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Abstract
The presence, location, and extent of prostate cancer is assessed by pathologists using H&E-stained tissue slides.
Machine learning approaches can accomplish these tasks for both biopsies and radical prostatectomies. Deep learning
approaches using convolutional neural networks (CNNs) have been shown to identify cancer in pathologic slides,
some securing regulatory approval for clinical use. However, differences in sample processing can subtly alter the
morphology between sample types, making it unclear whether deep learning algorithms will consistently work on
both types of slide images. Our goal was to investigate whether morphological differences between sample types
affected the performance of biopsy-trained cancer detection CNN models when applied to radical prostatectomies
and vice versa using multiple cohorts (N = 1,000). Radical prostatectomies (N = 100) and biopsies (N = 50) were
acquired from The University of Pennsylvania to train (80%) and validate (20%) a DenseNet CNN for biopsies (MB),
radical prostatectomies (MR), and a combined dataset (MB+R). On a tile level, MB and MR achieved F1 scores greater
than 0.88 when applied to their own sample type but less than 0.65 when applied across sample types. On a whole-
slide level, models achieved significantly better performance on their own sample type compared to the alternative
model (p < 0.05) for all metrics. This was confirmed by external validation using digitized biopsy slide images from a
clinical trial [NRG Radiation Therapy Oncology Group (RTOG)] (NRG/RTOG 0521, N = 750) via both qualitative and
quantitative analyses (p < 0.05). A comprehensive review of model outputs revealed morphologically driven decision
making that adversely affected model performance. MB appeared to be challenged with the analysis of open gland
structures, whereas MR appeared to be challenged with closed gland structures, indicating potential morphological
variation between the training sets. These findings suggest that differences in morphology and heterogeneity
necessitate the need for more tailored, sample-specific (i.e. biopsy and surgical) machine learning models.
© 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Nearly one-third of all male cancer diagnoses are of
prostate cancer, making it the second leading cause
of cancer death among men. [1]. Hematoxylin and eosin
(H&E)-stained core needle biopsies (core needle BXs)
are the main method for diagnosing prostate cancer [2].
Samples are acquired by puncturing the prostate with a
core needle device and extracting a tissue sample that is
subsequently processed and placed on a slide for pathol-
ogist review [3]. If cancer is observed, it is graded by a
pathologist to determine the extent and aggressiveness
of the disease [4], which then influences the subsequent
course of treatment, e.g. active surveillance versus rad-
ical prostatectomy (RP). For those patients that opt for a
surgical intervention typically via RP, the individual
tissue specimens are sectioned (either quartered or
whole) and the sections mounted on slides [5]. Cancer
within these samples is graded to gauge the risk of post-
treatment adverse patient outcomes such as biochem-
ical recurrence, metastasis, or death. BXs and RPs
serve different roles in the clinical process and have
differences in preparation that are known to impact
observed cancer heterogeneity [6] and histopathologic
characteristics. [7].

Automated methods using artificial intelligence (AI)
have been developed to evaluate prostate cancer tissue
samples more quickly and with less bias than manual
investigation [8]. AI models have been developed for
slide-level classification [9–11] and prediction [12,13],
as well as for smaller subsections of slides referred to as
tile-level cancer detection [10,11,14]. While some of
these approaches have been clinically validated [9,10]
and have demonstrated high accuracy in BXs, very
few of them have been tested on RPs. This includes
FDA-approved tools such as that of Paige AI, which
was developed to identify prostate cancer on core nee-
dle BXs[15]. Though extensively validated on
BXs [15–18], it is unclear whether similar models would
maintain consistent performance when applied to RPs.
Such models could potentially perform well across sam-
ple types given both BXs and RPs contain histologically
prepared sections of prostate and tumor tissue prepared
with the same stain (H&E) and digitally scanned in the
same manner. To our knowledge, there has not been a

dedicated study focusing specifically on understanding
whether morphologic differences exist between RPs [19]
and BXs [8,9,14,18] and how those differences affect AI
models trained for cancer detection.
The differences in acquisition, preparation, andmorpho-

