
Lawrence Berkeley National Laboratory
Recent Work

Title
PERIPHERAL THRESHOLDS AND REGGE ASYMPTOTIC EXPANSIONS

Permalink
https://escholarship.org/uc/item/6w4625mg

Authors
Chew, G.F.
Koplik, J.

Publication Date
1974-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6w4625mg
https://escholarship.org
http://www.cdlib.org/


To be presented at the XVIIth International 
Conference on High Energy Physics, London, 
England, July 1-10, 1974; also submitted to 
Nuclear Physics B. 

· I t I n 
_; j l. .~ 

PERIPHERAL THRESHOLDS AND 
REGGE ASYMPTOTIC EXPANSIONS 

G. F. Chew and J. Kopli.k 

May 10, 1974 

LBL-3014 ~ 
Preprint .'·0 

Prepared for the U. S. Atomic Energy Commission 
under Contract W -7405-ENG-48 



0 

DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• 
'· 

LBL-3014 

* PERIPHERAL THRESHOLDS AND REDGE ASYMPI'OTIC EXPANSIONS 

G. F. Chew and J. Koplik 

Department of Physics and Lawrence Berkeley Laboratory 
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ABSTRACT 

Multiperipheral models are used to show how the Regge expansion, 

while lacking threshold branch points, may nevertheless approximate the 

'\ localized physical effects of "peripheral" thresholds. Examples are 

-..--gi \ren to demonstrate that a single pair of complex poles is capable of 

representing even the lowest inelastic thresholds in both total and 

single-particle inclusive cross sections. The Regge mechanism that 

allows the position of a threshold to depend sensibly on the masses of 

incoming and outgoing particles is elucidated.· 
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1. INTRODUCTION 

A general feature of the analytic S matrix is the occurrence in 

any channel invariant of a singularity at each threshold for a commu-

nicating channel. Such a singularity corresponds to the physical 

change that 9ccurs when the phase space is enlarged by the opening of 

a new channel, but most threshold manifestations are difficult to 

observe and particle physicists frequently describe their data with 

models that ignore thresholds. Threshold effects are nevertheless 

always present in principle and may produce noticeable consequences 

even at high energy. In particular, the·rising tendency of single-

particle inclusive cross sections, up to ISR energies, is widely 

believed to be threshold-related. 1' 2 It has also been suggested that 

the lo% increase in the pp total cross section between 20 and 60 GeV 

center-of-mass energy may be a threshold phenomenon. 3' 4 The term 

"threshold" here refers not to the simple requirement that the total 

energy exceed the sum of the masses of produced particles, but rather 

to a phase-space effect associated with the peripheral character of 

high-energy collisions. Now at high energy Regge expansions are often 

employed in representation of total.and inclusive cross sections, and 

it is natural to inquire whether such expansions are valid only to the 

extent that observable threshold effects have died away. The object of 

this paper is to discuss how the Regge expansion, even while lacking 

threshold branch points in a mathematical sense, may nevertheless be 

expected to approximate the localized physical effects of important 

peripheral thresholds. The material presented here is a refinement and 

extension of the ideas introduced in Ref. 5. 

As a source of insight we shall employ multiperipheral models 

that are known to respect threshold kinematics,. with small transverse 
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momentum of produced particles, while at the same time leading to Regge 

asymptotic behavior. We propose to abstract from these models aspects 

of the relationship between thresholds and Regge parameters that 

plausibly have relevance to the physical S matrix. The role of complex 

poles will be emphasized. 5 

The following questions will, in particular, be addressed: 

Given the universality of Regge poles--the same set of crossed-reaction 

poles describing transitions between a variety of initial and final 

direct-reaction channels--what mechanism will accommodate the different 

location of different direct-reaction thresrolds? What Regge-pole 

mechanism makes threshold effects more prominent in single-particle 

inclusive .cross sections than in total cross -sections? When applied to 

single-particle inclusive data, how do Regge parameters conform to the 

common-sense expectation of increasing threshold influence with 

increasing mass of.the observed particle? Finally a practical but 

important question: How many different complex Regge poles must be 

kept in an asymptotic expansion if threshold effects are to be rep-

resented with reasonable accuracy? 

2. MODEL WITH A SINGLE CROSSED CHANNEL 

A. Partial and Total Cross Sections 

We begin by considering the ABFST ladder model of Fig. 1, where 

the "sides" of the ladder correspond to a single type of zero-spin 

6 
particle--usually identified as the pion. We shall follow this latter 

practice, although a literal pion identification is not important to 

our objective. The "mass squared" of the "pion" is actually a 

continuous (negative) momentum-transfer squared, say ti, and each 

segment of ladder sides brings a factor S(ti) which we shall refer to 
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" t " 7' " as a propaga or. At the same time each rung" of the ladder 

corresponds to a particle-cluster that can be produced in a " 1{-1{ 

collision." Designating the sn'uare of each cluster mass by a ..,. si ' 

factor r(si) will accompany each rung; r(si) is evidently 

proportional to the rrrr cross section for producing the cluster in 

questi.on. As seen in Fig. 1, if the physical collision is between 

particles A and B, the end-rungs of the ladder correspond to clusteB 

that can be formed in collisions between a pion and particle A or B, 

respectively, and will bring factors rA(sA) and rB(sB). 

