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On the Effect of Fast Rotation and Vertical Viscosity on the Lifespan of the 3D
Primitive Equations

Quyuan Lin@, Xin Liu and Edriss S. Titi

Communicated by D. Chae

Abstract. We study the effect of the fast rotation and vertical viscosity on the lifespan of solutions to the three-dimensional
primitive equations (also known as the hydrostatic Navier-Stokes equations) with impermeable and stress-free boundary
conditions. Firstly, for a short time interval, independent of the rate of rotation |Q2|, we establish the local well-posedness
of solutions with initial data that is analytic in the horizontal variables and only L2 in the vertical variable. Moreover, it is
shown that the solutions immediately become analytic in all the variables with increasing-in-time (at least linearly) radius
of analyticity in the vertical variable for as long as the solutions exist. On the other hand, the radius of analyticity in the
horizontal variables might decrease with time, but as long as it remains positive the solution exists. Secondly, with fast
rotation, i.e., large |2, we show that the existence time of the solution can be prolonged, with “well-prepared” initial data.
Finally, in the case of two spatial dimensions with 2 = 0, we establish the global well-posedness provided that the initial
data is small enough. The smallness condition on the initial data depends on the vertical viscosity and the initial radius of
analyticity in the horizontal variables.

Mathematics Subject Classification. 35Q35, 35Q86, 86A10, 7T6E07.

Keywords. Anisotropic vertically viscous primitive equations, Fast rotation, Well-posedness theory, Hydrostatic Navier-

Stokes equations.

1. Introduction

We consider the following 3D viscous primitive equations (PEs) with only vertical viscosity for the large-
scale oceanic and atmospheric dynamics:

Y +V-VV+wd.V —vd..V +QV- +Vp=0, (1.1a)
0.p=0, (1.1b)
V-V +dw=0, (1.1c)

in the horizontal channel D := {(z,2)" = (z,y,2)" 1@ € T?, z € (0,1)}, subject to the following initial
and boundary conditions:

V]i=o =Vo, (1.2)
(0:V,w)|2=0,1 =0, and (V,w) are periodic in & with period 1. (1.3)

Here the horizontal velocity field V = (u,v) ", the vertical velocity w, and the pressure p are the unknowns
of the initial-boundary value problem. The 2D horizontal gradient is denoted by V = (9,,8,)". The
positive constant v is the vertical viscosity coefficient. QV+ = Q(—v,u)" represents the Coriolis force
with magnitude |©2] € RT. As one will see later, the Coriolis force induces linear rotation waves with
rotating rate |2|. The 3D viscous PEs can be derived as the asymptotic limit of the small aspect ratio
between the vertical and horizontal length scales from the Boussinesq system, which is justified rigorously
first in [1] in a weak sense, then later in [41] in a strong sense with error estimates (see also a recent
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paper [42] for the PEs with anisotropic horizontal viscosity). Notice that we have omitted the coupling
with temperature in (1.1) for the sake of simple and clear presentation. System (1.1) is also referred to
as the anisotropic vertically viscous hydrostatic Navier-Stokes equations.

The global well-posedness of strong solutions to the 3D PEs with full viscosity was first established in
[15], and later in [32]. See also [37,38] for different boundary conditions, and [27] for solutions with less
regular initial data. In [11-13], the authors consider global well-posedness of strong solutions to the 3D
PEs with only horizontal viscosity.

In the inviscid case without rotation (2 = 0), the linear ill-posedness of solutions in Sobolev spaces
has been established in [47]. Later on, the nonlinear ill-posedness of the inviscid PEs without rotation was
established in [26]. Moreover, without rotation, it was proved that smooth solutions to the inviscid PEs
can develop singularity in finite time [10,48]. It is shown later in [29] that these results can be extended
to the case with rotation, i.e., Q # 0. Recently, the stability of the blowup is studied in [17]. Under some
structural (local Rayleigh condition) or analyticity assumption of the initial data, the well-posedness
theory was studied in [8,9,23,24,35,36,44]. In particular, it has been shown that the lifespan of solutions
to the 3D inviscid PEs can be prolonged provided that the rate of rotation is fast enough and the initial
data is “well-prepared” in [23]. Similar results have been studied in the case of the 3D fast rotating Euler,
Navier-Stokes, and Boussinesq equations in [3-6,16,18,19,30,33] (see also [2,25,34,43] for some explicit
examples demonstrating the mechanism).

For the PEs with only vertical viscosity, it has been shown in [47] that system (1.1) is ill-posed in
any Sobolev space. This ill-posedness can be overcome by considering additional linear (Rayleigh-like
friction) damping, see [14] for the reduced 3D case. On the other hand, with Gevrey regularity and some
convex conditions on the initial data, the local well-posedness is established in [22]. When the initial data
is analytic in the horizontal variables & and is sufficiently small, the global well-posedness is proved in
[46] in 2D, with Q = 0 and Dirichlet boundary condition. In this paper, we consider (1.1) in 3D, with
arbitrary 2 € R and subject to impermeable and stress-free boundary conditions.

The main results of this paper are roughly summarized as follows:

R1 Local well-posedness (see Theorem 3.1): Assume that ), is analytic in the horizontal variables x
and only L? in the vertical variable z. Let € R be arbitrary but fixed. Then there exists a positive
time 7 > 0, independent of €, such that there exists a unique Leray-Hopf type weak solution V to
system (1.1) (see Definition 3.1, below). Moreover the weak solution V depends continuously on the
initial data and in particular it is unique.

R2 Instantaneous analyticity in the vertical variable (see Theorem 3.2): With the same assumptions
as in R1 above, the unique Leray-Hopf type weak solution V immediately becomes analytic in z
for ¢ > 0. Moreover, thanks to the viscous effect the radius of analyticity in z increases in time, at
least linearly, for as long as the solution exists. On the other hand, the radius of analyticity in the
horizontal variables might decrease with time, but as long as it remains positive the solution exists.

R3 Long-time existence (see Theorem 5.1): Let || > [Qo| with |Q] large enough, in particular || > 1.
Assume that the analytic-Sobolev norm (see (2.3), below) of both the barotropic mode Vg, and
baroclinic mode Vy are O(1), and that some Sobolev norm of V is O(ﬁ), as [Qy| — oo. Then a
lower bound, 7, of the existence time of the Leray-Hopf type weak solution to system (1.1) with
|| > || satisfies

T = O(log[log[log(log(|$20]))]]) — oo as [Q] — oo. (1.4)

Moreover, as a corollary of R2, the solution is analytic in all variables (see Remark 11, below).
R4 Long-time existence with small barotropic mode (see Theorem 5.2): Let || > |Q| > 1 and |Q| be
large enough.

(a) Under the assumption that the solution V to the 2D Euler equations with initial data Vo
is uniformly-in-time bounded in the analytic space norm, (1.4) can be improved to 7 =
O(log(log(|€2%]))). Let us note that this result is parallel to a similar one in the inviscid case
[23)].

) Birkhauser
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(b) Moreover, under the assumption that V is uniformly-in-time small enough (the smallness con-
dition is independent of |y|) in the analytic space norm, the smallness requirement on the
Sobolev norm of \70 can be relaxed and is independent of €, and (1.4) can be improved to
T = O(log(|201)), as || — co. In view of work reported in [31] about the growth of solutions
of 2D Euler equations, we observe that the above assumptions about the smallness of V' might
not be valid for all initial data.

(¢) If the analytic norm of Vy is of order O(lQ—lo‘), as || — oo, then the smallness requirement on

the Sobolev norm of Vj can be relaxed and independent of Qg; moreover, (1.4) can be improved
to T = O(|Q0]?).

R5 Global well-posedness in 2D with Q = 0 (see Theorem 6.1): In the 2D case with Q = 0, suppose
that the initial data V) is analytic only in the horizontal variable with small analytic-Sobolev norm
(the smallness condition depends on v and the initial radius of analyticity 79). Then the unique
Leray-Hopf type weak solution exists globally in time. Furthermore, R2 implies that the solution is
analytic in all variables.

Compared to the inviscid case [23], this paper investigates the combined effect of the fast rotation and
the vertical viscosity. The main differences are the following:

e With analytic initial data in all variables, aside from the fast rotation, we do not observe the effect
of the vertical viscosity in prolonging the lifespan in comparison to the inviscid case in [23].

e However, with a larger class of the initial data, namely with initial data analytic in the horizontal
xy-variables and only Sobolev in the z-variable, the vertical viscosity allows us to establish the local
well-posedness, which is not possible for the inviscid case (see [47]). Moreover, the existence time is
proportional to v and shrinks to zero as v — 0 (see (3.6)), which is consistent with the ill-posedness
result in the inviscid case.

e Such a regularizing effect of the vertical viscosity can also be seen in the proof of Theorem 5.1 in
(5.32) and the absorbing argument (5.36).

Compared to the work [46], which studies the 2D model subject to Dirichlet boundary condition with-
out rotation, we investigate here both the 2D and 3D models subject to the impermeable and stress-free
boundary conditions. While recognizing the subtle difference between the imposed boundary conditions
and their mathematical and physical implications, the result reported in [46] is, roughly speaking, along
the lines of the statement in R5, above, focusing on the 2D case. Meanwhile, our main objective in this
contribution is to study the combined effect of the fast rotation and viscosity in the 3D case, as it has
been summarized in R1 — R4 above.

The paper is organized as follows. In section 2, we introduce the notations and some preliminary
results which will be used throughout this paper. In section 3, we establish the local well-posedness of
system (1.1) and instantaneous analytic regularity in the vertical variable by proving Theorem 3.1 (i.e.,
R1) and Theorem 3.2 (i.e., R2). In section 4, we derive the formal limit resonant system of (1.1) when
|©2] — oo and establish some properties about the limit system. Section 5 is the centerpiece of this paper
and is devoted to studying the effect of rotation, where we prove Theorem 5.1 (i.e., R3) and Theorem 5.2
(i.e., R4). In section 6, we prove the global well-posedness in the 2D case with 2 = 0, i.e., Theorem 6.1
(i.e., RH).

2. Preliminaries

In this section, we introduce the notations and collect some preliminary results that will be used in this
paper. The generic constant C' appearing in this paper may change from line to line. We use subscript,
e.g., Cy, to emphasize the dependence of the constant on 7.

T Birkhauser
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2.1. Functional Settings

We use the notation (x,z) = (v,y,2) € D = T? x [0,1], where  and z represent the horizontal and
vertical variables, respectively. T? is the two-dimensional torus with unit length. Denote by L?(D), the
Lebesgue space of complex/real valued functions f(x, z) satisfying fD |f(x, 2)|>dxdz < oo, endowed with
the norm

I = llr2) = (/ |f(2,2)Pddz2)?,
D
and the inner product
()= [ (@2 (@) duds (21)
D

for f,g € L?*(D). Here g* represents the complex conjugate of g. Given any time 7 > 0, LP(0,7; X)
represents the space of functions f : [0, 7] — X satisfying fOT || f()||5dt < oo, where X is a Banach space

with norm || - ||x. For a function f € L%(D), we use fi(z),k € 27Z2, to denote its Fourier coefficients in
the x-variables, i.e.,
fi(z) = / e M f(x,z)dz,  and hence  f(z,z)= Y fr(z)e™". (2.2)
T2
ke2nZ?

Let A := +/—Ap, where A}, = 0y + 0yy is the horizontal Laplacian, defined by, in terms of the Fourier
coefficients,

Afy(2) = |klfr(2), k€ 2nZ?
For r > 0, we define
H'(D) = {f € L*(D) : ||f |l < oo},
with
Wl = S0 (lA=mar f12 + oz £112) 2.

0<m<r,mez
Notice that, with (2.2), we have
1 1
o= [ (X orfeP)de and farrorsF= [ (Y koA
O “keanz2 0 “keanz2
In addition, given any r > 0 and s > 0 with s € Z, we define the anisotropic Sobolev space
HyH:(D) := {f € L*(D) : || flmyn: < oo},
where the anisotropic Sobolev norm is given by
1
1y e := > (1470 I + 107 £11%)
m<s

On the other hand, given any » > 0, s > 0, and 7 > 0, with s € Z, we define the analytic-Sobolev
space

Srﬁs,-r = {f € L2(D) : ||f||r¢s,‘r < 00}7

where the norm is given by

1 llrsir i= D (AT 40 FI* + 192 F1) 2, (2.3)

m<s

) Birkhauser



JMFM The Effect of Fast Rotation and Vertical Viscosity on Lifespan of the Primitive Equations Page 5 of 44 73

with, recalling (2.2),

1
e om st = (X KPrenHior fu o)
0

ke2nZ?

Roughly speaking, S, s - is the space of functions that are analytic with radius 7 in the a-variables,
and H? in the z-variable. The space of analytic functions is a special case of Gevrey class. For more details
about Gevrey class, we refer readers to [20,21,23,40]. Notice that when 7 = 0, one has S, ;o = HL H: (D).

Remark 1. With abuse of notation, we also write f € S, , for f = f(x) depending only on the horizontal
variables.

