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Abstract

Normative Approaches to the Analysis of Neural Dynamics and Connectivity

by

Ankit Kumar

Doctor of Philosophy in Physics

University of California, Berkeley

Dr. Kristofer E. Bouchard, Co-chair

Professor Michael DeWeese, Co-chair

Brain functions, ranging from perception to cognition to action are produced by the col-
lective dynamics of populations of neurons. Our ability to simultaneously record from and
map the connectivity between large numbers of neurons across brain areas has increased
substantially over the past decade. In contrast, our understanding of the resulting com-
plex and dynamic data in terms of principles of brain computations is lacking. This thesis
presents theory and statistical methods that address this gap. I first describe a novel, nor-
mative theory of neural population dynamics based on control theory. I introduce novel
dimensionality reduction methods that identify subspaces of neural activity that are most
amenable to feed-forward (i.e. open-loop) control vs. feedback control (i.e. closed-loop)
control. Through new theorems/simulations, I demonstrate that for systems exhibiting non-
normal dynamics, generically present in cortex due to Dale’s Law, directions most important
for feedforward vs. feedback control are geometrically distinct. I then analyze neural record-
ings from macaque primary motor and somatosensory cortices and show that the dynamics
that are most feedback controllable are aligned with those that generate reaching behavior.
These feedback controllable dynamics are shown to be mediated by the functional interac-
tions between a population of neurons whose characteristics map to known features of Layer
5 intratellenchephalic neurons. Lastly, I show that feedback controllability provides a nor-
mative account for the presence of rotational dynamics in motor cortex. Next, I present an
approach an analysis of the Drosophila hemibrain connectome using novel maximum entropy
models of random graphs inspired from statistical physics. I provide preliminary results in-
dicating that the controllability of Drosophila brain networks relies on emergent principles of
connectivity between neurons. Finally, I report on work that characterizes the performance
of statistical estimation of sparse linear models in the case when model features exhibited
correlated variability, a common issue in neural data analysis. The results provide practical
guidelines relevant for the estimation of functional connectivity.
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1.1 Neural population dynamics generating diverse naturalistic behaviors
are produced by feedback loops across spatiotemporal scales. (a) Feed-
back loops are ubiquitous in the nervous system across spatiotemporal scales. At
the highest level, there is feedback between perception and action by the organism
(left). (Center) The architecture of interactions between distributed brain areas
also contains many feedback loops. A prominent example of this architecture is
provided by the circuits underlying reaching, which are comprised of both feed-
forward pathways (premotor (PM) to primary motor (M1) to somatosensory (S1)
cortices), but crucially also feedback pathways from sensory to motor areas that
enable online error correction of behavior (e.g., S1 → M1). (Right) At the scale of
individual cortical columns, recurrent connections within canonical microcircuits
are prolific, providing an anatomical substrate for feedback control at local scales.
(b,c) A dynamical system may be controlled either in a feedforward or open loop
sense (b), where system inputs (left grey box) drive a dynamical system (green
box) without dependence on system outputs (right grey box), or in a feedback or
closed loop sense (c), where system outputs can be used by a feedback controller
(red) to modify system inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Controllable Subspaces of Neural Population Dynamics The firing rates of

observed neural dynamics lie in a high dimensional state space (visualized here in 3

dimensions). This high dimensional space can be segregated into subspaces in which

dynamics are most feedforward controllable (FFC) and feedback controllable (FBC).

Noisy system inputs combine with recurrent dynamics to produce noisy firing rates (blue

trace). FFC subspaces (black 1D trace) contain high variance activity that amplifies

both signal and noise. FBC subspaces (red 1D trace) contain activity that produces

the most accurate, denoised reconstructions of the full state trajectory (red high di-

mensional trace) through a state filtering step and is most enable to state regulation

via feedback (dashed blue trace). Dale’s law gives rise to a finite angle (θ) between

FFC and FBC subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 In principle, a controller of dimension as large as the neural state space may be required

to effectively regulate dynamics within a FBC subspace (a). However, subspaces op-

timized to minimize either the rank, or more practically, the trace of PQ will require

controllers of lower dimensionality to achieve near-optimal performance (b). . . . . . 12
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synaptic connectivity matrix, A. (b, left) Depiction of the eigenvalues (blue scatter

points) and pseudospectral contours (boundary of light grey shading) of a synthetic

synaptic connectivity matrix A as the degree of non-normality of A is increased from

(i) to (iii). Dark contours indicate the pseudospectral contours expected from a normal

matrix with matched eigenvalue. (b, right) Time courses of dynamics of the systems

depicted in (i)-(ii) projected along the leading PCA directions. (c) Plot of the mean

(standard deviation) subspace angle between FFC and FBC subspaces of d = 6 vs.

non-normality in synthetic linear dynamical systems. Statistics are calculated across

100 repetitions at each level of non-normality. . . . . . . . . . . . . . . . . . . . . . 14
1.5 FBC/FFC subspaces diverge within stability optimized circuits (a, i-iii) Plot

of the eigenvalues and ϵ = 0.1 pseudospectral contours for typical, stabilized weight

matrices. Non-normality increases from (i) to (ii) to (iii). (a, iv) Example trajectories
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networks is increased. Spread indicates standard deviation over the random generation

of 20 synaptic weight matrices and 10 simulations of dynamics for each weight matrix.

Example systems from panel (a) are marked along the curve. . . . . . . . . . . . . 17
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ings. (left) example reaches from one recording session, aligned to the physical start

location of the reach. (b) Single-unit neural firing rates from primary motor cortex

(M1, left) and somatosensory cortex (S1, right) in macaque recorded via Utah array

co-recorded during reaching. (c, d) Left plots: Eigenvalues (blue scatter points) with

associated pseudo-spectral contours (grey shaded region) of neural dynamics from one

recording session in Macaque M1 and S1, respectively. Black contours indicate pseudo-

spectral contours expected from a normal matrix. Right plots: Average subspace angle

between FBC/FFC subspaces across recording sessions (median ± IQR) (e, f) Linear

prediction of cursor velocity from activity projected into FBC/FFC subspaces within

M1 and S1, respectively. Traces indicate mean r2 of behavioral prediction from pro-

jected activity in FBC (red) and FFC (black) subspaces vs. projection dimension

averaged across recording sessions (shading indicates standard error). Insets compare

the total area under the r2 vs. dimension curve (AUC) for each recording session be-
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Preface

The brain is an enormously complicated system organized hierarchically across spatiotem-
poral scales. Stubbornly impeding our ability to understand the principles by which the
brain functions is that all scales are strongly coupled to each other. Thus, the computations
performed by single neurons are inseparable from the biophysical characteristics of channel
membranes and synaptic inputs; the dynamics of populations of neurons are shaped by the
properties of individual neurons; the coordinated computations performed across distributed
brain areas is shaped by the structure of the individual cortical column, and so on. The brain
is also replete with emergence, meaning that while phenomena at each scale depends on the
details and organization of the lower scales, it is not reducible to these details.

Paralleling this organization across physical levels of description is the fact that phe-
nomena in the brain can be studied at (at least) three distinct analytic levels of description.
This framework was most famously expounded by Marr in his seminal work on the vision [2].
Marr differentiated between the computational, algorithmic, and implementational levels of
description. Roughly speaking, the computational level of description specifies the function
or goal of the system. Taking vision as an example, this level of description would elucidate
the features of the external world that the visual system should attend to and be able to
recognize to facilitate organismal survival. The algorithmic level pertains to how the com-
putational goals are solved vis a vis the sequence of transformations and representations
of information the system relies upon. In vision, examples include edge detection, object
segmentation, and predictive processing. Lastly, the implementational level deals with how
the algorthmic level is physically instantiated in the hardware (in this case the circuits of,
for example, primary visual cortex).

These three levels of description may be more coarsely partitioned into so-called norma-
tive theories of brain function and mechanistic explanations of brain function. Normative
theories pertain to the question of what the nervous system is doing and why neural cir-
cuits or neural activity appears the way it does. Normative theories thus encompass both
Marr’s computational and algorithmic levels. A central goal of theoretical neuroscience is to
construct normative theories which encode the computational goal of brain circuits into a
mathematically defined objective function that makes specific, quantitative predictions and
postdictions about neural activity. Examples of such normative theories include sparse cod-
ing [3], which posits that the goal of the primary visual cortex is to facilitate representations
of natural images with sparse activations across neural populations, and the predictive in-
formation bottleneck [4], which posits that neural circuits (e.g., in the retina) should encode
information about dynamic stimuli only insofar as that information is predictive of the stim-
uli’s future temporal evolution. Mechanistic explanations account for how computations are
carried out, and therefore encompass the algorithmic and implementational levels. A classi-
cal example, again relating to visual perception, is the emergence of spatial tuning in retinal
ganglion cells through lateral inhibition [5].

This co-existence of phenomena at these different scales is not only a descriptive fact
about the nervous system, but a prescriptive principle by which one may organize scientific
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inquiry. In the schematic figure below, I attempt to do this by partitioning topics of study in
computational and theoretical neuroscience as they pertain to specific spatial and descriptive
levels. I substitute Marr’s algorthmic level of description with a dynamical level of description
to emphasize that all algorithms implemented by the brain are the result of dynamics that
unfold over time. I also emphasize that the arrows indicated in the diagram provide by
no means an exhaustive accounting of the conceptual and physical relationships between
phenomena, and in fact, a more accurate diagram would likely yield something closer to
all-to-all connectivity.

The work of this thesis can be thought of as addressing, in a decidedly modest way, a
narrow subset of the scales articulated in this diagram. In particular, in chapter 1, I present
a novel, normative theory of neural population dynamics based on the idea of controllability
(i.e., the ability of a dynamical system to be controlled). Control theory is fundamentally
the study of how one can optimally steer dynamical systems to achieve prescribed functions.
Its potential to serve as a core theoretical underpinning for neurobiology goes back to the
work of Wiener and the cybernetics movement [6] and ideas surrounding the internal model
principle [7]. In the diagram, I indicate controllabillity as a principle at the dynamical level
of description that is shaped by the structure of neuronal networks in individual brain areas.
Indeed, our results shed light on the role played by Dale’s Law (the principle that every
neuron in cortex exerts either excitatory or inhibitory effects on its postynaptic targets, but
not both) and the ability of neuronal dynamics to be controlled under feedforward/open
loop and feedback/closed loop control strategies. We find feedback controllable dynamics to
underly the production of reaching behavior, hence bridging the gap to the computational
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level. Though not discussed in this thesis, control theory also provides a conceptual frame-
work to understand interactions between brain regions at the dynamical level, as different
brain regions may be understood to be trading off the roles of controller and controlled.

The second chapter of this thesis concerns the relationship between local network struc-
ture (e.g., neuronal motifs) and the patterns of emergent connectivity across brain regions
and indeed, the entire brain. We build models of the Drosophila hemibrain connectome us-
ing maximum entropy models probability distributions inspired by statistical physics. These
probability distributions are the most unstructured distributions over a configuration space
(in this case, the possible connectivity patterns between neurons) that are consistent, on av-
erage, with a prescribed set of observed statistics. When these statistics are local in nature
(e.g., the average pairwise strength in connectivity between different types of neurons), these
models provide a means of deciding between the hypothesis that structure at larger scales
(e.g. across an entire brain region or neural population) is emergent, or simply a byproduct
of structure at the lower scale. We also propose an algorithm to include top-down, global
functional constraints on maximum entropy distributions. These constraints in some sense
“reverse the arrow” from the dynamical to the structural level of description, allowing one
to interrogate how the algorithmic demands placed on neural circuits shape the possible pat-
terns of connectivity they could have exhibited. By identifying where observed connectomes
lie within this constrained “network morphospace” [8], this analysis can shed light on the
mechanism by which function is achieved and the particular tradeoffs made by biology in
doing so. The last chapter of the thesis contains an empirical investigation of the fundamen-
tal limits in sparse recovery in linear statistical models, a more practical issue relevant to
the estimation of functional connectivity from neural recordings.
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Chapter 1

Feedback Controllability as a
Normative Theory of Neural
Population Dynamics

1.1 Introduction

A purpose of the brain is to produce adaptive behaviors that increase organismal fitness [9].
For complex behaviors, such as finding, identifying, and grasping food, this is accomplished
using feedback [10–13]. Feedback (FB) occurs when outputs of a system are routed back as
inputs [10], and feedback loops are ubiquitous in the brain. Feedback can be used to correct
observed errors in the output of a system relative to a target. For example, the sensory
consequences of arm reaches (action) are perceived and used by the brain to control the arm
(Fig. 1.1a, left). Importantly, multiple aspects of motor coordination underlying reaches are
parsimoniously accounted for by optimal feedback control theory [11,14]. Similar normative
accounts based on feedback control (FBC) have been posited for speech production [13],
general perception [15], and higher order cognition [12, 16]. Indeed, a plethora of studies
have observed impacts of sensory FB on neural recordings [17, 18]. Anatomically, at the
brain-systems scale, reciprocal connectivity between brain areas is widespread, providing
the requisite anatomical architecture to support FBC [19]. For example, in the context
of motor control systems, FB loops between motor cortex and, e.g., the somatosensory
cortex [20] and thalamus [21] may support control of activity within motor cortex (Fig.
1.1a, center). Similar anatomical considerations hold for high-order perception and cognitive
systems as well [22]. Finally, at columnar scales, FB connections permeate canonical cortical
microcircuits, with highly recurrent connectivity between cell types as well as asymmetric
connectivity between types, giving rise to microcircuit feedback loops [23] (Fig. 1.1a,
right). Therefore, while there is overwhelming evidence that brains use feedback (FB), the
implications of feedback control (FBC) for the dynamics of neural population data has not
been directly considered.
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Colloquially, the different configurations of activity patterns across a neural population
define its state-space [24]. Control of a neural population can be defined as steering the
neural population from (any) initial state to a desired state by an external input. Examples
of neural population control could include ensuring that motor cortex generates the required
neural population dynamics to produce movement [25, 26], updating representations (i.e.,
neural states) of faces in inferior temporal cortices [27], or updating representations of animal
location in the hippocampus/medial prefrontal cortex [28]. In this context, controllability
denotes the ability to control a neural population. Controllability is a graded quantity, and
control theory considers the cost of control: loosely speaking, how much ”energy” is required
to control the system [29,30]. Crucially, controllability is an intrinsic property of the neural
population– if the (unobserved) inputs to the neural population are probing the neural state
space sufficiently, the controllability of neural populations can be assayed from observations
of neural population dynamics itself, without knowing what the inputs or outputs are [31].
Thus, with appropriate methodology, we should be able to assess the controllability of a
neural population just from neurophysiological recordings of that population.

Control theory distinguishes between systems that do not use feedback to correct er-
rors (Fig. 1.1b, feedforward control, ’FFC’, i.e., open-loop control, e.g., eye-blink reflex)
and those that do (Fig. 1.1c, feedback control, ’FBC’, i.e., closed-loop control, e.g., arm
reaches). Feedforward control (FFC) of a neural population requires an internal model of
that neural population, and deviations from target neural states not predictable by the in-
ternal model can not be corrected, i.e., controlled. In contrast, feedback control (FBC) of
neural populations would enable correcting errors relative to a target neural state based on
observations of those errors [11]. [For ease of exposition, we use FFC/FBC to refer to feedfor-
ward and feedback control/controlability interchangeably]. A central benefit of FBC relative
to FFC is to enable robust control of a neural population in the presence of unpredicted
perturbations and/or noise. FBC is not always possible. For example, in the neural control
of reaching there is thought to be an initial FFC phase (proprioceptive FB notwithstand-
ing) before visual processing has time to impact behavior, followed by a FBC phase which
utilizes visual FB to guide the arm [32]. Given these differences, systems may be more FFC
vs. FBC, and complex systems like the brain can simultaneously be both FFC and FBC to
varying degrees.
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Figure 1.1: Neural population dynamics generating diverse naturalistic behav-
iors are produced by feedback loops across spatiotemporal scales. (a) Feedback
loops are ubiquitous in the nervous system across spatiotemporal scales. At the highest level,
there is feedback between perception and action by the organism (left). (Center) The archi-
tecture of interactions between distributed brain areas also contains many feedback loops.
A prominent example of this architecture is provided by the circuits underlying reaching,
which are comprised of both feedforward pathways (premotor (PM) to primary motor (M1)
to somatosensory (S1) cortices), but crucially also feedback pathways from sensory to motor
areas that enable online error correction of behavior (e.g., S1 → M1). (Right) At the scale of
individual cortical columns, recurrent connections within canonical microcircuits are prolific,
providing an anatomical substrate for feedback control at local scales. (b,c) A dynamical
system may be controlled either in a feedforward or open loop sense (b), where system inputs
(left grey box) drive a dynamical system (green box) without dependence on system outputs
(right grey box), or in a feedback or closed loop sense (c), where system outputs can be used
by a feedback controller (red) to modify system inputs.

Here, we test the hypothesis that feedback controllability (FBC) is a normative theory
of neural population dynamics. To do so, we developed novel machine learning methods
to identify directions (i.e., extract subspaces) in high-dimensional neural population data
that are most FBC and compared those to directions (subspaces) that are most feedforward
controllable (FFC). We demonstrate that the neuro-anatomical constraint on synaptic con-
nectivity imposed by Dales law generates neural population dynamics for which the FBC
and FFC subspaces are distinguishable. In neural population data previously recorded from
primary motor (M1) and somatosensory (S1) cortex of monkeys performing a reaching task,
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we found that FBC subspaces were substantially better decoders of reach kinematics. Fur-
thermore, we demonstrate that FBC and FFC are mediated by populations of single neurons
with distinct neural activity profiles, and that FBC is an emergent property of the neural
population that is highly dependent on neuronal interactions. Finally, we show that FBC
and FFC engage distinct types of dynamics, and that this maybe a consequence of avoiding
dynamic instabilities.

1.2 Results

Controllable Subspaces of Neural Population Dynamics

Our goal was to test the hypothesis that feedback (as opposed to feedforward) controllability
is a normative theory of neural population dynamics. A common characteristic of high-
dimensional neural population data is that it can be succinctly described by a projection
into a lower-dimensional subspace. Such lower dimensional projections can provide compact
descriptions of the high-dimensional data that are easier to visualize and understand [33]. As
such, to test our hypothesis, we developed dimensionality reduction methods that operate
on simultaneously recorded multiple single-neuron neurophysiology data commonly acquired
by, e.g., Utah arrays. These dimensionality reduction methods take high-dimensional, neural
population firing-rate time-series data (where each dimension is a single-neuron) and extract
a lower-dimensional ’subspace’. As described below, the subspaces we extract from neural
data maximize the controllability of neural population dynamics under feedforward (Fig.
1.2, FFC subspaces, black lines) and feedback (Fig. 1.2, FBC subspace, red lines) control
schemes. This allowed us to directly compare and contrast the properties of neural population
dynamics under these different normative principles.

In its simplest form (i.e., a linear stochastic dynamical system), the dynamics of a neural
population can be described as:

ẋ(t) = Ax(t) + Bu(t) (1.1)

Here x(t) is a vector describing the firing rate of all neurons (the high-dimensional, ’neural
state’), ẋ(t) is its time derivative, A is a matrix describing the interactions of the neurons,
and u(t) is a stochastic external input (i.e., control signal) that is mapped on to the neural
state by the matrix B. A lower dimensional projection (y(t)) of the high-dimensional neural
data (x(t)) is

y(t) = Cx(t) (1.2)

Where the dimensionality (d) of the projected neural data y is substantially less than the
number of neurons. The subspace into which the neural data is projected is given by the
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matrix C, which is extracted from the neuronal firing rates so that the lower-dimensional
projection maximizes some quantity of the original, high-dimensional neural data. We specif-
ically considered the controllability of neural population dynamics under feedforward (Fig.
1.2, grey/black) and feedback control schemes (Fig. 1.2, pink/red) by deriving quantities
that correspond to feedforward and feedback controllability. Importantly, these metrics are
intrinsic quantities of the observed neural population data, and do not require knowledge of
the inputs and outputs of the neural population (Fig. 1.2).
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Figure 1.2: Controllable Subspaces of Neural Population Dynamics The firing rates of
observed neural dynamics lie in a high dimensional state space (visualized here in 3 dimensions).
This high dimensional space can be segregated into subspaces in which dynamics are most feed-
forward controllable (FFC) and feedback controllable (FBC). Noisy system inputs combine with
recurrent dynamics to produce noisy firing rates (blue trace). FFC subspaces (black 1D trace)
contain high variance activity that amplifies both signal and noise. FBC subspaces (red 1D trace)
contain activity that produces the most accurate, denoised reconstructions of the full state trajec-
tory (red high dimensional trace) through a state filtering step and is most enable to state regulation
via feedback (dashed blue trace). Dale’s law gives rise to a finite angle (θ) between FFC and FBC
subspaces.

In line with prior work in control theory [34], we defined feedforward controllability
(FFC) as the “volume of neural state space” that is obtainable by an input control signal.
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Put another way, feedforward controllable (FFC) subspaces of neural population dynamics
are those within which inputs generate the highest amplitude firing rates (Fig. 1.2, FFC
subspace). Below, we show that the most feedforward controllable subspace of dimension
d for a linear dynamical system coincides exactly with the d dimensional subspace that
maximizes variance, and is thus given by PCA. Intuitively, the FFC subspace will coincide
with directions of state space that give rise to large amplification of firing rates in response
to inputs, as this will maximize the volume of neural state space that the input can explore.
However, this amplification will indiscriminately act on both desired signal and undesirable
noise (Fig. 1.2, black trace in upper right).

In contrast to FFC, the extent to which neural population dynamics can be controlled via
feedback depends on two functional stages. First, due to the presence of noise in the neural
population activity, the neural state dynamics must be reconstructed from observations
provided by the feedback controllable (FBC) subspace (depicted as the denoised red trace
in Fig. 1.2 bottom). Second, an appropriate control signal must be synthesized from these
reconstructed dynamics and routed back into the FBC subspace (Fig. 1.2 bottom, purple
dashed trace). We created a novel linear dimensionality reduction method that extracts
subspaces of neural population dynamics that simultaneously minimize the cost of state
filtering and state regulation (Fig. 1.2, red), and thus maximize feedback controllability
(Feedback Controllable Components Analysis, FCCA.

Correspondence between Feedforward Controllability and PCA

A categorical definition of controllability for a dynamical system is that for any desired tra-
jectory from initial state to final state, there exists, in principle, a control signal that could
be applied to the system to guide it through this trajectory. For a (stable) linear dynam-
ical system, a necessary and sufficient condition for this to hold is that the controllability
Gramian, Π, have full rank. Π is obtained from the state space parameters through the
solution of the Lyapunov equation:

AΠ + ΠA⊤ = −BB⊤ Π =

∫ ∞

0

dt eAtBB⊤eA
⊤t (1.3)

The rank condition on Π as a definition of controllability, while canonical [35], is an all
or nothing designation; either all directions in state space can be reached by control signals,
or they cannot. Furthermore, this definition does not take into account the energy required
to achieve the desired transition. While certain directions in state space may in principle be
reachable, the energy required to push the system in those directions may be prohibitive.

Thus, given that the system is controllable, we can ask a more refined question: what
is the energetic effort required to control different directions of state space? The energy
required for control is measured by the norm of the input signal u(t). It can be shown that
to reach states that lie along the eigenvectors of Π, the optimal (i.e., minimal) energy is
proportional to the inverse of the corresponding eigenvalues of Π. Directions of state space
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that have large projections along eigenvectors of Π with small eigenvalues are therefore harder
to control. For a unit norm input signal, the volume of reachable state space is proportional
to the determinant of Π [34].

