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Characteristic mega-basin water storage behavior using GRACE
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[1] A long-standing challenge for hydrologists has been a lack of observational data on
global-scale basin hydrological behavior. With observations from NASA’s Gravity
Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study
terrestrial water storage for large river basins (>200,000 km2), with monthly time
resolution. Here we provide results of a time series model of basin-averaged GRACE
terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation
for the world’s largest basins. We address the short (10 year) length of the GRACE record
by adopting a parametric spectral method to calculate frequency-domain transfer functions
of storage response to precipitation forcing and then generalize these transfer functions
based on large-scale basin characteristics, such as percent forest cover and basin
temperature. Among the parameters tested, results show that temperature, soil water-
holding capacity, and percent forest cover are important controls on relative storage
variability, while basin area and mean terrain slope are less important. The derived
empirical relationships were accurate (0.54�Ef� 0.84) in modeling global-scale water
storage anomaly time series for the study basins using only precipitation, average basin
temperature, and two land-surface variables, offering the potential for synthesis of basin
storage time series beyond the GRACE observational period. Such an approach could be
applied toward gap filling between current and future GRACE missions and for predicting
basin storage given predictions of future precipitation.

Citation: Reager, J. T., and J. S. Famiglietti (2013), Characteristic mega-basin water storage behavior using GRACE, Water Resour.
Res., 49, 3314–3329, doi:10.1002/wrcr.20264.

1. Introduction and Background

[2] The terrestrial water balance describes the partition-
ing of precipitation (P) into evapotranspiration (ET) and
runoff (R). It is commonly expressed as

dS

dt
¼ P� ET � R; ð1Þ

where the term dS/dt represents the change in water storage
in an explicit region or control volume.

[3] Historically, various models and assumptions have
been postulated to facilitate an operational relationship
between precipitation forcing and runoff response within
large hydrological basins. However, there is still little
understanding of the primary state variable in models—ter-
restrial water storage—and the hydrology components of
many global models are calibrated based on parameter opti-
mization with discharge data alone [Bonan et al., 2002;

Liang et al., 1994]. Quantitative observations of basin stor-
age behavior are a key tool in dissecting the ‘‘black box,’’
in what has often been treated as an input-output relation-
ship. However, field campaigns for storage observations
are rare and never over a global domain, and the heteroge-
neity of land-surface properties and the complexity of land-
atmosphere coupling introduce a tremendous potential for
error in moving from the observational scale to the resolu-
tion of current climate models.

[4] To fulfill the objective of operational prediction skill,
empirical conceptualizations of basin behavior have been
necessary. Many traditional analyses have assumed that at
longer timescales and over large regions, dS/dt in equation
(1) can be approximated as zero. For example, Budyko’s
[1974] characterization of the relationship between catch-
ment water balance terms offers a simple framework for
understanding basin behavior. On timescales longer than
annual, Budyko assumes dS/dt¼ 0, reducing equation (1)
to P¼ETþR. The resulting relationship, known as the
Budyko curve, partitions precipitation between runoff and
evapotranspiration based on the relative ‘‘dryness’’ of the
basin. Considerable work has been done to explain devia-
tions around this conceptual model, attributing error to var-
iability and seasonality in climate, soil characteristics,
vegetation type, and the scale of study [Donohue et al.,
2007; Farmer et al., 2003; Atkinson et al., 2002; Milly,
1994].

[5] As our ability to observe large-scale Earth processes
improves, we can show that approaches such as Budyko’s
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[1974] formulation have important limitations. For exam-
ple, terrestrial water storage S(t) has a significant interan-
nual signal regionally, as shown by recent remote sensing
campaigns [Chen et al., 2009; Leblanc et al., 2009; Ramil-
lien et al., 2008; Syed et al., 2008; Rodell et al., 2007;
Syed et al., 2007]. Interannual water storage signals can be
caused by interannual temperature and precipitation vari-
ability, or by direct human activity [Famiglietti et al.,
2011; Rodell et al., 2009]. This fact undoubtedly has impli-
cations for climate, ecology, and water resources availabil-
ity at multiyear timescales, and natural storage processes
need to be quantified based on available observations.

[6] Since terrestrial water storage in large basins can
vary at interannual timescales, we might infer that these
storage fluctuations are induced primarily by interannual
precipitation variability. However, because of regional dif-
ferences in land-surface properties, different hydrologic
basins have a greater or lesser ability to buffer the effects
of interannual signals in precipitation, as the land surface
affects infiltration, runoff, and evaporation [Cherkauer and
Lettenmaier, 1999; Milly and Dunne, 1994]. Also, there
are likely to be upper limits on basin storage and regional
storage capacities that, when exceeded, may be linked to
regional flooding [Reager and Famiglietti, 2009; Crowley
et al., 2006].

