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On Robustness of the Normalized Random Block
Coordinate Method for Non-Convex Optimization

Berkay Turan César A. Uribe Hoi-To Wai Mahnoosh Alizadeh

Abstract— Large-scale optimization problems are usually
characterized not only by large amounts of data points but
points living in a high-dimensional space. Block coordinate
methods allow for efficient implementations where steps can
be made (block) coordinate-wise. Many existing algorithms
rely on trustworthy gradient information and may fail to
converge when such information becomes corrupted by possibly
adversarial agents. We study the setting where the partial
gradient with respect to each coordinate block is arbitrarily
corrupted with some probability. We analyze the robustness
properties of the normalized random block coordinate method
(NRBCM) for non-convex optimization problems. We prove
that NRBCM finds an O(1/

√
T )-stationary point after T

iterations if the corruption probabilities of partial gradients
with respect to each block are below 1/2. With the additional
assumption of gradient domination, faster rates are shown.
Numerical evidence on a logistic classification problem supports
our results.

I. INTRODUCTION

For high-dimensional optimization problems, block co-
ordinate methods are shown to be efficient when the full
gradient is expensive to compute [1]–[4]. Theoretical studies
establish global convergence guarantees for deterministic [5],
[6] and randomized [7]–[9] block coordinate methods. In
addition to strong theoretical properties, a recent empirical
study demonstrates that block-normalized gradient methods
help accelerate the training of neural networks [10].

Existing methods assume that the gradients are trust-
worthy. However, due to numerous reasons, such as com-
putational errors at the machines or data corruption, the
gradients might become corrupted. Besides, distributed im-
plementations of these methods are gaining traction and
require reliable communication between the machines. How-
ever, unreliable communication might occur due to noisy
wireless communication, or more importantly, due to man-
in-the-middle adversarial attacks [11]. In man-in-the-middle
attacks, an adversary can take over network sub-systems and
arbitrarily alter the information stored and communicated
between the machines to prevent convergence to the optimal
solution, i.e., Byzantine attacks [12]. In these situations,
methods that use raw gradient information may fail to
converge, as an erroneous gradient can have an arbitrarily
large effect on the algorithm.
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In this paper, we adopt a random and adversarial cor-
ruption model, where the gradients are arbitrarily corrupted
with some probability. We do not limit the corruption level.
We highlight the robustness properties of the normalized
random block coordinate method (NRBCM) in this setting.
The NRBCM performs a block coordinate update with an
adaptive step size scaled as the reciprocal of the partial
gradient norm with respect to the corresponding block. We
show that this method avoids large updates that corrupted
gradients might cause by discarding the norm and only
preserving the directional information of the gradient. This
allows the algorithm to converge without any modification,
even in the presence of corrupted gradients.

Our contributions can be summarized as follows:
• We prove that if the corruption probabilities of partial

gradients with respect to each block are below 1/2, the
NRBCM finds an O(1/

√
T )-stationary point after T iter-

ations for smooth (possibly non-convex) cost functions.
• For a family of cost functions satisfying a gradient domi-

nation condition, we prove that the NRBCM can: 1) either
converge to a O(γ) neighborhood of the optimal solution
at a linear rate with constant step sizes proportional
to γ, 2) or converge to the optimal solution at a rate
O(log (t)/t) with decreasing step sizes at O(1/t), where
t is the iteration index.

• We provide numerical evidence that for multi-class logis-
tic classification task on the MNIST dataset, the NRBCM
is robust to the modeled corruption.

Related work: Besides the literature on block coordinate
descent type methods, our work has connections to the liter-
ature on (1) normalized gradient method and (2) optimization
under corruption.

1) Normalized gradient method: Normalized gradient
method is a well-established algorithm for convex [13], [14]
and quasi-convex optimization [15]. More importantly, nor-
malized updates for non-convex optimization [16] is gaining
traction since, for non-convex objectives, the magnitude of
the gradient provides less information about the value of the
function, while the direction still indicates the direction of
steepest descent. An important benefit of this was shown to
be the fast evasion of saddle points [17] since the normalized
updates will not diminish around the saddle points. A variant
of normalized gradient methods is the gradient clipping
technique used for privacy [18] and robustness [19].