We can encode the above intuition into the objective function of a dimensionality reduc-
tion problem: for a fixed norm input signal, what choice of C maximizes the reachable volume
within the subspace? This volume is measured by the determinant of CΠC⊤. Identifying
subspaces of maximum feedforward controllability is then posed as the following optimization
problem-

argmaxC log detCΠC⊤ (1.4)

In order to assess this objective in data, we make the further assumption that the dynam-
ics of x(t) are stationary and that the inputs u(t) can be approximated by temporally white
noise. In this case, the observed covariance of the data will coincide with the controllability
gramian [36]. When Π is the steady state covariance of x(t), the optimization problem 1.4
coincides with the objective function of PCA, as the optimal C of fixed dimensionality d is
given by the top d eigenvectors of Π (see Proposition 1 in Section S.1.9).

LQG Singular Values measure feedback controllability

How do we quantify the feedback controllability of a system? The primary distinction be-
tween feedforward (i.e., open loop) control (FFC) and feedback (i.e., closed loop) control
(FBC) is that FBC utilizes observations of the state to synthesize subsequent control sig-
nals. Feedback control therefore involves two functional stages: filtering (i.e., estimation) of
the underlying dynamical state (x(t)) from the available observations (y(t)) and construction
of appropriate regulation (i.e., control) signals. For a linear dynamical system, state estima-
tion is optimally accomplished by the Kalman filter, whereas state regulation is canonically
achieved via linear quadratic regulation (LQR). It will be crucial in what follows to recall
that the Kalman Filter accomplishes nothing more than an efficient, recursive, Gaussian
minimum mean square error (MMSE) estimate of x(t) given observations y(τ) for τ ≤ t.
These two functional stages optimally solve the following cost functions:

Kalman Filter : min
p(x0|y−T :0)

lim
T→∞

Tr
(
E
[
(E(x0|y−T :0) − x0)(E(x0|y−T :0) − x0)

⊤])
LQR : min

u∈L2[0,∞)
lim
T→∞

E
[

1

T

∫ T

0

x⊤C⊤Cx + u⊤u dt

]
where y−T :0 denotes observations over the interval [−T, 0]. The minima of these cost

functions are obtained from the solutions of dual Riccati equations:

AQ + QA⊤ + BB⊤ −QC⊤CQ = 0 (1.5)

A⊤P + PA + C⊤C − PBB⊤P = 0 (1.6)
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where

Q = lim
T→∞

min
p(x0|y−T :0)

E
[
(E(x0|y−T :0) − x0)(E(x0|y−T :0) − x)⊤

]
x⊤
0 Px0 = min

u∈L2[0,∞)

{
lim
T→∞

E
[

1

T

∫ T

0

x⊤C⊤Cx + u⊤u dt

]
, x(0) = x0, u ∈ L2[0,∞)

}
Q therefore is the covariance matrix of the estimation error, whereas P encodes the

regulation cost incurred for varying initial conditions (x0). For example, the operator norm
of P : supx ||Px||/||x|| bounds the initial condition that yields the worst case regulation cost.
On the other hand, Tr(P ) is proportional to the average regulation cost over all unit norm
initial conditions.

The solutions of the Riccati equations are not invariant under the invertible state trans-
formation x → Tx. The filtering Riccati equation will transform as Q → TQT⊤ whereas
P will transform as (T−1)⊤PT−1. As such, simply by defining new coordinates via T we
can shape the difficulty of filtering and regulating various directions of the state space.
Therefore Q and P on their own are not suitable cost functions for measuring feedback
controllability. However, we notice that the product PQ undergoes a similarity transfor-
mation PQ → (T⊤)−1QPT⊤. Hence, the eigenvalues of PQ are invariant under similarity
transformations, and define an intrinsic measure of the feedback controllability of a system.
Additionally, there exists a particular T that diagonalizes PQ. Following [37], we refer to
the corresponding eigenvalues as the LQG (Linear Quadratic Gaussian) singular values. In
this basis, the cost of filtering each direction of the state space equals the cost of regulating
it. We formalize these statements by restating Theorem 1 from [37]:

Theorem 1 Let (A,B,C) be a minimal realization of G(s). Then, the eigenvalues of QP
are similarity invariant. Further, these eigenvalues are real and strictly positive. If µ2

1 ≥
µ2
2 ≥ µ2

n > 0 denote the eigenvalues of QP in decreasing order, then there exists a similarity
transformation T , (A,B,C) → (TAT−1, TB,CT−1) ≡ (Ã, B̃, C̃) such that:

Q = P = diag(µ1, µ2, ..., µn)

The realization (Ã, B̃, C̃) will be called the closed-loop balanced realization.

Proof: Let Q = LL⊤ be the Cholesky decomposition of Q and let L⊤PL have Singular
Value Decomposition UΣ2U⊤. Then, T = Σ1/2U⊤L−1 provides the desired transformation:

TQT⊤ = Σ1/2U⊤L−1LL⊤(L⊤)−1UΣ1/2 = Σ

(T−1)⊤PT−1 = Σ−1/2U⊤ L⊤PL︸ ︷︷ ︸
UΣ2U⊤

UΣ−1/2 = Σ

□
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Hence, as an intrinsic measure of feedback controllability, we take the sum of the LQG
singular values µ2

i , corresponding to the sum of the ensemble cost to filter and regulate each
direction of the neural state space:

FBC : Tr(PQ) (1.7)

The Feedback Controllability Components Analysis Method.

Our goal was to develop a dimensionality reduction method, Feedback Controllability Com-
ponents Analysis (FCCA), that can be readily applied to observed data from typical systems
neuroscience experiments. To do so, we constructed estimators of the LQG singular values,
and hence Tr(PQ), directly from the autocorrelations of the observed neural firing rates.
The objective function for FCCA arises from the observation that causal Kalman filtering
and acausal Kalman filtering are also related via dual Riccati equations. We will first show
that through an appropriate variable transformation, we obtain a state variable xb(t) whose
dynamics unfold backwards in time via the same dynamics matrix (A) which evolves x(t)
(the neural state) forwards in time. Once established, this fact enables us to use the error
covariance matrix of Kalman filtering xb(t) as a stand-in for the cost of regulating x(t).

In particular, if we have a state space realization of a forward time stochastic linear system
(eq. 1.1), then the joint statistics of (x(t), y(t)) can be parameterized by a Markovian model
that evolves backwards in time [38]:

−ẋ(t) = Abx(t) + Bu(t) (1.8)

y = Cx(t)

where Ab = −A−BB⊤Π−1 = ΠA⊤Π−1 and Π = E[x(t)x(t)⊤].
Examination of eq. 1.5 and eq. 1.6 reveals that the filtering and LQR Riccati equations

differ primarily in 2 respects. First, the dynamics matrix is transposed (A → A⊤), and
second the inputs and outputs have been exchanged (B → C⊤, C → B⊤). To use the error
covariance of state filtering as a stand-in for the state regulation cost, we therefore require
that the corresponding acausal state dynamics (determined by Ab) respect these differences.
To this end, consider the transformed state xa(t) = Π−1x(t). Substituting x(t) = Πxa(t) and
Ab = ΠA⊤Π−1 into the equations for the backward dynamics result in following dynamics
for this adjoint state:

−ẋa(t) = A⊤xa(t) + Π−1Bu(t)

Then, if we construct a readout of this transformed state ya(t) = CΠxa(t) = Cx(t), the
Riccati equation associated with Kalman filtering xa, whose solution we denote P̃ , takes on
the form:
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A⊤P̃ + P̃A + Π−1BB⊤Π−1 − P̃ΠC⊤CΠP̃ = 0 (1.9)

A⊤P + PA + C⊤C − PBB⊤P = 0 (eq 1.6)

We see that eq. 1.9 coincides with eq. 1.6 (reproduced for convenience) upon switching
the inputs and outputs (B → C⊤, C → B⊤, as with 1.6 and 1.6) and reweighting them
by a factor of Π−1 and Π, respectively. In fact, eq. 1.9 coincides with the Riccati equation
associated with a slightly modified LQR problem:

min
u∈L2[0,∞)

lim
T→∞

E
[

1

T

∫ T

0

x⊤Π−1BB⊤Π−1x + u⊤Π2u dt

]
(1.10)

This is the regulator problem for the adjoint state xa(t) = Π−1x(t). Therefore, under the
assumption that the observed dynamics can be approximated by a linear dynamical system,
we can measure LQG singular values associated with this modified LQR problem
directly from measuring the causal minimum mean square error (MMSE) asso-
ciated with prediction of x(t), and the acausal MMSE associated with prediction
of xa(t).

To explicitly construct an estimator of the quantity Tr(P̃Q) = Tr(QP̃ ), we recall the
standard formulas for the error covariance of MMSE prediction of a Gaussian distributed
variable u given v: Σu − ΣuvΣ

−1
v Σ⊤

vu where Σu = E[uu⊤],Σv = E[vv⊤] and Σuv = E[uv⊤].
The matrix Q is the error covariance of MMSE prediction of the system state x(t) given past
observations y(t) over the interval (t− T, t), whereas the matrix P̃ is the error covariance of
MMSE prediction of the transformed system state xa(t) given future observations ya(t) over
the interval (t, t + T ). As discussed above, the Kalman Filter is used to efficiently calculate
these MMSE estimates given an explicit state space mode of the dynamics. In our case, to
keep system dynamics implicit, we instead directly use the formulas for the MMSE error
covariance in terms of cross correlations between x(t), xa(t) and y(t), ya(t). This gives rise
to the FCCA objective function:

FCCA : argminCTr

(Π − Λ1:T (C)Σ−1
T (C)Λ⊤

1:T (C)
)︸ ︷︷ ︸

causal MMSE covariance (Q)

(
Π−1 − Λ̃⊤

1:T (C)Σ−1
T (C)Λ̃1:T (C)

)
︸ ︷︷ ︸

acausal MMSE covariance (P̃ )


(1.11)

where for discretization timescale τ ,
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Π = E[x(t)x(t)⊤] (covariance of the neural data)

Λ(C)1:T = {Λ1C
⊤,Λ2C

⊤, ...,ΛTC
⊤}

Λk = E[x(t + kτ)x(t)⊤] (autocorrelation of the neural data)

Λ̃(C)1:T = {Λ̃1ΠC⊤, Λ̃2ΠC⊤, ..., Λ̃TΠC⊤}
Λ̃k = E[xa(t + kτ)xa(t)

⊤] (autocorrelations of the adjoint state)

ΣT (C) =


CΛ0C

⊤ CΛ1C
⊤ CΛ2C

⊤ ... CΛTC
⊤

CΛ⊤
1 C

⊤ CΛ0C
⊤ CΛ1C

⊤ ... CΛT−1C
⊤

...
...

...
...

...
CΛ⊤

TC
⊤ CΛ⊤

T−1C
⊤ CΛ⊤

T−2C
⊤ ... CΛ0C

⊤


(space by time covariance of y(t))

Control-Theoretic Intuition for FCCA

We have shown how the LQG singular values are an intrinsic measure of the cost to fil-
ter/regulate a linear dynamical system. We now provide a further intuition for FCCA. In
order to control the system state dynamics, the controller itself must implement its own,
internal, state dynamics. These dynamics carry out the computations necessary to perform
reconstruction of the systems state and synthesis of the required regulator signal. Thus,
in addition to the complexity of the system itself, we may inquire about the complexity of
the controller. One intuitive measure of this complexity is given by the controller’s state
dimension (i.e., the McMillan degree), which corresponds to the number of dynamical de-
grees of freedom it must implement to function. As these controller degrees of freedom must
ultimately be implemented via networks of neurons within the brain, it stands to reason
that biology may favor performing task-relevant computations via dynamics that require
low-dimensional controllers. As we argue below, minimizing the LQG singular values over
readout matrices (C) corresponds to a relaxation of the objective of searching for a subspace
that enables control via a controller of low dimension. In other words, feedback controllable
dynamics can be regulated with controllers of low internal dimensionality.

We recall from Theorem 1 above that there exists a linear transformation that simultane-
ously diagonalizes both P and Q. Let (Ã, B̃, C̃) be the corresponding balanced realization.
Let us order the LQG singular values in descending magnitude {µ1, ..., µN} and divide them
into two sets {µ1, ..., µm} and {µm+1, ..., µN}. Let us assume the system input is of dimen-
sionality p and the output is of dimensionality d (i.e. B̃ ∈ RN×p and C̃ ∈ Rd×N).Then, one
can partition the state matrices {Ã, B̃, C̃} accordingly.
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Ã =

[
A11 A12

A21 A22

]
B̃ =

[
B1

B2

]
C̃ =

[
C1 C2

]
Where A11 ∈ Rm×m, A22 ∈ RN−m×N−m, B1 ∈ Rm×p, B2 ∈ RN−m×p, C1 ∈ Rd×m, C2 ∈

Rd×N−m. It can be shown that the optimal controller of dimension m is obtained from
solving the Riccati equations corresponding to the truncated system (A11, B1, C1). If the
neglected LQG singular values {µm+1, ..., µN} are small, then the controller dimension can
be reduced with esssentially no loss in regulation performance.

Figure 1.3: In principle, a controller of dimension as large as the neural state space may be
required to effectively regulate dynamics within a FBC subspace (a). However, subspaces optimized
to minimize either the rank, or more practically, the trace of PQ will require controllers of lower
dimensionality to achieve near-optimal performance (b).
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In the case when the singular values {µm+1, ..., µn} are all precisely zero, then the con-
troller dimensionality could be reduced from n to m with no loss in LQG performance. We
illustrate this idea schematically in Figure 1.3, where the controller state space dimen-
sion (blue) is truncated. This suggests that to search for subspaces of neural dynamics that
require low dimensional controllers to regulate, we minimize the following objective function:

argminCRank(P̃Q)

where P̃ and Q are the solutions to the Riccati equations 1.9 and 1.5, respectively.
However, rank minimization is an NP hard problem. A convex relaxation of the rank function
is the nuclear norm (i.e. the sum of the singular values) [39]. Given that P̃Q is a positive
semi-definite matrix, a tractable objective function that seeks subspaces of dynamics that
require low complexity controllers is therefore given by:

argminCTr(P̃Q)

which is precisely what FCCA minimizes in a data-driven fashion.
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Dale’s law enables distinguishing feedforward and feedback
controllable subspaces.
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Figure 1.4: (a) Dale’s law imposes block constraints on excitatory/excitatory (E-E), excita-
tory/inhibitory (E-I, I-E) and inhibitory/inhibitory (I-I) connectivity that give rise to a non-normal
synaptic connectivity matrix, A. (b, left) Depiction of the eigenvalues (blue scatter points) and
pseudospectral contours (boundary of light grey shading) of a synthetic synaptic connectivity ma-
trix A as the degree of non-normality of A is increased from (i) to (iii). Dark contours indicate the
pseudospectral contours expected from a normal matrix with matched eigenvalue. (b, right) Time
courses of dynamics of the systems depicted in (i)-(ii) projected along the leading PCA directions.
(c) Plot of the mean (standard deviation) subspace angle between FFC and FBC subspaces of
d = 6 vs. non-normality in synthetic linear dynamical systems. Statistics are calculated across 100
repetitions at each level of non-normality.

With data-driven methods for extracting FBC and FFC subspaces, we next sought to
understand if, and under what dynamical conditions, these two subspaces differ (i.e., when is
the angle θ indicated in Fig. 1.2 large?). The anatomical structure of neural circuits plays an
integral role in shaping neural population dynamics. In cortex, chief amongst these structures
is Dale’s Law [40], which requires every neuron to exert either excitatory or inhibitory effects
on its post-synaptic target, but not both. As such, the synaptic connectivity matrix that
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describes the interaction of different neurons (which corresponds to the A matrix in our
context) is constrained to have the same sign within each row. Combined with the directed
and asymmetric nature of recurrent connectivity, constrains the neural dynamics matrix A to
belong to a special class of matrices, so called non-normal matrices (i.e., AA⊤ ̸= A⊤A) (Fig.
1.4a) [41, 42]. Systems that evolve according to non-normal matrices exhibit interesting
collective dynamics, such as transient amplification [41, 43], extensive memory traces of
input signals [44, 45], and efficient information transmission [46]. As we show below, a new
control theoretic result of our work is that FBC subspaces and FFC subspaces are different
for systems with non-normal dynamics.

The spectrum (i.e., eigenvalues) of the dynamics matrix A determine the long-term col-
lective dynamics produced by a neural population. The real part of eigenvalues describe the
strength of growth or decay of the collective dynamics, while the imaginary part describes
the strength of oscillations of those dynamics. However, an important property of systems
driven by non-normal matrices (e.g. recurrent networks constrained by Dale’s Law) is that
their short term dynamics can differ from their long-term dynamics. The pseudo-spectrum
provides an important mathematical tool to understand the qualities of non-normal sys-
tems [42]. The pseudo-spectrum of A identifies regions of the complex plane that, over
short time periods, behave like eigenvalues of A. More specifically, the ϵ-pseudospectrum
of an n-dimensional square matrix A, λϵ, refers to all values in the complex plane that are
eigenvalues of matrices which are ϵ-close to A as measured by any matrix norm. In other
words, the set λϵ contains all complex numbers z for which there exists a matrix E, ||E|| ≤ ϵ
such that z is an eigenvalue of A+E. From this definition, it can be seen that the ordinary
eigenvalues coincide with the 0-pseudospectrum. For a normal matrix, the ϵ-pseudospectrum
is straightforward to determine: it is given by the union of circles with radius ϵ around the
eigenvalues. Deviation from these regular contours gives an indication of the degree to which
short term dynamics differ that predicted by the system eigenvalues.

The precise distribution of the pseudospectrum around the eigenvalues can account for
many of the nonintuitive behavior of non-normal dynamical systems [42]. For example,
a lower bound on the maximum amplitude attained by the time evolution of a state vec-
tor x within a linear dynamical system is given by maxλϵ(Re(λϵ))/ϵ. Thus, when the ϵ-
pseudospectrum extends greater than an amount ϵ into the right hand of the complex plane
(as in Fig. 1.4b(iii)), the corresponding linear dynamical system will exhibit transient
amplification.

To build intuition for these concepts, we turn to numerical simulations of systems of the
form of eq 1.1 with B = I. We sampled 50 dimensional A matrices with i.i.d entries above

the diagonal assigned according to CijJij where Cij ∼ Bernoulli(0.5) and Jij ∼ N
(

0, 1
2
√
50

)
.

The entries below the main diagonal were given by Aji = αAij. Reducing α from 1 to
0 therefore allows one to systematically tune the asymmetry, and consequentially, the non-
normality of A. We set the diagonal elements uniformly to the smallest negative number that
ensured system stability. We quantitatively measure non-normality by the Henrici metric:
||AA⊤ − A⊤A||F where || · ||F is the Frobenius norm. This metric is zero if and only if A is
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normal (i.e. A⊤A = AA⊤).
In Figure 1.4b, we depict the spectrum (i.e., eigenvalues, small blue circles), ϵ = 0.1

pseudo-spectrum (grey-shaded region), and pseudo-spectral contors expected from an equiv-
alent normal matrix of three dynamical systems with increasing non-normality ((i) → (ii)
→ (iii)), as well as the corresponding system dynamics (iv). For the normal A matrix, the
eigenvalues are purely real and negative (i.e., the live on the negative x-axis, Fig. 1.4b, (i)),
giving rise to purely exponential decaying dynamics (curve (i) in Fig. 1.4b, (iv)). As the
non-normality in A increased, eigenvalues took on imaginary components (ii, iii) that imbue
the population dynamics with oscillations (curves (ii) and (iii) in Fig. 1.4 b, (iv)). Addition-
ally, the pseudo-spectrum of A (grey shaded region) extends over increasingly larger regions
of the complex plane relative to the black contours. In particular, the pseudo-spectrum of
(iii) extends significantly into the right hand side of the complex plane, predicting that over
short times, the system will behave as if it were unstable. This prediction is borne out by
the initial rise and subsequent decay (i.e., transient amplification) of the system dynamics
shown in curve (iii) in Figure 1.4b (iv).

To test the hypothesis that feedback controllability (FBC) is a normative theory of neural
population dynamics, we need to establish the conditions under which FBC subspaces will
differ from FFC subspaces. We first provide the following theorem, which shows that, under
certain conditions, the FBC and FFC subspaces are identical only for normal dynamical
systems:

Theorem 2 For B = IN , A = A⊤, AN×N , with all eigenvalues of A distinct and
maxRe(λ(A)) < 0, the projection matrix onto the eigenspace spanned by the d eigenvalues
of A with largest real value constitutes a critical point of the FBC objective function and a
global maximum of the FFC objective function.

The proof of the theorem is provided at the end of the chapter. To demonstrate this
analytic result, we return to the simulated linear dynamical systems describe above. We
extracted FBC (with FCCA) and FFC (with PCA) subspaces (d = 6) from the generated
data, and measured the difference between those two subspaces as the average angle between
them (Fig. 1.4c, mean ± s.d., n=100). Two subspaces partially overlap if at least one
subspace angle is zero, and are completely orthogonal if all subspace angles are equal to π/2.
In practice, these angles can be obtained as the cosine of the singular values of the product
C⊤

FFCCFBC ∈ Rd×d [47]. For dynamics driven by a completely normal dynamics matrix (i.e.,
giving rise to purely relaxation dynamics, corresponding to Fig. 1.4 b (i)), the average
subspace angles were small (∼ π/8 rads). Increasing non-normality drove these subspace
angles apart (> 3π/8 rads, Fig. 1.4 c (iii)).

Qualitatively similar results were observed in stability optimized neural circuits, a pre-
viously proposed model of networks that resepct Dale’s Law in which the degree of non-
normality can be systematically tuned [48]. We generated networks with 100 excitatory
and 100 inhibitory elements with a uniform connection probability of 0.25 and uniform,
sign-constrained weights. Self-decay terms (i.e. diagonal elements of A) were also uniform
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across the entire network. The magnitude of non-zero weights determines the spectral radius
(i.e. magnitude of the largest eigenvalue) of the dynamics matrix [49]. For sufficiently large
weights, the dynamics produced by this network will be unstable. Following [48], we then
optimize the inhibitory weights of the network in order to achieve stability. The resulting
matrix will have enhanced non-normality, with the degree of resulting non-normality having,
empirically, a monotonic relationship with the starting spectral radius. We tuned the initial
spectral radius over the same range of values as in [48].
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Figure 1.5: FBC/FFC subspaces diverge within stability optimized circuits (a, i-iii)
Plot of the eigenvalues and ϵ = 0.1 pseudospectral contours for typical, stabilized weight matrices.
Non-normality increases from (i) to (ii) to (iii). (a, iv) Example trajectories from each system
projected onto the the leading PCA vector. (b) Plot of the mean angle between FBC and FFC
subspaces as the degree of non-normality within synthetic networks is increased. Spread indicates
standard deviation over the random generation of 20 synaptic weight matrices and 10 simulations
of dynamics for each weight matrix. Example systems from panel (a) are marked along the curve.