[7] For instance, in large basins, vegetation can influence
precipitation patterns by affecting moisture and energy
fluxes between the surface and atmosphere [Spracken et
al., 2012; Bonan, 2008]. When forests decline, evapotrans-
piration of moisture from soil and vegetation can be dimin-
ished, leading to reduced atmospheric humidity and
potentially suppressing precipitation [Eltahir, 1996; Elta-
hir and Bras, 1994; Shukla and Mintz, 1982]. In contrast,
observational studies from within regional catchments
(>1000 km2) such as those in Peel et al. [2010] have con-
cluded that vegetation has a negligible impact on water bal-
ance. The discrepancy in these studies hints at the
difficulties in scaling observed hydrological behavior for a
global-scale understanding of the land surface and climate.

[8] The world’s largest river basins (those with an area
>200,000 km2) account for the majority of global land run-
off to the oceans [Dai and Trenberth, 2002]. Because of the
large influence of these basins on the Earth system, it is
critical to work toward an accurate representation of their
behavior in global climate models. For modern land-sur-
face models operating at 2.5� or lower resolution, or to cap-
ture the major dynamics of the global water cycle, the
results of traditional catchment-scale analyses may not be
easily applied [Beven, 1995; Bloschl and Sivapalan, 1995;
Famiglietti and Wood, 1994, 1995; Gupta et al., 1986;
Dooge, 1982]. In basins of such immense size, large-scale
land-atmosphere interactions may play a critical role in the
retention of water and changes in storage during the wet
season [Trenberth et al., 2011; Makarieva and Gorshkov,
2007; Eltahir and Bras, 1996].

[9] NASA’s Gravity Recovery and Climate Experiment
(GRACE) mission [Tapley et al., 2004] now provides the
opportunity to observe the dynamics of water storage for
large river basins. With monthly global coverage, GRACE
data are well suited to contribute to better understanding of
hydrology at the larger temporal and spatial scales that are
important for climate studies [Lettenmaier and Famiglietti,

2006]. For the current research, we focused on developing
new methods to explore the information contained in the
GRACE data at its intrinsic large-basin scale, in hopes of
improving our conceptual understanding of the global
water cycle.

[10] In this study, we begin with the hypothesis that
precipitation alone does not drive large-scale storage vari-
ability, but that the influence of precipitation forcing is
affected significantly by the land surface with which the
water interacts. We test this with an analysis of the impact
of land-surface variables on large-basin water balance,
represented by the propagation of variability from Global
Precipitation Climatology Project (GPCP) precipitation
time series [Adler et al., 2003] to GRACE water storage
time series. We then use land-cover, soil properties, and
terrain information to draw broad conclusions about the
large-scale land-surface impact on water balance.

[11] First, basin-averaged time series are estimated for
21 of the world’s largest catchments (Figure 1) and ana-
lyzed for the propagation of variability at two timescales,
based on frequency-domain transfer functions. These trans-
fer functions are then parameterized to understand the
influence of basin-mean temperature (from the National
Centers for Environmental Prediction (NCEP) [Kalnay et
al., 1996], percent forest cover within a basin derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite observations [DeFries et al., 2000], soil water-
holding capacity (WHC) [Dunne and Willmott, 2000], and
basin terrain characteristics. Finally, we validate general-
ized parameterizations by modeling storage time series and
comparing with observations from GRACE.

[12] In addition to contributing to understanding of
large-scale hydrology, this study enables the prediction of
future water storage variations given climate model predic-
tions of precipitation [Taylor et al., 2012]. There is also the
potential for a multiyear gap between the failure of the cur-
rent GRACE mission and the launch of its successor. The
methods described here could be used to estimate water
storage variations within this intermission time period.
Although the current GRACE record is short and causes
difficulty in the application of time series analysis methods,
it is still critically important to offer a statistical model of
the data with the best methodology available, given the
critical need to understand water storage variations in the
future.

2. Data and Methods

2.1. Methods’ Overview

[13] In order to investigate storage behavior across basins,
we use an empirical approach to analyze and model the
GRACE observations. Rather than solving equation (1) for
dS/dt, we instead seek an estimate of storage response S(t)
that is normalized for precipitation forcing. We achieve this
objective through the following steps: First, a frequency-do-
main analysis is performed, including a dynamical systems
model (single input/output cross-spectral analysis) for basin-
averaged precipitation-storage transfer functions. Second,
we select a small list of probable parameters to create a func-
tional relationship between measured storage response and
lumped basin variables. Third, we apply modeled transfer
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functions to observed precipitation spectra and return to the
time domain with a prediction of storage anomaly.

2.2. GRACE

[14] Because of the inherent spatial limitations of the
GRACE data [Wahr et al., 2006], we use scaled basin-aver-
aged time series [Swenson and Wahr, 2002] for basins with
a drainage area greater than 200,000 km2 and a drainage
volume of greater than 40 km3/yr. Because of two signifi-
cant and distinct causes of error in the GRACE data,
GRACE basin time series must be corrected for loss of sig-
nal due to measurement error (based on the GRACE foot-
print) and for ‘‘leakage’’ error (the contamination of a
signal by adjacent stronger signal). Using uncorrected
(‘‘unscaled’’) estimates of basin storage will lead to an erro-
neous representation of GRACE-derived water balance.
The error correction is performed by creating a linear scal-
ing operator for the GRACE basin-averaged data [Swenson
and Wahr, 2006; Wahr et al., 2004]. In summary, synthetic
basin variability is converted into a global spherical har-
monic solution to degree and order 60 and smoothed spa-
tially with a Gaussian filter at 300 km radius. The
processed output is then compared to the raw input to cre-
ate a scaling parameter that will be applied to similarly
processed GRACE observations. Results have been vali-
dated with in situ observations in several studies [Fami-
glietti et al., 2011; Swenson et al., 2006; Yeh et al., 2006].

