowledge probing [PRR19] and extraction from unstructured text [WDR21,

AOO20]. State-of-the-art methods also include an integration of transformers and graph

neural networks [ZBY22].

1.3 Knowledge Graph Empowered Applications

As mentioned in Section 1.1 and 1.2, knowledge graphs can help significantly improve the

performance of many downstream applications [WMW17], including its connection to nat-

ural language processing [SK21] in many its sub-fields, especially in knowledge-intensive

tasks [YDC22]. Examples are question answering [YRB21, ZBY22, MCL22], document un-

derstanding [ZSW22], entity recognition [AOO20, NGP21] and alignment [SZH20], ontology

engineering and knowledge construction [HLE21], natural language understanding [LZZ20,

GLT20], generation [YZL22, KJR21, YZQ22] and commonsense reasoning [JKH20, LWH21],

and even into broader applications, recommender systems [HZL20, WSZ20], bioinformat-

ics and healthcare [JJH21, HJC20, NYH16], traffic analysis and control [DSW21, SPH18,

SHP16], and societal crime studies [PBU20, AGK20, LNM17]. It serves the role of “brain”

in many knowledge-intensive AI applications to provide inferences based on real-world facts.

Figure 1.2 shows some applications and directions backed by knowledge graphs, some covered

in detail in later chapters of this dissertation.
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Figure 1.2: Examples of multidisciplinary applications with KG backends.

1.4 Research Roadmap and Thesis Contribution

In this dissertation, we emphasize the importance and benefit of modeling internal ontological

structures inside knowledge graphs (such as type association and hierarchical ontology) into

KG learning models. Accordingly, we successfully propose a series of machine learning

methods that further investigate the capability of modeling such semantics in the KGs and

demonstrate their effectiveness in multiple interdisciplinary applications.

As mentioned above, our contributions are in two threads: the technique thread and

the application thread. We highlight the research development roadmap in this disserta-

tion in Figure 1.3. We have explored technique-thread with innovative methods includ-

ing, knowledge graph embedding [WMW17, HCY19], graph neural networks (including

graph attention networks, relation GCN, and hyperbolic GCN), pretrained language mod-

els [QDM18, LYF21], self-supervised learning [JBZ20], multi-task learning, transfer learning,

etc. As a result, these new techniques empowered a wide range of applications in knowledge

graph inference, recommender systems, ontology matching, protein interaction and drug dis-

covery (bioinformatics), document intelligence, and crime studies on homicide analytics, as

in our application-thread. A detailed walkthrough of each project in the chapters of this

dissertation is in Section 1.5.
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Figure 1.3: Research roadmap of this dissertation in the format of one knowledge graph,
starting from bottom left JOIE node. White, red, blue and purple nodes represent main
projects covered in this dissertation, applications/tasks, application domains, and proposed
techniques/technical components respectively.

1.5 Thesis Overview

The rest of this dissertation can be organized into the following parts, in accordance with

the research roadmap (Figure 1.3).

Chapter 2: We introduce JOIE, as in “Universal Representation Learning of Knowledge

Bases by Jointly Embedding Instances and Ontological Concepts” [HCY19]. JOIE employs

both cross-view and intra-view models that learn on multiple facets of the knowledge base.

The cross-view association model is learned to bridge between the embeddings of ontological

concepts and their corresponding instance-view entities. The intra-view models are trained

to capture the structured knowledge of instance and ontology views in separate embedding

spaces, with a hierarchy-aware encoding technique, enabled for ontologies with latent hierar-
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chies. Our model is trained on large-scale knowledge bases that consist of massive instances

and their corresponding ontological concepts connected via a (small) set of cross-view links.

Experimental results on public datasets show that the best variant of JOIE significantly

outperforms previous models on instance-view triple prediction task as well as ontology pop-

ulation on ontology-view KG. In addition, our model successfully extends the use of KG

embeddings to entity typing with promising performance.

Chapter 3: As one important extension of JOIE in bioinformatics, we develop Bio-JOIE,

as in “Joint Representation Learning of Biological Knowledge Bases” [HJC20]. Similar to

the previous work, we propose the transferred multi-relational embedding model Bio-JOIE

to capture the knowledge of gene ontology and PPI networks, which demonstrates superb

capability in modeling the SARS-CoV-2-human protein interactions. Bio-JOIE jointly trains

two model components. The knowledge model encodes the relational facts from the protein

and GO domains into separated embedding spaces, using a hierarchy-aware encoding tech-

nique employed for the GO terms. On top of that, the transfer model learns a non-linear

transformation to transfer the knowledge of PPIs and gene ontology annotations across

their embedding spaces. By leveraging only structured knowledge, Bio-JOIE significantly

outperforms existing state-of-the-art methods in PPI type prediction on multiple species.

Furthermore, we also demonstrate the potential of leveraging the learned representations on

clustering proteins with enzymatic function into enzyme commission families. Finally, we

show that Bio-JOIE can accurately identify PPIs between the SARS-CoV-2 proteins and

human proteins, providing valuable insights for advancing research on this new disease.

Chapter 4: As another extension of JOIE in the recommender systems, we develop “A

Principled Framework for Diversified Complementary Product Recommendation” [HZL20]

based on customer behavior based knowledge graphs, P-Companion, to explicitly model

both relevance and diversity. More specifically, given one product with its product type,

P-Companion first uses an encoder-decoder network to predict multiple complementary prod-

uct types, and then a transfer metric learning network is developed to project the embedding

of query product to each predicted complementary product type subspace and further learn
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the complementary relationship based on the distant supervision labels. The whole frame-

work can be trained from end-to-end and is robust to cold-start products attributed to a

novel pretrained product embedding module named Product2vec, based on graph attention

networks. Extensive offline experiments show that P-Companion outperforms state-of-the-art

baselines by a 7.1% increase on the Hit@10 score with well-controlled diversity. Production-

wise, we deploy P-Companion to provide online recommendations for over 200M products at

Amazon and observe significant gains in product sales and profit.

Chapter 5: We formulate an innovative data-to-ontology problem, as a slight shift from

general purpose knowledge graph to medical ontologies, and provide our solution Medto as

in “MEDTO: Medical Data to Ontology Matching Using Hybrid Graph Neural Networks”.

Data to ontology matching is the process of finding semantic correspondences between tables

in databases to standard ontologies. We design a novel end-to-end framework that consists

of three innovative techniques: (1) a lightweight yet effective method that bootstrap a se-

mantically rich ontology from a given medical database, (2) a hyperbolic graph convolution

layer that encodes hierarchical concepts in the hyperbolic space, and (3) a heterogeneous

graph layer that encodes both local and global context information of a concept. Experi-

ments on two real-world medical datasets matching against SNOMED CT show significant

improvements compared to the state-of-the-art methods. Medto also consistently achieves

competitive results on a benchmark from the Ontology Alignment Evaluation Initiative.

Chapter 6: Large-scale information systems, as one type of knowledge graphs, exhibit

dynamic and complex activities. Formalizing these information systems as graphs can effec-

tively characterize the entities (nodes) and their relationships (edges). Transferring knowl-

edge from existing well-curated source graphs can help construct the target graph of newly-

deployed systems faster and better which no doubt will benefit downstream tasks such as

link prediction and anomaly detection for new systems. we propose MSGT-GNN in this chapter

“Multi-source Knowledge Graph Transfer”, a graph knowledge transfer model for efficient

graph link prediction from multiple source graphs. MSGT-GNN consists of two components:

the Intra-Graph Encoder, which embeds latent graph features of system entities into vectors;
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and the graph transferor, which utilizes graph attention mechanism to learn and optimize

the embeddings of corresponding entities from multiple source graphs, in both node level and

graph level. Experimental results on multiple real-world datasets from various domains show

that MSGT-GNN outperforms other baseline approaches in the link prediction and demonstrate

the merit of attentive graph knowledge transfer and the effectiveness of MSGT-GNN.

Chapter 7: Homicide investigations produce a large amount of data, mostly text-intensive

structural data including interviews, reports, descriptions of evidence, and summary state-

ments. Performing insightful analytics based on such complex data plays a pivotal role

in solving difficult homicide cases. In this chapter “Empowering Homicide Analytics with

MurderBook Knowledge Graphs and Domain-specific Language Models”, we proposed a deep

learning based systematic framework, EIHA, for multiple downstream applications such as

case classification. The contributions are three-fold: first, we show how to extract vari-

ous entity types and construct knowledge graphs that preserve rich text features alongside

structured relational knowledge facts about the case (KG module); second, we introduce do-

main language models, developed on large-scale crime investigation summaries, which better

model crime-related textual data (LM module); third, we learn comprehensive crime case

representations, by utilizing a novel hierarchical attention mechanism, supported by the pil-

lars of KG and LM modules. Experimental results show the effectiveness of case embeddings

learned from EIHA in performing case classification. We also demonstrate two valuable

application scenarios empowered by EIHA for AI-assisted analytics and data mining on

homicide investigations.

Chapter 8: As the final part of this dissertation, we conclude our contributions with a

summary of our research works.
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CHAPTER 2

Universal Representation Learning of Knowledge Bases

by Jointly Embedding Instances and Ontological

Concepts

2.1 Introduction

As mentioned in Chapter 1, knowledge bases (KBs), like DBpedia [LIJ15], YAGO [MBS14]

and ConceptNet [SCH17], have incorporated large-scale multi-relational data and motivated

many knowledge-driven applications. These KBs store knowledge graphs (KGs) that can be

categorized as two views: (i) the instance-view knowledge graphs that contain relations

between specific entities in triples (for example, “Barack Obama”, “isPoliticianOf ”, “United

States”) and (ii) the ontology-view knowledge graphs that constitute semantic meta-

relations of abstract concepts (such as “polication”, “is leader of ”, “city”). In addition,

KBs also provide cross-view links that connect ontological concepts and instances, denoting

whether an instance is an instantiation from a specific concept. Figure 2.1 shows a snapshot

of such a KB.

Learning to represent a KB from both views will no doubt provide more comprehensive

insights. On one hand, instance embeddings provide detailed and rich information for their

corresponding ontological concepts. For example, by observing many individual musicians,

the embedding of its corresponding concept “Musician” can be largely determined. On the

other hand, a concept embedding provides a high-level summary of its instances, which is

extremely helpful when an instance is rarely observed. For example, for a musician who has

few relational facts in the instance-view graph, we can still tell his or her rough position in
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Figure 2.1: An example of two-view KB. Regular meta-relations and hierarchical meta-
relations are denoted as orange and black dashed lines respectively in the ontology view.

instance embedding space because he or she should not be far away from the embeddings of

other musicians.

In this chapter, we propose to jointly embed the instance-view graph and the ontology-

view graph, by leveraging (1) triples in both graphs and (2) cross-view links that connect the

two graphs. It is a non-trivial task to effectively combine representation learning techniques

on both views of a KB together, which faces the following challenges: (1) the vocabularies of

entities and concepts, as well as relations and meta-relations, are disjoint but semantically

related in these two views of the KB, and the semantic mappings from entities to concepts

and from relations to meta-relations are complicated and difficult to be precisely captured

by any current embedding models; (2) the known cross-view links often inadequately cover

a vast number of entities, which leads to insufficient information to align both views of the

KB, and curtails discovering new cross-view links; (3) the scales and topological structures

are also largely different in the two views, where the ontological views are often sparser,
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provide fewer types of relations, and form hierarchical substructures, and the instance view

is much larger and with much more relation types.

To address the above issues, we propose a novel KG embedding model named JOIE,

which jointly encodes both the ontology and instance views of a KB. JOIE contains two

components. First, a cross-view association model is designed to associate the instance

embedding to its corresponding concept embedding. Second, the intra-view embedding model

characterizes the relational facts of ontology and instance views in two separate embedding

spaces. For the cross-view association model, we explore two techniques to capture the

cross-view links. The cross-view grouping technique assumes that the two views can be

forced into the same embedding space, while the cross-view transformation technique enables

non-linear transformations from the instance embedding space to the ontology embedding

space. As for the intra-view embedding model, in particular, we use three state-of-the-

art translational or similarity-based relational embedding techniques to capture the multi-

relational structures of each view. Additionally, for some KBs where ontologies contain

hierarchical substructures, we employ a hierarchy-aware embedding technique based on intra-

view non-linear transformations to preserve such substructures. Accordingly, we investigate

nine variants of JOIE and evaluate these models on two tasks: the triple completion task

and the entity typing task. Experimental results on the triple completion task confirm the

effectiveness of JOIE for populating knowledge in both ontology and instance-view KGs,

which has significantly outperformed various baseline models. The results on the entity

typing task show that our model is competent in discovering cross-view links to align the

ontology-view and the instance-view KGs.

The rest of the chapter is organized as follows. We first discuss the related work in

Section 2.2, then introduce the proposed JOIE model in Section 2.3. Section 2.4 presents the

experiment evaluation together with case study and ablation study and the we concludes

the chapter in Section 2.5.
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2.2 Related Work

To the best of our knowledge, there is no previous work on learning to embed two-view

knowledge of a KB. We discuss the following three lines of research work that are closely

relevant to this work.

Knowledge Graph Embeddings. Recent work has put extensive efforts in learning

instance-view KG embeddings. Given triples (h, r, t), where r represents the relation be-

tween the head entity h and the tail entity t, the key of KG embeddings is to design

a plausibility scoring function fr(h, t) as the optimization objective (h and t are embed-

dings of h and t). A recent survey [WMW17] categorizes the majority of KG embedding

models into translational models and similarity-based models. The representative trans-

lational model, TransE [BUG13], adopts the score function fr(h, t) = −||h + r − t|| to

capture the relation as a translation vector r between two entity vectors. Follow-ups of

TransE typically vary the translation processes in different forms of relation-specific spaces,

so as to improve the performance of triple completion. Examples include TransH [WZF14],

TransR [LLS15], TransD [JHX15] and TransA [JWL16], etc. As for the similarity-based mod-

els, DistMult [YYH15] associates related entities using Hadamard product of embeddings,

and HolE [NRP16] substitutes Hadamard product with circular correlation to improve the

encoding of asymmetric relations, and achieves the state-of-the-art performance in KG com-

pletion. ComplEx [TWR16] migrates DistMult in a complex space and offers comparable

performance. Besides, there are other forms of models, including tensor-factorization-based

RESCAL [NTK11], and neural models NTN [SCM13] and ConvE [DMS18]. These ap-

proaches also achieve comparable performances on triple completion tasks at the cost of

high model complexity.

It is noteworthy that a few approaches have been proposed to incorporate complex

type information of entities into above KG embedding techniques [KBT15, XLS16, MDJ17,

MCW18], from which our settings are substantially different in two perspectives: (i) These

studies utilize the proximity of entity types to strengthen the learning of instance-level entity

similarity, while do not capture the semantic relations between such types; (ii) They mostly
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focus on improving instance-view triple completion, but do not leverage instance-view knowl-

edge to improve ontology population, nor support cross-view association to bridge instances

and ontological concepts. Another related branch on leveraging logic rules [RSR15, GWW16,

DQW17] requires additional information that typically is not provided in two-view KBs.

Multi-graph Embeddings for KGs. More recent studies have extended embedding mod-

els to bridge multiple KG structures, typically for multilingual learning. MTransE [CTY17]

thereof, jointly learns a transformation across two separate translational embedding spaces,

which can be adopted to our problem. However, since this multilingual learning approach

partly relies on similar structures of KGs, it unsurprisingly falls short of capturing the associ-

ations between the two views of KB with disjoint vocabularies and different topologies, as we

show in the experiments. Later extensions of this model family, such as KDCoE [CTC18a]

and JAPE [SHL17], require additional information of literal descriptions [CTC18a] and nu-

merical attributes of entities [SHL17] that are typically not available in the ontology views

of the KB. Other models depend on the use of neural machine translation [OKK18], causal

reasoning [YWC18] and bootstrapping of strictly 1-to-1 matching of inter-graph entities

[ZXL17, SHZ18] that do not apply to the nature of our corpora and tasks.

Ontology Population. Traditional ontology population is mostly based on extensive man-

ual efforts, or requires large annotated text corpora for the mining of the meta-relation

facts [WLB06, CS04, MAG14, GG08]. These previous approaches rely on intractable pars-

ing or human efforts, which generate massive relation facts that are subject to frequent con-

flicts [PR13]. A few studies extend embedding techniques to general cross-domain ontologies

like ConceptNet. Examples of such include On2Vec [CTC18b] that extends translational

embeddings to capture the relational properties and hierarchies of ontological relations, and

[GS18] propose to learn second-order proximity of concepts by combining chained logic rules

with ontology embeddings. This shows the benefits of KG embeddings on predicting rela-

tional facts for ontology population, while we argue that such a task can be simultaneously

enhanced with the characterization of the instance knowledge.
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2.3 Modeling

In this section, we introduce our proposed model JOIE, which jointly embed entities and

concepts using two model components: cross-view association model and intra-view model.

We start with the formalization of two-view knowledge bases.

“City” Category  

rlocation

“Person” 

Category  “State” Category  

“Place” Hierarchy  

“University” 

Category  rcapital

rborn in rspouse

rlocation
rwork for

Ontology-view Knowledge Graph

Instance-view Knowledge Graph

Place

Institution

rlocation
Barack Obama

Person

Michelle Obama

Donald Trump

New York City

CityState

New York State

HonoluluHawaii

Columbia

University
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Figure 2.2: JOIE learns two aspects of a KB. The cross-view association model learns embed-
dings from cross-view links (dash arrows in green “category” box). The default intra-view
model learns embeddings from triples (grey box) in each view; Besides, hierarchy-aware
intra-view models the meta-relation facts that form hierarchies in the ontology (orange “Hi-
erarchy” trapezoid).

2.3.1 Formalization of Knowledge Bases

In a KB, we use GI and GO to denote the instance-view KG and ontology-view KG respec-

tively. The instance-view KG is denoted as GI , which is formed with E , the set of entities, and

RI , the set of relations. The set of concepts and meta-relations in the ontology-view graph

GO are similarly denoted as C andRO respectively. Note that E and C (orRI andRO) are dis-

joint sets. (h(I), r(I), t(I)) ∈ GI and (h(O), r(O), t(O)) ∈ GO denote triples in the instance-view
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KG and the ontology-view KG respectively, such that h(I), t(I) ∈ E , h(O), t(O) ∈ C, r(I) ∈ RI ,

and r(O) ∈ RO. Specifically, for each view in the KB, a dedicated low-dimensional space is

assigned to embed nodes and edges. Boldfaced h(I), t(I), r(I) represent the embedding vec-

tors of head entity h(I), tail entity t(I) and relation r(I) in instance-view triples. Similarly,

h(O), t(O), and r(O) denote the embedding vectors for the corresponding concepts and their

meta-relation in the ontology-view graph. Besides the notations for two views, S is used

to denote the set of known cross-view links in the KB, which contains associations between

instances and concepts such as “type of”. We use (e, c) ∈ S to denote a link between e ∈ E
and its corresponding concept c ∈ C. For example, (e: Los Angeles International Airport,

c: airport) denotes that “Los Angeles International Airport” is an instance of the concept

“airport”. Looking into the nature of the ontology view, we also have hierarchical substruc-

tures identified by “subclass of” (or other similar meta-relations). That is, we can observe

concept pairs (cl, ch) ∈ T that indicates a finer (more specific) concept belongs to a coarser

(more general) concept. One aforementioned example is (cl: singer, ch: person).

Our model JOIE consists of two model components that learn embeddings from the two

views: the cross-view association model enables the connection and information flow between

the two views by capturing the instantiation of entities from corresponding concepts, and the

intra-view model encodes the entities/concepts and relations/meta-relations on each view of

the KB. The illustration of these model components for learning different aspects of the

KB is shown in Figure 2.2. In the following subsections, we first discuss the cross-view

association model and intra-view model for each view, then combine them into variants of

proposed JOIE model.

2.3.2 Cross-view Association Model

The goal of the cross-view association model is to capture the associations between the entity

embedding space and the concept embedding space, based on the cross-view links in KBs,

which will be our key contributions. We propose two techniques to model such associations:

Cross-view Grouping (CG) and Cross-view Transformation (CT). These two techniques are
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Figure 2.3: Intuition of the cross-view association model: Cross-view Grouping (a); Cross-
view Transformation (b).

based on different assumptions and thus optimize different objective functions.

Cross-view Grouping (CG). The cross-view grouping method can be considered as

grouping-based regularization, which assumes that the ontology-view KG and instance-view

KG can be embedded into the same space, and forces any instance e ∈ E to be close to its

corresponding concept c ∈ C, as shown in Figure 2.3a. This requires the embedding dimen-

sionalities for the instance-view and ontology-view graphs to be the same, i.e. d = dc = de.

Specifically, the categorical association loss for a given pair of cross-view link (e, c) is defined

as the distance between the embeddings of e and c compared with margin γCG, and the loss

is defined as,

JCG
Cross =

1

|S|
∑

(e,c)∈S

[
||c− e||2 − γCG

]
+
, (2.1)
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where [x]+ is the positive part of the input x, i.e. [x]+ = max{x, 0}. This penalizes the case

where the embedding of e falls out the γCG-radius1 neighborhood centered at the embedding

of c. CG has a strong clustering effect that makes entity embeddings close to their concept

embeddings in the end.

Cross-view Transformation (CT). We also propose a cross-view transformation tech-

nique, which seeks to transform information between the entity embedding space and the

concept space. Unlike CG that requires the two views to be embedded into the same space,

the CT technique allows the two embedding spaces to be completely different from each

other, which will be aligned together via a transformation, as shown in Figure 2.3b. In

other words, after the transformation, an instance will be mapped to an embedding in the

ontology-view space, which should be close to the embedding of its corresponding concept:

c← fCT (e) ,∀(e, c) ∈ S, (2.2)

where fCT(e) = σ(Wct · e + bct) is a non-linear affine transformation. Wct ∈ Rd2×d1 thereof

is a weight matrix and bct is a bias vector. σ(·) is a non-linear activation function, for which

we adopt tanh. Therefore, the total loss of the cross-view association model is formulated

as Equation 2.3, which aggregates the CT objectives for all concepts involved in S.

JCT
Cross =

1

|S|
∑

(e,c)∈S
∧(e,c′)/∈S

[
γCT + ||c− fCT(e)||2 − ||c′ − fCT(e)||2

]
+ (2.3)

2.3.3 Intra-view Model

The aim of intra-view model is to preserve the original structural information in each view of

the KB separately in two embedding spaces. Because of the different semantic meanings of

relations in the instance view and meta-relations in the ontology view, it helps to give each

view separate treatment rather than combining them into a single representation schema,

1Typically, margin hyperparameter γ in the hinge loss can be chosen as 0.5 or 1 for different model
settings. However, it is not a sensitive hyperparameter in our models.

18



improving the performance of downstream tasks, as shown in Section 2.4.2. In this section,

we provide two intra-view model techniques for encoding heterogeneous and hierarchical

graph structures.

Default Intra-view Model. To embed such a triple (h, r, t) in one KG, a score function

f(h, r, t) measures the plausibility of it. A higher score indicates a more plausible triple.

Any triple embedding technique is applicable in our intra-view framework. We adopt three

representative techniques, i.e. translations [BUG13], multiplications [YYH15] and circular

correlation [NRP16]. The score functions of these techniques are given as follows.

fTransE(h, r, t) = −||h + r− t||2

fMult(h, r, t) = (h ◦ t) · r

fHolE(h, r, t) = (h ⋆ t) · r

(2.4)

where ◦ is the Hadamard product and · is the dot product. ⋆ : Rd × Rd → Rd denotes

circular correlation defined as [a ⋆ b]k =
∑d

i=0 aib(k+i) mod d.

To learn embeddings of all nodes in one graph G, a hinge loss is minimized for all triples

in the graph:

JG
Intra =

1

|G|
∑

(h,r,t)∈G
∧(h′,r,t′)/∈G

[
γG + f(h′, r, t′)− f(h, r, t)

]
+
, (2.5)

where γG > 0 is a positive margin, and (h′, r, t′) is one sample from the set of corrupted

triples which replace either head or tail entity and does not exist in G.

The aforementioned techniques, losses and learning objectives for embedding graphs are

naturally applicable for both instance-view graph and ontology-view graph. In the default

intra-view model setting, for triples (h(I), r(I), t(I)) ∈ GI or (h(O), r(O), t(O)) ∈ GO, we can

compute fI(h
(I), r(I), t(I)) and fO(h(O), r(O), t(O)) with the same techniques when optimizing

JGI
Intra and JGO

Intra. Combining the loss from instance-view and ontology-view graphs, the joint

loss of the intra-view model is given as below,

JIntra = JGI
Intra + α1 · JGO

Intra, (2.6)
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where a positive hyperparameter α1 weighs between the structural loss of the instance-view

graph and ontology-view graph.

In JOIE deployed with the default Intra-view model, we employ the same triple encoding

technique to represent both views of the KB. The purpose of doing so is to enforce the same

paradigm of characterizing relational inferences in both views. It is noteworthy that there

are other triple encoding techniques for KG embeddings, which can potentially be used in

our intra-view model. Since exploring different triple encoding techniques is not the focus of

our motivation, we leave them as future work.

Hierarchy-Aware Intra-view Model for the Ontology. It is observed that the ontol-

ogy view of some KBs form hierarchies, which is typically constituted by a meta-relation

with the hierarchical property, such as “subclass of ” and “is a” [MBS14, LIJ15]. We can

define such meta-relation facts as (cl, rmeta = “subclass of ”, ch). For example, “musician”

and “singer” belong to “artist” and “artist” is also subclass of “person”. Such semantic

ontological features requires additional modeling than other meta-relations. In other words,

we further distinguish between meta-relations that form the ontology hierarchy and those

regular semantic relations (such as “related to”) in our intra-view model.

To address this problem, we propose the hierarchy-aware (HA) intra-view model by

extending a similar method to that of cross-view transformation as defined in Equation 2.2.

Given concept pairs (cl, ch), we model such hierarchies into a non-linear transformation

between coarser concepts and associated finer concepts by

gHA(ch) = σ(WHA · cl + bHA) (2.7)

where WHA ∈ Rd2×d2 and bHA ∈ Rd2 are defined similarly. Also, we use tanh function as

σ(·) option. This will introduce a new loss term, ontology hierarchy loss inside the ontology

view, which is similar to Equation 2.3,

JHA
Intra =

1

|T |
∑

(cl,ch)∈T
∧(cl,c′h)/∈T

[
γHA + ||ch − g(cl)||2 − ||ch′ − g(cl)||2

]
+

(2.8)
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Therefore, the total training loss of the hierarchy-aware intra-view model for both views

changes slightly to,

JIntra = JGI
Intra + α1 · JGO\T

Intra + α2 · JHA
Intra

(2.9)

where positive α1 and α2 are two weighing hyperparameters. In Equation 2.9, J
GO\T
Intra refers to

the loss of the default intra-view model that is only trained on triples with regular semantic

relations. JHA
Intra is explicitly trained on the triples with meta-relations that form the ontology

hierarchy, which is a major difference from Equation 2.6.

As the conclusion of this subsection, in JOIE, the basic assumption is that KGs have

ontology hierarchy and rich semantic relational features compared to social or citation net-

works. JOIE is able to encode such KG properties in its model architecture. Note that we are

also aware of the fact that there are more comprehensive properties of relations and meta-

relations in the two views such as logical rules of relations and entity types. Incorporating

such properties into the learning process is left as future work.

2.3.4 Joint Training on Two-View KBs

Combining the intra-view model and cross-view association model, JOIE minimizes the fol-

lowing joint loss function:

J = JIntra + ω · JCross, (2.10)

where ω > 0 is positive hyperparameter that balances between JIntra and JCross.

Instead of directly updating J , our implementation optimizes JGI
Intra, JGO

Intra and JCross

alternately. In detail, we optimize θnew ← θold − η∇JIntra and θnew ← θold − (ωη)∇JCross in

successive steps within one epoch. η is the learning rate, and ω differentiates between the

learning rates for intra-view and cross-view losses.

We use the AMSGrad optimizer [RKK18] to optimize the joint loss function. We initialize

vectors by drawing from a uniform distribution on the unit spherical surface, and initialize

matrices using random orthogonal initialization [SMG14]. During the training, we enforce

the constraint that the L2 norm of all entity and concept vectors to be 1, in order to prevent
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them from shrinking to zero. This follows the setting by [BUG13, YYH15, WZF14, NRP16].

Negative sampling is used on both intra-view model and cross-view association model with

a ratio of 1 (number of negative samples per positive one). A hinge loss is applied for both

models with all variants.

2.3.5 Variants of JOIE and Complexity

Without considering the HA technique, we have six variants of JOIE given two options of

cross-view association models in Section 2.3.2 and three options of intra-view models in

Section 2.3.3. For simplicity, we use the names of its components to denote specific variants

of JOIE, such as “JOIE-TransE-CT” represents JOIE with the cross-view transformation and

TransE-based default intra-view embeddings. In addition, we incorporate the hierarchy-

aware intra-view model for the ontology view into cross-view transformation model2, which

produces three additional model variants denoted as JOIE-HATransE-CT, JOIE-HAMult-CT,

and JOIE-HAHolE-CT.

The model complexity depends on the cross-view association model and intra-view model

for learning two-view KBs. We denote ne, nc, nr, nm as the number of total entities, concepts,

relations and meta-relations (typically ne ≫ nc) and de, dc as embedding dimensions (de = dc

if CG is used). The model complexity of parameter sizes is O(nede + ncdc) for all CG-based

variants and O(nede+ncdc+dedc) for all CT-based variants. An additional parameter size of

O(d2c) is needed if the hierarchy-aware intra-view model applies. Because of n≫ de (or dc),

the parameter complexity is approximately proportional to the number of entities and the

model training runtime complexity is proportional to the number of triples in the KG. For

the task of triple completion in the KG, the time complexity for all variants is O(nede) for

the instance-view graph or O(ncdc) for the ontology-view graph. To process each prediction

case in the entity typing task, the time complexity is O(ncde) for CG and O(ncdcde) for CT.

Details about each task are curated in Section 2.4.2 and 2.4.3.

2We later show in the experiments that CT-based variants consistently outperform CG-based variants
and thus we only apply HA intra-view model settings to CT-based model variants.
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2.4 Experiments

In this section, we evaluate JOIE with two groups of tasks: the triple completion task (Section

2.4.2) on both instance-view and ontology-view KGs and the entity typing task (Section 2.4.3)

to bridge two views of the KB. Besides, we provide a case study in Section 2.4.4 on ontology

population and long-tail entity typing. We also present hyperparameter study, effects of

cross-view sufficiency and negative samples in Section 2.4.5.

2.4.1 Datasets

To the best of our knowledge, existing datasets for KG embeddings consider only an in-

stance view (e.g. FB15k [BUG13]) or an ontology view (e.g. WN18 [BGW14]). Hence,

we prepare two new datasets: YAGO26K-906 and DB111K-174, which are extracted from

YAGO [MBS14] and DBpedia [LIJ15] respectively.

We use YAGO26K-906 and DB111K-174, which are extracted from the connected subsets

of YAGO [MBS14] and DBpedia [LIJ15] respectively, for experimental purpose. The datasets

are constructed through the following steps:

1. We first filter out all attribute triples, since such triples do not represent the relations

of entities or concepts. After randomly sample some relational triples from the rest of

the filtered dataset since original YAGO and DBpedia both have large collections of

instance-view triples.

2. After we obtain the entity set of instance view, we extract cross-view alignment of

those entities to the ontology view of the two KBs. As a result, a portion of entities

are linked to the associated concepts, which are naturally the nodes in the ontology

view.

3. Given all the associated concepts from step (2), we construct the corresponding ontol-

ogy views base on the intersecting subgraph of the original ontologies.

It is noteworthy that the original YAGO has a taxonomical ontology with only three types of
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Table 2.1: Statistics of datasets.

Dataset YAGO26K-906 DB111K-174

Instance Graph GI
#Entities 26,078 111,762

#Relations 34 305
#Triples 390,738 863,643

Ontology Graph GO
#Concepts 906 174

#Meta-relations 30 20
#Triples 8,962 763

Type Links S 9,962 99,748

.

semantic relations, which casts limitation on semantic relations among concepts. Therefore,

we enrich the ontology view of YAGO using the knowledge from ConceptNet [SCH17], an-

other KB which contains a large collection of meta-relations among concepts. The concepts

in ConceptNet and YAGO are easily aligned by the shared WordNet-based IDs or concept

names. Consequently, we obtain two datasets that are much larger than FB15K – the widely

adopted instance KG benchmark dataset by many recent works [BUG13, YYH15, LLS15,

NRP16].

Table 2.1 provides the statistics of both datasets. Normally, the instance-view KG is

significantly larger than the ontology-view graph. Also, we notice that the two KBs are

different in the density of type links, i.e., DB111K-174 has a much higher entity-to-concept

ratio (643.4) than YAGO26K-906 (28.7).

Datasets are available at https://github.com/JunhengH/joie-kdd19.

2.4.2 KG Triple Completion

The objective of triple completion is to construct the missing relation facts in a KG structure,

which directly tests the quality of learned embeddings. In our experiment, this task spans

into two sub-tasks for instance-view KG completion and ontology population. We perform

the sub-tasks on both datasets with all JOIE variants compared with baseline models.

Evaluation Protocol First, we separate the instance-view triples into training set GtrainI ,

validation set GvalidI and test set GtestI , as well as separate similarly the ontology-view triples
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to GtrainO , GvalidO and GtestO . The percentage of the training, validation and test cases is ap-

proximately 85%, 5% and 10%, which is consistent to that of the widely used benchmark

dataset [BUG13] for instance-only KG embeddings. Each JOIE variant is trained on GtrainI

and GtrainO triples along with all cross-view links S. In the testing phase, given each query

(h, r, ?t), the plausibility scores f(h, r, t̃) for triples formed with every t̃ in the test candidate

set are computed and ranked by the intra-view model. We report three metrics for testing:

mean reciprocal ranks (MRR), accuracy (Hits@1) and the proportion of correct answers

ranked within the top 10 (Hits@10). All three metrics are preferred to be higher, so as to

indicate better triple completion performance. Also, we adopt the filtered metrics as sug-

gested in previous work which are aggregated based on the premise that the candidate space

has excluded the triples that have been seen in the training set [BUG13, YYH15].

