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Abstract

Selection bias is inevitable in manually curated computational reaction databases

but can have a significant impact on generalizability of quantum chemical methods and

machine learning models derived from these data sets. Here, we propose quasireaction

subgraphs as a discrete, graph-based representation of reaction mechanisms that has a

well-defined associated probability space and admits a similarity function using graph

kernels. Quasireaction subgraphs are thus well suited for constructing representative

or diverse data sets of reactions. Quasireaction subgraphs are defined as subgraphs

of a network of formal bond breaks and bond formations (transition network) com-

posed of all shortest paths between reactant and product nodes. However, due to their

purely geometric construction, they do not guarantee that the corresponding reaction

mechanisms are thermodynamically and kinetically feasible. As a result, a binary clas-

sification of feasible (reaction subgraphs) and infeasible (non-reactive subgraphs) must

be applied after sampling. In this paper, we describe the construction and properties

of quasireaction subgraphs and characterize the statistics of quasireaction subgraphs

from CHO transition networks with up to six nonhydrogen atoms. We explore their

clustering using Weisfeiler–Lehman graph kernels.

1 Introduction

Computational reaction databases1–6 are a crucial source of information for benchmarking

quantum chemical methods and training machine learning models. Large computational

benchmark sets of barrier heights, for example, the Minnesota set of databases by Truhlar

and co-workers,1,7,8 the GMTKN55 database by Goerigk and Grimme,2 the MGCDB84

database by Mardirossian and Head-Gordon,3 and the BH9 database by DiLabio and co-

workers,5,6 are the results of years of careful collection and curation of experimental data

and high-quality quantum chemical results. The collected data sets are often used as the

“ground truth” in training machine learning models.9,10
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The composition of these databases is in part limited by the availability of accurate

experimental barrier heights, which tend to bias the data sets toward well-characterized re-

actions with simple mechanisms. The bulk of the current benchmark data for barrier heights

of organic reactions is made up of few types of reactions including hydrogen transfer,11,12

proton transfer,13,14 nonhydrogen atom transfer, nucleophilic substitution, association, and

unimolecular reactions,12,15 pericyclic reactions,16–21 SN2 and E2 reactions,22 radical rear-

rangements, pericyclic reactions, hydrogen and halogen transfer, B/Si reactions, nucleophilic

substitution, and nucleophilic addition reactions.5,6 In contrast, reactions resembling enzyme

catalysis, are underrepresented in benchmark databases.23

Although computational databases play a key role in the development of quantum chem-

ical methods, it is currently an open question how representative (bias-free) or diverse the

underlying data sets are. The training of increasingly flexible machine learning models crit-

ically depends on data sets that are representative of broader chemical reactivity, which is

sometimes referred to as “reaction space”.24 It is thus desirable to have methods for con-

structing bias-free samples of some provably comprehensive ground set of chemical reactions

and for quantifying similarity of reactions, which can be used to assess the diversity of data

sets,25 see also Refs. 26–29 for applications in chemistry. Both groups of methods can be im-

plemented in a principled way if we can construct a ground set of representations of chemical

reactions that is equipped with a probability measure (probability space) and a similarity

function. In order for the results obtained from this data set to be generalizable, the ground

set should encompass chemical reactivity within well-defined limits.

Here, we introduce a discrete representation of chemical reaction mechanisms that pos-

sesses both a probability space and a similarity function definition. Thus, it is suitable for

constructing bias-free data sets by sampling and for evaluating diversity of data sets using

the similarity measure. This feature representation is based on subgraphs of a network of

formal bond breaks and bond formations (transition network, TN).30–32 TNs are discrete

analogs of reactive potential energy surfaces (PESs), in which the continuous atomic dis-
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placements are replaced by discrete structure changes. As a finite graph, each TN defines a

discrete probability space of its subgraphs. The complete set of TN subgraphs can thus be

obtained by enumeration. Additionally, a similarity function for subgraphs can be defined

using graph kernels.33,34

However, the purely geometric construction of TN subgraphs cannot take into account

the thermodynamic and kinetic feasibility of the corresponding reaction mechanisms. We

note that if a reaction mechanism can be written as a molecular graph transformation, it

can also be represented as a TN subgraph, which we denote as a reaction subgraph. On

the other hand, a randomly selected TN subgraph may either be a reaction subgraph, or it

may correspond to a hypothetical transformation that is thermodynamically or kinetically

infeasible (non-reactive subgraph). We will refer to the complete set of TN subgraphs (both

reactive and non-reactive) as quasireaction subgraphs to make the distinction clear.

The goal of this paper is to define quasireaction subgraphs as feature representations

of reaction mechanisms and to characterize the statistics and clustering of quasireaction

subgraphs from CHO TNs with up to six nonhydrogen atoms. Our focus in this paper is on

graph theoretical methods. For the construction of bias-free data sets, an additional step is

necessary, the binary classification of quasireaction subgraphs into reactive (positive class)

and non-reactive (negative class). This classification can be performed by explicit transition

state (TS) searches and will be addressed in detail in a future paper.