[15] Following the processing for basin averages, the
GRACE data are best suited for application in the follow-
ing large basins (Table 1 and Figure 1): Amazon, Amur
Congo, Danube, Dniepr, Don, Ganges and Brahmaputra,
Lena, Mackenzie, Mississippi, Murray, Niger, Nile, Ob,
Orinoco, Parana, Volga, Yangtze, Yenisei, Zambezi, and
Mekong. The Murray is included even though it has a

drainage volume of only 9 km3/yr. The effects of this are
discussed in the analysis.

[16] The inherent temporal limitations of the GRACE
data (one robust solution per month) effectively limit the us-
able resolution of the other data sets to monthly as well.
Note that the GRACE data are not sampled once monthly in
each location, but that several samples (three to four) ap-
proximate to the area of interest are taken within the month.
These are combined to create a single global solution for
GRACE water storage anomaly at a monthly interval, which
we assume for this study to represent a monthly average.

2.3. Precipitation

[17] Global precipitation observations are taken from the
GPCP [Adler et al., 2003]. Global grids of 2.5� monthly
mean precipitation were downloaded from www.esrl.noaa.-
gov, and masks for each of the study basins were applied to
estimate basin-averaged time series. The basin-averaged
precipitation time series (mm/d) were converted to a cumu-
lative precipitation anomaly by first removing the mean
and then integrating with respect to time. This creates an
estimate of the variability of the total precipitation input
(cm) during the GRACE record and results in units of
height anomaly that match those of storage (Figure 2).

2.4. Temperature Data

[18] Global gridded 1� temperature data come from the
NCEP reanalysis [Kalnay et al., 1996]. These data were used
to calculate basin-averaged temperature to compare against
precipitation-storage behavior. This comparison is shown as a
map (Figure 3, top) and as a plot (Figure 3, bottom).

2.5. Land-Surface Variables

[19] We investigated several candidate land-surface vari-
ables in order to explore which had the greatest influence

Figure 1. Map of study basins. (1) Amazon, (2) Congo, (3) Ganges and Brahmaputra, (4) Mekong, (5)
Murray, (6) Niger, (7) Nile, (8) Orinoco, (9) Parana, (10) Zambezi, (11) Amur, (12) Danube, (13)
Dnieper, (14) Don, (15) Lena, (16) Mackenzie, (17) Mississippi, (18) Ob, (19) Volga, (20) Yangtze, and
(21) Yenesei.
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on controlling terrestrial water storage at the large scales
observed by GRACE. In modern land-surface models,
water balance losses are controlled by a small list of param-
eters: soil matric potential, soil porosity, and soil depth;
land-cover type; and topography. We represent those pa-
rameters here in a gross fashion: one parameter for soil
(soil w.h.c.), one parameter for vegetation (% forest cover),
and one for topography (surface slope). We also add basin
size, which is relevant in a realistic characterization of ba-
sin behavior that includes surface water storage. Each is
described later.
2.5.1. Percent Forest Cover

[20] Percent forest-cover data were downloaded from
University of Maryland Global Land Cover Facility
[DeFries et al., 2000] at 1� resolution with global coverage
and are shown in Figure 4a. Unlike land-cover type classifi-
cation, forest cover is a continuous variable and can be
averaged within a basin to achieve a basin-mean estimate.
This approach assumes that a linear average of subbasin
land cover will approximate the total basin land-cover
effect on storage response.
2.5.2. Soil Water-Holding Capacity

[21] Soil WHC [Dunne and Willmott, 2000] data were
downloaded from the NASA Global Change Master Direc-
tory at http://gcmd.nasa.gov/ and are shown in Figure 4b.
These data are calculated empirically based on plant-ex-
tractable water capacity of soil—the maximum amount of
water that can be extracted from the soil to fulfill evapo-
transpiration demands—and serve as a proxy for relative
soil water storage capacity across the study basins.
2.5.3. Mean Terrain Slope

[22] Global terrain slope data at 1� resolution were
downloaded from the ISLSCP II data set website (http://
daac.ornl.gov/). These data are derived from the Hydro1k

digital elevation model [Verdin, 2011]. Hydro1k has a
native spatial resolution of 1 km, the highest resolution
database with global coverage of standard elevation-based
derivatives. Figure 4c shows the global distribution of
derived terrain slopes from which we constructed basin
averages for comparison with GRACE data.
2.5.4. Basin Area and Drainage Volume

[23] Basin area and drainage volume [Dai and Tren-
berth, 2002] were also investigated as potential controls on
relative storage response and are listed in Table 1.