As for the hyperparameters in training, we select the dimensionality option d among

{50, 100, 200, 300} for concepts and entities, learning rate among {0.0005, 0.001, 0.01}, mar-

gin γ among {0.5, 1}. We also use different batch sizes according to the sizes of graphs.

We fix the best configuration de = 300, dc = 50 for CT and de = dc = 200 for CG with

α1 = 2.5, α2 = 1.0. We set γGI = γGO = 0.5 as the default for all TransE variants and

γGI = γGO = 1 for all Mult and HolE variants. The training processes on all datasets and

models are limited to 120 epochs.

Baselines We compare JOIEwith TransE, DistMult and HolE as well as TransC [LHL18].

We deploy the following variants of baselines: (i) We train these mono-graph models (TransE,

DistMult and HolE) either on instance-view triples or ontology-view triples separately, de-

noted as (base) in Table 2.2; (ii) We also train TransE, DistMult and HolE based on all

triples in both GtrainI and GtrainO . For the second setting thereof, we incorporate cross-view

links by adding one additional relation “type of ” to them, denoted as (all) in Table 2.2.

(iii) TransC, trained on both views of a KB, is a recent work that differentiates between the

encoding process of concepts from instances. Note that TransC is equivalent to a simplified

case of our JOIE-TransE-CG where no semantic meta relations in the ontology view are

included. For that reason, TransC does not apply to the completion of the ontology view.
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Table 2.2: Results of KG triple completion. H@1 and H@10 denote Hit@1 and Hit@10
respectively. For each group of model variants with the same intra-view model, the best
results are bold-faced. The overall best results on each dataset are underscored.

Graphs GO KG Completion GI KG Completion

Metrics MRR H@1 H@10 MRR H@1 H@10

TransE (base) 0.195 14.09 34.51 0.145 12.29 20.59
TransE (all) 0.187 13.73 35.05 0.189 14.72 24.36

TransC 0.252 15.71 37.79 – – –
JOIE-TransE-CG 0.264 16.38 35.45 0.189 11.16 29.44
JOIE-TransE-CT 0.292 18.72 44.14 0.240 14.49 33.47

JOIE-HATransE-CT 0.306 18.62 51.72 0.263 16.72 38.46

DistMult (base) 0.253 22.91 28.76 0.197 17.72 25.08
DistMult (all) 0.288 24.06 31.24 0.156 14.32 16.54
JOIE-Mult-CG 0.274 18.80 37.45 0.198 11.16 27.91
JOIE-Mult-CT 0.309 20.40 46.15 0.207 14.71 30.43

JOIE-HAMult-CT 0.296 19.39 45.48 0.202 13.72 31.10

HolE (base) 0.265 25.90 28.31 0.192 18.70 20.29
HolE (all) 0.252 24.22 26.56 0.138 11.29 14.43

JOIE-HolE-CG 0.253 18.75 34.11 0.167 13.04 22.33
JOIE-HolE-CT 0.313 20.40 47.80 0.229 20.85 28.42

JOIE-HAHolE-CT 0.327 22.42 52.41 0.236 16.72 30.96

(a) KG triple completion on YAGO26K-906.

Graphs GO KG Completion GI KG Completion

Metrics MRR H@1 H@10 MRR H@1 H@10

TransE (base) 0.327 22.26 49.01 0.313 23.22 46.91
TransE (all) 0.318 22.70 48.12 0.539 47.90 61.84

TransC 0.359 24.83 49.31 – – –
JOIE-TransE-CG 0.394 27.75 51.20 0.598 53.84 71.79
JOIE-TransE-CT 0.443 32.10 67.89 0.622 58.10 72.97

JOIE-HATransE-CT 0.473 33.79 71.37 0.591 52.07 79.65

DistMult (base) 0.265 25.95 27.63 0.235 15.18 29.11
DistMult (all) 0.280 27.24 29.70 0.501 45.52 64.73
JOIE-Mult-CG 0.320 23.44 49.49 0.532 46.15 68.91
JOIE-Mult-CT 0.404 26.55 60.86 0.563 50.50 71.62

JOIE-HAMult-CT 0.369 24.82 55.86 0.521 38.46 77.25

HolE (base) 0.301 29.24 31.51 0.227 18.91 32.83
HolE (all) 0.295 28.70 30.32 0.432 38.80 56.05

JOIE-HolE-CG 0.361 24.13 46.15 0.469 41.89 62.16
JOIE-HolE-CT 0.425 29.09 66.88 0.514 43.24 69.23

JOIE-HAHolE-CT 0.464 33.11 69.56 0.503 40.80 71.03

(b) KG triple completion on DB111K-174.
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Results As reported in Table 2.2, we categorize the results into three different groups based

on the intra-view models. Though three intra-view models have different capabilities, among

all the baselines in same group, JOIE notably outperforms others by 6.8% on MRR, and

14.8% on Hit@10 on average. A significant improvement is achieved on the ontology-view of

DB111K-174 with JOIE compared to concept embeddings trained with only ontology-view

triples and even 10.4% average increment compared to “all”-setting baselines and 34.97%

compared to “base”-setting baselines. These results indicate that JOIE has better ability

to utilize information from the instance view to promote the triple completion in ontology

view. Comparing different intra-view models, translation based models performs better than

similarity based models on ontology population and instance-view KG completion on the

DB111K-174dataset. This is because these graphs are sparse, and TransE is less hampered

by the sparsity in comparison to the similarity-based techniques [PAG17]. By applying the

HA technique in the intra-view models with CT, the performance on instance-view triple

completion is noticeably improved in most cases in comparison to the default intra-view CT-

based models, especially in variants with translation and circular correlation based intra-view

models.

Generally, JOIE provides an effective method to train two-view KB separately and both

GI and GO benefit each other in learning better embeddings, producing promising results in

the triple completion task.

2.4.3 Entity Typing

The entity typing task seeks to predict the associating concepts of certain given entities.

Similar to the triple completion task, we rank all candidates and report the top-ranked

answers for evaluation.

Evaluation Protocol We separate the cross-view links of each dataset into training and

test sets with the ratio of 60% to 40%, denoted as Strain and Stest respectively. Each model

is trained on the entire instance-view and ontology-view graphs with cross-view links Strain.

Hyperparameters are carried forward from the triple completion task, in order to evaluate
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Table 2.3: Results of entity typing on YAGO26K-906and DB111K-174.

Datasets YAGO26K-906 DB111K-174

Metrics MRR Acc. Hit@3 MRR Acc. Hit@3

TransE 0.144 7.32 35.26 0.503 43.67 60.78
MTransE 0.689 60.87 77.64 0.672 59.87 81.32

JOIE-TransE-CG 0.829 72.63 93.35 0.828 70.58 95.11
JOIE-TransE-CT 0.843 75.31 93.18 0.846 74.41 94.53

JOIE-HATransE-CT 0.897 85.60 95.91 0.857 75.55 95.91

DistMult 0.411 36.07 55.32 0.551 49.83 68.01
JOIE-Mult-CG 0.762 62.62 87.82 0.764 60.83 91.80
JOIE-Mult-CT 0.805 70.83 89.25 0.791 65.30 93.47

JOIE-HAMult-CT 0.865 81.63 91.83 0.778 69.38 85.71

HolE 0.395 34.83 54.79 0.504 44.75 65.38
JOIE-HolE-CG 0.777 65.30 87.89 0.784 66.75 89.37
JOIE-HolE-CT 0.813 72.27 88.71 0.805 68.84 91.22

JOIE-HAHolE-CT 0.888 83.67 93.87 0.808 72.51 89.79

under controlled variables. In the test phase, given a specific entity eq, we rank the concepts

based on their embedding distances from the projection of eq in the concept embedding

space. and calculate MRR, Hit@1 (i.e. accuracy) and Hit@3 on the test queries. We

perform the entity typing task on both datasets with all JOIE variants compared with these

baselines.

Baselines We compare with TransE, DistMult, HolE and MTransE. For baselines other than

MTransE, we convert the cross-view links (e, c) to triples (e, rT=“type of”, c). Therefore,

entity typing is equivalent to the triple completion task for these baseline models. For

MTransE, we treat concepts and entities as different views (originally input as knowledge

bases of two languages in [CTY17]) in their model and test with distance-based ranking.

Results Results are reported in Table 2.3. All JOIE variants perform significantly bet-

ter than the baselines. The best JOIE model, i.e. JOIE-TransE-CT, outperforms the best

baseline model MTransE by 15.4% in terms of accuracy and 14.4% in terms of MRR on

YAGO26K-906. The improvement on accuracy and MRR are 14.3% and 14.5% on DB111K-

174 compared to MTransE. The results by other baselines confirm that the cross-view links,

which apply to all entities and concepts, cannot be properly captured as a regular relation
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and requires a dedicated representation technique.

Considering different JOIE variants, our observation is that using translation based intra-

view model and CT as the cross-view association model (JOIE-TransE-CT) is consistently

better than other settings on both datasets. It has an average of 4.1% performance gain

in MRR over JOIE-HolE-CT and JOIE-DistMult-CT, and an average of 2.17% performance

gain in accuracy over the best of the rest variants (JOIE-TransE-CG). We believe that,

compared with similarity-based intra-view models, translation based intra-view model better

differentiates between different entities and different concepts in KGs with directed relations

and meta-relations in the KB [PAG17]. The results by CT-based model variants are generally

better than those by CG-based ones. We believe this is due to two reasons: (i) CT allows

the two embedding spaces have different dimensionalties, and hence better characterizes the

ontology-view that is smaller and sparser than the instance view; (ii) As the topological

structures of the two views may exhibit some inconsistency, CT adapts well and is less

sensitive to such inconsistency than CG.

In terms of different intra-view models, it is also observed that HA intra-view model

with CT settings can drastically enhance entity typing task and achieve the best performance

especially for YAGO26K-906 with relatively rich ontology, which improves an average of 6.0%

on MRR and 10.5% in accuracy compared with the default intra-view settings. The reason

that the HA technique does not have similar effects on DB111K-174 is because DB111K-174

contains a small ontology with much smaller hierarchical structures3. Comparing the two

datasets, our experiments show that, JOIE generally achieves similar accuracy and MRR

scores on YAGO26K-906 and DB111K-174, but slightly better Hit@3 on DB111K-174 due

to its smaller candidate space.

Our method opens up a new direction that the learned embedding may help guide labeling

entities with unknown types. In Section 2.4.4 and Section 2.4.5, we provide more experiments

and insights on the benefits of representation learning with JOIE.

3DB111K-174 contains 164 ontology-view triples for meta-relations with the hierarchical property, while
YAGO26K-906 contains 1,411.
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2.4.4 Case Study

In this section, we provide two case studies for ontology population and entity typing for

long-tail entities.

Ontology Population By embedding the meta-relations and concepts in the ontology

view, the triple completion process can already populate the ontology view with seen meta-

relations, by answering the query like (“Concert”,“Related to”,?t) in the KG completion

task. Given the top answers of the query, we can reconstruct triples like (“Concert”,“Related

to”,“Ballet”) and (“Concert”,“Related to”,“Musical”) with high confidence. A similar ex-

ample with ontology inference between “Computer Scientist” and “” is shown in Figure

2.4. However, this process does not resolve the zero-shot cases where some concepts may

satisfy some meta-relations that have not pre-existed in the vocabulary of meta-relations.

We cannot predict the potentially new meta-relation ”is Politician of” directly with triple

completion by answering the following query: (“Office Holder”, ?r, “Country”).

University

Wei Wang

Computer

Scientist

Jiawei Han

Yizhou Sun

Judea Pearl

Jure 

Leskovec 
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Technion
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Mcauley  

TUM

graduated_from
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graduated_from

Figure 2.4: Intuition on how the two-view KG can help with ontology population, i.e. to
infer potential new relations between concepts.

Our proposed JOIE provides a feasible solution by leveraging the cross-view association
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model that bridges the two views of the KG, and migrate proper instance-view relations

to ontology-view meta-relations. This is realized by transforming the concept embeddings

in the query to the entity embedding space, and selecting candidate relations from the

instance-view. Considering the previous query (“Office Holder”, ?r, “Country”), we first

find the concept embeddings of “Office Holder” and “Country” (denoted as coffice and ccountry

respectively ), and then transform them to the entity space. Specifically, for JOIE variants

with translational intra-view model, we find the instance-view relations that are closest to

f inv
CT(ccountry) − f inv

CT(coffice). Figure 2.5 shows the PCA projections of the top 10 relation

prediction results for this query. The top 3 relations are “is Politician of ”, “is Leader of ”

and “is Citizen of ”, which are all reasonable answers.
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actedIn(9)

hasAcademicAdvisor(10)

officeholder-country

Query target: Office holder - Country
Other Relations
Top-10 Closest Relations
Query Relation

Figure 2.5: Examples of ontology population by finding the closest relations in the instance
view for the query ”Office Holder-Country”. Top 10 predicted relations are plotted with
their ranks.
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Table 2.4: Examples of ontology population from JOIE-TransE-CT. Top 5 Populated Triples
with smallest L2-norm distances are provided with reasonable answers bold-faced.

Query Top 5 Populated Triples with distances

(scientist,?r,
university)

scientist, graduated from, university (0.499)
scientist, isLeaderOf, university (1.082)
scientist, isKnownFor, university (1.098)

scientist, created, university (1.119)
scientist, livesIn, university (1.141)

(boxer, ?r,
club)

boxer, playsFor, club (1.467)
boxer, isAffiliatedTo, club (1.474)

boxer, worksAt, club (1.479)
boxer, graduatedFrom, club (1.497)
boxer, isConnectedTo, club (1.552)

(TV station, ?r,
country)

TV station, headquarter, country (1.221)
TV station, parentOrganisation, country (1.246)

TV station, appointer, country (1.253)
TV station, broadcastArea, country (1.266)
TV station, principalArea, country (1.271)

(scientist, ?r,
scientist)

scientist, deputy, scientist (0.204)
scientist,doctoralAdvisor, scientist (0.218)
scientist, doctoralStudent, scientist (0.221)

scientist, relative, scientist (0.228)
scientist, spouse, scientist (0.230)

Table 2.4 shows some examples of newly discovered meta-relation facts that have not

pre-existed in the ontology views of the two datasets. Five predictions with the highest

plausibility (smallest distance) are provided for each query from the ontology-view graph.

From these top predictions, we observe that most populated ontology triples migrated from

the instance view are meaningful.

Long-tail entity typing In KGs, the frequency of entities and relations often follow a

long-tail distribution (Zipf’s law) in both YAGO26K-906 and DB111K-174 datasets, which

is confirmed by the histogram in Figure 2.6. As shown in Figure 2.6a and Figure 2.6b,

both YAGO26K-906 and DB111K-174 discover such a property. Over 75% of total entities

has less than 15 occurrences. Those long-tails entities, types and relations are difficult for

representation learning algorithms to capture due to being few-shot in training cases.
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Figure 2.6: Long-tail distribution holds on entity frequency from both YAGO26K-906(a)
and DB111K-174(b)

In this case study, we select the entities with considerably low frequency4, which involve

around 15%-30% of total entities in the instance view of the two KB datasets. Then, we

evaluate the entity typing task for these long-tail entities. Table 2.5 shows the results by the

best baselines (DistMult, MTransE) and a groups of our best JOIE variants. Similar to our

previous observation, JOIE significantly outperforms other baselines. Compared with the

results in Section 2.4.3, we observe the depletion of performance for all models, while JOIE

variants only have an average of 12.5% decrease in MRR with CG models and 12.3% decrease

in MRR with CT models while other baselines suffer over 20% on long-tail entity prediction.

There is also an interesting observation that, for long-tails entities, smaller embeddings for

both CG (d1 = d2 = 100) and CT (d1 = 100, d2 = 50) models are beneficial for associated

concept prediction. We hypothesize that this is caused by overfitting on long-tail entities if

high dimensionality is used for training without enough training data.

In Table 2.6, we include some examples of top 3 predicted categories of long-tail entities

by DistMult, MTransE and JOIE (using JOIE-HATransE-CT variant) from DB111K-174,

when the instance-view graph and ontology-view graph are relatively sparser. JOIE is still

4In this experiment, we select entities in YAGO26K-906 which occurs less than 8 times and entities in
DB111K-174 which occurs less than 3 times.
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Table 2.5: Results of long-tail entities typing.

Datasets YAGO26K-906 DB111K-174

Metrics MRR Acc. Hit@3 MRR Acc. Hit@3

DistMult 0.156 10.89 25.33 0.219 16.48 33.71
MTransE 0.526 46.45 67.25 0.505 46.67 64.36

JOIE-TransE-CG 0.708 59.97 79.80 0.741 64.45 83.05
JOIE-TransE-CT 0.737 62.05 82.60 0.758 66.35 83.80

JOIE-HATransE-CT 0.802 69.66 87.75 0.760 67.34 89.79

Table 2.6: Examples of long-tail entity typing. Top 3 predictions are provided with the
correct type bold-faced.

Entity Model Top 3 Concept Prediction

Laurence
Fishburne

DistMult football team, club, team
MTransE writer, person, artist
JOIE person, artist, philosopher

Warangal
City

DistMult country, village,city
MTransE administrative region, city, settlement
JOIE city, town, country

Royal Victor
-ian Order

DistMult person, writer, administrative region
MTransE election, award, order
JOIE award, order, election

able to make correct predictions of low-frequency entities while other baselines models can

only output inaccurate predictions.

2.4.5 Ablation Study

In this section, we provide some insights on several critical factors that affect the performance

of the model. These include the embedding dimensionality, sufficiency of cross-view links in

training, and the effect of adopting negative sampling in cross-view association models.

Dimensionality Dimensionality is a key hyperparameter that affects the quality of the

obtained embeddings. Figure 2.7a shows the MRR of model variants with the CG-based

cross-view association according to different embedding dimensions d. It is observed in

Figure 2.7a that the performance of CG variants are generally improving from d = 50 to

d = 200, however, after reaching the optimal dopt = 200, MRR begins to drop at d = 300.
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Similarly we plot MRR scores for both dataset with CT model variants in Figure 2.7b. We

compare four different dimensionality settings of (d1, d2): (100, 20),(100, 50),(300, 50) and

(300, 100)5. Most of the JOIE variants achieve their best performance under the embed-

ding setting (d1, d2) = (300, 50) rather than (d1, d2) = (300, 100) (except JOIE-Mult-CT

on DB111K-174). The reason is that, JOIE set with low dimensionalities easily falls short

of capturing latent features of entities and concepts, while too high dimensionalities lead to

overfitting on the ontology view of KG, as well as inefficient training and prediction processes.

Sufficiency of Type Information Cross-view links between the instance-view graph and

the ontology-view graph are key components, which bridge and enable the information flow

between two views to generate embeddings. We also investigate the influence of cross-view

links and their sufficiency in training.

We define the train set ratio ν = {0.2, 0.4, 0.6, 0.8}, which means the proportions of

the cross-view links that are used for training JOIE. MRR score is reported in Figure 2.8a

on YAGO26K-906 and Figure 2.8b on DB111K-174. As expected, when the proportion of

cross-view links used for training increasing from 20% to 80%, the performance improves by

3.2% on YAGO26K-906 and by 2.9% on DB111K-174 in terms of MRR. It is noteworthy

that JOIE trained with 20% cross-view links still outperforms MTransE trained with 60%

cross-view links, which indicates that one advantage of JOIE is its outstanding generalization

ability to other untyped entities, given limited knowledge on entity-concept pairs.

One interesting observation is that, when ν increases from 0.6 to 0.8, the performance

of CG variants does not necessarily improve, while the performance of CT variants still has

significant improvements. We hypothesize that this is because the strong clustering-based

constraint in CG can be sensitive to even minor inconsistencies between the topological

structures of the two KG views, giving too much supervision. CT, on the contrary, is more

robust against the inconsistency between the two views. There is a trade-off between the

robustness of CT and the efficiency of CG.

5(d1, d2) = (100, 20) denotes that entities are embedded with d1 = 100 dimensional vectors and concepts
are embedded with d2 = 20 dimensional vectors
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Figure 2.7: Performances of entity typing task on both datasets with different entity and
concept embedding dimensionalities

Effects of Negative Sampling Negative sampling is widely applied in the encoding process

of a single KG structure [BUG13, YYH15]. One interesting question is whether to use

negative sampling for capturing the cross-view links between two structures, i.e. to provide

corrupted entity-concept pairs such as (“Barack Obama”,“state”). We compare the results

of entity typing task by JOIE variants with and without cross-view link negative samples in

Table 2.7. It is our finding that there is a significant performance drop if negative sampling

is disabled in CT, while negative sampling has less effect on CG. We hypothesize that the
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Figure 2.8: The effect of training the model using different proportions of cross-view links
on (a) YAGO26K-906 and (b) DB111K-174

difference is attributed to the fact that strong clustering-based constraint of CG is already

effective in separating irrelevant concepts.

We show the effects of negative sampling by visualizing the results of one query, which

are plotted as PCA projections in Figure 2.9. For the displayed query which targets at the

concept “music”, we plot the 10 nearest neighbors of concepts. Although related concepts

such as “classic music”, “concert” and “artist movement” still stay close by “music” in

both settings, other irrelevant concepts including “decoration” and “architect” intercept in

JOIE-TransE-CT without negative sampling. We find such phenomenon frequently exist

in the JOIE embeddings trained without negative sampling, which no-doubt impairs the

performance of the entity typing task.
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Figure 2.9: Visualize effects on embeddings of negative sampling on cross-view links

2.5 Conclusion

In this chapter, we propose a novel model JOIE aiming to jointly embed real-world entities

and ontological concepts. We characterize a two-view knowledge base. In the embedding

space, our approach jointly captures both structured knowledge of each view, and cross-view

links that bridges the two views. Extensive experiments on the tasks of KG completion and
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Table 2.7: Effects of negative sampling in type links

Datasets YAGO26K-906 DB111K-174

Setting W/O NS W/ NS W/O NS W/ NS

JOIE-TransE-CG 0.657 0.805 0.815 0.864
JOIE-Mult-CG 0.627 0.762 0.761 0.797
JOIE-HolE-CG 0.682 0.777 0.783 0.815

JOIE-TransE-CT 0.501 0.847 0.667 0.883
JOIE-Mult-CT 0.490 0.829 0.494 0.811
JOIE-HolE-CT 0.508 0.821 0.560 0.821

entity typing show that our model JOIE can successfully capture latent features from both

views in KBs, and outperforms various state-of-the-art baselines.

We also point out future directions and improvements. The formulation of a two-view

knowledge graph remains a simplification of real-world complex and hierarchical structures.

In later chapters (Chapter 3, Chapter 4 and Chapter 5), we continue to explore more ap-

proaches to model ontologies in bioinformatics (gene ontology, disease ontology, etc) and

e-commerce (product ontologies).
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CHAPTER 3

Bio-JOIE: Joint Representation Learning of Biological

Knowledge Bases

3.1 Introduction

The outbreak of COVID-19 (Coronavirus Disease-2019) has infected millions of people and

caused high death tolls since the end of 2019, as worldwide social and economic disruption.

Tremendous efforts have been made to discover the infection mechanism of the causative

agent, named SARS-CoV-2. One important and urgent task is to understand the mechanism

in which viral proteins interact with human proteins. The new findings will enrich the

annotation of viral genomes [GJB20] in biomedical knowledge bases (KBs). Constructing

and populating such biomedical KBs can significantly improve our understanding of the

processes by which SARS-CoV-2 affects different cells in human body and will serve as

the foundation for many important downstream applications such as vaccine development

[KSS19], drug repurposing [ZHS20, GJB20] and drug side effect detection [ZAL18].

In general, biological KBs, often stored as knowledge graphs (KGs), consist of various

biological entities, their properties and relations. These KBs can be categorized in different

domains, such as gene annotation, functional proteomic analysis, and transcriptomic profil-

ing. Specifically, gene ontology (GO) [Con18, HSM15] is the most widely used resource for

gene function annotation; STRING [SMC16], PDB [BHN07] and neXtProt [LAB12] collect

the knowledge accumulated from functional proteomic analysis; Expression Atlas [PMM20] is

a database facilitating the retrieval and analysis of gene expression studies. While those KBs

provide the essential sources of knowledge for in silico research in the corresponding domains,
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Figure 3.1: Two examples of SARS-CoV-2-human protein interactions: M protein (left) and
ORF3a protein (right). The purple diamonds refer to the viral proteins and the orange
circles refer to the high-confidence human protein target. Proteins highlighted in blue are
involved in certain biological processes, and proteins highlighted in yellow are arranged in a
protein complex.

such domain-specific knowledge is often sparse and costly to apprehend [MHR19, TWM12].

For example, PPI networks can be far from complete given the information supported by

experimental results or suggested by computational inference [HLW18, MHR19]. (author?)

[MHR19] indicate that the numbers of PPIs in BIOGRID [OSB19] for non-model organisms

are far less than expected, specifically, there are only 107 interactions for tomato (Solanum

lycopersicum) and 80 interactions for pig (Sus scrofa). Evidently, relying on the KG from a

single domain presents the risk of learning from limited and scarce information.

The stored knowledge is often interrelated across different perspectives. Hence, the miss-

ing knowledge in certain KBs can be transferred from other KBs, and thus provide a more

comprehensive representation of the biological entities. Taking the protein-protein interac-

tion (PPI) examples of the new SARS-CoV-2 proteins as illustrated in Figure 3.1, SARS-

CoV-2 M protein interacts with a list of human proteins, and five of them are involved

in the endoplasmic reticulum (ER) morphology process as suggested by the gene ontology
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Figure 3.2: Examples of gene ontology annotation enrichment on three representative SARS-
CoV or SARS-CoV-2 proteins, which possess multiple properties across three biological as-
pects: biological processes, cellular components and molecular functions.

annotation (GO:0005783). Similarly, the SARS-CoV-2 ORF3a also interacts with a list of

human proteins. Among these proteins, VSP39 and VSP11 are the core subunits of HOPS

complex, presenting a binding action as suggested by the STRING database. While aligning

the gene ontology annotations of the SARS-CoV-2 M protein as demonstrated in Figure 3.2,

the SARS-CoV M protein presents a similar set of gene ontology annotations, such as “host

immune mitigation” and “virion membrane”, suggesting that the side knowledge of gene

ontology annotations can facilitate the inference of interactions for related proteins. More

generally, the sparse domain information can always benefit from the supplementary knowl-

edge from other relevant domains, therefore calling upon a plausible method to support the

fusion and transfer of knowledge across multiple biological domains.

Regardless of the importance and advantages of knowledge fusion across different domains

[BN09, BB14], fewer efforts have been devoted to incorporating knowledge from different

domains for a specific task in computational biology studies. Onto2vec [SGH18] presents

one state-of-the-art learning approach that successfully bridges gene ontology annotations

with the protein representation. However, the known PPI information is neglected and not
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encoded in the obtained protein embeddings.

To combine multiple domain-specific biological knowledge, and facilitate knowledge trans-

fer across different domains, we purpose Bio-JOIE, a JoInt Embedding learning framework

for multiple domains of Biological KBs. In Bio-JOIE, two model components are jointly

learned, i.e., a knowledge model characterizes different domain-specific KGs in separate low-

dimensional embedding spaces, and a transfer model captures the cross-domain knowledge

association. More specifically, the knowledge model encodes the relational facts of entities in

each view into the corresponding embedding space separately, with a hierarchy-aware tech-

nique designated for the hierarchically-layered domains. Besides, the transfer model seeks to

transfer the knowledge between pairs of domains by employing a weighted non-linear trans-

formation across their embedding spaces. In evaluation, we apply the Bio-JOIE on several

PPI networks with Gene Ontology annotations and the entire gene ontology and evaluate

by PPI predictions. We compare Bio-JOIE with that of the state-of-the-art representation

learning approaches on multiple species, including SARS-CoV-2-Human PPIs, with differ-

ent model settings. Our best Bio-JOIE outperforms alternative approaches by 7.4% in PPI

prediction.

Our contributions are 4-fold.

• First, we construct a general framework for learning representations across different

domain-specific KBs, including the dynamically changing SARS-CoV-2 KB.

• Second, we emphasize and demonstrate that cross-domain representation learning by

the proposed Bio-JOIE can improve the inference in one domain by leveraging the

complementary knowledge from another domain. Extensive experiments on different

species confirm the effectiveness of cross-domain representation learning.

• Third, Bio-JOIE also demonstrates cross-species transferability to improve PPI pre-

dictions among multiple species by knowledge population from gene ontology.

• Fourth, the protein representations learned from Bio-JOIE can be leveraged for differ-

ent tasks. Specifically, we show that the protein embeddings trained on PPI network
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and gene ontology present the potential to better group enzymes into different enzyme

commission families. Tremendous efforts have been made to discover the infection

mechanism of the causative agent, named SARS-CoV-2.

3.2 Related Work

In the past decade, much attention has been paid to representation learning of KBs. Meth-

ods along this line of research typically encode entities into low dimensional embedding

spaces, where the relational inference [WZF14], proximity measures and alignment [CTY17]

of those entities can be supported in the form of vector algebras. Therefore, they provide

efficient and versatile methods to incorporate the symbolic knowledge of KGs into statistical

learning and inference. Some existing approaches focus specifically on computational biol-

ogy studies [AKM17, SGH18, CJZ19, YCH15, HYG15], which similarly embed features of

biological entities within low-dimensional representations. One representative work related

to ours is Onto2Vec [SGH18], in which protein representations are learned by incorporating

the full semantic content of gene ontology in the feature learning using Word2Vec [MSC13].

However, Onto2Vec replies on the ontology information, which falls short of capturing the

multi-relational semantic facts that are important to characterize the proximity of biological

entities. For example, regarding the protein and GO terms, the PPI knowledge and the

non-hierarchical relationships between gene ontology entities (such as “regulates”) are not

considered.

Another thread of related work is joint representation learning for multiple KGs, where

embedding models are learned to bridge multiple relational structures for tasks such as entity

alignment and type inference. MTransE [CTY17] jointly learns a transformation across two

separate translational embedding spaces based on one-to-one seed alignment of entities.

Later extensions of this model family, such as KDCoE [CTC18a], MultiKE [ZSH19] and

JAPE [SHL17], require additional information of literal descriptions [CTC18a] and numerical

attributes of entities [SHL17, TQZ19, ZSH19] that are generally not available for biological

KB. Our recent development in this line of research, i.e. JOIE [HCY19] learns a many-to-
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one mapping between entity embeddings and ontological concept embeddings, and aims at

resolving the entity type inference task using the latent space of the type ontology. One

of the caveats is that JOIE does not specifically incorporate the specificity of concepts in

the ontology in the transfer process, which we find to be particularly beneficial in this

problem setting. Besides, the aforementioned methods are mostly for general encyclopedia

KBs (such as Wikidata, and DBpedia) and have not been adapted for the purpose the

modeling biological KBs. More specifically, in contrast to these methods, our method features

the characterization of more complicated many-to-many associations between proteins and

GO terms. Besides, instead of predicting the alignment of entities, we focus on transferring

relational knowledge from one domain to enhance the prediction on the other.

Also, regarding the task of this chapter, predicting protein-protein interactions (PPIs)

and characterizing the interaction types are one of the essential tasks in computational bi-

ology. In the past decade, a wide selection of research works to address the PPI prediction

problem. Representative examples are homology-based methods [POK16], which map a pair

of sequences to known interacting proteins by BLAST, and sequence-based statistical learn-

ing models [GYW08, YCH15], which rely on extracting protein sequences as primary features.

Such sequential features include CT [SZL17], CTD [DSH17], multi-scale continuous and dis-

continuous (MCD) descriptors [YZZ14], and local phase quantization (LPQ) [WYL15]. Some

recent works also utilize alternative deep learning based techniques [SZL17], including stacked

autoencoders (SAE) [WYL17], convolutional neural networks (CNN) [LGY18] and Siamese

residual RCNN [CJZ19]. Other than sequence based methods, some network factorization

based methods have also been proposed between drug and target proteins [ZLW22].

3.3 Materials and Method

In this section, we present the proposed method to support representation learning and

cross-domain knowledge transfer on biological KBs. Without loss of generality and aligned

with the evaluation of the proposed Bio-JOIE, we refer to two domain-specific KGs in the

following section to PPI networks and the gene ontology graph. We begin with the formalized
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descriptions of the materials and tasks.

3.3.1 Preliminary

Materials. A typical biological KB can be viewed as relational data that are presented as

an edge-labeled directed graph G, which is formed with a set of entities (e.g. proteins) E
and a set of relations (e.g. interaction types) R. A triple (s, r, t) ∈ G represents a r ∈ R
typed relation between the source and target entities s, t ∈ E , As stated, we continue with

the modeling on KGs of two domains, PPI and gene ontology. For example, in the PPI

network, a triple (FBgn0011606, binding, FBgn0260855) simply states the fact that two

proteins (from fly) have binding interaction; and in gene ontology, a triple (GO:0008152,

is a, GO:0008150) similarly represents that GO:0008152 (a unique identifier of “metabolic

process”) is one subclass of GO:0008150 (a unique identifier of “biological process”). Our

model seeks to capture the protein information in the triples (sp, rp, tp) of PPI graph Gp in a

kp-dimensional embedding space, where we use boldfaced notations such as sp, rp, tp ∈ Rkp to

denote the embedding representation. Similarly, gene ontology is another graph Go formed

with a set of GO terms Eo and a set of semantic relations Ro. The triple (so, ro, to) ∈ Go
identifies a semantic relation of GO terms, while we also observe hierarchical substructures

formed by “subclass” or “is a” relation as the aforementioned example. The gene ontology

is embedded in another space Rko , such that kp and ko may not be equivalent. We use

(o, p) ∈ A to denote a GO term annotation where a GO term o ∈ Eo describes a protein

p ∈ Ep of its corresponding functionality, and A denotes the set of such associations. As

introduced in Section 3.1, we consider SARS-CoV-2-Human interaction as a similar (but

significantly smaller) KBs with the same structures as Gp, which serves as an extension of

human PPI networks.