It is shown in Ref. 8 that the differential cross section for 

an AB collision to produce N internal clusters, as well as the two 

external clusters, is then proportional to 

F AB 
N 

1 

2 2 2 
A. ·(s,mA ,~ ) 

corresponding to Fig. 1, where 

A.(x, y, z) 2 2 2 
X + y + z 

2 2 
s - rnA -~ 

cosh TJ 
2 rnA ~ 

- 2(xy + xz + yz), 

(1) 

(2) 

(3) 

( 4) 
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sinh ql\ 

2 
sA - mA - tl 

l 

2mA ( -tl )2 

The precise relationship between a partial cross section and F AB is 
N 

FAB 
- 2 2 N 
~2(s,mA '~ ) 

(7) 

Threshold kinematics are contained in Formula (1). For example, 

if N = 1 we know that the partial cross section should vanish for 

s < (8) 

This constraint is represented in Formula (1) through the 9 (step) 

function requirement that 

(9) 

but it is important to appreciate that Formula (8) represents an 

·absolute threshold .and is achieved only for special values of t 1, t 2 

that may be quite large. The adjective "multiperipheral" reminds us 

that the important values of the 

well as with respect to 

It. I are supposed to be small. 
l 

are both small with respect to s1 as 

we have 
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and 

(6') 

It follows that 

2 2 
sl(sA- mA )(sB- ~ ) 

(10) 
mA~(-tl) (-t2) 

In contrast to Formula (8) the threshold requirement now says that the 

cross section shall vanish if 

1J < log 

2 2 
(sA- mA) sl(sB- ~) 

( -tl )(-t2 )mA~ 
(11) 

a much stronger condition. 

The above is easily generalized to an arbitrary number of 

clusters, leading to 

where 

all t. small 
l 

s large 

N 
(TJ - "1J) 

N! (12) 
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i]- ~ log 

To the extent that one may speak of a mean value of 

threshold for making N clusters occurs at 

thresh 
TJN 

si 
+ N log ( :t." 

~ 

(13) 

the 

(14) 

the interval between successive thresholds being uniform with the value 

si 
6 ~ log ( -t ) • 

- i 
(15) 

One-dimensional versions of the multiperipheral model incorporate 

thresholds uniformly spaced in T] (or log s) 
8 

in a literal sense. 

We shall attempt to do better in what follows, .but the above quaJitative 

analysis illustrates the threshold structure of the multiperipheral 

model under consideration. 

;Let us next look at the Regge asymptotic structure of the 

imaginary part of the forward AB elastic amplitude: 

which is related to the total cross section by 

AB 
'\ot (s) 

(16) 

(17) 

The individual threshold effects are now superposed. One may define 

the 0(1,3) (crossed) partial wave amplitude as 

remembering that 

cosh TJ 

with the inversion rule, 

1 
21ri 

(18) 

(19) 

(20) 

the contour passing to the right of all singularities of pAB(~). If 

the singularities of /B(~) are all simple poles then we easily may 

obtain from. Formula (20) the usual asymptotic expansion in terms of 

Regge-pole positions and residues. 

We now are ready for an essential deduction: Th.e threshold 

structure of ~(s) has no tendency to create singu1arities of 

~(A.) more complicated than simple factorizable poles. Such a 

conclusion will allow us to argue that threshold effects in the 

physical S matrix are plausibly to be understood through Regge-pole 

parameters and do not require the introduction of less well-understood 

singularities. 

B. Singularity Structure in the Presence of Thresholds 

Singularities of the partial wave amplitude pAB(A.) are 

economically approached through an "amputated" amplitude \t' /F(~) It) 

from which pAB(A.) is obtained by a rule that corresponds to Fig. 2: 
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f
r 

+_ J dt dt' /A(~;t)S(~;t) 

where 

s(~;t) 
1 

~ + 1 
s(t) • 

(t IF(:\) It') s(~;t' hB(~;t') , 

(21) 

(22) 

The amputated function satisfies the integral equation 

OJ 
r 

(t' IF(~) It) (t'[y(~)ft) +I dt" (t•it(~)lt")s(~;t")(t"IF()..)It) 

where 

<t' i1(~) It> 

' I 

~(I) (23) 

-(A+l)q.(s.,t',t) 
e l l y(si) (24) 

Illuminating theorems concerning analyticity in ~ can be 

invoked if the integral Eq. (23) is of the Fredholm type. Conditions 

sufficient to ensure the latter for 

and 
rO 
I 

/ dt s(~;t) < OJ • 

.J_OJ 

10 
Re ~ > -1 , are that 

(25) 

(26) 
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Although interesting models have been proposed for which Condition (25) 

is not satisfied, 11 the physical effects under study in this paper are 

evidently related to the threshold structure of the cluster production 

factor, /(si), not to its asymptotic behavior for la~ge cluster mass. 