2) Optimization under corruption: This line of work
aims to develop optimization algorithms for learning and
distributed optimization under various corruption models
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[20], [21]. Adversarial learning literature commonly studies
classification [22] and linear regression [23] tasks, where
the corruption is due to data manipulation. For example,
[24] considers a probabilistic corruption scenario called p-
tampering, where the adversary is restricted to choose valid
tampered data with correct labels.

On the other hand, the literature on robust distributed
optimization either studies a bounded corruption model, e.g.,
due to noise [25], quantization [26], [27], and inexact oracles
[28], or, studies an arbitrary adversarial corruption model
while assuming that the adversary is only able to manipulate
a certain fraction of agents or data samples [29]–[31]. It has
been shown that in a distributed setup with multiple agents
participating in the optimization process, when the majority
of the agents are trustworthy, adversarial corruption can be
filtered out via robust aggregation [32]–[36].

Due to the modeling differences on the corruption, none
of the previous works address the problem we study in
this paper. We allow arbitrary adversarial corruption in
a centralized setup, which prevents robust aggregation to
create gradient estimates. Closest to our setup is our previ-
ous work in [37], which studies robustness of normalized
subgradient method in a randomly corrupted subgradient
setting. However, [37] studies a full gradient type method
for constrained convex optimization problems satisfying a
certain acute angle condition, whereas this work considers
a block coordinate descent type method for unconstrained
non-convex optimization problems.

Paper Organization: The remainder of the paper is orga-
nized as follows. In Section II, we formalize the problem
setup. In Section III, we describe the NRBCM (Algorithm 1)
and analyze its convergence in a randomly corrupted gradient
setting for smooth (possibly non-convex) cost functions. In
Section IV, we provide a numerical study demonstrating the
robustness of the NRBCM.

Notations. Unless otherwise specified, ‖ · ‖ denotes the
standard Euclidean norm. Given a positive integer q > 0,
[q] denotes the set of integers {1, 2, . . . , q}. The abbreviation
a.s. indicates almost sure convergence.

II. PROBLEM SETUP

We consider the general unconstrained optimization prob-
lem

f? = min
x∈Rd

f(x), (1)

where f : Rd → R is a continuously differentiable cost
function of a decision vector x ∈ Rd. We assume that the
optimal solution set of (1) is nonempty. We partition the
decision vector into q blocks as:

x = [x(1)Tx(2)T . . . x(q)T ]T , (2)

where x(i) ∈ Rdi with di > 0 and
∑
i di = d. Using the

notation in [7], it is useful to define matrices Ui ∈ Rd×di
such that

[U1U2 . . . Uq] = I. (3)

With this notation, x(i) = UTi x and x =
∑
i∈[q] Uix(i).

Lastly, we define the partial gradient with respect to the
decision variables in the i’th block as:

∇if(x) = UTi ∇f(x), ∀i ∈ [q]. (4)

Random block coordinate descent methods [7] are practical
for iteratively solving (1). In these methods, at each iteration
t, the algorithm generates a random integer it ∈ [q] with the
distribution

P (it = i) = φi, ∀i ∈ [q], (5)

where
∑q
i=1 φi = 1 and Φ = [φ1, φ2, . . . , φq] is a probability

vector for the sampling distribution. Upon selecting it, the
algorithm receives the feedback ∇itf(xt) and updates the
it’th block, i.e. xt(it), according to the feedback.

Such methods however assume that the feedback is a
trustworthy gradient information and might fail to converge
when the feedback becomes corrupted, as one single cor-
rupted feedback can have an arbitrarily large effect. In this
paper, we consider the case where at each iteration t, the
gradient information corresponding to block it is corrupted
with probability pit , potentially due to an adversarial attack.
Therefore at each iteration t, the feedback corresponding to
the it’th block is determined as:

hit,t =

{
∇itf(xt) with probability 1− pit ,
UTit bt with probability pit ,

(6)

where the corrupted feedback bt is arbitrary. We note that this
model encompasses all the cases where the feedback can be-
come corrupted (e.g., communication errors, computational
errors, corrupted data, adversarial manipulation) since we set
no restrictions on bt.