logy between RPs and BXsmake it unclear whether cancer
detection models trained on one sample type will translate
to the other. With the current rise in FDA-approved
AI-based cancer detection technologies [8–10,19],
there is a need for clarity as to which types of samples
these models can be applied. One of the primary con-
cerns when attempting to translate models between
sample types is the presence of batch effects [20] and
addressing intersite differences. Batch effects in training
AI models can be addressed through data augmentation
during training, which prevents models from learning
dataset-specific features that disrupt generalizability [21].
More specifically for H&E images, stain normalization
approaches have been developed to reduce differences
between datasets that arise from different tissue staining
procedures, environments, or imaging systems [22]. It is
highly likely that once these factors are taken into
account, performance differences between models will
be driven primarily by morphological differences
between sample types.
The aim of this study was to investigate whether

preparation differences between RPs and BXs resulted
in morphological differences that drive differential per-
formance in cancer detection models when RP deep
learning models are applied to BXs and vice versa. The
scientific premise of this work was that the BX model
would detect cancer more accurately when applied to
BX data compared to RP data. We also expected that the
RP model would detect cancer more accurately when
applied to RP data compared to BX data. Our goal was to
determine whether morphologically driven performance
differences are present in cancer detection models.
The data used in this study comprised HE-stained

slides corresponding to 100 RPs and 50 BXs from The
University of Pennsylvania. An additional set of 98 BXs
from CorePlus Servicios Clínicos y Patol�ogicos was
used as an independent, qualitative external validation
set. Another additional set of 750 BXs from the NRG
Radiation Therapy Oncology Group (NRG/RTOG)
0521 clinical trial was used for both qualitative and
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quantitative external validation. DenseNet [23] models
were trained for both RPs and BXs, which were subse-
quently tested on both sample types and on an indepen-
dent set of BXs acquired from CorePlus.

Materials and methods

Study design
This study used 1,000 patient-related samples from four
cohorts and multiple institutions (Table 1, Figure 1A).
Digitally scanned images from RP HE-stained slides at
magnification �40 were acquired from The University
of Pennsylvania for 100 patients (SR). Digitally scanned
core needle BXs were acquired from the same institution
at a magnification of�40 for a different set of 50 patients
(SB). Both cohorts were annotated by expert pathologists
for cancerous regions at variable magnifications
(changed as needed by the pathologist). Slide-level
Gleason score and Gleason grade information was avail-
able for all patients (Figure 2). Since the distributions of
Gleason grades were relatively similar between cohorts,
with the exception of some high-grade cancer in RP
specimens, these cohorts were designated for model
training. Additionally, these cohorts were chosen
because they were all digitally scanned using the same
device (Hamamatsu NanoZoomer S360, Hamamatsu
Photonics, Bridgewater, NJ, USA), reducing scanning-
related differences between the datasets. The scanners
used to digitize other datasets available to us either
did not match these datasets or could not be verified.
An external validation set of unannotated biopsy
samples was acquired from CorePlus Servicios Clínicos
y Patol�ogicos for 100 patients (SC). An additional multi-
institutional external validation set of 750 biopsy sam-
ples from 350 patients was acquired from a subset of the
NRG/RTOG0521 clinical trial [24], of which 28 patients
had cancer annotations (SRTOG). All images underwent
quality testing using HistoQC [20], an open-source
quality control tool for digital pathology slides, which
indicated most slides were usable for model training
or validation (Figures 1B and 3). All slides were
downsampled to magnifications of �1, �5, and �10 to
decrease memory burden and increase training speed.
Each slide was split into 256 � 256 pixel tiles that were
assigned a binary designation of cancer (greater than
30% cancer present) or noncancer (less than 30% cancer)
based on the pathologist annotation. Image tiles
containing a relatively small amount of tissue (less than
20%) were discarded. All data were acquired with

approval of the respective hospital Institutional Review
Board, with informed consent waived due to retrospec-
tive collection.

Deep learning models for prostate cancer detection
All models developed in this study utilized the DenseNet
architecture [23] (Figure 1C). This is a convolutional
network where each layer is densely connected to
every following layer. This structure prevents
overfitting, strengthens feature propagation, and
reduces the vanishing gradient problem that plagues
large neural networks. The input to these models were
the extracted tiles and the output a vector containing the
probability of the tile belonging to each class. All models
were developed in Python using PyTorch (version 1.12
with CUDA compatibility, The Linux Foundation, San
Diego, CA, USA).

