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Abstract

This paper addresses the problem of estimating lower bounds on the switching activity in scheduled

dataflow graphs with a fixed number ofallocated resources prior to binding. The estimated bound takes

into account the effects of resource sharing. It is shown that by introducing Lagrangian multipliers and

relaxing the low power binding problem to the Assignment Problem, which can be solved in 0{rfi), a
tight andfast computable bound is achievable. Experimental results show the quality of the bound. In

most cases, deviations smaller than 5% from the optimal binding were observed. The proposed tech

nique can be applied in branch and bound high-level synthesis algorithms for efficiently pruning the

design space.

1. Introduction

For most problems in high-level synthesis (HLS) no polynomial time algorithms are known [1]. In order

to find optimal or near optimal solutions for this class of problems strategies like branch and bound are

applied. A branch and bound algorithm traces a decision tree whose leaves represent all possible soluti

ons. Design decisions are made at each internal node while the leaves of the subtree rooted at an internal

node are the solutions due to that decision. Given a best solution found during execution of the branch

and bound algorithm, a subtree can be pruned if a lower bound estimate of the cost function of all solu

tions of the subtree is higher than the cost of the current best solution. Tight and fast computable lower

bounds therefore improve the run time requirements of such algorithms.



This paper addresses the problem of lower bound estimates for low power HLS and related applica

tions. In particular, a lower bound estimation procedure for the switching activity at the inputs of

datapath resources, i.e. registers and functional units (FUs) like adders and multipliers, in scheduled

data flow graphs (DFGs) with resource constraints for a given input data stream is given. In the assumed

design flow the binding of operations and variables to functional units and registers respectively follows

allocation and scheduling. This is a typical flow if resource constrained scheduling is performed. Condi

tional branches and loops within a DFG are not considered here. Different bindings produce most pro

bably different datapath activities due to the varying data multiplexing schemes if resources are shared.

With switching activity we mean the average Hamming distance of consecutive input vectors. Most

HLS for low power algorithms use the switching activity at the inputs of datapath resources or simple

functions thereof as a cost function of the power consumption of the design [2,3,4]. The switching acti

vity is a good indicator of the power requirements [5] and often the only power indicating information

available at the higher levels of abstraction as considered here. However, the lower bound estimation

procedure can also be applied with more accurate information. For example, switched capacitance esti

mates could be used in case the resource types (e.g. a CLA scheme for adders etc.) are fixed [6,7].

The remainder of the paper is organized as follows: section 2 describes the relation of our approach

to previous work. In section 3 the representation and calculation of the switching activity information is

introduced. The new lower bound estimation procedure is presented in section 4. Section 5 shows expe

rimental results and conclusions are drawn in section 6.

2. Previous Work

Lower bound estimation (LBE) techniques are often applied to guide HLS. As examples, the authors of

[8] present procedures to estimate lower bounds on the resource requirements from a given DFG with a

performance goal. In [9] a technique is described that estimates a lower bound on the performance of

schedules from a DFG with resource constraints. To the best of our knowledge, LBE techniques for low

power at the higher levels of abstraction are first addressed in [10]. Lower and upper bound estimation

procedures are given for scheduled DFGs without resource constraints. This paper extends the work of

[10] by improving the bounds if the number of resources is constrained.

Some researchers have addressed HLS for low power problems that are closely related to our work.

In [2] the problem of binding the n variables of a DFG to m registers under the constraint of minimum



switching activity at the register inputs is formulated as a max-cost network flow problem. The problem

can be solved in 0{mn ). The drawback of this approach, however, is that inter-iteration switching

activity cannot be considered. Inter-iteration activity is defined as the switching activity resulting from

successive executions of the DFG. For instance, let;

i
• X , xe {a, Z?, c, e}, be the value of the binary variable x at iteration i of the DFG,

• x\y be the concatenation of the binary variables x and y,

• hd{x, y) be the Hamming distance between the values of variables x and y.

Suppose that operations +2 and +2 of the DFG depicted in Fig. 1 are bound to one adder. One part of the

switching activity at the inputs of the adder is:

I ' (intra-iteration activity),

where T is the length of the input stream. The inter-iteration part is defined as:

,r-1 i / + 1 / + L
Y. 'hd{d c ,a b ),
^1=1

e.g. the switching from the values of iteration i to the new ones of iteration i + I.