The following lemma summarizes the algebraic property of functions with analyticity in the horizontal
variables:

Lemma 2.1. For 7 >0 and r > 1, we have
|47 () ()l < Co(Ifo() + 1474 1 ()2 ) (190(2)] + 147 g(2)]22 )
provided that the right hand side is bounded, where, according to (2.2),

folz) = | fl=,2)de.
TZ

The proof of Lemma 2.1 is standard. We refer to [20,23,45] for details.
With k = (ky, ko, ks) € 27 (Z2 x (Z4 U{0})) , we define

V2etkieitkarz) cog(Lka 2y if kg #£ 0,
¢k = ¢k1,k2,k3 = { i(k1w1+kaw2) (2 ’ ) 1 ’ (24)
e if kg = 0,
and
1
Y o= {(;5 S COO(D) ‘ ¢ = Z akqﬁm Ak, —ko ks = azhk%ks, / V- (;5 = 0} (25)
ke2r (22 (2, U{0})) 0

Here a* denotes the complex conjugate of a. Let
H := the closure of ¥ in L?(D) and V := the closure of ¥ in H!(D),

with norms given by
|-l := 1l - 2oy and || - [[v := || - || 2 (D), respectively.
Then one has
VcH=H CcV', Ve HwsV.

2.2. Projections and Reformulation of the Problem

In this paper, we assume that fD Vo(x, z)dxdz = 0. This assumption is made to simplify the mathematical
presentation. In fact, integrating (1.1a) in D leads to, after applying integration by parts, (1.1c), and (1.3),

O / Vdxdz + Q / Vidadz = 0. (2.6)
D D

Therefore, under our assumption, one has

/ V(t)dxdz :/ Vo(z, z)dxdz = 0. (2.7)
D D

With slight modifications, our result applies to the case when fD Vo(z, z)dxdz # 0.

T Birkhauser
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Let
L? .= {gp € L*(D,R?): / o(x, z)dedz = O}.
D

Denote the barotropic mode and the baroclinic mode of V by

V(z) = /1 V(x,z)dz and V(z,z):=V -V, respectively. (2.8)
From (1.3) and (1.1c), we haffe
VY= /1 V- V(z,2)dz = — /1 O w(x, z)dz = 0, (2.9)
and i i
w(x, z) = — /OZ V- V(x, s)ds. (2.10)

Remark 2. In the remaining of this paper, we will substitute w by its representation (2.10) without
explicitly pointing it out.

Since V-V = 0, and V has zero mean over T? thanks to (2.7), there exists a stream function ()
such that V = V¢ = (=01, 0,1) T Therefore, the space of solutions to (1.1) is given by

S:=L*NH= {¢€L2:V-¢:0} = {¢€L2 tp = Viy(x) + 3z, 2),
(2.11)
for some 1, Y(x)de = 0}.
T2

Indeed, S is the analogy of “incompressible function space” for the PEs. Here  and ¢ are the barotropic
and baroclinic modes of ¢, respectively, as in (2.8).

For ¢ € L?, let the rotating operator be J¢ := o+ = (=2, ¢1) . Denote the Leray projection in T?
by

Prp =0 — VA, 'V 5. (2.12)

Here, A;l represents the inverse of Laplacian operator in T? with zero mean value. We define the analogy
of the Leray projection for the PEs B, : L? — S as

By = ¢+ Prop.
Moreover, let R : S — S be defined as
R := Pp(T»).
With notations as above, a direct computation shows that
Re =gt for p€S8.
Indeed, owing to (2.11), ¢ = VX4(x) + @ € S for some 1(z). Then
R =P, (T @) + ‘Bp(Jva(w))
=Gt = PrVi(z) = 5.
~

=0
Therefore, the kernel of R is given by
kerﬂ‘i:{cpES:@J‘:O}:{9068:@:@}. (2.13)
One can define the projection By : S — ker R by
1
Bop :=p = / o(x, 2)dz. (2.14)
0

) Birkhauser
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Notice that By can be interpreted as projection to the barotropic mode. The fact that ker R coincides
with the space of functions with only the barotropic mode plays an important role in our analysis.
Furthermore, let

1,0 1. -
Prp=5@+ip"), and  Pop=(F-iph). (2.15)
Then it is easy to verify that

RPLp = FiProp,

i.e., P are the projection operators to eigenspaces of R with eigenvalues Fi, respectively.
Similarly to [18,23,33], Lemma 2.2-2.3, below, summarize projection properties of o, PB+. For the
proof, we refer readers to [23] for details.

Lemma 2.2. For any ¢ € L?(D), we have the following decomposition:
o =Por+Pro+P-o. (2.16)
Moreover, we have the following properties:
PLPro =Py, PBoPor = Poy, and  0=PLPro = PoPre = P+ Poyp.
Lemma 2.3. For f,g € L*(D), we have

(Bof,9) = (f,Bog) = (Bof, Bog)  and  (P+f,g9) = (f,Bxg)-
Here the L? inner product is defined as (2.1). Moreover, if f € S, s, withr,s,7 >0, s € Z, we have

ATeTA3Pof = PoATe A0 f and ATeTAOIPLf = PLATTAIS .
Let J be the identity operator. A direct corollary of Lemma 2.3 is the following:
Corollary 2.1. Consider r > 0,7 >0, and s € Z.. Since V =BV + (T —Po)V =V + ]7, we have
VIF = IVIZ+IVIZ, 92V = [19:VIP,
and
JATT AV = [ ATeTAV|P + ATV, AT A0V = ATV,
Moreover, after applying B¢ and 7 — Py to equation (1.1a), thanks to (1.3), (2.9), and (2.10), one can
derive the evolutionary equations for ¥V and V as follows:
OV +V VYV +Po((V-V)V+V-VV) + Vp=0, (2.17a)
6t17+17~v9+9~v?+9-vf/—q30(17-vfi+(V~17)17)
- (/0 vV V(e s)ds)azﬁ OVt —va. v =o. (2.17b)

Here, we have abused the notation by denoting p — Q¢ with Vo(x,t) = V(=,t) as p, where 1 is the
stream function of V (see (2.11)).

Remark 3. According to (2.13), (2.17) can be viewed as the orthogonal decomposition of (1.1) into ker R
and (kerR)*. As |Q| — oo, formal asymptotic analysis of (2.17b) assures that, for well-prepared data
(i.e., data ensuring that (2.17b) makes sense), V — 0 in some functional space. Therefore, in the limiting
equations, (2.17) converge to the 2D Euler equations at leading order. In particular, in [23], it has been
shown that the lifespan of the solutions can be prolonged with well-prepared initial data in the inviscid
case.

T Birkhauser



73 Page 8 of 44 Q. Lin et al. JMFM

According to (2.15), one has yi= —iPLV+iP_V. Therefore, after applying PB4 to (2.17b), we arrive
at

atapiv+q3i(u7.v17+17.v9+v.v17—q30(17.v17+(v.ﬁ)ﬁ)

_— - (2.18)
- (/O v V(a, s)ds)@zv> TiOPLY — 0. PV = 0.
Let
Vi=e 3.y and V=PV, (2.19)
Then, for » > 0,7 > 0,s > 0, and s € Z, it is straightforward to check that,
|A"eT A2V ||? = || ATeT A9V |1 = |\AT€TA3§17H2~ (2.20)
One can derive from (2.18) that
Vi +eTUPL(V-VV V- VD4V VP = Po(V - VD + (V- D)D)
(2.21)

— (/ V- ]7(w,s)ds> azﬁ) —v0.. Vs = 0.
0

Thanks to Lemma 2.2 and (2.15), we have
oo — L o4 . ol L SR v I PR vayan
Po(V-VV) = (V- YV +iV- VI - 5apo(v-Wﬂv.vv )
O S o [~ -
=5V V(E+iDh) 9 (v VD + iVJ‘)) — i (v VVs — PBo(V- vv+)),
- 1~ o~ 1~
P4(V- VD) = S (V- IV +iV- v = V-V +ivh),
PL(V-VY) = %(V VY +iV- VYL = (V- VV,),
P Po (13 VY + (V- 17)17) ~0
After applying integration by parts, one has
‘B+ / V- V:cs)ds)av / V- V:cs)ds)@V—i—z/ V- vxs)ds)avi)
- 55;30 (/ V- V(a:7s)ds)c'?zv+i(/ V- V(m,s)ds)az%>
0 0
:emt(/ V- V(x, s)ds)0.Vy + M ((V : ]7)V+).
0

Moreover, thanks to (2.15) and (2.19), V = Ve’ 4 V_e~ Therefore, the V4 part of (2.21) can be
written as

OV, = — i (v+ YV = Po(Vi - Vs + (V- V)V, — (/ V-V, (a, s)ds)@zV+)
(v YV, + - (v+ V)(V—i—ivl)) b0,V — 2t SO WV + V) (2.22)

_ i (V_ VYV — Bo(V_ - VYV + (V- V)V, — (/0 AV v_(m,s)ds)azm).

) Birkhauser
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Similarly, the V_ part of (2.21) can be written as

atv,z—e-im(v,-vv, Po(V_ - VV_ +(V-V.) / V-V_(x,5)ds)0.V_ )
f(V-vv_%(v_'vwil))+uazzv_ 5LV, V)V V) (2:23)
—eim(m.vv, Lo(Vy - VV_ + (V- V)V / V- Vi(x,s)ds)0.V_ )

In addition, (2.17a) can be written as
YV + V- VY + ey, (v+ YV + (V- v+)v+) + e 2%y (v, VYV 4 (V- v,)v,)
FVp+ Po (Vi - TV_ 4V TV + (V- V)V + (V- V)V ) =0

Recalling (2.15) and (2.19), i.e., V4 = P8PV = %e:”m(ﬁ + iVL), we rewrite the last term of the
above equation as

Po (v+ VY. 4V VYV, + (V- V)V + (V- v_)v+)
1 e e o~ . . 1 - 1.~
= SFo(V- IV +VE VU + (V- D)V + (V- V4V ) = SB(TVP) = V5Pl V),
which can be combined with Vp. Therefore, with abuse of notation, one can rewrite (2.17a) as

OV + (V- V) + Vp+ X9 (Vi - VYV + (V- V)04
4 (2.24)
e 2ifg, (V, VV_+ (V- v,)v,) —0.

3. Local Well-posedness

In sections 3.1 and 3.2, below, we will establish the local well-posedness, i.e., the existence, the uniqueness,
and the continuous dependency on initial data, of weak solutions to system (1.1), defined as below:

Definition 3.1. Let 7 > 0, » > 2, 79 > 0, and suppose that the initial data Vo € S;.0,-, N H. We say V is
a Leray-Hopf type weak solution to system (1.1) with initial and boundary conditions (1.2)—(1.3) if

1) there exists 7(t) > 0, for ¢ € [0, 7], such that
Ve L®(0,7;80-1) NL*(0,T; VNS 1 1) N Sr+%,o,7(t)),
OV, AT 2™,V € L2(0,T; V'),

2) system (1.1) is satisfied in the distribution sense,

3) and moreover, the following energy inequality holds:

t
I 1 T
VIR ) +2 / (V19V() 0) + 1472 DAV (8)2 ) ds < Vo120,
The following theorem is the main result in this section.

Theorem 3.1. AssumeVy € S,.0,-,H withr > 2 and 9 > 0. Let 2 € R be arbitrary and fized. Then there
exist a positive time T > 0 and a positive function T(t) > 0 given in (3.6) and (3.5), below, respectively,

such that V is a Leray-Hopf type weak solution, as in Definition 3.1, to system (1.1) with (1.2) and
(1.3) in [0, T]. In particular, 7(t) and T are independent of Q. Moreover, V is unique and depends
continuously on the initial data, in the sense of (3.21), below.

T Birkhauser
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Notice that we do not need to assume (2.7) in Theorem 3.1. Throughout the rest of this section, we
assume that (V,p) satisfies (1.1)—(1.3) and is smooth enough such that the following calculation makes
sense. The rigid justification can be established through Galerkin approximation arguments (see, e.g.,
[23,39]). In particular, in section 3.1, we establish the a priori estimates of solutions to system (1.1) with
(1.3). In section 3.2, we finish the proof of Theorem 3.1 by establishing the uniqueness and continuous
dependency on initial data. In section 3.3, we show that the weak solution immediately becomes analytic
in z, and the radius of analyticity in z increases as long as the solution exists.

3.1. A Prior: Estimates

Direct calculation of ((1.1a), V) + (A7e7(1.1a), A"e™V), after applying integration by parts, (1.1c), and
(1.3), shows that

5 dt||V||roT+’/H(9 V|2, — Az AV = —<AT€TA(V : VV),AreTAV>
Nl
+<A"e”‘ [(/ V- V(w,s)ds)6ZV},A"eTAV> =1+ I,. .

0

By virtue of Lemma A.1, the Sobolev inequality, and the Hélder inequality, we have
| < |(arer iy VV),A’”eTAV>’

1
< A Cr(||A7'eTAV(z)HL2(T2) + ||V(Z)||L2('JI‘2)) ||A7'+§eTAV(Z)||%2(T2)dZ
< Cr(IVllror + 0=V o)A 274V
Applying Lemma A.2 to I leads to
L] < Cpll0:V o | A2 ™V

Thus from (3.1), one has

||VH7 0,7

(3.
1
2dt

&‘g‘

20w HIATTRTAVI2 < (414 OV ror ) 52
x||AT+feTAvn2 < (F+ Gl + V120, + 10:VI20.,)) 1A e V)2
Choose 7 such that

74+ 14+ Cr(|[V]lr0,r

L) =0. (3.3)
Then, one has
I 1 T
S LIV + V0Vl + AT AV <0
For 7 > 0, to be determined, and ¢ € [0, 7], one has, after integrating (3.2) in the t-variable,

t
HV( )H’I‘OT /[; (1/||82V( )||7‘OT(S + ||Ar+§eT(S)Av(S)” )ds < HVOHT ,0,70 (34)

On the other hand, integrating (3.3) yields

(3) Hr,O,T(s))ds

Vit.