Example pseudospectra from these synthetic systems are shown in Figure 1.5a, with
non-normality increasing from (i) to (ii) to (iii). As non-normality increases, we observe a
proliferation of complex eigenvalues, and pseudospectral contours that extend beyond the
equivalent normal matrix reference levels (grey vs. black contours). In Figure 1.5b, we plot
the corresponding average subspace angle between PCA and FCCA subspaces. The indicated
spread is the standard deviation across 20 initializations of synaptic weight matrices. The
location of the example systems within panel a are labeled along the curve. Paralleling the
results in the previously presented synthetic systems, increasing non-normality drives the
subspace angles towards π/2. Together, these novel control-theoretic results establish that
FBC subspaces are distinct from FFC subspaces when the underlying dynamics (i.e., A)
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are non-normal. Since Dale’s Law implies that cortical neural population dynamics should
be non-normal, FBC subspaces should be distinguishable from FFC subspaces in neural
population data.

Feedback controllable subspaces enable better decoding of
behavior than feedforward controllable subspaces.

The key prediction of FBC as a normative theory of neural population dynamics is that
task-relevant subspaces are more feedback controllable. Put another way, decoding behavior
from FBC subspaces should be more accurate than decoding from FFC subspaces. We
tested this prediction in previously recorded single-unit population neural data from monkey
primary motor cortex (M1) and somatosensory cortex (S1) during a self-paced reaching task
(Fig. 1.6a, right). Two macaque monkeys performed reaches on a 6x6 grid of starting and
positions. In Figure 1.6a, left, we overlay reaches from one recording session aligned to
the start location of the reach. These reaches exhibited a range of directions, velocities and
lengths [50]. Figure 1.6b plots the time-course of single-unit neural activity recorded from
primary motor (left) and primary somatosensory cortex (right) during this task. Across the
two monkeys, there were 35 distinct recording sessions (35 in M1, 8 in S1), and the number
of single units identified within each recording session varied from 97-200 in M1 and 86-187
in S1.

For our hypothesis to be testable, there must be substantial differences between FBC and
FFC subspaces extracted from the neural population data. As we have demonstrated, these
substantial differences hinge on the underlying dynamics being non-normal. We therefore
first assessed the degree of non-normality of the observed neural recordings. We visualized the
spectra (Fig. 1.6c,d, teal circles) and pseudospectra (grey region) of the neural population
dynamics. Across recording sessions In M1, we observed a set of complex eigenvalues with
larger imaginary than real part, indicating the presence of robust rotational dynamics [25].
In both M1 and S1, the pseudospectral contours extend beyond what would be expected
from equivalent normal matrices (black contours). As with results from simulations (Fig.
1.4c), the subspace angles between FBC and FFC subspaces were consistently large across
all recording sessions in M1 ( ≈ 3π/8 radians, n = 35, Fig. 1.6b boxplot shows median ±
IQR) and S1 (n=8, Fig. 1.6b median ± IQR). Thus, in both M1 and S1, FBC subspaces
are distinct from FFC subspaces. This distinction allows us to test whether FBC or FFC
subspaces provide better bases for decoding arm reaches.
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Figure 1.6: Feedback controllable subspaces enable better decoding of behavior than
feedforward controllable subspaces. (a) A self-paced reaching task on a 2D grid provides a
probe of a complex, naturalistic behavior in monkeys with Utah array recordings. (left) example
reaches from one recording session, aligned to the physical start location of the reach. (b) Single-
unit neural firing rates from primary motor cortex (M1, left) and somatosensory cortex (S1, right) in
macaque recorded via Utah array co-recorded during reaching. (c, d) Left plots: Eigenvalues (blue
scatter points) with associated pseudo-spectral contours (grey shaded region) of neural dynamics
from one recording session in Macaque M1 and S1, respectively. Black contours indicate pseudo-
spectral contours expected from a normal matrix. Right plots: Average subspace angle between
FBC/FFC subspaces across recording sessions (median ± IQR) (e, f) Linear prediction of cursor
velocity from activity projected into FBC/FFC subspaces within M1 and S1, respectively. Traces
indicate mean r2 of behavioral prediction from projected activity in FBC (red) and FFC (black)
subspaces vs. projection dimension averaged across recording sessions (shading indicates standard
error). Insets compare the total area under the r2 vs. dimension curve (AUC) for each recording
session between subspace methods (WSRT, n = 35 (e), n = 8 (f), ***: p < 10−3, ****: p < 10−4)
(g, h) Paired difference in decoding performance between the FBC and FFC subspaces (mean ±
s.e.).
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To test whether feedforward or feedback controllability provides a better normative ac-
count of behaviorally relevant neural population dynamics, we decoded hand velocity from
projections of the neural population data into FBC and FFC subspaces of dimensionality
1-30. Figure 1.6c,d plots predictive accuracy (cross-validated r2) as a function of dimen-
sion for decoding from M1 (Fig. 1.6c) and S1 (Fig. 1.6d) using neural population data
projected into FBC (red) and FFC (black) subspaces (mean ± s.e., M1, n = 35, S1, n =
8). We found that FBC subspaces were substantially better decoders of behavior than their
FFC counterparts across dimensions. This is despite both subspaces being derived from
the class of linear dimensionality reduction. We quantified the decoding performance across
dimensions as the area under the decoding curve for each recording session separately. The
superior decoding of FBC subspaces was consistent across all recording session in M1 (Fig.
1.6e inset, one sided paired Wilcoxon signed rank test (WSRT) p < 10−4, n = 35) and all
recording sessions of S1 (inset of Fig. 1.6f inset, one sided paired WSRT p < 10−3, n = 8).
These results demonstrate that behaviorally relevant neural population dynamics are more
aligned with FBC than FFC directions.

Additionally, we compared the performance of decoding from unsupervised FBC sub-
spaces to Preferential Subspace Identification, a linear, supervised method that directly
identifies the behaviorally relevant neural subspace [51] (PSID). PSID implements subspace
identification [52], identifying a latent stochastic, linear dynamical system that simultane-
ously drive behaviorally relevant dynamics and the behavior itself. PSID is a supervised
method, projecting neural activity directly onto observed behavior. As such, it provides a
useful upper bound on the decoding performance achievable by linear methods. We asked to
what extend could decoders built off of FFC and FBC subspaces, i.e. unsupervised measures
of the neural dynamics, identify behaviorally relevant dynamics. In contrast to decoding re-
sults presented in Figure 1.6, we use a Kalman filter to decode behavior from FFC/FBC
projected activity, paralleling the strategy used by PSID to decode behavior from its latent
states.

In Figure 1.7, we compare the velocity decoding performance of FBC, FFC, and pref-
erential subspace identification in M1 and S1 as a function of dimension. Here, dimension
for preferential subspace identification refers to the dimension of the latent, behaviorally
relevant state space dynamics. In M1, we found that the decoding performance of FBC
subspaces attained 80 % of that of preferential subspace identification by d = 6 and 85 %
by d = 10 (comparing red and maroon traces in Fig. 1.7a). In S1 (Fig. 1.7b), we found
analogously that by d = 10, the decoding performance of FBC subspaces attained within 85
% of that of preferential subspace identification performance by d = 10. As we emphasize,
this is despite the identification of FBC subspaces via FCCA occurring without access to
the behavior during dimensionality reduction, in contrast to PSID. FBC subspaces therefore
capture the vast majority of behaviorally relevant information available to linear Gaussian
methods in this dataset.

Finally, to ascertain the dimension at which feedback controllability of neural population
dynamics was most important for behavior, we calculated the paired difference in prediction
performance (∆-Velocity prediction) as a function of dimension (Fig. 1.6e, f). The ∆-



CHAPTER 1. FEEDBACK CONTROLLABILITY AS A NORMATIVE THEORY OF
NEURAL POPULATION DYNAMICS 21

velocity prediction reached 90% of its maximum value by dimension 6 in both M1 and
S1. The percent improvement in decoding performance at the dimension of peak ∆-velocity
prediction was substantial: 43% in M1, and 96 % in S1. This indicates that the FBC subspace
most relevant for behavior is simple (i.e., low-dimensional), and we therefore used d = 6 as
a standardized dimension for subsequent analyses. Together, these results validate the key
prediction feedback controllability as a normative theory of neural population dynamics.

a b

FBC + KF
FFC + KF
PSID

FBC + KF 
FFC + KF 
PSID

Dimension
0 10 20 30

Dimension
0 10 20 30

Ve
lo

ci
ty

 P
re

di
ct

io
n 

r² 

0

0.1

0.2

0.3

0.4

0.5

Ve
lo

ci
ty

 P
re

di
ct

io
n 

r² 

0

0.05

0.10

0.15

0.2

Figure 1.7: Decoding performance from FBC subspaces approximates that of a super-
vised method. (a) Comparison of velocity prediction r2 vs. dimension between PSID identified
subspaces (purple), FBC subspaces (red) and FFC subspaces (black) in M1. For PSID, dimension
refers to the dimension of the latent behaviorally relevant subspace. (b) Analagous curves for be-
havioral decoding from projected activity in S1.

Time courses of feedback controllability match reach acceleration

Next, to investigate how the mapping between dynamics in the FBC/FFC subspaces and
behavior was modulated during the time course of reaches, we segmented the first 1.5 sec-
onds of behavior following reach initiation (defined as the time when the visual target cue
switched) into 100 ms windows and trained linear decoders from the projected neural data to
predict cursor velocity. In Figure 1.8a, we plot the mean ± s.e of the time resolved velocity
prediction across recording sessions within M1 (n = 35). The overall decoding performance
from activity projected into both FFC (black) and FBC (red) subspaces was strongly cor-
related with overall reach velocity, with the peak in decoding performance occurring within
50 ms of the peak in cursor velocity at ∼ 500 ms after reach start both on average (Fig.
1.8a, vertical dashed lines) and individually across recording sessions (not shown). The
corresponding results for S1 are shown in Figure 1.8 b (mean ± s.e., n = 8). Note that
the difference in the average reach velocity time course relative to Figure 1.8a is driven by
S1 recordings being available for only a subset of recording sessions.
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Figure 1.8: Time courses of feedback controllability match reach acceleration (a)
Mean and standard error across recording sessions (n = 35) of time-resolved prediction r2 of cursor
velocity by M1 FCCA (red) and M1 PCA (black) compared to the average cursor velocity (dashed
green line) during reaching. Peaks of all three curves coincide (dashed colored lines). (b) Analogous
traces (mean ± s.e., n = 8) for prediction of cursor velocity from S1 FCCA (red) and S1 PCA
(black). (c) Mean and standard error across recording sessions (n = 35) of the paired difference
in velocity prediction from M1 activity (blue) co-plotted against the average reach acceleration
(green), normalized to the peak FFC derived prediction. Vertical dashed lines indicate when the
plateau of both curves begins and ends, defined as 80% relative to maximum. (d) Analogous traces
for paired difference in velocity prediction from S1 activity (mean ± s.e. n = 8). (e-f) Distribution
of cross-correlation coefficients (median ± IQR) between the ∆-velocity prediction curves in M1
and S1 (blue traces in c,d, respectively) and the reach velocity (left boxes) and reach acceleration
(right boxes) across recording sessions (one-sided paired WSRT, p < 10−5, n = 35).

In contrast to M1, the peak velocity decoding performance from both S1 FFC and S1 FBC
subspaces occurred later, between 750 and 1000 ms after reach start (i.e. 250 to 500 ms after
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the peak in reach velocity). This timing is measured with respect to the start of reaches.
The timing difference between M1 and S1 activity is accentuated by the lag between neural
activity and behavior employed within the linear decoders. For M1, we used a window of
neural activity centered 100 ms prior to behavior, whereas for S1, we used a window of
activity centered 50 ms prior to behavior, in line with when these regions were found to be
most predictive of behavior and with results reported in [53] for the same dataset. In sum,
we found that S1 was most predictive of behavior approximately 300 ms after M1.

To assess how the relative importance of feedback controllability varied as a function
of the reach kinematics, we then calculated the paired difference in decoding performance
between FBC and FFC subspaces across time. Analogously to Figure 1.6g, h, we use∆-
velocity prediction r2 (abbr. ∆-r2) as a measure of the relative importance of feedback
controllability vs. feedforward controllability during the time course of a reach. In Figure
1.8c, we plot the ∆-r2 for M1 (mean ± s.e., n = 35) normalized against the peak FFC
decoding r2 from Figure 1.8a. We found that the ∆-r2 exhibited a rapid rise beginning
at 200 ms after reach start, saturating at 400 ms, and decaying at 750 ms (Fig. 1.8 c,
blue trace). These dynamics tracked the magnitude of average reach acceleration (Fig.
1.8 c dashed green trace) closely, reproducing the double peak structure visible at 400 and
600 ms in the latter. We calculated the time at which both the ∆-r2 and magnitude of
acceleration rose past 80 % of their maximum value and then declined past this threshold in
the terminal period of the reach. These rise and fall times were consistent across recording
sessions between the ∆-r2 and average acceleration (blue and green vertical dashed lines in
Fig. 1.8 c, respectively). Analogous results held in S1 (Fig. 1.8d, mean ± s.e. of ∆-r2

shown, n = 8), again with an approximately 300 ms time lag.
To quantify the observed similarity between the time courses of reach acceleration and

∆-r2, we normalized each trace within each recording session to a 0-1 scale and calculated the
cross-correlation between them. The 0-1 normalization ensures that this cross-correlation
also lies between 0 and 1. In M1, the cross-correlation between the ∆-r2 time course and
reach acceleration consistently peaked at 0 relative lag and exhibited a median of 0.88 across
recording sessions (Fig. 1.8e, right bar, median ± IQR indicated, n = 35). Similarly,
in S1, cross-correlations peaked at zero lag in all recording sessions with the median peak
value across recording sessions equaling 0.83 (Fig. 1.8f, right bar, median ± IQR, n = 8).
Notably, the median cross-correlation between ∆ velocity prediction r2 and the time course
of average acceleration was higher across recording sessions than the analogous median zero
lag cross-correlation between ∆ velocity prediction r2 curves and the average reach velocity
in both M1 (0.88 vs. 0.79) and S1 (0.83 vs. 0.82) (left bars in Fig. 1.8e,f, median ± IQR
shown). In M1, the paired difference between these two cross-correlations was found to be
statistically significant (one sided paired WSRT p < 10−5, n = 35). The relatively small effect
size is to be expected, as the average velocity magnitude and average acceleration magnitude
are themselves highly correlated (normalized correlation r = 0.95 in M1 and r = 0.98 in S1).
In M1, a significant cross-correlation exists between the ∆-r2 and the average acceleration
magnitude after both time series are decorrelated from the average velocity magnitude (one-
sided paired WSRT, p < 0.05, n = 35). Conversely, no significant residual correlation was
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detected when first decorrelating the ∆-r2 and velocity magnitude from the acceleration
magnitude. Together, these results that the relative importance of feedback controllable
dynamics within both M1 and S1 to behavioral decoding closely tracks the magnitude of
reach acceleration. This suggests that acceleration is the kinematic parameter most under
feedback control.

Feedback controllability is mediated by a distinct population of
neurons

The large angles between FFC and FBC subspaces found in both M1 and S1 (Fig. 1.6
a, b) suggested that FFC and FBC dynamics were mediated by distinct populations of
neurons. As the FBC and FFC subspaces are composed of additive, weighted combinations
of the individual neurons in the recorded population, we are able to assign each neuron an
importance score associated with each subspace. These importance scores provide informa-
tion above and beyond that provided by the subspace angles, as large subspace angles could
arise in a number of ways. We therefore directly tested the hypothesis that the populations
mediating FBC/FFC dynamics were distinct, evidence for which would allow us to connect
functionally defined subspaces of neural dynamics back to the properties of the individual
recorded neurons.

To determine the importance score of a neuron i within an FFC or FBC projection matrix
C ∈ RN×d, we calculate the norm of the ith row of the projection matrix, and normalize
across rows, i.e. ||Ci,:||2/maxi ||Ci,:||2 (example projections [FBC Score]j, [FFC Score]j and
[FBC Score]k,[FFC Score]k shown in Fig. 1.9a). This yields a score for each neuron in
the population within FFC and FBC subspaces that we normalize to lie on a 0-1 range
(schematically indicated in the partitioned red and black vectors at the bottom of Fig.
1.9a). All reported importance scores were obtained from d = 6 projections, and averaged
across projections fit to 5 folds of the data. We visualize these scores in Figure 1.9b and c
on a log-log scale (M1 in Fig. 1.9b, S1 in Fig. 1.9c). Each scatter point corresponds to a
single unit within a single recording session. We indicate the relative feedback controllability
of each neuron, defined as the FBC importance score normalized by the sum of FFC and FBC
importance scores, by its color (Fig 1.9b,c colorbars). Neurons with high FBC importance
scores but low FFC importance scores are shaded red, and those with high FFC but low
FBC importance scores are shaded black. We observed that across the entire population
of neurons in M1, a neuron’s importance score within the FBC subspace was uncorrelated
with its importance score in the FFC subspace (spearman rank correlation ρ = −0.02, p =
0.11, n = 5041). In S1, we observed a very small correlation magnitude (ρ = 0.08) that was
statistically significant due to the large sample sizes (p = 4 ∗ 10−3, n = 1257). Again, this
result is in line with, but not necessarily implied by the large reported FBC/FFC subspace
angles in both regions (Fig. 1.6a,b). For example, a small number of neurons may have
had large importance scores in FFC as opposed to FBC subspaces (and vice-versa), with
the remainder of neurons having correlated, but small FFC/FBC importance scores. Our
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observation to the contrary further suggested that FBC vs. FFC subspaces were composed
of distinct populations of neurons.
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Figure 1.9: Feedback controllability is mediated by a distinct population of neurons.
(a) Simplified schematic of how the importance scores of each neuron are derived from FFC/FBC
projections. (b) Scatter plot of the importance scores of neurons in FFC vs. FBC subspaces across
all M1 recording sessions. Each scatter point corresponds to a single unit from one recording session.
Spearman rank correlation ρ between FBC/FFC importance scores indicated. (c) Analogous scatter
plot for S1 data. (d) Example trial-averaged, Z-scored firing rates aligned to reach initiation of M1
neurons with the highest relative FFC (black) and FBC (red) importance score. (e) Histogram of
transformed firing rates for all M1 neurons across all sessions (n = 5041) projected onto the LDA
component. Each histogram bin is colored according to the fraction of neurons within it that are
designated as either FBC or FFC neurons. (Inset) Cross-validated LDA prediction accuracy of
FFC/FBC category (mean ± s.e. across recording sessions, n = 35) as a function of the quantile
of relative FBC used to assign neurons to categories. (f) Example trial-averaged, Z-scored, firing
rates of S1 neurons with the highest relative FFC (black) and FBC (red) importance scores. (g)
Analogous plot to (e) for all S1 neurons across all sessions (n = 1257). (Inset) Mean ± s.e. of
cross-validated LDA prediction accuracy across recording sessions (n = 8) as a function of relative
FBC quantile used for class assignment.

Therefore, we next examined if neurons important for FFC vs. FBC had distinct electro-
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physiological activity profiles. We categorized neurons according to whether their relative
FBC importance (i.e., colorbar in Fig. 1.9b,c) lied above or below the median relative FBC
importance within the recording session. We then calculated smoothed, Z-scored, and trial
averaged, firing rates for each neuron over the first 1.5 seconds following reach initiation. We
plot these firing rate time courses for a set of neurons with high FFC (top, black) and FBC
(bottom, red) importance scores in M1 (Fig. 1.9d) and S1 (Fig. 1.9f). A visual inspec-
tion of the trial averaged firing rates indicated that the distinct FFC and FBC populations
were characterized by differing dynamics during reaching behavior. FFC neurons exhibited
a high degree of similarity amongst themselves, with a robust, large amplitude turn-on ef-
fect following reach initiation (peak in black traces in Fig. 1.9d,f at approximately 400
ms). By contrast, FBC neurons exhibited low-amplitude, heterogeneous, ongoing dynamics
in many cases unassociated with the start of reaches. The dynamic range was significantly
higher amongst FFC neurons than FBC neurons in both M1 (WSRT p < 10−5, n = 35)
and S1 (WSRT, p < 10−2, n = 8). To determine whether these differences in activity pro-
files were sufficient to accurately classify neurons as being important for FFC vs. FBC,
we applied Linear Discriminant Analysis (LDA) to features derived from UMAP applied to
the firing rates. For a 2 class classification problem, LDA yields a projection of data onto
a one dimensional space over which the two classes are most linearly separable. We plot
histograms of these projections applied to all neurons across all recording sessions in both
M1 (n=5041, Fig. 1.9e) and S1 (n=1257, Fig. 1.9g). Each histogram bin is colored by
the fraction of neurons within that bin that are important for FBC vs. FFC. We observed
a clear bimodal structure within the histogram densities in both brain regions, indicating
the presence of two clusters of neurons corresponding FFC/FBC neurons that were linearly
separable by features derived from their firing rates. The average cross-validated accuracy
of classification across recording sessions was 0.91 in M1 and 0.88 in S1. This classification
accuracy was significantly higher than chance (0.5, one-sided WSRT p < 10−5, n = 35 and
n = 8 in M1, and S1, respectively), and robust to the choice of FBC quantile used to divide
the population into classes (Fig. 1.9e,g inset and Fig. 1.10). We therefore conclude that
FBC and FFC subspaces are comprised of two distinct populations of neurons within both
M1 and S1.
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Figure 1.10: (a) Plot of the average classification accuracy of LDA applied to the data and
FFC/FBC classification (blue), a dummy classifier (orange), and an LDA classifier trained on ran-
dom labels (purple) as a function of the relative FBC quantile used to assign neurons to FFC/FBC
classes. Spread is the standard error taken across recording sessions in M1 (n = 35). (b) Analogous
plot across S1 recording sessions (mean ± s.e. n = 8).

Feedback controllability is an emergent, population level property.

The prior analysis revealed that the populations of neurons important for FFC and FBC
exhibited disparate firing rate profiles. Visual inspection of the firing rates plotted in Figure
1.9d, g suggested further that FFC neurons exhibited a higher degree of pairwise similarity
(i.e., cross-correlation) and temporal alignment than FBC neurons. Cross-correlations are a
measure of functional interactions between neurons (depicted as blue arrows in Fig. 1.11a,
top). We sought to determine the extent to which feedback vs. feedforward controllability
of neural dynamics relied on these functional interactions, as opposed to being predictable
from the functional properties of single neurons taken in isolation (schematically depicted
in Fig. 1.11a, bottom with dashed arrows). If controllability cannot be reduced to single
neuron properties alone, then this would provide strong evidence for it being an emergent,
population level phenomena within neural circuits.

We took two complementary approaches towards assessing whether FBC/FFC was an
emergent property resulting from population interactions. First, we evaluated whether im-
portance scores within FFC/FBC subspaces could be predicted from a set of single neuron
properties frequently assayed in systems neuroscience. For each neuron, we calculated its
response variance, weight in a linear decoder of reach velocity trained on the entire popula-
tion, and r2 of an encoding model of its firing rate from reach kinematics. We then trained
a linear model to predict FBC/FFC importance scores from these features.
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Figure 1.11: Feedback controllability is an emergent, population level property. (a)
Schematic of the comparison made between analyses that disregard interactions between neurons
(bottom) and those that do not (top). (b) Median ± IQR across recording sessions of the spearman
rank correlation (ρ) between actual FBC/FFC importance scores and importance scores predicted
from the a linear regression using single unit features for M1 (left) and S1 (right, *****: p < 10−5,
WSRT n = 35 and n = 8, respectively). (c) Bar plots of mean ± s.e. across recording sessions of
the individual spearman rank correlations between M1 single neuron features utilized to fit models
in panel (b) and FBC/FFC importance scores (WSRT, ****: p < 10−4, n = 35). (d) Analogous
plot for S1 (one-sided WSRT, *: p < 0.05, n = 8). (e) Median ± IQR across recording sessions of
the distribution of average subspace angles between d = 6 FBC and FBCm projections (red) and
FFC/FFCm projections (black) in M1 (WSRT, p < 10−5, n = 35). (f) Analogous distribution of
subspace angles across recording sessions in S1 (WSRT, p < 0.01, n = 8). (g) Plot of the paired
differences (mean ± s.e. across recording sessions, n=35) in cursor velocity prediction r2 between
using activity projected into FBC vs. FBCm (red) and FFC vs. FFCm (black) subspaces as a
function of projection dimension. Significance in the difference between peaks in the two curves at
d = 6 as measured by WSRT indicated (p < 10−3, n = 35) (h) Analogous curves for S1 (mean ±
s.e. across sessions, n = 8). Significance of WSRT similarly indicated (p < 0.01, n = 8).