Tasks. To validate the learned embedding of biological entities (proteins and GO terms in

this context), we address the following two tasks. (i) PPI type prediction aims at predicting

the interaction type between two interacting proteins, including SARS-CoV-2 related PPIs ;

(ii) Protein clustering and family identification aims at clustering the existing proteins and

46



helps identify the clusters based on Enzyme Commission (EC) numbers.

Methods. The model architecture of Bio-JOIE is shown in Figure 3.3. The proposed

Bio-JOIE jointly learns two types of model components to connect the two views of struc-

tured knowledge. Knowledge models are responsible for representing the relational knowledge

of PPI and that of GO term into two separate embedding spaces Rkp and Rko by using KG

embedding and hierarchy-aware regularization. On top of that, a transfer model learns a

transformation to connect between the representations of GO term relation facts and PPI

based on partially provided GO term assignments. In particular, we investigate weighted

transfer techniques to better capture the knowledge transfer, for which the weights reflect

the specificity of the assigned GO term to a protein. The following of this section describes

the model components and the learning objective of Bio-JOIE in detail.

3.3.2 Knowledge Model

The knowledge models seek to characterize the semantic relations of GO terms and PPI

information into separate embedding spaces. In each embedding space, the inference of

relations or interactions is modeled as specific algebraic vector operations. As mentioned,

the two views of gene ontology and PPI are embedded to separate embedding spaces.

To capture a triple (s, r, t) from either of the two domains, a cost function fr(s, t) is

provided to measure its plausibility. A lower score indicates a more plausible triple. We can

adopt multiple vector operations in the defined embedding space with three representative

examples defined as follows, i.e. translations (TransE [BUG13]), Hadamard product [YYH15]

and circular correlation (HolE [NRP16]). The cost functions are given as follows, where the

symbol ◦ denotes Hadamard product, and ⋆ : Rd × Rd → Rd denotes circular correlation

defined as [a ⋆ b]k =
∑d

i=0 aib(k+i) mod d.

fTrans
r (s, t) = ||s + r− t||2

fMult
r (s, t) = −(s ◦ t) · r

fHolE
r (s, t) = −(s ⋆ t) · r
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Figure 3.3: Model architecture of Bio-JOIE. The Knowledge Model seeks to encode relational
facts in each domain respectively (such as proteins and gene ontology). Meanwhile, the
Transfer Model learns to connect both domains and enable knowledge transfer across protein
and gene ontology.

Since most of the relations in PPI networks are symmetric (such as binding and catalysis),

we apply the Hadamard product based function. The learning objective of a knowledge

model on a graph G is to minimize the following margin ranking loss,

LG
K =

1

|G|
∑

(s,r,t)∈G

max
{
fr(s, t) + γG − fr(s

′, t′), 0
}

where γG is a positive margin, and a negative sample (s′, r, t′) /∈ G is created by randomly

substituting either s or t using Bernoulli negative sampling [WZF14]. With regard to the

two domains of relational knowledge (proteins and gene ontology) Gp and Go, we denote the
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learning objective losses as LGp

K and LGo
K .

Hierarchy-aware Encoding Regularization As mentioned in Section 3.3.1, it is ob-

served that some ontological knowledge can form hierarchies [CTC18b], which is typically

constituted by a relation with the implicit hierarchical property, such as “subclass of”, as

substructures. In gene ontology, more than 50% of the triples have such relations. To better

characterize such hierarchies, we model such substructures differently from the aforemen-

tioned DistMult and many others by adding hierarchy regularization. More specifically,

given entity pairs (el, eh) ∈ S where el is a subclass of eh, we model such hierarchies by min-

imizing the distance between coarser concepts and associated finer concepts in embedding

space. Hence, the loss is simply defined as

L(HA) =
1

|S|
∑

(el,eh)∈S

[||el − eh||2 − γHA]+

where [x]+ = max{x, 0} and γHA is also a positive margin parameter. This penalizes the case

where the embedding of el falls out the γHA-radius neighborhood centered at the embedding

of eh.

Relation Inference Given the learned embeddings and a pair of query proteins ((p1, p2)),

we can predict the most plausible interaction type r by selecting the optimal fr(p1, p2) score.

We can also provide predictions for possible protein targets given the query of the subject

protein and specific interaction type (p, r, ?t) by populating the selection proteins with top

score fr(p, t) from the knowledge model. Details about each task are curated in Section 3.4.3

and 3.4.5.

3.3.3 Transfer Model

The transfer model learns to connect between the above two relational embedding spaces

via a non-linear transformation. The transformation is induced based on the GO term

assignments, towards the goal to collocate the associated GO terms and proteins in an
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embedding space after transformation. Hence, the affinity of embedding structures of gene

ontology and PPIs can be captured. This allows the relational knowledge to transfer across

and complement the learning and inference on both domains.

Given each GO term assignment (o, p) ∈ A, following function fT (o, p) measures the

plausibility of the transformation that is favored to be minimized.

fT (o, p) = ∥σ (MT · p + bT )− o∥2

MT ∈ Rko×kp thereof is a weight matrix and bT ∈ Rkp is a bias vector. σ is either the

identify function, or a non-linear function as tanh, the latter thereof aims at smoothing the

transformation with additional non-linearity.

3.3.3.1 Basic Transfer Model

The basic strategy to learn the transfer model is to treat each GO term assignment evenly,

and thereby minimizing the following learning objective loss.

LT1 =
1

|A|
∑

(o,p)∈A

max
{
fT1 (o, p) + γA − fT1 (o′, p′) , 0

}

(p′, o′) /∈ A thereof is a negative sample by randomly substituting p′, and γA is a positive

margin.

3.3.3.2 Weighed Transfer Model

Since some ontological knowledge, such as gene ontology, may form hierarchical structures,

where GO terms in lower levels typically describe more specified gene functionality. During

the characterization of associations between GO terms and proteins, in contrast to general

GO terms, more specified GO terms necessarily carry more precise descriptions of the pro-

teins. Hence, an improved transfer model weights among GO term associations to a protein

for the purpose of more attentively capturing those with more specific GO terms. Let ω(o)
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be the weight is specifically assigned to o, the objective of the weighted transfer model is to

minimize the following loss,

LT2 =
1

|A|
∑

(o,p)∈A

max

{
ω(o)

C

[
fT2 (o, p) + γA − fT2 (o′, p′)

]
, 0

}

where C is a normalizing constant to constrain that
∑

(o,p̂)
ω(o)
C

= 1 for a specific protein p̂.

P0DTC5
SARS-CoV-2 M

host immune 

response mitigation

biological

process

evasion of host natural

 killer cell activity

viral

process

symbolic

process

Known GO Annotation

h0

h1

h2

h3

h4

w(h3)

w(h2)

w(h1)

w(h0)

w(h4) = 0

Figure 3.4: Explanation of weighted transfer model for modeling hierarchical gene ontology.

Exemplarily, there could be several ways to calculate the association weight.

Level-based weight. The level of the node in one hierarchical taxonomy is a natural

indicator of its specificity. Accordingly, the weight can be defined as,

ω(o) =
l

lmax

where l is the term’s current depth and lmax is the maximum length of the associated branch

in the gene ontology DAG.

Degree centrality weight. A small node’s degree centrality in the graph roughly reflects
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its specialty and we apply

ω(o) =
1

d(o)

as the balance factor for different GO term specialty.

In practice, incorporating a specificity-based weight to the transfer model essentially

enhances the inference in the protein domain, as we have observed in the evaluation in

Section 3.4. However, the above weight options generally yield similar performance gain,

and we fix the weight option as the level-based weight in our experimental setting.

3.3.4 Joint Learning Objectives

Bio-JOIE jointly learns two knowledge models respectively for GO term relations and PPIs,

and a transfer model to support knowledge transfer between these two. Therefore, the joint

learning objective minimizes the following loss,

L = λtLT + λpLGp

K + LGo
K

λp and λt are two positive hyperparameters. We use Adam [KB15a] to optimize the learning

objective loss. The learning process uses orthogonal initialization [SMG14] to initialize the

weight matrix, and Xavier normal initialization [GB10] for vector parameters. A normal-

ization constraint is enforced to keep all embedding vectors of GO terms and proteins on

unit hyper-spherical surfaces, which is to prevent the non-convex optimization process from

collapsing to a trivial solution where all vectors shrink to zero [BUG13, MCW18, YYH15,

HCY19].

Note that Bio-JOIE is suitable for joint representation learning on proteomic knowledge

of different species. In this protein-GO example, the proteins of these species are significantly

different from each other. However, they share the same set of annotations in the GO do-

main. Therefore, More specifically, if we have multiple PPI networks Gi, i = 1, 2, . . . ,m where

m denotes the number of independent species, n knowledge models are trained respectively.

Consequently, one unique transfer model is also trained to facilitate the protein-GO knowl-
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edge transfer regarding each species. The learning objective on the multi-species setting is

changed accordingly as,

L =
m∑
i=1

λt
iLT +

m∑
i=1

λp
iL

Gp

K + LGo
K

with the assumption that the knowledge model for gene ontology remains unchanged.

In addition to joint learning on multiple species, Bio-JOIE can also be re-trained from

new observations of PPIs. For example, suppose newly discovered SARS-CoV-2-Human PPI

knowledge extends the original human PPI networks, we can fine-tune the Bio-JOIE from

the saved model and obtained embeddings, by only optimizing the Bio-JOIE on the new

triples and hence fast obtain representations for all new proteins, without a long time for

retraining the Bio-JOIE from scratch.

3.4 Results

In this section, we evaluate the embeddings learned from Bio-JOIE with two groups of tasks:

PPI type prediction (Section 3.4.3) and protein clustering based on enzymatic functions

(Section 3.4.4). Furthermore, we provide an extensive case study in Section 3.4.5 on SARS-

CoV-2 related PPI prediction and classification.

3.4.1 Dataset

The protein-protein interactions for three species, yeast (Saccharomyces cerevisiae), fly

(Drosophila melanogaster), and human (Homo sapiens) are collected from STRING [SMC16]

database. There are seven types of interactions annotated in the STRING database. To

preserve a balanced and sufficient number of cases in each class, we randomly choose the

protein pairs from four types of interaction: activation, binding, catalysis, and reaction.

In total, there are 21704, 10000, 36400 pairs of proteins for yeast, fly, and human, respec-

tively; each type contains roughly the same number of interactions. Table 3.1 summarizes

the PPI information for each species. Note that, the human PPI dataset does not contain

the virus-generated proteins, but the set partially overlaps with the virus-human pan-PPI
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networks.

The gene ontology annotations for each protein are extracted from gene ontology Con-

sortium [Con18], including all three biological aspects: biological process (BP), cellular com-

ponents (CC), and molecular function (MF). Table 3.2 summarizes the number of relations

between proteins and GO terms. The relations between GO terms include is-a, part-of,

has-part, regulates, positively-regulates, and negatively-regulates.

Table 3.1: Statistics of PPI networks and associated GO annotations from different species.

Species # Proteins # PPI Triples # GO Annotations

Yeast 3,736 21,704 191,801
Fly 3,826 10,000 87,807
Human 8,204 36,400 102,759

Table 3.2: Statistics of three aspects in the gene ontology: biological processes (BP), cellular
components (CC) and molecular functions (MF).

Aspects BP CC MF

# GO entities 5744 1,147 1,764
# GO triples 19,021 2,116 2,190

# Protein-GO annotations (yeast) 72,956 58,729 60,116
# Protein-GO annotations (fly) 44,605 24,550 18,652
# Protein-GO annotations (human) 42,899 32,929 26,931

For the SARS-CoV-2 dataset, we collect the latest virus-protein interaction from BioGrid1

and the limited GO annotations for SARS-CoV-2 from Gene Ontology Consortium2, as last

updated on early April. In summary, there are 26 SARS-CoV-2 generated proteins and

332 human proteins presenting evidence of viral-human protein interactions as suggested by

(author?) [GJB20]. The selection is based on a high MIST score and a low SAINTexpress

BFDR from Affinity Capture-MS. Out of the same experiment, we select 1131 viral-human

protein pairs with MIST scores lower than 0.01 as our negative samples. The 26 SARS-CoV-2

generated proteins are annotated with 282 GO terms. In addition to SARS-CoV-2, BioGrid

also includes 30 viral proteins from SARS-CoV and MERS-CoV, which are two similar

1Data source: https://wiki.thebiogrid.org/doku.php/covid

2Data source: http://geneontology.org/covid-19.html
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contagious viruses causing respiratory infection. These 30 viral proteins are annotated with

630 GO terms, and display 326 interactions with human proteins. All processed datasets are

available at https://www.haojunheng.com/project/goterm.

3.4.2 Baselines

We compare our model Bio-JOIE with Onto2Vec [SGH18] the most applicable state-of-the-

art approach, on learning the representation of proteins. Onto2Vec considered the annotation

from gene ontology for representation learning. In addition, we compare Bio-JOIE with a

simpler setting, Bio-JOIE-NonGO, where we only consider the single-domain knowledge of

PPI.

Onto2Vec, Onto2Vec-Parent, Onto2Vec-Ancestor. Onto2Vec utilizes the annotation

information from gene ontology to create pairwise context and apply Word2Vec [MSC13]

to generate protein and GO term embeddings. Its schema allows the model to learn the

representation of proteins and GO terms simultaneously. The proposed setting of Onto2Vec

only includes the direct relationship between a protein and a GO term. In this experiment,

we explicitly include the relationship between a protein and the parents of the annotated

GO terms, named Onto2Vec-Parent, and the ancestors of the annotated GO terms, named

Onto2Vec-Ancestor.

Onto2Vec-Sum, Onto2Vec-Mean. To examine the effect of Onto2Vec on learning the

protein representation from a single domain, i.e. gene ontology, we remove the relations

between proteins and GO terms during the learning process. The representation of a protein

is then computed by either summing up the embeddings of all the associated GO terms

(Onto2Vec-Sum), or taking the average of the embeddings of those GO terms (Onto2Vec-

Mean).

OPA2Vec Based on Onto2Vec, OPA2Vec further learns the protein and GO term embed-

dings by leveraging meta-data (labels, synonyms, etc), which better characterize GO terms.

Bio-JOIE (NonGO). As opposed to considering the knowledge from a single domain of

55

https://www.haojunheng.com/project/goterm


gene ontology, we adopt Bio-JOIE to consider only the knowledge from Protein-Protein

Interaction. In this approach, all the gene ontology annotations and the gene ontology

graph are neglected, and thus is reduced to a knowledge model. We only use the knowledge

model in Section 3.3.2, where the protein embeddings are solely learned from PPI networks

by the original KG embedding technique, DistMult. We refer to this approach as “Non-GO”.

It is worth mentioning that the goal of Onto2Vec and OPA2Vec is to learn the protein

representation; therefore, to adapt for the task of PPI prediction, we concatenate the em-

beddings of each pair of proteins and train a multi-class classifier to predict the PPI type

for a given pair of query proteins. We examine the performance with four different clas-

sifiers: logistic regression (LR), support vector machine (SVM), random forest (RF), and

neural networks (MLP). The evaluation is conducted with five-fold cross-validation. Simi-

lar settings apply to all Onto2Vec variants and OPA2Vec. On the contrary, our proposed

model equips with relational modeling and outputs PPI predictions by selecting the most

plausible relation type. As a result, we do not need an additional classifier for Bio-JOIE and

Bio-JOIE-NonGO.

3.4.3 PPI Type Prediction on Multiple Species

We examine how effectively Bio-JOIE leverages gene ontology to predict protein-protein

interaction types. To do so, we first evaluate the performance on three organisms separately:

human, yeast, and fly. Then we study the contribution of the three aspects in gene ontology,

i.e. biological process (BP), cellular component (CC), and molecular function (MF), on

predicting the type of PPI. Specifically, we provide an analysis on how the knowledge from

Gene Ontology contributes to PPIs in different species.

Experimental setting. We first separate the PPI triples into approximately 70% for

training, 10% for validation and 20% for testing. For hyperparameters with the best perfor-

mance from the validation set, we select dimension dp = do = 300 and margin parameters

γG = 0.25, γA = 1.0 and γHA = 1.0. Two weight factors in the joint learning objective

are set as λp = 1.0, λt = 1.0. We use DistMult for the knowledge model in Section 3.3.2,
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with hierarchy-aware regularization and the level-weighted transfer model (Section 3.3.3)

deployed. For simplicity, the reported Bio-JOIE adopts the same settings if not specifically

explained. The number of epochs in training on all settings is limited to 150. For evaluation,

we aim at predicting the correct interaction type, given pairs of proteins in the test set. We

conduct a 5-fold cross validation for Bio-JOIE and all baselines, and report the average and

standard deviation of accuracy. The best-performing classifier is RF for OPA2Vec and most

of the Onto2Vec variants. The only exception is to apply MLP for Onto2Vec-Ancestor on

fly.

Table 3.3: PPI type prediction accuracy (%) evaluated on yeast, fly and human species.

Model Yeast Fly Human

Onto2Vec 76.41 ± 0.73 70.85 ± 0.85 77.97 ± 0.46
Onto2Vec-Parent 80.79 ± 0.66 75.46 ± 1.11 74.90 ± 0.46
Onto2Vec-Ancestor 86.31 ± 0.42 80.31 ± 0.92 78.73 ± 0.46
Onto2Vec-Sum 76.38 ± 0.83 72.84 ± 1.13 72.53 ± 0.73
Onto2Vec-Mean 77.95 ± 0.81 74.38 ± 1.13 73.47 ± 0.80
OPA2Vec 79.88 ± 0.74 74.45 ± 0.97 72.04 ± 0.58

Bio-JOIE-NonGO 83.65 ± 0.92 77.58 ± 1.07 76.10 ± 0.87
Bio-JOIE 87.15 ± 1.15 84.56 ± 0.81 81.42 ± 0.62
Bio-JOIE-Weighted 90.12 ± 1.21 85.55 ± 1.57 83.89 ± 0.92

Results. The results for PPI type prediction are shown in Table 3.3. We observe that

our best Bio-JOIE variant outperforms Bio-JOIE-NonGO by 7.4% on average for all three

species. This observation directly shows that gene ontology KG provides complementary

knowledge for proteins. Subsequently, Gene Ontology annotations benefit the learning of pro-

tein representations and better predict the interaction types between proteins. Compared

to other baselines, it is observed that Bio-JOIE notably outperforms Onto2Vec-Ancestor

with an average increase of 7.4% on the prediction accuracy, and a relative gain of 9.0%

on average of all three species. This observation is due to the advantage that Bio-JOIE

better leverages the complementary knowledge from PPI to enhance the PPI prediction.

As mentioned in Section 3.4.2, Onto2Vec does not utilize the PPI information into pro-

tein embedding learning. Instead, it obtains embeddings based on the aggregated semantic

representations of GO terms. It requires additional classifiers for PPI type prediction given
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pre-trained protein embeddings. In contrast, Bio-JOIE jointly learns protein representations

from both the knowledge model that captures the structured information of known PPIs,

and the transfer model that delivers the annotations of GO terms. Also, we observe that

Bio-JOIE-Weighted achieves better results than Bio-JOIE, with a relative performance gain

of 2.5%. We hypothesize that such gain is attributed to specificity modeling in the trans-

fer model which distinguishes more specific and informative GO terms from other general

GO terms and assigns a higher weight, which selectively learns the alignments between two

domains. In terms of different species, we also observe that Bio-JOIE achieves a higher

PPI prediction accuracy on yeast compared to human and fly. The possible reason is that

the yeast interaction network is denser, such that 0.30% of the protein pairs are known to

interact, compared to human (0.13%) and fly (0.11%), which indicates that yeast is possibly

well studied. OPA2Vec claims to be an improved version of Onto2Vec. Similar to Onto2Vec,

it only considers the direct relationship between a protein and a GO term, without parents

and ancestors. We find that OPA2Vec performs slightly better than Onto2Vec on Yeast and

Fly, but worse on Human. In addition, OPA2Vec falls short when compared to any of the

Bio-JOIE variants, indicating that incorporating the metadata of GO terms is insufficient

for protein representation learning.

It is noteworthy that unlike Onto2Vec, which achieves its best performance with the help

of full gene ontology (i.e. Onto2Vec-Ancestor), our Bio-JOIE model can utilize only the GO

terms that are directly annotated with the proteins to accomplish the highest accuracy score.

This also makes Bio-JOIE training processes more time efficient. We hypothesize that for

Bio-JOIE in the PPI type prediction task, GO terms that are directly related to associated

proteins with high specificity are sufficient for the transfer model to model the protein-

GO association in the embedding spaces. In contrast, Onto2Vec needs entire structured

information of GO terms for its word2vec module to construct an exhaustive context of

protein features.

We further explore the effects of three different aspects of gene ontology in predicting the

types of PPIs. To achieve this, we train Bio-JOIE in settings where only specific aspects of
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Table 3.4: Comparison of PPI prediction accuracy of Bio-JOIE on three different aspects of
gene ontology.

# Aspects Yeast Fly Human

1
BP 0.8794 0.8402 0.8153
CC 0.8499 0.8272 0.8054
MF 0.8539 0.8386 0.8165

2
BP+CC 0.8717 0.8473 0.8271
BP+MF 0.8673 0.8471 0.8163
CC+MF 0.8569 0.8466 0.8170

3 AllGO 0.9012 0.8555 0.8389

gene ontology annotations are used. Results are shown in Table 3.4, in which BP, CC and MF

respectively refer to the cases where GO terms of biological processes, cellular components and

molecular functions are used. “BP + CC” denotes that the GO terms from both biological

processes and cellular components are included in training. We observe that Bio-JOIE

performs the best with GO terms from all aspects (full gene ontology). This phenomenon

is consistent among all three species, indicating that the protein representations are more

robust when learning from a more enhanced knowledge graph. It is also interesting to

see that the accuracy of the task is generally higher when we include the GO terms from

biological processes. This leads to 2.61% improvement in accuracy over CC, and at least

2.13% of improvement over MF when evaluated individually. In the two-aspect evaluation,

“BP+CC” is in average leads to 0.7% better accuracy than “CC+MF”. This is attributed

to the fact that BP is the largest group in the gene ontology, containing more entities and

relational facts. Consequently, Bio-JOIE achieves the best performance with all three aspects

of gene ontology annotations incorporated. This indicates that the characterization of PPIs

benefits from more comprehensive gene ontology annotations.

Table 3.5: PPI type prediction accuracy on different configurations of multi-species joint
learning.

Model Yeast Fly Human

Bio-JOIE (single) 0.9012 0.8555 0.8389
Bio-JOIE (concat) 0.8795 0.8282 0.8028
Bio-JOIE (multi-way) 0.9062 0.8638 0.8426
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In addition to joint learning from two different domains (i.e. GO terms and PPIs), as

mentioned in Section 3.3.4, Bio-JOIE can be trained to capture PPIs for multiple species

with several species-specific knowledge models, along with transfer models that bridge the

universal gene ontology. To validate the benefit of joint learning on multiple species together,

we consider three following configurations of Bio-JOIE: (i) the “multi-way” setting uses one

unique knowledge model and one transfer model to the universal gene ontology for each

species; (ii) the “concat” setting uses one unified knowledge model to capture all species

of PPIs, together with one transfer model to learn protein-GO alignments, that is, simply

concatenate all PPI triples and all gene ontology annotations of proteins in multiple species;

(iii) the “single” setting trains separately on each species, which is exactly the same as in the

setting in Table 3.3. We summarize the results in Table 3.5. It is observed that the “multi-

way” setting can slightly improve PPI performance in comparison to the “ single” setting

that trains separately on each species. Also in the “concat” setting with one shared transfer

model and knowledge model, the performance significantly drops with a 2.8% decrease of

accuracy on average compared to the “single” setting. Such results suggest that each species

has unique patterns of PPIs, such differences are better differentiated in separate embedding

spaces. Hence, the multi-way setting better encodes the species-specific knowledge and

model, which helps the type prediction of PPIs for each species by Bio-JOIE that are jointly

trained on multiple species.

3.4.4 Identifying Protein Families And Enzyme Commission Based Clustering

Besides inferring PPI types, the embedding representations of proteins can also be used

to identify potential protein families based on their functions. This can be achieved by

performing clustering algorithms on the learned protein embeddings.

The Enzyme Commission number (EC number) defines a hierarchical classification scheme

that provides the enzyme nomenclature based on enzyme-catalyzed reactions. The top-level

EC numbers contain seven classes: oxidoreductases, transferases, hydrolases, lyases, iso-

merases, ligases, and translocases. In this experiment, we select 1340 yeast proteins in total
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with enzymatic functions. We learn the protein representations using all the triples of PPI

networks and the annotation from gene ontology and evaluate the learned representations of

these proteins by performing the k-means clustering algorithm to group them into seven non-

overlapping clusters. These clusters are compared with the top-level of enzyme commission

classification. Purity score is reported as evaluation metrics.

The evaluation of the clustering results is shown in Table 3.6. Bio-JOIE achieves the

best clustering performance on yeast by a relative increase of 9.7%, which demonstrates that

Bio-JOIE has the good model capability to representation learning and empirically show the

validity of the learned embeddings to measure the similarity. We hypothesize that Bio-JOIE

better incorporates protein annotation resource and utilizes the complementary knowledge in

the gene ontology domain, while Bio-JOIE also captures PPI information and encode it into

protein embeddings. This in the end results in comprehensive representations for proteins

and helps to identify protein EC classes by clustering.

Table 3.6: Results of top-level EC clustering by K-means on learning selected yeast protein
embeddings.

Model Purity Score

Onto2Vec 0.2339
Onto2Vec-Parent 0.2452

Onto2Vec-Ancestor 0.3224
Onto2Vec-Sum 0.3022
Onto2Vec-Mean 0.2616

Bio-JOIE (KM only) 0.2514

Bio-JOIE 0.3306

3.4.5 Case Study: SARS-CoV-2-Human Protein Target Prediction

The COVID-19 pandemic requires much effort and attention from scientists in different fields.

However, there is very limited knowledge of the molecular details of SARS-CoV-2. In this

subsection, we apply Bio-JOIE to gain more insights into the PPI network between SARS-

CoV-2 and human proteins. Specifically, we explore the potential of Bio-JOIE in predicting

whether a pair of human and SARS-CoV-2 proteins interact or not. This is modeled as a
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binary prediction task. Correspondingly, results from the binary predictions can serve as a

guide to identify the targeted proteins by SARS-CoV-2. We first use the known interactions

between these two species to validate the effectiveness of Bio-JOIE. These interactions are

experimentally verified as described in Section 3.4.1. In this setting, we particularly study

the contribution of the knowledge of other closely related viruses (SARS-CoV and MERS) on

supporting PPI prediction. We also show the high-confidence candidates of targeted human

proteins predicted by Bio-JOIE for four selected SARS-CoV-2 proteins.

Experimental setting. In this experiment, we randomly split the known positive human-

virus PPIs into train and test sets with a ratio of 80% and 20%. We train Bio-JOIE on

this train set along with human PPIs. For evaluation, positive test samples and selected

negative samples, mentioned in Section 3.4.1 are used to perform binary prediction. We

adopt F1-score as the evaluation metric.

S2: SARS-CoV2 PPIs + 2-hop 
Protein Neighbor Subnet

SARS-CoV PPIs

MERS PPIs

S1: SARS-CoV2 
PPIs

S3: SARS-CoV2 PPIs + All Human PPIs

S4: S3 + SARS-CoV/MERS PPIs  

Figure 3.5: Different scopes of input to train Bio-JOIE for SARS-CoV-2 PPI prediction.

Results. As in Section 3.4.3, we first evaluate Bio-JOIE on SARS-CoV-2 PPI prediction.

From the observation in Section 3.4.3, two important factors are considered: three aspects in

the gene ontology domain and the scope of input SARS-CoV-2-Human PPIs. More specif-

ically, we define increasingly four scopes of input PPIs, as shown in Figure 3.5, i.e. (1) S1:
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Table 3.7: F-1 score on SARS-CoV-2-Human PPI interaction classification.

Input S1 S2 S3 S4

NonGO 0.6737 0.7004 0.6918 0.6997

BP 0.7103 0.7353 0.7348 0.7492
CC 0.7188 0.7383 0.7380 0.7675
MF 0.6737 0.7016 0.7022 0.7365

BP+CC 0.7257 0.7570 0.7499 0.7813
BP+MF 0.7252 0.7479 0.7486 0.7713
CC+MF 0.7317 0.7622 0.7692 0.7917

AllGO 0.7307 0.7537 0.7500 0.7885

Only using the train folds of SARS-CoV-2-Human PPIs; (2) S2: Using SARS-CoV-2-Human

PPIs with the 2-hop neighbor proteins from SARS-CoV-2 viral proteins, i.e. including the

ones which also interact with any proteins that the SARS-CoV-2 interacts; (3) S3: SARS-

CoV-2-Human PPIs with all other protein interactions on human; (4) S4: SARS-CoV-2-

Human PPIs with all protein interactions in S3 plus all SARS-CoV and MERS PPIs. As for

the aspects of the gene ontology domain, similar to Table 3.4 in Section 3.4.3, we adopt eight

options, i.e. one without gene ontology information (NonGO), three using a single aspect

of GO terms (BF, CC, MF), three options using two of the aspects (BF+CC, etc) and one

using all three aspects (AllGO).

The results are summarized in Table 3.7. In terms of gene ontology aspects, we observe

that CC contributes the most compared to other aspects of gene ontology annotations, and

the best performance is achieved by adopting CC+MF in Bio-JOIE learning. One explana-

tion is that most of the SARS-CoV-2 proteins have CC annotations and these annotations

make up over 70% of all currently available annotations on average. However, less than 5 pro-

teins (such as NSP and ORF 1a) have BF and MF annotations, possibly due to insufficient

knowledge on understanding SARS-CoV-2 biological mechanism. As for the input fields, we

find that the performance drastically increases with the expansion of input from S1 to S2,

which indicates that interactions of 2-hop neighbor proteins can benefit SARS-CoV-2 PPI

prediction. However, such a trend is not clearly observed when expanding the input field

from S2 to S3. We hypothesize that proteins that are not within 2-hop neighbors may not
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be very related to SARS-CoV-2 or provide beneficial insights. Interestingly, when adding

interactions of two related coronaviruses (SARS-CoV/MERS-CoV) that cause respiratory

infection, the performance continues to improve with a relative gain of 3.4%. As shown in

Figure. 3.2, viruses that are closely related to SARS-CoV-2 tend to share important proper-

ties. This strongly suggests that it is crucial to leverage their interactions and gene ontology

annotations as augmented knowledge for drastically emerging SARS-CoV-2.

Table 3.8: Top target proteins predicted by Bio-JOIE. Known interactions from training set
are excluded. Proteins that are considered as high-confidence targets are boldfaced.

SARS-CoV-2 Targeted proteins in human

ORF8 P05556, P61019, Q9Y4L1, P17858, Q92769, Q9BQE3, Q9NQC3,
Q9NXK8, P33527, P61106

NSP13 Q99996, P67870, P35241, O60885, P26358, Q9UHD2, Q12923,
Q86YT6, Q04726, P61106

M P26358, Q9NR30, O75439, Q15056, P61962, P49593, P33993,
O60885, Q9Y312, P78527

NSP7 P62834, P51148, P62070, P67870, O14578, Q8WTV0, P53618,
Q9BS26, O94973, Q7Z7A1

Besides providing PPI prediction, the proposed model can help by identifying high-

confidence candidates for potential human protein targets; this is considered as a link predic-

tion task. When a viral protein (such as SARS-CoV-2 M protein) is given as the query, along

with a specific relation (such as “binding” under the experiment system type of “Affinity

Capture-MS”), Bio-JOIE can output a list of most likely protein targets by enumerating

the triples with top fr(h, t) scores. The predictions are listed in Table 3.8. It is our obser-

vation, Bio-JOIE can successfully predict the high-confidence human protein targets in the

test set from by [GJB20] among its top predictions (marked as boldfaced entities). Other

than the proteins in the test set, Bio-JOIE can also provide a list of reasonable candidates

that possess a relatively high MIST score. For example, as shown in Figure 3.6, P62834 is

one of the top-ranked protein targets of SARS-CoV-2 NSP7 by our Bio-JOIE, which has a

MIST score of 0.658. Diving deep into the facts for P62834, though P62834 is not consid-

ered a high-confidence target by [GJB20], we observe that both P62834 (RAB1A HUMAN)

and SARS-CoV-2 NSP7 interacts with protein P62820 (RAB1A HUMAN). Besides, they are
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both annotated with the cellular component GO:0016020 (membrane) and enables molecu-

lar function GO:0000166 (nucleotide binding), which are possibly the reasons for Bio-JOIE

making such a prediction with a high rank. Furthermore, Bio-JOIE’s predictions include

proteins that are not covered by [GJB20], which inspires further scientific research to verify.

Figure 3.6: Connection paths between SARS-CoV-2 NSP7 (viral protein) and Pro-
tein:P62834 in the SARS-CoV-2 PPI knowledge graphs.
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Figure 3.7: Bio-JOIE performance on different train-set ratios of SARS-CoV-2-Human PPIs.

