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GREEN'’s FUNCTION FOR A PLANAR PHASED SECTORAL ARRAY
OF DIPOLES: UNIFORM HIGH-FREQUENCY SOLUTION

F. Capolind®, S. Maci! and L. B. Felsen®

1 Dept. of Information Engineering, University of Siena, Via Roma 56, 53100, Siena, Haly.
2Dept. of Aerospace and Mechanical Engineering and Dept. of Electrical and Computer
Engineering, Boston University, 110 Cummington Sireet, Boston, MA 02215, USA.

I. INTRODUCTION

In the first part of this paper [ﬂ, a truncated Floquet wave (TFW) formulation has
been presented for the potential of a right-angle sectoral planar phased array of G-
directed dipoles (Fig. 1.1) (because repeated reference will be made to equations,
figures, etc., in (1}, all such references are preceded by 1.). In (1.11), we have shown

a decomposition of the array potential A(F )i that can be more explicitly rearranged
as follows,

AF)= S UV UL AR ()4 T US AR F) + 3 UR AL FJAF) (1)
»e .9 P

where Ugw" (i=1,2) and U®' | defined in (1.7) and (1.12), are truncation
functions that specify the shadow boundaries (Figs. 1.3, 1) pertaining to the domain
of existence of the FW AT¥ (1.4) and of the edge-1 diffracted waves A" in (1.5)
but with integration along the steepest descent path (SDP passini through the
pertinent SP. The vertex wave AY(F) is given by the integral in aﬁl.l), ut with local
SDP integrations through the (k,,,.k.,,)=(kcosB;, kcosB,) saddle point in both
variables (Figs. 1.1 and 1.2). In this paper, we pert‘orm the asymptotic evaluation of
the spectral wavenumber integrals, uniformly valid in the vicinity of the vertex and
of the shadow boundary of any FW or edge-diffracted wave species (Fig. 1.3).

1I. (TFW)-(EDGE DIFFRACTED WAVE) COMPENSATION MECHANISMS
The (TFW)-(edge-diffracted wave) compensation mechanism away from the vertex
is formalized by the uniform asymptotic evaluation of A:” in (1), which exhibits
FW-modulated edge-diffracted waves with respect to the array edge along the z;-
axis, The uniform asymptotics is performed by the Van der Waerden (VdVJ)
method as in [1.2}, leading to :

AL~ kS F (B(k cost)s T [F@ )~ 1] )(2)
! gdl;;g’jplkpl.q el ! [ jékpl.q(cowl.pq'“’”sl)

where By(k,,) is defined in (1.2) and (p;, ¢,) in Fig. L1; 453 =¢
=ccs"(k,:_ o I:Z,,q) is the FW-shadow bougdl;ry l%SB) a.ngle (F’ig. ll':?i) wilh

kﬂyq:(k’—lc,f‘q)" ? and k,q,, defined in (1.3). Furthermore, F denotes the transition
function of the Uniform Theory of Diffraction (UTD) with argument
61'W=(2k,l‘qpl)'/’sin[%(:#,,"-qh)]. These conical diffracted waves, which are not

affected by the z,-domain p-indexed FW periodicity, provide the required continuity
of the truncated FW fields across their shadow boundaries (Fig. 1.3.). The diffracted
rays with wave vector k%= 21,451 Kpq,1€056, 23 4 ko 18I0y § reach the observer
along diffraction cones with angle é,‘,,=cos"(k,m/k), " for ky,ql <k (see Fig.1)
which are FW-modulated generalizations of the smooth-edge version in conventional
GTD. Equation (2) is a simplified version of that presented in {1.2]; in (2), only the
propagating FW (PFW) poles are regularized in the asymptotic process. This yields
a more convenient, but still accurate, high-frequency algorithm. Note that A,,'“(F )
in (1) is obtained from (2) by interchanging 1 and 2 and g and p (see (1.3)).
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III. UNIFORM VERTEX DIFFRACTION
Near the vertex, the z,-edge and z,-edge FW-shadow boundary transitions interact
with the vertex-induced SBCs centered on the zy-axis and z,-axis, respectively, due
to the truncation of the corresponding edge diffracted fields (Figs. 1, 1.3). The
confluence of these four SB transitions near the vertex defines the asymptotics
pertaining to vertex diffraction, which is obtained by the VAW method applied to
the double integral A¥(¥). Within the VAW method, the asymptotic evaluation of
integrals characterized by specific arrangements of critical parameters (saddle points
and singularities) is addressed by mapping the given integrand (both phase and
amplitude) onto the simplest canonicel integrand that accommodates the relevant
conﬁ?uratxon of critical points. The reduction to the canonical form is accomplished
by selectively adding and subtracting "regularizing” portions of the integrand, which
can involve an arbitrary number of poles; for simplicity here, we develop expressions
only for regularization of the Xp,q) pole which is closest to the saddle pomnt (SP).
For the vertex problem, the
c):;itic;ca.l )pa(r_’%meiers)ate tie((lk to fgw
311°22) 7\ R 21498224 =(~cosp,,
Sccosﬁ,) first order SP, and to th,e
k.- and k -poles in (1.3). We
shall be satisfied here with the
lowest order, locally uniform
canonical  asymptotics  that
extends over a limited region @
in the (k,, k,;) spectral domain,
large enough to accommodate the
asymptotic isolation of the SP
and poles at its boundary, and
with its center defined by SP-
pole coalescence. In Sec.lil-A, we
consider the proposed
regularization architecture, and
in Sec. 1II-B, we deal with the
relevant asymptotics.