The following section will describe the normalized random
block coordinate method and state its convergence guarantees
in a randomly corrupted gradient setting defined by (6) for
smooth (possibly non-convex) cost functions.

III. ROBUSTNESS OF NORMALIZED RANDOM
BLOCK COORDINATE METHOD

We study the normalized random block coordinate method
(NRBCM) and show that it can be used to solve (1) in
the random corruption setting defined by (6). The intuition
behind this is that the feedback is restricted to contain only
directional information by normalization. This allows us
to limit the corrupted gradients’ potential by not allowing
arbitrarily large updates, which would have been possible
without normalization.

We summarize NRBCM in Algorithm 1. At each iteration
t, the algorithm selects a random block it ∈ [q] according to
(5). Given xt and it, the algorithm receives the feedback
hit,t according to (6). Then, it computes the normalized
vector Uithit,t/‖hit,t‖ as the update direction and moves
the iterate xt along that direction with step size γit,t. Here,
Uit simply produces a d-dimensional vector by adding zeros
to dit -dimensional hit,t/‖hit,t‖ so that the update operation
is feasible.
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Algorithm 1 Normalized Random Block Coordinate Method
Input: Initialize x0 ∈ Rd, step sizes {γi,t}∀i∈[q], sampling

probability vector Φ, and T
1: for t = 0 to T − 1 do
2: Select a random block it ∈ [q] according to (5).
3: Given xt and it, receive hit,t according to (6).
4: Update xt+1 = xt−γit,t

Uithit,t

‖hit,t‖
, where Uithit,t

‖hit,t‖
= 0

if ‖hit,t‖ = 0.
5: end for

Before presenting the convergence results, we need to state
the following technical assumption on the block coordinate-
wise smoothness of f :

Assumption 1. We assume that the gradient of f is block co-
ordinatewise Lipschitz continuous with constants {Li}i∈[q]:

‖∇if(x+ UTi hi)−∇if(x)‖ ≤ Li‖hi‖, (7)

for any i ∈ [q], hi ∈ Rdi .

In our convergence analysis, we will use the block version
of the standard descent lemma (e.g., [1, Proposition A.24])
for block coordinatewise smooth functions:

Lemma 1 (Block Descent Lemma [6, Lemma 3.2]).
Suppose that f is a continuously differentiable function over
Rd satisfying (7). Let u, v ∈ Rd be two vectors which differ
only in the i’th block, that is, there exists an h ∈ Rdi such
that v − u = Uih. Then

f(v) ≤ f(u) + 〈∇f(u), v − u〉+
Li
2
‖u− v‖2. (8)

We can now present the main technical result on the con-
vergence of NRBCM for block coordinatewise smooth cost
functions in a randomly corrupted gradient setting:

Theorem 1. Suppose that f is a continuously differentiable
function over Rd for which Assumption 1 holds. Let flb ≤ f?
be a known lower bound for the optimal value of (1) and
p̄i ≥ pi, ∀i ∈ [q], be known upper bounds on the corruption
probabilities. If p̄i < 1/2 for all i ∈ [q], then Algorithm 1
with parameters

φi =
L

1/2
i /(1− 2p̄i)∑q

j=1 L
1/2
j /(1− 2p̄j)

, ∀i ∈ [q], (9)

γi,t =

√
2(f(x0)− flb)

TLi
, ∀i ∈ [q],∀t, (10)

produces iterates that satisfy the following:

1

T

T−1∑
t=0

E[‖∇f(xt)‖] ≤
√

2(f(x0)− flb)
T

q∑
i=1

L
1/2
i

(1− 2p̄i)

(11)

Proof: We will first prove the convergence result for
general φi and γi,t, and then prove that the parameters in (9)

and (10) minimize the upper bound. Starting with Lemma 1:

f(xt+1) ≤ f(xt)+〈∇f(xt), xt+1−xt〉+
Lit
2
‖xt+1−xt‖2

(12)

= f(xt) + 〈∇f(xt),−γit,t
Uithit,t
‖hit,t‖

〉+
Litγ

2
it,t

2
(13)