This study comprised the following three experiments.
(1) ADenseNet model was trained for BXs using SB (MB)
and RPs using SR (MR) separately. They were then
evaluated on their respective internal validation sets
(SB,V, SR,V). This process was repeated at magnifica-
tions �1, �5, and �10. (2) MB was evaluated at all
magnifications on SB while MRwas evaluated across all
magnifications on SR. Both models were then evaluated
on SC and SRTOG. (3) A combinedmodel was trained using
both SB and SR at magnification�5 (MB+R) and validated
on a combination of SB,V and SR,V. Additionally, exper-
iments 1 and 2 were repeated for magnification �5 for
three additional neural network architectures (ResNet,
EfficientNet, ResNext).

Mitigation of batch effects
Once batch effects are considered and reduced, any
differences in model performance were expected to
likely be engendered by morphological differences
between BXs and RPs. Four approaches were taken to
reduce batch effects between SB and SR. (1) The datasets
were acquired from the same institution to normalize the
slide preparation and digitization protocols. (2) Both
datasets were investigated using Uniform Manifold
Approximation and Projection (UMAP) embeddings [25]
to ensure there were no differences in clustering between
the two types of samples prior to training. (3)Random image
augmentationwas applied duringmodel training [21]. These
strategies included random cropping, hue saturation value
(HSV) shifting, contrast adjustment, brightness adjust-
ment, and rotations. The probability that any one of these
adjustments would occur was 50%. (4) Stain normaliza-
tion using Macenko normalization [26] was applied

Table 1. All datasets used in this study. We utilized 1,000 slides from 600 patients across three institutions.

Institution Short name Sample type No. samples No. patients

UPenn biopsies SB Biopsy 50 50
UPenn radical prostatectomies SR Radical prostatectomy 100 100
CorePlus SC Biopsy 100 100
NRG/RTOG 0521 SRTOG Biopsy 750 350

Total 1,000 600
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during training using a randomly chosen tile from a
balanced subset of the data. Every tile within a batch
was equally likely to be normalized to a RP tile as it was
to a BX tile, reducing model reliance on stain differences
(supplementary material, Figure S1).

Strategies to mitigate differences in annotation were
also considered. Differences between human annotators
can result in different ground truth labels when training
machine learning models, thereby affecting model
performance [27]. Semantic segmentation models are
particularly vulnerable to this because they make
predictions at a very small scale (per pixel). However,
tile-wise classification helps minimize the effect of
annotation differences by considering a region of tissue

when performing the classification task. All models
trained in this study were tile-based classification
models, intentionally designed to take advantage of this
mitigation strategy.

Statistical evaluation
Each training dataset (SB, SR) was split into training
(80%) and internal validation (20%) subsets, with each
model being trained for 100 epochs with a binary cross
entropy loss function [28] and an Adam optimizer [29]
(lr = 0.001, β1 = 0.9, β2 = 0.999). The model that
achieved the smallest loss on the training set was
saved for further evaluation. Experiments 1 and 2 were

Figure 1. Demonstration of experimental workflow in this study. (A) Data preparation from both biopsies and radical prostatectomies.
(B) Image processing to generate tiles with tumor and nontumor classifications. (C) Iterative model training process for Densenet models.
Partially created with BioRender.com.

Figure 2. Distribution of pathological scoring in the two training cohorts. (A) Gleason score distributions in both UPenn datasets. (B) Gleason
grade distributions in both UPenn datasets.