Fig. 1

A. Spectral regularization

The speciral regularizations of the integrand function S(k,y,k.5)=B,(k,()B,(k,;) in
(1.1) are summarized in the Table, which we now explain. Starting in Table A with
the spectral amplitude in the integrand of (1.1), we refer to the discussion in
Sec.L.III on parameterizing the uniform sectoral array asymptotics in terms of the
interaction, via the vertex, of the uniform semi-infinite array (SIA) solutions
pertaining to each edge. These phenomenologies ase identified in the first column,
beginning sequentially with edge 1. The.second column identifies the relevant
spectral amplitude terms. Note that B, , contains the pole singularities in the k,, ,
integrations, respectively (see (1.2),(1.3)). The third column in Table A gives the
VAW  regularization ~ which isolates, via the W, ={-jdi(k. -k, )],
W, p={-idy (k3 - k,3, ;)] functions, the effect of the (p,g) poles under consideration.
While the pole extraction is direct for edge 1, the corresponding treatment of edge 2
is more involved because it is preconditioned by the presence of edge 1. Altogether,
the regularization of S(k,,k,;) leads to the nine individual terms in the 2nd row of
Table A, which are rearranged in the second column of Table B into four groups
Si(k,yks2), i=0,..,3. Each group addresses uniform transition through a critical
spatial domain listed in the first column. Note that these regularizing
decompositions are ezact for the gtopagaﬁng FW spectrum (evanescent effects are
neglected here) and they provide the formal structure for subsequent uniform
asymptotics. The lowest-order locally uniform asymptotic evaluation is performed
next.
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A: REGULARIZATION of the INTEGRAND in (1.1) B: CANONICAL VERTEX REGULARISATION

Consiituent  Coefficient Regularization Ph logy Regularized cocfficient
SB,/SB.

Edge-1 (15) By (1.8) By-Wy, +W,, near SB/SEs  sy=Wy Wiy

Edge-2 BB, = BBy-W, +W, ) near SBC, $,=W, (B~ W, )

effect on 3 ~ Wy, o(By=Wy 4 W, o) near SBG, S;=W, o(By - Wy )

edgel =§°S_~ + W,'P(B,- W,'q+ Wl") near vertez 53=5-89-5;-5,

B. Asymptotic evaluation

The spectral decomposition in Table B leads to the exact spatial representation of
the nonevanescent vertex diffracted field contribution,

A'F)=AT+ AT+ A3+ A} &)}
where A} (i=0,...3) contains the spectral integrand (SW’j:r)"S;(k,,,k,,) eIk T of
(1.1) and the (k,;,k,;) integration is performed near the real k,,, k,; axes along the
local SDPs (Fig. 1.2). The asymptotics of A} is dominated by tﬁe value of the
integrands at the SP (k, k) = (.1, k.2,) = (kcosPy, kcosf,), as determined from

(d/dk,)(E - 7),=0, i=12. Accordingly, K'=F,, 3 +keudy+ (K1), By, 25=ki (Fig.1)
and the) P phase is kr. Taylor expanxion up %o second onﬂ-:r a.;:)'un the SP gives

E' Fomkr "(A(k:l - Exh)2 + 2H(kn ‘E:h)(kn'%ﬂl) + B(kﬂ' lb}z) (4)

with A=kr/(2Ksin’¢,) B=kr/(2Ksin’¢y), H=krcosfycosp,/(2K sin’;sin’¢,) (see
Fig. 1.1). This quadratic form is the lowest order approximation to the exact phase
over a limited region @ centered at the SP in the (k,;, k,;) domain, which is
"sufficieptly lazge” to uniformly accommodate the poles in the various spectral
terms Si(k,y, k) in Table B. Since the A integral is the only one that has two
poles (one in each variable), its asymptotic evaluation is carried out first. The other
integrals can be_asymptotically evaluated by reduction of Aj. First, we change

variables to §=V/A(k,;-k.,,), 1=vVB(k,;-k,;,) to transform the quadratic phase in

(4) into K- 7 = kr— (E2+2wén+?), with w=H[(AB)"?=cotp,cotBy=cosd,cosg,.