The same authors investigate the problem of binding operations to a fixed number of resources in a

functionally pipelined DFG taking inter-iteration effects into account [3]. Due to the inter-iteration

constraint the problem can only be transformed to a max-cost multi-commodity network flow problem

which is in general not solvable in polynomial time. An integer linear program (ILP) for the problem of

binding n operations/variables to m functional units/registers is formulated in [6]. The inter-iteration

effects are considered but no polynomial time algorithm for solving the ILP is given.

3. Switching Activity

The switching activity representation follows the approach described in [10] that originates from the

work presented in [2,3,6]. A square switching activity matrix (SAM) for the variables and for each ope

ration type present in the DFG (e.g. addition, subtraction, multiplication, etc.) is defined. The lower tri

angular entries including the main diagonal contain the inter-iteration activity between all pairs of



c-step 1

c-step 2

order:

+1 < +2 < +3

a<b<c<d<e

Figure 1: DFG with operation and variable order.

operations and variables respectively. The upper triangular part stores intra-iteration activity. Each ope

ration respectively variable is associated with one column and one row having the same index. The

column and row ordering equals a total operation (variable) ordering which can be induced from the

given schedule as depicted in Fig. 1. Let csb(op.) denote the first c-step ofoperation op^ in the sche

dule. Then op •< op • if csb{op •) < csb(op .), e.g. the execution of op . follows that of op • within one
^ J ^ J J I

execution of the DFG. In case p operations op^, ..., op^ are not compatible, e.g. start in the same c-

step {csb{op^) = ... = csb{op^)), then they can be put in arbitrary order, for example

<... <op^. The same ordering can be defined on the set of variables by replacing csb{op^ with

the birth time of that variable [1]. In the sequel, we only deal with operations and index all n operations

of type r according to their ordering:

(r) (r)op^ ' <...<op)
n

Switching activity information about operation op^ is stored in column and row i ofthe SAM ofthe

corresponding operation type. An entry SAM(i, y), 1,; e {1, ..., n} is set to infinity (+oo) if operati

ons op. and op . are not compatible and therefore cannot share a resource. Otherwise if i < j (remem-
^ J

her that from i < j follows op-<op .), the entry stores the average Hamming distance between the
^ J



input vectors of operations op,^ and opj from the same iteration. If i> j, SAMii, j) is set to the aver

age Hamming distance between the inputs of op • from iteration t and the inputs of op . from iteration
^ J

t+ 1 (inter-iteration activity). The elements on the main diagonal SAM(i, i) store the activity at the

inputs of operation op., e.g. the activity at the inputs of a FU if only op. is bound to it. Formally:

SAM{i,j) =

°° , op., op . are not compatible
' J

1 T
= Ihd{op.(t), opj(t)) ,i<j

Ihdiop.it), opjit +1)) ,i>j

with:

• op.it) the concatenation of the input vectors of operation op. in iteration t of the DFG, and
' I

• T the total number of vectors in the input data stream, e.g. the number of iterations of the DFG.

For example, the average switching activity per DFG iteration at the inputs of a resource with operati

ons opop2, op2^ mapped onto it in that order can now be computed by

SAMil, 2) + SAMil, 3) + 5AM(3, 1) [6]. The Hamming distances can be computed by simulating the

entire DFG with the input stream or by using statistical techniques as for example proposed in [2,3].

Note that two dimensions suffice to store all necessary information. If op. < op . holds than the data
^ J

op -it+\) can never directly follow op.it) at the inputs of a FU.
J t

4. Binding for Low Power with Resource Constraints

4.1. Problem formulation

For a given operation type we define the low power binding problem with resource constraints as fol

lows:



Given a switching activity matrix {SAM{i, j)) • • _ r i of n operations op.op . Which is
1 Tl

the minimum sum of switching activity at the resources inputs if these n operations are bound to m

resources.