The median spearman rank correlation between the predicted and actual importance
scores was 0.95 for FFC subspaces (Fig. 1.11b left, median ± IQR across recording sessions
in black box) vs. 0.64 for FBC subspaces (median ± IQR across recording sessions in red
box) in M1, and 0.92 for FFC vs. 0.55 for FBC in S1 (Fig. 1.11b right, median ± IQR
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across recording sessions in black and red boxes, respectively). These differences were highly
significant in both regions (WSRT, p < 10−5. n = 35 and n = 8, respectively). From this, we
conclude that the importance of a neuron to the feedback controllable subspace cannot be
well predicted by single neuron properties, in contrast to neurons that mediate feedforward
controllability. The individual spearman rank correlations between each property and the
FBC/FFC importance scores, which we plot as histograms (mean ± s.e. across recording
sessions) in Figure 1.11 c, d, support this conclusion. In both M1 and S1, a high importance
in the FFC subspace could be accounted for almost entirely by a neuron’s variance (leftmost
black bars, ρ = 0.93 in M1, ρ = 0.90 in S1). By contrast, a high importance in FBC subspaces
was weakly, negatively correlated with neuron variance (leftmost right bars, ρ = −0.28 in
M1, ρ = −0.07 in S1). In M1, we additionally found that the decoding weights and r2

performance of single neuron encoding models were significantly more correlated with the
FFC importance scores than FBC importance scores (WSRT p < 10−4, n = 35), whereas
these differences were not found to be significant amongst S1 neurons.

While the set of single neuron properties considered above were unable to accurately
predict the importance scores of neurons within FBC subspaces, it could still be the case
that the FBC subspaces could nonetheless be derived from measures of controllability that
neglect functional interactions (i.e., cross-correlations) between neurons. To test this, we
obtained FFC and FBC subspaces from fits of PCA to FCCA that included only single
neuron (i.e., marginal) variance and autocorrelations within their objective functions. This
procedure is tantamount to applying PCA and FCCA to surrogate data that has been shuffled
to remove cross-unit correlations [54]. We refer to the resulting subspaces as the FFCm and
FBCm subspaces, respectively. In Figure 1.11e and f, we plot the distribution (median ±
IQR) of subspace angles between the FBC/FFC subspaces and their marginal variants in
M1 and S1, respectively. The median subspace angle between FBC and FBCm (red boxes)
was significantly higher than that between FFC and FFCm (black boxes) in both M1 (one
sided Wilcoxon paired difference test, p < 10−5, n = 35.) and S1 (p < 10−2, n = 8). Finally,
similarly to results shown in Figure 1.6 c, d, we trained linear decoders of cursor velocity
from the marginal subspaces. Compared to the same subspaces methods extracted from the
full population statistics, we observed a substantial drop-off in decoding performance. In
Figures 1.11 g, h, we plot the paired difference in decoding performance (mean ± s.e.) as a
function of dimension between FBC/FBCm (red trace) and FFC/FFCm (black trace) in M1
and S1 respectively. These paired differences peaked in M1 (Fig. 1.11g) and saturated in
S1 (Fig. 1.11h) at d = 6. The reduction in decoding performance between FBC and FBCm
vs. FFC and FFCm was larger across all dimensions examined, and at d = 6 exhibited a
statistically significant difference (one sided paired WSRT p < 10−3, n = 35 for M1 p <
0.01, n = 8 for S1). Taken together, these results demonstrate that accurate assessment of
controllability from population dynamics requires incorporating emergent, population level
statistics, with this population structure being more important for FBC vs. FFC.



CHAPTER 1. FEEDBACK CONTROLLABILITY AS A NORMATIVE THEORY OF
NEURAL POPULATION DYNAMICS 30

Feedforward and feedback controllable subspaces engage distinct
dynamical regimes.
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Figure 1.12: Feedforward and Feedback controllable subspaces engage distinct dy-
namical regimes. (a) Example trajectories in M1 FBC (red) and FFC (black) subspaces projected
onto the top jPCs. (b) Analogous example trajectories of S1 FBC/FFC subspaces projected onto the
top two jPCs. (c, d) Distribution of rotational strength (median ± IQR of sum of imaginary eigen-
values of jPCA fits across recording sessions) in FFC vs. FBC above average rotational strength
in random subspaces in M1 (n=35) and S1 (n=8), respectively (WSRT, ***: p < 10−3, n = 35, *:
p < 0.05, n = 8) (e) Example trajectories in M1 FBC and FFC subspaces projected onto directions
of highest amplification. (f) Analogous plots for S1 data. (g, h) Distribution of average dynamic
range (median ± IQR across recording sessions) in FFC. vs FBC vs. random subspaces in M1, and
S1 respectively (WSRT, *****: p < 10−5, n = 35 and n = 8, respectively.

Generally speaking, linear models of population dynamics can generate rotations and
scalings of the population firing rate vector over time. Rotational dynamics in particular
are a robustly observed feature of population dynamics within motor cortex [25], and the
presence of large imaginary components within the eigenvalues of functional connectivity
matrices within M1 (Fig. 1.6a) indicated the presence of rotational dynamics within this
dataset. Population level interactions are necessary for both the generation of rotational
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dynamics [25] and determination of FBC subspaces (Fig. 1.11), while the FFC objective
function favors amplifying dynamics and FFC subspaces were associated with high variance
neurons (Fig. 1.11c,d leftmost black bars). Additionally, the firing rate profiles of FFC vs.
FBC neurons were distinct (Fig. 1.9 d, and g), with the former exhibiting amplification
at reach onset, and the latter exhibiting temporally heterogenous, oscillatory dynamics.
Given these facts, we hypothesized rotational dynamics would be associated with feedback
controllability, while scaling dynamics would be associated with feedforward controllability.
Such a correspondence would establish an underlying normative, computational role for these
distinct dynamic regimes.

To quantify rotational dynamics, we fit jPCA [25] to projections of the first 1 second of
activity following reach initiation into the FFC and FBC subspaces. We assessed the strength
of rotational dynamics by taking the sum of imaginary jPCA eigenvalues as compared to
jPCA fits within random projections of the data. Examples of smoothed, single trial firing
rates projected onto the top two jPCs within FBC and FFC subspaces respectively are
shown in Figure 1.12a and b for M1 and 1.12c and d for S1. Visually, we observed
more stereotyped rotational dynamics in M1 than in S1 (Fig 1.12a vs. b), while within M1,
rotations were more cleanly observed within FBC subspaces than FFC subspaces (Fig 1.12a,
red vs. black traces). Across all recording sessions, the strength of rotational dynamics
above that contained within random projections was significantly higher in FBC vs. FFC
subspaces in both M1 (median ± IQR, red vs. black boxes in Fig. 1.12e, WSRT, ***:
p < 10−3, n = 35) and S1 (median ± IQR, red vs. black boxes in Fig. 1.12f, WSRT,
*:p < 0.05, n = 8). FBC subspaces therefore contained stronger rotational dynamics than
FFC subspaces.

On the other hand, to examine scaling, or amplification, of dynamics, we calculated
the average dynamic range within projected activity within 1 seconds after reach initiation
measured relative to baseline activity prior to reach initiation. Examples of activity from
single recording sessions along the top 2 dimensions ordered by dynamic range are shown in
Figure 1.12g-j (FBC components in red, FFC components in black). We again compared
the average dynamic range to that found within random d = 6 projections of the data.
Across recording sessions, the average dynamic range was significantly higher within FFC
subspaces than FBC subspaces in both M1 (median ± IQR, black vs. red boxes in Fig.
1.12k) and S1 (median ± IQR, black vs. red boxes in Fig. 1.12l). Thus, FBC activity
within both M1, and S1 contained stronger rotational dynamics than FFC activity, whereas
FFC activity contained more amplification in their time courses than FBC activity.
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Figure 1.13: Feedback controllable subspaces exhibit stronger rotational dynamics
than feedforward controllable subspaces in inhibitory stabilized networks (a) Plot of
example trajectories projected to d = 6 within FBC (black) and FFC (red) subspaces, and then
further projected into the top 2 jPCA dimensions. (b) Plot of the sum of jPCA eigenvalues within
d = 6 FBC (red), and FFC (black) subspaces relative to random projections as non-normality of
the inhibitory stabilized networks is increased. Spread represents the standard deviation taken
across 20 initializations of the synaptic weight matrix and 10 trajectories within each stabilized
network. (c) Plot of example trajectories projected to d = 6 within FBC and FFC subspaces, and
then further projected onto the direction of highest amplification. (d) Plot of the mean ± s.d.
dynamic range relative to random projections within FBC/FFC subspaces across the same range
of non-normality as panel (b).

We replicate the above findings within synthetic, stability optimized E/I networks. We fit
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jPCA onto activity projected to d = 6 via PCA and FCCA across the full range of networks
explored in Figure 1.5. Subspace activity projected onto the top 2 jPCs for an examples
system drawn from the most non-normal regime (corresponding to point (iii) in Fig. 1.5a)
are shown in Figure 1.13 a and b for FFC and FBC subspaces, respectively. Visually,
we observed trajectories within the top 2 jPCs within the FFC subspace exhibited a large
degree of both shearing and amplification. By contrast, FCCA trajectories (plotted on the
same scale as the PCA trajectories) were found to exhibit comparatively less amplification
and were better aligned to pure rotations. We quantified this effect analogously to Figure
1.12 c, d by taking the sum of the imaginary eigenvalues associated with the jPCA fit to
the FFC/FBC subspace projections relative to 1000 random d = 6 projections of the data.
In Figure 1.13b, we plot this statistic as a function of the underlying non-normality. We
find that the degree of underlying non-normality in linear, stability optimized E/I networks
increases the strength of rotational dynamics in both FFC and FBC subspaces. Nevertheless,
after an initial regime of relatively low non-normality (lower left corner), the strength of
rotational dynamics was found to be significantly stronger in FBC subspaces. As in Figure
1.12, we then calculated the average dynamic range contained within FFC/FBC subspaces.
In Figure 1.13c, we plot system trajectories the same system as Figure 1.13a along the
direction of highest dynamic range within FBC (red, top) and FFC (black, bottom) subspace.
FFC trajectory visibly containing stronger amplification in its initial dynamics. In Figure
1.13d, we plot the average dynamic range relative to random projections over the same range
of non-normality as in panel (b). We observe a monotonic increase in the dynamic range
within FFC subspaces relative to random projections, whereas FBC subspaces were found
to actually decrease in their dynamic range relative to random projections as non-normality
was increased sufficiently. Thus, we are able to recapitulate the key observations that FBC
subspaces contain stronger rotational dynamics, whereas FFC subspaces container stronger
amplification within a synthetic system that respects Dale’s Law.

Rotational dynamics enhance stability and feedback controllability

To better understand why feedback controllability was consistently associated with stronger
rotational dynamics than feedforward controllability, we investigated a simplified 2 dimen-
sional linear dynamical system in which the relative contribution of scaling and rotations to
the dynamics could be independently varied. We parameterized A as:

A =

[
ϵ− δ ϕ
−ϕ ϵ + δ

]
Asym =

[
(ϵ− δ) 0

0 (ϵ + δ)

]
Askew =

[
0 ϕ
−ϕ 0

]
The corresponding eigenvalues of the symmetric and skew-symmetric components are:

λsym = {ϵ + δ, ϵ− δ} λskew = {iϕ,−iϕ}

Thus, as δ is increased, the largest eigenvalue of Asym is also increased, whereas ϕ on
the other hand increases the strength of rotational dynamics. The parameter ϵ was set to
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−0.05 in order to keep the overall dynamics of A stable for most choices of δ and ϕ. We
generated many 2 dimensional dynamics matrices by varying δ and ϕ over the interval [0, 0.5]
(corresponding to the x and y axes of Fig. 1.14a), spanning a range of dynamics from pure
rotations to pure scalings. We set B = I and measured the intrinsic controllability of systems
without dimensionality reduction (i.e. C = I).
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Figure 1.14: Feedback controllability is enhanced within stable dynamical systems.
(a) Plot of example trajectories simulated from the 2D dynamical system as a function of scaling
and rotational strength. (b) Colormap of ratio of normalized FBC to FFC. Parameters for which
systems are more FBC than FFC are shaded red, whereas parameters for which systems are more
FFC than FBC are shaded black. Purple region denotes parameters regime for which dynamics
are unstable. (b, inset) Zooming into the dashed cyan region close to the instability boundary. (c)
Scatter plot of normalized controllability (FBC in red, FFC in black) vs. distance to instability.

We calculated the FFC and FBC of dynamics over this parameter space, normalizing the FBC
and FFC values attained to each line on a 0-1 scale. In Figure 1.14b, we plot a colormap of
the relative FBC, defined as the normalized FBC divided by the sum of normalized FBC and
FFC. Regions shaded red correspond to systems with high FBC and (relatively) low FFC,
whereas regions shaded grey/black correspond to systems with high FFC and (relatively)
low FBC. For fixed strength of rotation and increasing strength of scaling, the FFC increased
while the FBC decreased. On the other hand, for fixed strength of scaling and increasing
strength of rotations, the FBC increased while the FFC decreased (see also Fig. ??). For
sufficiently large scaling strength, the system dynamics become unstable (purple region in
Fig. 1.14b). We found that FFC increases as one approaches this instability boundary,
while the FBC decreases (Fig. 1.14b inset). This suggested that dynamical systems closer
to instability are more FFC, whereas systems that lie far away from this instability boundary
are more FBC. Given the orientation of the instability contour in the rotation-scaling plane,
we observe that for fixed rotatiationl strength, this distance increases with decreasing scaling
strength, while for fixed strength of scaling, the distance increases with increasing rotational
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strength. This fact establishes a link between stronger rotational dynamics and greater
system stability and feedback controllability for a fixed strength of scaling dynamics.

Accordingly, a larger distance to instability was found to be strongly correlated with
higher FBC, while a smaller distance to instability was strongly correlated with higher FFC.
In Figure 1.14c, we scatter the normalized FBC and FFC as a function of the distance to
instability for all points in the parameter space. We observed a sharp increase in FBC as the
distance to instability initially departs from zero, followed by an eventual saturation. The
FFC followed the opposite trends, diverging close to instability and decreasing rapidly as
the distance to instability increases. Overall, the spearman correlation between the distance
to instability and the FBC and FFC was found to be 0.90 and -0.84, respectively. These
results establish that for a fixed degree of scaling dynamics, rotations enhance dynamical
stability, and as a consequence, the controllability of dynamics under feedback. The greater
stability, and therefore feedback controllability, afforded by rotations relative to other types
of dynamics may therefore provided a normative account of their presence in cortical data.
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1.3 Additional Characterization of the FCCA Method

FCCA exhibits low variability across initializations.

a

b

c

d

Figure 1.15: FCCA exhibits low variability across initializations. (a,b) Histogram of the
average subspace angles between different d = 6 FCCA projections (red) and between FCCA and
d = 6 PCA (black) taken across 20 random initializations of FCCA fit on M1 (a) and S1 (b) data.
(c, d) Variation in cursor velocity prediction r2 from M1 (c) and S1 (d) as a function of projection
dimension. Spread indicates the maximum deviation from the median decoding performance over
20 initializations for each recording session.

FCCA is not a convex optimization problem. Throughout the above results, we initialized
optimization over 10 different random orthogonal projection matrices and use the solution
that returns the best value of the objective function. In order to assess the variability in
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behavior of the method across initializations, we individually examined subspace angles and
decoding performance across each of 20 random initializations for each projection dimensions
in both M1 and S1. In Figure 1.15 a, b, we plot histograms of the average pairwise subspace
angles between different initializations of FCCA across a subset of recording sessions (M1
in a, S1 in b). In both M1 and S1, we observe these subspaces angles are tightly clustered
and bounded above by π/8 (red histogram bars). We also measured the average subspace
angles between each initialization of FCCA and the corresponding PCA projection. The
distribution of these subspace angles in both M1 and S1 was clustered around 3π/8 (black
histogram bars), though we did observe a small number of solutions in M1 that aligned very
closely with PCA directions (black histogram bars in panel a).

We also trained decoders off the basis of each random initialization. As in the above
results, we averaged decoding performance across 5 folds of the data. In Figure 1.15 c, d
we plot the maximum deviation in decoding performance across initializations and recording
sessions relative to the median performance at each dimension within each recording session.
We observe that in both M1 (c) and S1 (d), the spread in r2 about the median is no
larger than 0.035 across initializations. We note that this gap is much smaller than the gap
between FCCA and PCA (Fig. 1.6 c, d). Thus, while FCCA is a non-convex dimensionality
reduction method, the key effects of (i) large subspace angle between FCCA and PCA and
(ii) the superior decoding performance of FCCA relative to PCA hold consistently across
initializations.
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FCCA/PCA subspace angles remain large across dimensionality

a

b

c

d

Figure 1.16: FCCA/PCA subspaces subspace angles remain large across dimension-
ality. (a,b) Comparison of the minimum, median, and maximum subspace angle between PCA
and FCCA as a function of projection dimension in M1 (top) and S1 (bottom) (c, d) Comparison of
the minimum, median, and maximum subspace angle between FCCA at dimension d vs. dimension
d+1 within M1 (top) and S1 (bottom). The analogous curves for PCA (or any nested, orthogonal
subspace method) would lie at 0 for all 3 statistics across all dimensions.

In Figure 1.6, we reported the average subspace angle between FCCA and PCA pro-
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jections of dimension d = 6. Here, we calculate these angles across a range of projection
dimensionalities in both M1 (Fig. 1.16a) and S1 (Fig. 1.16b). We found that the average
subspace angle (solid blue trace) increased as a function of projection dimension, saturating
at approximately 2π/5 rads in both M1 and S1. The maximum subspace angle between
projections (dotted line) reached π/2 by dimension 10 in both M1 and S1, whereas the min-
imum subspace angle (dashed line) decreased as a function of dimensionality. The latter
result is to be expected, since as the projection dimension increases to the full dimension of
the ambient space, this angle will decrease to zero. Overall then, FCCA and PCA subspaces
remain geometrically segregated across projection dimensionality.

The objective function of FCCA is optimized separately for each desired projection di-
mension d. Furthermore, the optimal projection does not arise from the solution of an
eigenvalue problem as in PCA. As a result, it is not necessarily the case that a projection of
dimension d+ 1 will contain as a subspace the projection of dimension d (i.e., the subspaces
may not be nested). This fact could potentially hamper interpretability, as projections of
varying dimensionality may pick out completely disjoint regions of the neural state space.
To rule out the presence of this sort of behavior within FCCA, we measured the subspace
angles between successive projection dimensionalities. When comparing a projection of di-
mension d to a projection of dimension d + 1, it is possible to measure a total of d subspace
angles. In Figure 1.16 c, d, we plot the min, max, and median of these subspace angles in
M1/S1 respectively, as a function of projection dimension. For a pair of nested subspaces,
all 3 statistics will always be zero, as the dimension d subspace is entirely contained within
the dimension d + 1 subspace. As in the main text, we considered here the projections with
the best FCCA score over 10 initializations. For FCCA, we observe that both the minimum
(dotted line) and median (solid line) subspace angle in both M1 and S1 remain negligibly
small (< π/10 radians), approaching zero as the projection dimension is increased. The
maximum subspace angle by contrast was found to increase with projection dimensional-
ity. These trends indicates that FCCA subspaces are partially nested, with most of the d
dimensional subspace lying within the d + 1 dimensional space.
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FCCA returns consistent subspaces across T parameter and with the addition
of observational noise.

Figure 1.17: FCCA returns consistent subspaces across T parameter. Plot of median ±
IQR of the average subspace angle between d = 6, T = 3 FCCA projections and FCCA projections
that use varying T parameter (increasing along the x-axis). Spread is taken across folds and
recording sessions within M1.

The only free hyperparameter within the FCCA method is the T parameter, which con-
trols the numbers of observations within the FBC subspace that are used within the causal
and acausal MMSE prediction of the neural state. In Figure 1.17a, we plot the average
subspace angle between FCCA projections using T = 3 (the parameter we use for the main
analyses), and various values of T (increasing along the x-axis). The spread is taken across
folds and recording sessions within M1. We observe that the subspace angles increase as T
increases from T = 3, though they remain small relative to the large subspace angles reported
between FCCA and PCA in Figure 1.6a. In practice, results obtained from large values of
T are also likely to be unreliable as the accuracy of autocorrelation matrix estimates at long
lags will diminish. Thus, overall, we find FCCA to be relatively insensitive to the choice of
T.

1.4 Discussion

The theoretical importance of feedback control for brain function and behavior have been
recognized for nearly 80 years [10, 55]. Despite the overwhelming evidence supporting feed-
back control as a normative theory of behavior, if and how feedback control explains on-going
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neural population dynamics has been largely unarticulated (though see: [21, 56]) and com-
pletely untested in experimental data. For example, the neural population dynamics of
monkey M1 during reaching provides a heavily studied example of a neural circuit executing
computations through population dynamics. Recent literature postulates that during reach
execution, M1 operates as a feedforward dynamical system: initial conditions are first set
within an output null subspace [57] and then movement is supported by the “set and forget”
time evolution of neural population dynamics [58]. Neural population dynamics have been
proposed to function as a basis set of dynamical motifs that are transformed downstream
into muscle commands. An implicit prediction of this view is that in the absence of external
behavioral perturbations, the neural population dynamics of M1 generate a reach in a feed-
forward manner. At the same time, the canonical examples of neural circuits thought to be
operating in a feedforward manner are primary sensory cortices (e.g., V1) during simple per-
ception. These circuits are typically conceived as transmitting processed sensory information
up the sensory hierarchy (e.g., V1 → V2). Indeed, a classic view of sensory perception is that
lower-level representations form a basis set for synthesis of higher-level representations [59].
However, from a dynamics perspective, if M1 is operating in a feedforward manner, why
then are its neural population dynamics (which have a strong rotational component) so dif-
ferent from, e.g., V1 (which did not have a strong rotational component), during the same
task [60]?

In contrast to the predominate view articulated above, we hypothesized that neural pop-
ulation dynamics in a given brain area (e.g., M1 and S1) maybe steered in real-time to
maintain trajectories and achieve desired end-states for behavior based on feedback control.
A key prediction of this hypothesis is that neural subspaces that are most feedback con-
trollable (FBC) should be more aligned with behavior than neural subspaces that are most
feedforward controllable (FFC). Supporting our hypothesis, we found that FBC subspaces
of neural population activity within both M1 and S1 were substantially better predictors of
reach kinematics than FFC subspaces. Notably, prediction performance within FBC sub-
spaces saturated at a lower dimensionality than FFC subspaces indicating that, relative to
FFC, FBC effectively compresses behaviorally relevant information. In this context, the low
dimensionality of FBC subspaces implies that the controllers required to steer behaviorally
relevant dynamics in M1 and S1 themselves have low state dimension, potentially requiring
simpler circuits to implement.