= f(xt)− γit,t(1− Yit,t)〈∇f(xt),
UitU

T
it
∇f(xt)

‖UTit∇f(xt)‖
〉

− γit,tYit,t〈∇f(xt),
UitU

T
it
bt

‖UTit bt‖
〉+

Litγ
2
it,t

2
, (14)

where Yit,t is the Bernoulli random variable indicating
whether the gradient for updating the it’th block at iteration
t is corrupted or not, where Yit,t = 0 corresponds to the
event that the gradient is trustworthy. Next, we observe that
both UitU

T
it
∇f(xt) and UitU

T
it
bt have non-zero entries only

at the it’th block and hence rewrite (14) as:

f(xt+1)≤f(xt)−γit,t(1−Yit,t)〈∇itf(xt),
UTit∇f(xt)

‖UTit∇f(xt)‖
〉

− γit,tYit,t〈∇itf(xt),
UTit bt

‖UTit bt‖
〉+

Litγ
2
it,t

2
(15)

(a)

≤ f(xt)− γit,t(1− Yit,t)‖∇itf(xt)‖

+ γit,tYit,t‖∇itf(xt)‖+
Litγ

2
it,t

2
(16)

= f(xt)− γit,t(1− 2Yit,t)‖∇itf(xt)‖+
Litγ

2
it,t

2
, (17)

where (a) uses the Cauchy-Schwarz inequality. Next, we take
expectation conditioned on xt:

E[f(xt+1)|xt] ≤ f(xt)−
∑
i∈[q]

φiγi,t(1− 2pi)‖∇if(xt)‖

+
∑
i∈[q]

Liφiγ
2
i,t

2
(18)

≤ f(xt)−
∑
i∈[q]

φiγi,t(1− 2p̄i)‖∇if(xt)‖+
∑
i∈[q]

Liφiγ
2
i,t

2
.

(19)

We select γi,t = γ/(φi(1− 2p̄i)) for some γ, which will be
determined later, and rearrange:∑

i∈[q]

γ‖∇if(xt)‖ ≤ f(xt)− E[f(xt+1)|xt]

+
∑
i∈[q]

γ2Li
2φi(1− 2p̄i)2

. (20)

Noting that ‖∇f(xt)‖ ≤
∑
i∈[q] ‖∇if(xt)‖, we take expec-

tation with respect to xt and divide both sides by γ:

E[‖∇f(xt)‖] ≤
E[f(xt)− f(xt+1)]

γ
+
∑
i∈[q]

γLi
2φi(1− 2p̄i)2

.

(21)
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We sum both sides from t = 0 to T − 1, divide by T , and
note that f(xT ) ≥ f? ≥ flb to obtain:

1

T

T−1∑
t=0

E[‖∇f(xt)‖] ≤
f(x0)− flb

γT
+
∑
i∈[q]

γLi
2φi(1− 2p̄i)2

.

(22)

The RHS of the above inequality is minimized for
γ =

√
2(f(x0)− flb)/(T

∑q
i=1

Li

φi(1−2p̄i)2
) as:

1

T

T−1∑
t=0

E[‖∇f(xt)‖] ≤

√
2(f(x0)− flb)

∑q
i=1

Li

φi(1−2p̄i)2

T
.

(23)
In order to minimize the bound in (23) with respect to Φ,

we need to solve the following convex optimization problem:

min
{φi}i∈[q]

q∑
i=1

Li
φi(1− 2p̄i)2

(24)

subject to
q∑
i=1

φi = 1. (25)

Let λ be the dual variable associated with the constraint (25)
and write the Lagrangian as:

L({φi}i∈[q], λ) =

q∑
i=1

Li
φi(1− 2p̄i)2

+ λ

q∑
i=1

φi − λ. (26)

The first order optimality condition requires:

∂L{φi}i∈[q], λ)

∂φi
= − Li

φ2
i (1− 2p̄i)2

+ λ = 0, (27)

and therefore φi ∝ L
1/2
i

(1−2p̄i)
, ∀i ∈ [q]. Accordingly, we get

the optimal solution as

φi =
L

1/2
i /(1− 2p̄i)∑q

j=1 L
1/2
j /(1− 2p̄j)