An equivalent problem can be stated for binding n variables to m registers. There are

possibilities to map n operations onto m resources if all n operations are compatible. The proof is

omitted due to space limits. For exaihple, there are more than 4 •10^^ combinations to map 20 operati

ons onto 4 resources.

The low power binding problem with resource constraints can be expressed as a graph problem by

defining an arc labeled directed graph G{V, A) with V = {opp ..., op^}the set ofnodes (one node

for each operation) and A = V x V the set of arcs. Each arc {op •, op •) e A is labeled with a weight
' J

w.. = SAM{i, j). The optimization problem is then to cover all nodes with exactly m (node disjoint)

cycles with minimum total cost under the constraint that each cycle contains exactly one backward arc,

e.g. an arc {opop .) with i> j. The total cost is the sum of the arc weights of all cycles. Each cycle of
' J

a solution to this problem represents one resource while the nodes of a cycle are the operations bound to

it. A possible solution of the optimization problem with four operations and two resources is depicted in

Fig. 2. (+^, +^) and (-t-^, +2) the two backward arcs.

The constraint that each cycle {op^ , opj^ , opj^ ), k.^< ... < has to have exactly one back

ward arc reflects the precedence constraints of the operations within the schedule of the DFG. Inter-ite

ration switching activity {SAM{k^, in this case) can only occur after all operations opj^ , op^.

are executed in one iteration of the DFG on one resource. Loops {op^, op^ represent resources with

exactly one operation op^ bound to it.



4.2. Bounding the solution space

We first repeat Theorem 4.1 without proof from [10] which defines a lower bound on the switching acti

vity of the low power allocation and binding problem, i.e. the binding problem without resource cons

traints:



W33
+4^ ^+2

n \ /
V W4, \ / w,2

+3 v..
Figure 2: Possible solution of a low power binding problem with resource constraints by covering
operation nodes with cycles.

Theorem 4.1 A solution of the integer linear program

subject to

z = min > . . , w. .x..A,; = 1 I] ij

X"_ ' ' = 1' •••>" (4.1.A)

2"=1^:7=^ (4.1.B)
integer variables

provides a lower bound of the lowpower allocation and binding problem with switching activity matrix

SAM{i,j) = w.j.

In this ILP, the (binary) variable ;c.. is associated with arc {opop •). The solutions to the ILP describe
U ^ J

node disjoint cycles covering all nodes, x.. equals 1 in a solution if and only if the corresponding arc
U

belongs to a cycle, otherwise the variable is zero. However, it is not guaranteed that no cycle has more

than one backward arc. Hence a solution to the ILP delivers only a lower bound z on the switching acti

vity and not necessarily the minimum.

As stated in [10] the ILP of Theorem 4.1 can be efficiently solved by the Hungarian Method in 0{n^)

because it describes the Assignment Problem [11].
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The following ILP improves the lower bound of Theorem 4.1 with additional constraints on the number

of resources:

Theorem 4.2 A solution of the integer linear program

z = min > . . , w. .jc..

subject to

(4.2.A)

l 2=1,...," (4.2.B)

y.^.x.. = m (4.2.C)A >7 ij ^ ^
integer variables

provides a lower bound of the low power binding problem with m resources and switching activity

matrix SAM{i, j) = w^y

Proof: Constraints 4.2.A and 4.2.B are identical to the constraints 4.1.A and 4.1.B respectively and gua

rantee that all nodes are covered by node-disjoint cycles. 4.2.C insures that exactly m backward arcs are

included in a solution of the ILP. However, no constraints exist that force each cycle to have exactly one

backward arc which is a necessary condition of the low power binding problem with resource cons

traints. The ILP is therefore a relaxation of the original problem and a solution provides a lower bound

q.e.d.