2.6. Fourier Analysis

2.6.1. Basin-Averaged Water Storage and
Precipitation Spectra

[24] The goal of spectral analysis is to describe the distri-
bution (in frequency) of the variability contained in a signal
during a finite observation period. The basin-averaged
GRACE time series were transformed into frequency domain
to investigate the dominant frequencies in the GRACE signal.
Because the GRACE record is short (late 2002–present), and
because we are limited to a monthly sampling frequency, our
resulting data series contain a low number of samples for
standard frequency-domain analysis. Using a parametric
spectral method instead of a nonparametric method, we can
resolve undersampled frequencies with a single complete
instance in the time series and sufficient energy, to reduce the
impact of noise in a short time series that could cloud results
in traditional spectral approaches. We apply the Yule-Walker
autoregressive method of spectral estimation [Emery and
Thomson, 2004] across the entire time series to detect signifi-
cant variability down to 1 cycle/5 yr. This parametric method
is better for short time series than traditional power spectra,
but interpretation of results requires some a priori knowledge
of the dominant spectral periods.

Table 1. A List of the Study Basins, With Basin Drainage Area and Drainage Volumes Estimated at River Mouth [Dai and Trenberth,
2001], Basin-Mean Temperature, Forest Cover, and Soil WHCa

Basin

Drainage
Volume
(km3/yr)

Drainage
Area

(103 km2)

Basin-Mean
Temperature

(�C)

Basin-Mean
Forest

cover (%)

Basin-Mean
Soil WHC

(cm)

GRACE
Observation
Error (cm)

Annual Variability
Admittance

Interannual
Variability
Admittance

Model
r2

Model
Ef

Amazon 6642 5854 19.6 79.5 10.0 1.1 0.70 6 0.02 0.15 6 0.18 0.92 0.84
Congo 1308 3699 19.5 62.1 9.2 1.5 0.52 6 0.06 0.36 6 0.04 0.84 0.70
Gang/Br 404þ 628 956þ 583 16.4 25.3 8.3 1.9 0.45 6 0.02 0.34 6 0.07 0.80 0.64
Mekong 525 774 18.7 40.9 9.7 2.5 0.50 6 0.03 0.31 6 0.05 0.89 0.79
Murray 9 1032 17.1 19.0 7.9 1.7 0.03 6 0.13 0.32 6 0.05 0.71 0.61
Niger 193 2240 25.6 8.0 7.0 1.6 0.47 6 0.02 0.45 6 0.12 0.89 0.79
Nile 40 3826 23.6 7.7 6.7 1.5 0.36 6 0.06 0.39 6 0.06 0.77 0.58
Orinoco 1129 1039 22.7 63.0 10.8 1.8 0.65 6 0.02 0.01 6 0.19 0.74 0.54
Parana 568 2661 19.5 31.4 8.4 1.9 0.26 6 0.05 0.43 6 0.06 0.83 0.68
Zambezi 117 1989 20.4 24.5 9.1 2.2 0.44 6 0.03 0.40 6 0.10 0.88 0.75
Amur 354 2903 1.4 35.2 6.0 1.1 0.07 6 0.07 0.57 0.28
Danube 202 788 8.1 32.3 15.2 2.0 0.32 6 0.17 0.39 0.11
Dnieper 47 509 7.2 20.6 14.8 2.6 0.62 6 0.16 0.82 0.66
Don 45 423 7.6 7.5 13.3 2.8 0.25 6 0.09 0.80 0.62
Lena 531 2418 �6.2 70.3 2.9 1.1 0.07 6 0.19 0.18 0.02
Mackenzie 290 1713 �2.3 42.3 12.6 1.3 0.17 6 0.10 0.31 0.09
Mississippi 610 3203 10.6 28.4 17.6 1.1 0.31 6 0.12 0.65 0.42
Ob 412 2570 0.7 41.8 11.5 1.1 0.28 6 0.10 0.37 �0.08
Volga 254 1380 4.0 40.5 12.4 1.8 0.30 6 0.07 0.70 0.48
Yangtze 944 1794 10.4 30.7 7.4 1.3 0.11 6 0.21 0.51 0.26
Yenisei 599 2582 �3.2 61.6 5.0 1.2 0.53 6 0.46 0.14 �0.08

aAlso, the GRACE observational error, and annual period and interannual period admittance with 95% confidence intervals from transfer function solu-
tions. Finally, the squared correlation coefficient and Nash-Sutcliffe efficiency between predicted and observed storage.
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[25] In order to estimate confidence in the results, we
also calculate the Yule-Walker spectrum for a white-noise
time series that possesses twice the standard deviation
(95% confidence) of the basin-averaged GRACE storage.
The scaled confidence spectra are shown in Figure 5 as a
dashed line. Based on these results, the statistically signifi-
cant spectral energy was grouped into two frequency ranges
for the modeled storage response in section 2.6.4: annual
(1 year period) and interannual (2.5–5 year period).