Several alternative approaches to constructing representative and diverse reaction databases

should be mentioned. Most of these approaches are based on targeted subset selection from

the curated databases. Data sets of difficult reactions were constructed by Patchkovskii and

Ziegler.35 Gould and Dale extracted a “poison subset” of the GMTKN55 set by selecting the

data points with the largest errors.36 An alternative strategy aims to select representative

database subsets, for example, by minimizing the difference of the error measures between

the subset and the full set,37,38 by clustering,39,40 or using feature selection methods.41

Very recently, approaches based on enumerated databases of organic compounds have

4



been published. A database of unimolecular rearrangements and their barrier heights was

created by Green and co-workers using one-sided TS searches along predetermined reaction

coordinates on the subset of the GDB-17 database with up to seven nonhydrogen atoms.42,43

In a subsequent study, molecular structures near the TSs were sampled after refining TS

structures using the nudged elastic band (NEB) method.44 The resulting barrier heights

were used to train a deep learning model for activation energies45 and a message-passing

neural network for predicting molecular energies in the vicinity of TSs.46 However, these

databases contain only a specific type of reactions, unimolecular rearrangements.

Computational databases based on graph enumeration have been used with successs in

calculations of molecular energies and properties. Graph enumeration methods were used by

Reymond and co-workers to create the GDB family of databases.47–53 The GDB databases

consist of neutral closed-shell organic molecules with up to 11, 13, and 17 nonhydrogen

atoms (GDB-11 through GDB-17). The molecular structures were obtained by enumera-

tion of non-isomorphic molecular graphs using the nauty/Traces graph isomorphism tools

of McKay and Piperno,54 followed by rule-based introduction of unsaturations and het-

eroatoms. With an eye toward drug-like molecules, the authors excluded compounds that

were considered difficult to synthesize or too reactive, for example, anhydrides, hemiacetals,

enols, and compounds containing heteroatom–heteratom bonds.

Several quantum chemical data sets were derived from subsets of GDB databases, for ex-

ample, QM7 and QM9 data sets of von Lilienfeld and co-workers,55–59 the Alchemy data set

of Zhang and co-workers,60 and the ANI data sets of non-equilibrium molecular structures

by Roitberg, Isayev, Tretiak, and co-workers.61–65 Interestingly, the QM9 data set showed

a larger generalization error compared to the PC9 data set derived from the experimental

PubChem database,66–68 likely due to the absence of open-shell species and certain func-

tional groups in GDB databases.69,70 Combinatorial enumeration of molecular structures

using graph-based substitutions is often used in high-throughput computational screening,

for example, in the Harvard clean energy project of Aspuru-Guzik and co-workers.71,72 An-
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other group of approaches randomly samples structures for inclusion in the data set. The

method of Wipf, Yang, Beratan, and co-workers constructed larger, drug-like molecules by

a genetic-type algorithm on molecular graphs.73 The “mindless” benchmarking approach of

Korth and Grimme74 generated eight-atomic molecules of random composition and optimized

their structures using density functional theory (DFT). Sets of non-equilibrium molecular

structures of selected molecules were sampled from molecular dynamics (MD) trajectories

by the method of Müller, Tkatchenko, and co-workers.75,76

In comparison to the methods for constructing representative and diverse reaction databases

described above, this work takes the opposite approach. The complete set of chemical re-

actions, for example, for CHO with up to six nonhydrogen atoms is not currently known.

Therefore, instead of relying on a currently (experimentally or computationally) known sub-

set of this reaction set and selecting its representative subsets, we construct a known superset

(quasireaction subgraphs). This superset affords us the bias-free property by design but also

necessitates binary classification of reactive and non-reactive subgraphs as a postprocessing

step.

This paper is organized as follows. We describe the procedures for the construction of

TNs, the sampling of quasireaction subgraphs, and their clustering using Weisfeiler–Lehman

(WL) subtree and WL edge graph kernels33,34 in Sec. 2. The statistics of the quasireaction

subgraphs and the clustering results are presented in Sec. 3. The discussion is given in Sec. 4.

We present our conclusions in Sec. 5.

2 Methods

2.1 Transition Networks

The reaction networks considered in this work are of the transition network (TN) type, that

is, their network nodes contain collections of molecules subject to the fixed stoichiometry

(atomic composition), and their network edges are stoichiometry-preserving transformations
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from a predetermined rule set.31,32 The stoichiometry-based TNs differ from the the chemical

reaction networks (CRNs)77–80 used in kinetic modeling, metabolism, or synthesis planning,

which are referred to in the following as molecule-based CRNs for clarity. In molecule-

based CRNs, network nodes correspond to individual molecules (reactants and products),

while network edges are typically constructed between all reaction participants. TNs and

molecule-based CRNs coincide only in the special case that all reactions have exactly one

reactant and one product. The distinguishing feature of TNs is that they have an upper

bound for the network size (number of nodes), determined by the number of ways the bonds

may be distributed among the fixed set of atoms. In contrast, molecule-based CRNs do

not have such natural upper limit since they can always continue producing larger and

larger molecules, being unconstrained by stoichiometry. Moreover, due to the conserved

stoichiometry, TNs can be understood as discretized versions of PESs, while molecule-based

CRNs span many different PESs. In the remainder of this article, we only consider TNs.