Next, the regular slowly varying amplitude function (k ) in the inteira.nd (see
Table B for Sp) is evaluated at the SP (¢,7)=(0,0) and removed from the integral,
thereby isolating the canonical function

eb, T F JE+wln’)
T(aq{bp.w)m _/”_L pfm & dn, )]
' I 1-

where o,=\/A(I-v?) (ky,-kn,) and by=\/B(1-vw?} (k,p,-kg,, ). Note that the
g,n) intggra.l ig (5) ii a{ctually the canonical mapping, in( the rigor%ua VAW methed,

om the original g:,, k,;) integral onto the simplest spectral integrand that
accommodates a 2-D first order SP and a simple pole in each variable. The
normalization constant in (5) is such that T'(a,b,w) tends to unity for large values of
the parameters @ and b (i.e., for poles far from the SP). The numerical evaluation of
(5) can be performed as in f2] in terms of standard Generalized Fresnel Integrals. It
should be noted that in the transition regime where the poles are close to the SP, q,
and b, can be approximated up to second order by the simpler expressions

e, % Zkr sin(ﬁ"'z_ﬂl), b, = VZr sin( -ﬂé'-gg_—ﬂz') (6)

The other terms A} and Aj in (3), which possess poles in only one variable, can be
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evaluated by using the ordinary transition function of the UTD as shown in (2). The
final outcome is

~jkr
Al ~ S;(En.y;m) 'cj;r— LIT i=0,... 3 (7)

where To=T(a,, b, w), 9,=F(a}) , T,=F(b) , Ty=1, with 5 identified in Table

B. The vertexidiffracted wave 3;-(7 incorporates the transition from a vertex-

dominated spherical wave to an edge-dominated cylindrical wave and it compensates

forBthE discontinuities across the SBCs of edge diffracted rays along A55=8; and
2. 7=P2 -

IV. NUMERICAL RESULTS

Numerical tests have been performed on a "large” square atray of dipoles in order to
validate the asymptotic solution in (7). The electric ficld has been derived from the
potential by using a dyadic spectral form in the integrand of (1.1}, which introduces
2 simple additional factor into (7). An element-by-element summation over the
contribution from each dipole serves as a reference. The 10X 10 element test array
has equi-amplitude dipoles oriented along =%, with interclement phasing v,=7,=0
and period d,=d,=1.7A, A=2x/k. In a spherical coordinate system (r,6,4) with origin
at the center of the array and polar axis perpendicular to the array plane, the array
radiates a broadside (#=0") main beam but, due to the large interelement distances
d, and d,, there are nine PFW_,, with all combinatjons of p=-1,0,1 and ¢=-1,0,1.
Also, there are three propagating diffracted waves E:" with ¢=-1,0,1 arising from
edge 1 since |k,; |<k for these g-indexes; all other diffracted waves from edge 1 are
radially evanescent and can be neglected. The three edge-1 diffracted waves can
compensate for the disappearence of all nine PFWs at the SB 453 in (1.7). The
same applies to the diffracted field from every other edge. Each of ffe three edge-1
diffracted fields has a SBC at {5 , ¢=-1,0,1, given by (1.12). The vertex-1
diffracted field compensates for the disappearence of all these edge diffracted waves
at their SBCs, thereby providing continuity of the total radiated field. In the
pumerics, these compensations are based on refined VdW-globally regularized
versions of the wavefields in Sec.lll. The same mechanism applies to the diffracted
field from each vertex of the square array. In Fig. 2, the B, and E, total electric
field components are plotted vs. scan angle # along a 45 arc at a distance r=25)
{rom the center of the array, thus passing close to two vertexes {see inset in Fig.2)
so as to enphasize the vertex effect. The three maxima are related to the FW_, _,,
FWyand FW;,. The dotted 5 =

FWsol (1)
curves show the edge-truncated FW sol without p e E’

asymptotic FW and diffracted 4
field solutions (1) without the
vertex-diffracted field in (3). The
solid curves show the complete
a.sytzﬁtotic field in (1) with the
globally :e%zla.tized field in (3) as
well as the reference solutions; 0
both coincide on the scale of the

drawing. The agreement between ]
the complete asymptotic and the
numerical reference solutions is 4
quite satisfactory. 0
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