Condition (26), of course, is always satisfied by any model that can be 

described as "multiperipheral. " We should thus be on safe ground for 

the·purposes of our investigation to apply standard Fredholm theory--

at least for Re ~ > -1. 

The chief theorem to be invoked states that if both irihomogenous 

term and kernel of a Fredholm equation are analytic functions of a 

parameter, then the solution is also analytic--with the exception of 

poles at zeros of the Fredholm (denominator) determinant. The residues 

of simple poles, furthermore, are factorizable. Since Formula (24) and 

Condition (25) implies the analyticity of (t' l1 (~)It") in ~ for 

Re ~ > -1, we may conclude that the only singularities of (t• IF(~)ft) 

in the latter region are Regge poles. 

Referring now to Formula (21) connecting the amputated function 

(t' fF(~)ft) to the physical partial-wave amplitude ~(~) it is 

evident that if we assume the fa~tors )'A,B(~;t) to be analytic for 

Re ~ > -1, analogously to our assumption for (t• fy(~)ft), then 

~(~) has only Regge pole singularities in this portion of the ~ 

complex plane. The positions of the poles, furthermore, are the same 

as in the amputated function and, since the residues of the latter 

poles are factorizable, so will be the poles in ~(~). The pole 

residues of course depend on the incident particles, and we shall see 

below that this dependence is related to threshold effects. 
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C. A Factorizable Kernel 

The integral equation (23) can be solved in closed form if the 

cluster factor (t' lr(~)lt) has a factorizable dependence on t,t'. 

Such a dependence does in fact obtain for t,t' small in absolute 

value, because then 

(27) 

for 

Other, more accurate, factorizable approximations are available 
qi 

e , such as 

e 
q.(s.,t',t) 
~ ~ (27') 

but the simple form (27) will suffice for the qualitative arguments 

of this paper. 

Let us therefore assume that the propagator S(t) is 

negligible except for values of It I that are small compared .to the 

cluster mass squared. Then 

[ 

1 1 1 ~+l 
<t'l'<~llt)"" (-t'Y2 (-tl2 J ,(~), 

where 

)' (~) (29) 

and 

. ~+1 

(t'IF(~}it) ~; l (-t')~ (-t)~ L F(~) (30) 

with 

!(A.) (31) 
1 - y(A.) S(A.)' ' 
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if 

s(r.._) r 
..;(]) 

~+1 
dt S(~;t)(-t) . (32) 

The propagator-enforced restriction to small t suggests that 

2 
we assume sA - mA to be large compared to t so as to permit the 

approximation
12 

(33) 

Then 

(34) 

where 

(35) 

with a corresponding approximate form for rB(~;t~. It then follows 

that 

) )A.+l 
I A(~. 1B(~) (mA~ S(A.) 

1 - r(~) s(~) 

To achieve maximally explicit dependence on ~ , we may exhibit 

the singularities of S(A.) by writing 

1 (/ 
s(A.) = m / <"-l , (37) 

where 
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!O dt S(t)(-t)A+l , 

-oo 

'Y A (f...) "!B(f...)(mA~)"-+1 J(f...) 

"- + 1 - r("-)j((f...) 

(38) 

(39) 

If we choose to specify that "~A,B(sA,B) and "J(si) decrease faster 

than any power for large arguments, it follows that 7A,B(f...) and 

7 (f...) are analytic throughout the .f... complex plane. 
13 

If S(t) falls 

faster than any power as t ~ -oo and approaches a constant as 

t ..... 0, then the only singularities of ~f...) are simple poles at 

f... ~ -2, -3, • · ·, which cancel out in the quotient (39). Thus the 

only singularities of pAB(f...) are Regge poles arising from zeros of 

the denominator. 

D. Dependence of Threshold Effects on the Incident Channel 

The physical amplitude is recovered from the partial wave 

amplitude by the inversion rule (20), where the contour should pass to 

the left of a spurious pole at very large f... that is introduced by the 

approximation (27). A discussion of this point is given in the Append~ 

If Formula (39) is expanded in powers of "!("-) to give 

pAB(f...) "" "f (f...) 7 (f...)(m m ... J"-+l J(f...) f . [7(f...) J(f...) r 
A . B 'Al:S f...+l ~- f...+lJ 

( 40) 

one may identify the term of order N with the production of N 

internal clusters; the inversion (20) then readily yields the result 

(12), including the threshold step function in each partial cross 

t
. 14 sec 10n. 
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The dependence of the total cross section on the incident 

channel may be neatly exhibited by substituting (39) into (20): 

r 
(Ml)TJ 

df... e 
2mA~ sinh T] 

"'c 

S(f...) 