When referring to reaction networks, it is implied that they are of the TN type.

In this work, we consider TNs of stoichiometry CνCHνHOνO (CHO reaction networks)

were constructed for νC + νO = 2, . . . , 6 nonhydrogen atoms. The molecular graphs are rep-

resented by their SMILES strings,81 ignoring stereochemical information. The stoichiometry-

preserving transformations are chosen as polar bond breaks and bond formations that are

consistent with the electronegativities of the elements carbon, hydrogen, and oxygen (normal

polarity). These formal transformations describe the smallest discrete bonding changes that

can be applied to molecular graphs and can be composed to represent reaction mechanisms.

To incorporate the reactivity of multiple bonds, additional formal rules describing the “po-

larization” and “depolarization” of double and triple bonds are included in the rule set. Due

to the composability of the formal transformations, any reaction mechanisms that consists

of a transfer of one or more electron pairs (“arrow pushing”), can be represented within the

TN. The complete rule set is shown in Table S1 of the Supplementary Information (SI). The

reaction rules were encoded as SMARTS strings82 and applied to the molecular structures
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using the RDKit library.83 The TN construction completed when no new nodes could be

generated. As the rule set was chosen to be reversible (see Table S1 of the SI), nearly all

network edges in the constructed network were reversible. The missing edges were due to

inconsistent transformation between aromatic and Kekulé-type representations of molecular

structures in RDKit. The TN construction was implemented in version 2 of the open-source

colibri package.84 All TNs were converted to undirected networks for further analysis. The

networks were stored as compressed GraphML files.85

2.2 Quasireaction Subgraphs

To construct quasireaction subgraphs, all network nodes containing only neutral molecules

(neutral nodes) were first identified. However, neutral nodes containing high-energy species

were matched using a set of heuristic rules and excluded from consideration. The rules for

matching high-energy species were: (i) more than 3 rings, (ii) triple and allene bonds in

rings, (iii) double bonds at bridge atoms, and (iv) double bonds in fused 3-membered rings.

See Table S2 of the SI for details. These heuristic rules help to exclude highly strained

compounds from further analysis, among them several compounds that have been exper-

imentally isolated, for example, benzvalene86,87 and prismane.88 The reaction mechanisms

involving these compounds are likely to be significantly affected by strain, even if they are

experimentally accessible. Nevertheless, it might be of interest to re-analyze them in future

work.

A quasireaction subgraph is defined as the union of all simple paths between a pair of

neutral nodes. In the following, we limit ourselves to quasireaction subgraphs composed of

all shortest paths between pairs of neutral nodes. The paths that pass through neutral nodes

other than the initial and final nodes are excluded. All internal nodes are thus non-neutral.

All graphs are treated as unweighted with their edges labeled by the the applied reaction

rules. The preference for shortest paths is equivalent to the principle of minimum chemical

distance proposed by Ugi and co-workers in 1980.89 However, as we described in previous
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work, there are reactions, in which the shortest path does not correctly describe the reaction

mechanism.32 In these cases, it is preferable to extend the set of shortest paths between the

reactant and product nodes to all simple paths of length L′ = L+ s, where L is the shortest

path length and is the “slack” length s ≥ 0. However, we will not consider this variant in

the following. Shortest paths were computed for all pairs of neutral nodes using Dijkstra’s

algorithm. Quasireaction subgraphs were constructed only for pairs of neutral nodes with

shortest path length L ≤ 8. All graph algorithms were implemented using the NetworkX

library.90

2.3 Clustering Using Graph Kernels

Quasireaction subgraphs are undirected graphs with discrete edge labels and thus can be

classified into sharp isomorphism classes. However, this classification fails to take into ac-

count the similarities between graphs that differ by addition or removal of edges or by label

substitutions. A more versatile classification approach uses clustering based on graph ker-

nels.91–93 Generally, a graph kernel k(G,G′) is a non-negative symmetric function of graphs

G and G′, which expresses a particular notion of their similarity. Pairs of similar graphs

have higher values of k(G,G′) than dissimilar graphs. If the kernel function is normalized

(k(G,G) = 1 for all G), then it can be straightforwardly converted to a distance function

(metric) d(G,G′) = 1− k(G,G′), which can be used in standard clustering algorithms.

We used methods based on the Weisfeiler-Lehman (WL) graph isomorphism test33 to

identify discrete isomorphism classes of quasireaction subgraphs and to compute graph ker-

nels for clustering. The WL algorithm performs an iterative relabeling of graph nodes based

on the labels of their neighbors. For each node, the relabeling aggregates its label and the

labels of the neighbor nodes into a multiset and compresses them into a new node label.