We found that FBC subspaces were nearly orthogonal to FFC controllable subspaces
in both M1 and S1. This raises the possibility that these distinct modes of control maybe
differentially engaged depending on the area and task demands. The possibility of distinct
modes of control is supported by our finding that there are distinct feedforward and feedback
controllable neural populations in both M1 and S1. Functionally, the time-courses of the
observed neural populations suggest that FFC dynamics may support reach initiation (before
sensory feedback has time to re-enter the system), while FBC dynamics support on-going
reaching. Neurobiologically, these distinct functions could be implemented by anatomically
and/or genetically different populations of neurons.

Harmonizing the neuron doctrine with the theory of computations through
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neuronal population dynamics. Neurons are fundamental units of computation in the
brain [61, 62]. A central tenet of the neuron doctrine is that neurons are specialized to
perform specific functions (Dales law is another tenet). At the same time, it is becoming
clear that brain computations result from the dynamics of neural populations [24]. We found
that FBC is mediated by a distinct population of single units and is an emergent, population
level property of that population. Specifically, we found that the neurons most important
for FBC had lower task modulated firing rates and fast time-scales of firing-rate dynamics.
Across the population, they had heterogeneous temporal relationships relative to each other.
Despite their heterogeneous dynamics, the structure of the FBC subspace was an emergent
property depending heavily on inter-neuronal interactions. In contrast, the neurons most
important for FFC had higher firing rates and slower time-scales of firing-rate dynamics.
Across the population, they homogeneously exhibited a transient burst of activity near the
onset of reach initiation, followed by a decay. Despite their homogeneous dynamics, the
structure of the FFC subspace was only modestly dependent on inter-neuronal interactions,
and could almost entirely be explained by single-unit firing rate variance.

The Utah array recordings we analyzed targeted L5 in both M1 and S1 of macaques.
Excitatory pyramidal cells constitute the overwhelming majority of neurons (> 85% [63])
and there is a known sampling bias of in vivo extracellular electrophysiology for excitatory
neurons. Therefore, it is very likely that the distinct neuron populations underlying feed-
forward vs. feedback controllability correspond to different classes of excitatory neurons in
L5. Indeed, diverse studies in multiple species and brain areas have found that there are
two major distinguishable classes of L5 pyramidal neurons: extratelencephalicephalic (ET)
and intratelencephalic (IT) [64, 65]. Anatomically, ET neurons project to the thalamus,
mid-brain, and brainstem, with only modest intra-columnar connectivity. Electrophysio-
logically, these neurons have higher firing rates and a propensity for initial bursts of action
potentials followed by sustained firing. Computationally, ET neuron are thought to transmit
information and be involved in behavioral initiation. This constellation of properties maps
well to the response characteristics and computations of the feedforward controllable neural
population. In contrast, anatomically, IT neurons contain both local and long-range connec-
tivity profiles projecting to other cortical areas and the striatum. Electrophysiologicaly these
neurons typically have lower firing rates and more complicated and heterogenous firing rate
properties. Computationally, IT neurons are thought to be involved in more sophisticated
dynamics and information processing such as planning and sampling [64]. This constellation
of properties maps well to the response characteristics and computations of the feedback
controllable neural population. We note that the FBC population had rapid dynamics and
low evoked responses, indicating that Ca2+ imaging studies, with their slow response times
and low SNR, maybe insufficient tools to examine these issues. Interestingly, intra- and
extratelencephalic sub-populations also have distinct profiles of neurotransmitter receptors,
perhaps providing the basis for separable modulation of these populations underlying distinct
modes of neural circuit control [64].

Analytic framework to link subspaces to single neurons and networks per-
forming specific computations. Our analytic framework differs from the mathematical
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structure of many statistical machine learning methods used to analyze neural population
data. In particular, a popular methodological approach aims to reconstruct the neuronal
activities and models them as generated by dynamical latent states [66–68]. While math-
ematically convenient, this approach suffers from several conceptual shortcomings when it
comes to neurobiological interpretation and insight. In particular, because the objective
function of these methods is typically to reconstruct all the observed neural data, the ex-
tracted latent states tend to favor capturing variance in the firing rates. However, capturing
variance is not a principle of neural computation per se, and a priori it is not necessary that
the high-variance directions are the ones most important for a specific computation (though,
as we found, these subspaces correspond to FFC). In tasks with a handful of known degrees
of freedom (e.g., animal location in a maze), the time evolution of the low dimensional la-
tent states can be manually interrogated [69]. However, in general, these latent states in of
themselves provide no direct insight into the structure and function of the observed neural
dynamics. Additionally, it is the neurons themselves and their networked interactions that
generate neural computations that can be summarized as latent states. However, inverting
the mapping from a latent state space to the state space spanned by the neurons (i.e., the
real physical degrees of freedom of the brain) is often an ill-posed inverse problem. This
makes it very challenging to identify which sets of neurons differentially contribute to dif-
ferent computations. As experimental neuroscientists record from ever lager populations of
neurons, the observed neural state space is likely to contain within it multiple subpopulations
engaged in distinguishable computations. Requiring latent state models to preserve variance
across an entire dataset may obfuscate the role played by different populations of neurons,
in particular subpopulations with low firing rates.

We took a fundamentally different approach to analyze neural population data that ad-
dresses these shortcomings. In particular, we formulated a novel normative computational
principle (feedback controllability) and derived an objective function for a dimensionality
reduction method (FCCA) encoding this principle. This allowed us to directly identify sub-
spaces generated by the networked interactions of the observed neural activities implementing
that computational principle. As we showed, the FBC subspace was nearly orthogonal to
the subspace that maximized variance (i.e., PCA). This provides a concrete example that
methods that preserve variance across an entire data set (i.e., reconstruct the data) may miss
computationally important aspects of neural population dynamics. Additionally, as the FBC
subspaces had better decoding performance, this suggest that the FCCA objective maybe
a fruitful direction for brain-computer interface methodology. Furthermore, as the neural
dynamics matrix (A) encodes the influence of every neuron on the change of every other
neuron over time, it can be interpreted as the functional connectivity of the neurons [70].
While not the goal of the current work, analysis of functional connectivity associated with
different computations may provide insights into the networks of neurons that generate those
computations. This emphasizes the importance of continued methodological development for
accurate functional connectivity estimation [71,72]. As the subspaces identified by our meth-
ods are obtained from projections of the observed firing rates, rather than through latent
variable inference, the mapping between the observed neurons and the subspace is automat-
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ically obtained. This allowed us to identify sub-populations of neurons that generated FBC
vs. FFC subspaces which in turn had distinct firing rate profiles, functional properties, and
strengths of interactions.

Non-normality of neural circuits enables different dynamical regimes for dis-
tinct modes of control. We found that feedforward and feedback controllable subspaces
are distinguishable in neural population data due to the the non-normality of the underlying
dynamics. The work of Hennequin et al [48] suggests that non-normality arising from finely
tuned excitatory/inhibitory balance provides a mechanism for rapid amplification of firing
rates upon reach initiation and subsequently a rich set of transients for use in the synthesis of
movement. Our results significantly generalize this picture: instead of requiring fine-tuning,
high dimensional non-normal systems such as the brain generically contain subspaces with
distinct controllability properties. That is, as non-normality is a necessary consequence of
asymmetric synaptic connectivity implied by Dale’s Law, having subspaces with distinct
controllability properties may be an unavoidable feature of canonical microcircuits.

We found that FBC subspace dynamics exhibited strong rotations, while FFC subspaces
exhibited strong, transient amplifications. We showed that systems with stereotyped, purely
rotational dynamics maximize FBC, while feedforward controllability is maximized by FFC.
That is, in a high dimensional non-normal system like the brain with a mixture of am-
plification and rotational dynamics, the latter are more heavily expressed in the feedback
controllable subspace. Thus, not only are rotational dynamics consistent with a feedback
controller, as shown in [56], they may arise as a necessary consequence of optimization for
the stability of feedback control. This distinction between amplification for feedforward
control vs. rotations for feedback control provides a normative account of rotational dynam-
ics observed previously [25]. As described above, the population of single-units underlying
FBC had modest task-dependent firing rate modulation but complex dynamics, while the
population of single-units underlying FFC had large task-dependent firing rate modulation
but simple dynamics. Not only do these findings map onto the properties of L5 intra- and
extratelencephalic pyramidal neurons, respectively, they intuitively map onto the rotational
and amplification dynamics expressed at the population level that we found. Both the non-
normality of neural circuits due to Dales law and the distinguishing characteristics of L5
intra- and extratelencephalic neurons are ubiquitous across sensory, cognitive, and motor
cortical areas [63–65]. As such, there is every reason to believe that similar principles of
control will apply throughout cortex.

We speculate that the degree to which a given brain areas’ neural population dynamics
are feedforward vs. feedback controllable may depend on task demands. For example, in
sensory areas, it could be that when the task is easy (e.g., unambiguous stimuli), the need
for top-down feedback control is minimal. In such cases, the area (e.g., V1) may operate in a
more feedforward mode of control, in which the stimuli are the primary determinants of neu-
ral population dynamics. The transient amplification dynamics characteristic of feedforward
control may render sensory features distinguishable, as suggested previously [41]. Conversely,
when the task is difficult (e.g., ambiguous or otherwise distorted stimuli), neural population
dynamics may operate in a more feedback mode of control, where the neural population
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dynamics is driven by both the sensory stimuli as well as top-down signals. In such cases,
state feedback must be employed to steer neural population dynamics in real-time in the
presence of noisy neural activity and biophysical delays. The rotational dynamics character-
istic of FBC may underlie task-relevant processing. Indeed, a theory of sensory perception,
predictive coding, can be viewed as a special case of feedback control, in which the dynamics
of a lower-level sensory area are controlled to minimize the transmission of redundant infor-
mation. Understanding if and how the controllability of diverse cortical areas is modulated
by top down feedback processes [15, 73] and task demands presents an interesting direction
for future work for which our methodology can be deployed.

Furthermore, we have linked two modes of neural data analysis that heretofore have
remained disconnected: extraction of subspaces of neural population dynamics and char-
acterization of the functional properties of single neurons. As techniques advance to elu-
cidate the electrophysiological, molecular, and connectomic taxonomy of single neurons co-
registered with recordings of their dynamics, analysis frameworks that connect these two
levels of description will provide necessary insights into structure-function relationships. In
the long-term, this may advance understanding of disruptions of neural population dynam-
ics in the context of the properties of distinct neuronal populations, and thereby enable
treatment/control of brain disorders through targeted interventions. Together, these results
indicate that feedback control is a unifying theory of brain and behavior, and suggest it
maybe a general theory of neural population dynamics across the brain.

1.5 Proof of equivalence of FFC and FBC for stable,

normal A

In this section, we prove the equivalence of the solutions of the FFC (eq. 1.4) and FBC
objective functions (eq. 1.7) when system dynamics are stable and symmetric. We focus on
symmetric matrices as the requirement that dynamics be stable (i.e., all eigenvalues of the
dynamics A must have negative real part) essentially reduces the space of normal matrices
to that of symmetric matrices. We reproduce these objective functions for convenience:

CFFC : argmaxC log detCΠC⊤

CFBC : argminCTr(PQ)

We prove this theorem when the matrix P in the FBC objective function arises from the
canonical LQR loss function:

min
u

{
lim
T→∞

E
[

1

T

∫ T

0

x⊤x + u⊤u dt

]
, x(0) = x0, u ∈ L2[0,∞)

}
and not the variant given in eq. 1.10. When calculating FBC from data within FCCA,
we must use the latter LQR loss function as it maps onto acausal filtering, and therefore
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may be estimated from data. Recall from the discussion below eq. 1.8 that within the FFC
objective function, we assess controllability when the output/observation matrix C is used as
the input matrix for the regulator signal (i.e., we make the relabeling B⊤ → C. We further
work under the assumption that the input matrix B to the open loop system is equal to the
identity. The open loop dynamics of x(t) are then given by:

ẋ = Ax(t) + u(t) (1.12)

where u(t) has the same dimensionality as x(t), and is uncorrelated with the past of x(t) (i.e.
u(t) ⊥ x(τ), τ < t). Formally, u(t) represents the innovations process of x(t). The equations
for Q (corresponding to the Kalman Filter, eq. 1.5) and the equation for P (corresponding
to the LQR, eq. 1.6) reduce to the following:

AQ + QA + IN −QC⊤CQ = 0 (1.13)

AP + PA + IN − PCC⊤P = 0 (1.14)

where IN denotes the N ×N identity matrix.
We observe that under the stated assumptions, the Riccati equations for Q and P actually

coincide, and thus the FBC objective function reads Tr(Q2). We will show that both FFC
and FBC objective functions achieve local optima for some fixed projection dimension d
when the projection matrix C coincides with a projection onto the eigenspace spanned by
the d eigenvalues of A with largest real part, which we denote as Vd. In fact, in the case of
the FFC objective function, the eigenspace corresponds to a global optimum. Intuitively, in
the case of symmetric, stable, A, perturbations exponentially decay in all directions, and so
the maximum response variance is contained in the subspace with slowest decay.

For the FBC objective function, we are able to establish global optimality rigorously for
the 2D → 1D dimension reduction. The intuition for the slow eigenspace of A serving as a
(locally) optimal projection in this case is then given by the fact that state reconstruction
from past observations, the goal of the Kalman filter, will occur optimally using observations
that have maximal autocorrelations with future state dynamics. Similarly, for the LQR, for
a fixed rank input, the most variance will be suppressed by regulating within the subspace
with slowest relaxation dynamics.

We briefly outline the proof strategy. First, we will prove the optimality of Vd for the
FFC objective function in section S1.9.1 by showing that (i) Vd is an eigenvector of Π in
the case when A is symmetric and (ii) relying on the Ky Fan maximum principle. Then, in
section S1.9.2, we will prove that Vd is a critical point of the FBC objective function. The
proof relies on an iterative technique to solve the Riccati equation. These iterates form a
recursively defined sequence that provide increasingly more accurate approximations to the
FBC objective function that converge in the limit. Treating these iterative approximations
of the FBC objective function as a function of C, we show that Vd is a critical point of all
iterates, and thus in the limit, Vd is a critical point of the FBC objective function.
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S1.9.1 FFC Objective Function

Theorem 3 For B = IN , A = A⊤, A ∈ RN×N , with all eigenvalues of A distinct and
maxRe(λ(A)) < 0, the optimal solution for the feedforward controllability objective function
for projection dimension d coincides with the eigenspace spanned by the d eigenvalues with
largest real value.

Proof
Let Vd denote a matrix whose column space coincides with the eigenspace spanned by the

d eigenvalues of A with largest real part. We will first show that Vd solves the FFC objective
function:

argmaxC log detCΠC⊤ (1.15)

Π =

∫ ∞

0

dt eAtBB⊤eA
⊤t =

∫ ∞

0

dt e2At

Let A = UΛU⊤ denote the eigenvalue decomposition of A. Recall that since A = A⊤, U
is orthogonal. Then we can write:

Π = U

∫ ∞

0

dte2ΛtU⊤

=
1

2
UDU⊤

where D is a diagonal matrix with diagonal entries { 1
−λ1

, 1
−λ2

, ..., 1
−λN

}. We conclude that
the matrix Π has the same eigenbasis as A. Also, since all λj are real and negative, the
ordering of the eigenvalues is preserved (λi > λj implies − 1

λi
> − 1

λj
). That Vd solves 1.15

follows from the Ky Fan principle [74], which we restate for convenience:

Proposition 1 Ky Fan Maximum Principle
Let A be any square matrix, and let σ1 > σ2 > σ3 be its singular values. Then:

sup | detU1AU2| =
d∏

i=1

σi

where the supremeum is taken with respect to all unitary matrices U1, U2 of rank d.

We observe that the choice of U1 = U2 = Vd saturates the upper bound. □

S.1.9.2 FBC Objective Function

For the case of the FBC objective function, we show that projection matrices of rank d
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that align with the d slowest eigenmodes of A constitute local minima of the objective func-
tion. We rely on two simplifying features of the problem. First, the FBC objective function
is invariant to the choice of basis in the state space. We therefore work within the eigenbasis
of A, as within this basis, the system defined by eq. 1.12 decouples into n non-interacting
scalar dynamical systems. Additionally, we rely on the fact that the FBC objective function
is also invariant to coordinate transformations within the projected space. In other words,
the choice of coordinates in which we express y also makes no difference. Without loss of
generality then, we may treat the problem in a basis where A is diagonal with entries given
by its eigenvalues and C is an orthonormal projection matrix (i.e. CC⊤ = Id). A restate-
ment of the latter condition is that C belongs to the Steifel manifold of N × d matrices:
Ω ≡ {C ∈ RN×d|CC⊤ = Id}.

Theorem 4 For B = IN , A = A⊤, AN×N , with all eigenvalues of A distinct and
maxRe(λ(A)) < 0, the projection matrix onto the eigenspace spanned by the d eigenvalues
of A with largest real value constitutes a critical point of the LQG trace objective function
on Ω

Proof Explicitly calculating the gradient of the solution of the Riccati equation is analyt-
ically intractable for n > 1, and so we we will rely on the analysis of an iterative procedure
to solve the Riccati equation via Newton’s method, known as the Newton-Kleinmann (NK)
iterations [75]. These iterations are described in the following proposition:

Proposition 2 Consider the Riccati equation 0 = AQ + QA⊤ + BB⊤ − QC⊤CQ. Let
Qm,m = 1, 2, ... be the unique positive definite solution of the Lyapunov equation:

0 = AkQm + QmA
⊤
k + BB⊤ + Vk−1C

⊤CVk−1 (1.16)

where Ak = A − C⊤CVk−1, and where V0 is chosen such that A1 is a stable matrix (i.e.
all real parts of its eigenvalues are < 0). For two positive semidefinite matrices M,N , we
denote M ≥ N if the difference M −N remains positie semidefinite. Then:

1. Q ≤ Qm+1 ≤ Qm ≤ ..., k = 0, 1

2. limk→∞Qm = Q

Thus the Qm iteratively approach the solution of the Riccati equation from above. Since
in our case, the Riccati equations for P and Q coincide, an identical sequence Pk can be
constructed using analogous NK iterations that approaches P from above. From this, it
follows that limk→∞ Tr(QmPk) = limk→∞ Tr(Q2

m) = Tr(Q2). We then use the fact that in
addition to the Qm converging to Q, the sequence ∇CTr (Q2

m) converges to ∇CTr(Q2) as
k → ∞, where ∇C denotes the gradient with respect to C. This is rigorously established in
the following lemma, which is the multivariate generalization of Theorem 7.17 from [76]:
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Lemma 1 Suppose {fm} is a sequence of functions differentiable on an interval h ⊂ H,
where H is some finite-dimensional vector space, such that {fm(x0)} converges for some
point x0 ∈ h. If {∇fm(x0)} converges uniformly in h, then {fm} converges uniformly on I,
to a function f , and

∇f(x) = lim
m→∞

∇fm(x) x ∈ h

Here, the {fm} are the Newton-Kleinmann iterates Qm, and x0 corresponds to the C
matrix that projects onto the slow eigenspace of A. The NK iterates are known to converge
uniformly over an interval of possible C matrices (in fact any such C matrix for which there
exists a K such that A− CTCK is a stable matrix) [75].

We will calculate the gradient ∇CQm on Ω by explicitly calculating the directional deriva-
tives of Qm over a basis of the tangent space of Ω at Cslow. Any element Ψ belonging to the
tangent space at C ∈ Ω can be parameterized by the following [77]:

Ψ = CM + (IN − CC⊤)T

where M is skew symmetric and t is arbitrary. Let Cslow be the projection matrix onto the
slow eigenspace of A of dimension d. Since we work in the eigenbasis of A, Cslow =

[
Id 0

]
.

At this point, elements of the tangent space take on the particularly simple form

Ψ =
[
M T

]
where now M is a d×d skew symmetric matrix and T ∈ Rd×(N−d) is arbitrary. A basis for

the tangent space is provided by the set of matrices {Mij, Tkl, i = 2, ...d, j = 1, ..., i− 1, k =
1, ..., d, l = 1, ..., N − d} where Mij is a matrix with entry 1 at index (i, j) and −1 at index
(j, i) and zero otherwise, and Tkl is the matrix with entry 1 at index (k, l) and zero otherwise.
Denote by DΨQm the directional derivative of Qm along the direction of Ψ, viewing Qm as
a function of C (denoted Qm[C]):

DΨQm = lim
α→0

Qm[Cslow + αΨ] −Qm[Cslow]

α
(1.17)

Let Ψij,kl denote the tangent matrix
[
Mij Tkl

]
. Before calculating Qm(Cslow + αΨij,kl)

explicitly, we first observe that as long as the NK iterations are initialized with a diagonal
Q0, then the diagonal nature of C⊤

slowCslow ensures that all Qm will subsequently remain
diagonal matrices. In fact, it can be shown that limk→∞Qm = Q will also be diagonal, in

this case. We write A in block form as

[
Λ|| 0
0 Λ⊥

]
, and similarly Qm−1 =

[
Q|| 0
0 Q⊥

]
, where

Λ||,Q|| are d × d diagonal matrices defined on the image of Cslow and Λ⊥,Q⊥ are diagonal
matrices defined on the kernel of Cslow. We denote the individual diagonal elements of Λ||,Q||
as λi,Qi, i = 1, ..., d and of Λ⊥,Q⊥ as λi,Qi, i = d, ..., N − d. Then, equation 1.16 becomes:
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([
Λ|| 0
0 Λ⊥

]
−
[

(Id − α2M2
ij)Q|| (αTkl + α2M⊤

ijTkl)Q⊥
(αT⊤

kl + α2T⊤
klMij)Q|| α2T⊤

klTklV⊥

])
Qm[Cslow + Ψij,kl]

+ Qm[Cslow + Ψij,kl]

([
Λ|| 0
0 Λ⊥

]
−
[

Q||(Id − α2M2
ij) Q||(αTkl + α2M⊤

ijTkl)
V⊥(αT⊤

kl + α2T⊤
klMij) V⊥α

2T⊤
klTkl

])
+ IN +

[
Q||(Id − α2M2

ij)Q|| Q||(αTkl + α2M⊤
ijTkl)Q⊥

Q⊥(αT⊤
kl + α2T⊤

klMij)Q|| α2V⊥T
⊤
klTklV⊥

]
= 0 (1.18)

where we have used M⊤ = −M . The equivalent equation for Qm(Cslow) reads:

([
Λ|| 0
0 Λ⊥

]
−
[
Q|| 0
0 0

])
Qm[Cslow] + Qm[Cslow]

([
Λ|| 0
0 Λ⊥

]
−
[
Q|| 0
0 0

])
+ IN+ (1.19)[

Q2
|| 0

0 0

]
= 0 (1.20)

This latter equation is easily solved to yield:

Qm[Cslow] =

[
1
2

(
Id + Q2

||

) (
Q|| − Λ||

)−1
0

0 −1
2
Λ−1

⊥

]
To explicitly solve the former equation, we recall that the matrices Mij and Tkl have only

two and one nonzero terms, respectively. M2
ij contains two nonzero terms at index (i, i) and

(j, j). T⊤
klTkl contains one non-zero term at index (l, l). M⊤

ijTkl contains a single nonzero
term at (i, l) or (j, l) only if k = i or k = j, respectively. Accordingly, we distinguish between
where k = i or k = j (without loss of generality we may assume that k = j), and where
k ̸= i and k ̸= j.