1 - "/(f...) S(f...) 

( 41) 

or 

where 

1 1 (f...+l)x 
S(f...~ G(x) 21!1 

df... e 1 - 7(f... S(f...) 
( 43) 

with 

2 

t~A,B log 
sAzB - mAzE 

mA,B 
(44) 

The dependence on the incident channel thus takes the form of a 

displacement of an otherwise universal function of T] Thresholds 

are correspondingly displaced, larger values of 

higher thresholds. 

How is the Regge-pole expansion affected? 

'\~--· 

L ri 
i 

e 
(o:.+l)rl 

1 

producing 

, 
Writing 

( 45) 



we have from ( 42 )' 

with 

. A B 
g. ' 
~ 
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eTJ 
\--

A \ 
2 sinh { __ gi T] 

i 

(r. )~! 
-~- ds 
mA,B . A,B 

B CXiT] 
gi e ( 46) 

(47) 

A large value of 6A, B 

secondary Regge poles. 

is seen to enhance the relative contribution of 

High-lying thresholds, in other words, require 

important secondary poles. 

E. Two Numerical Examples 

To illustrate the foregoing, consider first a model with an 

internal cluster spectrum consisting of a single mass me In other 

words, 

( 48) 

so that 

r(t..) ( 2 )-;>.,. 
1 m . c c . 

(49) 

The propagator S(t) will be assigned an exponential form, 

s(t) (50) 

leading by (38) to 
" 

(51) 

and subsequently to 
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S(t..) 
= (52) 

1 - r(t..) s(r..) 

where 
2 

m 
6 log _£_ 

to 
(53) 

The Regge pole spectrum thus depends.on two dimensionless 

parameters: rcand6. We impose a constraint on r by requiring 
c 

that the leading pole (the pomeron) should occur at ;>.,. = 1: 

= 0 . (54) 

Figure 3 then shows the real part of the positions of the next most 

important poles as a function of 6, with the leading pole fixed at 

;>.,. = 1. These secondary poles are complex, Fig. 4 showing the imaginary 

parts of their locations as a function of 1/6. Note the roughly 

linear relationship for large 6, with a slope for the leading complex 

pair not far from the value 2rr naively expected from the asymptotic 

oscillation hypothesis. 5' 15 For extremely weak coupling (small values 

of r ) the secondary poles are real, but the condition (54) places us 
c . 

in a strong-coupli~g regime. The Appendix enlarges on this question. 

The substantial spacing between the first and second pairs of 

complex poles encourages an attempt to represent the total cross section 

by an asymptotic expansion that includes no more than the leadi~g (real) 

pole and the first pair of complex poles. Let us test this idea in 

the special case of the 

very small compared to 

2 
rrrr total cross section, assuming mrr 

2 
SA = sB = me , so that 

to be 

(55) 
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Further reducing the number of independent parameters by setting 
16 

1 
2rd 

it follows from (41) that 

[ (Ml)TJ 
dA. .:;.e __ _ 

2 sinh T} 
(56) 

Total cross sections for incident particle combinations other than rrrr 

are obtainable from (56) by the displacement rule (42). 

Formula (56) may be accurately evaluated at low values of 
17 

by expanding in powers of /c , while for a sufficiently large 

the Regge asymptotic expansion becomes accurate. Our question is: 

What range of 11 is adequately represented by the pomeron plus a 

single pair of complex poles? 

Tj 

Tj 

Suppose we choose 6 = 3, corresponding to The 

first pair of complex poles then is situated at 

tot 
and the associated Regge approximation to orrrr 

2 
plotted as a function of log s ~ T} + log mrr 

a = 0.30 :!: 2.6 i , 
c 

is shown in Fig. 5 

with the exact behavior 

shown for comparison. One observes that the asymptotic expansion gives 

an accurate picture down to the threshold for the first internal 

cluster and is qualitatively meaningful all the way down to the lowest 

threshold. In Ref. 5 a multiperipheral threshold example analogous 

to the foregoi~ was studied but with the unrealistically abrupt 

thresholds characteristic of strictly one-dimensional models. Here we 

have smoothed out the thresholds by attending to the coupling between 

transverse and longitudinal degrees of freedom and once again have 

found powerful capacity in a single pair of complex poles. 