Unique new labels are then added to the alphabet. This procedure is repeated for h it-

erations, after which each node label reflects the subtrees of height h rooted at the given

node. In the WL isomorphism test, the multisets of the node labels of graphs G and G′
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are compared after h relabeling iterations. The comparison can be simplified by hashing

the multiset of node labels. However, the resulting isomorphism test is only approximate:

Isomorphic labeled graphs are guaranteed to produce identical hashes but non-isomorphic

graphs may have identical hashes with some (low) probability.

The WL algorithm is also the basis for the WL family of graph kernels.33 Starting from

a base graph kernel k(G,G′) between the graphs G and G′, the WL kernel with h iterations

is given by

k
(h)
WL(G,G′) = k(G0, G

′
0) + k(G1, G

′
1) + . . .+ k(Gh, G

′
h)

where G0 = G, G′0 = G′ and the graphs Gi, G
′
i for i > 0 are defined recursively by applying

the WL relabeling procedure to Gi−1 and G′i−1, respectively. If the base graph kernel is the

inner product between the vectors of node label counts, then WL algorithm produces the

WL subtree graph kernel (WL-S).33,34 Alternatively, the base graph kernel may be the inner

product between the vectors of edge label counts (edge histogram), giving rise to the WL edge

graph kernel (WL-E).34 Since quasireaction subgraphs only have edge labels and no node

labels, the WL-S graph kernel kWL-S(G,G′) only compares the topological properties of the

quasireaction subgraphs G and G′, while the WL-E graph kernel kWL-E(G,G′) additionally

includes information about edge labels (reaction rules). The WL hashes for isomorphism

tests were computed for h = 3 and hash length w = 16 using the NetworkX library.90 The

calculations of the WL-S and WL-E graph kernels used h = 3 and were performed with the

GraKel library.94

To perform clustering, the normalized kernel matrix was first converted to a distance

matrix and projected onto a two-dimensional feature space using the uniform manifold ap-

proximation and projection (UMAP) method.95 The number of neighbors in the UMAP

projection was Nneighbors = 50. Increasing the number of neighbors to 200 did not qualita-

tively change the results, while smaller values of Nneighbors produced an relatively structureless

distribution. The clusters were obtained by k-means clustering96,97 with the optimal number

of clusters kopt determined from the plot of silhouette scores for k = 3, . . . , 49 clusters.98 The
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implementation used the umap-learn library99 for UMAP projection and the scikit-learn

library100 for k-means clustering and the evaluation of silhouette scores.

3 Results

3.1 Transition Network Statistics

The basic statistics of CHO TNs with up to six nonhydrogen atoms are shown in Fig. 1.

A total of 159 TNs networks are analyzed. The TNs are grouped by the formal carbon

oxidation state ξC = (−νH + 2 νO)/νC. The network size (number of nodes, Nnodes) ranges

from a single node in CO to 49,637 nodes and 194,750 edges in the C5H6O network. The

expected exponential increase in network size with the number of nonhydrogen atoms is

observed in Fig. 1(a). Additionally, the network size varies by several orders of magnitude

as a function of the carbon oxidation state, with the largest networks located at ξC ≈ −1.

The counts of neutral nodes are shown in Fig. 1(b) and follow the same trend as net-

work size. The networks containing the largest number of neutral nodes are C5H8O, C5H6O,

and C4H6O2 with carbon oxidation state of approximately −1. The combined set of neutral

molecules from all TNs has 3246 molecules in total and 2222 molecules that do not contain

strained motifs (i)–(iv), see Sec. 2.2. This set has comprehensive coverage of the experi-

mentally known oxygen-containing molecules. A search of neutral CHO molecules with up

to six nonhydrogen atoms in the CAS SciFinder database101 yields 1600 results (ignoring

stereo descriptors), of which 1375 do not contain strained motifs (i)–(iv). The search results

include experimentally known compounds as well as those that are characterized only by

computation. However, all of the 1375 neutral molecules that are returned by the SciFinder

search and not excluded as high-energy are found in our combined set. The coverage of the

GDB-7 data set47 is similarly complete: all of the 379 molecules with up to 6 nonhydrogen

atoms from the CO subset of the GDB-7 database are present in our combined set. The

complete statistics of TNs generated in this work are given in Table S3 of the SI.
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Figure 1: (a) Network size (number of nodes Nnodes) and (b) number of neutral nodes
(Nneutral) in CνCHνHOνO reaction networks (νC + νO = 2, . . . , 6) by carbon formal oxidation
state ξC.
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Figure 2: Counts of shortest paths Npaths between neutral nodes in CνCHνHOνO TNs (νC +
νO = 2, . . . , 6) by path length L = 2, . . . , 16, > 16.