(#) :To—t—cr/o (IV(s)

Cr
>70 — (L+ Cr [ Vollr0,m)t — EHVOHr,O,m

) Birkhauser
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Consider, for C, > 0 as in (3.5), that

7T =

C2 (Vo2
\/ 7‘” ;lr,o,ro _|_ 27_0(1 + CT-||VQ||T-707-,—O) _ C'I‘HVOHT,O,TO 9
( V2 ) >0, (3.6)
2(1+ Cr[Vollr0,7)

which solves

T
T’,O,TU\/,? = 70'

(1+ CelVolleo.r)T .

Cr
- E”VO
Then one has
T(t) > 719/2>0 for te€]0,7T]
Consequently, (3.4) implies that
Ve L®(0,7;80-1) NL*(0,T;V NS 17(0) N Srv 1 0.7(1) (3.7)

with 7 > 0 given as in (3.6) and 7(¢) given as in (3.5) (or equivalently (3.3)).
Next, in order to obtain the estimate of 9;V, testing (1.1a) with V¢ € ¥ (see (2.5)) leads to

<atv, ¢> + <v VY- (/ V- V(z, s)ds)azv vt oLy, ¢> —0. (3.8)
0

where we have substituted, thanks to (1.1b) and (2.5), (Vp,¢) = —(p,V - ¢) = 0. Since r > 2, thanks to
the Holder inequality and the Sobolev inequality, we obtain that

(V- 99,0)| < CVls 2219V l22 22162 2 < CrVIZ g N0l

K(/OZV-V(w7s>ds)8zv7¢>\ s/w (/01|V~V|dz)(/ol 0.V|6|d=) da

and

= C/W IVVllz2 110Vl 2|l z2da < CIVVI| 2z L2 10V za z2 [0l za 2 < Col V1 e [Vlror ]y
After applying integration by parts, one has
(vt = vo..v,0)| = [(4,6) +v(0.V,0.0)| < CuallVirarloly.
Therefore, one has
[(0v.0)] < Cura (V120 + 0+ Vllro ) IVl e ) 611y
Since 7 is dense in V, one has
oVllv: = sup [(2:9,9)] < Cuna (V10 + 1+ Vo) Vs
e
Thanks to (3.7), we have
oV € L*0,7;V')  and
(3.9)

10V lz207v) < Come(CrIVIEm07:5,0.) + 0+ VI 0.7:8000) V20,7380 ) < o0
Meanwhile, for A"~ 2e749,V, one has, similarly as in (3.8),
(A=Y, o) + (A3 A (V. WV) — aherA(( /0 V- V(w,5)ds)0.))
F QAT ETAVE _ g AT e AY), ¢>> —0.
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With r > 2, thanks to Lemma 2.1, the Holder inequality, and the Sobolev inequality, we obtain that
(a3 (v- V), 0)| < |42V VY2 a2 1
< CrlVlrg 20Vl 8llv-
After applying integration by parts in the z-variable and the Holder inequality, one has

[(artea(( / TV V(@ ds)0.v).0)| < [(a e (7)) o)

(a2 ([ V(@.949).0.6)] < C VLo W61,

and similarly,

[(ar-3eravt — 0o, 47274, 0)| < Cual Vi lv-

Therefore, one has

(42490, 0)| < Cuna (Vs g 05 WV lor + [Vlle )16y

Since ¥ is dense in V, one has

HAT—%QTA&:VHV/ = H SHup ‘<AT—%eTAatV,¢)>‘ < CV77‘7Q(”VHT‘J,*%,O,T”V”TA,OJ' + ||V||r,1,'r)~
ollv=1
Thanks to (3.7), we have
AT 2™, € L2 (0,7;V) and
1, (3.10)
A" =e AatVlle(M;v,) < Cu,r,n(HV||L°<>(0,T;ST,0,T)\|V||L2(o,7;sr+%,0,> + ||V||L2(o,7;sr,1,f)) < 00,

3.2. Uniqueness and Continuous Dependence on the Initial Data
In this section, we show the uniqueness of solutions and the continuous dependence on the initial data.

Let V; and Vs be two weak solutions with initial data (V)1 and (Vy)2, respectively. Assume the radius
of analyticity of (V)1 and (V)2 is 79. By virtue of (3.5) and (3.6), for i = 1,2, let

Ti(t) =170 —t—Cm/o (||Vz(s)

r,0,7;(s) + ||8ZV’L(S) ”r,O,n(s))dsv

(3.11)

CZill(Vo)all, 0, Cri illr0,m
(\/I(SZMO +270(1 + Cri|(Vo)illr0,m0) — % 2
2(1 4 Crill(Vo)illr.0,m0)
such that, according to (3.4), (3.7), (3.9), and (3.10),
¢

and 7 =

Vi)Z.0,7, ) + 2/0 <V||azvi(5)||72~,0,n(s) + IIA”%e”(S)AVi(s)H?)ds < Vo)ill? 0,705
for ¢ € [0, 7;], and
Vi € L%(0, 755 80,7, (0) N L2 (0, TV N Srtmyty NSy 1 0, 0)):
BV and A'"2em49,V; € L2(0,T; V).

We remind readers that C, ;,i = 1,2, are independent of {2 and 7.
Let

M i= max { [ (Vo)1 llro.ms [ (Vo)

oo } (3.12)
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Denote by 6V :=V; — Vs and dp := p1 — po. Let

2 t
F(t) =10 —1— Or Z/O (||Vi(s)||7‘,077ri(s) + ”Vi(s)”io,ri(s) + Hazvi(s)||T',O,Ti(s))d53
1=1

(3.13)
L7 VIR 4 om (1420, (M2 + M) — Y28
o '_( 2(1 + 2C, (M2 + M)) ) ’
where C). is a positive constant, to be determined later, satisfying
Cy > max{C1,Cr2}. (3.14)

In particular, (3.13) and (3.14) imply that 7(t) < 7;(t) and 7 < 7, for i € {1,2} and ¢ € (0, 7]. Therefore,
fori=1,2,

5V and Vi€ L®(0,7;8,020) NL* (0, 75V N Sn170 NS,i 1 0.7 (3.15)
80V and  AT"2eTA9,6V € L2(0,T; V), (3.16)
and
t
Vi) 3,0,;@) + 2/ (VHani(S) 3,0,;@) + ||A7”+%eT(S)AVi(s)||2)ds < M?,
0
for t € [0, ’ﬂ

From system (1.1), it is clear that
B8V + 8V - YV + Vs - V6V — (/ V. 5V(:c,s)ds)8zvl - (/ v Vg(:c,s)ds)az(ﬂ)
0 0
+Q6Vt —v0..6V +Vép=0 and  9.0p=0.

Notice that from (3.15), one has that AT2e7ASY € L2 (0, T V). Thanks to (3.16), similar calculation as
n (3.1) leads to

1d ~ r T
§£H5V||f_%yo,; + V||826V||72~_%70’F — 7| ATe™ V|2

- 7<5v YV 4 Ve - VY — (/ v 5V(w,s)ds)5‘zvl - (/ v Vg(a:,s)ds)azév,5v>
0 0
_ <AT’%B;A(6V : vvl),AT*%e*A5v> + <A“%e“ [(/0 V- 0V(z, s)ds)azvl] , A“%e”5v>
_ <AT—%e?A(v2 : v5V),AT—%e?A5v> + <A’“—%e” [(/0 V- Va(z, s)ds)@z(SV} : AT—%e”(sv>.
(3.17)

After applying integration by parts, the Holder inequality, the Young inequality, and the Sobolev inequal-
ity, since r > 2, one has

’<5v SV 4 Vs VOV — ( V. 6V(a, s)ds)azvl - ( Ve, 3)ds>(9Z6V, 5v>‘
0 0

—[(av- 9= ([ V-0V 5)ds) o 8V < Oy Wil lOVIZ
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Thanks to Lemmas A.1 and A.2, the Holder inequality, the Young inequality, and the Sobolev inequality,
since r > 2, one has

‘<A’"—%e*f4(5v VW), A"—%e”‘avﬂ
1
< /0 Cr_1 {(|\Ar7€m5v(z) Iz2(r2) + 16V(2) L2 (12)) | A7€™ V1 (2) | 212y [ AT€T 46V (2) | L2 (72

+ [ ATeTAOV(2) | L2 o2y | AT V1 (2) ]| 12 (1) | A7 2 €7AGV(2) || 12 (2 | d2
<Gt Vil z(10VIZ_ s o 5 + [A7€T40V]),

_1 1
=3 T3,

‘<AT—%JA(V2 VoY), AT‘%e;A(SVH
1
< [ oy [0V aaen) + Va2 A7V ey | 47740V a0

+ AT AVy(2) | paro) | ATeTAGV(2) || L2 re) | AT~ 2 €740V (2) | 2 (o) | d2
< C_a Dol Al ATV 2,

‘<Ar—ée“[(/oz V- oV(z, s)ds) 8ZV1},AT_%6;A5V>‘ < Co_s|Willra 7A€ A0V,
and
‘<Ar_%e;A [( /OZ V- Va(x, s)ds) 82(51/} , AT_%e;A5V>‘

r_T r_T v r_T
< Gt |7V [[0:0V],— 1 0 7 AT€TAOV]| < §||<9:45V||2 1 05 T Cupet V2l20 711476V |12.

r—1 r,0,7
(3.18)
Consequently, combining the calculations between (3.17) and (3.18) yields
1d, 1 )
§£||5V||T7%,07; + §V\|5z5VHT,%,O,;
<(F+ CormglValZoz + Comy (Wil 5+ [Vallna ) ) 14740V + €,y Il 2 10VIE o 5
In addition, from (3.13), and (3.14), and the fact that 7;(¢t) > 7(t), ¢ = 1,2, one can derive that
T+ Ot Ml oz + Com g (Ml + [Vallra )
2
=—1-C ) _(IVi®llro,mey + Vi 0 rey + 10:ViB) lr0,m (1))
i=1
Cpr s IVl + Coy (Wl + [Valn )
2
S(Cu,r—é ~Cy) Z(HVi(t)Hr,o,%(t) + IVi)17 0.7 + 10:ViO)lr0.7)) <0,
i=1
where we have chosen
Cp:=max{C,,_1,Cr1,Cr2}. (3.19)
In conclusion, with C,. satisfying (3.19), one has
1d 9 1 9 9 390
S lOVIZ ot S0V o2 < Cosy Il IOVIE o5 (3.20)
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Applying the Gronwall inequality to (3.20) results in

t
ISV _1 079 < 1OVO)E_1 o, eXp(/O 2C, 1 1V1(s)llr1.7(s)ds) (3.21)

for ¢ € [0, 7], which establishes the continuous dependence on the initial data as well as the uniqueness
of the weak solutions. This, together with section 3.1, finishes the proof of Theorem 3.1.

3.3. Instantaneous Analyticity in the z-Variable

In this section, we will show that the weak solution obtained in Theorem 3.1 immediately becomes analytic
in the z-variable (and thus analytic in all variables) when ¢ > 0. Moreover, the radius of analyticity in the
z-variable increases as long as the solution exists. For simplicity, we consider the even extension for V in
the z-variable, which is compatible with (1.3), and work in the unit three-dimensional torus T? instead
of D. With abuse of notations, we use V to represent both V in D and its even extension with respect to
the z-variable in T?.

We first introduce the following notations that are only used in this subsection. For f € L?(T?) even
with respect to the z-variable, we consider the following functional space

Srsrm = {f € L*(T?), || fllrs.ry < 00, f even with respect to the z—variable},

where

e S € (L e o e [
ke2nZ2 kse2n7Z

and T s ::/ e~ thw=iksz £ ) dadz.
T3

Denote by

Api=V=An, A==,
subject to periodic boundary condition, defined by, in terms of the Fourier coefficients,
(AT Pks = |k Fekss (A )kks = ksl fros, (Ko ks) € 2m(Z2 x Z), 7,5 > 0.
Accordingly, one has
1F17 07 = IFIZ + AR e Am e |2 4 [|AZeTAm e £ 12,

755,71

With such notations, we establish the following theorem:

Theorem 3.2. Assume Vo € Sy 0,+,0 with > 2 and 19 > 0. Let Q € R be arbitrary and fized. Then there
exist T > 0 defined in (8.24), T(t) > 0 given in (3.23), below, and n(t) = 5t, such that there exists a
unique solution V to system (1.1) with (1.2) and (1.3) in [0,7T] satisfying

Ve L®(0,7;8 0,7t mw) N L0, 758011y m))»

and depending continuously on the initial data. In particular, V immediately becomes analytic in all spatial
variables for t > 0.

Remark 4. After restricting Vg and V in T? x (0, 1), the solutions in Theorem 3.2 are the same to the ones
in Theorem 3.1, thanks to the uniqueness of solutions. Therefore, the gain of analyticity in the z-variable
of Theorem 3.2 can be regarded as a property to solutions in Theorem 3.1.

Remark 5. Theorem 3.2 states the gain of analyticity in the z-variable for solutions to system (1.1). One
can then apply the result from [23] to study the effect of rotation on the lifespan of solutions after a
initial time layer. However, in order to achieve a longer lifespan, the result from [23] requests smallness
of Sobolev norms in the baroclinic mode. In this paper, thanks to the effect of viscosity, we are able to
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relax the condition by requiring smallness in a larger functional space. See Theorem 5.1 and remark 9,
below, for more details.