We further investigate how the information sufficiency of SARS-CoV-2 related PPIs in
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the training set affect the performance. We define the train-set ratio parameter as means

the proportions of the SARS-CoV-2-Human PPIs that are used for training Bio-JOIE and

follow the aforementioned evaluation protocol on “NonGO/S3”, “CC/S3”, “CC+MF/S3”

and “CC+MF/S4” as input other than the control of SARS-CoV-2-Human PPIs part. We

plot the PPI results in Figure 3.7. As expected, when the proportion of SARS-CoV-2-Human

PPIs used for training increases from 20% to 80%, the F1 score improves from 0.2-0.3 to

around 0.8, which strongly confirms that the known SARS-CoV-2-Human PPIs serve as

one significant factor to the PPI prediction. Moreover, the more knowledge we know about

existing SARS-CoV-2 interaction, the more powerful the model is to predict SARS-CoV-2.

We also observe that the performance is not saturated when the training ratio is approaching

100%, which possibly results from the fact that as a novel coronavirus, the current known

interactions are still very limited. This encourages the scientific communities to unearth

more knowledge on SARS-CoV-2; moreover, Bio-JOIE has the potential of bringing about

significant advances based on new discoveries.

3.5 Extension: Bio-JOIE Inference on Texera (Collaborative Ma-

chine Learning Demonstration)

In previous sections, we have introduced one important case study for SARS-CoV-2 viral and

human protein interactions and provided inspiring results for potential drug development.

This is a good example to combine machine learning and computational bioinformatics, to

accelerate the process of drug development. It is also a great demonstration for undergrad-

uate students and junior student researchers to think about the huge potential and long

vision of machine learning applications. Therefore, we contribute special outreach efforts to

make the model and its entire workflow which uses knowledge graph embedding for drug

repurposing more accessible, understandable and collaborative to broader communities and

younger generations who are passionate about machine learning.

In this section, with the help of Texera, we make the training and inference process of
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Bio-JOIE and SARS-CoV-2 drug repurposing as one collaborative workflow, just like shared

Google Document or Slides. Texera is a system to support collaborative, ML-centric data

analytics as a cloud-based service using GUI-based workflows. It supports scalable compu-

tation with a parallel backend engine, and enables advanced AI/ML techniques [WKN20].

The motivation is that, most of the existing ML applications are often managed with scripts

to run training and inference jobs. While it is common for ML practitioners who have cod-

ing expertise, the scripts with lines of pure codes are no doubt challenging to those who do

not have sufficient coding experience, which presents a steep learning curve for non-coding

collaborators and take huge efforts in communications (such as how to change the code lines

to make adjustment in ML models) in a typical interdisciplinary collaboration. Though

some notebook-style coding interfaces (IDEs) (such as Jupyter Notebooks or Google Colab)

provide some clarifications and comments on code with explicit text blocks and interactive

execution, such challenges remain to limit the full capacity of collaboration on machine

learning applications.

Our proposed transformation is from such scripts and notebooks to executable workflows

with accessible modules to every collaborator. The overview of the a general transformation

process is shown in Figure 3.8. The entire complex script which contains a series of steps such

as model and test data loading, processing and result output, are changed into different and

sequentially connected modules, mostly as User Defined Functions (UDFs), which ultimately

form a “Lego-style” workflow to execute the same ML jobs.

We transform the Bio-JOIE inference steps utilized by knowledge graph embedding into

several components for a better understanding of the entire process. As shown in Figure 3.9,

the inference procedure which is considered similar as “link prediction” between SARS-CoV-2

proteins and FDA-approved drugs, following [ISM20]3, consists of self-explaining connected

modules model loading, test case input, embedding lookup, score computation, ranker and

results output and evaluation.

3https://github.com/gnn4dr/DRKG/blob/master/drug_repurpose/COVID-19_drug_repurposing.

ipynb
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Figure 3.8: A high-level overview of the script to the modularized workflow of ML applica-
tions.

Figure 3.9: Detailed steps of original knowledge graph triple completion problem. While all
steps can be included in one single script, it can be decomposed into multiple modules that
are easy to understand and control.

With deployment on Texera, the workflow successfully runs and produces results for

SARS-CoV-2 drug repurposing, as shown in the screenshot (Figure 3.10), which provides

interactively and collaborative inferences to visualize and analyze model results.

3.6 Conclusion

In this chapter, we present a novel model Bio-JOIE, that enables end-to-end representation

learning for cross-domain biological knowledge bases. Our approach utilizes the knowl-
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Figure 3.10: Inference steps on SARS-CoV-2 drug repurposing are successfully running on
Texera. Each row represents one single query such as {Disease:SARS-CoV-2 ORF7a, Relation:
Disease-Compound, Compound:?}. With one click, the entire information of the correspond-
ing row will be presented in detail.

edge model to capture structural and relational facts within each domain and motivates

the knowledge transfer by alignments among domains. Extensive experiments on the tasks

of PPI type prediction and clustering demonstrate that Bio-JOIE can successfully lever-

age complementary knowledge from one domain to another and therefore enable learning

entity representation in multiple interrelated and transferable domains in biology. More

importantly, Bio-JOIE also provides interaction type predictions on SARS-CoV-2 with hu-

man protein targets, which potentially brings reliable computational methods seeking new

directions on drug design and disease mitigation.

In our main directions of future research, we plan to enhance and extend entity repre-

sentations by systematically incorporating important multimodal features and annotations.

For example, primary sequence information and secondary geometric folding features can be

modeled simultaneously in protein networks and their combined representation can lead to

a comprehensive understanding that will greatly benefit many downstream applications.

With the development of Bio-JOIE, we realize that compared to the complex biological

and biomedical knowledge graphs, a two-view formulation of gene ontology and protein is

still one simplified version of understanding the interactions between the biological entities
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Figure 3.11: Biological knowledge graphs for drug-target discovery from BETA bench-
mark [ZLW22].

and cannot fully cover the information from other related domains, like human genetics,

human tissue profiling, function genomics and clinical record [GDJ21]. One recent work for

drug discovery benchmark [ZLW22] has investigated a comprehensive study on more types

of biological entities including diseases, drugs, proteins, and side effects, based on multiple

resources and alignments, as shown in Figure 3.11. One of the promising future directions

is that, with more information on biological KGs as a backend to better understand the

interactions within metabolic reactions, not limited to gene ontology and proteins, more

accurate and reliable predictions can be made on emerging diseases, as a new milestone for

computational bioinformatics by further advancing research of natural sciences and a huge

benefit public health and social welfare.
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CHAPTER 4

P-Companion: A Product Graph Based Principled

Framework for Diversified Complementary Product

Recommendation

4.1 Introduction

If one customer “Pablo” wants to buy a tennis racket, what are the best 3 complementary

products to recommend to purchase together? 3 tennis ball packs, 3 headbands, 3 overgrips,

or 1 of each respectively? Product complementary recommendation has become increasingly

critical for the success of online websites, especially for e-commerce sites such as Amazon,

eBay, Taobao, etc. Such recommendations often help customers find a high-quality selection

of product complements to purchase together and meet their needs, which is key to enhancing

user experience and satisfaction and has strong business value. Figure 4.2 shows one toy

example of complementary recommendation in the real-world shopping experience. Given

that the customer (possibly a beginner tennis player) shows his intent to purchase a tennis

racket (already in the shopping cart, considered as a “query product”1), it is not satisfactory

to recommend three other similar tennis rackets to purchase together in List 1 (considered

as “substitutes”). Instead, some complementary items to tennis rackets are expected, such

as tennis balls. Moreover, it seems better to have List 3 with one tennis ball pack, one racket

cover and one headband respectively as recommendations than List 2 with three packs of

1We specifically define “query product” in this chapter as the product that serves as recommendation
condition, different from the query in search engine. Typically a “query product” refers to the items that
customers plan to purchase or put into the cart in the e-commerce scenario.
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tennis balls, which indicates that both relevance and diversity are needed to fulfill customer’s

need.

Figure 4.1: One application of complementary product recommendation in Amazon. Multi-
ple complementary items are listed after one item has been put into the cart by the customer.

Query 
Product

“To-buy-together” Recommendations

Head SpeedX

(Djokovic Racket)

List 1

List 2

List 3

Bad. 
Tennis rackets are 
substitutes instead 
of complements.

Mediocre. 
Tennis balls are related 
complements but the 
results lack diversity. 

Good. 
Recommendations 
are well related 
and diverse.

Figure 4.2: Three lists of “to-buy-together” recommendation on the e-commerce platform.
Good complementary recommendations require both relatedness and diversity.

Solving such complementary recommendation problem is non-trivial and challenging.

From the example in Figure 4.2, it poses at least five particular challenges.

• C1: Complementary recommendation is not simply based on similarity measurement.
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In many cases, complementary products are not necessary to have similar textual or

image features, e.g. tennis rackets and balls. In other words, complements indicate

neither high similarity nor low similarity. For example, tennis rackets and balls are not

similar to each other on textual or image features.

• C2: Complementary relationship is not symmetric. For example, an SD card can

be a complement product to a camera but not vice versa, which rules out most of

the similarity-based approaches and therefore requires a different mechanism to model

such a relationship.

• C3: Complementary recommendation should be at “product level” in terms of granu-

larity. The model should be able to make recommendations specifically for one query

product by extracting its features.

• C4: Complementary recommendation suffers from cold-start items. It is challenging to

make recommendations on low-resource items that lack product features or customer

behavior data . This also results in low recommendation coverage among all items.

• C5: Complementary recommendation needs to consider diversity. The recommenda-

tions are typically a set of items with diverse categories and functionalities that provide

high utilization for customers’ demand. As shown in Figure 4.2, a diversified recom-

mendation basket, which includes three types of tennis-related products (List 3) is

superior to that with only one type (List 2).

While most of the existing methods in recommender systems [SK09] focus on analyz-

ing patterns by frequent pattern mining [HCX07], matrix factorization [KBV09], collabora-

tive filtering [KB15b, SKK01], or other neural network based recommenders [BK16], only a

few [HCX07, BBS17, HPM16, LSY03] target at explicitly modeling item-item (product) rela-

tionship. Among them, complementary relationship modeling has been scarcely investigated

compared to the efforts made for modeling substitutes with similarity-based approaches.

Recently, new approaches with behavior-based product graphs, which generally integrate

product features and pair-wise relations obtained from customer behavioral data (such as
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co-purchase data), have been spotlighted and shown effective on complementary recommen-

dation. Representative examples are Sceptre [MPL15], which proposes a topic modeling

to infer networks of products, and PMSC [WJR18], which incorporates path constraints

in item-item multi-relational modeling. However, these methods seek to distinguish sub-

stitutes and complements, fail to address these aforementioned challenges and dive deep

into modeling such properties of complementary recommendation, especially from the diver-

sity perspective. A comparison between P-Companion and existing representative models

regarding these challenges are listed in Table 4.1.

Table 4.1: Comparison between P-Companion and existing representative models: Co-
Purchase, Sceptre and PMSC.

Property Co-Purchase Sceptre [MPL15] PMSC [WJR18] P-Companion

Asymmetric (C1, C2) ✓ ✗ ✓ ✓

Product-aware (C3) ✓ ✓ ✓ ✓

Coverage (C4) ✗ ✓ ✓ ✓

Cold-start (C4) ✗ limited limited advanced
Diversity (C5) ✗ ✗ ✗ ✓

Researchers are particularly interested in co-purchase data as a strong indicator for com-

plements [MPL15, WJR18]. In real-world applications, we have the following observations

with a thorough analysis on such co-purchase data: (i) co-purchase records between two prod-

ucts may not imply a complement relationship. We find that product pairs in the co-purchase

history can be either substitutes, complements, or even non-related. (ii) The complement re-

lation among products is often observed in multiple categories. Existing methods are mostly

experimenting within one category such as “electronics” or “grocery”; however, it is quite

often for one product under the “electronics” category to have potential complements under

“home improvement” or “office” category. In Section 4.2, we show that these two observa-

tions with detailed analysis, which are not aligned with the assumptions in previous research.

To address the aforementioned challenges, we propose a novel P-Companion for princi-

pled complementary product recommendation. The high-level idea of P-Companion is to

leverage the behavior based product graph (BPG) to learn item type transition to predict

complementary types, and then perform complementary recommendation regarding different
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complementary types. We propose a hierarchical multi-task learning framework, which is

an end-to-end complementary recommendation pipeline. The proposed P-Companion starts

with the foundational Product2vec embeddings , which is trained by a new GNN-based

product representation learning framework from the product graph, serving as foundation

and input to handle large numbers of products. As for recommendation, P-Companionfirst

employ an type transition module to predict the related complementary types and then

based on the query item together with such types, an type-item projection module is learned

to facilitate highly related and diverse complementary recommendation. In summary, our

contributions are listed in the following aspects:

• Data Understanding. We drop the inaccurate assumptions in existing research on CPR.

Based on observations and crowd-sourced annotations on co-purchase and co-view, we

propose a new approach to collect labels as distant supervision for CPR.

• Methodology: We propose a new model P-Companion, that considers both relevance

and diversity in CPR modeling and yield diversified recommendations. We also introduce

a graph attention based product embedding learning module that makes P-Companion

robust to deal with cold-start products.

• Performance: Through new label collection schema and human evaluation by MTurk,

experiments on real-world datasets show that P-Companion significantly outperforms state-

of-the-art baselines by 7.1% improvement on Hit@10 score, and deliver reasonable and

explainable recommendations with diversity across multiple product categories at Amazon

in production.

The remainder of this chapter is structured as follows. We formally define the diversified

complementary recommendation in Section 4.2, together with a detailed definition of Product

Graphs and discussion on how we transit from two-view KG in Chapter 2 to Product Graphs.

Section 4.3 describes the proposed P-Companion model, and provides details regarding the

training and optimization process. Experimental results are shown in Section 4.4. We provide
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an overview of the existing techniques related to the work proposed in this paper in Section

4.5 and finally, Section 4.6 concludes and points out directions for future work.

4.2 Preliminaries

In this section, we start with the definitions of related terminology in Behavior-based Product

Graph (BPG), together with data analysis and observations in BPGs, then we present the

problem formulation for divsersified product complementary recommendation.

4.2.1 Behavior-based Product Graph (BPG)

Let I denote the product item set, Ci denote item i’s catalog features (e.g. product group and

title), and B ∈ I×I represent product relationships, (e.g., co-purchase Bcp, co-view Bcv and

purchase-after-view Bpv) 2 between pairs of items, which are extracted from customers’ his-

torical behaviors. In particular, for each item i ∈ I, we assume there is an item type wi ∈ Ci
that represents product i’s functionality, such as hdmi-dvi-cable or over-ear-headphone.

Similarly, each item may also be associated with a general category, such as electronics.

Such information can be viewed as a Behavior-based Product Graph (BPG) with products

as “nodes”, types and other catalog features as “node attributes”, and pairwise item rela-

tionships as “edges”. BPG is essentially a heterogeneous attributed information network

as there are three types of edges. Figure 4.3 presents a BPG snapshot of one product with

multiple catalog features and related items from different relation connections from customer

behaviors.

2More specifically, co-purchase means customers who purchased item x also purchased item y; co-purchase
means customers who viewed item x also viewed item y; purchase-after-view means customers who viewed
item x eventually bought item y
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ImageItem ID P001

Category Sports

Type Tennis-bag-multi-racket

Catalog
Features

Title: Wilson® Super Tour Tennis Bag
Description: Two-toned  canvas 
polyester, removable interior divider …

Product Node: P001

P002

P003

P004co-purchase co-purchase

co-view
co-view

purchase-
after-view

Figure 4.3: One snapshot of a typical BPG. BPG is constructed with nodes as items with
catalog features (type, etc) and edges as pairwise relations based on customer behavior.

4.2.2 From two-view KG to two-view PKG

In this section, we briefly discuss the connections between the two-view KG in Chapter 2

and BPG in this work. The most important feature that are shared by KGs and BPGs

is that we can observe similar internal structures especially type associations, i.e. ”entity-

concept” in two-view KG and ”product-type” in BPG, as shown in Figure 4.4. Such similarity

enable us to model different categories of products and provide a valid way for diversified

recommendation modeling, which will be explained in Section 4.3. For completeness, we also

include some minor differences between the general KG and the BPG in Table 4.2.

4.2.3 Data analysis in BPG

Section 4.1 mentions our observations, which are not aligned with assumptions and settings

in previous research. We conduct a brief data analysis from the perspective of BPG based on

the public dataset [MTS15, HM16] 3. First, co-purchase records between two products may

3Dataset is available at https://jmcauley.ucsd.edu/data/amazon/
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Figure 4.4: Connections between the two-view KG and the two-view BPG.

Table 4.2: Comparison between KGs and BPGs.

Property KGs BPGs

Source Established facts Product catalog and use-product
interaction

Quality Observed facts are mostly well-
established and plausible.

Much noisier, especially for user
behavior data

Relations Typically hundreds of relations in
a general KG, such as born in,
director of, etc

A few relations (< 10) defined from
user behavior, such as also view

and also bought.

Attributes
(common)

Entity types, numerical features, descriptions, and many other addi-
tional features

Attributes
(difference)

Different attributes apply due to
the heterogeneity of entities. For
example, birth dates for person
entities while has altitude for lo-
cation entities.

Each product typically has same
attributes, such as images, descrip-
tion, reviews rate scores and price,
etc.

Downstream
tasks

Knowledge completion, relation ex-
traction, question answering, etc.

Recommendation, searching, etc.

not imply a complementary relationship and it is highly possible that two products can be

observed in co-view and co-purchase (overlap); that is, pairs of products can be connected

with multiple relations. Therefore, it is not accurate to directly consider co-purchase pairs

as “complements”. Around 1/5 of co-purchase records in Bcp are also observed in co-view

Bcv records, as shown in Figure 4.5, which make it difficult to classify the complementary

relationship between items by simply referring to co-purchase records.
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Bcp

Bcv Bpv

Bcp ∩ Bcv
Bpv ∩ Bcp126.3M pairs

148.3M

pairs

9.0M 

pairs

77K pairs22.9M pairs

Figure 4.5: Behavior based item relations have overlaps with each other. The overlaps of
Bcp ∩ Bcv no doubt cast a challenge of complementary label correctness.

(a) Category transition ratio (b) Type transition ratio

Figure 4.6: High complement transition ratio among co-purchase pairs in Bcp in terms of
categories and types.

Though it is difficult to identify item relation based on raw Bcp, Bcv and Bpv data, we

observe from human labeled data (shown in Table 4.3) that (Bcv ∩ Bpv) − Bcp is a strong

indicator of substitute relation with average accuracy of 90.8%. Also, Bcp − (Bpv ∪ Bcv) can

be viewed as complements with reasonable confidence. Therefore, we later use the latter as

purified co-purchase data in experiments.
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As for the second observation, the complement relation among products is often ob-

served in multiple categories or types. Previous research focuses on recommendation within

one specific category. However, we observe a significant percentage of “complements” from

historical co-purchase data, where categories or types of these product pairs differ. Fig-

ure 4.6a shows that co-purchase pairs often come from different categories. For example,

32.93% of “electronics” products are purchased together with “home improvement”, “office

product”, etc. Even within one specific product category, it is common for two items with

different functional types are observed in co-purchase record and considered as complements,

which accounts for approximately 60% in the record, as shown in Figure 4.6b. This suggests

multi-category dataset should be better used in complementary evaluation.

Table 4.3: Product item relationship analysis on combinations of Bcp, Bcv and Bpv in terms
of classification accuracy by human evaluation. on Electronics (Elec.), Grocery (Gro.) and
all categories (All).

Relationship
(Bcv ∩ Bpv)− Bcp Bcp − (Bpv ∪ Bcv)

Electronics Grocery All Electronics Grocery All

Substitutable 87.36 89.59 90.80 29.26 29.76 35.08
Complementary 11.31 10.01 8.45 46.33 48.47 43.17

Irrelevant 1.50 0.40 1.12 24.40 21.76 21.72

4.2.4 Problem Definition: Complementary Recommendation

Given the input as catalog features C (including item type w) and customers behavior data

B, for a query item i, we recommend a set of items Si, aiming at optimizing their co-

purchase probability Pcp ({i, j}) , j ∈ Si and recommendation diversity as well, by finding

the parameters Θ (item or type embeddings, transition models, etc). All the notations used

in this paper are summarized in Table 4.4.

4.3 Modeling

In this section, we present the main algorithm of P-Companion for product complementary

recommendation. P-Companion model is an embedding based, joint training, end-to-end
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Table 4.4: P-Companion notations used in Chapter 4

Symbol Description

i ∈ I Item i in item set I
wi Item type of i
θi Product2vec embedding vector for item i
ϕwi

Embedding vector for query type wi

ϕc
wi

Embedding vector for complementary type wi

θwc
i Item i’s projected embedding vector based on type wc

γwi
Complementary base vector predicted for type wi

yi,j Binary label to indicate item i and j’s relationship
zi,j Attention weight given item i and its neighbor item j
{W (k)}, {b(k)} Learnable weight matrices and bias vectors
α Trade-off parameter to control complementary type transition and

type-item prediction
T All the item pairs used for model training
λ, λi, λw, ϵ different margin parameters in loss functions

framework. Figure 4.7 shows the high-level model architecture of P-Companion. The model

has the three major components:

• Graph-based Product Representation Learning (named as Product2vec). It en-

codes the graph-structured BPG and leverages item textual features and product similar-

ities to learn product embeddings. It adapts the graph attention network (GAT) [VCC18]

for effective training and serves as the foundation of P-Companion. (Section 4.3.1)

• Complementary Type Transition. It learns the complementary transition in item

type subspace through a neural network. In other words, it can successfully learn the

complementary types given one query item type. Also, we can control the diversity in

recommendation by controlling the transition parameters. (Section 4.3.2)

• Complementary Item Prediction. As the last step, by learning a projection function

between type and item space where types are associated with their corresponding items,

we seek to find the best item match for one specific query item with complementary types.

(Section 4.3.3)

These three components are logically interrelated. We first employ the Product2vec
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Figure 4.7: P-Companion model architecture for complementary recommendation. As an
embedding based recommender, it has three major components: type transition, type-item
prediction, along with product2vec for pretrained product embeddings.

to obtain pre-trained product vectors and facilitate the subsequent product complementary

recommendation processes. To complete the recommendation task, P-Companion first aims

at finding reasonable and diverse complementary types and then matching the product type

given the type-item projection.

In addition, we also explain the joint training objective function in Section 4.3.4 and

supplementary training/inference details and analysis in Section 4.3.5.

4.3.1 Product2vec: Pretrained Product Representation

Product2vec is proposed to learn embedding representations for such items that we preserve

their similarities based on customer behavior data and catalog features. The learned em-

beddings will be used as pre-trained base representations for items, which is foundational to

complementary modeling. The fundamental assumption of Product2vec is that, for pairs of

items that shares similar properties and are connected in the co-view or purchase-after-view
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relations, their embeddings should be close to one another in a low-dimensional latent space.

Figure 4.8 shows such Product2vec encoder model architecture.

Feed-forward Network

Item
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Item
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view-to-buy

Figure 4.8: GNN-based Product2vec module architecture, which learns effective product
embeddings given its textual features and aggregation from similar products.

Product2vec starts with taking each item’s title and category features as input and

applies a feedforward network to all items i identically (sharing parameters of a three-layer

FFN(·)) and output to the k-dimensional embedding space, as shown in Equation 4.1.

θi = FFN(Cj) = σ
(
σ
(
CiW

(1) + b(1)
)
W (2) + b(2)

)
W (3) + b(3) (4.1)

where Ci is the raw feature vector for item i’s catalog and σ(·) = tanh(·) is a non-linear acti-

vation function. W (1),W (2) ∈ Rd×d,W (3) ∈ Rd×k are weight matrices with the corresponding

biased terms b(1), b(2), b(3).

Through FFN(·), each product item i has been transformed into k-dimensional repre-

sentation θi. The next step is GAT layers which selectively aggregates the neighbors from

co-view relation or the purchase-after-view relation, which is a variant of [VCC18]. The

intuition is that, since the customer behavioral data can be quite noisy in daily transactions,

we expect that by the attention mechanism can help alleviate the noisy signals from these
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neighbors. More specifically, given an item i and the set of neighbor items {j} in Ni, an

attention vector zi,j ∈ R|Ni| is calculated based on θi and {θj} normalized on the softmax

function, which can adaptively capture the similarities when summarizing items {j} in Ni,

zi,j = softmaxj

(
θTi θj

)
=

exp(θTi θj)∑
j′∈Ni

exp(θTi θj′)
(4.2)

Thus the information of item i from neighborhood aggregation Ni can be summarized as,

θNi
=
∑

j∈Ni
zi,j. For an item i with Ni, we mark it with a positive label yi,Ni

= 1. To

conduct non-trivial model learning, for each item i, we create negative samples N̂i, as negative

training instance4 with labels yi,Ni
= −1. Therefore, the objective function of Product2vec

is designed to optimize a hinge loss function in Equation 4.2.

min
∑
i∈I

(
l (yi,Ni

, f(i, Ni)) + l
(
yi,N̂i

, f(i, N̂i)
))

= min
∑
i∈I

∑
y∈{±1}

{
max

(
ϵ− y ·

(
λ− ||θi − θNi

||22
))} (4.3)

where y = {yi,Ni
, yi,N̂i

}, f(·) is a metric function, λ is the base distance to distinguish Ni

and N̂i and ϵ is the margin distance. Equation 4.3 aims at forcing the distance between θi

and θNi
less than λ− ϵ while pushing θi far away from θNi

with at least λ + ϵ distance.

It is noteworthy that FFN(·) is optimized with the learning of Equation 4.3 and once

model training is done, FFN(·) is extracted independently to generate embeddings for a

large number of web-scale product items and such embedding repository acts as important

input for subsequent complementary modeling, which is described in Section 4.3.3.

4.3.2 Complementary Type Transition

P-Companion takes pairs of query product items {i} and candidate complement items {j}
along with their types {(wi, wj)} and co-purchase label {yi,j} as input. Complementary type

transition only take such type transition pairs {(wi, wj)} into consideration, seeking to build

4Details are explained in Section 4.3.5
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up a model complementary type transition wi ⇒ wj, which benefits the recommendation

quality by focusing on predicting accurate complementary types before item-level prediction.

For each type w, we assign two learnable embedding vectors ϕw, ϕ
c
w ∈ RL to it, indicating

its context position as query type or complementary type. Given a pair of items (i, j) with

types wi and wj respectively, we use an encoder-decoder module to transform ϕwi
, the query

embedding vector of wi, to its complementary base vector γwi
, which will be used to predict

complementary types for wi. An encoder-decoder architecture is shown in Equation 4.4 and

4.5:

h = Dropout
(
ReLU

(
ϕwi

W (4) + b(4)
))

, (4.4)

γwi
= hW (5) + b(5), (4.5)

where W (4) ∈ RL×L
2 and W (5) ∈ RL

2
×L are weight matrices for encoding and decoding types.

Then, we optimize the relationship between the predicted type γwi
and ground-truth type

ϕc
wj

with the label yi,j by using the hinge loss function in Equation 4.6.

min
∑
i,j∈T

(
max

{
0, ϵw − yi,j

(
λw − ∥γwi

− ϕc
wj
∥22
)})

, (4.6)

where λw is the base distance to distinguish γwi
and ϕc

wj
, ϵw is the margin distance. Equation

4.6 aims at forcing the distance between γwi
and ϕc

wj
to lower than λw − ϵw when yi,j = 1

while pushing ϕc
wj

far away from γwi
with at least λw + ϵw distance when yi,j = −1.

As a summary, P-Companion uses the neural network based type transition and satisfies

the requirement of asymmetric modeling (C2) for complementary recommendation.

4.3.3 Complementary Item Prediction

In this section, we propose a learning approach to transfer the different complementary type

embedding to corresponding items, as a type-item projection. As Figure 4.7 describes, by

using Complementary Type Transition module to transfer query type embedding ϕwi
to its

complementary base embedding γwi
, we design an item-embedding transition module that
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takes advantage of the predicted type embedding vector γwi
to project the original item

embedding θi to different complementary subspaces via Equation 4.7.

θwc
i = θi ⊙ (ϕc

wc
W (6) + b(6)),

s.t., ||ϕc
wc
− γwi

||22 ≤ β,
(4.7)

where W (6) ∈ RL×d, ⊙ represents element-wise product and β is the similarity threshold to

determine which complementary types will be used to recommend complementary items. We

can also explicitly set how many complementary types for each query type, as the implemen-

tation in our experiment. Based on different complementary type embeddings {ϕc
wc
} that

are close enough to γwi
, we can transfer item i’s embedding θi to multiple complementary

targets {θwc
i }. For each of complementary candidate j with its type wj, we still use a hinge

loss to optimize the objective function based on θwc
i , θj and label yi,j according to Eq. (4.8).

Here wc is selected based on β and γwi
.

min
∑
i,j∈T

max
{
0, ϵi − yi,j

(
λi − ∥θwc

i − θj∥22
)}

. (4.8)

With type-item modeling as projection, combined with type transition in Section 4.3.2,

P-Companion is not simply a similarity-based recommender (C2) but can also provide rea-

sonable recommendation on the product level (C3). More importantly, by controlling the

number of different complementary types (or selection threshold), we can successfully achieve

the diversified recommendation (C5), comparing to existing methods.

4.3.4 Joint Training

In model training phrase, P-Companion jointly optimizes complementary type and item

objective functions based on Equation 4.6 and Equation 4.8. To strengthen the connection

between two objective functions, for each training instance, we force ϕwc to be the same

as γwi
in Equation 4.7. Once the model is well-trained, P-Companion sticks with Equation

4.7 to predict complementary items based on different complementary types. Therefore, the
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overall objective function can be written as Equation 4.9.

min
∑
i,j∈T

α
(
max

{
0, ϵi − yi,j

(
λi − ∥θwj

i − θj∥22
))}

+ (1− α)
(
max

{
0, ϵw − yi,j

(
λw − ∥γwi − ϕc

wj
∥22
)})

,

(4.9)

where α is a hyper-parameter to control the tradeoff between complementary type modeling

and complementary item modeling.

4.3.5 Training and Inference

In this section, we provide more details on P-Companion training as well as model analysis.

Pretrained Type Representations from Transition Matrix Although P-Companion

is an end-to-end solution for diversified complementary item recommendation, rather than

randomized initialization, We extract a type transition matrix M from co-purchasedata

where each entry M[wi, wj] in M records the number of co-purchase with wi as query type

and wj as complementary type. Based on each entry M[wi, wj] in M, we follow Equation

4.4 and Equation 4.5 to obtain two vectors, γwi
and ϕc

wj
, then we optimize Equation 4.10 to

fit M[wi, wj]. ∑
wi,wj

(
σ
(
γT
wi
ϕc
wj

)
− σ (M[wi, wj])

)2
, (4.10)

where σ(·) is the sigmoid function that is used to normalize and rescale similarities of wi

and wj as well as M[wi, wj]. Once type transition pretraining is completed, we use the

parameter values to initialize corresponding parameters in Equation 4.9 and then perform

joint learning on complementary type and item recommendation.

Model Inference As introduced in Figure 4.7, given one query item i (with its embed-

dings θi by Equation 4.1) and associated type wi (with embeddings ϕwi
, we can predict its

complementary types wc
i (embedding ϕc

wi
) through Equation 4.4 and 4.5 and thus obtain its

complementary item recommendation θ
wc

i
i through Equation 4.7. We can control the num-

ber of recommendations for query items by assigning the number of complementary type

selection and complementary item per type candidate.
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Negative samples For Product2vec training (in Equation 4.3), we use (Bcv ∩ Bpv) − Bcp
as positive examples and Bcp − (Bpv ∪ Bcv) as negative ones; for P-Companion training (in

Equation 4.9), we consider frequent co-purchase data in as positive samples and (Bcv∩Bpv)−
Bcp as negative. This is according to our observations in Table 4.3. The negative sample

ratio is fixed as 1.0 in subset datasets (i.e. electronics, grocery, and furniture datasets, see

Section 4.4.1 while we use all data into training for the All-Group dataset.

Other training settings The (hyper)parameters are set as follows: product embedding

dimension d = 128, pretrained item type embedding dimension L = 64, margin parameters

λ = 1.0 and ϵ = 1.0. Tradeoff parameter between type transition and item prediction is set

as α = 0.8 (see ablation study in Section 4.4.5).

Complexity analysis Our proposed P-Companion including the product training module

named Product2vec are scalable to large-scale online e-commerce platforms. In terms of

model parameter size, Product2vec contains embedding table for all products, which is

O(Npd) (Np denotes the total number of product items) and product encoder parameters of

size O(d2 + dk). P-Companion takes the type embedding table of size O(NtL) (Nt denotes

the total number of types) with the type transition neural network module of the parameter

size as O(L2) and type-product prediction network of the parameter size as O(Ld). The

parameter size allows scalable implementation for web-scale product recommendation. As

for training time complexity, P-Companion and Product2vec is approximately linear pro-

portional to the number of observed pairs in the BPG, that is, O (ne(B)) where ne denotes

the number of edges in the graph B (typically ne(B) ≫ d, k). It is worth mentioning that

inference can be done offline to obtain the recommendation list for each product and directly

fetched from the stored output from P-Companion, which is even more time-efficient.

4.4 Experiments

In this section, we perform an extensive set of experiments on product data from a leading

e-commerce service. We first describe our dataset and baselines in Section 4.4.1. Next,
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we present quantitative results on recommendation tasks on historical frequent co-purchase

data and compare P-Companion with baselines. To overcome the incompleteness of historical

data, we also perform human evaluation from MTurk. Finally, we include case studies to

understand how P-Companion outperforms previous approaches as well as ablation study on

the trade-off hyperparameter α in Section 4.4.5.

