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GREEN'S FUNCTION FOR A PLANAR PHASED SETORAL A R M Y  
OF DDPOLES: UNIFORM HIGH-FREQUENCY SOLUTION 

F. Capolino', S. Moci' and L. 13. FcLs~n~ 

'Dept. of InJonnation Engineering, Vniveraily oJSiena, Via Roma 56, 58100, Siena, Haly. 
,Dept. of Aerospace and Mechanical Engineering and Depf. of Eledrical and Computer 

Engineering, Boston Uniuersity, 110 Cummington Street, Bosion, MA 08815, USA. 

I. INTRODUCTION 
In the first part of this paper [l], a truncated Floquet wave (TFW formulation has 

directed dipoles Fig 1 1  (because repeated reference will be made to equations, 
figures, etc., in [l\, suck references are preceded by 1.). In (l.ll), we have shown 
a decomposition of the array potential A ( i ) i  that can be more explicitly rearranged 

A(?)= I!$,,~G~*'A&~(?)+ 7 @'A$'(?)+ V A Y ( ? ) + A " ( i )  (1) 

where UFWIi (i=l,2,) and Uds1 , 'defined in (1.7) :d (1.12), are truncation 
functionsPhat specify the shado: boundaries ( F P  1.3,g pertaining to domain 
of existence of the FW AFw (1.4) and of the e gel di acted waves A *I in (1.5) 
but with integration alonf the steepest descent path (SDP) passin tirou h the 
pertinent SP. The vertex wave AY;) 4 given by the integral in l.l),%ut wit% local 
SDP inte ations through the k,,k. , ,)=(keos@ kurr@,) sa6dle point in both 
variables bgs. 1.1 and 1.2). In t s pa er, we perkrm the asymptotic evaluation of 
the spectral wavenumber integrals, unikrmly valid in the vicinity of the vertex and 
of the shadow boundary of any FW or edgediffracted wave s p i e s  (Fig. 1.3). 

The (TFWI-(edge-diffracted wave) compensation mechanijm away from the vertex 
is formalized by the uniform asymptotic evaluation of A,!' in (3 which exhibits 
FW-modulated edge-diffracted waves with respect to the array ge along the E - 
axis. The uniform asymptotiu is performed by the Van der Waerden (Vdd) 
method as in [1.2], leading to 

been presented for the potential of a right-angle sectoral planar p h ased array of ii- 

as follows, 

PI 0 

II. (TFW)- EDGE DIFFRACTED WAVE) COMPENSATION MECHANISMS 

where B,(k ,) is defined in 1.2) and (pl, dl) in Fig. 1.1;. @:$bl, 

kpl,q=(k2-kl~,q)1~z and kll,q defined in (1.3). Furthermore, F denotes the transition 
function of the Uniform Theory of Diffraction (UTD) with argument 
6 1 , ~ = ( 2 ~ ~ ~ , q ~ ~ ) ' ~ z s i n [ ~ ( ~ ~ , ~ ~ l ) ] .  These conical diffracted waves, which are not 
affected by the +-domain p-indexed FW periodicity, provide the re uired continuity 
of the truncated FW fie& a m s  their shadow boundaries (Fig. 1.33. The diffracted 
rays with wave vector k dml=kll,qZ +k,llcyj,i, + k,,&~,$ reach the observer 
don diffraction cones wifh angle 81,q=cos (kZl,.Jk), for I ksl,q I <k (see Fig.1) 
whict are FW-modulated generalizations of the smooth-edge version in conventional 
GTD. Equation 2) is a simplified version of that presented in 11.21; in (2 only the 
propagating FW [PPW) poles are regularized in the asymptotic process. 'hihis yields 
a more convenient, but still accurate, high-frequency algorithm. Note that A / ' ( ? )  
in (1) is obtained from (2) by interchanging 1 and 2 and q and p (see (1.3)). 