2.6.2. Basin-Averaged Transfer Functions
[26] Here we define a transfer function as a unit-response

function from precipitation input to storage output, which,
over a range of inputs, describes the response of the land
surface to precipitation variability. It is limited in that it
only quantifies periodic signals, not trends or biases. It is
also limited by considerations of ensemble size and averag-
ing window width, which vary based on available record
length. Transfer functions for a precipitation input and a
storage output, assuming wide-sense stationary and sto-
chastic processes, were calculated using

Hps fð Þ ¼ Gps fð Þ
Gpp fð Þ þ E fð Þ; ð2Þ

where GPP represents the two-sided autospectra of basin-
averaged precipitation anomaly, GPS represents the two-
sided cross-spectra of basin-averaged precipitation anom-
aly and storage anomaly, and E is an error term for unex-
plained variance. Two-sided spectra are defined such that
the frequency range of integration ranges from negative to
positive infinity. The result occupies the whole Nyquist
interval [to 1/dt] with a symmetrical spectrum in the second
half, as opposed to the single-sided spectrum that goes to
the Nyquist frequency [1/(2dt)]. Figure 6 offers a concep-
tual depiction of the transfer function operation. Transfer
functions were calculated here using the Welch periodo-
gram method [Emery and Thompson, 2004] for cross-spec-
tra and autospectra. This allows the calculation of
confidence intervals based on record length.

[27] A two-sided transfer function yields phase data in
the imaginary component of the solution. To simplify trans-
fer function interpretation, we assume that there is no time
lag possible between precipitation forcing and storage
response in snow-free basins. If rain falls in a basin, the ba-
sin storage changes simultaneously, like water in a bucket
responding to filling by a hose. In order to apply this rule,
we have allowed for only zero-time-lag propagation of pre-
cipitation variability to storage variability, by applying the

Figure 2. Basin-mean time series of storage anomaly from GRACE (blue) and cumulative precipita-
tion anomaly from GPCP (green).
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imaginary portion of the transfer function correctively.
Because the transfer function depends on the cross-spectra
in its calculation, it contains the phase information for the
two time series. We can discard the orthogonal, imaginary
portion of the transfer function from the total magnitude, to
remove the nonzero-time-lag portion of the signal. We are
then left with only the instantaneous (monthly) basin stor-
age response per unit precipitation forcing at each discrete
frequency interval.

[28] For this analysis, we consider the higher-frequency
signal in the transfer functions—beyond a frequency of 2
cycles/yr (6 month periodicity)—as noise. This is in order
to simplify our results to the major periodic frequency
ranges that appear in the GRACE data. Since the transfer
functions represent an ‘‘admittance’’ of signal between
input and output, even a small signal due to processing
noise can appear in the result. Hence, we discount weaker
frequencies as insignificant and concentrate on the signifi-
cant discrete frequencies from the spectral results : the an-
nual period and a combination of interannual (2.5–5 year)
periods. We then regard the transfer function estimates
with their corresponding confidence ranges.
2.6.3. Parameterized Transfer Functions

[29] The correlations between transfer function admit-
tance (the propagated variability from precipitation to stor-
age) and a range of values in certain basin-averaged

parameters allow the formulation of a least squares solu-
tion. We applied a logarithmic fit for transfer function ad-
mittance as a function of the correlated land-surface
variables. This allowed us to reconstruct a synthesized
transfer function based on those parameters and apply this
modeled transfer function to a precipitation time series as
described in section 2.6.4.
2.6.4. Reconstructed Storage Time Series

[30] To empirically reconstruct a storage time series, we
estimate the discretized transfer function at the annual and
interannual (2–5 year) ranges based on the empirical model
equations from equation (2). We then convert a precipita-
tion forcing time series into the frequency domain using a
fast-Fourier transform. The smoothed transfer function is
multiplied by the precipitation spectrum to create an output
storage spectrum. The inverse fast-Fourier transform is
applied to the results to recreate a time domain series of ba-
sin-averaged storage. Transfer function confidence inter-
vals are carried through the process.

3. Results

3.1. Fourier Analysis

[31] Results of the spectral estimates of the GRACE and
GPCP data are shown in Figure 5. The first noticeable con-
gruency among all of the spectral series is a general lack of

Figure 3. Time series correlation coefficients between cumulative precipitation and storage anomaly:
(top) at 1� resolution globally and (bottom) for selected study basins as a function of basin temperature.
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high-frequency variability with significant peaks at the an-
nual and interannual periods. All of the study basins have
significant energy at the interannual period (less than 1
cycle/yr) for both time series, except for the Amazon,
Mackenzie, Niger, Orinoco, and Volga.

[32] The fact that the highest peaks occur at the annual
period in almost all of GRACE storage time series (the
blue lines in Figure 5)—even those that do not have signifi-
cant spectral energy at the annual period in precipitation—
deserves discussion. While the single greatest influence on

shaping storage spectra is precipitation, we see in Figure 3
(bottom) that temperature has the ability to decorrelate the
precipitation and storage time series and also their spectra.
Several spectra with no significant energy at the annual pe-
riod in precipitation have significant energy in the annual
period for storage (Ob, Danube, Dnieper, Don, Volga).
This is caused by the action of temperature to accumulate
snowfall during the winter and discharge it during the
spring, integrating the faster timescale precipitation vari-
ability into the 1/yr frequency.