, ∀i ∈ [q]. (28)

Plugging the expression for φi into (23)
yields the desired result in (11). Lastly, plug-
ging (28) into γi,t = γ/(φi(1 − 2p̄i)) with
γ =

√
2(f(x0)− flb)/(T

∑q
i=1

Li

φi(1−2p̄i)2
) results in

step sizes given by (10).
According to Theorem 1, there exists a point

x̃ ∈ {x0, ..., xT−1}, generated by Algorithm 1, such
that

E‖∇f(x̃)‖ = O
( 1√

T

)
.

We established that {φi}i∈[q] in (9) are indeed optimal
in the sense that they minimize the upper bound on
T−1

∑T−1
t=0 E[‖∇f(xt)‖]. In particular, (9) states that the

probability of choosing block i is proportional to L1/2
i , and

inversely proportional to (1−2p̄i). Firstly, the proportionality
to Lαi for some α ∈ R is consistent with the literature on
random coordinate descent methods [7]. In our case, ignoring
the dependency on (1 − 2p̄i), φi = O(L

1/2
i ) along with

γi,t = O(L
−1/2
i ) leads to an algorithm that in expectation

moves along the full gradient to achieve best convergence
rates. Secondly, inverse proportionality to (1− 2p̄i) implies
that blocks prone to corruption with higher probability should
be selected with higher probability, in other words, more
often. Intuitively, a block update that can be corrupted with
higher probability requires larger number of updates so that
trustworthy gradients dominate the corrupted gradients in
the long run. Analytically, this choice establishes that in
expectation, the update direction is along the full gradient.

In addition to the convergence guarantees highlighted
by Theorem 1, Algorithm 1 can achieve a faster rate of
convergence for a family of cost functions that are called
gradient dominated. In particular, we borrow the definition
from [38] and state the following assumption:

Assumption 2. We assume that f satisfies the (1, µ)-
Gradient Domination condition, i.e., there exists µ > 0 s.t.

‖∇f(x)‖ ≥ µ(f(x)− f?), ∀x ∈ Rd. (29)

In the literature, functions that satisfy the above as-
sumption are also referred to as gradient dominated of
order p = ∞ [39], [40]. Examples of cost functions
that meet this assumption are log barrier functions, e.g.,
f(x) = − log ((x− a)(b− x)) for b > a, and exponential
functions, e.g., f(x) = exp (c|x|) for some c > 0. For this
type of functions, the next theorem states the convergence
result of NRBCM, under both decreasing and constant step
size schemes:

Theorem 2. Suppose that f is a continuously differentiable
function over Rd for which Assumptions 1 and 2 hold. Let
p̄i ≥ pi, ∀i ∈ [q], be known upper bounds on the corruption
probabilities. If p̄i < 1/2 for all i ∈ [q], then Algorithm 1
with parameters

φi =
L

1/2
i /(1− 2p̄i)∑q

j=1 L
1/2
j /(1− 2p̄j)

, ∀i ∈ [q], (30)

generates iterates that have the follwing properties depend-
ing on the choice of γi,t:

1) If γi,t = γ/(φi(1− 2p̄i)) for some γ ∈ (0, 1/µ), then:

E[f(xT )− f?] ≤ (f(x0)− f?) (1− γµ)
T

+
γ

2µ

q∑
i=1

L
1/2
i

(1− 2p̄i)
. (31)

2) If γi,t = 1/(φi(1− 2p̄i)µ(t+ 1)), then:

E[f(xT )− f?] ≤ 1 + log T

2µ2T

q∑
i=1

L
1/2
i

(1− 2p̄i)
, (32)

and lim
t→∞

f(xt) = f?, a.s.

The proof can be found in Appendix A. Theorem 2 shows
that under Assumption 2, Algorithm 1 exhibits a faster
convergence rate than in the general setting with smooth
objective functions.
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Fig. 1. Convergence performance of NRBCM, RDCM, and gradient
clipping in logistic classification task on MNIST dataset for corruption
probabilities p = 0 (top) and p = 0.2 (bottom).