= c o ~ ~ ~ ( k ~ ~ , ~ [ k ~ ~ , ~ )  is the FW-s!mIow boundary (SB) angle (Flg. w l a  
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U. UNIFORM VERTEX DIFFRACTION 
Near the vertex, the 2,-ed e and z2-edge FW-shadow boundary transitions interact 
with the vertex-induced S#Cs centered on the zl-axis and I -axis respectively, due 
to the truncation of the corresponding edge diffracted fieids (Pigs. 1, 1.3). The 
confluence of these four SB transitions near the vertex defines the asymptotics 
pertainin to vertex diffraction, which is obtained by the VdW method applied to 
the doubfe integral A”(?). Within the VdW method, the asymptotic evaluation of 
integrals characterized by specific arrangements of critical parameters (saddle points 
and singularities) is addressed by mapping the given integrand (both phase and 
amplitude) onto the simplest canonical integrand that accommodates the relevant 
c o n f y t i o n  of critical points. The reduction to the canonical form is accomplished 
by se ectively adding and subtracting ”regularizing“ portions of the integrand, which 
can involve an arbitrary number of poles; for simplicity here, we develop expressions 
only for regularization of the p,q) pole which is closest to the saddle point (SP). 

critical par-meters are tied to the 

cos/&) first order SP, and to the 
k and k,?-poles in (1.3). We 
s&l be satisfied here wth  the 
lowest order, locally uniform 
canonical asymptotiw that 
extends over a limited region Q 
in the (kzl, kz2) spectral domain, 
large enough to a.ccommodate the 
asymptotic isolation of the SP 
and poles at its boundary, and 
with its center defined by SP- 
pole coalescence. In Sec.111-A, we 
consider the proposed 
regularization architecture, and 
in Sec. 111-B, we deal with the 
relevant asymptotics. Fig. 1 

A. Spectral regularization 
The spectral regularizations of the integrand function S(k,,,k,~=Bl(k,l)Bz(k,z) in 
(1.1) are summarized in the Table, which we now explain. Starting in Table A with 
the spectral amplitude in the integrand of (1.1), we refer to the discussion in 
Sec.l.111 on parameterizing the uniform sectoral array asympto~ics in terns of the 
interaction, via the vertex, of the uniform semi-infinite array (SIA) solutions 
pertaining to each edge. These phenomenologies are identified in the first column, 
beginning sequentially with edge 1. The. second column identifies the relevant 
spectral amplitude terms. Note that D, 
integrations, respectively (see (1.2),(1.3)). The third column in Table A gives tlie 
VdW regularization which isolates, via the Wi&-jd, (kZ1 ;k,,, )]-I, 
Wz,p+-jd&z -ki2,g)]-1 functions, the effect of the (p ,q)  poles under consideralion. 
Whde the pole extraction is direct for edge 1, the corresponding treatment of edge 2 
is more involved because it is preconditioned by the presence of edge 1. Altogether, 
the regularization of S(k,,,k,,) leads to the nine individual terms in the 2nd row of 
Table A, which are rearranged in the second column of Table B into four groups 
S.(k,,,kSz), i=0,..,3. Each group addresses uniform transition through a critical 
siatial domain listed in the first column. Note that these regularizing 
decompositions are ezact for the ropagating FW spectrum (evanescent effects are 
neglected here) and they provi& the formal structure for subsequent uniform 
asymptotics. The lowest-order locally uniform asymptotic evaluation is performed 
next. 

For the vertex problem, t i e  I 
k 11, k .z )=(~zls,L,) =(kcos& 

----- 

contains the pole singularities in the kxi 
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A: REQULANZATIOEI oJ ihs INTEGRAND in (1.1) 

Conatilltent Coeficient Regnlarizaiion Phenomenology Regularized coeficicnl 

8: CANONICAL VBRTBX REGULANSATION 

near SBi/SBa 
Edge-1 ( I S )  0 2  (12) 8 2 -  WZ,, t WZ,, interredion SO= w ~ v ~  Was P 

nearSBGi Sl=Wl,q(I$- W2.J 
near SBC, S2=W2, (Bl - Wl,q) 

edge1 near verier ~=s-%-s,-s, 

B. Asymptotic evaluation 
The spectral decomposition in Table B leads to the exact spatial representation of 
the nonevanescent vertex diffracted field contribution, 

AVf)=A," + A; + A; + A,V (3) 

(dldk,,) k'. i ) ,=O, i=l,2. Accordingly, p=ial,& +%=2.%+faql ,3,)lp+k+. (Fig.1) 
and the kP phase is kr. Taylor expansion up to second or er aroun the SP g~vea 

i * r '  kr -(AFz1-k~J)2 + ~ ~ ( k z i - S i , ) ( k z a - L )  + ~ P , z - L ) ' )  (4) 

with A=kr/[2%n24z) B=kr/(2~sin2q5,), H=kpcosP,cosal~(~sin2~2sjn'~~ (see 
Fig. 1.1). Thls quadratic form is the lowest order approximation to the exact phase 
over a limited r e p n  Q centered at the SP in the (kJl ,  k,) domain, which is 
"suffici&ly large to uniformly accommodate the poles in the various specbral 
terms Si(ktl, kx2) in Table B. Since the A," integral is the only one that has two 
poles (one m each variable), its asymptotic evaluation is carried out first. The other 
integrals can be asymptotically evaluated by reduction of A:. First, we chan5e 
variables to (=a(kZ1 -6r1,), q=o(kr2 -6 J2,) to transform the quadratic phase in 