Figure 4. Maps of tested parameter variables: (top) global percent forest cover from MODIS, (middle)
global plant-available soil WHC (in centimeters) from Dunne and Wilmott [2000], and (bottom) global
terrain slope (tangent of slope) from Hydro1k. All are estimated at 1� resolution.

REAGER AND FAMIGLIETTI: CHARACTERISTIC WATER STORAGE BEHAVIOR USING GRACE

3320



[33] Because of the dominant ability of freezing temper-
atures to modulate annual storage, in the rest of the analy-
sis, we chose to separate the basins into two categories :

‘‘warm’’ basins (those with a mean temperature greater
than 15�C), and ‘‘cold’’ basins (those with a mean tempera-
ture less than 15�C). The 10 warm basins are those clus-
tered toward the right of Figure 3 (top), showing a good
correlation with storage. The map in Figure 3 (bottom)
gives spatial detail on the relationship between temperature
and storage, which shows even negative correlations for
precipitation and storage at higher latitudes.

[34] Figure 7 shows transfer function solutions for four
warm basins (Amazon, Congo, Parana, and Ganges-Brah-
maputra), as a function of frequency. The Amazon has the
transfer function with the most admittance at the annual pe-
riod, and the Parana with the least. However, there is a crit-
ical threshold moving into the low-frequency range beyond
which the Parana becomes the most active transfer function
and the Amazon the least. This highlights an important
result : not only do basins have a different response to pre-
cipitation based on their land-cover and soil characteristics,
but these responses also vary, or show some nonlinearity,
across timescales.

3.2. Uncertainty and Assumptions

[35] The error estimates in GRACE data are constant in
time for a region, as they exist primarily as a function of the

Figure 5. Basin-averaged spectra for storage anomaly for GRACE (blue) and cumulative precipitation
anomaly from GPCP (green). The dashed line is the spectra for a white-noise time series with twice the
standard deviation of the observations.

Figure 6. Theoretical transfer function example, showing
the propagation of variance from precipitation to storage in
a specific frequency range.
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GRACE footprint and limit resolution defined by the orbital
configuration of the satellites. They are therefore assumed
not to affect the storage response in different frequency
ranges differently (i.e., leakage and smoothing errors are
assumed constant in time for a region). In other words, while
significant error exists in the GRACE data, it is assumed to
have negligible frequency content and not to propagate into
the frequency domain. The time-constant observational
errors included in Table 1 should be used as a proxy for ob-
servation error in the predicted time series of GRACE terres-
trial water storage for each of the study basins.

[36] Frequencies with statistically significant spectral
energy in the GRACE and GPCP time series were included
in the transfer function results. The confidence estimates of
the transfer function solutions were calculated assuming a
�2 distribution of random error for the quality of the spec-
tral solution relative to the length of the observational re-
cord and corrected for windowing. The 95% confidence
intervals for the transfer functions are plotted as error bars
in Figures 8–10.

3.3. Suggested Controls on Rainfall-Storage
Relationship

[37] Among the variables tested, temperature appears as
the single most important characteristic controlling storage
across basins in our study, and the correlation between pre-
cipitation and storage decays quickly as basin-mean tem-
perature decreases. In summation, zero-lag transfer
function admittance from precipitation to storage varied
widely across cold basins. Storage in these basins was
highly anticorrelated with temperature time series at 120
day lag times (temperature leading storage), indicating a
strong seasonal response of storage to temperature forcing,
and as mentioned earlier, often uncorrelated or anticorre-
lated with precipitation seasonality.

[38] In Figure 8, we see the effects of percent forest
cover on transfer function admittance for two different
timescales, for each of the warm study basins. Land-cover
density has the effect of preserving relatively more precipi-
tation variability in storage at the annual period and less
precipitation variability in storage at longer timescales. For

the cold basins, there was little to no admittance at the an-
nual period due to the uncorrelated time series, and the
zero-time-lag rule applied here. However, for the cold
basins at the interannual timescale, the effect of vegetation
density is generally the same as for the warm basins.

[39] The plots of transfer function admittance versus
available soil water are shown in Figure 9. The effect of
soil WHC is very similar to that of forest cover. As soil
WHC increases, the admittance of variance from precipita-
tion to storage at the annual period also increases. For inter-
annual timescales, this effect reverses, and basins with
more WHC show a reduced storage response to precipita-
tion forcing.

[40] Basin storage response relative to basin size and to-
pography is shown in Figure 10 for annual period admit-
tance only. Basin slope and basin drainage area had no
significant correlation with transfer function admittance at
either the annual or interannual period.

3.4. Modeling Storage Response to Precipitation
Forcing

[41] We use our generalized transfer functions at two fre-
quency ranges to create new time series of terrestrial water
storage for warm and cold regions, based on land-cover
type, forest cover, soil WHC, and given a precipitation
input time series. For extended time periods, these pre-
dicted storage time series neglect the effects of any signifi-
cant feedbacks on storage from ecosystem change and
assume a stable vegetation range for an ecosystem during
the GRACE record.