Figure 3. CONSORT diagram of different cohorts used in this study. Only two patients were removed during quality testing using HistoQC.
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conducted from the perspective of both tiles and
whole slides. Tile-level performance was evaluated
using sensitivity, specificity, and F1 score. Whole-
slide performance was evaluated using F1 score, area
under the receiver operating curve (AUC), and Dice
score. The F1 score combines precision and recall, or a
weighted ratio of true positives to false positives (FPs)
and false negatives (FNs), to create a comprehensive
accuracy metric for classification problems. The Dice
score is a measure of overlap between an annotated region
and the predicted cancer region from the model. Slide-
level performance was computed for each patient using
both MB and MR and compared using t-tests (α = 0.05).
These comparisons were also computed using SRTOG.
Because cancer annotations were not available for SC

and many of the slide images in SRTOG, an additional
qualitative comparison was performed.MB andMRwere
applied to each BX slide in its entirety to generate
segmentation overlays that were subsequently presented
to two expert pathologists (TP, TM), who in turn evalu-
ated model performance. All slides were stain normal-
ized prior to generating the overlays. Each reviewer was
presented with segmentation overlays from both models;
however, they were blinded to which model each over-
lay belonged to. For each slide image, both reviewers
indicated whichmodel they believed was better at cancer
detection. This determination was made based on the
amount of correctly identified cancer tissue (true positives)
as well as the amount of incorrectly classified benign tissue
(FPs). Once the evaluation for all patients was complete, a
thorough review was conducted on cases for which the
reviewers disagreed. For each of these cases, a consensus
decision was reached between the two reviewers as to
which model resulted in superior cancer detection. The
total number of slides for which each model was preferred
by the reviewers was compared. To have sufficient power
in our analysis (80%) to detect the difference in model
preference, we compared 60 randomly selected slides from
SRTOG.
Additionally, MB and MR were applied to SC at

magnification �5. The agreement between the classifi-
cations was determined by applying the model across the
entire slide and then calculating the Dice score between
the labeled regions.

Interpretability of deep learning models
Once cancer detection models were trained for both BXs
and RPs, we implemented two approaches to assess
model interpretability. (1) Grad-cam activation maps [30]
were acquired for both MR and MB on both SB and SR.
These maps are visual representations of the locations in
the image that the model used to make classification
decisions based on the strength of the model gradients.
The activation maps were qualitatively evaluated by a
nonexpert (BF) and observations were confirmed by an
expert pathologist (TP or TM). The evaluation included
presenting expert pathologists with 5�magnification tiles
as well as themodel activationmaps associated with those
tiles. The pathologists were tasked with identifying

structures (glands) that were highlighted in model atten-
tion maps and identifying general characteristics of those
structures (size, lumen, cancerous or benign). (2) All FP
and FN tiles were examined by the same two experts.
Observations on tile appearance (including gland shape
and size) and morphology from both pathologists were
compiled to create a comprehensive consensus review of
model performance. An additional quantitative review
was performed to confirm pathologist observations. All
tiles from SB,V, along with an equal sized randomly
chosen subset of tiles from SR,V, were reviewed by three
expert pathologists (TP, TM, XF). Each tile was graded
(Gleason grade 3–5), and any observed variant morphol-
ogy was noted. The pathologists reviewed difficult-
to-grade tiles and created a consensus grade for each. χ2

tests (α = 0.05) were conducted to compare the number
of true positives (TPs), true negatives (TNs), FPs and FNs
between MB and MR for all grade classifications within
both RPs and BXs.

Results

Experiment 1: validating surgical and biopsy-specific
cancer detection models on surgical and biopsy
images respectively
Both MB and MR achieved F1 scores greater than 0.89
on SB,V and SR,V, respectively. On a tile level, MB had an
F1 score of 0.93, with sensitivity of 0.92 and specificity
of 0.68 (Table 2) at a magnification of �5 on the SB,V.
MB achieved similar performance but lower metrics
using �1 and �10 tiles. Similarly, MR had an F1 score
of 0.89, with a sensitivity of 0.84 and specificity of 0.97
at �5 magnification on the SR,V. MR achieved very
similar performance on �1 and �10 tiles.

Experiment 2: validating surgical and biopsy-specific
cancer detection models on different sample types
Both MB and MR achieved lower performance metrics
when applied to SR,V and SB,V, respectively. On a tile
level at �5 magnification, MB applied to the SR,V set
resulted in a F1 score of 0.64, with a sensitivity of 0.49
and a specificity of 0.91 (Table 2). MR demonstrated a
similar decrease in performance when applied to SB,V at
�5 magnification, achieving an F1 score of 0.53, a
sensitivity of 0.94, and a specificity of 0.23. These trends
were consistent for both �1 and �10 magnifications.
Similar trends were observed when MB and MR were
trained using ResNet, EfficientNet, and ResNext archi-
tectures (supplementary material, Table S1). MB consis-
tently outperforms MR on BXs in terms of F1 score
regardless of architecture, while MR consistently out-
performs MB on RPs for all architectures. F1 score,
sensitivity, and specificity were lower for these architec-
tures compared to DenseNet.