4.4.1 Experiment Setup

Dataset We evaluate P-Companion on a real-world dataset obtained from one leading e-

commerce service platform, which includes a large number of product catalog features and

customer behavioral data, with the same pattern as product metadata in [MTS15, HM16,

MPL15]. We select two specific product category groups as subsets: electronics, grocery,

and the dataset with all categories. Statistics about all these three datasets are summarized

in Table 4.5.

Table 4.5: Dataset statistics.

Dataset Electronics Grocery All-Groups

# Product items 97.6K 324.2K 24.54M
# Types 5.6K 6.5K 34.8K
# Bcp pairs 130.6K 804.1K 62.16M
# Bcv pairs 3.15M 8.96M 1,154M
# Bpv pairs 325.1K 1.105M 83.75M

Note that the subsets are selected by the query product category; however, the candidate

products in the complement pairs do not necessarily belong to the same category. That is,

we allow products in different categories as long as it is related by any query product, which

is consistent with our claim in Section 4.2.

Baselines We compare P-Companion with the following state-of-the-art baseline approaches.

We use the default setting on hyperparameters for these baselines. Note that we adopt the

default setting on these baseline methods.

• Co-purchase (CP) As the most straightforward way, we can directly output the items

in the co-purchase records for complementary recommendation. Co-purchase pairs (query
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item i, co-purchase item j) can be extracted from massive purchase customer data and

naturally such pairs form an asymmetric relation between i and j.

• Sceptre [MPL15] This approach utilizes topic modeling on item textual features (review

text) and logistic regression for substitute/complement classification. Category informa-

tion is also applied with a sparse encoding technique.

• PMSC [WJR18] Each product item has its source embedding and target embeddings for

query and candidate contexts. It adopts additional relation-aware parameters to model

multiple item relations and later feed in a neural network for classification.

• JOIE [HCY19] Originally designed for two-view knowledge graph embeddings and not

targeting at solving the complementary product recommendation, we can adapt JOIE to

product-type views in BPG instead of entity-concept views in KG and consider comple-

mentary as a triple completion task, that is, to infer the triplets (Entity: Query product,

Relation: co-purchase, Entity: ?) from the learned embedding and regularization from

product-type cross-view association.

It is noteworthy to mention that, in Section 4.4.2, co-purchase history data are intentionally

used for evaluation, which is widely adopted as other previous work.

4.4.2 Historical Co-Purchase Evaluation

In real-world applications, only a limited number of complements can be recommended

because of the space limitation. Thus rather than distinguishing complements or non-

complements between a given pair of products [MPL15, WJR18], we directly evaluate by

ranking basis, where we aim that good complements are scored higher than irrelevant ones.

In other words, given a query product i from the frequent co-purchase pairs (i, j), we provide

a list of top-K recommendations Sk and evaluate the P-Companion as well as all baselines

by checking whether the model can successfully predict the corresponding target

Evaluation metrics A standard measurement for ranking tasks is the Hit@K score. Given

a pair of items (query item i, co-purchased item j) in co-purchase test data, the Hit@K score
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is defined as,

Hit@k =


1, if j ∈ Sk

0, else

, k = 1, 3, 10, . . .

where Sk is the k-element list of recommendations from the model. We report both Hit@K

scores on both item level and type level (if applicable). That is, for JOIE and P-Companion,

we first predict the top-K complementary types and see whether the model can successfully

predict the correct item type of j. As for the item level, we target at the ability to pre-

dict the exact Since co-purchase data are used as ground truth for evaluation, we compare

P-Companion with Sceptre, PMSC, and JOIE, which are introduced in Section 4.4.1.

To validate the effect of diversity in recommendation, we also experiment on different

settings of P-Companion. More specifically, we recommend a total number of 60 products,

however, the number of recommended types and number of items for each type differs.

We test P-Companion in the following four recommendation settings separately during the

inference stage: to recommend only 1 type and 60 items for the type (denoted as “1 type

× 60 items”) together with “3 types × 20 items”, “5 types × 12 items” and “6 types × 10

items”. At the same time, all baselines output 60 items as recommendations, which is the

same as P-Companion.

Table 4.6: Results of complementary recommendation based on historical FCP records on
Electronics dataset.

Datasets Electronics

Level Item Hit score Type Hit score

Metrics Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

Sceptre 0.069 0.079 0.101 n/a n/a n/a
PMSC 0.112 0.135 0.169 n/a n/a n/a
JOIE 0.141 0.164 0.181 0.095 0.190 0.304

P-Companion 0.145 0.170 0.187 0.113 0.206 0.348

Results We report the results shown in Table 4.6 for the Electronics and Grocery subgroups.

P-Companion outperforms all baselines in the item level prediction with an average relative

gain of 4.2% compared to the strongest baseline. In terms of type level, Comparing to JOIE

with the item-type view, P-Companion improves by 9.9% on the Electronics dataset and by
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Table 4.7: Results of complementary recommendation based on historical FCP records on
Grocery datasets.

Datasets Grocery

Level Item Hit score Type Hit score

Metrics Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

Sceptre 0.018 0.032 0.040 n/a n/a n/a
PMSC 0.024 0.053 0.087 n/a n/a n/a
JOIE 0.026 0.058 0.099 0.079 0.170 0.281

P-Companion 0.030 0.063 0.104 0.083 0.177 0.293

Table 4.8: Results of complementary recommendation based on historical FCP records on
large-scale All-Group dataset. (H@k denotes Hit@k score.)

Datasets All Category Groups

Level Item Hit score Type Hit score

Metrics H@1 H@3 H@10 H@1 H@3 H@10

Sceptre 0.019 0.041 0.059 n/a n/a n/a
JOIE 0.037 0.062 0.104 0.054 0.153 0.204

P-Companion 0.037 0.068 0.108 0.064 0.161 0.212

Table 4.9: Performance of P-Companion with different number of predicted item types on
Electronics and Grocery dataset.

Dataset Electronics Grocery

Model & Setting Hit@60 Hit@60

Sceptre 0.124 0.085
PMSC 0.179 0.139
JOIE 0.200 0.155

P-Companion

1 type × 60 items 0.138 0.088
3 types × 20 items 0.198 0.153
5 types × 12 items 0.222 0.189
6 types × 10 items 0.227 0.187
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4.5% on the Grocery dataset. In Table 4.8, we observe similar phenomena on larger “All-

Group” dataset with a relative 3.8% increase on item-level Hit score on average and increase

on type-level against JOIE.5 We believe this is due to the following reasons, (i) P-Companion

infers complementary products by targeting the complementary type first rather than only

modeling product relationships in Sceptre and PMSC. Item types can be considered as

functionality abstraction and enable more accurate recommendation; (ii) Comparing with

the similar item-type view model in JOIE, P-Companion type transition module can better

capture the complementary relations between types. Also, P-Companion explicitly involves

both query item and predicted complementary types for the item-level recommendation, but

JOIE uses query items only during inference.

As for the effect in diversified complementary modeling, we show the results in Table

4.9 to validate the benefit of diversified recommendations. The best P-Companionvariant

outperforms the best baseline model by a hit-score increase of 0.027 on Electronics (6 types)

and 0.034 on Grocery (5 types). However, if the number of recommendation types is re-

stricted, the performances of P-Companiondrop significantly. Moreover, P-Companionvariant

with only 1 type in recommendation can only slightly outperform with the Sceptre, but

not PMSC or JOIE. In summary, though the same number of items are recommended,

P-Companionmanages to provide a diverse recommendation explicitly and results in better

item-level hit score. Also, P-Companionis capable of control the diversity in recommendation

regarding different categories of products. Inspired by the observation, we may reasonably

recommendation with more types in complement recommendation list for Electronics than

Grocery, based on the different natures of products.

4.4.3 MTurk Evaluation

Though co-purchase data can provide complement products with reasonable confidence and

serve as ground truths in Section 4.4.2, we also observe that such co-purchase dataset is

relatively sparse considering the scale of all products and far from being complete. In

5Due to the scalability issue, the results of PMSC is not available.
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other words, it fails to include all possible truths on complements and lots of cases that

qualifies complements cannot be successfully identified due to the absence in co-purchase

history data. To avoid incompleteness in co-purchase data and provide a more thorough

understanding of the results, we involve human evaluation on such complementary recom-

mendation tasks by launching MTurk6 surveys to collect feedback on the recommendation

results. Rather than using incomplete co-purchase data as ground truths, we compare the

quality P-Companionrecommendation with co-purchase data, in terms of recommendation

relatedness and coverage.

MTurk settings & evaluation metrics We design surveys based on our model recom-

mendations by the following steps. We first sample top-1000 glance-viewed items as queries

and select the top-15 recommendations from P-Companion for these items (3 types × 5

items per type). When preparing item pairs for MTurk, we interleave recommendations

from top 3 complementary types following the predicted complementary type order as well

as complementary item prediction order within the scope of each type 7.

As shown in Figure 4.9 as questionnaire snapshot is shown in, for each recommended

pairs of products, we ask 5 different MTurk labelers about the question that “Given you

decide to purchase the base product, would you be interested in purchasing the recommended

product together with the base product?” and prepare the following different answers,

6MTurk is a crowdsourcing website for businesses to hire remotely located ”crowd workers” to perform
discrete on-demand tasks that computers are currently unable to do. Website: https://www.mturk.com.

7More specifically, given a cell phone as a query item, our model first predicts top 3 complementary types
as phone case, screen protector and charger. Within each complementary type, we collect the top 5 ASIN
recommendations. Then based on the ranked complementary types and ASINs, our final recommendations
will be arranged by such multiple groups.

94

https://www.mturk.com


Figure 4.9: One MTurk survey snapshot for complements recommendation evaluation.
MTurk workers are asked to tell their purchase willingness in a range of 0-3.

1. Yes, I am very likely to buy them together. (Score 3, perfect)

2. The recommendation inspires me the potential needs to purchase, however just not the

right one. (Score 2, inspiring)

3. No, the recommendation is relevant but I am less likely to buy them together. (Score

1, relevant)

4. I do not think they are relevant. (Score 0, failed)
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We believe the Score-3 answer will indicate the co-purchase probability for our recommen-

dations. As mentioned before, the product-level complementary recommendation is very

challenging, so we design the second answer to collect compromising feedback about pur-

chase probability by using the Score-1 and Score-2 answers. As for the evaluation metrics

we expect to measure the recommendation relevance, or say relevance rate as one evaluation

metric, defined as the percentage of all Score 1-3 answers among all the collected feedback

data. We also calculate the average score of all collected data points as an alternative

measurement of recommendation relevance. Finally, from another perspective of the recom-

mendation task, we also compare the item coverage, defined as the total number of product

items that show up in all recommendations given all the query items in the dataset.

Table 4.10: MTurk comparison between P-Companion’s Top-5 recommendations and co-
purchase record. Percentage of Score X represents the proportion of pairs labeled with
Score-X.

Model Co-Purchase
P-Companion

Pos-1 Pos-2 Pos-3 Pos-4 Pos-5

% of Score 3 0.46 0.43 0.43 0.42 0.45 0.42
% of Score 2 0.25 0.27 0.27 0.27 0.26 0.27
% of Score 1 0.27 0.27 0.26 0.26 0.27 0.26
% of Score 0 0.02 0.02 0.04 0.04 0.03 0.04

Rel. Rate 0.98 0.97 0.96 0.95 0.97 0.96
Avg. Score 2.15 2.12 2.09 2.07 2.13 2.08

Table 4.11: Query item coverage comparison on all three datasets. P-Companion shows
better product item coverage over co-purchase record.

Dataset Model #Queries #Recom. Items #Average

Electronics
Co-purchase 64.1K 130.6K 2.04
P-Companion 97.6K 1.464M 15.0

Grocery
Co-purchase 278.9K 804.1K 2.88
P-Companion 324.2K 4,863.7K 15.0

All-Group
Co-purchase 23.90M 62.16M 2.60
P-Companion 24.54M 368.1M 15.0

Results Product recommendation relatedness and coverage evaluation are shown in Table

4.10 and Table 4.11 respectively. From the results, P-Companion achieves over 95% relevance

rate and 40% co-purchase rate. More examples are introduced in Section 4.4.5 as case study.
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We can observe that although CP has a slightly better average MTurk scores (2.15 v.s.

2.12), P-Companion significantly improves item coverage in recommendation to around 6.4

times larger than CP. This results from the fact that P-Companion infer diverse complements

by complementary type transition and type-item project, while co-purchase history entirely

relies on observed purchase patterns without any generalization ability. The increase in item

coverage can potentially bring important business values in real-world applications since

high-quality complementary recommendation does not require history customer browsing

data as requisite, which is generally difficult for cold-start items.

4.4.4 Production Deployment

We also launch our P-Companion on the online e-commerce platform and compare with the

previous recommendation setting which mostly based on history CP record via A/B Testing.

Deployment Setting We deploy a stable pipeline to generate complementary recommen-

dation datasets for online services. Hence, we create and run the following two A/B testing

experiment to compare the performance of CP record (“control group”) and P-Companion

(“experimental group”) recommendation candidates:

• For CP’s current covered key items, the control group will be the recommendations from

CPrecord. As for the experimental group, we have the following three treatments,

– Recommend items with the most likely predicted complementary type. Items are

generated based on both model score and business rules, e.g., highest review scores,

lowest price, best sales, etc.

– Recommend items from multiple (most likely 3) predicted complementary types. From

each predicted complementary type, we select ASINs based on model score and busi-

ness rules.

– Recommend items from CP-generated complementary types and will append by model

predicted complementary types if there are not enough complements from CPtypes.

• For those items that CP currently cannot cover, the control group will be no-show of the

97



Co-purchase Suggestionswidget, and the experimental group will still be the above three.

For evaluation metrics, compared to the control group, we report the percentage of sales

revenue increase and product recommendation coverage (i.e. the total percentage of product

that has been enabled with complements for recommendation) for different categories, which

represents the business contribution of P-Companion(experimental group) on the whole. We

can see from the setting that the first test reflects the P-Companioninfluence on sales revenue

while the second mostly validates the effect of recommendation coverage.

4.4.5 Case Study

We provide two case studies for complementary recommendation on cold-start items, type

transition examples and effects of hyperparameter α as ablation study.

Recommendation on cold-start/low-resource items We compare the performance of

complementary recommendations on low-resource or even cold-start items from the output

of P-Companion and CP data in this case study. Cold-start items are defined as these

products that have general catalog features (such as title, descriptions, types) but have

limited observed relations8 or even no relations with other products. Because P-Companion

utilizes product embeddings generated from Product2vec which takes both item features and

relation with other items for embedding generation, we can still make reasonable complement

recommendation from the features of the product itself and/or related “neighbors” products

in BPGs. In contrast, Sceptre is mostly based on review text and PMSC purely relies on the

item category and logic path constraints in BPGs and therefore without a comprehensive

model capability on BPGs, their recommendation abilities for many low-resource items are

hindered.

We compare the product and type hits scores as quantitative measurements with base-

lines on these selected cold-start items under Electronics category in Table 4.12, with the

same evaluation method stated in 4.4.2. Still, P-Companion outperforms all baselines on

8In this case study, we select the items with less than 2 occurrences in the dataset for cold-start test
purpose.
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Table 4.12: Results on complementary recommendation on cold-start product items under
electronics categories. (H@k denotes Hit@k score.)

Datasets Electronics (only cold-start items in testing)

Level Item Hit score Type Hit score

Metrics H@1 H@3 H@10 H@1 H@3 H@10

Sceptre 0.049 0.065 0.081 n/a n/a n/a
PMSC 0.073 0.093 0.111 n/a n/a n/a
JOIE 0.107 0.136 0.157 0.061 0.138 0.220

P-Companion 0.115 0.147 0.168 0.073 0.158 0.244

Table 4.13: Examples of complementary recommendation on cold-start items with
P-Companion output. Recommendations are highly related and diverse even though the
resource of co-purchase history is limited or unavailable.

Category Query Item Co-Purchase Top-5 Recommendations from P-Companion

Electronics

Grocery

All-Group
(Pet home)

None

All-Group
(Fishing tools)

None

low-resource items on Electronics dataset with an average relative increase of 7.0% on the

item level and 10.9% on the type level. More specifically, Table 4.13 shows the example

recommendation results on some cold-start items, which are generally with reasonably qual-

ity. For one query item on a pet house, animal bowls and animal toys can be seen in the

recommended item list.

Examples of type transitions As one highlight of P-Companion, transitions between types

are explicitly learned and indicate complementary relation between item types. Besides the

enhanced performance of product-level recommendations, we can also extract the useful item

type complementary pattern, which would contribute to better explainability of derived com-

plementary recommendation. Table 4.14 provides examples that show reasonable transition
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patterns learned from P-Companion.

Table 4.14: Type transition examples. (Only top-3 transitions are listed for each type query.)

Query Type Top-3 Type Recommendations

cam-poweradapt sec-digit-card, micro-sd-card, hdmi-cable

roast-coffee-bean fridge-coffee-cream, whole-bean, white-tea

fly-fish-line fluorocarbon-fish-line, surf-fish-rod, fly-fish-reel

Effect of joint training hyperparameter α The parameter α balances the trade-off

in training between item type transition loss and type-item prediction loss. As item-level

Hit scores and type-level Hit scores plotted in Figure 4.10a and 4.10b, we observe that, as α

increases from 0.3 to 0.7, the performance on type and item prediction increases dramatically.

When α increases from 0.7 to 0.9, the performance does not significantly improve after

reaching the peak or even slightly drop on “item level”. We hypothesize that type-item

prediction loss is a relatively more important factor while item type transition loss can still

contribute to better performance especially on the type-level transition prediction.

(a) Effects of α onElectronics. (b) Effects of α on Grocery.

Figure 4.10: Comparison on Type Hit@3 and Item Hit@10 performance under different
hyperparameter settings of α.

4.5 Related Work

We discuss the following lines of research work that are relevant to this chapter.

100



Complementary Recommendation The basic task of a recommender system is to suggest

relevant items given item features and user-item behaviors. Most of them are based on col-

laborative filtering [SK09, KB15b, SKK01, LSY03], matrix factorization [KBV09] and neural

recommendation model [ZYS19, BK16]. The goal is related to our problem but instead of

rating estimation, we aim at complementary relationship discovery and motivate scalable

recommendation, which existing methods have sparsely explored. The most straightforward

way for complementary is based on frequent pattern mining and association rules [HCX07],

however, such purely data-driven methods lack modeling learning ability for complex appli-

cations though simplicity and efficiency. Some recent works [KWM18, ZLN18, ZWN09] in

this direction seek to classify whether two products are complementary (or substitute), such

that we can recommend complementary products based on the user’s previous purchasing or

browsing patterns. Two representative examples is Sceptre [MPL15] and PMSC [WJR18].

Sceptre uses topic modeling to extract features in product review text and employs logistic

regression for item relation classification while PMSC adopts source and target embeddings

and improve the performance by enforcing the logic rule constraints. They mainly operates

on product level and lack diversity consideration in modeling and has limited capability on

cold-start items. A comparison between P-Companion and exisiting representative models

are listed in Table 4.1 at Section 4.1.

In terms of others applications, complementary recommendation has already been ap-

plied in apparel selection and style matching [HCT18, KKL19] with a special focus in visual

modeling. It is worth noted that there is a thread of research on bundle list recommenda-

tion [ZHL14, BZS19], which aims at personalized recommendation based on user’s purchase

history and can be considered as a combinational problem. Since we currently take user-

specific data into general modeling, this line of research is out of the scope of our problem

in this work.

Network Embedding and Graph Neural Networks Learning on graph-structured data

has been a spotlight in the past decade [AK14]. Starting from random walk based method

(DeepWalk [PAS14] and nodevec [GL16]), network embedding aims at representing nodes
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as low-dimensional vector representations, preserving both network topology structure and

node content information and easily perform subsequent graph analytic tasks (classification,

clustering). One of the state-of-the-art approaches is to use graph neural networks [HYL17b]

such as GCN [KW17], GraphSAGE [HYL17a] and GAT [VCC18]. In this work, we adopt a

GAT-based model to learn product embeddings, where the intuition is to selectively aggre-

gate the information from similar products (“neighbors”) with its attributes.

Knowledge Graphs and Product Graphs Knowledge graphs (KGs) are essentially multi-

relational graphs such as Freebase, DBpedia, YAGO and many domain-specific KGs. Sim-

ilar to network embedding, recent work has put extensive efforts in learning distributed

representation on KG entities and relations [WMW17], which are vital to capturing the

latent semantic features and support relational inferences. Representative models include

TransE [BUG13], DistMult [YYH15], ComplEx [TWR16], and RotatE [SDN19]. Researchers

also apply similar techniques [SKB18] in product graphs (PGs), one example in e-commerce,

which models the item features as well as pairwise relations between and enable downstream

applications such as similarity product searching. Also, GNNs also provide a novel option

to obtain KGs [SKB18] and PGs [YHC18]. In this work, we adapt one multi-view KG em-

bedding method [HCY19] from an entity-concept view into a product-type view and serve

as one strong baseline.

Diversity Modeling As diversity is a newly-introduced but critical requirement for our

complementary recommendation problem, we also list some work related to diversity mod-

eling. For example, [AK14] employs a clustering post-process to enrich diversity for rec-

ommendation and [QCZ14] proposes a contextual bandit solution. Researchers also use

Determinantal Point Processes (DPP) [KT12, WMG19] for a balance of quality and diver-

sity rooted in the mathematical formulation. Besides recommendation, diversity has also

been explored in many other areas such as searching [CZL17, WLZ16]. However, to the

best of our knowledge, there is no related work that concentrates the focus on diversity in

complementary recommendation.
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4.6 Conclusion

In this chapter, we present P-Companion, a novel model for large-scale diversified princi-

pled product complementary recommendation to improve the quality of e-commerce service.

From customer behavioral data and product catalog features (types, etc), P-Companion

(Figure 4.7) first employs a GNN based Product2vec module to learn the universal rep-

resentations of products and later design an effective and efficient transition model for the

asymmetric and diversified complementary recommendation. Such a model can keep product

similarity, complementary relevance as well as recommendation diversity into consideration

in general. Intensive experimental evaluation from historical co-purchase data and MTurk

evaluation has demonstrated the effectiveness of P-Companion in recommending diversified

and relevant complementary items over baselines methods, as well as the ability to improve

recommendation coverage significantly.

The insights can be concluded as follows: (1) Relatedness and diversity are both im-

portant to product complementary recommendation; (2) The effectiveness of P-Companion

implies the benefits of diversified complementary modeling through item type transition

instead of “product-level” modeling; (3) P-Companion provide out an innovative, scalable

and end-to-end solution for a web-scale, high-quality and diversified product complementary

recommender.

We also point out future directions and improvements. Particularly, instead of using type

information extracted from product text features, we plan to adopt the product categorical

ontology into our framework. Such hierarchy-aware categorical information will no doubt

provide a more explainable and reliable way for neural-based recommendation systems. An-

other interesting direction is to leverage temporal customer purchase history information

into P-Companion to enable personalized recommendation and help target the more desir-

able products.
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CHAPTER 5

MEDTO: Medical Data to Ontology Matching Using

Hybrid Graph Neural Networks

5.1 Introduction

In recent years, many medical ontologies have been created from various healthcare re-

sources, semi-automatically or by human experts. Medical ontologies define, standardize

and organize concepts in the medical domain, which provide valuable knowledge to support

many healthcare applications, such as medical content browsing, clinical documentation,

and evidence-based healthcare. Examples of medical ontologies include International Clas-

sification of Diseases (ICD), Unified Medical Language System (UMLS), and Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED CT). Ontologies are widely used in

data integration [DS13] and query federation to provide standard semantics across multiple

systems. They are also used to enhance answers for medical databases using techniques

known as Ontology-Based Data Access (OBDA) [XCK18].

Much of the literature in OBDA is devoted to the study of query answering under the

assumptions that the ontology is available and the mappings between the database and the

standard ontology have already been provided. However, we observe that these assumptions

do not necessarily hold in real-life medical applications. A conversational system [QLM20]

that we built for the medical database of IBM Micromedex®, used by medical experts (e.g.,

doctors, nurses, pharmacists), revealed that the database was not designed with a target on-

tology and there was no mapping between the tables of the database and any known medical

ontologies like UMLS or SNOMED CT. We also observe a similar issue on public medical
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datasets such as MIMIC-III [JPS16], in which some tables and the associated columns are

named with abbreviations or colloquial terms. These two use cases show the need for an

end-to-end system that maps the medical database to standard medical ontologies, such that

the downstream applications (e.g., OBDA) can benefit from the standard terminologies and

vocabularies, discover additional relationships, and answer semantically rich queries.

There have been many efforts devoted to ontology matching [JG11, FPS13, KKK18], to

find a mapping between two given ontologies. Ontology matching is only part of the problem

we are trying to address in this work, namely data to ontology matching. When there is

no ontology associated with a given database, we need to create an ontology describing the

data as a first step, before we can apply ontology matching.

Most of the ontology matching work, such as LogMap [JG11] and AML [FPS13], rely

on logical reasoning and rule-based methods to extract various sophisticated features from

the ontologies. These terminological and structural features are then used to compute on-

tological concept similarities that drive the ontology matching. However, these features in

one ontology often do not transfer in others. Consequently, the accuracy and robustness of

ontology matching based on different features vary greatly with different medical ontologies

to be matched [KKK18]. Worse yet, these solutions assume that the given ontologies are

carefully crafted, which often fall short of the requirements for data to ontology matching.

Recently, graph representation learning [KW17, HYL17a] has emerged as an effective

approach to learn vector representations for graph-structured data. The representation of

a node is learned by recursively aggregating the representations of its neighboring nodes.

Several studies [WLL18, WLF19, SWH20] have exploited graph neural networks (GNNs) for

embedding-based entity alignment as similar entities usually have similar neighborhoods in

knowledge graphs (KGs). Although existing GNN-based methods have achieved promising

results on entity alignment in KGs, they are still facing three critical challenges when applied

to data to ontology matching.

First, data to ontology matching often suffers from a cold-start problem, where a seman-

tically rich ontology capturing a given medical database does not exist. One can generate
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Figure 5.1: Example of data to ontology matching.

an ontology from the relational database [LOQ18] only using its metadata. However, we

argue that if we enrich the ontology by using instance-level information from the database,

and incorporate a richer set of semantic relationships, the derived ontology can be matched

to the standard ontology with higher precision. To overcome this cold-start problem, a

bootstrapping process is necessary.

Second, one distinct characteristic of medical ontologies, compared to the open-domain

knowledge graphs like DBpedia [LIJ15] and YAGO [SKW07], is their deep domain special-

ization. These ontologies often have rich hierarchical top-down structures, which system-

atically organize medical concepts into categories and subcategories of different levels from

general to specific. Figure 5.1 shows two snippets of medical ontologies. The hierarchical

(through “isA” relations) neighborhood of “kidney failure” is very different from other types

of relations. Capturing such hierarchical structures separately would help identify matching

concepts and improve the accuracy of ontology matching.
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Third, standard medical ontologies often are non-isomorphic in the local neighborhood

structures of a concept from the one of a derived ontology. The rich and complex vocabular-

ies, abundant sources of domain knowledge, and different modeling views all contribute to

such non-isomorphism greatly. Fortunately, many medical ontologies have top-level concepts

provided by domain experts, and such concepts provide a global context for matching con-

cepts. In Figure 5.1, the concept “clinical finding” is the top-level category of “renal failure”.

This helps us differentiate “renal failure” from other concepts such as “renal dialysis”, which

belongs to the “procedure” category. Motivated by the fact that the semantically related la-

tent information can appear in these top-level concepts, the aggregated neighborhood of a

concept should include not only its local neighbors, but also the concepts with its global

information.

To cope with these challenges, we propose a medical data to ontology matching (Medto)

framework based on graph representation learning. The underlying idea is to first create and

enrich a source ontology from the given medical database, and then embed both enriched and

standard medical ontologies into two representations (i.e., hierarchical and non-hierarchical

views) that are complementary to each other. Both representations are jointly optimized to

improve the ontology matching capabilities. Our contributions are listed as follows:

• We propose an end-to-end framework Medto for data to ontology matching. Medto

first bootstraps an ontology, based on a given medical database, and then learns and unifies

hierarchical and non-hierarchical representations of two ontologies for matching.

•We design a lightweight yet effective method to create and enrich an ontology from the

metadata of a medical database with rich semantic information from its instance data.

•We employ hyperbolic graph convolution layers to encode the parent and child concepts

of each concept in the hyperbolic space, capturing the hierarchical characteristics in an

ontology.

• To enrich the features of each concept, we introduce heterogeneous graph layers to

incorporate both the local structure and the global context into concept embeddings.

• Our experiments on matching two real-world medical datasets to SNOMED CT show
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that Medto significantly outperforms the state-of-the-art methods. We also evaluate Medto

on a benchmark from the Ontology Alignment Evaluation Initiative (OAEI), showing that

Medto consistently achieves state-of-the-art results.

5.2 Preliminaries and System Overview

5.2.1 Graph Neural Networks

Graph neural networks (GNNs) are deep learning based methods that operate on graph-

structured data. It has been shown that GNNs are effective for various applications, such

as node classification, link prediction and community detection. A generalized framework

of GNNs [CAP20] consists of a graph encoder and a graph decoder, taking as input an

adjacency matrix A, as well as optional node and edge features X = {XN , XE}. A typical

graph encoder parameterized by Θenc combines the graph structure with node and edge

features to produce node embedding matrix as:

Z = ENC (A,X,Θenc) . (5.1)

The graph encoder uses the graph structure to propagate and aggregate information across

nodes and learn embeddings that encode local structural information. A graph decoder is

often used to compute similarity scores for all node pairs for downstream tasks on node,

edge, or graph level.

Depending on the graph properties, a wide variety of GNNs have been developed. Repre-

sentative examples include message-passing R-GCN [SKB18] and metapath-based HAN [WJS19]

for heterogeneous graphs, non-Euclidean hyperbolic GCN [CYR19] for hierarchical graphs,

and EvolveGCN [PDC20] for dynamic graphs. More details can be found in Section 5.6.
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5.2.2 Problem Formulation

Definition 5.2.1. A medical database D is represented by a relational schema S and its

instance I. A schema is a finite collection of relation symbols. Each relation symbol has a

specified arity, which intuitively corresponds to column names. An instance I over S is a

collection of relations whose arities match those of the relation symbols in S.

Definition 5.2.2. A medical ontology is represented as O = (C, R, T ), where C is the set

of concepts, R is the set of relations, and T = C ×R× C is the set of triplets.

Problem definition. Given a medical database D and a standard medical ontology O,

the data to ontology matching problem is to find matches M that map the schema S
of D to O, such that {(i, j) ∈ S ×O | i ≡ j}.

Note that a single standard medical ontology may only partially match with a medical

database. In this case, multiple medical ontologies can be used to match against the given

database in sequence. In essence, the challenges of matching data to ontology remain due

to the semantically poor schema of the medical database and the complex structure of the

medical ontology. Hence, we need to design an end-to-end system addressing these challenges.

5.2.3 System Overview

As depicted in Figure 5.2, we propose a framework, Medto, which consists of two phases:

data to ontology bootstrapping and ontology to ontology matching. Given a medical

database, the data to ontology bootstrapping phase first derives an ontology from its schema

and data instances. It also bootstraps seed matches between the derived and standard

ontologies by labeling highly confident matches and adding them into training data. The

ontology to ontology matching phase takes as input the derived ontology, the standard

ontology, as well as the seed matches (either provided or bootstrapped). Structures of both

ontologies are captured via graph neural networks (GNNs) for structural representation

learning. Moreover, the lexical semantics of the concepts in both ontologies is employed,

providing complementary signals for ontology matching.
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Figure 5.2: Medto system architecture.

5.3 Ontology Bootstrapping from Medical Database

In this section, we examine the ontology bootstrapping problem. Specifically, we first ad-

dress the “cold-start problem”, i.e., the task of creating an ontology from a medical database.

Then, we describe our novel concept augmentation and neighborhood augmentation strate-

gies to enrich the derived ontology.

5.3.1 Ontology Creation

To infer an ontology (i.e., concepts and their relationships relevant to the domain) from a

relational database, we leverage a variety of information from both database schema and

data instances.

Concepts and properties. We map each table in a medical database to a concept and
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represent columns in each table as data properties of that concept. Note that not all columns

are selected, as they may not be semantically meaningful. Specifically, primary and foreign

keys are not included, because they are designed for uniquely identifying each row in the

table. Moreover, columns of non-string types (e.g., numeric, date, etc.) are not chosen

either, since most standard medical ontologies only contain concepts expressed in strings.

Relation inference. Relation inference is non-trivial as it depends on the primary key

and foreign key interactions, and quite often these keys are not specified in the databases,

especially when the database is created from raw medical literature. Therefore, we follow

the approach suggested in [LOQ18], which enables the inference of functional relations as

well as concept hierarchies (i.e., isA relation).

In brief, we first identify primary and foreign keys by leveraging data statistics, such as

distinct values. If the number of distinct values of the column and the total row count in

the table are identical, we assert a primary key constraint. Similarly, for foreign keys, we

check if the rows in the join of the two tables based on the selected columns are equal to the

total rows of the referring table. Furthermore, we consider tables with exactly two columns,

both acting as foreign keys to different tables in the schema, as intermediate tables. For

every non-intermediate table R, we generate a functional relation that connects the concept

C generated from R to another concept C ′ generated from the table R′, if one of R’s column

is a foreign key referring to R′. If there is a table R1 with a single column, which is a foreign

key referring to a table R2, we consider the concept C1 generated from R1 as subsumed

by the concept C2 generated from R2. In this case, we assert an isA relation between two

concepts corresponding to these two tables. Finally, the resulting ontology O1 is stored in

OWL2 format.