' (4) into rs'. r'n kr- (('+h(q+qa), with t u = H / ( A B ) " 2 = c o t ~ l w t ~ z = ~ ~ l ~ ~ ~  
Next, the regular slowly varying amplitude function (k )-I in the i n k  and (see 
Table B for So) is evaluated at the SP ((,q)=(OIO) and :emoved from t r e  integral, 
thereby isolating the canonical function 

where a =,/- fi.,,- k,, q) and b -,/me fi 2,-kfl,p). Note that the 
f , q )  intzgral in (5 )  is actually the c4noni:i mapping, in the rigorous VdW method, 

om the original t kz2)  integral onto the simplest spectral integrand that 
accommodates a 2-6'krst order SP and a simple pole in each variable. The 
normalization constant in ( 5 )  is such that T(a,b,w) tends to unity for large values of 
the parameters 4 and b (i.e. for poles far from the SP). The numerical evaluation of 
( 5 )  can be performed as in 121 in terms of standard Generalized Fresnel Integrals. It 
should be noted that in the transition regime where the poles aie close to the SP, 4q 
and b, can be approximated up to second order by the simpler expressions 

The other terms A; and A; in (3), which possess poles in only one variable, can be 
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evaluated by using the ordinary transition function of the UTD as shown in (2). The 

(7) 
find outcome is -1b 

A I  - Si(~sl .r~s~r)  4.;F;. Ti I i d l . , .  8 

IV. NUMERICAL RESULTS 
Numerical tests have been performed on a "large" square array of dipoles in ordes to 
validate the asymptotic solution in (7). The electric ficld has leen derived from the 
potential by using a dyadic spectral form in the integrand of (1.1), which introduces 
a simple additional factor into (7). An element-by-element summation over the 
contribution from each dipole serves as a reference. The 10 x 10 element test array 
has equi-amplitude dipoles oriented along c i d 1  with interclement phasing 71=7a=0 
and period d,+=f.YA, A=,%/%. In a spherical coordinate system (r,e,d) with origin 
at the center of the array and polar axis perpendicular to the array plane, the array 
radiates a broadside ( 0 4 )  main beam but, due to the large interelement distances 
d ,  and d,, there are nine PFW with all combinarjons of p= - 1,OJ and q= - l ,O, l .  
Also, there are three propagat$; diffracted waves Ed*' with q= - l , O , l  arising from 
ed e 1 since Jk,,,,l<k for these q-indexes; all other djffracted waves from edge 1 are 
raially evanescent and can be neglected. The three ed el diffracted waves can 
compensate for the disappearence of all nine PFWs at t%e SB pse in (1.7). The 
same applies to the diffracted field from every other edge. Each ok&e three edge-1 
diffracted fields has a SBC at , q=-l,O,l, gven by (1.12). The vertex-1 
diffracted field cornpensakes for the disappearence of all these edge diffracted waves 
at their SBCs, thereby providing continuity of the total radiated field. In the 
numerics, these compensations are based on refined VdW-globally re ularized 
versions of the wavefields in Sec.lX. The same mechanism applies to the &acted 
field from each vertex of the square array. In Fig. 2, the Eo and E total electric 
field components are plotted vs. scan angle 0 along a 4 5  arc at a &stance r=25X 
from the center of the array, thus passing dose to two vertexes (see inset in Fig.2) 
so as to enphasize the vertex effect. The three maxima are related to the FW-,,-l, 
FWW,and FW,,. The dotted H) 
curves show the ed e-truncated 
asymptotic FW a n i  diffracted 4o 
field solutions (1) without the 
vertex-diffracted field in (3). The 3o 
solid curves show the complete 
asym totic field in (1) with the 2o 
glob.& regularized field in (3) as 
well as the reference solutions; 
both coincide on the scale of the lo 

drawing. The agreement between 
the complete asymptotic and the 
numerical reference solutions is 
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