With constant step sizes γi,t = γ/(φi(1− 2p̄i)), ∀i ∈ [q],
Eq. (31) shows that the sequence {E[f(xt)] − f?}t≥0 geo-
metrically approaches the interval:[

0,
γ

2µ

q∑
i=1

L
1/2
i

(1− 2p̄i)

]
(33)

i.e., it finds a solution in the O(γ/µ)-neighborhood of an
optimal solution in expectation. Note that for any ε > 0, one
can select γ = O(εµ(

∑q
i=1 L

1/2
i /(1− 2p̄i))

−1) such that
the algorithm finds an ε-optimal solution. With a decreasing
step size of γi,t = O(1/t), Eq. (32) shows that in expec-
tation, Algorithm 1 converges to an optimal solution at the
rate of O(log (t)/t), in terms of the differences in objective
value to f?. Note that a direct application of (11) and (29)
would only yield a convergence rate of O(1/

√
t).

In the next section, we present the numerical study on the
robustness of NRBCM.

IV. NUMERICAL STUDY

We study the robustness of Algorithm 1 on multi-class
logistic classification using the MNIST dataset [41]. The
task is to determine m = 10 linear classifiers in order to
separate N = 60000 d = 784-dimensional image vectors.
The problem can be stated as:

min
x∈Rm×d

− 1

N

N∑
i=1

log
exyi

AT
i∑m

j=1 e
xyj

AT
j

(34)

where A ∈ RN×d is the matrix containing N data vec-
tors in its rows (Ai denotes the i’th row of A) and
y ∈ {0, 1, . . . , 9}N is the vector containing the N associated
classes. The decision parameter consists of m vectors with
dimension d, where each vector corresponds to a class
(hence, xyi corresponds to the yi’th row of x, where yi is
the class of i’th data vector).

We partitioned the decision vector into q = 8 blocks,
where x(i) ∈ Rm×

d
q , ∀i ∈ [q] and set φi = 1/q, ∀i ∈ [q].

For comparison, we implemented the random coordinate
descent method (RDCM [7]) and a block coordinate ver-
sion of gradient clipping [19] along with Algorithm 1.
We implemented each algorithm with constant step size
γit,t = γ, ∀t,∀i ∈ [q]. We simulated each algorithm for
γ = 10−4, 10−5, and 10−6, and picked the best-performing
one. We let pi = p, ∀i ∈ [q] and set the corrupted gradient
as bt = −((1− p)/p)∇f(xt) at each iteration.

Figure 1 compares the performances of the algorithms for
p = 0 and p = 0.2, using the value of the cost function
f(xt) during training as metric. When p = 0, all algorithms
succeed in optimizing the cost function value as expected.
When p = 0.2, RDCM completely fails as it is not robust
to corruption. On the other hand, gradient clipping prevents
large updates and has satisfactory performance. Nevertheless,
gradient clipping performance is limited when the parameter
vector gets close to the optimal solution since the trustworthy
gradients become smaller while the corrupted gradients can
still have norms as big as the clipping threshold. On the
other hand, NRBCM always normalizes the updates, and
therefore it is robust to corrupted gradients while achieving
good performance.

V. CONCLUSIONS

This paper studies the normalized random block coordi-
nate method for non-convex optimization problems with ran-
domly and adversarially perturbed gradients. In this corrup-
tion model, the gradient of coordinate blocks is adversarial
with some probability. We show the convergence properties
of the NRBCM under this corruption model. If the corruption
probabilities are less than 1/2: 1) the NRBCM generates
approximate first-order stationary points at a rate O(1/

√
T ),

2) if the function has dominated gradients, a diminishing
step-size guarantees convergence to an optimal solution, 3)
if the function has dominated gradients, and a constant
step-size is used, the NRBCM will converge linearly to an
approximate first-order stationary point. Numerical results
validate our theoretical findings.