5.3.2 Ontology Enrichment

Although the created ontologies capture schema-level details of the underlying data, they

are far less semantically rich than the standard ontologies created by experts. To alleviate

this issue, we introduce two effective augmentation heuristics to enrich the derived ontology
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Figure 5.3: Medto ontology enrichment.

Concept augmentation. For each distinct value1 in relational tables, we add an instance-

level concept in O1, and connect these new concepts to the existing schema-level ones via

a new relationship “instance of”. The advantages of concept augmentation are twofold.

First, it greatly enriches O1 with the available information from the relational database.

Second, it enables us to bootstrap the seed concept matching between two ontologies using

exact string matching algorithms. Other approximate string matching algorithms (e.g., edit-

distance based or embedding based) or ML-based methods [SHZ18] can be plugged in as well,

depending on the accuracy requirement.

Neighborhood augmentation. We also add edges among the pre-aligned seed concepts

in O1. Specifically, if two concepts i and j of O2 have an edge, while their counterparts i′

and j′ in O1 do not, we add an edge between i′ and j′. The goal is to fill the semantic gap

1If the number of distinct values is greater than a threshold, we use sampling to avoid exploding the
ontology. We omit the details due to space constraints.
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between O1 and O2 by adding the missing structural information.

With the augmented ontology, Medto can effectively learn the ontology representation

and align it with O2. To match a schema-level concept in O1 with the ones in O2, we

employ graph pooling to aggregate the embeddings of instance-level concepts that belong

to the schema-level concept. Different graph pooling methods [HYL17a, YYM18] have been

investigated for different scenarios. We find that the element-wise mean-pooling is sufficient

to capture different information across the neighborhood set.

Finally, we feed both the enriched O1 and a standard ontology O2 into our novel graph

neural network Medto to find the matches between them (Figure 5.3).

5.4 Ontology Matching
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Figure 5.4: Details of Medto matching module. Both O1 and O2 are split into the hi-
erarchical and non-hierarchical facets, which are fed into a hyperbolic graph layer and a
heterogeneous graph layer respectively. The matching module minimizes the contrastive
matching loss to let the representations of matching concepts have a very small distance
while those of unmatched concepts have a large distance.

5.4.1 Input Embeddings of Medical Concepts

The concept names in a medical ontology consist of sequences of words. One can leverage

deep learning based embedding methods such as BERT [DCL19] or ELMo [PNI18] to produce

din-dimensional word embeddings for each concept. In this work, as the starting point, we
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choose BioBERT [LYK20], a high-quality medical language model pre-trained on PubMed

abstracts and clinical notes (MIMIC-III). The resulting input embedding is used as the initial

state (h0,E) of each concept, where E indicates that the embeddings are in a Euclidean space.

5.4.2 Hyperbolic Graph Convolution Layer

Conventional GNNs embed nodes into Euclidean space, which has been shown to incur a

large distortion with hierarchical structures [NK17]. Hence, we use a hyperbolic embedding

space, since it is amenable for learning concept hierarchies. Compared to Euclidean spaces,

hyperbolic spaces better capture the hierarchical characteristic of ontologies. In this work, we

adopt a specific model, hyperbolic graph convolutional neural network (HGCN) [CYR19],

which leverages both the expressiveness of GNNs and hyperbolic geometry to learn node

representations for graphs with hierarchical structures.

Hyperbolic graph convolution layer first establishes mapping between tangent (Euclidean)

and hyperbolic spaces by exponential and logarithmic maps. We use the exponential map to

project the node embeddings from a Euclidean space to a hyperbolic space, and logarithmic

map reverses the map back to the Euclidean space. Hence, the initial embedding h0,E
i of

node i to h0,H
i is:

h0,H
i = expK

o

(
0,h0,E

i

)
, (5.2)

where K determines the constant negative curvature −1/K (K > 0) and o denotes the origin

in the hyperbolic space. For hyperbolic feature transformation from one layer to the next

layer, we follow the definition below:

hl,H
i =

(
Wl ⊗Kl−1 hl−1,H

i

)
⊕Kl−1 bl (5.3)

where ⊗ and ⊕ are hyperboloid matrix multiplication and addition, respectively, as defined

in [CYR19].

Similar to GCN, our hyperbolic graph convolution layer aggregates features from a node’s

local neighborhood. Since there is no notion of vector space structure in a hyperbolic space,
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we have to map embeddings to the tangent space, perform the aggregation in the tangent

space, and then map the aggregated embeddings back to the hyperbolic space. Furthermore,

we utilize an attention mechanism to learn the importance of each neighboring node and ag-

gregate neighbors’ embeddings according to their importance. Given hyperbolic embeddings

(hH
i , hH

j ), the attention weight wij is:

wij = Softmax
(
mlp

(
logK

o

(
hH
i

)
|| logK

o

(
hH
j

)))
, (5.4)

and the hyperbolic attention-based aggregation is:

AGGK(hH)i = expK
hH
i

 ∑
j∈N (i)

wijlogK
hH
i

(
hH
j

) , (5.5)

where || is a concatenation operation, and N (i) = {j : (i,j) ∈ RisA} denotes a set of parents

of concepts i ∈ C. Finally, we use a non-linear activation function to learn non-linear

transformations by first applying the Euclidean non-linear activation in the tangent space

and then mapping back to the hyperbolic space:

σ⊕Kl−1,Kl
(hH) = expKl

o

(
σ
(
logoKl−1

(
hH
)))

. (5.6)

The l-th layer of a hyperbolic graph convolution layer is:

hl,H
i = σ⊕Kl−1,Kl

(
AGGKl−1

(
hl,H

)
i

)
, (5.7)

where −1/Kl−1 and −1/Kl are the hyperbolic curvatures at the (l − 1)-th and l-th layer,

respectively. The hyperbolic embeddings at the last layer can be used to predict the concept

similarity. We use the following sigmoid function [CYR19] to compute probability scores for

edges:

LH = p((ci, cj) ∈ C) =
{
exp

[
1

t

(
dK
(
hH
i ,hH

j

)2 − r
)]

+ 1

}−1

, (5.8)

where dK(·, ·) is the hyperbolic distance and r and t are hyper-parameters.
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5.4.3 Heterogeneous Graph Module

To capture the non-hierarchical structure in an ontology, conventional GNNs such as R-

GCN [SKB18] can be applied, as it models multi-relational graphs. Specifically, R-GCN

distinguishes different neighbors with relation-specific weight matrices. In the l-th convolu-

tional layer, each representation vector is updated by accumulating the vectors of neighboring

nodes through a normalized sum. Formally, the l-th layer of R-GCN is:

hl,E
i = σ

Wl
0h

l−1,E
i +

∑
r∈R

∑
j∈N r

i

1

ci,r
Wl

rh
l−1,E
j

 , (5.9)

where W l
0 is the weight matrix for the node itself and W l

r is used specifically for the neighbors

having relation r, i.e., N r
i , R is the relation set and ci,r is for normalization.

One limitation of this approach is that it focuses only on the local context of a concept

and ignores the position of the concept within the broader context of the entire ontology.

As described in Section 5.1, the top-level concepts in an ontology often provide additional

semantic information which can influence how the final embeddings are aggregated. In

Figure 5.5, the local context of “renal failure” includes two concepts, “measurements of

renal function” and “kidney structure”, connecting to “renal failure”. In addition to the

local context, we also incorporate the “global” context described by the top-level concepts,

such as “clinical finding”, “body structure”, and “procedure”.

The key idea is to incorporate a set of “global” contexts and enrich each node’s feature

with its corresponding global embeddings. We denote a node i’s global embedding at l-th

layer as gl,E
i . We replace the node feature hl−1,E

i with its enriched version hl−1,E
i ||gl−1,E

i and

similarly replace each node feature of its neighbors hl−1,E
j with concatenated hl−1,E

j ||gl−1,E
j

in Eq. 5.9. Note that in a medical ontology, a concept may belong to multiple top-level

concepts. In this case, we take an element wise mean of all global embeddings to fully capture

the global context. Such combined embeddings help us to learn better representations from

more neighborhood information.
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Figure 5.5: Local and global contexts of “renal failure”.

Following the convention, we optimize for cross-entropy loss to push the model to score

observable edges higher than the negative ones:

LE =
∑
r∈R

∑
i,j∈C

wr
ijlog

exp
(
(hE

i )TArh
E
j

)∑
i′∈C exp

(
(hE

i′ )
TArhE

j

) , (5.10)

where wr
ij = 1(i, j ∈ Rr) and negative samples are generated by replacing i with a random

node i′.

5.4.4 Matching Module

Based on the learned concept representations hH and hE from the hyperbolic graph convo-

lution and the heterogeneous graph layers, we merge the two through concatenation to unify

the representation of a concept h. Then, the matching module M(·) takes pairs of concept

embeddings from O1 and O2 and outputs the prediction score. We use the straightforward

multi-layer perceptron (MLP) with one hidden layer, defined as follows:

M
(
hU
i ,h

U
j

)
= σ

(
W2 · γ

(
W1

(
hU
i ||hU

j

)
+ b1

)
+ b2

)
, (5.11)

where W1, W2, b1, b2 are parameters, σ is the sigmoid function, and γ is the LeakyReLU

activation function. A multi-head attention-based transformer encoder [VSP17] module can
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also be used to replace the MLP.

We minimize the contrastive matching loss to let the embeddings of known matched con-

cepts (positive) have a small distance while the unmatched (negative) pairs have a relatively

large distance:

LM =
∑

(i,j)∈M+

M(hi,hj) +
∑

(i′,j′)∈M−

ω [λ−M (hi′ ,hj′)]+ , (5.12)

where M+ denotes the seed matches between O1 and O2, M− denotes a set of negative

samples, λ is the margin value, ω is a balance hyper-parameter, and [·]+ = max(0, ·).

5.4.5 Training

Combining the hyperbolic graph convolution and heterogeneous graph models together with

the matching module, Medto minimizes the final joint loss function:

L = LM + α1 ·
(
LH

O1
+ LH

O2

)
+ α2 ·

(
LE

O1
+ LE

O2

)
, (5.13)

where LM is the matching loss, LH
O1

(LH
O2

) and LE
O1

(LE
O2

) represent the losses of the hyperbolic

graph convolution and heterogeneous graph models, respectively, and both α1 and α2 are

positive hyper-parameters to control the trade-off among three loss components. We optimize

all models with Adam [KB15a] optimizer.

5.5 Experiments

5.5.1 Datasets

We use the following datasets from the medical domain to evaluate the performance of our

Medto framework.

MIMIC-III is a large database consisting of anonymized health-related data of over

forty thousand patients who stayed in critical care units [JPS16]. It contains 21 tables in 3
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aspects including patient tracking, ICU data, and hospital data.

MDX is a medical database of IBM Micromedex®2 that contains information in 59

tables about drugs, adverse effects, indications, findings, etc. It is manually curated from

medical literature by editorial staff.

For standard medical ontologies, we choose the ones provided in the large BioMed track of

OAEI3. This track consists of finding alignments between three ontologies: the Foundational

Model of Anatomy Ontology (FMA), SNOMED CT, and the National Cancer Institute

Thesaurus (NCI).

FMA is an ontology for biomedical informatics that represents a coherent body of explicit

declarative knowledge about human anatomy [RM03]. It consists of 78,984 concepts and

78,985 isA relations.

NCI provides reference terminologies for clinical care, translational and basis research,

and public information and administrative activities [CHS04], which consists of 56,907 con-

cepts and 85,332 relations of 80 different types. 59,794 of them are isA relations.

SNOMED CT is a systematically organized collection of medical terms providing codes,

terms, synonyms and definitions used in clinical reporting [Don06]. It contains 76,730 con-

cepts and 109,896 relations, of which 105,563 are isA.

Seed matches are provided by OAEI and we split them into train, validation and test set

as the positive samples. The negative samples are uniformly sampled by modifying one of

the concepts in the positive sample pairs.

5.5.2 Compared Methods

To evaluate both phases of Medto, we compare our approach against a variety of methods

in different categories. For Medto ontology bootstrapping phase, we choose the method

introduced in ATHENA [LOQ18, JSM18] as the baseline, which only utilizes the schema in-

2https://www.ibm.com/products/micromedex-with-watson

3http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/
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formation from a given database. For Medto ontology matching phase, the baselines range

from rule-based methods to recent embedding-based entity alignment models. Specifically,

LogMap uses logic-based reasoning over the extracted features and casts the ontology match-

ing as a satisfiability problem. AML performs ontology matching based on heuristic methods

that rely on aggregation functions. We select MTransE [CTY17], GCN-Align [WLL18], and

RDGCN [WLF19]4 from recent embedding-based entity alignment methods. For ablation

study, we develop three variants of Medto, i.e., Medto (w/o HYP) that does not capture

the hierarchical information in the hyperbolic space, Medto (w/o HET) that does not pay

attention to both local and global position information, and the full model Medto.

5.5.3 Implementation Details

The following hyper-parameters are used in the experiments. Each training took 1000 epochs

with a learning rate of 0.01. The embedding dimension d is set to 128 for all the comparative

methods (if applicable). The dimension of input embeddings is din = 768. By default, we

stack 2 hyperbolic graph convolution and 2 heterogeneous graph layers in Medto. For the

hyperbolic graph convolution decoder, we set r = 2.0, t = 1.0 (Eq. 5.8) and apply trainable

curvature. In the matching module, we set λ = 1.0 and ω = 0.1 (Eq. 5.12). We set both

balance hyper-parameters α1 and α2 to 1.0 in Eq. 5.13. We sample 10 negative samples

for each pre-aligned concept pair. All the learnable parameters are initialized by the Xavier

initialization [GB10]. Following the convention of OAEI and entity alignment, we report the

precision, recall and F1 score to assess ontology matching performance. In addition, we also

report MRR (mean reciprocal rank), higher scores indicating better performance.

5.5.4 Experimental Results

Main results. We evaluate Medto on both MIMIC-III and MDX. For MIMIC-III, our

domain experts identified 15 matching concepts in SNOMED, among 21 tables. For MDX,

4OpenEA library: https://github.com/nju-websoft/OpenEA
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19 out of 59 tables have their matches identified in SNOMED as well. Hence, we use

these identified matches as our ground truth. Following convention, we report Hits@10

and Hits@30 results to assess ontology matching performance.

Table 5.1: Matching MIMIC-III and MDX to SNOMED CT.

Dataset MIMIC-III ⇔ SNOMED MDX ⇔ SNOMED

Metric Hits@10 Hits@30 Hits@10 Hits@30

AML 0.06 (1/15) 0.13 (2/15) 0.16 (3/19) 0.26 (5/19)
LogMap 0.20 (3/15) 0.20 (3/15) 0.21 (4/19) 0.37 (7/19)

MTransE 0.00 (0/15) 0.00 (0/15) 0.05 (1/19) 0.05 (1/19)
GCN-Align 0.20 (3/15) 0.33 (5/15) 0.32 (6/19) 0.42 (1/19)

RDGCN 0.27 (4/15) 0.40 (6/15) 0.32 (6/19) 0.58 (11/19)

Medto 0.47 (7/15) 0.60 (9/15) 0.42 (8/19) 0.79 (15/19)

As shown in Table 1, Medto substantially outperforms all baseline methods. For

MIMIC-III, the best performing baseline, RDGCN, can only find 4 matches when Hits@10,

whereas Medto finds 7 out 15 matches. The primary reason is the concept and neigh-

borhood augmentation we used to enhance the initially derived MIMIC-III ontology. With

instance-level concepts and hierarchical relationships among them, Medto can leverage se-

mantic information to learn much better representations of the MIMIC-III ontology, resulting

in the performance gain. We observe similar results on the MDX dataset; our Medto finds

8 out of 19 matches compared to 3-6 matches found by other baselines, achieving superior

performance. Tables 2 and 3 show a subset of successful and failed cases from both datasets.

Table 5.2: MDX-to-SNOMED result analysis (Hits@30).

MDX Tables AML LogMap RDGCN Medto

AdverseEffect ✓ ✓ ✓ ✓

Dosage ✓ ✓ ✓ ✓

DrugFoodInteraction ✗ ✓ ✓ ✓

ContraIndication ✗ ✗ ✓ ✓

DoseAdjustment ✗ ✗ ✗ ✓

DrugRoute ✗ ✗ ✗ ✗

We observe two mistake patterns from Medto. The first type of mistakes is caused by

ambiguous semantic information. For example, most instance-level concepts of “chartevent”

are described by different timestamps, which do not contribute to the bootstrapping of seed
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matches between MIMIC-III and SNOMED at all. In fact, Medto solely relies on the input

embedding of “chartevent”, which is not sufficient to locate the correct match in SNOMED.

Table 5.3: MDX-to-SNOMED result analysis (Hits@30).

MDX Tables AML LogMap RDGCN Medto

AdverseEffect ✓ ✓ ✓ ✓

Dosage ✓ ✓ ✓ ✓

DrugFoodInteraction ✗ ✓ ✓ ✓

ContraIndication ✗ ✗ ✓ ✓

DoseAdjustment ✗ ✗ ✗ ✓

DrugRoute ✗ ✗ ✗ ✗

The second type of mistakes still results from instance-level concepts augmented in

MIMIC-III. Even though Medto is able to leverage these concepts to bootstrap the seed

matches, these matches do not locate around the provided ground truth matches in SNOMED.

For example, most instance-level concepts of “labevents” find the matches (e.g., “hemoglobin”

and “cholesterol”) under “substance” concept in SNOMED. Consequently, Medto learns

an incorrect representation of “labevents” and mistakenly matches it to concepts similar to

“substance” rather than “laboratory test”. We observe similar trends from MDX case as well.

Ontology bootstrapping results. As mentioned earlier, we evaluate the effectiveness of

Medto ontology bootstrapping methods against ATHENA [LOQ18, JSM18], which only

utilizes the schema information of a database to create an ontology. Medto matches 7 out

15, and 8 out of 19 over MIMIC-III and MDX, respectively, when Hits@10, while ATHENA

is only able to match 3 out of 15, and 4 out of 19. Even when Hits@30, ATHENA (4 out

of 15 on MIMIC-III, and 5 out of 19 on MDX) is still beaten by Medto substantially. The

results clearly show that Medto ontology bootstrapping method can produce a semantically

richer ontology compared to the one generated by ATHENA. Having the enriched ontology,

the ontology matching phase can subsequently identify more matching concepts from the

standard ontology.

Ontology matching results. Table 4 summarizes the results of ontology matching on

three pairs of ontologies from OAEI datasets. We observe that Medto outperforms the

three representative baselines from entity alignment, with an average improvement of 4.7%
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Table 5.4: Results of ontology matching among FMA, NCI and SNOMED on OAEI datasets.

Dataset FMA-NCI

Metrics Precision Recall F1 score MRR

AML 0.942 0.899 0.920 –
LogMap 0.916 0.895 0.905 –

MTransE 0.627 0.640 0.633 0.416
GCN-Align 0.813 0.783 0.798 0.561
RDGCN 0.855 0.843 0.849 0.761

Medto 0.944 0.874 0.908 0.783
Medto (w/o HYP) 0.867 0.775 0.818 0.724
Medto (w/o HET) 0.927 0.851 0.887 0.763

(a) Ontology matching between FMA and NCI.

Dataset FMA-SNOMED

Metrics Precision Recall F1 score MRR

AML 0.902 0.729 0.806 –
LogMap 0.791 0.850 0.819 –

MTransE 0.505 0.475 0.490 0.372
GCN-Align 0.763 0.729 0.746 0.526
RDGCN 0.824 0.752 0.786 0.683

Medto 0.871 0.762 0.813 0.690
Medto (w/o HYP) 0.787 0.653 0.714 0.540
Medto (w/o HET) 0.863 0.747 0.801 0.676

(b) Ontology matching between FMA and SNOMED.

Dataset NCI-SNOMED

Metrics Precision Recall F1 score MRR

AML 0.890 0.744 0.810 –
LogMap 0.897 0.732 0.805 –

MTransE 0.254 0.378 0.304 0.349
GCN-Align 0.745 0.775 0.760 0.467
RDGCN 0.852 0.782 0.816 0.679

Medto 0.901 0.802 0.849 0.704
Medto (w/o HYP) 0.835 0.759 0.795 0.595
Medto (w/o HET) 0.881 0.807 0.842 0.688

(c) Ontology matching between NCI and SNOMED.
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on F1 score and 2.5% on MRR. This indicates that entity alignment methods, designated for

general-purpose knowledge bases (e.g., Wikidata and DBpedia), are insufficient for match-

ing domain-specific medical ontologies with hierarchical structures. Medto explicitly dis-

tinguishes and models the hierarchical information, from other local and global structural

features, leading to better results on medical ontology matching.

Compared to the extensively developed rule-based approaches (AML/LogMap), Medto

achieves competitive results across all three datasets. In particular, Medto outperforms

both AML and LogMap on NCI-SNOMED matching. It is the most challenging one among

the three matching tasks, since both NCI and SNOMED are more complex than FMA. We

also find that AML and LogMap heavily rely on lexical features from a suite of sophisticated

matchers. Deriving such features for a given ontology can be time-consuming. However,

these features in one ontology often do not transfer in others. As shown in Tables 2 and 3,

the accuracy of such approaches varies dramatically depending on the quality of the given

ontologies.

Effectiveness of Medto heterogeneous graph layer and hyperbolic graph convo-

lution layer. We compare the performance between the proposed Medto and its two

variations, named Medto (w/o HYP) and Medto (w/o HET), which only use the hetero-

geneous graph layers and hyperbolic graph convolution layers, respectively. Results are also

shown in Table 2. We observe that full model Medto consistently performs the best across

three datasets, with an average increase of 2.3% in F-1 score. This is attributed to Medto’s

unified representation, capturing the critical semantic and structural features from multiple

facets. It is also interesting to see that Medto (w/o HET) outperforms Medto (w/o HYP),

which indicates that hierarchical information in medical ontologies contains more represen-

tative and critical features of ontology matching. Our hyperbolic graph convolution module

effectively encodes such information for the matching module.

Hyper-parameter sensitivity analysis. We first analyze the results of Medto with

1 to 4 hyperbolic graph convolution and heterogeneous graph layers on OAEI datasets. In

Figure 5.6a, we observe the optimal number of layers is 2 (for FMA-NCI and SNOMED-NCI)
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Figure 5.6: Sensitivity analysis.

or 3 (for FMA-SNOMED). When Medto uses more layers, its performance declines. The

reason is that Medto indirectly captures more global contextual (i.e., top-level concepts)

information by message propagation, and such global information would lead to more non-

isomorphic neighborhoods.

Furthermore, we also aim to match ontologies with different numbers of seed matches. We

use different proportions r of seed matches in OAEI datasets. As shown in Figure 5.6b, the

Medto performs substantially better when r increases from 0.2 to 0.4, but the performance

gain slows down as r increases from 0.6 to 0.8. This shows that Medto does not heavily

rely on a large number of high-quality seed matches and provides decent matching results

when the seed matches are limited.

5.6 Related Work

Graph representation learning. Recently graph representation learning has been in-

tensively studied [HYL17a, SKB18] and shown effective for various tasks including node

classification, link prediction and graph matching and multi-domain applications such as

recommendation [HZL20] and even road traffic networks [DSW21]. Recently, graph atten-

tion networks [VCC18, WJS19, FZM20] have been introduced and allow each node to attend
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over its various neighbors and uses attention to assign different weights to different nodes

in a neighborhood. We refer interested readers to [DHW21] for more details. Recently,

there has been research in extending GNNs to learn non-Euclidean embeddings and thus

benefit from both the expressiveness of GNNs and hyperbolic geometry. Poincaré embed-

dings [NK17] learn embeddings of hierarchical graphs such as lexical databases (e.g., Word-

Net) in the Poincare space. HGCN [CYR19] and HGNN [LNK19] apply graph convolutions

in hyperbolic space by leveraging the Euclidean tangent space, which provides a first-order

approximation of the hyperbolic manifold at a point. These methods lead to improvements

on graphs with hierarchical structures.

Ontology matching. Traditional feature-based approaches have been investigated for on-

tology matching, including terminological-based features, structural-based features and em-

ploying external semantic thesauruses for discovering semantically similar entities. More

specifically, LogMap [JG11] relies on lexical and structural indexes to enhance its scalabil-

ity. AML [FPS13] also employs various sophisticated features and domain-specific thesauri

to perform ontology matching. Feature-based methods mainly employ crafting features to

achieve specific tasks. Unfortunately, these hand-crafted features will be limited for a given

task and face the bottleneck of improvement. Representation learning has a recent impact

on ontology matching. For instance, DeepAlignment [KKK18] is an unsupervised ontology

matching system, which refines pre-trained word embeddings with the descriptions of entities,

including synonyms and antonyms extracted from general lexical resources and information

captured implicitly in ontologies. Similar to DeepAlignment, a framework is introduced for

medical ontology alignment [KKS18], based on terminological embeddings. The retrofitted

word vectors are learned from the domain knowledge encoded in ontologies and semantic

lexicons.

Entity alignment. Similar to ontology matching, entity alignment seeks to find entities in

different knowledge graphs (KGs) that refer to the same real-world object. With the recent

success of graph representation learning, embedding-based entity alignment has emerged

and attracted massive attention recently [SZH20]. GCNAlign [WLL18] leverages GCNs for
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cross-lingual KG alignment. Entity alignments are discovered based on the distances between

entities in the embedding space. RDGCN [WLF19] introduces dual relation graphs to cap-

ture complex relation information via attentive interaction between KGs. AliNet [SWH20]

employs an attention mechanism to key distant neighbors to expand the overlap between

entities neighborhood structures. It then controls the aggregation of the direct and dis-

tant neighborhood using a gating mechanism. We refer interested readers to the recent

survey [SZH20] for more details on embedding-based entity alignment.

Data integration. Much effort has been made to towards data integration [DHI12, DS13],

including schema alignment and data fusion. Schema mapping methods [CGH18] create a

mediated (global) schema and identify the mappings between the mediated (global) schema

and the local schemas of multiple databases to determine which attributes contain the same

information. Hence, the main goal of data integration is to create the global schema so that

multiple databases can be integrated and queried together. In data to ontology, on the other

hand, there is only a single database, and the relations are mapped to concepts in a standard

ontology to utilize standard vocabularies and enable semantically rich queries.

5.7 Conclusion

In this chapter, we propose an end-to-end framework Medto for medical data to ontology

matching. Medto creates a semantically rich ontology from a given medical database and

learns multiple facets of concepts in both enriched and standard ontologies. Medto encodes

the hierarchical information of concepts in the hyperbolic space through hyperbolic graph

convolution layers. We further capture both local and global structural information of con-

cepts using heterogeneous graph layers. Medto incorporates the information from these

layers and learns better concept representations for ontology matching. Our experiments

on a variety of real-world medical databases and ontologies demonstrate the effectiveness of

Medto. As future work, we plan to support different types of matching relations between

two concepts (e.g., ⊆, ⊇, and disjoint) and to extend Medto to match data to multiple

ontologies in a holistic manner.
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CHAPTER 6

Multi-source Knowledge Graph Transfer

6.1 Introduction

Various large-scale information systems, such as knowledge bases (KBs), enterprise security

systems, IoT computing systems and social networks [DCW17], exhibit comprehensive in-

teractions and complex relationships among entities from multiple different and interrelated

domains. For example, knowledge bases, such as DBpedia [ABK07], contain rich informa-

tion of real-world entities (people, geographic locations, etc), normally from multiple domains

and languages; and IoT systems contain thousands of mobile interrelated computing devices,

mechanical and digital machines with various functions that constantly record surrounding

physical environments and interact with each other. These systems can be formulated as

heterogeneous graphs with nodes as system entities and edges as activities. Considering an

enterprise security system as one example shown in Figure 6.1 (right), processes, internet

sockets, and files can be treated as different types of nodes. Activities between entities,

such as a process accessing a destination port or importing system libraries, are treated as

edges in the graph. They can be utilized for many downstream tasks including identifying

active entities or groups in social networks, inferring new knowledge in KBs and detecting

abnormal behaviors [CZC16].

Due to the complex nature of real-world systems, it normally takes a long time, sometimes

even months for newly-deployed information systems to construct a reliable graph “profile”

to identify featured entities and activities. Therefore, there is a need to transfer and migrate

knowledge (potential entities with corresponding high-confidence interactions) from other

available sources provided by existing multiple well-developed systems. However, directly
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Figure 6.1: Two examples of multi-source graph transfer in knowledge bases (left) and
enterprise systems (right). By leveraging the entities and relations from sources GS(1) and
GS(2) , we can estimate the target graph ĜT based on the current observation GT . Grey
nodes/links in ĜT denote new predictions from graph knowledge transfer. (Best viewed in
color)

transferring existing nodes and links by copying is not reasonable and reliable enough since

the source and target systems are not necessary for the exact same domains (e.g., transferring

knowledge from existing departments to a new department in a corporation). It may transfer

irrelevant or even incorrect entities and activities to the target graph. Existing research

work [LCT18] mostly focuses on design learning frameworks for effective graph knowledge

transfer between one source system and one target system and shows promising results on

graph knowledge transfer. But in reality, it is quite common that multiple system sources

are available. Simply using single-source graph knowledge transfer has its own limits: (1) the

information from a single source is not sufficient in most cases; and (2) using only one source

may lack generalization ability especially when the source and target are largely different,

which leads to potential transfer failure. Learning graphs for newly-deployed systems through

multi-source graphs will no doubt provide more comprehensive coverage of system entities

and activities in multiple domains, and it will be more robust for downstream applications

relying on learned target graph after selectively adapting knowledge from source graphs1.

1In this chapter, we use the source graph as the graph profiles for existing well-observed systems and
target graph as the graph profile for new systems, which is relatively smaller than source graphs in graph
size (e.g. number of nodes/edges). We assume that the number of source graphs is at least 2 and that of
the target graph is 1.
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Two application scenarios are shown in Fig. 6.1. In the case of multi-lingual KBs, low-

resource KB (such as Japanese) can be enriched and improved with other KBs, and especially

in the case of Pablo Alboran (Spanish pop singer), Spanish KBs can provide better and more

accurate knowledge facts than others. Similarly in the example of enterprise systems, after

the observation that the system has similar patterns of .dll connections of SVCHOST.EXE,

a reasonable interpretation is that the target graph GT will more likely grow more closely

related patterns shown in source graphs.

However, the aforementioned selective multi-source transfer faces several challenges: (i)

How to represent multiple source graphs and target graphs effectively i.e. set up connections

to leverage the graph knowledge in source graphs to the target graphs. Not all sources are

equally related to the target and it is required to differentiate multiple input source graphs

in the transferring process, which is a difficult but important task to handle and will signifi-

cantly affect the transfer performance. (ii) How to handle potential conflicts on entities and

interactions observed in multiple graphs. The same interactions may be observed in some

sources, but are not in others. In other words, there are potentially conflicting observations

that cannot be easily tackled by simple transfer. In other words, if all sources are credited

equally (for example, using one combined graph to include all the nodes and edges) and

other methods that concatenate multiple graphs, one inductive bias is incorrectly assumed

that nodes and/or edges are transferred and learned without selectivity and the approaches

are subject to noise and misinformation on part of the sources.

To address the aforementioned tasks and corresponding challenges, we proposed a novel

type of graph neural network designed for Multi-Source Graph Knowledge Transfer named

MSGT-GNN which contains two model components: Intra-Graph Encoder and Attention-based

Cross-graph Transfer. The high-level idea is that the knowledge transfer between the source

and target graphs is done in a controllable manner where they are selectively learned. We em-

ploy self graph encoder model to a variety of state-of-the-art graph neural networks (GNNs)

to obtain the node representations, that is, node embeddings learned from the node fea-

tures itself and neighborhood in the context of the same source/target graph. On top of
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the encoder model, the Cross-graph Transfer module adopts a novel attention mechanism

based on both node level and graph level. This module can better learn the representations

by attentively aggregating nodes in the broader context, which later applies in the graph

decoder for link prediction. As a result, not only can we accelerate the process of graph

enlargement to fast characterize the target graph, but we can also selectively and effectively

leverage multiple sources in the information systems to estimate more reliable and accurate

target graphs. Experimental results on target graph link prediction confirm that the effec-

tiveness of MSGT-GNN and the performance of knowledge transfer significantly outperforms

other state-of-the-art models including TINET.

6.2 Problem Statement

Given n multiple source domains D(i)
S (i = 1, 2, . . . ,m) and one target domain DT as input

graphs have been on source domain for and these source graphs G
(i)
S are stable already.

Meanwhile, the system in DT is possibly newly deployed and therefore the target graph GT

incomplete and of relatively small size. Our goal is to transfer the graph knowledge (entity

and edges) from G
(i)
S (i = 1, 2, . . . , n) to GT , and then help quickly enlarge and estimate

an estimated complete graph ĜT to fit the domain of DT , which should be as close to the

ground truth ḠT as possible. Note that in this work, we assume that alignments of the

same entity among source and target graphs are well established, though such alignments

are not fully feasible especially in knowledge bases. Under such formulation, we also point

out that our proposed problem focuses on the graph enhancement from its incomplete status,

different from temporal graph modeling where graphs are dynamically changed with multiple

timestamps. Notations of all symbols used in this work are summarized in Table 6.1. Scalars,

vectors and matrices are denoted with lowercase unbolded letters, lowercase bolded letters

and uppercase bolded letters, if not explicitly specified.

We acknowledge that entity alignment may not be flawlessly given in many real-world

applications and there are many existing research works lying on the direction of entity

disambiguation, etc. As mentioned in Section 2, we point out that in this work we do
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Table 6.1: Summary of important notations.