It is plausible from the asymptotic osc.illation concept that a 

single pair of complex poles might do a good job of approximating a 

model characterized by a single period 6 • But the actual cluster 

spectrum must contain a range of masses and thus a range of 6 • Let 

us look next therefore at a model with two different internal cluster-

masses me and me' although the external clusters are still 

restricted to me We continue to assume the propagator S(t) to be 

universal. With an obvious notation we find in place of (56) 

1 ( e(A.+l)TJ 
2rri . I dA. 2 sinh 11 

{ 1 - r(A. + 1) 

(57) 

Let us choose 6 = 2 and 6' = 4, and continue to insist on a pomeron 

at A. = 1. Let us furthermore put the major burden for the 

multiperipheral mechanism on the lower mass by choosing 

-6' 
'c' e 

-6 
1 e c 

0.25. 

In this case, not surprisingly, the Regge pole spectrum becomes more 

complicated: the leading pair of complex poles occurs at 0.05 t 1.6 i 

while the next is somewhat closer than previously, at -0.43 ·± 3.4 i 

In Fig. 6 we compare the exact cross section to the asymptotic 

expansion with either one or two complex ~ole pairs retained. We see 

that in both cases the agreement is as good as in the one-cluster case, 

and further that inclusion of.the second pair is not really necessary 

for log s ~ -1. The imaginary part of the leading pole residue 

corresponds to an oscillation period of 4.0 units in 11 , so only the 

threshold effect of the heavier mass is significant once moderate 

energies are reached. 
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F. Single-Particle Inclusive Cross Section 

The single-particle inclusive cross section for A + B ~ C + X 

depends on three variables which for our purpose are conveniently 

18 
chosen, in the way advocated by Mueller, to be ~A' ~B and e, 

where 

cosh ~A 
PA·Pc 

-
mAmC 

and 

cosh I;B 
PB'Pc 

(58) 
~me ' 

while e is the angle "betwe.en pA and pB in the rest frame of C • 

In the foregoing discussion of the total cross section we have used a 

variable D such that 

cosh D 

and it is easy to show that 

cosh 7J cosh ~A cosh ~B + sinh tA sinh I;B cos e . (59) 

Evidently, when e vanishes so does the transverse momentum of the 

observed particle in a frame where pA and pB are colinear. 19 Thus 

small values of the conventionally-defined transverse moment~ mean 

small values of e and the approximate connection 7] "" SA + I;,B 

The single-particle inclusive cross section is related to an 

invariant amplitude 
·.· AB ,_Fe (sA' sB' e) by the same flux factor that 

relates ~B(TJ) to the total cross section, and by analogy to (20) 

,_· AB 
one may expand ;}·c in terms of matrix elements of the irreducible 

representations of the Lorentz group. The advantage of Mueller's 

variables is their natural role in this expansion .. As shown by 

-20-

Bassetto, Toller and Sertorio, 20 the result is 

(60) 

To reduce the discussion from 3 variables to 2, we project out the 

j = 0 component, defining 

(61) 

an operation roughly equivalent to integration over the transverse 

momentum of particle C. Small average transverse momentum means that 

most of the contribution to (61) will come from the neighborhood of 

cos e = 1, so we may make the rough identification 

(62) 

In any event, if (60) is substituted into (61) and explicit forms are 

inserted for the group representation functions, we find 

% AB(r r ) 
-.;.~· C "A' "'B 

( 
constant " / dA.: 

{ c 

r dA.' 
J 

l( 

(i-. I +l )~B 
e CAB( , ) :.7{; "1>,1- ;0 • 

(A.'+l)sinh" t,B (A. +l)sinh t,A 

( 63) 
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The preceding formulae are general, physical results being 

obtained if something is known about the singularities of~CAB(~,~·;o). 

Mueller made the hypothesis that the poles of inclusive amplitudes are 

universal and thus the same as those that control total cross 

sections.18 'Multiperipheral models go further and give explicit 

relations between ..Jt/B(A.,~' ;0) and I'E(A.). For the above­

described single-channel model, if we define "one-sided" functions 

~(~; t) rA(A; t) + J dt' rA(A; t') S(A; t')(t• jF(A)j t) 

and 

rc~; t) 

such that 

I dt i'(A; t) s(A; t) rB(A; t) 

r 
I j dt /A(A.; t) S(~; t) r(A.;t), 

. 20 Bassetto, Sertorlo and Toller have shown that 

~ AB (A. ) .. I j 0) ...... c ' 

X 

('··· 

const&nt .J< J ! dt 1 dt 
,i f. 

-(A.+l)t3 -(i.l+l)t31 
e ~ ;:> 1 e 

A. (mc-,t,t ) cosh p' cosh i3 

(64) 

(66) 

(67) 
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where 

sinh t3 

2 
me +t-t' 

(68) 

2mc(-t )2 

sinh i3 1 

2 t' t m + -c (69) 

·This formula is illustrated in Fig. 7. In our multiperipheral model, 

therefore, the only A. singularities of the single-particle inclusive 

amplitude are those Regge poles that already appear in the total cross 

section. Just as for the latter quantitY., threshold effects must be 

representable through secondary Regge poles. 