Future work should study the robustness of high-order op-
timization algorithms, second-order stationary points, escape
of saddle points, and decentralized optimization models.
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APPENDIX

A. Proof of Theorem 2

1) We first prove the first result when γi,t = γ/(φi(1−2p̄i)).
We take expectation of both sides in (29) and continue from
(21):

E[f(xt)− f?] ≤
1

µ

E[f(xt)− f(xt+1)]

γ

+
1

µ

∑
i∈[q]

γLi
2φi(1− 2p̄i)2

. (35)

Multiply both sides by γµ and rearrange:

E[f(xt+1)− f?] ≤E[f(xt)− f?] (1− γµ)

+
γ2

2

q∑
i=1

Li
φi(1− 2p̄i)2

. (36)

Finally, telescopic summation from t = 0 to T − 1:

E[f(xT )− f?] ≤ (f(x0)− f?) (1− γµ)
T

+
γ2

2

q∑
i=1

Li
φi(1− 2p̄i)2

T−1∑
t=0

T−1∏
j=t+1

(1− γµ) (37)

= (f(x0)− f?) (1− γµ)
T
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+
γ2

2

q∑
i=1

Li
φi(1− 2p̄i)2

T−1∑
t=0

(1− γµ)
T−t−1 (38)

= (f(x0)− f?) (1− γµ)
T

+
γ2

2

q∑
i=1

Li
φi(1− 2p̄i)2

1− (1− γµ)T

γµ
(39)

≤ (f(x0)− f?) (1− γµ)
T

+
γ

2µ

q∑
i=1

Li
φi(1− 2p̄i)2

. (40)

Setting φi given by (30) minimizes the above bound (see
(24)-(28)) and gives the desired result in (31).
2) When γi,t = 1

φi(1−2p̄i)µ(t+1) , we continue from (36) and
replace γ with 1/(µ(t+ 1)):

E[f(xt+1)− f?] ≤E[f(xt)− f?]
(

1− 1

t+ 1

)
+

1

2µ2(t+ 1)2

q∑
i=1

Li
φi(1− 2p̄i)2

. (41)

Telescopic summation from t = 0 to T − 1:

E[f(xT )− f?] (42)

≤ 1

2µ2

q∑
i=1

Li
φi(1− 2p̄i)2

T−1∑
t=0

1

(t+ 1)2

T−1∏
i=t+1

i

i+ 1
(43)

=
1

2µ2

q∑
i=1

Li
φi(1− 2p̄i)2

T−1∑
t=0

1

t+ 1

1

T
(44)

≤ 1

2µ2

q∑
i=1

Li
φi(1− 2p̄i)2

1 + log T

T
. (45)

Lastly, setting φi given by (30) minimizes the above bound
(see (24)-(28)) and gives the desired result in (11).

To prove almost sure convergence of f(xt), we use the
Robbins-Siegmund Theorem [42] as an auxiliary result:

Theorem 3 (Robbins-Siegmund). Let (Vt)t≥1, (αt)t≥1,
(χt)t≥1, (ηt)t≥1 be four nonnegative (F)t≥1-adapted pro-
cesses such that

∑
t αt <∞ and

∑
t χt <∞ almost surely.

If for each t ∈ N,

E [Vt+1|Ft] ≤ Vt(1 + αt) + χt − ηt (46)

then (Vt)t≥1 converges almost surely to a random variable
V∞ and

∑
t ηt is finite almost surely.

We start with (20), use (29), and replace γ with
1/(µ(t+ 1)):

E[f(xt+1)− f?|xt] ≤(f(xt)− f?)
(

1− 1

t+ 1

)
+

1

2µ2(t+ 1)2

q∑
i=1

Li
φi(1− 2p̄i)2

. (47)

We now apply Theorem 3 with Vt = f(xt) − f?,
βt = 0, ηt = (f(xt) − f?)/(t + 1), and
χt = 1

2µ2(t+1)2

∑q
i=1

Li

φi(1−2p̄i)2
to conclude

that (f(xt) − f?) converges almost surely and∑
t(f(xt) − f?)/(t + 1) is finite almost surely. In

order to determine where (f(xt) − f?) converges as well,
we use (32) to obtain:

lim
t→∞

E [f(xt)− f?] = 0. (48)

Finally, since f(xt) − f? ≥ 0, lim
t→∞

f(xt) − f? = 0 almost
surely and therefore f(xt) converges to f? almost surely.
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