Slide-level performance reflected similar trends as
well (Table 3). MB achieved higher F1, AUC, and Dice
scores compared to MR on both the SB as well as SRTOG.

150 BT Flannery et al

© 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2025; 265: 146–157
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


Slide-level performance from MB was relatively consis-
tent across both datasets.

Using t-tests to compare the distributions of each
metric between MR and MB for both SB and SRTOG

demonstrated that MB achieved significantly higher
F1 scores, AUC values, and Dice scores (Figure 4).
MR achieved higher accuracy metrics on the SR com-
pared to MB. The distribution of MR performance
metrics compared to MB was also significantly higher
based on t-tests. These differences in model predic-
tions were observed qualitatively on SC as well. Tile
level overlap between MB and MR was 0.29 based on
Dice score, indicating very little agreement between
the models.

Qualitative analysis of model outputs on SRTOG

revealed that MB performed much better than MR, with
MB detecting much more cancer tissue compared to MR

without FP classifications (Figure 5E,F). MB was pre-
ferred by expert pathologists for 77% of slides. When
considering only slides that had a minimal acceptable
amount of cancerous tissue to be usable in a downstream
analysis, MB was preferred in 92% of slides.

Experiment 3: validating a combined surgical and
biopsy image-trained model
The combined RP and BX model MB+R demonstrated
high performance in sensitivity, specificity, and F1 score
for the combined validation set as well as SR,V (Table 2).
While achieving a 0.83 F1 score on the UPenn BX
internal validation set, it also had a lower specificity
(0.41) compared to MR and MB.

Model interpretability
When applied to RPs, MBmistookmany large cancerous
glandular structures as benign (Figure 5A(i,ii)), meaning
it had many FN errors when the glands in question were
large. However, MB consistently identified smaller
cancerous glands as cancer. Similarly, MB mistook
some large benign glandular structures as cancerous
(Figure 5B(i,ii)). MR had very few FNs when applied
to RPs, but it had many FPs where it identified benign
glandular structures as cancer. The behavior of both
models was consistent when applied to BXs. MB

resulted in similar errors, struggling to identify cancer
presenting as very large glandular structures (Figure 5A
(iii,iv)). However, it had very few FP, only mistaking
some areas along the edge of the sample as cancer
(Figure 5B(iii,iv)). On BXs, MR identified most glands
with visible lumen as cancer regardless of their true
classification (Figure 5D(iii,iv)) while struggling to
identify smaller, closed glands (Figure 5C(iii,iv)). On
RPs, MR misclassified a small number of border tiles,
small glands, and prostatic stones (Figure 5C(i,ii), 5D
(i,ii)).
Distinct differences were observed between activation

maps for MB and MR (Figure 6). MB shows much more
attention to closed glands while avoiding open glands.
This is evident primarily on BXs (Figure 6A,B) but can
still be seen on RPs (Figure 6C,D). MR exhibits the
opposite behavior, showing more attention to open
glands (with lumen) compared to closed glands. This
can be observed in both RPs and BXs.
Quantitative evaluation of the influence of cancer

grade and variant morphology on model predictions

Table 2. Tile-level performance metrics for cancer detection models trained using tiles at �1, �5, and �10 magnification with various
internal validation sets from SB and SR. Datasets include biopsies (BX), radical prostatectomy (RP), and a RP + BX set. Metrics include
sensitivity (Se), specificity (Sp), and F1 score (F1).