In what follows, we will denote the (i, j) entry of Qm[Cslow + αΨij,kl] as qij.

1. Case 1: k = j In this case, careful inspection of eq. 1.18 reveals that it differs from
eq. 1.20 only within a 3 × 3 subsystem:

S11 S12 S13

S21 S22 S23

S31 S32 S33

 = 0
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Note that this matrix is symmetric, yielding 6 equations for 6 unknowns:

S11 = α2Q2
i + 2α2Qd+lqi,d+l + Q2

i + 2qii
(
−α2Qi + λi −Qi

)
+ 1

S12 = α2Qd+lqj,d+l − αQd+lqi,d+l + qij
(
−α2Qi + λi −Qi

)
+ qij

(
−α2Qj + λj −Qj

)
S13 = −α2QiQd+l + α2Qiqii + α2Qd+lqd+l − αQjqij+

qi,d+l

(
−α2Qd+l + λd+l

)
+ qi,d+l

(
−α2Qi + λi −Qi

)
S22 = α2Q2

j − 2αQd+lqj,d+l + Q2
j + 2qjj

(
−α2Qj + λj −Qj

)
+ 1

S23 = α2Qiqij + αQjQd+l − αQjqjj − αQd+lqd+l,d+l + qj,d+l

(
−α2Qd+l + λd+l

)
+

qj,d+l

(
−α2Qj + λj −Qj

)
S33 = 2α2Qiqi,d+l + α2Q2

d+l − 2αQjqj,d+l + 2qd+l,d+l

(
−α2Qd+l + λd+l

)
+ 1

Direct solution is still infeasible, but noting our interest is in the behavior of solutions
as α → 0, and only terms of O(α) will survive in the limit in eq. 1.17, we consider
solving these equations perturbatively. That is, we express each qij in a power series in

α: qij = q
(0)
ij +q

(1)
ij α+O(α2). One obtains each coefficient in the expansion by plugging

this form into the above matrix and setting all terms of the corresponding order in
α to 0. The lowest order term, q

(0)
ij , coincides with the solution of the unperturbed

system, eq. 1.20. Plugging in the expansion into the 3× 3 subsystem above, as well as
the solution of the unperturbed system, and collecting all coefficients proportional to
α yields the following system of equations:

S
(1)
11 S(1)

12 S(1)
13

S(1)
21 S(1)

22 S(1)
23

S(1)
31 S(1)

32 S(1)
33

 = 0

S(1)
11 = 2λiq

(1)
ii − 2Qiq

(1)
ii

S(1)
12 = λiq

(1)
ij + λjq

(1)
ij −Qiq

(1)
ij −Qjq

(1)
ij

S(1)
13 = λiq

(1)
i,d+l + λd+lq

(1)
i,d+l −Qiq

(1)
i,d+l

S(1)
22 = 2λjq

(1)
jj − 2Qjq

(1)
jj

S(1)
23 = λjq

(1)
j,d+l + λd+lq

(1)
j,d+l + QjQd+l −Qjq

(1)
j,d+l −

Qj

(
Q2

j + 1
)

−2λj + 2Qj

+
Qd+l

2λd+l

S(1)
33 = 2λd+lq

(1)
d+l
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Solving this system yields the following solutions for the q
(1)
ij :

q
(1)
ii = 0

q
(1)
jj = 0

q
(1)
d+l,d+l = 0

q
(1)
ij = 0

q
(1)
i,d+l = 0

q
(1)
j,d+l =

−2λjλd+lQjQd+l − λjQd+l − λd+lQ3
j + 2λd+lQ2

jQd+l − λd+lQj + QjQd+l

2λ2
jλd+l + 2λjλ2

d+l − 4λjλd+lQj − 2λ2
d+lQj + 2λd+lQ2

j

2. Case 2 : k ̸= i, k ̸= j. In this case, we must again consider the 3 × 3 subsystem
indexed by i, j, d+ l, but since MijTkl is a matrix of all zeros, the expression simplifies
considerably:

S11 S12 S13

S21 S22 S23

S31 S32 S33

 = 0

S11 = α2Q2
i + Q2

i + 2qi
(
−α2Qi + λi −Qi

)
+ 1

S12 = qij
(
−α2Qi + λi −Qi

)
+ qij

(
−α2Qj + λj −Qj

)
S13 = λd+lqi,d+l + qi,d+l

(
−α2Qi + λi −Qi

)
S22α

2Q2
j + Q2

j + 2qj
(
−α2Qj + λj −Qj

)
+ 1

S23 = λd+lqj,d+l + qj,d+l

(
−α2Qj + λj −Qj

)
S33 = 2λd+lqd+l + 1

Plugging in the power series expansion qij = q
(0)
ij + q

(1)
ij α + O(α2), one finds the lowest

order terms in α within this system of equations occurs at O(α2), and thus to O(α),
the solution of Qm[Cslow + αΨij,kl] coincides with Qm[Cslow].

To complete the proof of Theorem 3, we must calculate the following quantity:

DΨij,kl
Tr
(
Q2

m

)
= lim

α→0

Tr(Qm[Cslow+αΨij,kl
]2) − Tr(Qm[Cslow]2)

α

From the case-wise analysis above, we see that the only matrix element of Qm that differs
between Qm[Cslow+αΨij,kl

] and Qm[Cslow] to O(α) is an off-diagonal term (q
(1)
j,d+l). However,

this term does not contribute to the trace of Q2
m at O(α). Thus, we conclude that along

a complete basis for the tangent space of Ω at Cslow, DΨij,kl
Tr (Q2

m) = 0. From this, we
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conclude that ∇CTr(Qm[Cslow]2) = 0 on Ω. The proof of Theorem 3 follows from application
of Lemma 1. □

We again note that the FCCA objective function differs from the LQG trace by the
factor of Π and Π−1 in the regulator Riccati equation. The presence of these re-weighting
factors lead to a small, but non-zero subspace angle between PCA and FCCA even when A
is symmetric (as we report in Figure 1.4c).



54

Chapter 2

Maximum Entropy Random Graph
Models for Large Scale Connectomics

2.1 Introduction

A grand challenge in neuroscience is link the structure of the brain, as specified by the con-
nectivity between neurons, to its functionality. As modern connectomics yields increasingly
complete descriptions of the microscale connectivity between networks of neurons, a key
open avenue for research remains the development of computational tools that can leverage
this data to uncover the underlying specific wiring principles that shape the dynamics and
functionality of these networks.

Obtaining insight into why observed neural circuits are wired in the way they are requires
considering their relation to the broader space of possible patterns of connectivity between
neurons. This broader “network morphospace” [8] is bounded by physical and biological
constraints that can be conceptualized as operating in a “top-down”, or global, and “bottom-
up”, or local fashion. Examples of the former include the fact that brains are constrained
by the physical volume they inhabit (i.e., they are spatially embedded networks [78]), and
that the construction of long range axonal connections incurs significant energetic cost. An
example of the latter type of constraint is the reproducible observation of cell-type dependent
connection probabilities between genetically defined cell types [79,80]. Within the bounds of
these constraints, neural circuits must further be wired together in a manner which enables
them to carry out their respective computational functions. This requirement constitutes an
additional “top-down” constraint on the space of possible networks.

Given these set of global and local constraints on neural connectivity, the space of possible
network configuration is still vast. Locating observed connectomes within this space provides
direct insight into the underlying wiring principles of neural circuits. Indeed, a major thrust
of prior work in connectomics has been to assess the degree to which observed patterns of
connectivity at various spatial scales are emergent and potentially selected for, as opposed to
being expected consequences of the local constraints on the morphospace [81–83]. With re-



CHAPTER 2. MAXIMUM ENTROPY RANDOM GRAPH MODELS FOR LARGE
SCALE CONNECTOMICS 55

spect to top down influences, the characteristics of empirically observed networks relative to
the potential alternatives contained within the morphospace reveals the extent to which bi-
ology has balanced competing requirements. To this end, connectomes across diverse species
have been found to tradeoff between wiring cost with communication efficiency [84]. Finally,
we argue that the specific connectivity patterns exhibited by real connectomes relative to a
particular equivalence class of networks reveals mechanism, i.e. how biology has balanced
the particular competing bottom up and top down constraints under consideration.

The idea of a constrained network morphospace is closely related to well known issues
surrounding parameter degeneracy in systems biology models [85]. The most well studied
example of this in phenomena is the crab STG system, in which multiple circuit configura-
tions are a priori consistent with the sequence of neural activity that gives rise to the pyloric
rhythm [86]. Parameter degeneracy is also a well known phenomenon in artificial recurrent
neural networks [87], which are increasingly used as mechanistic models of neural computa-
tion. Developing methods to explore the set of functionally equivalent network architectures
is therefore a problem with broad importance in computational and systems neuroscience.

Connectomes can be modelled as weighted, directed graphs in which edges represent the
presence and strength of synaptic connections between neurons. The constrained network
morphospace, which we will subsequently refer to as a null model, can be modelled using
tools borrowed from statistical physics [88]. Thermodynamic systems are subject to a set of
macroscopic constraints on system properties such as energy and particle number. Subject to
these constraints, a particular set of microscopic configurations are possible, and their occur-
rence at equilibrium is governed by a probability distribution that satisfies the macroscopic
constraints but is otherwise maximally random (or maximum entropy). These constrained
maximum entropy distributions have found wide application across the sciences, and pro-
vide a means of parameterizing and sampling from null models. However, working with
these distributions is not without difficulty, as their normalization constants often cannot be
explicitly calculated. This challenge has impeded connectomic analysis, as thus far studies
have only considered the consequences of highly local constraints such as the network degree
distribution and pairwise distances between neurons. However, as articulated above, neural
circuits are shaped under the influence of both local constraints and global, functional con-
straints. In [89], the authors address the challenge of fitting maximum entropy probability
distributions including non-trivial, global constraints to computational neuroscience models
by maximizing entropy within a restricted, tractable set of distributions. However, the par-
ticular class of distributions employed (normalizing flows), are only applicable to continuous
parameter spaces, and thus cannot be applied as models of distributions over graphs. A key
motivation of this work is to therefore develop computational methods to enable
inference and sampling from maximum entropy models with global constraints
on network function.

The particular functions carried out by neural circuits diverse and difficult to directly
quantify, and thus some simplifying assumptions are clearly required to make progress. As
in the previous chapter, we will assume linear dynamics for our system. In this regime, it is
possible to assess the controllbility measures developed in the previous chapter, this time on
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the ground truth connectivity between neurons. We also consider the related, but distinct,
notion of signal propagation between nodes of the connectome via diffusion. This model has
been widely used to interrogate the structure of connectivity between neurons [84]. We apply
our methods to the recently released connectome of the Drosophila hemibrain connectome [1]
(Fig. 2.1). This dataset contains the complete connectivity between 21,737 neurons, com-
prising > 25 million synapses and 61 brain regions (regions of interest, ROIs). Our pre-
liminary results, which compare the hemibrain connectome to structurally constrained null
models, reveal a great deal of heterogeneity across ROIs in the ability of pairwise connectivity
rules between neurons to account for controllability and diffusivity in those ROIs.

a b

Figure 2.1: (a) Overview of the Drosophila brain and the region mapped within the hemi-
brain connectome. Reproduced from [1]. (b) Weighted adjacency matrix of the Fan Shaped
Body ROI ordered by excitatory (E) and inhibitory (I) neurons.

2.2 Sampling and Inference within Structurally

Constrained Null Models.

In this section, we detail our approach to fitting from null models for networks that encode
bottom up structural constraints. These constraints are operationalized as terms in an
“energy function”, Hθ(G) that defines a maximum entropy probability distribution over
random graphs G [88]:

P (G) =
1

Z
exp(Hθ(G))

We consider the most general models of exponential random graphs within which infer-
ence remains tractable (i.e., the partition function Z can be exactly calculated), including
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constraints on the empirical degree distribution, average connectivity between biologically
defined cell types, and average weighted connectivity between cell types. In contrast to
previous use of exponential random graphs in connectomics (schneidermann ref, null mod-
els for network neuroscience), we include constraints on both the binary adjacency matrix
of the connectome as well as the weights along edges. In the Drosophila connectome, the
strength of connectivity between neurons is determined primarily by the number of synapses
formed between two neurons [1]. We relax this ordinal edge weight to a continuous valued
edge weight for ease of inference. The energy function of our structurally constrained model
reads:

Hθ(G) = Hθ(A,W ) = Hconfiguration(A) + HrSBM(A) + HwSBM(W )

Hconfiguration(A) =
∑
i<j

(αi + βj)aij + (αj + βi)aji

HrSBM(A) =
∑
i<j

ωgigjaij(1 − aji) + ωgjgiaji(1 − aij) + ω↔
gigj

aijaji

HwSBM(W,µ) =
∑
i ̸=j

µgigjwij

where the graph G is represented by its binary and weighted adjacency matrices (A and
W ). Each entry of these matrices is denoted aij and wij, respectively. The parameters θ of
the model are (αi, βi, ωgi,gj , ω

↔
gi,gj

, µgi,gj) for i, j = 1...N , where N is the number of nodes in
the network. These parameters constrain, respectively, the in degree, our degree, average
undirectional connectivity between types, average bidirectional connectivity between types,
and average weighted connectivivity between types.

The probability distribution over (A,W ) induced by the above energy function factorizes
over dyads (i.e. the pair of edges pointing from node i to node j and node j to node i). This
fact renders the partition function analytically tractable:

Z =
∏
(i,j)

Z(i,j)

Z(i,j) = 1 +

∫
dwij exp

(
(αi + βj) + ωgigj − µgigjwij

)
+∫

dwji exp
(
(αj + βi) + ωgjgi − µgjgiwji

)
+∫

dwijdwji exp
(

(αi + βj) + (αj + βi) + ω↔
gigj

− µgigjwij − µgjgiwji

)
= 1 +

1

µgigj

exp
(
(αi + βj) + ωgigj

)
+

1

µgjgi

exp
(
(αj + βi) + ωgjgi

)
+

1

µgigjµgjgi

exp
(

(αi + βj) + (αj + βi) + ω↔
gigj

)
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where (i, j) refers to the dyad of edges between node i and node j. The energy function
of our model is linear in the sufficient statistics (i,e., the constraints): Hθ(G) =

∑
i θici(G).

For such a model, the gradient of the log likelihood of takes on a particularly intuitive form:

∂ logL
∂θi

= ⟨ti(G)⟩data − ⟨ti(G)⟩θ

In other words, we update model parameters until the expected value of the sufficient
statistics under the model (⟨ti(G)⟩θ) match the observed values of the sufficient statistics
under the data (⟨ti(G)⟩data). Analytic calculation of the expectation values of each ⟨ti(G)⟩
requires the values of each ⟨aij⟩, ⟨aijaji⟩, and ⟨wij⟩. These values can again be derived
exactly:

⟨aij⟩ =

1

Z(i,j)

(
1

µgigjµgjgi

exp
(

(αi + βj) + (αj + βi) + ω↔
gigj

)
+

1

µgigj

exp
(
(αi + βj) + ωgigj

))
⟨aijaji⟩ =

1

Z(i,j)

1

µgigjµgjgi

exp
(

(αi + βj) + (αj + βi) + ω↔
gigj

)
⟨wij⟩ =

1

Z(i,j)

(
1

µ2
gigj

µgjgi

exp
(

(αi + βj) + (αj + βi) + ω↔
gigj

)
+

1

µ2
gigj

exp
(
αi + βj + ωgigj

))

With these quantities in hand, we can fit the structurally constrained model to the
connectome using exact maximum likelihood. Due to the linearity of the energy function in
its sufficient statistics, the optimization is guaranteed to be convex [90]. To enable rapid and
reliable convergence, we use accelerated gradient descent with a backtracking line search.

Sampling

To sample from fitted models, we draw samples first from the marginal distribution of the
binary adjacency matrix, and then the conditional distribution of (wji, wij) given (aij, aji).

First, we derive the marginal distribution p(aij, aji). This is a vector of four probabilities,
one for each possible outcome: (0, 0), (1, 0), (0, 1), (1, ), and can essentially be read off from
the partition function above:
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p(aij, aji) =

∫
dwijdwjiPij(aij, aji, wij, wji)

=
1

Z(i,j)

(
(1 − δaij)(1 − δaji) +

1

µgigj

exp
(

(αi + βj) + ωgigj

)
δaij(1 − δaji)+

1

µgjgi

exp
(
(αj + βi) + ωgjgi

)
+

1

µgigjµgjgi

exp
(

(αi + βj) + (αj + βi) +
1

2
ω↔
gigj

)
δaijδaji

)
The conditional distribution is then the ratio of the joint and marginal distributions for

each binary dyad outcome. We notice that these essentially reduce to the corresponding
exponential distributions:

p(wij, wji|aij = 1, aji = 0) = δ(wij)δ(wji)

p(wij, wji|aij = 1, aji = 0) = µgi,gj exp(−µgigjwij)δ(wji)

p(wij, wji|aij = 0, aji = 1) = µgj ,gi exp(−µgjgiwji)δ(wij)

p(wij, wji|aij = 1, aji = 1) = µgj ,giµgi,gj exp(−µgigjwij − µgj ,giwji)
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Preliminary Results
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Figure 2.2: Box plots (median ± IQR) of the aggregated percent error in prediction of the
frequency of all directed 3 node motifs across model resolution and ROI.

At the time of writing this thesis, I had not yet fully implemented the machinery described
above. Thus, the results presented below are derived from the ergm R package [91]. Inference
was performed using the pseudolikelihood approach, which is inexact for energy functions
that contain the bidirectional constrain imposed by ω↔.

We considered models that constrained the average (unidirectional and bidrectional) con-
nectivity between cell types, exploring a hierarchy of resolutions in cell typing categorization.
At the coarses resolution, we constrained just the overall edge density (i.e. no type, denoted
D), followed by the typing according to excitatory vs. inhibitory cell type (E/I), then the
specific neurotransmitter expression
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Figure 2.3: Box Plots (median ± 95th CI) of the subspace angle between the leading eigenvector
of the controllability Gramian of the empirical network and the model derived networks. Angles
are aggregated across ROIs for each model.

(NT), the cell body fiber cluster a neuron’s soma resides in (CBF), and finally finer reso-
lutions that considered combinations of these features (EI-CBF, NT-CBF). These models
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resulted in distributions over directed, weighted graphs, with edge signs determined by neu-
rotransmitter expression. As our interest was in determining how well these models which
add constraints at various levels of resolution could account for the controllability of the
network, we considered two measures of function - linear controllability and information
diffusion. We consider the controllability of network dynamics given particular choices of in-
put region of interest (ROI) and controlled ROI. Within this framework, we consider simple
linear dynamics for neuronal firing rates: ẋ = −Ax + Bu, where A is the adjacency matrix
of the controlled ROI, B is a rank 1 matrix encoding the connectivity from the input ROI
to the controlled ROI. The single neurons that are most energetically easy to control are
determined by the entries of the eigenvectors corresponding to the largest eigenvalues of the
controllability Gramian. Information diffusion, which relates to controllability as it mea-
sures the efficacy by which input signals can propagate across the network [92], is quantified
by the spectral properties of the (weighted, directed) graph Laplacian, L = D − A, where
D is a diagonal matrix with weighted node degrees along the diagonal. In particular, the
eigenvalues of L with smallest non-zero real part probe the slowest time scales of diffusion,
and thereby the properties of large scale connectivity within the network.

We first determined the degree to which models with pairwise constraints could explain
the frequency of all observed directed three node motifs (Fig. 2.2). We measured the
percent error between the count of empirically observed motifs and the average count of
motifs across 1000 graph samples from each distribution.
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Figure 2.4: Difference between the empirical and NT-CBF model derived CDF of graph Laplacian
eigenvalues across ROIs.

Across 4 ROIs from the Drosophila central complex (Fan-Shaped Body (FB), Proto-
Cerebral Bridge (PB), Ellipsoid Body (EB), and the Noduli (NO)), we observed that models
that incorporated cell type specific connectivity significantly outperformed the baseline den-
sity constrained model (purple bars vs. others, Mann-Whitney U test, p < 10−5, n = 1000).
The error in 3 node motif reconstruction saturated at the cell body fiber level of resolution
(brown bars). Furthermore, there were ROI dependent effects, with NO and PB exhibiting
singificantly higher error across all models considered, indicating the presence of higher-order
statistical dependencies between edges in these regions. Next, we measured how well pair-
wise constrained models could reproduce network controllability. We compared the angles
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between the eigenvectors corresponding to the dominant controllability Gramian eigenvalues
between the empirical network and the ensemble average from each model. There was a sig-
nificant mismatch between empirical and model predicted eigenvectors (> π/4 median angle
across all models and all combinations of input/controlled ROIs), with the baseline density
model performing worst (leftmost bar). Additionally, there was substantial heterogeneity in
error across combinations of controlled and input ROIs, as evidenced by the large spread
in all boxplots in Figure 2.3. The capacity of pairwise models to explain third order net-
work structure, which depends purely on mesoscale connectivity statistics, but not the most
controllable directions, and therefore populations of neurons, suggested that these models
failed to capture the macroscale organization of connectivity and edge weights. To test this
hypothesis, we finally compared the ability of pairwise models to recapitulate the diffusion
Laplacian spectrum. In Figure 2.4, we plot the CDF of the difference (∆-CDF) between
the empirical spectral density and the NT-CBF model spectral density across ROIs. In line
with our hypothesis, we found pairwise models underestimated the density in the lower tail
of the distribution (log eigenvalues < 4), reflected in the ∆-CDF being > 0 across ROIs.
This effect was particularly pronounced within FB and PB. In sum, our results indicate that
connectivity is structured with respect to genetically specified cell types in Drosophila, but
that global network function relies on emergent structure beyond these pairwise interactions.

2.3 Sampling and Inference within Functionally

Constrained Null Models

We now describe our strategy for incorporating top-down, functional constraints on our
random graph ensembles. As a specific example, we discuss additions to the energy function
dervied from the linear controllability Gramian, but the approach described below does not
rely on this specific choice. We envisage the incoporation of top-down functional contraints to
be a general tool to assay the impact of hypothesized computations on the possible network
morphospace.

The energy function for our problem now reads:

Hθ(G) = Hθ(A,W ) = Hconfiguration(A) + HrSBM(A) + HwSBM(W ) + γ log det ΠC

where ΠC is the controllablity Gramian, defined with particular choices of input ROIs
serving as the “controller” for a particular output ROI. Any global functional measure neces-
sarily couples all degrees of freedom in the network to each other. In this context, calculation
of normalization constants is rendered intractable, and we must rely on MCMC techniques.
It is vitally important that the associated MCMC chains mix. The failure of the ergm pack-
age to reliably fit models with 3 node motif terms suggests that relying on naive (random
walk) Metropolis Hastings is insufficient. Recent work has shown that it is possible to dra-
matically improve upon the efficiency of Metropolis Hastings in discrete spaces by addressing
the following shortcomings of Metropolis-Hastings:
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1. Naive MH is slow because most proposal steps are likely to be rejected.

2. Naive MH is slow because all proposals are local perturbations to the current state
(e.g. they differ by a single edge swap or a single spin flip).

In continuous state spaces, both issues are addressed by the use of Hamiltonian Monte
Carlo, Langevin sampling, or some combination thereof [93]. Our configuration space has
support over both a continuous valued random variable (edge weights) and a discrete valued
random variable (binary adjacency). In discrete state spaces, analogues of Langevin sam-
pling have recently been developed for the case when the energy function of the model is
differentiable [94,95]. These algorithms form a key component of our approach.