Instead of solving the ILP of Theorem 4.2 directly a polynomial time bounded approach is propo

sed which approximates the ILP from below based on Lagrangian Relaxation, i.e. the original problem

is relaxed two times. Lagrangian Relaxation explores the fact that for a given ILP

T
z = mm w X

subject to Ax = b,Bx = d

x>0,x integer



a solution of

T T
L{y) = minCw x + {Bx-d) )')

s.t. Ax = b,x>Q,x integer

provides a lowerboundfor z for all values of j. y is called vector ofLagrangianmultipliers. This pro

perty follows because all feasible solutions of the first E.P are also feasible for the last one with the

same objective function value. Thebest lower bound is found by maximizing L(y), i.e. solving:

V = max L{y)
y

The maximization can be performed withsubgradientmaximization [12]. yt is subgradient of L at ;c iff

T
k L(y) - L(x) for all y. It can be shown that if x minimizes L(y) for somey than Bx-d is

a subgradient of L(y). The subgradientmethod iteratively solves L at points:

y , = y +t q, /7 + 1 p p^p

where is asubgradient of Lat y^ and t^ is asuitable step width in that direction (/? >0, = 0).

Applying the Lagrangian method to the ILP of Theorem 4.2 by relaxing 4.2.C delivers:

Hy) = min(2;,.

=minC£ijW.j..j--£.^.yx.j)-my
= minV. .w..'x..-my

rw.. if i<i
with w..' = <

subject to 4.2.A and 4.2.B. L(y) can again be solved by the Hungarian Method in 0{n^) with the

objective function tnin^j-^ j^ij^ij subtracting the constant my afterwards. Note the .similarity to
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the ILP of Theorem 4.1. The subgradient at iteration p is q^ ^jX^j —mif is the minimizer

of L(y^), i.e. the number of backward arcs of the solution minus the number of resources.

5. Experimental Results

The conditions lim^ oo = 0 and _ q = o® for the sequence of step widths guarantee

that L{y) converges to its maximum [12]. But fulfilling them might result in very slow convergence

rates. An approximation is used throughout the experiments instead by dropping the condition

Xp = ~ sequence = 0.95 j with = 0.8 does not guarantee convergence but

delivers good approximations of the ILP solution of Theorem 4.2 in a reasonable number of iterations.

Because L(y^) is not monotonely increasing with increasing p the maximum of L(y^) for

P = L •••, is reported in theresults as thebestlower bound if convergence is notreached.

The experiments were performed on2 benchmarks investigating thebinding of additions and multi

plications: a one dimensional FDCT [13] as a part ofa 2D-FDCT transforming an image ofbuildings

(13 additions and 16 multiplications) and the Elliptic Wave Filter (EWF) HLS benchmark as specified

in [14] with modified coefficient set and a speech signal as input (10 additions and 12 multiplications).

Table 1shows the results for the switching activity at the inputs ofadders for a sequential schedule, i.e.

only one addition per c-step, depending on the number of allocated resources. The trivial cases of

m = 1 and m = n are not considered (the first is trivial due to the precedence constraints ofthe opera

tions). Column 2 shows the number of iterations used in the subgradient method. Experiments that did

not converge to the maximum of L(y^) within 10 iterations were interrupted. The third column shows

the switching activity per DFG iteration obtained by the subgradient method while column 4 depicts the

results by solving the ILP of Theorem 4.2 directly. The deviation of the subgradient method from the

ILP solutions are given in column 5. The activity of the best possible binding, found by exhaustive

search, is presented in column 6. The deviation of the subgradient method from the best solution is

shown in the last column. Solving the ILP delivers in all cases the best possible binding while the sub-

gradient method efficiently approximates them very well within a few iterations. No deviation is larger
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# res. Ptnax Lag. ILP Dev. Best Dev.

2 9 102.3 102.3 0% 102.3 0%

3 5 98.53 98.53 0% 98.53 0%

4 10 95.16 95.69 0.6% 95.69 0.6%

5 10 91.81 92.27 0.5% 92.27 0.5%

6 10 89.48 89.52 0.1% 89.52 0.1%

7 10 86.73 87.10 0.4% 87.10 0.4%

8 10 84.17 85.52 1.6% 85.52 1.6%

9 4 81.90 81.90 0% 81.90 0%

10 9 81.26 81.26 0% 81.26 0%

11 10 80.98 81.20 0.3% 81.20 0.3%

12 10 80.45 81.02 0.7% 81.02 0.7%

Table 1: Sequential schedule of adders (FDCT)

than 2%. If the maximum number of iterations is restricted to 2, 3, 5, and 7 respectively, the deviations

shown in table 2 are obtained. Solving the Assignment Problem only 3 times gives approximations that

are at most 6% off the best binding.