Proof. (Sketch of proof) Here we only show the a priori estimates. Direct calculation of
(1.1a), V) + (Aye™ren= (1.1a), ALe™ne=V) 4 (eTAreM4= (1.1a), ™A 42 V),
after applying integratlon by parts, (1.1c), and (1.3), shows that

r+3 5 3T 5
Vg + IOV — 7 (A5 7042 1 A et
= (A2 Aper eV 4 | 4F e ey
+ <A267Ah M= (V- VV), AL e™An e"AzV> + <67—Ah M= (V. VY), e An e"AZV>

+ <A267A’le"Az ((/Z V- Vds)@zV) , AZ@TA”e"AzV>
0

+ <eTA’Le”AZ (( / v. Vds)@ZV),eTA’Le"AZV> = 0.
0

Denote by
2= Z (1 + (k2 + 1)62T|k|62n|k3|>|f;k7k3|2’
(k,k3)62wZ3
o= ||(9 V”rO‘rn Z |k3‘2(1 + (|k|2r + 1)627—|k|62n|k3|)‘f}k,k3|2,
(k,k3)€2nZ3
1 ~
_ ”Ar-‘rz 'rAhenAzVH2 + ||A}2LeTAhe7]AzVH2 _ Z (‘k|2r+1 + |k‘%)627|k|62n|k3|‘Vk7k3‘2,
(k. k3)€27Z3
1 1 B
H = ||AZ2AZ€TAh€nAZVH2 + HAZQ eTAheT]AzVHZ — Z (‘k3||k|2r + |k,3|)62~r\k\62n\k3||Vk,k3|2.

(k,k3)€2mZ3
Observe that H < F. After setting 17 = %, one obtains that

2
1d
thE—&- VG—TG

+ (ApemAner (V- YY), A ety ) 4 (et (1. YY), ernend-y)
+ <A267A’L6"Az (( / V- Vds)@ZV) , AZeTA“e"AZV>
0
+ <eTAhe"A2 (( /0 v. Vds)@ZV),eTAhe"AzV> <0

For the nonlinear terms, by applying similar calculations as in Lemma A.1 and Lemma A.2 (we also refer
the readers to [23] for detailed calculations in T?), one can obtain that

‘<A’;‘LGTAhe"7Az V- Vp)vAzerAhenAzVH 4 ‘<67AhenAz(V ) VV),eTAhensz>’ <c, (E% n F%)G,
‘<A267AheTIAZ ((/Z V. Vds)an) , AzeTAhe"]AzV>‘ < CT-F%G,
0

and thanks to the Young inequality,

’<eTAhe’7Az ((/ V- Vds)an),eTAhe"AzV>’ < C’TF%E%G% < 9EG + %F
0 1%
Therefore, combining all the estimates above leads to
d 1
=B+ Lr< (#+Co(Bt + i+ oE))G. (3.22)
v
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By taking 7 + C, (B2 + Fz + 1F) =0, one obtains

E(t) + %1//0 F(s)ds < E(0).

Integrating in time for 7 + C.(Ez + F2 + 1F) =0, we have

N

(s)+ F2(s) + %E(s))ds > 71— Cy (E% 0)(t + §) + E(O)%) (3.23)

14

(t) =10 — /Ot C(E

Since E(0) = ||[V||? .0, we denote by

I
Moo+ BT Wo0) = E Voo s

= ( [ ) >0,
2(—=222 + |[V|0,70)

(3.24)

which solves
70

20,

Voo +VT) + ~IVIZ0 roT =
Then one has
T(t) > 10/2>0 for tel0,7].
Notice that the radius of analyticity in the z variable satisfies = &t. Therefore, (3.22) implies that
Ve L%(0,T58r0.7(t)n0) N L*(0, T3 801,70 (1))

Based on the estimates above, one is able to show the existence, uniqueness, and continuous dependence
on the initial data of the solution V. We omit the details. (I

4. The Limit Resonant System

In this section, we derive the formal limit resonant system, i.e., the limit system of system (1.1) (or,
equivalently, system (2.17)) as |Q2] — oo, and discuss some properties of the limit resonant system. Recall
that from (2.22), we have

o0V, =— eim(V+ VYV, — mo(V+ -VV, + (V : V+)V+) - (/ V- V+(SC, s)ds)BZV+)
0

:2I1

_ { (V YV, + %(m V)V + iVL)) - Vasz+}

=:1p

(4.1)

- efmt<v_ VYV — Po(V_ - VYV + (V- V)WV — ( : V-V _(=x, s)ds)32V+>
0

::171
1 .
—e NSV V)(V V).
21172
We can further rewrite (4.1) as
L —i L oo i —i Lo
o, [14 -5 (emtll — ey - Se mu)} =5 (e VI, — MLy = e Qtatl,z) ~ I
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Denote by the formal limits of V,,V_, and V to be V., V_, and V, respectively. By taking limit {2 — oo,
we obtain the limit resonant equation for V. is

OV, = —(V-V)V, — %(w VYV + V) + 00,V (4.2)
Similarly, one has

oV = —(V-V)V_ — %(v_ T — V) 4+ 00V (4.3)
and

OV +V-VV+Vp=0, V-V =0, d.p = 0. (4.4)

Notice that (4.4) is nothing but the 2D Euler equations. Accordingly, we consider the initial conditions
— - 1~ <~ .1~ =
(Vo, (Vi)o, (V-)o) = (Vo, 5 (Vo + V), 5 V0 — V) (4.5)

for equations (4.2)—(4.4). Since V, Vo, and V, are real valued, one has that (Vi) = (V_)5, (Vi)o +
(V_)o = i((Vi)o — (V2)o)*t = Vo, and, thanks to (4.4), V is real valued. Thanks to (4.2) and (4.3), one
has

OV —V2) = ~(V - V)(Vi = V2) = L [(Vy = V) - D)V 4iV) 4 vdea(Vi — V), (46)

O[(Vy+ V) —i(Ve = V)] ==V - W) [(Ve + Vo) —i(Ve — V)] —
+ 0. (Vi + Vo) —i(Ve — Vo). (4.7)

Therefore, provided solutions exist and are well-posed, one has V, = V* and V| +V_ =i(V, — V_)*.
Let

V=V, +V_. (4.8)

Notice that, according to (2.19), V is the formal limit of Vi +V_ = HPLY +HUP_Y, as O — .
It is easy to verify that

Vi = %(f/ +iV1), (4.9)
and
OV + (V-V)V + %(V VYV -V VT 00,V =0,
or, thanks to V - V = 0, equivalently,
aﬁu?vfw%fﬂ(vL V) =00,V = 0. (4.10)

In summary, to solve the limit equations (4.2)—(4.4) with (4.5) is equivalent to solve the following
equations:

O,V +V-VV+Vp=0, (4.11a)
V-V =0, 0.p=0, (4.11Db)
ATE R %xﬂ(vl V) =00,V =0, (4.11¢)
0-V|,_o, =0,  V(0)=Vy, and V(0)

=Y. (4.11d)

Notice that, thanks to our choice of Vy and ]70, one has PV =V and &BO‘N/ = 0. In addition, (4.11a)-
(4.11b) is the 2D Euler system, and (4.11c) is a linear transport equation with a stretching term and
vertical dissipation. In the rest of this section, we summarize the well-posedness theory of (4.11).
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4.1. Well-posedness Theory of (4.11a) and (4.11b)

The global well-posedness of solutions to the 2D Euler system (4.11a)—(4.11b) in Sobolev spaces H"(T?) =
Sr0,0 with » > 3 is a classical result (see, e.g., [7]). Moreover, from equation (3.84) in [7], for r > 3, we
have

d  — — —
i1V llro0 < CrllVr00(1 + I [V ]]r0,0)- (4.12)

Let ||V(]||T70,0 < M for some M > 0. Denote by W (t) := ||V(t)\|r,070—|—e. Thanks to InT z+1 < 2In(xz+e),
from (4.12), we have

iW <C,WlnW.
dt

Therefore, one can obtain that
_ Crt — Crt Crt
V®)llroo <W(@#) <WO0)*  =([Vollroo+e) < (M+e)* = 0u(b) (4.13)

The authors in [40] proved the global existence of solutions to system (4.11a)—(4.11b) for initial data
in the space of analytic functions. For completion, we state it here, with slight modifications to meet our
settings. See also [23].

Proposition 4.1. Assume Vg € SN S, 0.5, withr > 3 and 70 > 0, and suppose that |Volly0-, < M for
some M > 0. Let

7(t) := 19 exp ( - C, /Ot h(s)ds),

where

h*(t) := Vo7 0,7 + Cr /Ot O3r 1 (5)ds,
with Opr,-(t) defined in (4.13). Then for any given time T > 0, there exists a unique solution
VeL®0,T;:8NS0.-1)
to system (4.11a)—(4.11b). Moreover, there exist constants Cpy > 1 and C,. > 1 such that
V0.0 < H2(2) < 7.

The solution is continuously depending on the initial data.

4.2. Global Well-posedness of System (4.11)

In this subsection, we establish the global well-posedness of limit resonant system (4.11) in both Sobolev
spaces Sy 5,0 and analytic-Sobolev spaces S, 5 .

Proposition 4.2. Let 7 > 2 and s € {0,1}. Assume that Vo € SN Sy11.00 and Vo €SN Srs0- Let

M >0 be the constant such that |Vol|r+1,00 < M. Then there exists a function K(t) := C;}cp(c"t) with
constants Cpr > 1 and C, > 1, such that for any given time T > 0, there exists a unique solution

(V,V) € L=(0,T;8 NSri1.00) X L2(0,T;8 N Sys0) of system (4.11), which satisfies
t
V(Ollr100 < K@) and  [IVE)F.0+ 2”/ 10V ()17 006 < VlI7 0 €l K% (4.14)
0

On the other hand, suppose that Vo € SNS,11.0.7, and Vo € SNS, 5.7y Wwith 1o > 0, and that |Vo|lri1,0,7 <
M. Let

7(t) := 7o exp(—/0 K(s)ds). (4.15)
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Then for any given time T > 0, there exists a unique solution (V,I~/) € L>*(0,7;8 N Sr4107) X
L>(0,T;8NS,s,+) of system (4.11) such that

T7 t 17 17 t s)ds
||V(t)||7‘+l,0,7'(t) S K(t) and HV(t)Hz,s,T(t) + 2VA Hazv(é)HE,S,T(&)dg S ||V0H$,s,n)€f° K(s)d . (416)
The solutions continuously depend on the initial data.

Proof. (Sketch of proof) We will consider the case when s = 1 and only show the a priori estimates. The
construction of solutions, uniqueness, and continuous dependency of solutions on initial data, as well as
the case when s = 0, are left to readers as exercises. The global well-posedness of the 2D Euler equations
in Sobolev spaces and corresponding growth estimate have been reviewed in the previous subsection.
From (4.13), we obtain that

V]lr+1,00 < Ki(t) (4.17)

for some function K (t) := C’Epl(c’“lt)

Denote by J the identity map. For the growth of ||V g, after calculating 2((4.11c), (I — 0..)V) +

2<A (4.11¢), (3— 8ZZ)AT V) and applying integration by parts to the resultant, one has, thanks to 8,V = 0,
V-V =0,and r > 3, for some constant C, s > 0,

with some constants Cps 1,Cr 1 > 1.

L1700+ 200:71210 < Corall V100l 712 1.0 (418)

After applying the Gronwall inequality to the above, by virtue of (4.17), we obtain

- t . . t
PO s0+20 [ 10T 0t < ol soexo (Crs [ Erl)dE). (4.19)

On the other hand, the global well-posedness of the 2D Euler equations in the space of analytic
functions and the corresponding growth estimate are summarized in Proposition 4.1. We can first choose

some suitable function Ks(t) := C’Z}(g(c’“zt), with Caz,2, Cr2 > 1, such that |[V(¢)||,41,0,751) < K2(t) with
Ti(t) = o exp(~ [ Ka(s)ds). _ _
Let 7 = 7(t) to be determined. For V| after calculating ((4.11c), (3 — 0..)V) + (A"e"(4.11c), (T —

8ZZ)AT6TA‘~/> and applying integration by parts, the Holder inequality, the Sobolev inequality, Lemma
2.1, and Lemma A.4 to the resultant, since r > 2, one has, for some constant C,, > 0,

17 . r+1 rAT; r+i 7 17
SV 4 TN — 7 (AT 3T AT 2 4 A7 hem 40, R)

~(V.vv V) - %<(VL VW) (V- va.v.0.7) - %<(VL Vo vt 0.7

=0
ATeTAV VT, AT TAV> <AreTA(<v¢ .V)"}L)7A7'67A‘7>
ATemA(V -V, V), ATeT 40, V> 2<Are”‘((w -V)azf/i),Areanzﬂ

ATeTA(V VXN/)7AT€TA‘7> B <V'VAT€TA‘77AT’67A‘7>) (4.20)

<
<
- ( _
-

AT AV vaj/),AreanZ@ - <V- VA’”eTAﬁz‘N/,ATeTAasz>)

=0
- %<Are“4 ((vl -V)f/i),ATeTA@ - %<Are”‘((w -V)azf/i),Areanzﬂ

<Crat V1,00 (JAT5TAV |2 4 | ATH5e740,V)2) + C

2
r,1,7
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Now, let

K(t) :=max{(1+4+ Cy ) Ki(t),(1+ Cyo)K2(t)} and T =7(t) := 10 €Xp (—/0 K(s) ds) .

(4.21)
Then 7(t) satisfies
7(t) < 1e(t) and 74 CraTl|[Vr1,00 7+ CraT[VIlrs1,08 <7+ CraTKz < 0.
Therefore,
IVOllr+1,070) < NV (E)lrt1,0,mm0) < Ka(t) < K(1), (4.22)
and, after applying the Grénwall inequality to (4.20), we have
t t
PO 10 +2 [ 10T € < 1Tolsmexn ([ CallV©lsr0r0) w2

Va2 ryeld Creta e < Ty 2, el K,

Consequently, according to (4.17), (4.19), (4.22), and (4.23), K and 7 as in (4.21) verify (4.14) and (4.16).
O

Remark 6. From Proposition 4.2, one can see that the growth of ||V(£)[|,41,0,0 and [|[V(£)]l,41,0,r(¢) are

double exponential in time, while the growth of ||V (t)||,.s.0 and H‘N/(t)Hrys’T(t) are triple exponential in
time.