The maximum entropy distributions described above enforce “soft constraints”, referring
to the fact that the prescribed values of the sufficient statistics {Ti(G)} hold only on average.
Alternatively, “hard constrained” ensembles may be considered, though these are infeasible
to sample from directlty in high dimensions as one cannot use standard MCMC approaches.
Nonetheless, soft-constrained ensembles are known to have certain degeneracy issues [96].
Since constraints are forced to hold only on average, it may be that the support of the
distribution lies on nearly disconnected clusters of the configuration space. While the correct
value of sufficient statistics is obtained on average, samples from the model will almost surely
belong to one of these clusters, whose properties may differ strongly from the mean. An
example of this phenomena is provided the triangular model, which constrains the frequency
of directed 3-cycles within the enesemble. With no further constraints, typical samples from
this ensemble will contain either almost no directed cycles or a pathologically large number
of directed cycles ( [97]).

Interestingly, solutions to this degeneracy problem, which also can also impede MCMC
mixing as they give rise to disconnected high probability regions in configuration space, rely
on restricting the support of the probability distribution [96,98,99] . One role played by the
local, tractable constraints is then to achieve this narrowing of support by requiring graphs
to adhere closely to the observed statistics of connectivity between cell types.

To this end, we consider the use of the Gaussian ensemble (not to be confused with a
Gaussian distribution), a thermodynamic ensemble that interpolates cleanly between the
microcanonical (hard-constrained) and canonical (soft-constrained) ensembles [100]. In a
traditional statistical mechanical setting, the microcanonical ensemble describes a closed
system with fixed energy (hence the sufficient statistics take on exactly fixed values). The
canonical ensemble describes a system coupled to an infinitely large heat bath. While the
bath and the ensemble as a whole have fixed energy, the energy of the system is allowed to
fluctuate by interaction with the bath to a degree set by the temperature (or more generally,
by a set of thermodynamic parameters analogous to the θi). Conceptually, interpolating
between the canonical and microcanonical ensembles therefore involves varying the size of
the bath, with the latter ensemble corresponding to vanishing thermal bath. Operationally,
the probability of a system state in the Gaussian ensemble is distributed according to the
P (G) ∝ exp(−a(H(G) − Et)

2) with Et a fixed constant and the value of a controlling
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the interpolation between canonical and microcanonical ensembles (a → 0 limits to the
canonical ensemble, while a → ∞ limits to the microcanonical ensemble). Alternatively, one
may consider separate constraints on both the mean and variance of the desired sufficient
statistic, which leads to a slightly different ensemble [101].

Our motivation for considering these generalized canonical ensembles is to provide a flex-
ible “reference” measure as a basis for the additional, global functional constraints. There
are numerous works suggesting that restricting the support of exponential family distribu-
tions significantly alleviates barriers to inference [96,98,99]. Our use of low-level, biologically
interpretable constraints restricts the support of distribution on graphs to a space that bio-
logically could plausibly explore given our observations of real connnectomes. The ability to
tune between canonical and microcanonical ensembles allows one to tune the scale of flucta-
tions away from the observed connectivity statistics, while providing a means of incorporating
approximate sampling from microcanonical ensembles into standard MCMC pipelines.

Gradient-Based acceleration of Monte Carlo sampling in discrete
spaces

Recalling the gradient of the log likelihood for an exponential random graph model:

∂ logL
∂θi

= ⟨ti(G)⟩data − ⟨ti(G)⟩θ

Inference requires accurate estimates of ⟨ti(G)⟩θ, which in the present case must be
obtained via MCMC. In this section, we illustrate why incorporating information about the
gradient of the energy function can speedup Monte Carlo simulation in the simplified context
of binary random variable models. First, fixing some notation, let G again denote the random
variable of interest and G its configuration space. Let Gi denote the ith coordinate of G, and
p(i|¬i) the conditional distribution of Gi given Gj, j ̸= i.

Consider Gibbs sampling, a canonical MCMC algorithm that proposes sequentially up-
dating the ith degree of freedom in the configuration space according the conditional prob-
ability distributions p(i|¬i). Often, for most i, most probability mass in the distribution
p(i|¬i) will be concentrated around the current state of i. Thus, most proposed changes of
state will be likely to be rejected, wasting computational effort. Rather than sequentially
flipping (or randomly in the case of the random walk Metropolis Hastings), we can consider
a particular proposal distribution q(G′|G) over configurations that has high probability mass
on states that are likely to change during the Monte Carlo step. It can be shown that an
optimal tradeoff between these two goals that only uses local information is given by:

q(G′|G) = exp

(
1

2
(H(G′) −H(G))

)
1|G−G′|=1
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where 1() is the indicator function. For many problems of interest, the difference H(G′)−
H(G) can be approximated via ∇H(G), which is much more efficient to calculate. This
proposal distribution underlies the Gibbs with Gradient (GWG) algorithm [94].

In continuous state spaces, using gradient information to accelerate MCMC chains by
biasing moves in the directions of large changes in the energy is the motivation for Langevin
Monte Carlo (LMC). Letting p(X), X ∈ Rd be a probability distribution from which we wish
to draw samples, the LMC algorithm runs the dynamics:

Ẋ = ∇X log p + dWt (2.1)

where dWt is a Wiener process on Rd. The stationary solution to this stochastic differ-
ential equation then yields samples from p(X). LMC may be derived by noting that the
gradient of the Kullback-Liebler divergence between a distribution q and the target distri-
bution p with respect to q is given by:

∂qDKL(q; p) = ∇X · [log p(x)q(x)] − ∆q(x)

This can be used to define a gradient flow over the space of probability distributions:

∂q

∂t
= ∇X · [log p(x)q(x)] − ∆q(x) (2.2)

Langevin dynamics then result by observing that eq. 2.2 is a Fokker-Plank eqution for
which the particle level trajectories are defined by eq. 2.1.

The key obstacle to implementing Langevin dynamics over discrete configuration spaces
is the lack of a well defined gradient ∇X . Nevertheless, it is possible to derive an analogous
expression for ∂qDKL(q; p) over discrete state spaces. Using this to define a gradient flow
over probability distributions over discrete spaces, and subsequently deriving a particle level
realization yields the Discrete Langevin Monte Carlo (DLMC) algorithm [95]. The GWG
algorithm can be seen to be a special case of DLMC, the key difference being that in DLMC,
changes may be proposed to states at a larger Hamming distance from the current state [95].

In the plot below, we show the effective sample size (over 50000 MC steps) associated
with sampling from a stochastic block model via different sampling techniques:
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Figure 2.5: Effective Sample Size over 50000 MC steps associated with sampling from a 100
node stochastic block model via different sampling algorithms.

We observe that DLMC is able to provide a dramatically higher effective sample size
as compared to traditional sampling methods (Gibbs, Random Walk Metropolis Hastings).
The DLMC algorithm therefore is a promising approach to performing inference within
functionally constrained null models.

Testing for Convergence of MCMC and Importance Weighting via
Stein Divergences

While MCMC is asymptotically unbiased, mixing may take a prohibitively long time in high
dimensions even when using gradient based proposal distributions. Furthermore, actually
assessing its convergence to the desired distribution is challenging. This raises a challenge
for MCMC based MLE - how can we determine whether our Markov chain has run long
enough to yield a good estimate of ⟨Hθ⟩p, and therefore the gradient of the likelihood?

A solution to this issue is provided by the Stein discrepancy [102]. The Stein discrepancy
is a type of integral probability metric (IPM). These metrics between probability distribution
take the following form:

IPM(p, q) = sup
f∈F

[Eqf − Epf ] (2.3)



CHAPTER 2. MAXIMUM ENTROPY RANDOM GRAPH MODELS FOR LARGE
SCALE CONNECTOMICS 67

where F is a suitably rich class of test functions. The Stein discrepancy is an IPM
that may be computed when expectations under p are unavailable due to, for example,
intractability of its normalization constant. The function class F is chosen to be one that
satisfies Stein’s identity ∀f ∈ F :

EpAf = 0

where A is known as a Stein operator. There exist many techniques for constructing
Stein operators [102]. One choice involves the use of the score function of the distribution,
∇x log p:

Af = ∇x log p(x)f(x) + ∇xf(x) (2.4)

Plugging eq. 2.4 into eq. 2.3, one obtains the Stein discrepancy:

D(q, p) = sup
f∈F

Eq [∇x log p(x) + ∇xf(x)]

As the score function does not depend on the normalization constant, the Stein discrep-
ancy may be calculated given just access to the energy function of p and samples from q. The
supremum over F may be obtained in two ways. If we take F to be a unit norm Reproducing
Kernel Hilbert Space (RKHS) with associated kernel k, then the Stein discrepancy actually
takes on a closed form:

D(q, p) = Ex,x′∼q

[
sp(x)⊤k(x, x′)sp(x

′) + sp(x)⊤∇xk(x, x′)+

∇x′k(x, x′)⊤sp(x
′) + Tr∇x∇x′k(x, x′)

]
where sp(x) = ∇x log p is the score function of p. We refer to this form of the Stein

discrepancy as the Kernel Stein Discrepancy (KSD).
The above discrepancy is only applicable to continuous valued random variables due to

the use of gradients with respect to the random variables. However, we recover computable
Stein discrepancies for binary random variables if we replace the gradient ∇xi

with the
inversion operator: ∆xi

f(x) = f(x1, x2, ...¬xi, ..., xn) [103]. In Figure 2.6a, we verify the
ability of the Stein discrepancy to detect convergence when samples have been drawn from
a degree corrected stochastic block model (H(G) = Hconfiguration + HrSBM) given access only
to the energy functions of models. Specifically, we draw 1000 exact samples from a target
model over 10 nodes with parameters θ0 and evaluate the Stein discrepancy between the
empirical distribution defined by the samples and a set of distributions with parameters θi
linearly interpolated between θ0 and a different, randomly initialized parameter vector θ1.
We observe that the log KSD is sharply sensitive to deviations of the energy function from
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θ0, spanning over 30 orders of magnitude as the energy functions are interpolated between θ0
and θ1. This suggests that the Stein discrepancy is a promising tool for assessing convergence
of samples generated by MCMC to a target distribution of interest.

In addition to measuring sample quality without a need to calculate the normalization
constant, the Stein discrepancy can also be used as a black box importance sampler [104].
Consider a set of samples {xi} generated from any mechanism (e.g., an MCMC chain run for
a finite amount of time). In general, an estimate of ⟨Hθ⟩ from these samples will be biased.
This bias will be reflected in the Stein discrepancy.

One can then use the Stein discrepancy to obtain a set of importance weights to improve
the accuracy of the ensemble average by solving a quadratic program:

wi = argmin
(
w⊤D(q, p)w,

∑
wi = 1, wi ≥ 0

)
In Figure 2.6b, we plot the improvement in subspace angle between a DLMC estimated

gradient of the degree corrected sochastic block model over 10 nodes and that obtained from
importance weighting the MCMC samples via minimizing the KSD. The plot is taken over 10
repetitions of MCMC. We observe that the KSD importance weighting is able to consistently
improve the estimate of the gradient direction, across all reptitions.

a b

Figure 2.6: (a) Plot of the log KSD between samples initialized from a target model as a function
of the normalized, linear distance in parameter space away from the target model. (b) Boxplot
(median ± 95 CI) of the difference in alignment with the ground truth gradient between a DLMC
estimated gradient and a gradient estimated from KSD derived importance weights.
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Overall Proposed Algorithm

Given functional measure f(G), local sufficient statistics ti, their empirically observed values
f ∗, t∗i , construct the loss function:

L =
〈

(f(G) − f ∗) +
∑
i

(ti(G) − t∗i )
〉
θ

(2.5)

Until convergence,

1. Initialize exponential random graph parameters θ randomly.

2. Draw samples using the following Block-Gibbs sampling algorithm:

a) Conditional on the weights, update the binary adjacency adjacency matrix using
DLMC.

b) Conditional on the binary adjacency pattern, update weights using Hamiltonian
Monte Carlo.

The MCMC is run until the KSD achieves a pre-defined threshold.

3. Calculate importance weights for MCMC samples via KSD minimization.

4. Update θ via gradient descent

Implementation of this algorithm and application to the Drosophila connectome is the
focus of ongoing work at the time of writing this thesis.



70

Chapter 3

Numerical Characterization of
Support Recovery in Sparse
Regression with Correlated Design

3.1 Introduction

While connectomics provides an exciting opportunity to probe the exact, anatomical connec-
tivity between neurons, construction of these datasets remains an expensive and laborious
process that is limited to small model organisms or localized spatial scales [105]. A long-
standing alternative approach to understanding how the brain is wired together has been to
extract functional or effective connectivity from distributed neural activity. The functional
connectivity between neurons or populations of neurons encodes the statistical dependencies
between firing activity. The intepretability of this connectivity depends on the accuracy
of the underlying statistical inference process used to derive adjacency matrices from data.
In particular, as functional connectomic studies frequently analyze graph-theoretic proper-
ties [106], understanding if and when the sparsity pattern (i.e., which edges are and are
not present in the adjacency matrix) can be reliably estimated is of paramount scientific
importance.

Abstractly, the inference problem can be formulated as that of reconstructing a k-sparse
vector from noisy observations. In its simplest form, one is concerned with inference within
the following model:

y = Xβ + ϵ (3.1)

with y ∈ Rn,X ∈ Rn×p and β ∈ Rp is a k-sparse vector. The noise is i.i.d, ϵ ∈ Rn, ϵi ∼
N (0, σ2), and the observational model is Gaussian, yi ∼ N (Xiβ, ϵi). The sparse linear
model is employed in diverse scientific fields [107–111]. In real world applications, it is also
commonly the case that the design or covariate matrix X is correlated, so that the columns of
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X can not be taken to be i.i.d. In this setting, the correct identification of non-zero elements
of β, which is crucial for scientific interpretability, is especially challenging. Yet, a systematic
exploration of the effect of correlations between the covariates on the recoverability of β is
lacking.

Statistically optimal sparse estimates of β within (3.1) are returned by the solution to
the following constrained optimization problem:

min ||y −Xβ||22
||β||0 ≤ λ (3.2)

Finding the global minima of problem (3.2) is NP-hard, though recent progress has been
made in computationally tractable approaches [112,113]. The most common approach is to
relax the l0 regularization. In this work, we focus on the Lasso, Elastic Net, SCAD, MCP
[114–117], and UoILasso, an inference framework we introduced in [118] that combines stability
selection and bagging approaches to produce low variance and nearly unbiased estimates. To
select the regularization strength or otherwise compare between candidate models returned
between these estimators, one must employ a model selection criteria such as cross-validation
or BIC. While the literature on sparsity inducing estimators and model selection criteria
is vast, studies that consider the interaction of particular choices of estimator and model
selection criteria are lacking. In particular, no systematic exploration of the impact of
choice of estimator and model selection criteria on the selection accuracy of the resulting
procedure when the predictive features exhibit correlations has been carried out. In this
work, we address this gap by performing systematic numerical investigations of the selection
accuracy performance of several estimators and model selection criteria across a broad range
of regression designs, including diverse correlated design matrices.

3.2 Review of Prior Work

The statistical theory of the sparse estimators considered in this chapter is vast and we do
not attempt to review it all here. Our particular focus is on characterizing finite sample
selection accuracy, especially in the context of correlated design. The asymptotic oracular
selection performance of the SCAD and MCP are well known [116, 117] and require only
mild conditions on the design matrix. For the Lasso, one must impose an irrepresentible
condition to guarantee asymptotic selection consistency [119]. Specifically, if we let S ∈ Ik

index the true model support and let S̄ := {1, ..., p} \ S index the complement of the model
support, we can partition the feature covariance matrix as follows:

Σ =

[
ΣSS ΣS,S̄

ΣS̄,S ΣS̄S̄

]
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Estimator Regularization
Lasso λ|β|1
Elastic Net λ1|β|1 + λ2|β|22
SCAD

∫ |β|
0

dx
(
λI(|β| ≤ λ) + (γλ−x)+

(γ−1)λ
I(|β| > λ)

)
MCP

∫ |β|
0

dx
(

1 − x
γλ

)
+

UoILasso λ|β|1 across bootstraps, see [118]

Model Selection Criteria
Cross-Validation R2 averaged over 5 folds

BIC 2 log |y −Xβ̂|22 − log(n)|β̂|0
AIC 2 log |y −Xβ̂|22 − 2|β̂|0

gMDL [129]


k̂
2

log
(

n−k̂

k̂

y⊤y−|y−ŷ|22
|y−ŷ|22

)
+ log n if R2 > k̂

n

n
2

log
(

y⊤y
n

)
+ 1

2
log(n) otherwise

Empirical Bayes [130] 2 log |y −Xβ̂|22 −

{
k̂ + k̂ log(ŷ⊤ŷ) − k̂ − 2((p− k̂) log(p− k̂) + k̂ log k̂) if ŷ⊤ŷ/k̂ > 1

ŷ⊤ŷ − 2((p− k̂) log(p− k̂) + k̂ log k̂) otherwise

Table 3.1: (Top) Sparsity inducing regularized estimators. λ and γ denote regularization param-
eters. In this study, we keep γ for SCAD and MCP fixed to 3. (Bottom) Model selection criteria.
Here and throughout, k̂ refers to the estimated support size, ŷ the model predictions of y, and p is
the total number of features.

Letting βS denote the vector of non-zero coefficients. The irrepresentable constant (sec-
tion 3.2 in [119]) is then given by η = 1 − |ΣS̄,SΣ−1

SS sign(βS)|∞. For η < 0, the Lasso is not
asymptotically selection consistent.

The finite sample implications of these differing requirements have not been explored.
A series of works have addressed the correlated design problem by devising regularizations
that tend to assign correlated covariates similar model coefficients [120–125]. In fact, the
Elastic Net was the first estimator introduced to exhibit this type of “grouping” effect [115].
However, this type of behavior can be undesirable in many real data applications where
covariates may be correlated, yet still contribute heterogenously to a response variable of
interest.

When the true model generating the data is contained amongst the candidate model
supports, the BIC and gMDL have asymptotic guarantees of selection consistency [119].
Extensions of these results to the high dimensional case are available [126], but fall outside the
scope of this work. Implicit in these theoretical results is that one can evaluate the penalized
likelihoods on all 2p candidate model supports [127]. Practically, one first assembles a much
smaller set of candidate model supports using a regularized estimators. To this end, the use
of the BIC with SCAD has been shown to be selection consistent [128].

A more recent body of work has focused on non-asymptotic analyses of model (3.1) in
the framework of compressed sensing rather than regression. Here, the sparsity level of β is
a priori known, and the sensing matrix X is typically drawn from a random ensemble. In
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this setting, it is possible to establish sharp transitions in the mean square error distortion
of the signal vector as a function of measurement density (i.e., asymptotic n/p ratio) [131].
Necessary and sufficient conditions on the number of samples needed for high probability
recovery of the support of β by the Lasso was treated in [132]. Subsequently, a series of works
examined the information theoretic limits on sparse support recovery by forgoing analysis
of computationally tractable estimators in favor of establishing the sample complexity of
exhaustive evaluation of all

(
p
k

)
possible supports via maximum likelihood decoding [133–140].

This approach provides information theoretic bounds on the selection performance of any
inference algorithm, and a measure of the suboptimality of existing algorithms.

Of particular relevance to this work are [133] and [138], whose analyses permit cor-
related sensing (i.e., design) matrices. Let βmin be the minimum non-zero coefficient of
β, σ2 be the additive noise variance, and Σ be the covariance matrix of the distribu-
tion from which columns of X are drawn. Denote the set of all subsets of {1, 2, ..., p}
of size k as Ik. Ik indexes possible model supports. Given S, T ∈ Ik we define the
matrix Γ(S, T ) to be the Schur complement of ΣS∪T,S∪T with respect to ΣTT , Γ(T, S) =
ΣS\T,S\T −ΣS\T,T (ΣTT )−1ΣT,S\T . Let ρ(Σ, k) be the smallest eigenvalue this matrix can have
for any T : ρ(Σ, k) = minT∈Ik\S λmin(Γ(T, S)). From these quantities, we define α:

α =
β2
minρ(Σ, k)

σ2
(3.3)

In Theorem 1 of [133], sufficient conditions on the sample size required for an exhaustive
search maximum likelihood decoder to recover the true model support with high probability
are given in terms of p, k, and α:

Theorem 5 Theorem 1 of [133]. Define the function g(c1, p, k, α):

g(c1, p, k, α) := (c1 + 2048) max

{
log

(
p− k

k

)
, log(p− k)/α

}
If the sample size n satisfies n > g(c1, p, k, α) for some c1 > 0, then the probability of

correct model support recovery exceeds 1 − exp(−c1(n− k)).

If α−1 > p log(p − 2k) + 2k/p, then g, and therefore the sample complexity of support
recovery, will be modulated by α for p large enough. Many of the design matrices considered
in our numerical study (see Section 3) satisfy this condition.

In contrast to compressed sensing, the sparsity level of β (i.e., k) is typically unknown
in applications of regression. Furthermore, sufficient conditions on high probability theory
such as Theorem 1 above rely on concentration inequalities, which may formally hold in the
non-asymptotic setting, but are rarely tight. As a result, the applicability of these results
for practitioners evaluating the robustness of support recovery in finite sample regression
is unclear. The main contribution of this chapter is to address this gap through extensive
numerical simulations. We find α to be a useful measure of the difficulty of a particular
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regression problem, and find selection accuracy performance to be modulated by α even
when it does not satisfy the condition stated above.

Previous empirical works have evaluated the effects of collinearity on domain specific
regression problems [141, 142] and evaluate the efficacy of various information critera for
model selection [143–145]. Finally, the performance scaling of a series of sparse estimators
with sample size is evaluated in [146].

In contrast, we specifically consider the differing effects on selection accuracy of joint
choices of estimators and model selection criteria. We demonstrate that the choice of model
selection criteria significantly modulates the selection performance of estimators, and that
there are empirically identifiable transition points in the value of α beyond which the selection
performance of all inference procedures degrades.
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3.3 Description of Simulation Study

Figure 3.1: Design of Simulation Study. (a) (Right column) Coefficients β are drawn from a
narrowly peaked Gaussian, uniform, and inverse exponential distribution. (b) (Left column) Design
matrices are parameterized as Σ = t⊕i δIm×m + (1− t)Λ(L) where Λ(L)ij = exp(−|i− j|/L) and
Im×m is the m-dimensional identity matrix. Parameters δ,m, t and L are shown for each example
design matrix. Also shown are bounds for the minimum and maximum ρ(Σ, k) across k.

We consider regression problems with 500 features with 15 different model densities (i.e.,
|β|0) logarithmically distributed from 0.025 to 1. Additionally, we vary over the following
design parameters:

1. 80 covariance matrices Σ of exponentially banded, block diagonal, or a structure that
interpolates between the two (see Figure 3.1).

2. Three different β distributions: a sharply peaked Gaussian, a uniform, and an inverse
exponential distribution (see Figure 3.1)
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3. Signal to noise (SNR) ratios of 1, 2, 5, 10. We define signal to noise as |Xβ|22/σ2.