Use of the small-t factorization approximation further 

illuminates the physical situation. Suppose we replace (68) by 

(70) 

so 

- (A.+l )p 
e 

m )-(A.+2) 
- 2 ( c - ~ cosh i3 

(71) 

A corresponding approximation for p 1, together with 

and 

f. ~ )A.+l .JI, B 
\mA,B (-t) . " (A.) ' (72) 

leads to 

r- AB 
~7~ c (f>., A_ I ; 0) . (73) 
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where 

. CO: CA, B(') "' ( mA B )/... _A B (j J1 r. constant x ~ . y-' (A.) <:iJ (A.) 

Correspondingly, 

~ AB(~ ~ ) "' 
.;}'c '=>A' .,B . 

where 

constant x J dA 

c 

Now, since 

- (A.+l) 
{s - m 2

) A,B A,B 

1 - y(A.) S(A.) 

(74) 

(75) 

(76) 

the dependence on the incident channel will follow the same displace­

ment rule as for the total cross section. There is a similar rule for 

the dependence on the mass of the observed produced particle, any 

threshold structure being displaced in or by an interval · 
21 

if the observed mass is changed from me to 

Having understood the dependence on the masses of incident and 

produced particles, it will suffice to consider incident pions and a 

produced particle whose mass m is the same as that of an external 
c 

cluster. Stra:ight:forwarcl calculation leads to 

-24-

In our model with a single crossed channel, in other words, the 

threshold structure in the separate variables sA and ~B follows 

that in the total cross section (with an appropriate displacement). 

It must be remembered, of course, that the single-particle 

inclusive cross section is given by a product of two factors, one 

depending on ~A and the other on ~B , with the approximate relation 

SA + ~B "' ~ so the net energy dependence of the single-particle 

inclusive cross section will exhibit a different threshold structure 

from that in the total cross section, although the two structures are 

related to each other. 

In particular, o~ demonstration that a single pair of complex 

poles can give a good representation of threshold effects in the total 

cross section can be immediately extended to single-particle inclusive 

cross sect ions. 

point sA = sB 

in Sec. II.D. 

Figure 8 shows the latter, evaluated at the symmetric~ 

~/2 for the single cluster-mass example described 

The curve shows an asymptotic expansion for rrrr 

collisions involving pomeron-pomeron plus pomeron-complex pole terms; 

a further refinement would include the complex pole-complex pole term, 

but this turns out to be a small correction. Note that the first peak 

in the inclusive cross section occurs at the same energy as that from 

the one-cluster contribution to the total cross section in Fig. 5. ,. 
It is also instructive to calculate the inclusive cross section 

for the two-cluster case described in. Sec. II.D, and in Fig. 9 we show 

the results for both light and heavy clusters. As expected, the 

threshold for the heavy cluster spectrum is delayed by approximately 

two units of log s, while the asymptotic height of the large-cluster 
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inclusive cross section is roughly 1/4 that of the light cluster. 

The shorter-wavelength oscillation with a period of 2 units that one 

would naively have expected in the light~cluster cross section is 

almost invisible, only the long-wavelength heavy-cluster-induced 

oscillation being apparent. Note also that the amplitude of the 

oscillation in the two-cluster example is smaller than for the single-

cluster model. 

3. CONCLUSION 

A simplifying feature of the foregoing multiperipheral examples 

has been the single crQssed channel with a factorizable kernel. Are 

qualitatively different results to be expected from a more realistic 

kernel? Guaranteed to survive any kernel complication is the caracity 

of secondary Regge poles to represent threshold effects, so long as 

the multiperipheral equation maintains a Fredholm character. One 

cannot prove that the important secondary poles are complex, and in 

Ref. 22 a two-channel model is described where the important secondary 

poles are real if the interchannel coupling is weak. These poles 

become complex for strong coupling, •however, and thresho.ld effects 

turn out to be insignificant in the weak coupling regime. We are 

unaware of counter-examples to the proposition that Regge expansions 

accommodate physically significant peripheral thresholds through 

complex poles. 

Nonfactorizable kernels tend to produce a higher density of 

poles,23 and there can be no general assurance that retention of only 

a few poles will adequately represent the threshold. region. The simple 

models of this paper nevertheless encourage attempts to fit threshold 
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data with the leading real pole(s) plus a single complex pair. In our 

examples not only total cross sections but also single-particle 

inclusive cross sections are well represented by such an approximation, 

and there is every reason to suppose the same to be true for other 
. . 24 

physical observables such as mean particle multiplicity. 