Notation Description

D(i)
S i-th source domain
DT Target domain

G
(i)
S The graph of the i-th source from D(i)

S

ḠT , GT , ĜT The ground-truth complete / incomplete / estimated complete graph
of the target system from DT

A
(i)
S , AT The adjacency matrix of the i-th source graph G

(i)
S / the target graph

GT

Z, Z
(i)
S Embedding table for all N entities, or for N

(i)
S entities from the i-th

source graph (as output of graph encoders)
hl
S(m)

i
,hl

Ti
Embedding of the i-th node in the m-th source graph (or target graph)
at the l-th layer of GNN (node embeddings, with node index)

hl
S(m) ,h

l
T Embedding of the m-th source graph (or target graph), at the l-th

layer of GNN (graph embeddings, without node index)

not cover the scope of the entity alignments [TSD18, SZH20] (or entity resolution, entity

conflation), which essentially predicts the correspondences of the same entity among different

graphs. For example, in enterprise graphs, entities are generally identifiable with their

IDs; in encyclopedic KGs, some labeled-property graphs are equipped with UID (universal

identifier), which significantly reduces the alignment challenge. However, we believe such

assumption can be relaxed, that is, MSGT-GNN can be further adapted to partially-given

alignment or cross-graph alignment can be jointly learned, corrected, and/or enhanced, which

is left as one direction of our future work.

6.3 Methodology

In this section, we formally propose MSGT-GNN to tackle multi-source graph knowledge trans-

fer problem inspired by multi-task learning. As the model architecture of MSGT-GNN shown

in Figure 6.2, it breaks down into two components: Intra-graph encoder and Cross-Graph

transfer, which are explained in Section 6.3.1 and Section 6.3.2 respectively.
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6.3.1 Intra-Graph Encoder

Generally, a graph encoder serves a function to represent nodes by their embeddings, from

the original node features (categorical attributes, textual descriptions, etc), based on the

graph features. Our proposed Intra-Graph Encoder, as the first component in MSGT-GNN,

aims to learn the node features in the context of its own graph (source or target), i.e. the

graph to which it originally belongs.

GS(1) GS(2)GT

GCN / R-GCN GCN / R-GCN GCN / R-GCN

Graph Decoder

Tasks (Link Prediction, etc) 

Attention-Based Cross-Graph Aggregation

Intra-Graph

Encoder

Cross-Graph

Transferor

Figure 6.2: Model architecture overview for MSGT-GNN (two source graphs are shown). Node
embeddings across multiple graphs are learned through two-module framework, i.e. Intra-
graph encoder, which learns node embeddings of its own graph context from initial node
features; and Cross-Graph transfer, which enables learning through mulitple graphs and
node embeddings are updated by its corresponding nodes in other source as well as the
graph-level information.

As discussed in Section 6.5, graph neural networks (GNNs), deep learning based ap-

proaches that operate on graph-structured data, have recently shown effective for various

applications such as node classification, link prediction and community detection. A gener-

alized framework of GNNs consists of such a graph encoder, taking as input an adjacency

matrix A, as well as original (optional) node features X = {XN}. A typical graph encoder

parameterized by Θenc combines the graph structure with node features to produce node

embeddings as, Z = ENC (A,X,Θenc), where Z is the learned comprehensive representation
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from GNNs and is used for downstream tasks with designated graph decoders.

More specifically, in MSGT-GNN, for homogeneous graphs, we choose the Intra-Graph En-

coder as standard GCN [KW17], which can be described as,

H
(l+1)
i = σ

(
D̂− 1

2 ÂGD̂
− 1

2H
(l)
i W (l)

)
, (6.1)

where H
(l)
i ∈ Rn×d are embedding of after l-th GCN layers and ÂG = AG + I where I is the

identity matrix, AG is adjacency matrix of given graph G, D̂ is the diagonal node degree

matrix of Â, as defined in [KW17].Note that G can be either any source graph GS(i) or

target graph GT . For multi-relational heterogeneous graphs such as knowledge graphs and

enterprise systems, we adopt R-GCN [SKB18], which utilizes relation-wise weight matrix,

h
(l+1)
i = σ

Wl
0h

(l)
i +

∑
r∈R

∑
j∈N r

i

1

ci,r
Wl

rh
(l)
j

 , (6.2)

where Wl
0 is the weight matrix for the node itself and Wl

r is used specifically for the neighbors

having relation r, i.e., N r
i , R is the relation set and ci,r is for normalization. Similarly, R-

GCN applies both in the source graphs and the target graph. In both cases, the number of

GNN layers L is one hyperparameter2.

6.3.2 Attention-based Cross-graph Transfer

The goal of our proposed Cross-graph Transfer is to provide a valid transfer mechanism in the

entity embedding space for multi-source graphs. It is built on top of the Intra-Graph Encoder

to enable the node embeddings selectively updated by the cross-graph “neighborhood” in

both node level and graph level attention mechanism. Details of Cross-graph Transfer are

shown in Figure 6.3.

To prepare for cross-graph transfer, one necessary module is Graph-level Aggregator,

which takes the set of node representations and compute graph level representation, as

2In this work, the performance is relatively insensitive to L where we fix L = 2 for GNN modules including
baselines
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Graph-level 
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Graph-level 
Aggregator
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S(1)

hG
S(2)

hGT

Cross-Graph
Neighborhood

GS(1) GS(2)

GT

Figure 6.3: Details about Cross-Graph Transfer Layer operating on the Node Ti, updated
by itself and its corresponding cross-graph neighbors (node-level embeddings), attentively
learned from graph-level embeddings (Best viewed in color)

hG = fG({hG
i }) where hG ∈ Rd, for both source and target graphs3. We use the MLP

aggregator following the implementation in [LGD19]. The aggregation function operating

on a node i of the target graph is defined as,

hl+1
Ti

= σ

(
Wl

0h
l
Ti

+
∑
m

αmWl
nh

l
S(m)

i

)
, (6.3)

where Wl
0 is the weight matrix for the node itself and W l

n is used specifically for the cross-

graph neighbors (from the given alignments), of the l-th layer. hl
S(m)i

denotes the l-th layer’s

hidden representation of node i in GS(m) . αm is attention weight computed over all m cross-

graph neighbors. as,

αm = softmax

([
h
S(m)

i ;hGS(m)

]T
·Watt · hl

Ti

)
, (6.4)

3Theoretically the embedding dimension of graph-level representation can be different from that of the
node-level. For simplicity, we choose both dimensions are the same, that is, dim (hG) = dim

(
hl
Gi

)
, where G

refers to either source or target graph.
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where Watt ∈ R2d×d and
[
h
S(m)

i ;hG
S(m)

]
is the concatenation of node-level cross-graph neigh-

bor embedding and the graph-level embedding. By such cross-graph transfer, the node in

one graph will be consequently updated and optimized attentively by nodes from other asso-

ciated graphs. It is noteworthy to point out that our proposed MSGT-GNN does not explicitly

differentiate source graphs and target graphs, which means the learned embeddings are not

limited to make predictions over the target graph.

6.3.3 Graph Decoder

Graph Decoder and training objective The graph decoder use the learned represen-

tation from MSGT-GNN for link prediction during the inference stage. For homogeneous

graph, we apply inner product to represent the edge plausibility, which is DEC(Z) = hT
i hj

where hi,hj ∈ Z (h is the learned embedding table for all nodes). For multi-relational

graph, we apply DistMult score function [YYH15] to represent the edge plausibility, which

is DEC(Z) = hT
i Dhj where hi,hj ∈ Z and Dr is a diagonal matrix for relation r. Therefore,

the training objective is,

LG(ZG) =
(
ZGDrZG

T −AG

)θ
+Ω(ZG), (6.5)

where θ = 2 in practice and Ω (ZG,w) = λ ||ZG||F is regularization term. Dr = I for

homogeneous graph.

6.3.4 Training, Inference and Complexity

Joint training on source and target graphs Considering all the source and target graphs,

MSGT-GNN minimizes the joint loss with meta-path similarity matrices for multiple graphs,

L = µ
∑

i LS(i) + (1 − µ)LT , where µ ∈ (0, 1) is a hyperparameter that explicitly balances

the importance of source and target graphs. We use the Adam [KB15a] to optimize the joint

loss.

Inference During the inference stage, similar to other graph neural networks with down-

stream link prediction task, two steps of graph encoders (intra-graph and cross-graph) en-
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codes pairs of nodes (from the target graph only for valid testing) into their representations

through the trained GNN with the neighbor nodes (both inside its own graph and other

sources) weighted by the graph-level representations. Later such embeddings are forwarded

to graph decoder for link prediction which outputs plausibility scores of the given potential

edges, as link prediction results.

Complexity Analysis For MSGT-GNN with the direct encoder, the overall runtime complex-

ity is O(tnd|E|), which is linear to the size of total edges in multiple source graphs (|E|
is the total number of links in source/target graph). As for model parameter complexity,

including all embeddings and transformation functions, the result is O(|V |d + nd2) (|V | is

the total number of nodes in source/target graphs).

6.4 Experiments

6.4.1 Datasets

Three datasets on the knowledge bases, enterprise security and academic scholar community

are used in the experiments. Data from a real-world enterprise system are collected from

145 machines from 4 departments (3 used as sources and 1 used as a target) in a period of

30 days, with a size of 3.45GB after integration and filtering. The entire enterprise security

system contains both Windows and Linux machines and we consider they are disjoint graphs

as datasets (named as Windows and Linux Dataset). Similar to the example in Figure

6.1, the entities (nodes) in all graphs are processes, internet sockets and libraries (mostly .dll

files) and interactions (edges) between the process to file, process to process and process to

internet sockets are observed as links in the dataset.

We also consider alternative datasets that are publicly available and from diverse do-

mains are, (i) encyclopedia knowledge bases i.e. DBpedia [ABK07] , extracted from five

languages (en, es, de, fr, ja) of variant graph sizes and completeness; and (ii) Aminer, as one

academic scholar community dataset [TSW09]4 from Aminer on five data mining/machine

4We use a subset of the co-author networks, which is available at https://aminer.org/data#
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Table 6.2: Dataset statistics.

Dataset Scholar
Enterprise

DBpedia
Windows Linux

# Graphs 3 5 5 5
# Rel. Types 1 3 3 96

# Nodes 2.1k 10.7k 8.9k 12.5k
# Edges 9.0k 87.9k 62.5k 278.1k

learning related research communities in the past years. The nodes are authors and links are

simply co-author relationships, which is essentially a homogeneous graph. More specifically

dataset, we consider different languages as different domains in the context of MSGT-GNN,

and given the graph size of these languages, we adopt two disjoint settings: {en,fr,de}→ja5

and {en,fr,de}→es. This results in a total of 5 datasets from 3 domains in our experiments.

More details are listed in Table 6.2.

6.4.2 Baseline Methods

We compare our proposed model MSGT-GNN with the following baseline methods:

No Transfer (NT) directly uses the original observed incomplete target graph without any

knowledge transfer, that is, ĜT = GT .

Direct Union Transfer (DUT) directly combines all source graphs and the incomplete

target graph, as prediction (“union” graph). That is, DUT outputs a union set on entities

and links from all observed graphs without any selection, which means, ĜT = GT +
(⋃

i G
(i)
S

)
.

TINET applies the single graph knowledge transfer framework [LCT18]. To fit the multi-

source setting, we choose three variations about TINET models: (i) to use the closest6 source

graph as the transfer source, named C-TINET; (ii) to use the union graph as defined in

DUT, as the single transfer source, named U-TINET; iii to use TINET iteratively on

Topic-coauthor.

5{en,fr,de}→es means the source graphs are from DBpedia English, French and German KBs and the
target is Spanish KB.

6Default similarity between the source and target graph is based on the Jaccard index.
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Table 6.3: Results of KG triple completion. H@1 and H@10 denote Hit@1 and Hit@10
respectively. For each group of model variants with the same intra-view model, the best
results are bold-faced. The overall best results on each dataset are underscored.

Dataset Scholar

NT 0.526 ± 0.000
DT 0.398 ± 0.000

C-TINET 0.635 ± 0.009
U-TINET 0.618 ± 0.015
W-TINET 0.644 ± 0.017
O-TINET 0.622 ± 0.014

UT-GCN/RGCN 0.606 ± 0.025
UT-GAT/KGAT 0.635 ± 0.018

Intra-Only GCN/RGCN 0.597 ± 0.014
Intra-Only GAT/KGAT 0.624 ± 0.020

UDA-GCN 0.652 ± 0.017
MSGT-GNN 0.668 ± 0.016

Dataset Enterprise: Windows Enterprise: Linux

NT 0.664 ± 0.000 0.656 ± 0.000
DT 0.480 ± 0.000 0.578 ± 0.000

C-TINET 0.727 ± 0.008 0.759 ± 0.009
U-TINET 0.718 ± 0.012 0.733 ± 0.008
W-TINET 0.739 ± 0.011 0.772 ± 0.017
O-TINET 0.715 ± 0.012 0.740 ± 0.010

UT-GCN/RGCN 0.700 ± 0.030 0.722 ± 0.019
UT-GAT/KGAT 0.744 ± 0.023 0.750 ± 0.015

Intra-Only GCN/RGCN 0.745 ± 0.012 0.734 ± 0.014
Intra-Only GAT/KGAT 0.742 ± 0.018 0.738 ± 0.021

UDA-GCN 0.735 ± 0.013 0.727 ± 0.016
MSGT-GNN 0.776 ± 0.021 0.768 ± 0.018

Dataset Encyclopedia:{en, fr, de}→ja Encyclopedia:{en, fr, de}→es

NT 0.475 ± 0.000 0.545 ± 0.000
DT 0.299 ± 0.000 0.408 ± 0.000

C-TINET 0.596 ± 0.010 0.764 ± 0.013
U-TINET 0.617 ± 0.014 0.750 ± 0.012
W-TINET 0.645 ± 0.022 0.779 ± 0.018
O-TINET 0.620 ± 0.009 0.766 ± 0.011

UT-GCN/RGCN 0.576 ± 0.022 0.756 ± 0.026
UT-GAT/KGAT 0.559 ± 0.012 0.710 ± 0.014

Intra-Only GCN/RGCN 0.661 ± 0.015 0.739 ± 0.021
Intra-Only GAT/KGAT 0.656 ± 0.016 0.724 ± 0.016

UDA-GCN 0.610 ± 0.024 0.688 ± 0.022
MSGT-GNN 0.685 ± 0.018 0.801 ± 0.028
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multiple sources, i.e. transferring one source once in an order, named O-TINET. Best

performance is reported among all transfer orders.

W-TINET This method uses the weighted version of TINET for source and target graphs.

Extending the single-source graph knowledge transfer model to multi-source, we adopt the

same sub-model components (EEM, DCM) but adjust the objective function to be the sum

of all source graphs.

Intra-Only GNN only uses Intra-Graph Encoder component in MSGT-GNN and discards the

Cross-Graph Transfer. That is, standard GCN [KW17] is applied for homogeneous graphs

and R-GCN [SKB18] is applied for multi-relational graphs which preceded the graph decoder.

Alternatively, we also consider existing attention-based graph neural networks (applied on a

single graph) i.e. GAT [VCC18]/KGAT [WHC19] as replacement of GCN/R-GCN. (Denoted

as “Intra-Only GCN/RGCN” and “Intra-Only GAT/KGAT” respectively).

UT-GNN Similar to Intra-Only GNN, this method applies Intra-Graph Encoder component

only on the “union graph” from the DUT method which forms one combined graph instead

of multiple sources and target graphs. Two options (GCN/RGCN, GAT/KGAT) are still

considered except the different graph inputs. (Denoted as “UT-GCN/RGCN” and “UT-

GAT/KGAT” respectively)

UDA-GCN It develops a dual attention-based graph convolutional network component

and domain adaptive learning module, which jointly exploits local and global consistency

for feature aggregation to produce unified representation for nodes. We replace the decoder

module7 for link prediction instead of node classification in the previous work [WPZ20].

6.4.3 Experiment Setup

Evaluation Protocol Similar to [LCT18] , we adopt F1 score to evaluate the accuracy of

the graph completion task on the target system instead of Hit@K or MRR score in knowledge

7Original code implementation: https://github.com/GRAND-Lab/UDAGCN
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graph completion 8. In our experiment for multi-graph knowledge transfer, the main result

is reported as the average and standard deviation of link prediction (edge) F1 score. As F1

score generally is the harmonic mean of precision and recall, we hereby define the precision

and recall by comparing the estimated links between entities with the ground truth. The

precision and recall are defined as: Precision = NC/NE and Recall = NC/NT , where NC is

the number of correctly estimated links, NE is the number of estimated links in total, and

NT is the number of the ground-truth links. For training, as mentioned in Section 6.2, we

choose one incomplete target graph as the “new” system and complete source graphs from

the rest as “old” systems and for training. In addition, e use m = l/lfull as an index of “graph

maturity”, which is defined as the observed number of edges (in training set) l of the target

graph and the total number of edges lfull recorded in the ground truth target graph.

Hyperparameters In the experiment, we set m = 0.4 and d = 128 if not specified. The

number of GCN/R-GCN layers in Intra-Graph Encoder is set as 2 and The number of Cross-

Graph Transfer layers is set as 1. Default node embeddings are initialized by either node

categorical features (scholar and enterprise dataset) or BERT sentence embeddings from

entity descriptions (KB datasets). Hyperparameters are discussed in Section 6.4.5.

6.4.4 Results

Results on the target graph completion task are shown in Table 5.4. We observe that

MSGT-GNN outperforms other baselines in terms of average F-1 score. Especially compared

with non-transfer, MSGT-GNN achieves an average increase of 0.05 on F1 score among all

datasets, which proves that MSGT-GNN transfers useful graph knowledge to the target. Also,

MSGT-GNN outperforms all the TINET variants in the average F1 score especially on U-TINET

and W-TINET which indicates that MSGT-GNN adopts a more effective strategy to use multi-

8We point out the thread of KG embedding in Section 6.5, including TransE and recent vari-
ants [WMW17]. The limitation of such methods is that they are transductive methods. This is generally not
applicable to our inductive learning and its downstream link prediction. However, as for evaluation metrics,
we follow the metrics adopted in previous work [LCT18] for target-adapted edge prediction instead of MRR
or Hit score for a different triple completion task.
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ple sources and learn better latent feature representations of entities with the process graph

encoding and domain transferring. Since TINET follows a two-stage (entity selection and

edge prediction), the performances significantly decrease when wrong or incomplete entity

set is selected for subsequent link prediction. Unlike TINET and its variants, MSGT-GNN

adopt end-to-end model architecture without explicit steps of entity/node selection. Com-

paring MSGT-GNN and standard GCN/R-GCN or GAT/KGAT, we also observe that MSGT-GNN

achieves better link prediction performance with a relative gain of 4.9%, which shows the

benefit of Cross-Graph Attention Transfer, which can better characterize node latent repre-

sentations from actively and selectively aggregating useful information from the cross-graph

neighborhood. It is noteworthy that NT directly uses the currently observed target graph

(incomplete) as output; DT means the union set of all GS and GT without any selection.

Typically DT includes much more noise and unwanted information into the target graph

compared “beneficial section of transfer”, i.e., lots of links/edges are falsely predicted as

positive. A similar observation is also reported in one of our baselines, TINET. Further-

more, we observe that GAT/KGAT variants almost have similar performance on the task

(sometimes even worse). We hypothesize that the attention mechanism adopted by the orig-

inal GAT/KGAT cannot best selectively learn the knowledge transfer in the cross-graph

setting, although recent research shows that they outperform GCN/RGCN on the intra-

graph node classification task. It is also noticed that UT-GNN generally performs worse

than the Insta-Only setting which indicates that the union graph which equally combines

the source graphs without selection has inductive biases which compromise the knowledge

transfer in link prediction on the target graph.

6.4.5 Hyperparameters

In this section, we primarily investigate the sensitivity of target graph input maturity m,

embedding dimension d and balance weight µ between the source and target graphs.

Graph maturity m We vary the target graph input by controlling the graph maturity

m (let m = {0.2, 0.4, 0.6, 0.8, 1.0}). From Figure 6.4, we observe that, for both Windows
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and DBpedia: {en,fr,en}→es graph, the performance of all models increases when the graph

maturity m increases. As other approaches achieve F1 score of 1 when m gets close to 1,

direct transfer only achieves around 0.60 as F-1 score, which seems not effective because all

the irrelevant entities and links are adopted in the output target graph prediction. On the

other hand, given the same level of graph maturity, MSGT-GNN achieves the best performance

among all other methods on all datasets.
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Figure 6.4: Performances with graph maturity. Most models achieve average F1 score close
to 1 as the maturity of input observed target graph grows, while MSGT-GNN outperforms other
baselines.

Dimensionality Dimensionality is a key hyperparameter that affects the quality of the

obtained embeddings. Figure 6.5 shows the performance of MSGT-GNN on both Windows

and DBpedia: {en,fr,en}→es dataset according to different embedding dimensions d ∈
{64, 128, 256, 512} (both local and global embeddings) on the same graph completion task.

It is observed that MSGT-GNN together with other baselines (TINET variants) are generally

improving when dimensionality increases from 64 to 256 meanwhile we also notice that the

performance become stagnant or starts to drop at large dimension from d = 256 to d = 512.

We hypothesize that low dimensionalities easily falls short of capturing latent features of enti-

ties, while high dimensionalities possibly lead to overfitting on the graphs with the increasing

143



64 128 256 512
Dimension

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
Av

g.
 F
1 
Sc

or
e

Windows

C-TINET
U-TINET
W-TINET
GCN/RGCN
MSGT-GNN

64 128 256 512
Dimension

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Av
g.
 F
1 
Sc

or
e

DBpedia: {en,de,fr}-es

C-TINET
U-TINET
W-TINET
GCN/RGCN
MSGT-GNN

Figure 6.5: Performance comparison with different embedding dimensions d.
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Figure 6.6: Performance comparison with different values of µ, which explicitly balances the
importance and reliability of source and target.

model parameters.

Balance between the source and target graphs µ Parameter µ in Equation (8) is

another important parameter that significantly affects MSGT-GNN performance. Intuitively, µ

controls the leverage between the information from multiple source graphs and from target
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graph. In this study, we fix m = 0.4 and d = 128 for the Windows and Linux dataset and

still test on the same graph completion task. As shown in Figure 6.6, choosing µ improperly

(either too close to 1 or too close to 0) tends to ignore target domain information or multiple

source information, which will compromise the model performance. Also, we notice the

optimal µ for different datasets in the experiments are also different. This is largely because

the importance of the target information compared to all sources varies in these scenarios.

For DBpedia, since the source KBs (en,de,fr) normally contains less conflicting information in

multiple sources, the model tends to trust more with µ∗ = 0.7 from the given well-developed

source graphs.

6.5 Related Work

Transfer Learning, Graph Transfer and Multi-source Adaption Transfer learning,

domain adaption, and translation [WKW16] have been widely studied in the past decade

and played an important role in real-life applications [SRG16] especially on deep transfer

learning [LZW17]. Existing transfer learning research is mostly done on the numeric, grid

and sequential data, especially image (specific domain classification, style transfer) and text

(translation), but research on graphs, networks, or structured data, whose format are rel-

atively less ordered. Some representative work includes TrGraph [FYZ15], which leverages

information via common signature subgraphs. [LCT18] is state-of-the-art and most related

research aligned with this direction with two-step learning on entity estimation and de-

pendency reconstruction. The aforementioned methods are mostly based on single-graph

knowledge transfer. Note that there is some related work on multi-source adaption that

has the same goal of reliable knowledge transfer from multiple sources [MMR08]. However,

they are still limited within the domain of images and text rather than graphs. Thus their

frameworks cannot be directly applied on graph knowledge transfer. Despite the usage of an

attention-based model in transfer, one related work [WPZ20] focuses on the node classifica-

tion task and substantial changes are necessary to make for link prediction in target graphs.

We clarify the term of “graph transfer” in Section 6.2 and distinguish it from other research
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on the concept of “knowledge transfer” to avoid confusion.

Representation Learning on Knowledge Graphs Graph link prediction is a basic re-

search topic on network analysis. For transfer purposes, [YCZ13] presented a transfer learn-

ing algorithm to address the edge sign prediction problem using latent topological features

from the target and sources. Collective matrix factorization [SG08] is another major tech-

nique. However, these methods are not suitable for dynamics among multiple different

domains and the target domain. Another important branch of research related to graph link

prediction is network embedding (network representation learning) and similarity search.

By representing high-dimensional structured data with embedding vectors, link prediction

can be easily performed by node similarity search. These methods can be categorized as

meta-path based [SHY11], random walk based [GL16], matrix factorization based [QDM18]

and graph neural networks based methods [HYL17a, HLE21]. Similar techniques are applied

in multi-relational heterogeneous graphs, i.e. knowledge graphs [VSN19] and their appli-

cations [HJC20, HZL20, HLE21]. These embedding based methods (for example [VSN19])

provide insights for representing node features by gathering neighborhood (multi-relational)

connections and/or meta-paths and designing graph encoders and decoders. It is worth

noted that the most common task over knowledge graphs is triple completion, different from

link prediction where focuses on the existence of relations over pairs of nodes in the graph.

Another recent research thread along this direction increasingly focuses more on tempo-

ral/dynamic graph representation learning [WPC20], which specifically models the graph

evolving patterns over time. However, we emphasize that in this work, though it is as-

sumed that the target graphs are relatively incomplete and sparse, we temporarily do not

incorporate the time information, as one of the future directions.

Multitask Learning Multitask learning [ZY21] is one emerging active research topic with

the rise of artificial intelligence. With the goal of “one model for all tasks”, it is widely

applied in the area of computer vision and natural language processing. One of the most

common approaches in multitask learning is parameter sharing [Car97]. MSGT-GNNis inspired

by the similar multi-task learning mechanism considering each graph as one “task”, however
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these frameworks themselves in multitask learning is not applicable for our settings.

6.6 Conclusion and Future work

In this chapter, we formulate a challenging problem on the necessity and benefits of trans-

ferring from multi-source graphs into the target graph and then propose MSGT-GNN, with the

intra-graph Encoder and attention-based cross-graph transfer as major model components.

MSGT-GNN addresses the challenges and accelerates high-quality knowledge transfer and graph

enhancement in the target newly-observed system. Experiments show that MSGT-GNN can

successfully transfer useful graph knowledge from multiple sources and enable fast target

graph construction. For future improvements, one important extension is to temporal graph

modeling where we can dive deep into how target graphs grow on newly-deployed systems can

grow with the development from multiple sources, which significantly improves explainability

on the graph knowledge transfer.
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CHAPTER 7

Empowering Homicide Analytics with MurderBook

Knowledge Graphs and Domain-specific Language

Models

7.1 Introduction

Homicide investigations produce large amounts of text-based data, including basic descrip-

tions of the case, evidence logs, witness interviews, forensic reports and investigator notes.

Such information is of vital importance in solving homicides [KJM09, RCO19, PLK21]. In

the United States, only around 60% of all homicides reported between 2000-2019 cases were

solved or “cleared” through a suspect being taken into custody or through some other cir-

cumstance such as the death of the suspect, according to [FBI20]. Homicide clearance

rates are thus relatively high compared to other crime types such as burglary, which has

a long-standing clearance rate of around 10-15% [Rot17]. Nevertheless, unsolved homi-

cides accumulate year over year, leaving a backlog of cold cases that get harder to solve as

time passes. And, given the severe harm of the crime, unsolved homicides create painful

burdens on families and communities and drive mistrust in police [JWF16, MFT20]. Con-

versely, solving homicides contributes to community safety and improves trust in the police

[Leo15, BU21].

Analyzing homicide and finding valuable information from large piles of case files re-

main a difficult task, given the complexity of data from various types and sources. It con-

stantly faces technical challenges to structurize the investigation and lacks model capability

and adaptation on crime-related text [PBU20]. However, recent advances in computational
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text mining and knowledge discovery [WMW17, QSX20] enable the opportunities to tackle

such challenges and offer the potential to improve existing approaches to homicide inves-

tigation. We base this supposition on recent research exploring the benefits of construct-

ing and utilizing knowledge graphs in other text-heavy domains including biomedical data

mining [HJC20, HLE21], social media modeling [FPW21], and analysis of fictional narra-

tives [AGK20, KET19]. In addition, large language models (LM) [QSX20] and broader

foundation models, [BHA21] have revolutionized natural language processing and achieved

significant improvement in question answering, document analysis [CFB20], language gener-

ation and understanding [GTC21] to the level of human recognition. In one case, [PBU20]

used deep learning approaches to construct knowledge graph (KG) representations of evi-

dence, personnel and other information for twenty-four homicide investigations and explored

how graph topological features might predict case solvability. Though innovative, this work

did not propose a comprehensive framework to bridge the gap between the massive un-

structured textual information contained in homicide investigations and ontology-guided

knowledge graphs. Such a framework is needed if we are to enable learning for multiple

downstream analytical tasks and provide useful insights for homicide investigation teams.

We propose a comprehensive framework, named EIHA, to empower intelligent homicide

analysis using crime knowledge graphs and domain-specific language models. The high-level

idea is to take advantage of knowledge graphs which can extract important entities and

better capture their interactions as facts when crime investigation process develops, and

language models which can better portrait and encode text features as widely observed in

investigation. Both KG and LM modules mutually enhance our capabilities to analyze crime

summaries and lead to critical insights and observations. More specifically, our contributions

are 4 folds:

• To our best knowledge, our work is the first to employ the state-of-the-art KG and NLP

techniques and investigate their capabilities in learning from homicide investigation to

promote community safety and trust in the long run.

• We propose EIHA applied in computational societal crime studies) that are built upon two
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major modules: (i) KG module, named MKG, builds multi-relational knowledge triples un-

der the guidance of a crime investigation ontology and represents the interactions between

persons (e.g., victim, witnesses, etc.) and forms of evidences (e.g., gun, vehicle, etc.); (ii)

LM module, named M-BERT, is a domain-specific language model, which improves BERT

with pretraining and fine-tuning on a large corpus of investigation text;

• We develop a new technique to learn case representations that utilizes hierarchical attentive

aggregation from important evidences and case investigation records based on the KG and

LM above together towards downstream applications.

• We use EIHA to better solve the case classification task from the learned comprehensive

case representations and also demonstrate in case studies that EIHA can be used in a wide

range of real-world applications such as semantic search, which creates new opportunities

to AI-assisted homicide analysis.

The remainder of this chapter proceeds as follows. In Section 7.2, we outline the homicide

investigation and crime knowledge graph (KG) ontologies. In Section 7.3 we describe the

creation of MKG M-BERT training, and the combined EIHA for case classification. We

provide experimental results in Section 7.4 and application scenarios in Section 7.5. We

discuss related works in Section 7.6 and summarize this chapter in Section 7.7.

It is noteworthy that solving homicides improves community safety and contributes to

community trust in police [BU21, Leo15, Vau20]. However, solving crime also entails a risk

that the wrong individual will be held accountable for a crime they did not commit. Though

this risk is relatively low [LHR19, Gar20], it is important to foreground the potential ethical

issues entailed in using machine learning methods to assist homicide investigations. We

outline limitations and important ethical considerations in the appendix.

7.2 Preliminaries

In this section, we introduce the formulations linking original homicide investigative data to

derived knowledge graphs.
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Figure 7.1: A snapshot of one chronological entry from a real-world homicide investigation
case.

Data ontology of homicide chronological records In Los Angeles, the vast amount

of information generated by a homicide investigation is compiled into a multi-section file

colloquially called a “Murder Book” [FJ18]. We are primarily interested in the Murder

Book section that records short text descriptions of each sequential step taken by detectives

during an investigation. Detectives call this section the “case chronology,” or “chrono” for

short. The features in a case chronology include the case identification number, victim and

detective names, geographic areas and the police station with jurisdiction, case status such

as “cleared” or “open” (considered as case labels), and the content of each investigative step

taken by detectives, or a “chrono entry” for short. Chrono entries are formatted as tweet-

size text statements, which are stored in a tabular format. We target these chrono entries

for information extraction and transformation into MKG. Figure 7.1 shows the conceptual

structure of a case along with the redacted text of a single chrono entry and its associated

features. We discuss data sources, labels and statistics in Section 7.4.1.

MKG: Homicide knowledge graphs The MKG we develop is an example of label-

property graph [RWE15]. It is a case-centric, multi-relational representation of a homicide

investigation. Named entities (nodes) of multiple types (such as case, entry, evidence, person,
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etc) are connected through natural relations (edges) to form factual triplets. Examples of

such triplets are {Case#1, hasEntry, Entry#525}, {Case#1, hasDetective, John Doe} and

{ Entry#525, observeEvidence, Vehicle #Plate}. The ontological or schema of MKG is

shown in Figure 7.2, which regulates the structure of our curated knowledge graphs. Note

that all information present in the original chrono entry in Figure 7.1 is preserved in the

MKG. Some entity types are mentioned in text both by a factual name (e.g., John Doe) and

a context-relevant label (e.g., the victim), necessitating both named entity recognition and

co-reference determination processes in the KG building stage. Details on MKG extraction,

construction and transformation are discussed in Section 7.3.1.

Figure 7.2: Example of the curated case-centric MKG schema with only node types pre-
sented.

7.3 Methodology

In this section, we introduce a systematic framework EIHA, designed for intelligent homicide

case analytics. The framework has three modules: (1) the MKG module for schema-guided

creation and enhancement of knowledge graphs (KG); (2) the M-BERT module to enable

better representations of text using a private pretrained language model (LM); and (3) the

EIHA, built on top of (1) and (2), to facilitate machine learning applications in homicide
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investigations.

7.3.1 MKG: Construction

The main goal of this module is to transform text-based records from the original homi-

cide investigations into structured schema-guided multi-relational knowledge graphs, which

is flexible and easy to reuse for continuous studies. It is a data-driven module proposed to

tackle with the less structured MurderBook (see Section 7.2), where the chrono entries is

less structured and key entities (such as person and evidence) are not extracted and prop-

erly modeled. MKG involves entity linkage from external commonsense knowledge bases

including ConceptNet [SCH17] and Wikidata [VK14]. The details of MKG implementation

pipeline can be partitioned into three stages.