Remark 7. Thanks to (4.9), similarly as in (2.20), we have

1 ~
IVellZ s = V-7 s = SIVIE

r,8,T r,8,T)
whose growths are also triple exponential.

Remark 8. Proposition 4.2 is for the general initial data. However, by considering special solutions to the
2D Euler equations, one has the following:

e Supposed that V is uniformly-in-time bounded in S, 41,07, i.., SUpg<scoo ||V (E)|lr41,0,» < Cas,r for
some positive constant Cjr,., then one can control the growth of ||V ()|,.1.» by one exponential in
time.

e Supposed that supg<; o |V (E)|lr11,0,- < 1c— is small enough, by applying the Poincaré inequality

and with 7 chosen suitably, from (4.20) one can derive that

2
r1,7*

r,1,7 r, 1,7

d ~9 1 ~ ~
- - < _
SNV 1r + 310V s < 2|7
After applying the Gronwall inequality to the above, we obtain
~ . 1 t ~ . ~
V@71 e + 5'//0 10V ()17 1,6)€”*dE < [IVoll7 1.7,

In particular, the estimate above holds when V = 0, i.e., zero solutions to the 2D Euler equations.

5. Effect of Fast Rotation

In this section, we investigate the effect of rotation on the lifespan 7 of solutions to system (1.1). We
show that the existing time of the solution in S, o () can be prolonged for large |2 provided that the

Sobolev norm ||§0||%+5,170 is small, while the analytic-Sobolev norm [|[Vo||».0.-, can be large. Such initial
data is referred to as “well-prepared” initial data.
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Theorem 5.1. Let § € (0,1) be a constant. Let |2 > [Qo| > 1 and |Qo| be large enough such that condition

(5.3) below holds. Assume Vo € SN Sr43.0,705 Yo € SNSr12,0.70 NSpg1,1,my with m > 2 and 79 > 0. Let
M >0 be such that

Hv0||2+3,0,‘r0 + |W0||i+2,0,70 + ||VO||3+1,1,TU < M, (5.1)
and

~ M
”VOH%qLS,O,O < |QO|1/2‘ (52)

Then there exists a time T = T (1o, |Qol|, M, r,v) satisfying

1
T = " log [e*CTO’M"" log [log [Cry a7 10g (Cro,M,r,u|Qo|)H] > 0, (5.3)
T0, \T

for some positive constant Cry arr > 0 depending only on 19, M, and r, such that the unique solution
V obtained in Theorem 3.1 satisfies

VeL™® (0, ;8N Sr,O,T(t))a (5.4)

with 7(t) > 0, t € [0,7T], satisfying (5.38), below. In particular, from (5.3), T — oo as |Q|*/? — oo, for
any fized v.

Remark 9. Recall that the result in [23] requires the initial baroclinic mode Vo to be small in the H30
space instead of (5.2) in Theorem 5.1. This relaxation on the requirement of Vy is due to the vertical
viscosity.

In Theorem 5.1, we consider general initial data V) for the barotropic mode, where the vertical viscosity
helps relax the requirement on the initial baroclinic mode, but does not help prolong the lifespan. By
virtue of Remark 8, when the solution V to the 2D Euler equations with initial condition V, satisfies
certain conditions, the smallness condition (5.2) can be relaxed and the result (5.3) can be improved. The
following theorem is the summary of these results:

Theorem 5.2. With the same assumptions as in Theorem 5.1, let V(t) be the solution to the 2D Euler
equations with initial condition Vo = Vy. Then

(1) if [V®)llr+3,070) < Catyrs the result (5.3) can be improved to T = 5——— log(log(|Q0])):

0, M,r,v

(i) if [V llri3000) < ic, which is small enough, then (5.2) can be relaxed and replaced by

||170||%+5,070 < gty and (5.3) can be improved to T = —— log(|Q]);

T0,M,r,v

(iii) finally, if the initial condition satisfies | Volrt3.070 < IQL/([)\’ (5.2) can be relaxed and replaced by

1
~ . Qo2
Vollz 4500 < Tty and (5.8) can be improved to T = %
Remark 10. Compared to [23], the main improvement in Theorem 5.1 is that the initial data is analytic
in the horizontal variables but only L? in the vertical variable. The main improvements in Theorem 5.2
are points (i¢) and (i), where the smallness assumption does not depend on €, and the lifespan is
growing faster with respect to 4. For more details, we refer readers to R3 and R4 in the introduction

(pages 2 and 3).

In this section, we focus on equations (2.22)—(2.24), which are equivalent to system (1.1). To prove
Theorem 5.1, in section 5.1, we rewrite (2.22)—(2.24) as the perturbation of (4.2)—(4.4). In section 5.2, we
establish a series of a priori estimates on the solutions to the perturbation system. This together with
Proposition 4.2 will finish the proof of Theorem 5.1. In section 5.3, the proof of Theorem 5.2 is provided.

Remark 11. In this section, we only focus on the long-time existence of the weak solution. By virtue of
Theorem 3.2, the weak solution is analytic in all spatial variables.
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5.1. The Perturbation System

Denote by
¢=V-V and oy :=Vi — Vi (5.5)
Calculating the difference between (2.22), (2.23) , (2.24) and (4.2), (4.3), (4.4), respectively, leads to

06+ 48 TVe 46V, +V Vo + (60 V)T +iV )+ (65 - V)G +i5)
bWV D)@+ i8") —v0esrs € Qi ~ BoQu s~ PoQars — Qs )
e (Qu i =~ PoQu it~ PoQet — Qa ) + eV Quy =0, (5.6)
06— 43 IV +3-Vo_ +T Vo + 36 VIV V) + L (6 V)G - ig")
Vo V)@~ i8") vt e (Qu o~ FoQu — Fo@o -~ Qs
+ e (Quip- — PoQu o — PoQatm — Qupm ) + M Qup o =0,
V.-¢=0, 0.p =0,
K+ 6 VV+6-Vo+V - Vo+ e Po(Qui s + Qo ot )

+ e P (Qro o+ Qo ) + TP =0, (5.7)
where
Qi i=bs - VVe+ s Vo + Vi Ve + Ve - VVa,
Q21,57 =V 0)Ve + (V- 0u)px + (V- Vi)ox + (V- Vi) Ve,

Qs+ 5 := (/ V- ¢i(w,s)ds> 0.V + (/ V- ¢i(:c,s)ds> 0.0+
0 0
+ (/0 V- Vi(:c,s)ds) 0.0+ + (/0 V- Vi(w,s)ds> 0.V,

Quis =565 VIV FIV) + (92 - V)G Fi5")
+ (Ve V)@ Fid )+ (Ve - V)V FiV ).
Recalling that (V, V1) and (V, V) are complemented with the same initial data. Hence, we have
@li=o =0 and ¢+|t=0 = 0. (5.8)

5.2. Proof of Theorem 5.1

In this subsection, we prove Theorem 5.1. Thanks to Proposition 4.2, for any given 7 € (0, c0), let V3 and
V be the global solution to equations (4.2)-(4.4) in L>=(0,7 ;S NSyi2,1,7)) and L>(0,7;8NS,43.0,7(1))
for some 7 = 7(t),t € [0,7), respectively. Next, we provide the energy estimate in the space S, ¢ ;) for
equations (5.6)—(5.7).

After applying similar calculation as in (3.1), we obtain that

1d . el oo I
5 g 1041707 + le-1Z0.0) + V1004170, + 10:0-[70.) = FUIA™ 2™ 61| + ATz ™0 |1?)

(G- TVy 8-V, + V-V, 4 5(64 - VIV +iV5) + 5(04 - V)G +i5)
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+
| —

(V- V(¢ + @L) + e (Q1,+ +— Qs+ +> +e i (Ql,—,+ - Qs,—,+) +e HUMQy L, ¢+>

BV 45 Vo 4V Vo + (6. V)V iV )+ (6 V)G i)

(V_-V)(¢ - ZEL) +e (Ql - — Qs 7> + e (Q17+,, - Q3,+,7) + e MQu 4, ¢—>
<Ar TA(p VV7)7A/,~€TA¢7>

\r—l/\w

/\ /\ /\ /\ T~ /\M

Are‘rA (a . VV+ A'r TA

Tp2

‘)
TeTA(¢ Vo, ), ATe A > <Ar TA V¢_)7ATBTA¢_>
)-

Tp2

o

Tpl Tpl

AT’PTA(V V(ZS A'r‘ TA¢ <Ar TA V v¢ )AreTA¢_>

Tp4 Tp4

A A by V(T +iVTY), ATeTA¢+> - <ATeTA(¢_ YV =iV, A”eTAgb_>

Tp2 Tp2
— (NG V(G +iG ), ATy ) — (AT G V(G- 6 ), AT )
Tpl Tpl
ATV V(G +i6 ), ATe™ s ) = (ATeT (Vo - V(G —id ), ATe ™o )
Tp4 Tp4
- emt(<AT€TA(Q1,+,+ — Q3,1.4); AT€TA¢+> + <AT€TA(Q1,+,— - Q3,+,—)7AT€TA¢—>>
Tpl,- , Tp5
- 67iQt(<AT6TA(Q1,—,+ = Qs,—+), ATETA¢+> + <AT€TA(Q1,—,— - Q3,—,—)7AT€TA¢—>)
Tpl,-,Tp5
_ e2iQt<Ar€TAQ47+’7’ Ar67A¢7> _ 672iQt<A’l"eTAQ417’+7 ATeTA¢+>’ (5.9)
Tp1,Tp2,Tp4, Tp5 Tpl,Tp2,Tp4, Tp5

and

1 d Y . r+1 TA7
g%llz‘lre”‘dﬂl2 =7| A" zeTg|

—(A7TAG V), AeTAG) — (ATeTAG - V), ATeTA5)

Tp2 Tpl
- <AT€TA(V' Vo), AT€TA$> - €2mt<AT€TA(Q1,+,+ +Q2,4.4), AT@TA$>
Tpd Tp1,Tp2,Tp4, Tp5
_ ef2iﬂt<AreTA(Q17_7_ 4 Q27_’_)’ATBTA$>’ (5.10)

Tpl,Tp2,Tp4,Tpb5

where we have applied Lemmas 2.2-2.3. Tt is easy to verify from (5.7) and (5.8) that

o, t) dx = / o(x,t)|i=0 dx = 0,
T2 T2
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and therefore, applying the Poincaré inequality yields
9l < [[A"e™6  and  [[@]l0,r < Cll AT (5.11)

In (5.9) and (5.10), we have labeled five types of terms by Tpl,---,Tp5, which we will present
the estimates. The rest lower order terms can be estimated in a similar manner and will be omitted.
Temporally, let V denote V4 and V, and ¢ denote ¢4 and ¢. The aforementioned five types of terms are
described in the following:

e Type 1 (labeled as Tpl): terms that are trilinear in ¢, e.g.,
eint<AreTA((¢ . V)¢)7AT€TA¢>7 eint<AreTA((v . ¢)¢)’ ATeTA¢>’
and eﬁQt<ATeTA (/ (V- p(x,5)) d532¢),AreTA¢>, j=0,+1,+2;
0

Type 2 (labeled as Tp2): terms that are bilinear in ¢ with no derivative of ¢, e.g.,

eint<ATeTA((¢ . V)V),AT67A¢> and

ejmt<AreTA((V . V)¢),AreTA¢>, j=0,%1,£2;

Type 3 (labeled as Tp3): terms that are bilinear in ¢ and a vertical derivative of ¢, e.g.,
ejmt<AreTA (/ (V-V(x,s)) d882¢),ATeTA¢>, j=0,+1,+2;
0

Type 4 (labeled as Tp4): terms that are bilinear in ¢ and a horizontal derivative of ¢, e.g.,

eint <Ar67'A ((V . V)QZ)) , AT67A¢>, 6int <A7‘67A ((v . ¢)V) , ATGTA¢>7

and eimf<A’“eTA(/ (V.¢(w,s))dsazv),ATeTA¢>, j=0,+1,+2;
0

Type 5 (labeled as Tp5): terms that are linear in ¢, e.g.,
ejiﬂt <AT‘€TA ((V . V)V), ATeTA¢>’ ejiﬂt <AT‘€TA ((V . V)V) , AreTA¢>,
and eint<A7'eTA (/ (V-V(x,s)) ds@zV),AreTA¢>, j==+1,+2.
0

5.2.1. Estimates of Type 1 — Type 4 Terms. We start with Type 1 terms. Applying Lemmas A.1-A.3
yields

1
|Tpl| SCT/O A" 246 (2) |72 m2) (1A7€™6(2) | 212y + 16(2)]| 22 (12)) =
L' in 2 L in z

1 1
+ G AT 2T AN 102 lr0,r < Crll AT 2SI 1,1,

where we have used the embedding L° < H! in the z-variable and the Hélder inequality. Notice that,
for ¢ = ¢, the estimate is similar with obvious modification. Therefore, hereafter, unless pointed out

explicitly, we omit the estimates in the case of ¢ = ¢ and, similarly, V = V.
Similarly, applying Lemma 2.1 to Types 2 and 3 terms yields

1
r T r_T 2
Tp2| SCT/O (1A ™V ()| 22y + IV () 2r2)) (A€ 6(2) |22y + 16(2) | L2(r2))” dz
L in z L' in z