MB MR MB+R

Se Sp F1 Se Sp F1 Se Sp F1

Validation Set �5
BX 0.92 0.68 0.93 0.94 0.23 0.53 0.96 0.41 0.83
RP 0.49 0.91 0.64 0.85 0.94 0.88 0.84 0.97 0.89
RP + BX 0.66 0.83 0.75 0.87 0.75 0.77 0.87 0.95 0.91

�10
BX 0.93 0.59 0.85 0.88 0.37 0.6 0.92 0.39 0.83
RP 0.72 0.66 0.21 0.84 0.95 0.88 0.87 0.90 0.87
RP + BX 0.75 0.64 0.62 0.86 0.72 0.78 0.87 0.89 0.88

�1
BX 0.89 0.59 0.81 0.92 0.36 0.36 0.93 0.42 0.84
RP 0.77 0.66 0.11 0.89 0.97 0.91 0.87 0.90 0.87
RP + BX 0.78 0.61 0.66 0.89 0.73 0.73 0.87 0.89 0.88

Table 3. Slide-level performancemetrics for MB andMR. Metrics include F1 score (F1), area under the receiver operating curve (AUC), and dice
score (Dice). Metrics for both UPenn datasets and NRG/RTOG 0521 are shown.

Dataset MB MR

F1 AUC Dice F1 AUC Dice

BX 0.48 ± 0.27 0.70 ± 0.13 0.53 ± 0.23 0.35 ± 0.28 0.62 ± 0.13 0.36 ± 0.27
RP 0.17 ± 0.20 0.48 ± 0.07 0.17 ± 0.20 0.69 ± 0.19 0.66 ± 0.11 0.69 ± 0.14
RTOG 0.46 ± 0.36 0.70 ± 0.17 0.57 ± 0.25 0.23 ± 0.24 0.58 ± 0.09 0.39 ± 0.16
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revealed significant differences between MR and MB.
MB had significantly more TNs and fewer FPs in
benign tiles compared to MR in both SB,V and SR,V

(supplementary material, Figure S3A,D). MR had signif-
icantly more TPs and fewer FNs in SR,V for both grades
3 and 4 cancers (supplementary material, Figure S3E,F).
Neither model had no significant differences in the
amount of TPs or FNs in SB,V for both grades 3 and
4 cancers (supplementary material, Figure S3B,C). No
Gleason grade 5 tiles were observed in SB,V or SR,V.
Comparison of the presence of variant morphologies
within TP, FN, TN, and FP tiles reveals some distinct
differences betweenMR andMB (supplementarymaterial,
Table S2). MB mistakes more cribriform tiles for benign
compared to MR. MR has more FN classifications of tiles
containing foamy glands compared toMB. Lastly,MB has
more FN classifications of ductal cancer tiles compared
to MR.

Discussion

This study investigated whether prostate cancer detec-
tion AI models trained using BXs were generalizable to
RPs and vice versa. Additionally, we investigated
whether there were morphologically driven performance
differences between models trained on different sample

types (RPs versus BXs). To accomplish this, differences
in data collection that led to batch effects were
minimized, allowing for accentuation of the inherent
morphological differences on account of preparation
differences between the two different sample types. This
was accomplished using samples from the same institu-
tion, investigating UMAP embeddings (supplementary
material, Figure S2), using both image augmentations
and stain normalization [26] during model training, and
developing tile-based classification models.

While this study does not claim to have uncovered a
definitive reason for the differences observed between
AI models across different sample types, it seems highly
likely that the reason is on account of the heterogeneity
of prostate tissue morphology between RPs and BX
samples [6]. Comprehensive review of the FP and FN
errors of each AI model revealed that they both appeared
to be impacted by the distinct morphological patterns
across sample types (Figure 5). MB produced more FN
errors, particularly when presented with large glands on
RPs. This suggests that MB struggled to accurately clas-
sify large glands on RPs, indicating that these structures
may not occur often within BXs. A potential explanation
is that BX samples are limited in width by the width of
the BX needle (about 1.0 mm), which does not allow for
adequate representation of larger glands or groups of
glands whose size could exceed this width. These struc-
tures are captured well on RPs because there is no such

Figure 4. Slide-level performance of both MR and MB on all datasets. All comparisons were significantly different (p < 0.05). MB obtained
significantly better performance on both the UPenn BX dataset and NRG/RTOG 0521, which also contains biopsies exclusively. MR obtained
significantly better performance on UPenn RP dataset.
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limitation to the size of the sample, allowing full repre-
sentation of larger structures. Since MR performed very
well on RPs, there were very few FNs and FPs. Of these,
MR only struggled with the borders of annotated regions
that contained both cancerous and benign tissue, the
borders of the sample, or tiles that contained unique
structures such as prostatic concretions, which are large
groups of aggregated proteins [31]. MR had many