Building ontology/schema MKG is a schema-guided knowledge graph, which enforces a

certain ontology in analysis of homicide chronological entries. To serve both knowledge-

base search and graph learning tasks, inspired by Reactome [FSG18] data model1, we

establish MKG ontology with entity classes of Case, Entry, Event, Person, Area, and

Evidence. Relations are naturally determined by the semantics of entity classes, for example,

{Entity:Event, involved, Entity:Person}. Note that we also have necessary subclasses

for Person including Suspect, Victim, Detective and Witness. These reflect important

functional roles in homicide cases.

Entity and relation extraction The high-level pipeline of KG construction is inspired

by [PBU20], empowered by spaCy [Sri18] with transformer NLP toolboxes such as named

entity recognition (NER), co-reference detection and relation extraction 2. We highlight the

importance of Evidence typed nodes which typically represent important non-person objects

such as guns and vehicles. In MKG, we build up text-based profiles for every evidence node

using text from multiple chronological entries that explicitly mention the related evidence.

1https://reactome.org/documentation/data-model

2Unlike [PBU20], we do not adopt open information extraction (OpenIE). Instead, we strictly follow the
defined schema to construct the MKG.
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Such entity profiles are used later to help learn case representations. One example is shown

in Figure 7.3.

Figure 7.3: Profile example of one (de-identified) vehicle evidence node with extracted de-
scriptions.

Connection to external KGs In our MKG ontology, we also adopt one important entity

type Concept, which are case-independent nodes sourced from Wikidata [VK14] or Con-

ceptNet [SCH17] entities, such as “gun”, “knife,” or other types of weapon. Our intuition is

that these connections may help connect specialized knowledge, internal to the MKG with

commonsense external knowledge.

7.3.2 M-BERT: “Crime” Language Model

Inspired by BioBERT [LYK20], a domain-specific language representation model (LM) pre-

trained on large-scale biomedical corpora, we introduce M-BERT as a large LM for homicide

investigation similarly pretrained on unstructured text corpora from our sample of homicide

investigations. The corpora include not only the aforementioned chronological entries, but

also crime summaries, interviews and more comprehensive investigation details. These data

enable a domain-adapted private LM. The motivation of M-BERT as newly developed

“crime” language model is that, general-purpose LMs or other existing domain LMs can-

not sufficiently model crime-related text created by investigation professionals and police

departments.

M-BERT involves both pretraining and fine-tuning stages. We initialize our private

LM with the existing, pretrained BERT [VSP17] and undertake further tokenization to deal
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Figure 7.4: M-BERT model workflow for private homicide-domain language models.

with out-of-vocabulary terms, similar to the approach taken with BioBERT [LYK20]. Due

to the limited availability of existing named entities relevant for crime corpora (in contrast

to that available for biological concepts), we fine-tune M-BERT with next-entry prediction

and same-case prediction tasks based on the chronological nature of investigation process

data. The task of next-entry prediction is to classify whether two sequential chrono entries

are logically connected via their sequential order, similar to “next sentence prediction.”

Same-case prediction seeks to classify whether two selected chrono entries are from the same

case. These two tasks are considered a form of self-supervision and therefore enable the M-

BERT fine-tuning process. The computational resource we use for training and fine-tuning

M-BERT is performed on a 4-core NVIDIA GPU A100-SXM4-40GB (around 100 hours).

HuggingFace [WDS19] with the PyTorch [PGM19] library is used throughout M-BERT

training and inference.

7.3.3 EIHA: KG-infused Representation Learning Framework

We now discuss how to utilize our two main components, MKG and M-BERT, for down-

stream applications. We focus on case solvability classification. The goal of case solvability

classification is to classify whether any case with current investigative records up to time t

is likely to be successfully solved. Our approach to this problem is to first learn case rep-

resentations as latent features, using MKG and M-BERT in an attention-based encoder.

More specifically, the core part of learning case-wise representation is named Hierarchical
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Attention-based Entry-to-Case Aggregation. It uses M-BERT as the text encoder

and selectively aggregates representations of chronological entries with graph entities and

relations in the MKG. The module architecture is shown in Figure 7.5.

Figure 7.5: Architecture of hierarchical attention layers for case representation learning.

Given a case c with associated observed chronological entries {ei} and attached evidence

nodes {wj}3, our goal is to learn case-wise graph embeddings. We first embed the text

attributes of entries and evidence (see Section 7.3.1). We then utilize two parameter-efficient

attention layers (evidence- and entry-layers) to hierarchically encode the case features. The

first “evidence attention layer” is one of self-attention, where the evidence embedding of one

chronological entry i is computed via weighted average, which is,

Ew = λi · Ewj
, j = 1, · · · ,m

λ1, · · · , λm = σ
(
λT
eviE1, · · · , λT

eviEwm

) (7.1)

where λevi ∈ Rdevi (devi is the dimension of the evidence embeddings). m denotes the total

number of evidence nodes observed and σ(·) denotes the softmax layer. The second “entry

attention layer” takes both the evidence and entry information into consideration as keys.

In other words, the attention weights are learned through both the evidence embedding and

the entry embedding itself as follows,

3In this stage, we ignore all entries without explicit evidence nodes. Thus, we assume that entries with
evidence nodes carry information that is vital to case representation.
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Ec = λi · Eei , i = 1, · · · , n

λ1, · · · , λn = σ
(
λT
c E

′

1, · · · , λT
c E

′

n

) (7.2)

where λc ∈ Rdent+devi (dent and devi are the dimensions of entry and evidence embeddings). n

denotes the total number of chronological entries and σ(·) denotes the softmax layer. E
′
ei

=

[ Eei || Ewi
] refers to the concatenation of the entry embedding and its attached weighted

evidence embeddings. The intuition is that the case representation is selectively learned

and aggregated through its entry embeddings as context, while the importance (weight)

relies significantly on the associated evidence extracted from MKG. That is, the final case

embedding is context-aware of both the chronological entries and important evidence. We

point out that the selected structure of attention layers is parameter efficient, considering

the limited number of available cases.

Classification After we obtain case representations E, we use multi-layer neural networks

fNN(E) as the classifier and apply cross-entropy loss on the solved and unsolved cases in the

training set, as is standard in most binary classification tasks [MPR05].

7.4 Experiment: Case Classification

7.4.1 Dataset: Source and Statistics

We construct MKG and evaluate our EIHA based on samples of Murder Books housed in

the Los Angeles Police Department’s Homicide Library [FJ18]4. The sample includes 490

selected homicide cases from LAPD’s South Bureau spanning the years 1990-2010. The 490

cases produced 27,518 discrete chronological entries with an average of 56.2 entries per case

and 44.1 words per entry (after removing punctuation and stop words). The first entry of

a case chronology is always the notification of the detectives of the location of a homicide.

The last entry reflects the most recent action taken on the case, which is dependent upon

4These data are not publicly available due to their extreme sensitivity. Research was conducted under
UCLA IRB Protocol #19-000588
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its status. For example, for an open case, the last entry is the result of the most recent

six-month open case review. All cases are labeled as {0: Open, 1: Cleared, 2: Cleared

(other)}5. Cases with the labels of {1,2} are considered as “Solved” (237 cases) while {0}
as “Unsolved” (224 cases) to facilitate binary classification.

It is worth emphasizing that the number of chronological entries in a Murder Book

naturally grows in time with the investigation processes. We anticipate, therefore, that the

available information (descriptions, interviews and evidence) in MKG should be different

as time t increases from the date of the incident. Figure 7.6 shows the time trend in the

number of chronological entries. The pattern suggests that we need to control for the time

in the classification task (see Section 7.4.2 for details).

Figure 7.6: Number of chronological entries vs case duration in days since the incident for 40
randomly selected cases. Green/red lines denotes solved/unsolved cases respectively. (Best
viewed in color)

The unstructured text used in Section 7.3.2 comes from all homicide investigation ma-

terials including both chrono entries and other supplementary materials such as interviews

5“Cleared (other)” indicates that cases were closed by some means other than arrest such as “suspect
deceased”.
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and crime summaries, which combined add up to more than 1.24G tokens.

7.4.2 Experimental Setup

Evaluation protocol We formulate our experiment as a binary classification task. Fol-

lowing [PBU20], we report F1 score, AUROC and false discovery rate (FDR) as evaluation

metrics. Because the input of chrono entries in one case is time-sensitive, we restrict the input

information to a fixed time window (i.e., 14 days from the incident occurrence time). This

configuration applies to both the input of textual chronological entries and MKG entities,

for all models. Best performed models are obtained through cross validation and tested on

the test set (20% of total cases that are randomly selected). All classifiers are implemented

with scikit-learn [BLB13].

Baseline Methods We consider the following baseline approaches (with hyperparameters)

from our own EIHA. The baselines can be categorized as conventional classifiers on graph

metrics, based only on the MKG, and classifiers based on document embeddings.

• LR-Basic Simple logistic regression used by [PBU20]. The model is formulated as p(y =

1|x)/ (1 + exp(−βx)) where βx = β0 + β1 · s+ β2 · e+ β1 · (s · e), where s and e are number

of suspect nodes and evidence nodes. Note that the features used are restricted to a given

time window;

• LR-Extend Similar to LR-Basic, we apply logistic regression with extended features on

more node types (such as chrono entry, person, etc.);

• SVM/RF/NN-Classifier We use other representative classifiers such as SVM (default

RBF kernel, C = 1.0), random forest and 2-layer neural network with hidden dimensions

{d1, d2} = {128, 32} on the same features as in LR-Extend;

• Doc2vec We obtain fixed-length feature representations of cases as documents for classi-

fication by Doc2vec [LM14], implemented by genism.

• SentBERT, XLM-RoBERTa, GPT-2 We concatenate the text of all input chrono

entries as a document with encoders such as [RG19], [CKG20] and [RWC19] (no training)
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with 2-layer NN as classifier (hidden dimensions set as {d1, d2} = {128, 32};

• M-BERT We replace SentBERT, XLM-RoBERTa, GPT-2 with our private language

model described in Section 7.3.2. The same 2-layer NN classifier is applied.

Variant Models We also explore the following variants of EIHA. Note that dimensions

of all variants are set as devi = 128 and dent = 368 and 2-layer NN as classifier (hidden

dimensions as {d1, d2} = {128, 32}).

• EIHA: Proposed model in Section 7.3.3;

• EIHA(avg): Excludes all attention layers and applies average operations on entity and

entry embeddings;

• EIHA(no-evd): Excludes all evidence nodes with its associated descriptions and only

applies the attention layer on entries;

• EIHA(select): Manually selected top-5 entries with the highest number of evidence nodes,

instead of all entries with evidence nodes.

7.4.3 Results

The main results of case classification are shown in Table 7.1. We observe that EIHA

improves case classification by 4.0% (a relative gain of 5.4% on F-1 score (6.1% on FDR),

compared with best performing graph-embedding classifier (RF), and by 3.6% over the best

performing document embedding models (M-BERT). The results suggest that it is effective

in practice to combine language models and knowledge graphs in the classification task,

compared to approaches that use LM or KG only. Our customized homicide-related LM M-

BERT outperforms other LMs obtained from a general corpus on all classification metrics.

We hypothesize that domain-adapted LM from homicide records has a better capability of

modeling crime-related chronological entries.

As one ablation study, we also compare the case classification results with several model

variants. Compared to the standard configuration, both avg and no-evi variants perform
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significantly worse, while the select model variant achieves comparable F1 scores in the

classification task. These results suggest that an attention mechanism that selectively learns

from the top “influential” entries and items of evidence helps produce more comprehen-

sive and representative embeddings. We also find that the combination of attention layers

performs better among all model variants.

Table 7.1: Results of case classification, comparing two categories of approaches. All shaded
methods are developed in this work and the best results are bolded.

Methods AUROC F1 FDR

LR-Basic 0.917± 0.006 0.607± 0.012 0.612± 0.012
LR-Extend 0.936± 0.008 0.686± 0.009 0.653± 0.012

SVM-Classifier 0.945± 0.005 0.703± 0.014 0.653± 0.018
RF-Classifier 0.953± 0.005 0.742± 0.015 0.714± 0.015
NN-Classififer 0.945± 0.011 0.704± 0.017 0.632± 0.016

Doc2vec 0.922± 0.008 0.645± 0.005 0.591± 0.018
SentBERT 0.949± 0.010 0.726± 0.012 0.673± 0.020

XLM-RoBERTa 0.944± 0.009 0.701± 0.013 0.714± 0.016
GPT-2 0.952± 0.009 0.736± 0.019 0.734± 0.010

M-BERT 0.957± 0.011 0.746± 0.022 0.755± 0.022

EIHA 0.962± 0.018 0.782± 0.020 0.795± 0.024
EIHA(avg) 0.954± 0.015 0.740± 0.019 0.755± 0.020

EIHA(no-evd) 0.957± 0.009 0.751± 0.022 0.755± 0.025
EIHA(select) 0.963± 0.019 0.778± 0.026 0.795± 0.024

7.5 Applications

EIHA is proposed as a generic framework that may enable multiple downstream applications

beyond case classification. In this section, we demonstrate applications in two additional

tasks.

Semantic search on chronological entries and homicide cases As shown in the case

classification task, our proposed EIHA can produce both entry-wise and case-wise embed-

dings. In practice, such embeddings contain semantic information including possibly common

homicide “themes,” weapon usage patterns, and incident locations, that can be further used

to support “semantic search.” Table 7.2 shows two examples of semantic search over chrono-
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logical entries. Specifically, in Query 1, a search for the top three most similar entries to a

target entry all have common themes of “hospitalization” and “victim announced death”,

together with an explicit connection to “Southwest Station.” Similarities thus encompass

both conceptual semantics and specific crime details. Similar broad semantic connections

can be seen in the returns from Query #2.

Figure 7.7: Visualization of attention weights from multiple input entries on the classification
of one single case. Given the first 5 entries as input, the entry with the observation of Car
at the crime scene leads to the highest weight predicted by EIHA, instead of Bike. The last
3 chrono entries are provided for the full context of the case, but not as model input.

Attention Visualization and Important Chrono Entry Highlighting As shown in

Section 7.3.3, the attention learned by EIHA can reflect the importance of each input

chrono entry and evidence. In other words, we can highlight the chronological entries that

are associated with higher weights in case embeddings as shown in Equation 7.2, which may

yield important insights into the investigative process. We show an example of one case

with relatively few chrono entries in Figure 7.7. In this hit-and-run homicide, multiple types
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of evidence appear as inputs in the first five chronological entries such as the bike, missing

rental car, and the deadly gunshot. EIHA learns that the top-ranked chrono entries mostly

include the car evidence, suggesting that this evidence was critical in solving the case in

the end. A similar strategy can also be applied to the entry-evidence self-attention layer to

highlight potential high-value evidences that might accelerate the investigation.

7.6 Related Work

Our efforts must be understood in the context of related work on knowledge graphs, language

models in NLP, and sociological studies of crime and homicide.

Pillar 1: KG Construction and representation learning. Knowledge graphs (KGs)

are a type of multi-relational graph data structure. Well-known examples include DBpe-

dia [LIJ15], YAGO [PWS20], and many other domain-specific KGs [HJC20]. Knowledge

graph creation and curation [WDR21], and KG representation learning are foundations in

a wide range of knowledge-driven downstream AI applications including translational- or

similarity-based embedding [WMW17, HCY19] and graph neural networks [VCC18], which

are vital to capturing the latent semantic features and support relational inferences (i.e. link

prediction). Graph attention is also central to building graph representations that selectively

learn entities and relations [WHC19, HLE21].

Pillar 2: Advances on language models and applications. Transformer-based, large

pre-trained language models (LMs) [QSX20], originated from BERT [VSP17], have been

widely applied in NLP as a revolutionary milestone, such as text generation, natural lan-

guage inference and document classification [CFB20, ZSW22]. Current research makes use

of pre-trained language models for applications involving low-resource languages, such as

AraBERT [ABH20], and domain-specific NLP applications, like in biomedical research, with

pioneering work as BioBERT [LYK20] and BlueBERT [PYL19]. Our proposed EIHA aligns

as domain-specific LMs in criminology for document-level analysis.

Pillar 3: Computational social science. Crime has been a prominent topic within the
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social sciences for more than a century. Criminology as a discipline has naturally divided itself

into domains studying offenders (and sometimes victims), or events [Wor10]. The process

of police investigations has generally been studied from the point of view of events and the

contexts in which they occur. Computational criminology is a relatively young subfield that

has focused mostly on modeling and measuring geographic crime patterns [Bra11] or offender

recidivism [Ber13]. Some recent work has started to incorporate natural language processing

techniques into crime analysis [KBB17]. The use of knowledge graphs in crime analysis is

relatively new. Related efforts include [PBU20, QW17, ST19, AGK20]. Our work aligns

with this direction that bridges NLP and KG to improve crime analytics and prevention.

7.7 Conclusion and Future Directions

In this chapter, we introduce an innovative framework named EIHA, the first to apply the-

state-of-art technology in Graph ML and NLP to homicide analytics and crime prevention. It

is collectively based upon both domain knowledge graph MKG and domain language model

M-BERT. MKG, as a KG backend, is constructed from homicide investigation record and

provide structured and multi-relational data formulation. In addition, M-BERT, a private

domain language model obtained through pre-training and fine-tuning on the homicide cor-

pus, can better encode textual features and be integrated into deep learning systems. In this

work, we investigate EIHA on case solvability classification task, and explore two application

scenarios with the power of EIHA, which bridges the gap between graph and NLP in crime

studies and has shown effective and outperform multiple state-of-the-art methods. We also

point out AI-assisted analytics on criminology urge interdisciplinary academic and industrial

communities to collectively tackle challenges in an attempt to build socially responsible and

inclusive AI systems and applications.
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7.8 Limitations

One limitation in our proposed EIHA is brought by the customization on data and modeling

on one specific domain of crime and homicide reports. For example, MKG is a data-driven

schema established based on the original MurderBook record, which may not be easily ex-

tended to applications from other domains. Consequently, another layer of limitation is

from the data availability and accessibility to labels. While EIHA favors more data to fine-

tune language models and KG construction, and more labels for supervision in training on

downstream tasks, it requires human expertise to obtain them through real-life case report.

This inspires one of our future directions as parameter-efficient models and self-supervision

strategies. In addition, EIHA has pretrained large language models as one foundational

component, along with its limitations [TBC21] on scaling, training resources, potential bias

and privacy concerns. In terms of potential limitations regarding broader social impact, we

discuss under the following section of “Ethics Statement and Broader Impact”. Last but not

least, case representation as dense embedding vectors in EIHA applications can be examined

and improved on explainability and further explored on its causal indications.

7.9 Ethical Considerations and Broader Impact

This research was conducted under UCLA IRB protocol #19-000588. . The data are not

publicly available due to their high sensitivity and inclusion of private and confidential

information. These constraints create challenges for external validation of our approach.

Nevertheless, transparent implementation and testing guidelines should make it possible for

others to build and study similar knowledge graphs for homicide investigations in other

private settings.

Our two proposed downstream uses of EIHA include basic search functionality and

classification tasks. Both are impacted by the quantity and quality of data contained in the

corpus of investigative texts as well as the choices made to facilitate the construction of a

knowledge graph from raw text. We are working with a small sample of homicides relative
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to the total for Los Angeles over the study period from 1990-2010. Thus, the KGs and LMs

presented here should not be considered representative of homicide investigations overall.

Homicide investigations certainly incorporate biases. There is little evidence at present

that “victim devaluing” based on extralegal factors such as race play any substantial role in

determining the outcomes of homicide investigations [RJM20, Vau20]. Nevertheless, we must

recognize that homicide knowledge graphs likely contain (and lack) some entities/relations

as a result of investigative bias. Rather than being a basis for rejecting this approach, we

suggest that a careful comparative study of how knowledge graphs differ across detectives

and crime contexts might help identify how such biases operate and provide a pathway for

their correction.

The potential future use of EIHA to augment homicide investigations presents a unique

set of ethical challenges. Such augmentation may improve the efficacy and fairness of homi-

cide investigation beyond what is capable with current procedures and technologies. How-

ever, it is the potential that machine learning methods introduce or compound existing biases

that is of greatest concern. For example, if the experiments on case classification presented

here were to move to field deployment, one potential risk is that a machine-classification of

a case as unlikely to be solved, early in the investigative process, might lead detectives to

shift their efforts elsewhere. Official policy and procedure that requires detectives to redou-

ble their efforts in response to such a classification would be one corrective that could also

improve case solvability, beyond what would have otherwise been the case.

Other potential extensions of knowledge graphs for homicide investigations raise addi-

tional concerns. Homicide knowledge graphs might also be compared to identify what makes

some cases solvable and others not. Some differences between cases might simply highlight

what is likely already obvious to investigators. For example, the absence of DNA evidence in

one case may be an obvious “cause” for that case going unsolved. The absence of a DNA evi-

dence node in the corresponding graph does not create any “surprises.” By contrast, if there

are non-intuitive “causal pathways” in graphs for solved cases that are absent in unsolved

cases, then the potential surprise of this finding could alter the way that homicide investi-
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gations unfold. How criminal and procedural law would handle novel investigative practices

based on analytical “surprises” is an open question [BZM21]. Method transparency is central

to understanding such surprises and the effects [RWC20].

Recent research has highlighted several ethical and social risks associated with the use of

LMs, especially trained from texts that involves personal identifying information [WMR21].

In this work, we mitigate potential information leaks by masking all sensitive person-related

attributes in M-BERT training. The comparative approach we suggest for identifying bias

in knowledge graphs might also be used here to identify potential biases emanating from the

language models.

It is widely agreed that a failure to solve homicides, particularly in low-income, minority

communities, contributes to concentrated disadvantage and erodes community trust. Yet,

adopting an “ends-justify-the-means” approach to solving homicides may generate the op-

posite effects. In conclusion, machine learning methods must not only add scientific and

practical value to the homicide investigative process, but must do so while adhering to im-

portant legal and ethical principles [Chi19].
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Table 7.2: Top-3 similar results retrieved by EIHA given one chrono entry in MurderBook.
Tokens that are potentially highly related are shaded. Sensitive information have been
anonymized or redacted.

Query Chrono entry: Hospital death, Southwest

(Detective-1) Southwest Station, Notified by Detective III ■■■ of a hospital death.
■■■ expired at USCMC.

Rank Similar Chrono entries

#1 (Detective-1&2) Southwest Station Briefed at Southwest Station. Obtained
printouts on Incidents 0022 and 0521. Victim was pronounced dead at
Kaiser WLA.

#2 (Detective-1,2&3) Southwest Station Arrived at Southwest Station. Briefed by
■■■ on case. Victim was pronounced dead at 1750 hours.

#3 (Detective-1&2) Southwest Station Received update on shooting. ■■■ died
at 1615 hours. Obtained incident history printout. Possible suspect was de-
tained after ■■■ saw him running away from crime scene minutes after the
shooting.

(a) Query #1 on the plot of Hospital death, Southwest and its retrieved similar entries

Query Chrono entry: Autopsy, Gunshot, Wound

Detective-4 received phone call from Doctor-1’s from L.A. Officer-1’s office. Doctor-1
conducted autopsy on Suspect. He ascribed the cause of death as a single gunshot
wound to the head. Stippling was present at entry wound.

Rank Similar Chrono entries

#1 ■■■ contacted Doctor-2, Pathologist L.A. County Officer-1’s office regarding
the results of the post-mortem examination . Doctor-2 advised that the sus-

pect sustained a single through-and-through tight contact gunshot wound to

the right side of his head .

#2 ■■■ attended the autopsy performed by Doctor-3. He ascribed the cause of

death as a single gunshot to ■■■’s lower left back . He recovered 2 bullets
and the jacketing to one of them.

#3
Detective-5 attended autopsy with Doctor-4. Cause of death ruled as single

gunshot wound through the back of victim’s head . (1) bullet recovered from

victim’s left upper leg (medium caliber).

(b) Query #2 on the plot of Autopsy, Gunshot, Wound its retrieved similar entries
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CHAPTER 8

Conclusion

In this dissertation, we have introduced multiple works that focus on how ontological in-

formation is presented in different knowledge graphs as internal hierarchical structures and

how to incorporate such information in knowledge graph representation learning via various

strategies such as two-view joint learning (Chapter 2 and 4), weighted association with tax-

onomies (Chapter 3), hybrid modeling of relational and hyperbolic graph neural networks

5, cross-graph attention fusion in graph encoder 6. The benefits of incorporating ontolog-

ical information into knowledge graph modeling has been demonstrated by multiple tasks

and applications, with representative examples as in Chapter 3 and 5 (Bioinformatics and

healthcare), 4 (E-Commerce) and 7 (Social and crime prevention).

The contributions of this dissertation in advancing deep learning in knowledge graph

(Graph ML) and KG-empowered applications can be further summarized as follows:

• Ontological information in different knowledge graphs has various ways of formulations,

which are possibly unalike with each other. While some ontologies are formally well-

defined (such as product departments, semantic web, disease, and gene ontology) to

portray the relationship between classes and internal structures, there are many situa-

tions where additional efforts are required for a thorough inspection of the knowledge

graph we have and the applications we aim at. We have shown in previous chapters

how the knowledge graphs are formulated by observing how entities and relations are

semantically defined and statistically observed. Such process in the lifecycle of data

mining and machine learning are generally valuable since it helps us understand the

data and provides more analytical insights.
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• Incorporating ontological information into learning knowledge graph representations

is significantly beneficial. We have illustrated that our dedicated strategies such as

multi-task learning framework with the ontological view of the KGs, adding reason-

able auxiliary learning objectives on ontologies, attention mechanism on entities and

relational facts inside the KGs have resulted in better performance on various tasks.

Along with many state-of-the-art methods transferred including, but not limited to,

the large family of graph neural networks, Transformer, and language models, these ap-

proaches provide a collection of powerful toolboxes and enable advantageous modeling

over hierarchical knowledge graph data and learn more comprehensive representations.

• Effectively leveraging ontological information and KG structures can help tackle many

challenging research problems. Since many ontologies provides representative informa-

tion on how entities and relations are organized and categorized, they are extremely use-

ful to solve cold-start problems, low-resource items and inductive scenarios, as demon-

strated in ontology population (Chapter 2), protein interaction and target prediction

in emerging disease (Chapter 3), recommendations for cold-start shopping products

(Chapter 4), newly deployed system activity monitoring (Chapter 6) and domain-

specific knowledge graph construction (Chapter 7).

• We have noticed strong capabilities and encouraging results by using knowledge graphs

to empower interdisciplinary applications. Our research work in this dissertation has

covered a relatively large range of applications domains in biological and biomedical

knowledge graphs (Chapter 3 and 5), product graphs and complementary recommen-

dation (4), homicide investigation and crime prevention. We can further expand our

vision of knowledge graphs to promote more knowledge-intensive applications in public

health, personalized healthcare, e-commerce, and intelligent systems for social good.

In the end, this is by no means the end of the exploration of the power of knowledge graphs

in machine learning and general artificial intelligence. We also propose a few directions for

future work:
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Figure 8.1: Inspired by progress in large-scale language modeling, DeepMind has proposed
a multi-modal, multi-task, multi-embodiment generalist AI agent that can serve multiple
inputs of images, text, and human-robot interactions and corresponding applications, ranging
from gaming, chatbots, visual question answering.

• Universal framework of graph machine learning. As we have shown in previous

chapters, knowledge graphs in real life are based on various formulations in different

domains, which results in a large difference in the semantic structures. Inspired by

Foundation Models [BHA21], one universal graph learning mechanism that can adapt

to the variances of KG structures, potentially ranging from encyclopedia-like KGs,

biological ontologies and healthcare records, social media interactions, and many more,

can reduce the modeling effort and results in new emergent capabilities.

• Mutual augmentation of knowledge graphs and natural language process-

ing As knowledge graph naturally connects to natural language processing in multiple

applications, it is believed that KG as structured knowledge can be extracted and dis-

tilled from the unstructured text as a factual reflection from the real world [SWF21];

and in turn, many downstream tasks such as summarization, entity recognition, ques-

tion answering and language generation can positively be affected by high-quality

KG [ZXR22]. KG and NLP are mutually complementary to each other and learning

augmentation techniques can significantly benefit a wide range of real-world applica-

tions.

• KG-incorporated Multi-modality Learning, together with vision and lan-

guage for more powerful and widespread Artificial General Intelligence.
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Considering one example named GATO [RZP22] shown in which was proposed by

DeepMind, Figure 8.1, Artificial General Intelligence (AGI) has entered the spotlight

in the AI/ML communities as one of the next promising frontiers. Knowledge graphs

as graph-mode data can uniquely contribute to existing research on multi-modality

research, combining and integrating the modality of vision, language and audio. Re-

searchers have already expanded similar opportunities in this trend such as incor-

porating commonsense knowledge (such as scene graphs) to enhance vision-language

representations [YTY21]. Knowledge graph will further expand its new capabilities in

promoting research in AGI and make AI applications more logical and understandable,

transparent and explainable, and socially responsible and beneficial.
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[LOQ18] Chuan Lei, Fatma Özcan, Abdul Quamar, Ashish R Mittal, Jaydeep Sen,

Diptikalyan Saha, and Karthik Sankaranarayanan. “Ontology-Based Natural

Language Query Interfaces for Data Exploration.” IEEE Data Engineering,

41(3):52–63, 2018. 106, 111, 119, 122

189



[LSY03] Greg Linden, Brent Smith, and Jeremy York. “Amazon. com recommendations:

Item-to-item collaborative filtering.” IEEE Internet computing, 7(1):76–80, 2003.

73, 101

[LWH21] Ye Liu, Yao Wan, Lifang He, Hao Peng, and S Yu Philip. “Kg-bart: Knowledge

graph-augmented bart for generative commonsense reasoning.” In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 35, pp. 6418–6425, 2021.

4

[LYF21] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-

ham Neubig. “Pre-train, prompt, and predict: A systematic survey of prompting

methods in natural language processing.” arXiv preprint arXiv:2107.13586, 2021.

5

[LYK20] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,

Chan Ho So, and Jaewoo Kang. “BioBERT: a pre-trained biomedical language

representation model for biomedical text mining.” Bioinformatics, 36(4):1234–

1240, 2020. 114, 154, 155, 163

[LZW17] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. “Deep transfer

learning with joint adaptation networks.” In International conference on machine

learning, pp. 2208–2217. PMLR, 2017. 145

[LZZ20] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping

Wang. “K-bert: Enabling language representation with knowledge graph.” In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.

2901–2908, 2020. 4

[MAG14] Hamid Mousavi, Maurizio Atzori, Shi Gao, and Carlo Zaniolo. “Text-mining,

structured queries, and knowledge management on web document corpora.”

ACM SIGMOD Record, 43(3):48–54, 2014. 14

190



[MBS14] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. “Yago3: A knowl-

edge base from multilingual wikipedias.” In 7th biennial conference on innovative

data systems research. CIDR Conference, 2014. 1, 10, 20, 23

[MCL22] Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. “Open

Domain Question Answering with A Unified Knowledge Interface.” In Proceed-

ings of the 60th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pp. 1605–1620, 2022. 4

[MCW18] Jianxin Ma, Peng Cui, Xiao Wang, and Wenwu Zhu. “Hierarchical taxonomy

aware network embedding.” In Proceedings of the 24th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining, pp. 1920–1929.

ACM, 2018. 13, 52

[MDJ17] Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and Minyi Guo. “Transt:

Type-based multiple embedding representations for knowledge graph comple-

tion.” In Joint European Conference on Machine Learning and Knowledge Dis-

covery in Databases, pp. 717–733. Springer, 2017. 13

[MFT20] Lauren A. Magee, J. Dennis Fortenberry, Wanzhu Tu, and Sarah E. Wiehe.

“Neighborhood variation in unsolved homicides: a retrospective cohort study in

Indianapolis, Indiana, 2007–2017.” Injury Epidemiology, 7(1):61, 2020. 148

[MHR19] Stavros Makrodimitris, Roeland C.H.J. van Ham, and Marcel J.T. Reinders.

“Sparsity of Protein-Protein Interaction Networks Hinders Function Prediction

in Non-Model Species.” bioRxiv, 2019. 41

[Mil95] George A Miller. “WordNet: a lexical database for English.” Communications

of the ACM, 38(11):39–41, 1995. 1

[MMR08] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. “Domain adapta-

tion with multiple sources.” Advances in neural information processing systems,

21, 2008. 145

191



[MPL15] Julian McAuley, Rahul Pandey, and Jure Leskovec. “Inferring networks of substi-

tutable and complementary products.” In Proceedings of the 21th ACM SIGKDD

international conference on knowledge discovery and data mining. ACM, 2015.

1, 74, 89, 90, 101

[MPR05] Shie Mannor, Dori Peleg, and Reuven Rubinstein. “The cross entropy method for

classification.” In Proceedings of the 22nd international conference on Machine

learning, pp. 561–568, 2005. 157

[MSC13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-

tributed representations of words and phrases and their compositionality.” Ad-

vances in neural information processing systems, 26, 2013. 44, 55

[MTS15] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

“Image-based recommendations on styles and substitutes.” In Proceedings of

the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 43–52. ACM, 2015. 77, 89

[NGP21] Hoang-Van Nguyen, Francesco Gelli, and Soujanya Poria. “DOZEN: cross-

domain zero shot named entity recognition with knowledge graph.” In Pro-

ceedings of the 44th international ACM SIGIR conference on research and de-

velopment in information retrieval, pp. 1642–1646, 2021. 4

[NK17] Maximillian Nickel and Douwe Kiela. “Poincaré embeddings for learning hierar-
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