[42] We first fit empirical functions with an assumed log-
arithmic shape to the transfer function results across two
correlated variables : basin-mean percent forest cover and
basin-mean available soil depth. The model is applied to
the warm basins only, since warm basins are more clearly
correlated with land-surface parameters for their storage
response across all frequency ranges, except for the Murray
(due to the anomalously low correlation with precipitation
at the annual frequency). Once the parameters were esti-
mated, the model was applied to all basins. The best fit

Figure 7. Basin-mean transfer function admittance for precipitation input to storage output for four
basins, plotted as a function of frequency (cycles/yr).
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functions are shown in Figures 8 and 9. We use a logarith-
mic function of the form:

Hps ¼ aþ bFC � ln
FC

cFC

� �
þ bWHC � ln

WHC

cWHC

� �
; ð3Þ

where HPS is the admittance of variability from precipita-
tion to storage, FC and WHC are the values of the land-sur-
face parameter (forest cover and WHC), and a, b, and c are
model parameters. This model was applied to the annual
and low-frequency storage response.

[43] The model predicted storage time series are shown
in Figure 11 for warm basins and Figure 12 for cold

basins. For cold basins, only the interannual storage vari-
ability was modeled, since only the low-period transfer
functions were correlated with land-surface parameters.
The model results (red) with 95% confidence interval
(gray shaded) are compared to the GRACE observations
(black). Validation metrics were calculated against a
GRACE signal smoothed for coherence with the designed
model (i.e., considering only the modeled frequencies in
both the synthetic and observed GRACE data). The cor-
relation coefficients (r2) and model efficiency (Ef) [Nash
and Sutcliffe, 1970] between modeled and observed stor-
age anomaly are listed in Table 1.

Figure 8. Basin-mean storage response to precipitation forcing (transfer function admittance) as a
function of percent forest cover. Shown for the annual and low-frequency timescales. The best fit model
function is also plotted.
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[44] In warm basins, the generalized model was able to
correctly reproduce the magnitude of the annual variability
in GRACE observations and a portion of the interannual
period variability. For warm basins, model results were
generally well correlated (0.71� r2� 0.92) with observa-
tions and accurate (0. 54�Ef� 0.84). For cold basins, in
comparison to the GRACE interannual signal, model
results were moderately correlated (0.14� r2� 0.82) and
had mixed accuracy (�0.08�Ef� 0.66).

4. Summary and Discussion

[45] When viewed across the spectrum of global river
basins, the rainfall-storage relationship is quite complex. While
two areas may receive similar amounts of precipitation, there

can be differences in the resulting storage response due to tem-
perature and the characteristics of the land surface. The basins
used in this study are extremely large and give a general repre-
sentation of land-cover types, across climates, globally.

[46] To summarize, we list the order of importance of
controls on basin terrestrial water storage variability at
mega-basin scales as follows: (1) temperature : in regions
colder than 15�C, temperature-driven storage acts to gener-
ally decouple storage variability from precipitation forcing
because of snow accumulation. For periods longer than an-
nual, temperature becomes a less significant factor in stor-
age response. (2) Land cover: Denser forest cover is
correlated with less long-period storage variability and a
more consistent annual dynamic storage range. (3) Soil :
soil depth and porosity, combined here as soil WHC, are

Figure 9. Storage response to precipitation (transfer function admittance) as a function of basin-mean
soil WHC. Shown for the annual and low-period timescales. Best fit model is also plotted.
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correlated with less long-period storage and a more consist-
ent annual dynamic storage range. (4) Topography: terrain
slope and basin area were found to have an insignificant
correlation with storage behavior at the large-basin scale.

[47] At the lowest order, temperature acts in a grossly bi-
nary fashion on basin storage: either to accelerate water
loss through ET or to prevent water loss through snow
accumulation. Our results show that in colder basins, such
as the Mackenzie, temperature causes a decorrelation or
even an anticorrelation between precipitation and storage
time series. In the winter, higher-frequency precipitation
variability is integrated and redistributed temporally into a
cumulative seasonal signal, and gravity-based storage
observations reflect this well-known effect. With the onset
of springtime temperature increases, runoff and evaporative
losses resume and drive decreasing storage, sometimes
concurrent with (but often outpacing) rainy season precipi-
tation increases. This effect acts at the annual period, while
at interannual periods storage variability is better correlated

with interannual precipitation variability. This effect makes
it difficult to decompose GRACE storage spectra into its
component pieces and difficult to model storage time series
in cold regions from precipitation input. An interesting con-
tinuation of our study would involve representing tempera-
ture influence on storage empirically, or alternatively,
using storage observations to tune ET losses in a land-sur-
face model.

[48] Over a typical annual cycle, more water remains in
storage per unit of precipitation with more forest cover and
with more soil capacity. We find this effect more significant
than that of basin area on storage response. These results
suggest, for example, that a relatively small but well-forested
basin like the Orinoco can maintain water in storage (per
unit precipitation) during a typical rainy season that a larger,
less forested basin such as the Zambezi or Parana cannot.