FPs when applied to BXs, mostly struggling with
smaller glands, while MB struggled with larger glands
(Figure 5). This might reflect differences in glandular
appearance on BXs and RPs, in turn impacting the
predictions of cancer detection models.
The differences in model performance on account of

morphological differences between samples is also
supported by the different activation patterns of MR

Figure 5. Example outputs from MB and MR. (A–D) Examples of incorrect classifications from both models on both RPs and BXs. (A and B) MB

struggles to correctly classify large glandular structures and results in errors along sample edges. (C and D) MR struggles to correctly classify
smaller glandular structures, particularly on biopsies, and along the edges of tissue. MR also struggles with the relatively rare occurrence of
prostatic stones. (E and F) Overlays for model predictions on two examples from NRG/RTOG 0521. MR predictions are indicated in red, while
MB predictions are indicated in blue.
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and MB (Figure 6). MB and MR focus primarily on
closed and open glands, respectively. Similar to the
results observed in Figure 5, this behavior suggests
differences in glandular appearance within BXs and
RPs and could be explained by mechanical alteration
induced by the BX needle during tissue acquisition such
as the cutting or deformation of glands during the needle
puncture. The process of acquiring tissue could have
other types of impact on the appearance of the
corresponding images as well. While BXs are slivers of
tissue traversing a shallow depth [3], RPs are planar
sections potentially of the entire prostate [5].
Therefore, RPs contain tissue from a larger region of
the prostate compared to BXs and can potentially con-
tain a larger variety of tissue. Additionally, RPs are
likely to contain tissue from different zones of the pros-
tate, whereas BXs are less likely due to their smaller size.
This difference in sample acquisition could also contrib-
ute to morphological differences between sample types.

However, this is still a hypothesis and requires further
investigation.

Quantitative evaluation confirmed some of the model
performance patterns observed by expert pathologists.
MB had fewer FP and more FN in benign tiles on both
RPs or BXs, while MR had more FPs and fewer FNs
(supplementary material, Figure S3). The larger number
of FNs produced by MB line up with observations from
pathologists that MB struggles to classify tiles with large
cancerous glands. Similarly, the larger number of FPs
produced by MR line up with observations from pathol-
ogists that MB struggles to classify tiles containing
benign glands. This quantitative experiment also dem-
onstrated that MR had significantly better performance in
both grades 3 and 4 cancers on RPs (supplementary
material, Figure S3E,F) but did not have significantly
different performance on BXs (supplementary material,
Figure S3B,C). Again, this could indicate a difference in
cancer appearance between the two sample types.
Overall, this quantitative evaluation indicates that cancer

Figure 6. Grad-Cam attention maps for both MR and MB on various example tiles. Red indicates high activation areas, while blue indicates
low activation areas. MB focuses more on closed glands (without lumen), while MR focuses on open glands (with lumen).
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grade had little effect on whether a tile was correctly
classified, since bothMR andMB performed similarly on
grades 3 and 4 tiles in both BXs and RPs. This analysis
also demonstrated that there were some differences
between variant morphology within the RP and BX
datasets. MB was noted to perform worse on cribriform
and ductal cancer tiles compared to MR. This is most
likely due to the fact that SB contains fewer of these
variant morphologies compared to SR. Similarly, MR

performed worse on foamy cancer tiles (rare presenta-
tion of prostate cancer appearing similar to benign
glands) compared to MB, most likely because there are
fewer tiles with this presentation in SR compared to SB

(supplementary material, Table S2). However, given the
small number of tiles with these presentations, variant
morphology was likely not a driving factor in the per-
formance differences observed in this study.