Each network edge in TNs describes exactly one bond break or bond formation. The

shortest path length between a pair of nodes can thus be understood as the total number

of bond changes in course of the reaction. Moreover, the transfer of one electron pair is

equivalent to one polar bond breaking and one polar bond formation. The total number of

transferred electron pairs is half of the shortest path length. The statistics of the shortest

paths between pairs of neutral nodes are shown in Fig. 2. By construction, all paths between
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neutral nodes have an even number of edges. The minimal shortest path distance is L = 4,

while the maximal distance is bounded by the diameter of the network. One shortest path of

length L = 2 was generated due to inaccuracies of the interconversion between the aromatic

and the Kekulé structural representations.

The complexity of the reaction mechanism increases with the shortest paths length. At

the same time, the number of simultaneous bond breaks and formations in most elementary

reactions is limited. While some pericyclic reactions have been described with as many

as 10 bonds rearranging in a concerted mechanism, such reactions are generally rare.102–104

Based on this observation, we restrict our analysis to reaction mechanisms with shortest path

length L ≤ 8. Of the total 336,602 pairs of neutral nodes across all TNs, 194,896 fall into this

category. In 118 pairs we find another neutral node at the midpoint of the shortest path. As

discussed in Sec. 2.2, these paths are reducible to smaller structures. After excluding these

pairs, we obtain a set of 194,778 pairs of neutral nodes, for which quasireaction subgraphs

are constructed. The quasireaction subgraphs for these pairs will be characterized in the

following. The complete data set of quasireaction subgraphs is available for public download

from Zenodo.105

3.2 Quasireaction Subgraph Statistics

The quasireaction subgraph contains the union of all shortest paths between the initial

and final nodes. Since it is an undirected graph, it simultaneously describes the mecha-

nisms of the forward and reverse reactions. The alternative shortest paths describe the

different decompositions of the overall reaction mechanism into discrete bond breaks and

bond formations. We illustrate this by the reaction subgraph for water addition to ethene,

CH2 CH2 + H2O → CH3CH2OH, which is shown in Fig. 3. It consists of 5 shortest paths

of length L = 4. The combination of the shortest paths creates a subgraph with Nnodes = 8

and Nedges = 10.

Fig. 4 shows the statistics of the quasireaction subgraphs with shortest path length L =
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Figure 3: Shortest paths in the reaction mechanism of water addition to ethene. The reactant
and product nodes are indicated by red solid circles, internal nodes are shown as empty
circles. The shortest paths are indicated by gray arrows.

4, 6, 8 as a function of their number of nodes Nnodes and number of edges Nedges. The

sizes of the empty circles indicate the subgraph counts for the given numbers of nodes

and edges. Several node–edge size classes are significantly enriched among quasireaction

subgraphs. 88 distinct classes were found for L = 4, of which Nnodes = 7, Nedges = 8 and

Nnodes = 8, Nedges = 10 are by far the most frequent. Of the 932 classes for L = 6, the

class with Nnodes = 21, Nedges = 38 is dominant. Even quasireaction subgraphs with L = 8

show enrichment of several node–edge size classes, in particular, Nnodes = 52, Nedges = 105.

However, as many as 10,341 distinct classes are found for L = 8.

The quasireaction subgraphs belonging to the same node–edge size class are not nec-

essarily isomorphic. We distinguish non-isomorphic subgraphs within the same class by an

additional identifier P . The topologies of the most frequent subgraph patterns for L = 4, 6, 8

are shown in Fig. 5, Fig. 6, and Fig. 7, respectively. Their statistics are given in Table 1.

We note that all of the most frequent node–edge size classes for L = 4, 6 are almost entirely

composed of isomorphic subgraphs. The water addition and elimination reactions of Fig. 3

belong to the most frequent quasireaction subgraph pattern 8,10 A. The second most fre-

quent pattern is 7,8 A and describes different orderings of two bond breaks and two bond

formations, which would be customarily written as a linear reaction mechanism. An example

of this pattern is the isomerization of 1,2,-butadiene to the more stable 1,3-butadiene isomer.

The remaining three subgraph patterns 11,15 A, 12,16 A, and 13,18 A are obtained by fusing

two basic 7,8 A motifs and adding extra nodes. The 11,15 A pattern describes, for example,
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Figure 4: Counts of quasireaction subgraphs Nr by number of nodes Nnodes and edges Nedges

with shortest path distance (a) L = 4, (b) L = 6, and (c) L = 8. The 5 most frequent
Nnodes,Nedges combinations for each value of L are shown in red.

the double bond migration in 1-butene → 2-butene. The 12,16 A pattern represents the hy-

pothetical ring opening in 1-methylcyclopropene → 1-butyne. The 13,18 A pattern is found

in the 1,3-hydroxyl migration in 3-buten-2-ol → 2-buten-1-ol. As the shortest path length

increases, so does the variation in quasireaction subgraphs, while their symmetry tends to

decrease. The largest node–edge size class Nnodes = 52, Nedges = 105 for L = 8 is split almost

equally in two non-isomorphic subgraph patterns, denoted as 52,105 A and 52,105 B, see

Fig. 7.
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13,18 A12,16 A11,15 A8,10 A 7,8 A

Figure 5: Most frequent quasireaction subgraph patterns with shortest path length L =
4. The patterns are labeled Nnodes,Nedges P , where pattern identifier P distinguishes non-
isomorphic patterns with the same numbers of nodes and edges. The reactant and product
nodes are indicated by red solid circles, internal nodes are shown as empty circles.