[49] The discrepancy between interannual behavior and
annual behavior in the transfer functions suggests a differ-
ence in basin storage capacities across water-limited and

Figure 10. Annual period transfer function admittance as a function of (top) basin drainage area and
(bottom) basin-mean terrain slope.
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nonwater-limited ecosystems. An interannual storage signal
is not truly independent from an annual storage signal and
in reality, is occuring with the annual storage signal for
each monthly data point. For example, the lack of transfer
of an interannual signal from precipitation to storage may

indicate a full storage capacity in a given month. Despite
an extreme in precipitation, some finite range of storage
variability has been met, and now further storage gains are
limited by the flooding of water out of the basin or by
increased evaporation. In the tropics, interannual

Figure 11. Basin-modeled storage anomaly time series for warm basins (red) and 95% confidence
(gray shaded), based on cumulative precipitation anomaly (blue), compared with observed storage anom-
aly from GRACE (black dashed). Storage is in centimeters equivalent of water over the basin.
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precipitation events (like those linked to El Ni~no–Southern
Oscillation) may drive interannual increases in runoff or
evapotranspiration, resulting in little interannual change in
storage. A relatively larger interannual storage signal indi-
cates the opposite mechanism: a basin that is often water-
limited.

[50] Certainly, it is well known that basin slope has an
impact on river runoff and therefore on storage. For
instance, in the Mekong basin [McGuire et al., 2005], as
well as in voluminous catchment-scale studies, terrain
slopes are important in runoff modeling. The absence of
influence in these results could be due either to the very

Figure 12. Basin-modeled storage anomaly time series for cold basins (red) and 95% confidence (gray
shaded), based on cumulative precipitation anomaly (blue), compared with observed storage anomaly
from GRACE (black dashed). Storage is in centimeters equivalent of water over the basin.
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large scale of the basins studied (i.e., that terrain variabil-
ity in the mega-basins is simply not great enough to
impact large-scale storage variations at the timescales
investigated here); to the relatively low resolution of the
data sets required to conduct a global study such as this
one (so that some important terrain attributes were not
well resolved); or to the fact that a broader sample of
terrain attributes was not included in the research. It is
also likely that basin slope has the most immediate effect
on runoff generation, and in steep basins, precipitation
extremes are matched by runoff extremes, resulting in lit-
tle storage effect.

[51] There is a critical basin size and discharge volume
range in which this model of storage variability applies.
For example, the transfer function of the Murray basin is a
particularly poor fit at the annual period resulting in a large
confidence interval on admittance. This is likely due to the
low flow volume of the Murray (Table 1) and the high
degree of water management within the basin (Australia
diverts river flow for agriculture and was in a severe
drought from 1995 to 2009) [Ummenhofer et al., 2009]. As
such, the storage signal does not possess much of the natu-
ral forcing variability from the precipitation input. It is
interesting to note though that at the interannual period, the
observed Murray basin response falls in line accurately
with the parameterized transfer function fit. One has to con-
sider that while precipitation seasonality can be expected
and managed, the prediction of interannual precipitation
variability is more difficult, and reservoir storage is limited
by capacity in time. For these reasons, management may
have its strongest impact on storage variability at the sea-
sonal timescale.

[52] Our results showing the importance of land-atmos-
phere interaction in large basins are supported by previous
work. Eltahir and Bras [1994] had shown precipitation
recycling estimates of 25%–35% in the Amazon, and
Makarieva and Gorshkov [2007] and Makarieva et al.
[2009] have shown that for large basins, precipitation recy-
cling is a necessary mechanism to bring water deeper than
600 km into a basin. It is likely that large-scale recycling is
a mechanism which retains more water in storage in rela-
tively wet regions and that this effect accounts for the
larger annual period response in well-forested basins. This
would signify that large-scale basin water dynamics are
entirely distinct from field-scale or even regional-catch-
ment-scale dynamics.

[53] While estimation of basin residence times based on
these data sets was desired, it is not possible to do so quan-
titatively due to the fact that GRACE observes only anoma-
lies of water storage, never an absolute amount, and the
application of even a simple linear reservoir model requires
more information. It is possible however to come to quali-
tative inferences about the relative residence tendencies for
water storage across the study basins. The dynamics of the
land-atmosphere link and the ability of large, well-forested
basins to retain water in storage for long periods through
recycling are important in large-scale hydrology, and sug-
gest longer residence times in those basins. While a catch-
ment-scale study may not consider atmospheric dynamics,
land-atmosphere interactions, or precipitation recycling, for
global-scale basins, these processes are probably of critical
importance.

[54] Based on our results, we can now predict a monthly
storage anomaly time series using GPCP precipitation time
series and two land-surface variables (percent forest cover
and soil water holding capacity) in the world’s mega-
basins. Storage time series for large basins are uncommon
and of use to water managers for understanding total water
availability, and to large-scale hydrologic or land-surface
modelers as a state variable for calibration and validation.
While the simple model we have presented here does not
account for nonlinear transitions in land-cover type or the
evolution of terrestrial ecosystems, it offers the first means
for predicting typical storage variability time series within
the limits of a stable ecosystem.
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