Model performance was further validated using a
completed cooperative group phase III clinical trial from
NRG Radiation Therapy Oncology Group (RTOG),
NRG/RTOG 0521 [24]. This trial evaluated the added
benefit of adjuvant docetaxel chemotherapy after andro-
gen therapy and radiotherapy in a randomized controlled
setting. The validation process on NRG/RTOG 0521
appeared to confirm the performance differences observed
throughout the training process and sets. MB was over-
whelmingly preferred by expert pathologists compared to
MR on this set of BXs, with an even greater preference
when the amount of cancer was deemed to be actionable
for further analysis. Quantitative comparison of model
performance on this external validation set confirmed these
observations, with MB performing significantly better
than MR across all measured metrics. Example outputs
from both models (Figure 5E,F) demonstrated that MB

identified much more cancerous tissue compared to MR.
MB does suffer from some FP errors on NRG/RTOG
0521 samples.

Training MR and MB using other architectures pro-
duced results similar to those observed with DenseNet,
revealing that the observed performance differences on
BXs and RPs were independent of model architecture.
Additionally, results for MB+R indicated that combining
datasets during training did not result in better perfor-
mance on either BXs or RPs compared to MB and MR

and that sensitivity was particularly poor for BXs
(Table 2).

Performance of all models on their own sample types
aligned with similar findings reported in the literature.
Pantanowitz [9] used an ensemble-based approach to
predict slide-level classifications for prostate cancer BXs
(sensitivity and specificity greater than 0.85). Tolkach
presented similar models for RPs (F1 score of
0.94) [32]. Bulten [33] applied a similar method to
achieve gland-level grade predictions on prostate cancer
BXs, achieving a sensitivity and specificity greater than
0.88 for all cancer grades. Large challenges like the
PANDAS challenge [11] have been developed for this
very task, resulting in over 1,000 different cancer detec-
tion models for prostate BXs. Despite using a relatively
simple neural network architecture for our models (MB,

MR), they achieved a sensitivity and specificity similar to
those reported in the aforementioned studies [9,11,32]
when applied to the sample type they were trained with.
We acknowledge that our study has its limitations.

First, SB contains fewer samples and patients compared
to SR, which could have impacted model accuracy and
generalizability. However, this design setup was neces-
sary to ensure that both datasets originated from the
same institution. Second, observations on gland size
and appearance could not be quantified due to a lack of
gland annotations. Future study will be dedicated to
further characterizing these observations through quan-
titative measures of gland size and shape. Lastly, our
study used 28 of the 750 slides within NRG/RTOG 0521
to conduct quantitative validation. This was on account
of the challenge in acquiring manual annotations.
However, qualitative evaluation of all models was
performed on all 750 slide images. In future work we
will seek to obtain additional ground truth annotations
of the cancer extent on all remaining slide images,
enabling a more extensive quantitative evaluation.
Despite the aforementioned limitations, this study

reveals that sample type-specific AI models may be
necessary for cancer detection in prostate histology
slides. Models trained on a dataset of BXs should likely
not be applied to RPs and vice versa due to distinct
morphological differences between sample types.
Substantial pretraining using self-supervised learning
techniques [34,35] or other methods including founda-
tion models [36] could prove useful for increasing model
generalizability. However, given the core morphological
differences between RPs and BXs identified in this
study, it is unclear whether these approaches will be
sufficient to improve generalizability. This must be val-
idated in further studies.

Conclusions

Our results suggest that AI-based cancer detection
models trained on BX samples are less than optimal
when applied to RP specimens, and vice versa. A com-
prehensive review of model performance demonstrated
that differential model performance appeared to be
driven by morphological differences between BXs and
RPs. These morphological differences could have orig-
inated from mechanical distortion of tissue architecture
during BX acquisition. The resulting changes to tissue
appearance could have been a driving factor in the
model performance observed in this study. These find-
ings suggest that cancer detection models trained on
BXs do not readily generalize to RPs, and vice versa.
This suggests a need to create sample-type specific
cancer detection models for BXs and RPs. This is
especially important as AI models are approved by the
FDA and implemented in clinical settings [37].
Inappropriate invocation of these models could also
have detrimental impact on other downstream tasks
such as cancer grading [38], diagnosis [39], and
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prognosis [40]. In a clinical setting, this could nega-
tively change clinical decision making and harm
patients. At the very least, our findings suggest the need
for further work to carefully evaluate sample-specific
AI-based prostate cancer detection models.
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