We shall finally comment on the relation of the models 

discussed here to ABFST models where the propigator is strictiy that 

of Footnote 7 ~ Although the unmodified propagator has been shown to 

give complex poles, 25'
26 

they are so far to the left in the f... plane 

as to be physically uninteresting.27 Some modification of the 

propagator to reduce large-It! contributions is essential to the 

generation of substantial peripheral-threshold effects. 
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APPENDIX 

The Weak-Coupling Limit and Spurious Poles 

While the models we have discussed are physically relevant 

only in the case of "strong coupling, " when the strength of the kernel 

is sufficient to generate a Regge pole near ~ = 1, it is none the 

less instructive to study the motion of the poles as the coupling 

varies. In p:Lrticular, we will show that in the weak-coupling li!ilit 

all poles retreat to negative integer values of ~ , and that complex 

poles only result from the collision of real poles, just as in potential 

. 28 
scattering. 

For definiteness, we will study the single-cluster model with 

exponential damping in ltl, described in Sec. 2.E. Using Eqs. (36), 

(37), (49) and (51), we can write ~B(~) as an exponential in ~ 

divided by 

D(~) (A.l) 

Regge poles occur at values of ~ for which this expression vanishes. 

If yc = 0, these zeros occur at 

plot separately the two terms .in 

~ = -1, -2, ··· . In Fig. 10 we 

D(~) for real values of ~. If Yc 

is small (lower dashed curve) the zeros shift slightly in position--

the leading one at ~ = -1 moves to the right, the next two at ~ = -2 

and -3 move towards each other, and so on, with all lower-lying zeros 

approaching each other in pairs. As yc increases this trend 

continues until at a sufficiently large coupling some of the pairs 

may collide and move off into the complex ~-plane (upper dashed curve). 

When yc is large enough for the leading zero to have reached ~ = 1 

(when (54) is satisfied) the leading secondary zeros have moved to the 
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positions shown in Figs. 3 and 4. Zeros which began sufficiently far 

to the left continue to be real however; this result follows from· the 

fact that the amplitude of the oscillation in r-1 (~ + 1) increases 

faster than any exponential as ~ decreases (a property easily 

derived from Stirling's formula) and for sufficiently negative ~ the 

two terms in D(~) continue to intersect at real points. 

To conclude that the only zeros are those which began at 

negative integer points for yc = 0, it remains only to show that none 

could have moved in from infinity. The argument which follows29,30 is 

based on Roucne's theorem of complex analysis. Suppose we have a 

simple, closed, connected curve L and two functions f(z) and g(z) 

which are meromorphic within' L, and on L are analytic, nonvanishing, 

and satisfy 

lg(z)/f(z)l < 1. 

The theorem states that the difference between the number of zeros and 

the number of poles inside L is the same for both functions f(z) 

and f(z) + g(z). In our application we identify f and g with 

respectively, and choose L to be the 

curve shown in Fig. 11: a semi-circle to the left of ~ = -1 

extended to the right as far as C, the contour along which the 

inverse Laplace transform (20) is taken. Along the semi-circular arc, 

excluding a narrow interval about the negative real axis, Stirling's 

formula implies directly that for sufficiently large radius 

1-Y e-&.f'(~+l)l < 1. 
c 

(A.2) 

Near the real axis (A.2) is not correct in general due to the poles of 

r; we first write 
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r(r.. + 1) 

and choose L to cross the axis at a negative half-integer value of 

/1. • Then I sin 1( ( -/1.) I ~ 1 near the real' axis, and using the 

asymptotic expansion of r( -/1.) we obtain (A.2). Along the 

horizontal segments of L we again.use Stirling's formula, and find 

that (A.2) is satisfied provided L does not extend too far to the 

right. This is really no restriction at all, since we shall show 

below that the inversion contour C must be located in a region of 

the /I.-plane for which ~A.2) holds. Therefore (A.2) is satisfied on 

all of L, and Rouche's theorem implies that D(r..) has the same 

number of zeros within L as 
1 . r- (r.. + 1). Since L can be taken 

arbitrarily far to the left, the interior of L can be extended to 

the entire region to the left of the inversion contour c, and thus no 

additional zeros can appear from infinity. 

A subtlety involved in the. construction of the asymptotic 

expansion in this model requires some discussion. Recall that the 

process by which we have obtained the amplitude as a function of A 

may be represented schematically as 

! \-
F(/1.) I d -(A+l)TJ(s) 

FN(s) = I s e 
J ~-N-

(A.)) 
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where FN(s) is proportional to the cross section for N particle­

clusters. For this expression to be mathematically sensible we require 

(at the least) that the final summation converge. This sum is just a 

geometric series in which the ratio of successive terms is the kernel 

so we require that the modulus of this quantity be less than orie. In 

the particular model discussed in this Appendix and in Sec. 2.E we have 

K(/1.) 

and thus we must consider the amplitude for values of /1. for which 

IK(r..)l < 1; i.e., (A.2) is satisfied. 