<SGV, 19117 0,7 and
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1 z
Tp3| <C, / [( / LA™ 1AV (5)] oy + V() L) ds) (||A’“eTAaZ¢<z>||Lz(T2> + ||az¢<z>||mz)>
L in z L2 in z

x (AT@T%(Z)HL?(W) T ||¢<z>||m2)ﬂ 4z < CollVis1.00 [9:lln0.s 16

7,0,7

L2 in 2
v C.
<210:012 0, + VI 1019120,
In order to estimate Type 4 terms, notice that Tp4 can be written as, with abuse of notations,
Tp4 = Tpd, + Tpd,,
where
Tp41 — eint<(V . V)Are‘rA¢’ ATeTA¢> + eint<(v . ATGTA(Z))V, ATeTA¢)>
z
+ eint< / (v . A7'67A¢(S)) dsaz‘/; AT‘eTA¢>’
0
Tpdy = (AT (V- V)g) — (V- V) A", A7e ™)
+ 6int<Are'rA((v . ¢)V) _ (v . ATeTAd))V, AT6TA¢>

+ eint<Are7—A(/z(V . ¢(S)> ds@zV) — /Z (V . ATeTAq[)(s)) dsd,V, ATeTA¢>.
0 0

Observing from (5.9) and (5.10), only for V' = V., Tp4, is nontrivial. Therefore, after substituting the
inequality |oz\% < |ﬂ|% + |§|% for a4+ 3 = £ in the Fourier representation of Tp4, (see the proof of Lemma
A.2 in the appendix), one can obtain that, for any § € (0, 1),

Tpd, | < K(A%Vi VAT R A, AT Ag) |+ K(Vi VYA e A, AT+%eTA¢>‘

(VAR A A, ARG )| 4 (V- AR AV, AR )|
+[( /Z(V AT R g(s) ds0. ARV, ATe g )|+ |( / (V- AT hem6(s) dsd. Ve, AT e )|
0 0

1
< Cr/O (IA2 Ve ()l mres oy + V)l mes(re)) [A™ 2™ 0()| T2 e d2

L in z L' in 2

1 z
+ CT / |:/ ||AT+%67A¢(S)HL2(T2) ds X HAT'i_%eTAqS(Z)HLz(Tz)
0 0

’ L2 in z
L in z

% (10- A3 Vi (2l oo ey + 10:Ve ()l rres o) | d= < CollVllg g0l A7 €402,

L2 in
where we have applied the Sobolev eml;edding inequality and the Holder inequality. Meanwhile, applying
Lemmas A.4-A.6 to Tp4, yields
1
Tods] <Cr [ 140 e | AV (2 z2cen
+Cor / AT A B A7 AV (3 e d
+ O ATQV (A7 )° + Cor||ATH 240, V|| AT+2 e A
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i TA
SCollVlrarlldlior + CorllVigy - AF2e™ 0],

Remark 12. For the interested readers, we refer to [23] for an alternative estimate of Tp4,, where some
cancellations are taking care of. However, in this paper, such cancellations are not necessary and thus
omitted. Notably, the terms [|Vi ||z 5 in the estimate of Tp4, is the reason for the requirement (5.2).

. 1 d .
5.2.2. Estimates of Type 5 Terms. In this case, j # 0 and ¢/ = ﬁﬁem”. Therefore, Tph can be
i
written as, with abuse of notations,

1 1
Tp5 = ﬁﬁtN —|— *R,

Q
with
Qit
N=2 [<A’e”‘((v VIV), A7)+ (ATTA((V VIV, A7)
" . (5.12)
+ (arerd( / (V- V(s)) dsazv),A’“efAcb}] :
0
ejQit r TA r TA r TA r TA
R=" 6t<A eTA((V - V)V, Ae ¢>+at<A eTA((V-V)V), ATe ¢>
. o (5.13)
+ 8t<ATeTA (/ (V-V(s)) dsazv),ATeTAqﬂ :
0
=:R3
It is straightforward to check that
N < CellVIra IVIe+1,07l9llr0,7- (5.14)
Meanwhile, one has
R :2+<AT+1eTA((V V)V, ATeTAgb> n <A’eTA8t((V : V)V),ATeTA¢>
n <A’”e“‘((v : V)V),ATeTA8t¢> = Ry1+ Ris+ Rys.
It follows that, thanks to Lemma 2.1 and similar arguments as in section 5.2.1,
Riy < G|V IV Ir42,071llr0.7- (5.15)

After applying the Leray projection (2.12) to (4.4), together with (4.2) and (4.3), for V.= V4 or V, one
has

OV — vd..V =B(V,VV). (5.16)
——

for V=V

Here we use B to represent a generic bilinear term with respect to both of its arguments. With such
notations, after applying integration by parts, one can derive

Ris=— 2u<A’“eTA((aZV : V)E)ZV),A’“eTAq’)> - u<A’“eTA((aZV V)V 4 (V- V). V), A’"e”‘az¢>
+ <ATeTA (B(V,VV)- V)V + (V- V)B(V,VV)), ATeTA¢> (5.17)

V1,9 rorr);

T Birkhauser

<Cr(1+ V)(IIVllr,l,THVHrH,l,T||¢||7-,1,T + Vi o VIR IV 20,0 ll¢

7,0,7



73 Page 28 of 44 Q. Lin et al. JMFM

where we have applied Lemma 2.1 and similar arguments as in section 5.2.1. Similarly, according to
(5.6)—(5.7), for ¢ = ¢+ or ¢, one has, with abuse of notations

00— (1026 +7([ V(64 V)(9)ds)0-6+V)) = Y BAB) (5.18)
0 ABe{¢,V}

for ¢=¢+ and V=Vi

Therefore, R; 3 can be estimated as
Ris=— V<ATeTA((azv V)V (V- V)BZV),ATeTA8z¢>
B 6j£2it<Ar+1e‘rA((V ] V)V)7Ar71€n4((/ V- (¢+V)(s)ds)0. (¢ + V))>
0

—_ Z <Ar+1eTA((V . V)V),Ar_leTAB(A, VB)> (519)
A,Be{¢,V}
SCTV”V||7",1,7-||VH1”+1,1,T 82¢||7",0,T
+ CT||VHT+1,1,THV||7"+2,O,T(||¢Hr—l,1,7' + ||V||r—1,1,7-)(||¢||r,0,7- + HV |T,0,‘r)'

The estimate of Ry is the same as R; (see (5.15), (5.17), and (5.19)). To estimate Rs, one has, after
applying integration by parts,

Ry = 27'<A”1e”‘ (/Z(v -V (s)) dsazv),A’“eTA¢> - <A’“eTA5't((V : V)V),ATeTA¢>
0

- <A’”e”‘8t ( /0 Ve V(s) dsV),ATeTA8Z¢> + <A’“e”‘ ( /O (Ve V(s) ds@ZV),AreTA3t¢>
=:R3 1+ R3 2+ R33+ R3 4.
As before,
R31 < Crltl|VIr+2,0,7 1V Ir41,1,7 1@l 0,7- (5.20)

The estimate of Rj3 2 is the same as that of Ry 5 in (5.17). Meanwhile, substituting representation (5.16)
in R3 3 leads to

Rss=— <A’”e”‘ (/OZ(V -9,V (5)) dsV),ATeTA82¢> - <A’”eTA(/OZ(V V(s)) ds@tV),ATeTA82¢>

_ TeTA - (v s s re‘rA
—— (A ([ (7 @0V + BV.TV)) () dsV) 47 0.0) a1

- <A’“e“4 (/OZ(V V(s)) ds(vd..V + B(V,VV))), A"e”‘azqs>

<Cr(VIVIrsr.0-1VIirze + 1VIrt10-]V]
After substituting (5.18), R34 can be estimated as

17 IV lrs2,0,7) 102807

Rsq=— 1/<AreTA ( /O (V- V(s) dsasz),AreTA8z¢> - V<AT8TA((V : V)@ZV),AT67A8Z¢>

- it griigra (/OZ(V V(s)) dsd, V), A7~ e [(/OZ V- (6+V)(5)ds)0-(6+ V)] )

_ Z <AT+16TA(/Z(V_V(8)) dS@ZV),AT_leTAB(A, VB)> (522)
0

A,Be{¢,V}
<Cv|Vlrs1,071VIr2,710:0lr0,7
+ CrHVHT+2,0,T”V”r-&-l,lﬁ(”d’ |T,07‘F + ||V||7",0,T)(H¢||7"—171,T + ||V||r—1,1,'r)~
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We emphasize that, in the estimates above, we do not distinguish Vi and V, ¢4 and ¢, i.e., we treat all
V and ¢ as if they are three-dimensional. The estimates in the case when they are two-dimensional are
similar with obvious modifications, and thus omitted. Consequently, combining (5.15)—(5.22) leads to the
estimate of R.

5.2.3. Finishing of Proof of Theorem 5.1. Without loss of generality, we assume |2| > 1. Combining the
estimates in subsections 5.2.1 and 5.2.2, from (5.9) and (5.10), yields, thanks to (5.11) and the Young
inequality,

d . 1
ZF +vH < [#+ K37+ Co(IVallg a0+ IVollgas o)
1
+CF? +OTH%} X G+Cr(1+u+f)(K2+1)F
Co(1+ C, (5.23)
N (|QV)KH—|— o (10-Vr e + 210V 7 ) HE
Cr(1+v) /. 9 1
+ 7(|r| T2 1) + —,N.
€2 €2
where 0 € (0, l) and
= (A7) + o170, (5.24)
= IIAH%TAQSH2 + AR A |+ [|ATF e, (5.25)
- ||8Z¢+||TO T + ||az¢ ”rO ) (526)
= ||V||r+2 o+ T ||V+Hr+2 o0 HIIV- ||r+2 o+ T ||V+H%+1,1,T + HV—H§+1,1,T~ (5.27)
Assume that, for the moment, we have
7+ CoK T+ Cr (V35,00 + V- lls5,0,0) + CoF? 4+ CLH? =0, (5.28)

which implies 7 < 7y and
|71* < Co(75 + DK + C(F + H).

On the other hand, recalling M as in (5.1), then according to Proposition 4.2, (4.8), and (4.9), there exist
Chr, C > 1 such that

AK+¢A (V10:Vi ()2 1,0 + 10:V- (5|21, ) ds < explexplexp(Cit + Con)]] = K(t),  (5.29)

and

/0 (|‘V+(3)H2g+5,1,0 + V(s )||2+5 1, 0) ds < (1+ )HV0||2+50 olc(t) (5.30)

Under these conditions, from (5.23), one can derive that

d 1 Cr(1+v)
SF+ZHZC( (2 p1)Fy oY)
S O ( -l—u-l—y)(/C + ) )

C,
(K -+ DH + 165 (VI0:V4 2 + w10V 1 )
C (1 +v) 1
- T OV (5.31)
Therefore, multiplying (5.31) with e~Cr(Hr+5) [f(K*+1)(#) ds Jeads to

d v_ M(K + 1)]H6—cr(1+u+%)fg()c2+1)(s) ds
dt

TR
(A0:-V 21,y + 0V |2, ) Cem it D U4 ds

(IC2+T§+1)+

(F —Cr(14v+1 f(f(ic2+1)(s)ds)_|_

e
|22
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G+ (K2 4 7 4 1) 00D BP0 s L5 N x e Crlhut2) [LK*1)(s) ds

t
1€ 1€
Integrating the above equation in time and recalling that F'(¢ = 0) = 0, one obtains
t ’
(F(t)efcrrv(1+u+%).f&(’c2+1)(5)d5) +/ [g _ Cr(|1Q—|i_l/)(IC(t/) + 1)]H(t/)efc,,.(1+u+%)f(f (K2+1)(s) ds dt’
0
t
C _ sl rt! 12 s) ds
< [ e (Ve s+ w0V ()2 e O O 0 2 gy
+/ C”'(]‘S)—;_ V) (’C2(t/) 4 7_61 + 1) 67C7-(1+V+%)fgl(K:2+1)(S) ds dtl (532)
0
t ’
+—/"|éﬁ%Am 1)~ O ) I (D) ds gy
T T 1 K 1 ¢ t!
Séﬁmo+cxﬁwfkuw+ﬁ+nw+gw/@prcmwﬂww”HM“ﬁc
0 0

where we have applied (5.29) and, thanks to the definition of I,

K(t)e=CrOtv b Iy (R +D@ ds < ¢ (5.33)

for some constant C' € (0, 00). On the other hand, thanks to (5.14), (5.29), and (5.33), since N(¢ =0) =0,
one can derive that

t ’ .
/ at]\[(_t/)e—cr(1+1/—i—1%)f(;5 (K241)(s) ds di' = N(t)e—cr(l—ky—&-%)jg()C2+1)(s) ds
t ’
+Cr(1+v+ l)/ N(E)(K2(Y) + 1)e=Crtv) [i (K H1)(s) ds gy
v-Jo
< ’C( ) <1+1/+ )fg(lc2+1)(s) dsF%(t) + Cr (1 + v+ 1) (534)
14

(#')eCr(1Hv42) [ 0P +1)(s) ds gy

SIS

t
/ (K*(t) + DK ) F
0
. 1, (" ., .
SCF2(t)+Cr(1+v+ ;)/ (K2t + 1) F=(t")dt’.
0
Hence, (5.32) implies that, for ¢ € [0, 7], since || > 1, after applying the young inequality,

t
F(t) + Z/ H(t/) dt’ < &K<t)eCT(l+u+%)fot(lCz-i-l)(s)ds
4 Jo |€2]
2

1\2 / gt
+ OT(I TQV‘+ ;) (/ (K:Q(t/) + 1) dt/> 607‘(1+V+%)-f(3t(’€2+1)(8) ds (5_35)
0
¢
Cr(|1Q+ V)/ (IC(t/) +Té + 1) dt' eC,,.(1+u+§)f(§(lC2+1)(s) ds’
0
where 7 € (0, 00] is given by the following constraints:

(s)>0 and Lo CT<|10+”)(/C<S) 1) >

Since || > ||, in particular, there exists a constant Cpsy -, €

>0 for s€l0,7]. (5.36)

—~ R

1,00) such that, for ¢ € (0,71,

/ H(t') dt <m( —&—V—&—%)Qexp (1+y+%)exp[exp[exp[cM,r,To(t+1)]]] . (5.37)
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Now we will be able to estimate 7. To ensure 7 > 0 in (5.36), from (5.28), (5.29), (5.30), and (5.37),
one has

t t s 1 1
T(t) = —Cr/ e~ Cr i K2 s (V13704510 + V- ll3/2451,0 + F2 + H?) dt’
0

t ot ,
+ 79eCr Jo K2 (@) dt" > T0 eXp[eXp[eXp[eXp[—Cﬁw)r(t + DI
L ) ) (5.38)
—-C | (1+ m)HVOH%-&-é,O,O + W(l +v+ m)

exp (141 + 2) explexplexplCar o ¢+ D]

for some constant Cj, .,Cy,. . € (1,00). Notably, the function 7(¢) we obtain is bounded above by
(4.15). Therefore, for ¢ > 0 satisfying

exp (141 4 1) explesplexplCh ., ¢ + D] = explexploxpl—Chy, 1+ )]

_ 70 (5.39)

)

— X I
2C, ((1+ m)”v0”%+6,0,0 T+ + m))

or equivalently, under the assumption of (5.2), for some CY; . € (1, 00),

exp [(1 +v+ %) explexplexp[Chy ., (t + 1)]]] — explexplexp[-C . - (t + 1)]]]}

O;\/J,T,To |QO|1/2

) 5.40
[ (5.40)
it follows that 7(¢) > 0. In particular, for ¢ € (0,T] with
Ot rg [ Q012
T . L el log ( Tt (5.41)
= 0 - og |lo , .
5\//[7,477_0 & eCM%To & & 1+v+ %

the above inequality is satisfied.
Consequently, under condition (5.2), (5.36) and (5.39) imply (5.3), and (5.37) implies (5.4) thanks to
(5.5). This completes the proof of Theorem 5.1.

5.3. Proof of Theorem 5.2

In this section, we prove Theorem 5.2. We only sketch the proof for the first two parts, and will provide
detailed proof for the third part. -
For the first part of the theorem, thanks to Remark 8, we know that when supg<, o [|V(¢)l[r43,0,7(1) <

Cu,r the growth of ||\~/(t)||r+2’177(t) will only be exponentially in time. Thus, the function K(¢) appears
in the proof of Theorem 5.1 (e.g., (5.29) and (5.35)) becomes only exponentially in time. This reduces
two logarithms in the estimate of existence time and gives

1
T= o log(log(|€20]))-
T0,M,r,v
This can be seen as in (5.36) — (5.39).
Similarly, for the second part of Theorem 5.2, thanks to Remark 8, when supy<,, V() llrts,0r <

1c. is small enough |H~/(t)||r_,_2,177(t) does not grow and thus the function K(¢) is uniformly-in-time

bounded. This reduces one more logarithm and gives
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1
T= mlog(|90|))~

To show that the smallness condition (5.2) can be relaxed, recalling K in (5.27). Under our new assumption
on V, thanks to Remark 8, we have that Kz < 2=+ Cure 2 and [V (8)||3/216,1,0 + V= (£) |3 /246,10 <
= —e~ 2t Now recall from (5.38) that

C4'r',u,M
t 1 ’ 7
T(t) = (To - Cr/ el K3 ds(||V+||3/2+6 1o+ IV=lls/2+61,0 + F3 + H%) dt')e’c" Jo K2 (&) dt )
0
in which we will ask for

t vo1
To — C’r/ eCr Jo K2(s) ds(||v+||3/2+5’170 + ||V7||3/2+57170)dt/
0

e}
T0 COr 4l vyl T0
Z T0 — Cr/ CM,V eCre 2 dt/ 2 53
0

rw,M

provided that C.. , »r and C, o are large enough. From this, one can conclude that the smallness assump-
tion can be relaxed and replaced by ||V0|| 54500 < Tt -

_ Next we glve the detailed proof to the third part of Theorem 5.2. Consider the initial data satisfying
Vollr+3,0,7 < IQ\ We set V = 0 and replace the initial condition (5.8) of the perturbed system to

&O = v07 (¢i)0 =0.

With more careful estimates, (5.23) becomes

d . 1
SF+vH < |7+ G+ C(IVillgrano + IV-l31510)

dt
+CoF 4 CoHE| X G+ Cpy LF
Cw Cry - (5.42)
r 1,7 r, 1,7 2Hz
+ |Q| 102V s + 10V 1. ) K HE
C
+ TVT0L+ rua N
it o
where 0 € ( 1) and F,G, H are defined as in (5.24)—(5.26),
1
- ||V+||r+2 0,7 + HV Hr+2 0,7 + HVJF||T+1,1,T + ||V ||r+1,1,7’7 L:=K-= + K + K27
and
7+ C R 7+ Co(IVillasa0+ IV-llzps1,0) + CoF? + CoH? =0. (5.43)
On the other hand, thanks to Remark 8, (4.8), and (4.9), there exist Cas,, Cr, C' > 1 such that
L <Cpye ¢t = K(t), (5.44)
t
v / (10:-Ve () 1217 + 10:V-(5)[12,1 ;)€ ds < Cas and (5.45)
' 2 2 YL
V/O <||V+( )H +571,0+ HV ( H +510) e’ ds < CHVOH%+5,070' (5-46)
With these conditions, from (5.42), one can derive that
d C C C C
7F H< TULF v T,V ’I"I/’T(]L 4
and thus
d Cro C C
v 0.V. OV_|2,,)K+ 2L 4+ 22N, :
dt (H +||T,1,T + || HT,I,T) + ‘Q| + |Q| t (5 47)
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provided that |Q| > C}y ., for some positive constant Cas ., > 0. Multiplying (5.47) with e Crw Jg L(s)ds
leads to
i (Fefc"'»" fg (s) ds) + He Cru fo L(s) ds

dt
(s)ds + CT’V 8,5Nefc"‘*” fot L(s) ds'

1€

After integrating the above equation in time and recalling that F(t = 0) < é{)‘, since || > |Q| > 1,

|Q|2 (IIa Vill2y -+ 10:-Vo|2, T) —Cr JE L(s)ds

Cr V,To

+ ZDBT0 [ e=Cry Jo L

one obtains

t ’
(F(t)e=CroJo L()ds) +/ %H(t/)e—cr,uf(} L(s)ds g/
0

CM O Crujo (s)ds
<t T / o |(||a VeI, + 10V @I, ) e »

. (5.48)
/ | f“L<5>det'+/ Cra g N (1)e=Cne IS 10 gy
L r,u Jo r,V .
|Qo| Q0]
< CMT'I/TU / atN —Cyy jot, L(s)ds dt/.
= Qo |Qo|
ccording to (5. since now ue to the estimate becomes
A ding to (5.34), si N(0)#0d (i)O;AO, h i b
/ at —Chr fo L(s)ds dt N(t)eiCT"" fot(lC2+1)(s) ds N(O)
+CW/N e~Crov Iy L(s)ds gy
1 t 1
ch,T,U(Ff(t)H) +C,, / K(#)FE () dt.
0
Hence, (5.48) implies that, for ¢ € [0, 7], after applying the young inequality, one has
/ H(t')dt' < CM”TO, (5.49)
1Q20]

where 7 € (0, 0] is given by the constraint
7(s) >0  for se[0,7].
Now we will be able to estimate 7. To ensure 7 > 0, from (5.43), (5.44), (5.46), and (5.49), one has

¢ t s 1 1
T(t) _ _Cr/ e—Cr I K2(S)dS(HV+||3/2+5,1,O + ||V,||3/2+51170 + F2 +H2) dt’
0

4 pe=Cr o K3 (5.50)
1 ~
> TOC;W,r,u - OJ/M TV, T |Q ‘ (t + 1) 7"7V||V0H%+5,0,0
0

for some constant C;,., € (0,1),C..,Cly ., - € (1,00). Therefore, for ¢ > 0 satisfying

C 7019012
t+1<A§é",”7°|°| (5.51)

M,r,v,1o

and H‘7b||g+6,0,0 satisfying
||VO||%+5,0,0 <
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it follows that 7(¢) > 0. Consequently, (5.51) implies 7 = Cm¢

rem 5.2.

. This completes the proof of Theo-

0, M,r,v

6. Global Existence in 2D with 2 = 0

In this section, we show that the weak solution obtained in section 3 exists globally in time in the case
of 2D and Q = 0, provided that the initial data is small. This result is similar to the one in [46], where
system (1.1) with Dirichlet boundary condition is considered.

To be more precious, let us consider V = (u,v)" (z, z,t) with (2.7), i.e., the solution to system (1.1)
independent of the y-variable. It is easy to verify that

u =0, (6.1a)
00 + 0, Po(uv) = 0, (6.1b)
O + 01 — 0,0 (i) — ( / Oy, 5)ds ) 0.7 — O — 1.7 =0, (6.1¢)
0
O + U,V + UD,T — Do (WD) — ( / Bpi(z, s)ds) 8,7 + Qi — v0,,5 = 0. (6.1d)
0

We remind readers that B is the barotropic projection operator defined in (2.14). In addition, let = 0.
Then one can observe that 7 = 0 and v = 0 are invariant in time, a property that is not true in the case
of Q # 0. Consequently, with Q = 0 and Ty = vy = 0, system (6.1) reduces to

Ol + WO — Oy Po(W2) — ( / Bz, s)ds) 0.6 — 9., =0  with  0,@|s.1. (6.2)
0

We have the following theorem concerning the global existence of the weak solutions to (6.2) with
Q=0:

Theorem 6.1. Forr > 2 and 19 > 0, suppose that the initial data u|,=o = Uy € Sy.0,7, With fol uo(x,z)dz =
0 satisfies the smallness condition

UTo
C’
where C, > 0 is a constant as in (6.5), below. Then the unique weak solution to system (6.2) exists globally
m time.

[@olr.0,7 < (6.3)

Proof. (Sketch of proof) Similarly to (3.1), we have
1d, 9

> il
- <A’“eTA(/OZ O, u(x, s)ds) d.u, A’“eTAE>

. ~ ~ 1 ~
< (4 Colllllor + 10:l0.0) ) | A5 em a2,

thanks to Lemma A.1 and Lemma A.2.
It is easy to see that fol u(z,z)dz = 0. One can apply the Poincaré inequality to get ||u|yo0, <

+v)0.E|2,, = F| AT R AT - <ATeTAiZ@zﬂ, ATeTAﬂ>

|04l 0.7, and consequently,
1 d - 14 ~ . ~ 1 A~ | Ze
S L0+ 2100, < (74 Collosilor ) 147542 — 2.

Assuming that
T+ CrHaza”nO,T =0, (6.4)
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one has

d, -
A

After applying the Gronwall inequality, one obtains

+v]0:4)70 , < vl -

t
@170, + V/o 10:=(5)I17.0,(s)€"*ds < 07,07,

Therefore, integrating (6.4) from 0 to ¢ € (0, 00) and applying the Holder inequality in the resultant lead
to

t
T(t) =10 — CT/ 10-(s) |0, (s)ds
0

> 70— C’T(/Ot ||8zﬂ(s)||f70,7(s)e”5ds) : (/Ot e‘”“”ds)é (6.5)

(G
> 10 — — || uo|
1%

7,0,70

for some positive constant C, € (0, 00).
In summary, for the initial data satisfying (6.3), we have that 7(¢) > 0 for all ¢ > 0, and thus the
solution exists for all time. ]
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Appendix A. Estimates of Nonlinear Terms

In this appendix, we list the estimates of nonlinear terms in the analytic-Sobolev spaces S, 5 .. Lemma
A.1-A.2 will be used to prove the local well-posedness, and similar estimates can be found in [23,28].
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Lemma A.1. For f,g,h € S,,Jr% where r > 1, s >0, and 7 > 0, one has

‘<A7'e“4( f-Vg), A"eTAh>‘

1
S/O Cr [(”ATeTAf(Z)HL?(T?) +1fo()DIA2e™ g(2) | L2 (o) | A2 €™ h(2) | L2 (2 (A1)

+ ||AT+%6TAf(Z)||L2(T2) ||AT+%€TAQ(Z) ||L2(']I'2) ||AreTAh(Z) ||L2('JI‘2)} dz.

Proof. First, notice that ‘<A’“eTA(f . Vg),A’"eTAh>‘ = ‘<f : Vg,AreTAH> , where H = A"e™h. Using

the Fourier representation, we have,

fla,z)= Y fi(z)ed, (A.2a)
jEe2nL2

g(x,z) = Z gr(z)etk, (A.2b)
ke2nz?