21,38 A 18,30 A 17,24 A 24,46 A 23,33 A

Figure 6: Most frequent quasireaction subgraph patterns with shortest path length L = 6.

3.3 Clustering of Quasireaction Subgraphs

Given the ground set of quasireaction subgraphs, the most straightforward sampling strategy

is uniform sampling of a fixed fraction of the ground set. Alternatively, one could choose

to sample examples by node–edge size class. However, because of the broad distribution of

quasireaction subgraph patterns and the decreasing relative differences in their topologies,

their classification discrete classes is too limiting. In the following we explore clustering

approaches for the classification of the quasireaction subgraphs based on graph kernels. The

similarity function defined by the graph kernel can be used to generate a maximally diverse

subset.

In order to perform clustering, we uniformly sampled a subset of Nsample = 10,000
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52,105 A 51,105 B 63,153 A 49,97 A 41,80 A

Figure 7: Most frequent quasireaction subgraph patterns with shortest path length L = 8.

Table 1: Counts of most frequent quasireaction subgraphs Nr by number of
nodes Nnodes and edges Nedges with shortest path distance L = 4, 6, 8. The pattern
identifier P distinguishes non-isomorphic patterns with the same numbers of
nodes and edges.

L = 4 L = 6 L = 8
Nnodes Nedges P Nr Nnodes Nedges P Nr Nnodes Nedges P Nr

8 10 A 13822 21 38 A 11645 52 105 A 1896
7 8 A 12456 18 30 A 5440 52 105 B 1792
11 15 A 1312 17 24 A 5134 63 153 A 1623
12 16 A 1222 24 46 A 2867 49 97 A 1615
13 18 A 867 23 33 A 2091 41 80 A 1533

Total 32916 44655 117206

quasireaction subgraphs from the ground set for computing the WL-S and WL-E graph ker-

nel matrices. The subset reproduces key topological characteristics of the ground set with

good accuracy. The average node degree of the quasireaction subgraphs is k̄ = 3.48 ± 0.69

on the subset and the average shortest length between the reactant and product nodes is

L̄ = 6.87± 1.53. Both characteristics match the averages over the ground set to two signifi-

cant figures. As discussed in Sec. 2, the WL-S graph kernel is only sensitive to the topology

of the quasireaction subgraphs, while the WL-E graph kernel additionally incorporates in-

formation about reaction rules as edge labels. The two-dimensional feature projections of

the sampled quasireaction subgraphs using UMAP are displayed in Fig. 8. The five most
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frequent subgraph patterns form well-separated clusters in the WL-S plot. The remaining

quasireaction subgraphs forms a single giant cluster near the center that contains nearly half

of the sample.

The plot of silhouette scores for k = 3, . . . , 49 clusters in shown in Fig. S1 of the SI. The

optimal number of clusters in the k-means algorithm is subject to some ambiguity. Here, kopt

was simply determined as the smallest value of k that corresponds to a local maximum of the

silhouette score above 0.5. With the WL-S graph kernel, we obtain the optimal number of

clusters as kopt = 7. These findings indicate that sampled quasireaction subgraphs contain

a set of preferred topological motifs for L = 4, 6 superimposed on a broad distribution of

topological patterns. Including the edge labels in the WL-E graph kernel introduces much

more structure in the distribution of quasireaction subgraph patterns. The optimal number

of clusters with the WL-E kernel from the analysis of silhouette scores is kopt = 37. The

distribution of cluster sizes with the WL-S and WL-E graph kernels is shown in Fig. 9 and

ranges from 58 to 1020. Due to the stochastic nature of the sample selection and UMAP

feature projection, the number and sizes of clusters show some variation across multiple

simulations. However, the qualitative findings are unaffected.

4 Discussion

4.1 Information Content of Reaction Subgraphs

The feature representation of reaction mechanisms as reaction subgraphs of discrete bond

breaks and bond formations shares structural similarity with several representations devel-

oped in the past but offers some distinct benefits. The most closely related representation

are the reaction matrices of Dugundji and Ugi.30,106,107 The reaction matrix is defined as the

difference of the bond–electron (BE) matrices of the products and the reactants. An example

of the Dugundji–Ugi reaction matrix for the water addition to ethene is given in Fig. S2 of

the SI. The entries of the reaction matrix reflect the changes in bond orders between pairs
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Figure 8: Density plot of two-dimensional UMAP feature embedding of Nsample = 10,000
quasireaction subgraphs using (a) WL subtree graph kernel (WL-S) and (b) WL edge graph
kernel (WL-E). The five most frequent quasireaction subgraph patterns are labeled in the
WL-S plot.

of atoms (and of numbers of lone pairs). Thus the reaction matrix can be represented as a

sum of elementary reaction matrices for the individual bond breaks and bond formations. In

comparison to reaction matrices, reaction subgraphs additionally encode information about

the ordering of the bond break and bond formation steps and their relative topology. For

example, both 7,8 A and 8,10 A subgraphs describe a reaction mechanism with two bond

breaks and two bond formations (Fig. 5). While their reaction matrices are identical (up

to a permutation), the two mechanisms differ in the number of reaction paths (4 for 7,8 A

subgraphs but 5 for 8,10 A subgraphs).