This. is an important restriction here because in addition to 

what we have referred to as the "leading" real pole, it is easy to show 

that there always exists another real pole further to the right, with a 

negative residue. The latter pole does not contribute to the 

asymptotic expansion, however: the correct procedure is to carry out 

(A.)) for a value of A for which (A.2) holds, which requires Re(/1.) 

to be between the above two real poles, and then to invert the 

transform-according to (20). When the contour is then closed to the 

left to obtain the asymptotic expansion (the integrand in (20) diverges>:­

if Re(/1.) ~ + oo), the second real pole does not contribute. This 

difficulty is usually not present in multiperipheral models; it occurs 

here because the kernel K(/1.) increases as Re(/1.) ~ +oo , a 

peculiarity of the bad large-It/ behavior of the approximation (27). 16 
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FIGURE CAPI'IONS 

Fig. 1. Multiperipheral diagram defining the variables in Formula (1). 

Fig. 2. Schematic representation of Eq. (21). 

Fig. 3. The real parts of the positions of the leading complex poles . 

of Formula (52) subject to the constraint (54). 

Fig. 4. The imaginary parts of the positions of the poles appearing 

in Fig. 3. 

Fig. 5. The total and partial cross sections corresponding to 

Formula (56), subject to the constraint (54), with 

~ = log s/m 
2 

and ~ = 3. The asymptotic expansion includes 
rr 

the leading real pole at A. = 1 and the first pair of complex 

poles at A. = 0.30 t 2.6 i. 

Fig. 6. The total cross section corresponding to Formula (57), with 

~ = 2, ~~ = 4 and 
-~1 -~ 

I 1 e = 0.25 1 e c c The p3.rameter 

1 is chosen to place the leading real pole at A. = l. The 
c 

asymptotic approximations correspond to one pair or two pairs 

of complex poles, located at A. = 0.05 t 1.6 i and 

A. = -0.43 ± 3.4 i. 

Fig. 7. Schematic representation of Formula (67). 

Fig. 8. The central-region single-cluster inclusive cross section 

corresponding to the total cross section shown in Fig. 5. 

Fig. 9. The central-region single-cluster inclusive cross sections 

corresponding to the total cross section shoWn in Fig. 6. 

Fig. 10. The separate terms in D(A.) as a function of (real) A. . 

Fig •. 11. Contour for application of Rouche 1 s theorem. 

I 
(J,J 

\JI 



-36-

A 
B 

B 

XBL745-3052 
Fig o 1 o 



-37-

-- + 

XBL 745-3053 

I 
Fig. 2. 



-38-

C\J 

rr> 

v' 0 

. I 

C\J 
I 

____ _. __ _. __ ~--~---L--~--~~ 
lO 1.() ~ ~ C\J Ol 

<l 

q-
lO 
0 
rr> 
I 

lO 
v 
1"-
...J 
al 
X 

u 
tS 

Cl) 
t<"\ 

a:: . 
till 

·r-1 
f;t;., 



u 

5 

4 

tS 3 
E 

4 

0.2 

•. ' 

-39-

0.4 0.6 
I I 6 

Fig. 4. 

0.8 I .0 

XBL745-3055 



'-. 

-
(J) -
b 

0 

' ' ' ' ' ' ' ' ' ' ' l I 

Exact 

• • ... 

-40:... 

• • • • • • • • .. 
• • • • • • • • • • • • • •• • 

. 
expanston 

• • • ••• • • 
CTI •• 

• 

• •• • • • (1'.2 •. • • • • 

• • • • • 

• • • • • • • • 

• • • 

• • 
·.~ •• • • • • • • • • • . . -• • ..,3 • • • • • • • • • • • ••• 

• ••••• • • • •• •• 

lpg s 

XBL745- 3056 
Fig. 5. 



10 

8 

6 
u (s) 

4 

2 

-2 -I 

• 
• • • 

0 2 

-41-

--Exact 
······One complex pole 
--- Two comprex poles 

3 4 5 6 

log s 

Fig. 6. 

7 

XBL745- 3057 



-42-

CD 
110 
0 

"' If) 

t 

110 
~ ... 
..J 
CD 
)( 

. 
. ~ 
~ 



-43-

0 2 3 4 5 6 7 8 9 10 II 12 
log s 

XBL745-3059 
Fig. 8. 

,. 



10 

8 

0 2 3 

-44-

4 
log s 

Fig. 9. 

5 6 7 10 

XBL745-3060 



-
+ 
...< -

I 

~ 

.< 
<l 

II 

)....(.) 

I 
(]) 

~ 

--~--- ....... 
<D 
I 
0 

-45-

-
I 

N 
I 

rt') 

<.D 
rt') 
rt') 

I 

<.D 
;:! 
_J 

CD 
X 

0 
rl . 
bO 

•.-l 
fx.. 



-46-

u ,... ______________ ..,_ 
C\J 

-
.--! ,.._. .--! 

I . 
C\J . ~ 

I ""'· 



' . 

r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 