Wz, z) = Z hi(z)e®, and by definition, (A.2¢)
le2n72

ATe™ H(x,2) = Z 1" iy (2)e®, with  Hy(z) = [I|"ehy(2). (A.2d)
le2r72

Therefore,

(rvgaretm) < [ 5 UEmlante e e

j+k+1=0
Since |I| = |7 + k| < |j| + | k|, we have the following inequalities:
0" < (4] + kD™ < Cr(ld]" + [KI7), e < emhilerlkl

Applying these inequalities, we have

1
(£ Vo.aretH)| < / > Colfi@)lIRlIge N1+ ke e e (2)dz.

j+k+1=0

Since |k|, |7, |I] > 0, we have |k|% <(l7]+ |l\)% < |j\% + |l|%, therefore,

(1 o)

1
S/ > Colfi @)K (512 + 112)|ak (2)](5]7 + [k[7)e e K jgme M By (2)|d=
0 j4k+1=0

1
< / S Co(RBGI T+ el A+ Rl R )
0 j+k+1=0

1
x el T ) 19k (2) | (2) ] dz =: / (A1 + Az + Az + Ag)(2)dz.
0
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Thanks to Cauchy-Schwarz inequality, since r» > 1, we have

Yo Colklz[gl e e R e £ ()] 1k (2) 1 (2)]

jHk+H=0

=Cr > [Iklzlgk el ST 1T f ()]G + RITeT R Ry,

ke2nz? jeanz?
kE#0 j#£0,—k
1 1
SCT‘( Z |k|72r)2( Z |k|2r+1627\k\|gk(z)|2>2
ke2rz? ke2nz?
k+#0 k0

X sup |:( Z |j|2r+1627\j\|fj(z)|2)2( Z |j+k|2r€2'r\j+k||il_1_k

2
T jeanz?
J#0,—k J#0,—k

< O A2 A F(2)]| poery | AT 2 €A g(2) || 12 2y || AT A R(2) || 12 72y -

Similarly, we have

> Colk g E e e e £ (2) g (2) | (2)]

j+k+1=0

@]

< G| AT 2 e f(2) | 2o | A2 €7 g (2) | 2o [| A€ A(2) | 2,

and

S Clklzl e e e £ (2)] gk (2)] | (2)]

j4k+1=0

§ Cr||AT6TAf(Z)HL2(T2) ||AT+%GTAQ(Z)||L2(T2) ‘|Ar+%eTAh(Z) ||L2(’]I‘2)-

For A4, thanks to Cauchy-Schwarz inequality, since r > 1, we have

ST Gkl R el £ ()| gr (2)]Fu (2)]

j+k+1=0

—o ¥ [ AlF S R (g ()| MG + R enli R,

jeanz? k ea2nz?

k#0,—3

<c{lh@i+ (X ) (X e

jeanz? jeanz?
J#0 J#0

N

1
. 2 . - 4 ~
X sup [( Z |k|2r+1ezﬂk\|gk(z)|2> ( Z |_7+k|2 +1,2 \]+k||h7]7k

iconz?
Jezm ke2nZ? ke2nZ?

k#0,—j k#0,—j

< Ch(J|A"€™ £(2) |2 r2y + [ fo(2) DA™ 2™ g(2) || 22y || A7 2 €72 h(2) || 12 72y

Combining the estimates for A; to A4, we achieve the desired inequality.

Lemma A.2. For f,h e S,

1
+3,8,7T

‘<AreTA((/OZ V- f(ac,s)ds)azg),AreTAhM

<C,J|A™EemAf|](|9 ATtzeAp.

(2)2)
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[V
[E—

[N

?)’|

and g,0.9 € Sy s+, where r > f, s >0, and 7 > 0, one has
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Proof. First, ‘<AT67A((fOZV . f(w,s)ds)azg),ATeTAh>’ = ‘<(fOZV . f(:c,s)ds)azg,ATeTAH>“ Owing to

the Fourier representation in (A.2) , we have

’<(/ZV . f(m,s)ds)ﬁzg,AreTAH>‘ = ‘</OZ Z 7 fj(s)eij'mds)azg,ATeTAH>'

0 jeanz?

1 z
<[5 ([ 1) 0T + ke e i)z

J+k-+H=0

1
1., 1 . 1 1 .
< [0S (R G k)
O jtk+1=0

w eTlil Tl Tl (/ |fj(s)|ds) 10,9k (2)||hi(2)|dz =: By + By + Bs.
0
where we have substituted the following inequalities: for j + k +1 = 0,
o1 1 1 r -7 T
915 < (R + R, 2 < Ol + kP,

Thanks to the Cauchy-Schwarz inequality, since r > %, we have

1 z
Bi= [ clkblarrire e Mt (olds) 0. ()

j+k+1=0
1 z
=G, / 3 [|k%|azgk<z>e7'k' > Ll / |fj<s>ds)|j+k|’”e7'ﬂ+khjk<z>]dz
ke2qz? jeanz? 0
E#£0
1 1 1 1
<c [ (Z|k|1-”)2(2|k2r|azgk(z>|2e2f'k')2sup[( > G )
0 k=0 k20 k#ZOL jeorze

(X LR )

jE2TZL2
1
< Cr||AT+%eTAf|\/ ||ATeTAazg(z)||L2(Tz)HATeTAh(z)||L2(Tz)dz
0
< C|ATTEeTAf|[| AT 40, g||| ATe R,
For By, we have

1 z
Bam [ ST clirrur e e Met( o) lds) o.0u 2
0 0

j+k+1=0

1 z
¢, [ % [loa@ler™ X 1t [ 1olds) i+ ke ol

0 keanz2 jeanz?

S/Olcr{|3z§0(z)|+ (Z|k|*2r)%<z|k|2r|azgk(z)|2e2rlkl)%}

k0 k#0

X sup {( Z |j‘2r+1ezr\j\||fj||iz)%( Z |j+k7|2r+1627|j+k|/A1_j_k(z)|2)ﬂdz

ke2rZ2 L2 jeorye je2nz?
1
<GS [ (1000 + 1476740, 2con) 147 R e
0

< G| A2 e f[[|0.g] 0. | AT EeTAR)|.

| (2)]d=
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The estimate of Bs is similar to that of By, and one can obtain that
By < G| A5 emA f||||ATem 4. g]||| A€ R .
Combine the estimates of By, Bo, and B3, we obtain the desired result. ([

Lemma A.3. For f,g,h € Sr+%vs77, where r > 1, s >0, and T > 0, one has
‘<AT€TA((V . f)g),AreTAh>‘
1
é/ Cr[(llAreTAg(Z)lle(m +1go(2) A 2™ F(2)| 122y | AT 27 R(2) || 12 2y
0
+ ||AT+%eTAf(z)||L2(Tz)HAT*%eTAg(z)HLz(Tz)HATeTAh(z)HLz(Tz) dz.
The proof of Lemma A.3 is almost the same as Lemma A.1, so we omit it.

We will show lemmas which are essential in the study of effect of rotation. Lemma A.4 to Lemma A.6
are concerning the commutator estimates.

Lemma A.4. For f,g,h € STJF%’S,T, where r > 2, s >0, and 7 > 0, one has

’<Are‘rA(f . Vg)7ATeTAh> o <f . VATGTAg,AreTAh>‘
1
< Cr [ 1A 1 aacom 14700 o) | 47D e

1
+Cr’7' / ||AT+76TA]C(Z)||L2(T2) ‘|Ar+§eTAg(Z)||L2(T2) HAT+§ eTAh(Z) ||L2(T2)dz.
0
Next, we have
Lemma A.5. For f,g,h € Sr+%vs77, where r > 2, s >0, and T > 0, one has
’<AT€TA((V . f)g),AT€TAh> _ <(v . ATETAf)g,AreTAh>’
1
< Cr/ [A" f(2) 2 @) | A9 ()l 22y [ AR (2) || 2 w2y d=
0
1
+Cy7 / AT+ 2 €A f (@) 2o A7 267 g (2) o) | A7 2 74 R(z) | 2 2y 2.
0
We start with the proof of Theorem A.4. The proof of Theorem A.5 will be similarly.

Proof of Lemma A.4. First, notice that ‘<A"eTA(f . Vg),A"eTAh>‘ = ’<f . Vg,A"eTAH> , where H =

ATe™ h. We use Fourier representation of f, ¢ and H, in which we can write

flx,z) = Z fj(z)eij.wv

jE2TZ?
g(CC,Z): Z gk(z)eik.ma
ke2nZ?
ATe™ H(zx,z) = Z |17 e™ My (2)et®,

le2nz?

Therefore,
I:= ‘<ATeTA(f . Vg),ATeTAh> — <f -VA"e™yg, ATeTAh>‘
= (- Vg are ) = (- VAT g, H)|
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1
< > [ IBEIMsEIRE| e - ke,
j+k+1=0"0
By virtue of the following observation [40]:
For » > 1 and 7 > 0, and for all positive £, € R, we have
[€7e™ —n"e™| < Cpl€ =) (I£ =" (€=l + nr)eT'g‘"'e”’); (A.3)

with & = |l], n = |k|, and |§ — n| < |j], inequality (A.3) implies

1
1<C 3, / IRl 313177+ 7+ 7517 + [l )emiler ™) .
Jj+k+1=0

By the definition of H, and since e® < 1 4 xe” for any x > 0, we have
[Hi(2)| = (1" (2)] < U7 (L + rlUem™ ) (2)] < U7V (2)] + (5] + [k Hi(2)]-
Therefore, one obtains that
()] (1317 + Rl 4 7317 + [R[)er el )
< (10712 + (5] + RDIH ) (1l + 1517) + )] (7Rl -+ [5]7)er ket
< [ (Rl 4 1317 + 7C [ Hu(2) (k[ + [5]7)e K lerll.

Based on this, one has

1
1<G 3, /O\fj(Z)llkllék(Z)Ilj\|ﬁ,(z)||w(|k|r71+|j|r71)dz

j+k+1=0
1 R .
+7Cr Y /|fj(Z)Ilkl\Qk(Z)HJ'IIHl(Z)\(IkIT+Ijlr)eT"“'eT'”dz:=11+12-
j+k+i=0"0
Here
1, . X . 1
n=C S [ (R I 1 T @I )ds = [+ Dads,
Jj+k+1=0

Thanks to Cauchy-Schwarz inequality, since r > 2, we have

Li=Cr Y Lillfi I |3 (U 1 (2)]

j+k+1=0
=Cr Y i@ DY kMg (2)]1d + kI Ak (2)]
je2nz? ke2nz®
J#0 k#0,—j
1 1
9—2r) 2 P, 2
< (X P (O PILE)R)
je2nz? je2nz?
340 340
1 1
~ 2 . A 2
x sup (30 RFIg)2) (DD 15+ kPR ()
JE2mLE "y o2 k2>
k#0,—j k#0,—j

< Gr[ATf(2)l| L2 r2) 1479 (2) L L2 2y | A" R(2) [ 272

Similarly, one gets

Ly < Col|A"f(2)l| L2y A9 ()l L2 2y | A P(2) || L2 (72) -
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Therefore,

1
I1 S CT/O ||Arf(Z)||L2(T2)HATg(Z)HLz(TQ)||Arh(Z)HL2('H‘2)dZ

Next, we estimate

1
B=rC 30 [ (e e M )1 )

j4k+1=0

1
gl e Mg () ) )= [ I+ Fand
0

Thanks to Cauchy-Schwarz inequality, since r > 2, by using |j|2 < |k|2 +|I|2, and |k|z +|I]2 < 2|k|2|l|2
when |k| > 1 and |I| > 1, we have

Lu=7C Y |3 e VIS ()lIklem ™ g (2)| | Hu(2)|

j+k+1=0
. 1 1 3 ~ 1 >
<7rC > G f ()K€ g ()27 2 e | (2)]
j4k+1=0
3,k 10
3. . 1 S . 1 ; >
<Cr 3 kg™ ST G ()15 + kTR R (2)
ke2rz? jeanz?
E£0 3#0,—k
1 1
SCT7'< Z |k|2—2r>2( Z |k|2r+1627\k\‘gk(z)‘2>2
ke2nz? ke2nz?
k0 k0
1 1
. G 3 . A 2
< sup (30 1L R) (N i R b (=)
R jeanz?
J#0,—k Jj#0,—k

< Cor|| AT f(2) ]| Lo pro) | AT 2 €T Ag(2) || 2 2y || AT 2 €T AR(2) | 2 12y -
Similarly, one gets

Iy < Cor|A™ 2™ f(2) ]| Lo o) | AT 2 €74 g(2) || 2oy | A2 €74 R(2) || L2z,

Therefore,

1
I < crr/ AT 2T f(2)|| 22y | A7 2™ g (2) || 2 2y || AT 2 €7 AN (2) || 2 12y -
0

Lemma A.6. For f,g,0.9,h € $r+%,s77, where r > 2, s >0, and 7 > 0, one has

‘<ATeTA((/Z V- f(x, s)ds)azg) , ATeTAh> - <8ngTeTA(/Z V- f(z, s)ds),ATeTAh>‘
0 0

< Cyl|A"0.gll[| A FIIIATAI + Cpr | A 26T, g|[| A 2T A F | AT 2674 A .
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Proof. Observe that Lemma A.6 follows directly from Lemma A.5. Indeed, if one replaces f by foz f(z,s)ds
and g by 0.¢g in Lemma A.5, by the Holder inequality, one obtains that

‘<AreTA((/ V- f(x,s)ds)azg),AreTAh> - <8ZgATeTA(/ V- f(w,s)ds)7AreTAh>’
0 0

1 z
SCT/O ||AT/O [z, s)ds| 212y [|A"0.9(2)|| L2 (12) [|A"h(2) || L2 (12) d2

1 z
L O / |Ar+hera / F(@, 8)ds|| 2oy | A7 2 e™40, () agrny | AT AR | 2 ey dz
0 0

<C,||A 8. g|[[|A” FII[|A”h|| + Cprl| A2 eT 40, g||| AT+ A f||| A2 e AR
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