Several reaction template notations108–111 and the imaginary transition state representa-

tions of Fujita112,113 similarly describe the total of bond breaks and bond formations but can

additionally encode the topology of the molecular graph. In contrast, the reaction subgraphs

represent the (discretized) topology of the reaction paths. The reaction paths can incorporate

energy information, as we showed in previous work,32 which allows to distinguish reactions

that conform to the same reaction template but follow different mechanistic paths based on
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Figure 9: Counts of quasireaction subgraphs Nr per cluster in clustering Nsample = 10,000
quasireaction subgraphs using (a) WL-S and (b) WL-E graph kernels.

their energetic landscapes.114 For a simple example, consider again Fig. 3. Water addition

to unsubstituted alkenes follows the electrophilic bimolecular addition (AdE2) mechanism,

in which the proton is first added to the double bond, followed by the formation of the

C O bond,115,116 in line with the paths 1 and 4 in Fig. 3. On the other hand, the addition

of water to acrolein has an isomorphic reaction subgraph (shown in Fig. S4 of the SI) but

proceeds preferentially by the equivalents of the paths 2, 3, and 5.117–119 These distinctions

can be encoded empirically in reaction templates by fine-tuning the matched substructures.

However, the approach offered by reaction subgraphs is more direct and better compatible

with quantum chemical calculations.

4.2 Concerted Reactions

The decomposition into individual bond breaks and bond formations applies to both step-

wise and concerted mechanisms.32 Each transfer of an electron pair can be formally written

as a combination of a polar bond break (bond electron pair becomes the lone pair of the

electronegative bond partner) and a polar bond formation (lone pair becomes a bond elec-

tron pair). Note that the formal polarization and depolarization rule allow to extend this

decomposition approach to reactions of double and triple bonds. For concerted reactions, in
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which multiple electron pairs are transferred, we can perform this formal decomposition for

each electron pair transfer. As an example, we show the reaction subgraph of the Diels–Alder

reaction between butadiene and ethene in Fig. 10(a). For compactness, only one reaction

path is shown explicitly. The path consists of three polarizations of double bonds and of

three bond formations: two single and one double CC bond. The charge-separated struc-

tures are clearly high-energy species and do not occur as identifiable intermediates of the

reaction mechanism. However, the true reaction path of these concerted reactions can be

understood as a spatial average of the different discrete reaction paths. In this case, the bond

order changes per step interpolate between those of the discrete reaction paths and should

be capable of expressing different types of reaction mechanisms. The idea of the concerted

reaction path as an interpolation between stepwise reaction paths is due to Jencks, who

referred to the two-dimensional case as enforced concertedness,114,120 see also earlier work

by Critchlow.121

An additional refinement of the reaction subgraph representation is to attach non-negative

weights wi, i = 1, . . . , Nedges to the subgraph edges based on kinetic feasibility instead of the

discrete rule type, as we did in Sec. 3.3. This approach can be applied to modeling both

concerted and stepwise reaction mechanisms. In Ref. 32, we defined the heuristic kinetic

feasibility (arc and karc) for reaction paths in TNs, which depended on the energies of the

nodes along the reaction path. The karc criterion was successful in binary classification tasks

of reaction paths as kinetically feasible or infeasible on a set of polar and pericyclic organic

reactions. The appropriate weighting by kinetic feasibility allows to distinguish topologi-

cally isomorphic reaction subgraphs, for example, those in Fig. 3 and Fig. S4 of the SI. In

combination with the reaction path interpolation discussed above, it can represent mecha-

nistic continua that often encompass both stepwise and concerted mechanisms.114,120,122 The

weighting of the alternative paths, such as paths 1–5 in Fig. 3 can determine the preferred

paths. As we showed out in Ref. 32, the preferred paths may not be shortest paths.
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Figure 10: (a) Reaction subgraph of the Diels–Alder reaction between 1,3-butadiene and
ethene (L = 6, Nnodes = 30, Nedges = 55); (b) Reaction subgraph of the 1,2-butadiene to
1,3-butadiene isomerization (bond breaks: C C, C H); (c) Non-reactive subgraph for a
hypothetical isomerization of 1-propanol to 2-propanol via methyl shift (bond breaks: C C,
C H).