Table 3 shows the results for binding the multiplications of the FDCT. The number of iterations is

restricted to 5. The deviations are larger because the ILP has minimum solutions that represent cycles

having more than one backward arc. The error thus does not stem from the subgradient method but from

the ILP description of the problem.

Table 4 presents the deviations from the optimal binding for 3 different schedules of the multipliers

(columns 2 to 4) and for sequential schedules of the additions and multiplications of the EWF bench

mark. The results reflect the robustness of the presented approach.

In order to measure the cpu time requirements, we generated larger SAMs with random contents.

For n = 60, m = 5 and n = 200, m = 20 with 10 iterations each the proposed technique required

0.2 s and 8.1 s, respectively (Ultra-Sparc 10, 300 MHz). For comparison: exhaustive search was only

feasible upto n = 16. It requiredmore than 8 hours to find the optimalbinding forn = 16, m = 8 .
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# res. Pmdx ^ Pmax ^ Pmax ^ Pmax

2 4.4% 3.6% 2.2% 1.0%

3 8.0% 4.9% 0% 0%

4 11.1% 4.0% 0.6% 0.6%

5 12.2% 0.5% 0.5% 0.5%

6 10.1% 2.5% 2.5% 2.5%

7 7.6% 6.0% 5.1% 0.4%

8 5.9% 5.9% 2.8% 1.6%

9 1.8% 1.8% 0% 0%

10 1% 1% 0.1% 0.1%

11 0.9% 0.7% 0.6% 0.4%

12 0.7% 0.7% 0.7% 0.7%

Table 2: Sequential schedule of adders (FDCT). The number of iterations in subgradient method
is bounded.

6. Conclusion

This paper presented a fast estimation technique that provides tight lower bounds on the switching acti

vity at resource inputs for a given schedule with resource constraints. Other cost functions can be app

lied by simply changing the definition of the switching activity matrix. The low power binding problem

under resource constraints was formulated and relaxed to the Assignment Problem with Lagrangian

multipliers. A few number of iterations suffice to get estimates that are very close to the best possible

solution.
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# res. Pmax Lag. ILP Dev. Best Dev.

2 2 90.59 90.59 0% 90.59 0%

3 5 84.88 84.88 0% 84.88 0%

4 5 79.96 79.96 0% 81.50 1.9%

5 3 75.06 75.06 0% 78.65 4.6%

6 5 71.72 72.30 0.8% 76.68 6.5%

7 5 68.29 68.61 0.5% 75.28 9.3%

8 2 65.09 65.09 0% 72.44 10.2%

9 4 63.75 63.75 0% 70.46 9.5%

10 5 62.69 62.92 0.4% 68.49 8.5%

11 5 62.46 63.21 1.2% 67.15 7.0%

12 1 62.39 62.39 0% 66.33 5.9%

13 5 62.46 63.74 2.0% 65.73 5.0%

14 5 62.69 63.15 0.7% 65.15 3.8%

15 5 63.25 64.65 2.2% 64.65 2.2%

Table 3; Sequential schedule of multipliers (FDCT)
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# res. FDCTMUL

1

FDCT

MUL2

FDCT

MUL3

EWF ADD EWFMUL

2 - - - 0.4% 0.6%

3 - - - 0.7% 0.4%

4 - 0.4% 0.9% 0.7% 2.1%

5 - 0% 1.3% 0.7% 2.6%

6 - 0.3% 1.2% 1.3% 4.5%

7 - 0.2% 3.6% 0.7% 4.1%

8 0% 0.6% 6.6% 0.4% 3.3%

9 0.2% 3.6% 10.7% 0.4% 0.8%

10 0.4% 3.0% 10.5% - 0%

11 2.1% 3.1% 8.6% - 0%

12 0.9% 2.9% 5.9% - -

13 0.2% 3.2% 5.1% - -

14 0% 0% 3.8% - -

15 0.3% 1.9% 2.2% - -

Table 4; Three different schedules of multiplications (FDCT) and sequential schedules of
additions and multiplications (EWF).
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