4.3 Binary Classification of Reactive and Non-Reactive Subgraphs

In this work, a complete set of quasireaction subgraphs was constructed and characterized

for CHO chemistry with up to six non-hydrogen atoms. This ground set would change

if (choices made in this work are in parentheses) we expand the set of elements (CHO),

increase the maximum number of non-hydrogen atoms (νC + νO ≤ 6), expand the set of

allowed bond breaks and bond formations (polar, normal electronegativity, see Table S1

of the SI), apply a different or no filtering rules for high-energy species (see Table S2 of

the SI), or choose different maximal shortest-path length cutoff (L ≤ 8) or slack length

(s = 0). As these choices are not chemistry-specific (with the exception of the rules for

identifying high-energy species), this set (or any other ground set generated by the other

choices) is free from selection bias by design. The flip side of this (for the most part)

chemistry-free generation algorithm is that we need to distinguish quasireaction subgraphs

that correspond to thermodynamically and kinetically feasible reaction mechanisms (reactive

subgraphs, positive class) and infeasible transformations (non-reactive subgraphs, negative

class). The specific examples of the quasireaction subgraphs we had considered so far were

from the positive class. Here, we examine two quasireaction subgraphs belonging to the

same 7,8 A pattern, shown in Fig. 10(b) and (c). The isomerization of 1,2-butadiene to the
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more stable 1,3-butadiene (Fig. 10(b)) involves the breaking (polarization) of the C C bond

and of the C H bond. This reaction is known in the literature, however, in presence of

catalysts.123 We tentatively label this subgraph as reactive (member of the positive class).

The topologically equivalent hypothetical isomerization of 1-propanol to 2-propanol via a

methyl shift (Fig. 10(c)) would require a breaking of an unactivated C C bond and of the

C H bond. This process does not appear kinetically feasible, and 1-propanol is likely to

undergo dehydration instead. Therefore, we label this subgraph as non-reactive (belonging

to the negative class).

In the above example, one could take advantage of empirical rules to conclude that break-

ing unactivated C C bonds is energetically unfavorable and thus assign the negative label

the quasireaction subgraph in Fig. 10(c). However, a more robust strategy would use quan-

tum chemical calculations of thermodynamic and kinetic feasibility. The positive class could

be defined algorithmically by the presence of a sufficiently low-energy TS along the reaction

path connecting the structures of the reactants and of the products. Therefore, double-sided

search methods such as variants of the nudged elastic band (NEB),124–126 double-sided string

methods,127 and geodesic interpolation128 methods are especially attractive. However, the

topology of the quasireaction subgraph can also be utilized for TS searches. The energy

profiles of the discretized reaction paths are consistent with Hammond’s postulate,129 which

states that the TS, if it exists, is close in structure to the that of the high-energy interme-

diates. This suggests that the interpolation of the structures of the highest-energy internal

nodes is a good starting structure for initializing TS searches. The instances, in which the

TS search fails to converge or converges to a TS for a competing reaction should be labeled as

members of the negative class. Similarly, the computed TSs with high barrier heights could

be treated as negative instances. The availability of negative as well as positive instances

may be of value for training robust machine learning models.
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5 Conclusions

In this paper, we introduced quasireaction subgraphs, a discrete feature representation for

reaction mechanisms that possesses a principled sampling approach and allows for a definition

of similarity. These properties make the subgraph representation well suited for constructing

data sets. This is because, for a given maximum stoichiometry and a rule set, a finite ground

set of quasireaction subgraphs exists, from which a bias-free data set can be constructed,

for example, by sampling or by maximum-diversity selection. The price of this construction,

however, is that not all quasireaction subgraphs correspond to reactive transformations.

Therefore, the sampling or diversity-oriented selection procedure must be combined with

a binary classification to distinguish reaction subgraphs (positive class) from non-reactive

subgraphs (negative class). In this paper, we focused on the definition, the generation,

and the properties of quasireaction subgraphs. We will address the issue of the binary

classification in a forthcoming paper.

A certain measure of selection bias may even be desired in data sets for some applications.

For example, synthetically relevant reactions are collected and categorized in large synthetic

databases. Apart from multiple commercial databases, the publicly available data set of

reactions extracted from patent data is widely used for reaction predictions.130 However,

still larger public databases of chemical reactions are needed.131 These databases include

predominantly high-yield transformations and often have a bias toward drug-like molecules.

This bias is entirely desirable for applications in synthesis but might be too narrow for ex-

ploring, for example, origins of life.132 On the other hand, data sets designed to minimize

selection bias, such as this work, are liable to contain more unknown or unfavorable reac-

tions, in which synthetic chemists have no interest. They may also contain new, yet to be

discovered reactions. However, for benchmarking quantum chemical methods or machine

learning models of general applicability, selection bias is problematic as it typically improves

the performance in one segment of the reaction space at the expense of others. In contrast,

bias-free data sets help to achieve more uniform performance of the computational methods
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and thus improve their predictive power.
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