4. Sample to feature (n/p) ratios of 2, 4, 8, and 16.

To simplify the presentation, we often restrict the analysis to the following three com-
binations of SNR and n/p ratio that represent ideal signal and sample, SNR starved, and
sample starved scenarios, respectively:

1. Case 1: SNR 10 and n/p ratio 16

2. Case 2: SNR 1, and n/p ratio 4

3. Case 3: SNR 5 and n/p ratio 2

A distinct model design is comprised of a particular model density, predictor covariance
matrix, a coefficient distribution drawn from one of the three β-distributions, an SNR, an
n/p ratio. Each distinct model is fit over 20 repetitions with each repetition being comprised
of a new draw of X ∼ N (0,Σ) and ϵ ∼ N (0, σ2), with σ2 set by the desired SNR. We use
the term estimator to refer to a particular regularized solution to problem 3.1 (e.g. Lasso)
and model selection criteria to refer to the method used to select regularization strengths
(e.g. BIC). The estimators and model selection criteria we consider are listed in Table 3.1.
We use the term inference algorithm to refer to particular choices of estimator and model
selection criteria.

Let S = {i|βi ̸= 0} in eq. 3.1, and Ŝ = {i|β̂i ̸= 0}, i.e. the true and estimated model

supports. Then, we evaluate regression on the basis of selection accuracy (1− |(S\Ŝ)∪(Ŝ\S)|0
|S|0+|Ŝ|0

),

false negative rate ( |S\Ŝ|0|S|0 ) and false positive rate ( |Ŝ\Ŝ|0
p−|S|0 ). We use α to associate a single

scalar to measure the difficulty of a regression problem. Smaller α correspond to harder
regression problems.

In practice, we do not calculate ρ(Σ, k) explicitly, but rather lower bound it. Let S be
the true model support and T an alternative model support. First, observing that Γ(S, T )
is just the inverse of the subblock of the precision matrix Σ−1

S\T,S\T , we seek to bound the
largest eigenvalue of this subblock:

(ρ(Σ, k))−1 ≤ max
T∈Ik\S

λmax(Σ
−1
S\T,S\T )

We do this via the use of Brauer-Cassini sets [147]. For an arbitrary n × n complex
matrix A with entries aij, let Ri =

∑
j ̸=i |aij|. Then, define the Brauer sets Kij : Kij = {z ∈

C : |z − aii||z − ajj| ≤ RiRj, i ̸= j}. The eigenvalues of A lie within
⋃

i,j Kij

To bound specifically the largest eigenvalue of Σ−1
S\T,S\T , we use the following proposition:

Proposition 3 Let A ∈ Rn×n be a positive semidefinite matrix and let Ã be the the matrix
that results from sorting the rows of |A|ij = |aij| in descending order. Define the truncated
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row sums R̃i =
∑m

j=1 |ãij| where ãij are the entries of Ã. Let B ∈ Rm×m be a principal
submatrix of A. The largest eigenvalue of B is bounded from above by:

max
i,j:i ̸=j

[√
R̃iR̃j +

1

4
(|ãi0| − |ãj0|)2 +

1

2
(|ãi0| + |ãj0|)

]

Proof: Since A is positive semidefinite, by Proposition 1, it follows that the largest eigenvalue
of A can be no larger than the rightmost boundary of the rightmost Brauer set on the real
axis. As a principal submatrix of a positive semidefinite matrix is also positive semidefinite,
this holds analogously for the matrix B and the Brauer sets K̂ij = {z ∈ C : |z−bii||z−bjj| ≤
R̂iR̂j, i ̸= j} where R̂i =

∑m
j=1,j ̸=i |bij|. In Cartesian coordinates, the Brauer set is defined

on the real axis by (x − bii)(x − bjj) = R̂iR̂j. The rightmost root of this equation is given

by 1
2
(bii + bjj) +

√
R̂iR̂j + 1

4
(bii − bjj)2

By sorting A to obtain Ã, we necessarily have

max
i,j∈{1,...,n},i ̸=j

1

2
(|ãi0| + |ãj0|) +

√
R̃iR̃j +

1

4
(|ãi0| − |ãj0|)2 ≥

max
i,j∈{1,...,m},i ̸=j

1

2
(bii + bjj) +

√
R̂iR̂j +

1

4
(bii − bjj)2 ■

Proposition 2 enables us to bound the largest eigenvalue of a subblock of a matrix of a
given size. Depending on the overlap between sets T and S, the dimension of the matrix
Σ−1

S\T,S\T will vary. However, by the Cauchy interlacing theorem, the largest eigenvalue of

a proper submatrix of dimension k′ is bounded by the largest eigenvalue of subbmatrices
of dimension k > k′. Therefore, we use the results of Proposition 2 to bound the largest
eigenvalue of subblocks of Σ−1 of dimension k, corresponding to searching over T that are
completely disjoint from S. Inverting this bound then gives a lower bound on ρ(Σ, k).

3.4 Results of Simulation Study

False Positive/False Negative Characteristics

We first visualized support selection performance across estimators by scattering the false
negative rate vs. false positive rate of each fit for several representative model densities (Fig.
3.2 for BIC and AIC selection, (other criteria are visualized below in Figure 3.3). Each
scatter point represents the selection characteristics of fits to a distinct model design averaged
over its 20 instantiations. The boundaries of the grayscale partitions of the false positive
false negative rate plane correspond to contours of equal selection accuracy. The rotation
of these contours with the true underlying model density reflects the relative importance
of false negative and false positive control in modulating selection accuracy. Specifically,
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rotation towards the horizontal implies larger sensitivity to false positives, while conversely
rotation towards the vertical implies greater sensitivity towards false negatives.

The accuracy of estimators exhibited clear structure that depends on the characteristics
of the model design described above. We observe in panel A of Figure 3.2 that estimators
that more aggressively promote sparsity (SCAD, MCP, UoI in red, green, and dark blue,
respectively) featured better selection accuracy at low model densities (i.e. scatter points for
these estimators lie in the white to light gray shaded regions), whereas those that control false
negatives less aggressively, namely the Elastic Net (orange) and to a lesser extent the Lasso
(cyan), fared better in denser true models (panel C). The scatter points for each estimator
formed bands that span the false negative rate. This banding effect was most pronounced
for SCAD/MCP/UoI.
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Figure 3.2: Scatter plots of the false negative rate vs. false positive rate for BIC selection (A-C)
and AIC selection (D-F) across 3 different model densities (n/p ratio = 4, all signal to noise param-
eters included). Each scatter point represents a single fit. β distributions are encoded in marker
shapes (square: uniform distribution, triangular: inverse exponential distribution, circular: Gaus-
sian distribution). Shaded regions represent regions of equal selection accuracy. The orientation of
these regions for different model densities illustrates the differing contributions of false negatives
vs. false positives, with false positive control being far more important for sparser models, and
conversely false negatives being more important for denser models.

Comparing the BIC selection (Fig. 3.2 A-C) to AIC (Fig. 3.2 D-F), these scatter plots
also revealed that varying model selection methods also systematically shifted false negative
& false positive characteristics of estimators. Selection methods with lower complexity penal-
ties (i.e., AIC, CV) lifted the bands up along the false positive direction. Comparing the
location of the blue/red/green scatter points between panels B and E, for example, we note
that this effect was most dramatic for the set of estimators that most aggressively control
false positives (SCAD/MCP/UoI). Consequently, similar tradeoffs as described before arose,
with empirically better selection accuracy when models are dense obtained for AIC/CV, and
vice versa for larger complexity penalties (BIC).
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Figure 3.3: Scatter plots of the false negative rate vs. false negative rate for gMDL model
selection (panels A-C), empirical Bayes model selection (panels D-F), and cross-validation selection
(panels G-I) for 3 different model densities (0.03, 0.33, 0.76). The n/p ratio displayed is 4, all signal
to noise parameters are included.

We note the qualitative similarity of the profile of scatter points for gMDL selection
panels A-C to that of BIC (Figure 3.2, panels A-C). The gMDL selection method, while
nominally sensitive to the underlying model sparsity, gave rise to tight false positive control
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for all estimators, save for the Elastic Net (orange scatters). In contrast to the BIC at
dense model density (panel C, both figures), the gMDL selection criteria provided tighter
false positive control for the Lasso (cyan scatter points), at the expense of increased false
negatives.

In panels A, B, and D, E of Figure 3.3, we observe that the gMDL and empirical Bayes
selection method led to similar selection profiles for UoI, SCAD, MCP, and Lasso, with
nearly all scatter points staying at false positive rates < 0.25. However, we also observe
that supports selected by using the Elastic Net, in particular (orange), and other estimators
for particular sets of parameters, became very dense (false positive rate → 1) at model
density 0.33 and especially model density 0.76 (panel F). This led to overall better selection
accuracy (white regions) in denser models. We conclude that the choice of estimator and
model selection criteria are both important in determining the false positive/false negative
rate behavior of inference strategies.
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α-dependence of False Positives/False Negatives
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Figure 3.4: (A-C) Scatter plot of the false positive rate and the false negative rate vs. α for
each estimator using BIC as a selection criteria for three different model densities. β distributions
are encoded in marker shapes (square: uniform distribution, triangular: inverse exponential distri-
bution, circular: Gaussian distribution). (D-F) Plot of the α-transition point associated with an
inference algorithm’s false negative rate as a function of model density, separated by β distribution
and selection method. Errorbars are standard deviations taken across repetitions and estimator.
The different numerical regimes of the α-transition (highest in panel E, intermediate in panel D,
and lowest in panel F) are attributable to the different characteristic value of βmin for the different
β distributions.
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Recalling that the parameter α tunes the difficulty of the selection problem, we scattered
the false positive and false negative rate vs. α for each inference algorithm across different
model densities. A representative set of such plots for BIC selection is shown in Figure
3.4A-C; other selection methods are shown in Figure 3.4. Cross-Validation is not included
due to space considerations but behaves similarly to the AIC. There was broadly large
variation in performance modulated by the selection method employed. Furthermore, β-
distributions are separately resolvable due to their different typical values of βmin. For
example, in the bottom axes of Figure 3.4C, for each estimator, the uniform distribution
scatter points (squares) lie to the left of the inverse exponential distribution (triangular),
which in turn lies to the left of the Gaussian distribution (circular).

In line with Figure 3.2, the false positive rate was not modulated by α (Fig. 3.4
A-C, top axes). In fact, for some estimators, the highest false positive rate was achieved
for intermediate α, followed by a decline in false positive rate for smaller α (e.g. Lasso
in Figure 3.4C). The false positive rate is instead a characteristic of each estimator. The
SCAD/MCP/UoI class of estimators achieved lower false positives than Lasso, which in turn
featured lower false positives than the Elastic Net.
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Figure 3.5: Plot of the false positive rate (FPR) and false negative rate (FNR) vs. logα for
signal case 1 across several model densities. gMDL selection was used in panels A-C, empirical
Bayes in panels D-F, and AIC in panels H-I. The cross-validation selection method is not shown,
but exhibited similar characteristics to AIC.

Model selection criteria can also be classified into a set that led to low false positive rates
(gMDL, empirical Bayes, and BIC) vs. those that lead to high false positive rates (AIC,
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CV), although the Elastic Net with empirical Bayes selection featured the highest false
positive rate of any inference algorithm (Fig. 3.3, panels D-F). We note that the inverse
exponential distribution (triangular points) induced very false negatives by any inference
algorithms, likely due to its coefficient magnitudes being concentrated towards larger values.

On the other hand, the false negative rate scatter points, when separated by β-distribution,
featured consistent behavior across inference algorithms. Focusing on BIC selection, all es-
timators achieved low false negative rates at the low model densities (Fig. 3.4A). At
intermediate model densities (Fig. 3.4B), the false negative rate remained low until logα
became sufficiently small, at which point it rapidly increases. This value of logα varied by
β-distribution due to the differing characteristic values of βmin, occuring around logα ≈ −7.5
for the Gaussian distribution at model density 0.327, ≈ logα = −10 for the inverse exponen-
tial distribution, and ≈ logα = −15 for the uniform distribution. Otherwise, this transition
point is fairly universal across inference algorithms.

To produce summary statistics of false negative rates across model densities, selection
methods, and n/p ratio/SNR cases, we fit sigmoidal curves to data for each inference algo-
rithm and for each β distribution. The sigmoid curve is described by 4 parameters:

S(α) = c +
a

1 + exp(−b(α− α0))

In particular, we use the fitted value for the sigmoid midpoint α0, which we refer to as
the α-transition point, to quantify the value of α at which false negative rate has begun
to increase appreciably. We found a large degree of universality in this transition point
across estimators and selection methods. In Figure 3.4D-F we have averaged curves across
estimators and plotted the mean and standard deviation of the resulting α transition points.
Colors now represent each selection method. The curves for each selection method were
strikingly similar within a β distribution, with small standard deviations within each selection
method indicating universality across estimators. The decrease of the α-transition point with
increasing model density can be explained by the overall shift of α towards smaller values
due to the increase of ρ(Σ, k) with k.

α-dependence of False Positive/False Negative Coefficient
Magnitude

In the preceding analysis we treated false positives and false negatives as hard thresholded
quantities. On the other hand, one can ask whether false negatives primarily arise from
setting support elements with small signal strength to zero, and conversely whether false
positives are associated with small coefficient estimates. Thus, while exact model support
recovery in most cases is unattainable, one would hope that support inconsistencies produce
low distortion of the desired coefficient vector. To evaluate this supposition, we calculated
the average magnitude of false negatives and false positives, and normalized these quantities
by the average magnitude of ground truth β. In the case of false negative magnitudes,
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we focused on the uniform β distribution, as this provides the most “edge” cases of small
coefficient magnitudes. Raw scatter plots of these quantities (not shown) revealed that at
low correlations, the hoped for low distortion effect largely holds true, but that there is an
α transition point for both false negative and false positives after which significantly larger
ground truth βi are selected out, and erroneously selected βi are assigned much larger values
relative to the true signal mean.
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Figure 3.6: Plot of the average α transition point for estimation distortion across all inference
algorithms and selection methods vs. model density for signal case 1. Errorbars represent standard
deviation. After a model density of > 0.15, the transition generally occurs at lower correlations
(smaller α) for the false negative magnitude. Furthermore, the variance across inference algorithms
is consistently smaller for false negatives as opposed to false positives.

We again fit sigmoidal functions to the raw scatter points of normalized false negative &
false positive magnitude vs. logα and extracted the α-transition points as in Figure 3D-F.
In Figure 3.6, we plot the transition point as a function of model density averaged across all
estimators, selection criteria, and fit repetitions. For model densities > 0.15, the transition
point occurs at much smaller correlation strengths for false negative distortions than for false
positive distortions. The variance in the location of this transition point for false negative
distortions is noticeably smaller than for false positive distortions. Nevertheless, similarly to
the behavior exhibited by the α-transition points associated with the false negative rate, the
α-transition points for false positive/false negative coefficient magnitudes is saliently uniform
across inference strategies. Overall, these results highlight the usefulness in the parameter α,
which emerges out of tail bounds on the performance of the exhaustive maximum likelihood
decoder, as a quantifier of the difficulty of a sparse regression problem.

Overall Selection Accuracy

An inference algorithm deployed in practice must employ both an inference estimator and
model selection criteria. We have therefore determined what the best performing combina-
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tion is as a function of underlying model density and α. To set an overall scale for these
comparisons, one can use an oracle selection criteria that simply chooses the support along
a regularization path of maximum selection accuracy. For each value of α and model den-
sity, the maximum of this oracular selection across all estimators gives a proxy for the best
achievable selection accuracy in principle at finite sample size and SNR.
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Figure 3.7: Oracle selection accuracy as a function of the log model density and α for each
of the 3 signal cases described in Section 3. Each pixel in the colormap is the maximum oracle
performance across all estimators for the particular combination of density and α. For ideal signal
characteristics in Case 1 (panel A), near perfect support recovery is in principle possible for a
broad range of correlation strengths for log model densities < −1.9. The similar oracle selection
accuracies between cases 2 and 3 (panels B and C) suggest that the sample starved and signal
starved regression problems behave similarly. As compared to Case 1, worst case performance
for intermediate model densities (log(k/p) > −2.3 and < −0.69) is lower, especially for large
correlations. For the densest models (log(k/p) > 0.5), oracle performance is relatively insensitive
to correlation strength, reflecting the insensitivity of the FPR to α. Near-perfect support recovery
is empirically still possible for the sparsest models (log(k/p) < −3).

In Figure 3.7 we plot the oracle selector for each signal case. In the ideal signal and
sample size case (case 1), the oracle selector was able to achieve near perfect selection accu-
racy in the fully dense models (top row, panel C) and those models with with density < 0.14
(log model densities < −2) even in model designs with very small α. The oracle selector
suffered moderate loss of selection accuracy in intermediate model densities for model de-
signs with small α (darker orange regions of panel C). A similar structure is present in the
adequate sample but high noise and low sample size but adequate SNR cases (cases 2 and 3
in panels B and C, respectively), but the magnitude of selection accuracy performance loss
and regions of α and model densities for which the loss occurred expanded. In particular,
only in the very sparsest models (density < 0.05, log model density < −3) with larger α was
perfect selection possible in principle.

For each estimator and selection criteria combination, we take the average deviation of
its selection accuracy from the oracular performance shown in Figure 3.7 as a measure of
sub-optimality. We divide the analysis into an overall measure of sub-optimality, averaging
over all model densities and α, as well as restricting the averaging to only sparse generative
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Case 1, All Densities
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 27.000 19.228 25.214 14.483 11.964
Lasso 23.867 14.634 27.151 5.840 5.982
MCP 23.408 4.325 6.948 4.717 5.220
SCAD 16.947 3.233 8.051 3.534 4.039
UoI Lasso 22.163 5.659 33.795 5.020 5.134

Case 1, Sparse Models Only
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 35.139 25.146 33.098 17.533 15.371
Lasso 30.622 18.402 35.220 4.601 5.046
MCP 30.319 1.121 7.511 1.033 2.184
SCAD 21.267 0.815 9.361 0.728 1.756
UoI Lasso 29.558 3.290 44.522 3.077 3.396

Case 2, All Densities
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 22.615 22.473 18.382 13.092 13.581
Lasso 22.495 19.004 19.524 16.708 14.185
MCP 26.411 13.521 11.869 14.382 14.671
SCAD 26.453 11.789 12.003 12.628 12.266
UoI Lasso 23.366 17.505 27.575 15.959 13.351

Case 2, Sparse Models Only
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 29.940 18.539 25.556 16.691 13.503
Lasso 26.464 14.120 22.749 9.593 8.965
MCP 30.789 3.879 5.971 4.659 8.013
SCAD 31.579 3.485 8.154 4.213 6.434
UoI Lasso 27.151 7.287 36.588 9.150 7.024

Case 3, All Densities
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 18.290 26.087 15.339 10.420 12.985
Lasso 19.424 19.653 17.955 17.632 15.227
MCP 23.590 16.526 14.600 17.211 18.156
SCAD 21.125 15.241 14.119 15.007 15.873
UoI Lasso 22.030 19.866 24.080 17.420 15.268

Case 3, Sparse Models Only
Selection Method

Estimator AIC BIC CV/R2 Emp. Bayes gMDL
EN 22.596 15.357 21.305 13.346 11.668
Lasso 20.213 10.948 18.151 8.921 8.636
MCP 24.455 5.059 6.754 6.695 11.546
SCAD 22.070 5.020 9.135 5.884 9.905
UoI Lasso 21.729 7.765 31.733 9.615 7.832

Table 3.2: Table of summed deviation in selection accuracy from oracular performance. (Top)
Case 1 signal conditons (SNR 10, n/p ratio 16). (Middle) Case 2 Signal Conditions (SNR 1, n/p
ratio 4). (Bottom) Case 3 Signal Conditions (SNR 5 and n/p ratio 2). (Left column) All model
densities. (Right column) Sparse models only. Best performers are highlighted in bold.

models (model densities < 0.3). The results are summarized in Table 2. The best performing
inference algorithms are bolded. When taken across all model densities, in signal case 1
(Table 2 top left), the SCAD with BIC selection and SCAD with empirical Bayesian selection
emerged as the best inference algorithms with respect to feature selection. When restricted to
low SNR or low sample sizes (cases 2 and 3, Tables 2 middle and bottom, left), these strategies
remained amongst the best performing, with cross-validated SCAD/MCP exhibiting robust
selection in case 2, the Elastic Net with empirical Bayesian selection performing the best in
case 3. When restricting to sparse models only, false positive control becomes paramount,
and the Elastic Net was no longer competitive. Instead, the SCAD with BIC or empirical
Bayes is near optimal in case 1 (Table 2, top right), and still the best performing in cases
2 and 3 (Table 2, top and middle, right). MCP exhibited similar performance, with UoI
Lasso trailing slightly behind. Thus, in general, the SCAD estimator with BIC or empirical
Bayesian model selection led to the most robust algorithm for feature selection.
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3.5 Comparison of Bias/Variance of UoI vs.
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Figure 3.8: Plot of estimator Bias and Variance normalized by the number of non-zero true
model coefficients vs. logα for the BIC model selection (A-C) and the empirical Bayes model
selection (D-F). UoI exhibits lower bias and variance than MCP and SCAD as α becomes smaller
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The UoILasso, SCAD, and MCP estimators, especially when combined with BIC or empiri-
cal Bayes model selection achieve state of the art model selection performance in the presence
of correlated variability (Tables 2-7). The UoI algorithm separates estimation and selection
by fitting OLS models to non-zero support coefficients, and uses bootstrapped aggregation to
average together several model estimates. In Figure 3.8 we compare the bias and variance
between UoI/MCP/SCAD for the BIC and empirical Bayes model selection criteria. The
bias (E(β̂) − β), where β̂ are the estimated coefficients) and variance (E(β̂ − E(β))2), was
estimated by averaging over 20 fit repetitions, and further normalized by number of true
non-zero model coefficients. When using BIC and empirical Bayes selection, (panels A-C of
3.8), UoI was able to reduce per coefficient bias/variance over SCAD and MCP at smaller
α. Curiously, with empirical Bayesian selection, SCAD and MCP featured very high bias
even at large logα (panel D) in sparse models. These results highlight the ability of model
averaging and re-estimation procedures to reduce estimation bias and variance.

3.6 Comparison with the Irrepresentable Constant

In [119], the importance of the irrepresentable constant, η, in ensuring the (asymptotic)
selection consistency of the Lasso was established. To determine how η tunes the finite
sample selection accuracy of the Lasso and the other estimators considered, we calculated η
for the design matrices considered in this study and plot the selection accuracy vs. η for BIC
selection and the Gaussian coefficient distribution (top axes of each panel in Figure 3.9).
Simultaneously, we scatter η vs. ρ(Σ, k) for the regression problems consdiered (bottom axes
of each panel of Figure 3.9). For low model densities (panels A, B), the relationship between
η and selection accuracy was as expected - selection accuracy of algorithms montonically
decays as η → 0. This decline was more gradual for the Lasso and Elastic Net (cyan
and orange scatters), while it is quite dramatic for UoI/SCAD/MCP. Concommitantly, the
relationship between η and ρ(Σ, k) is monotonic, with smaller η corresponding to smaller
ρ(Σ, k). As the model density increases to 0.25 and above, the model selection performance
declined as η → 0 from the right, but rebounds for η < 0. At model density 0.25 (panel C),
this effect was especially pronounced for the Lasso and Elastic Net. As the model density
increases, a higher proportion of the feature covariance matrices considered in this study
corresponded to η < 0, while the selection accuracy was no longer monotonically related
to η. In panels D-F, one observes that the selection accuracy declined as η → 0 from
both the left and right, but that the selection accuracy was only slightly reduced from its
maximum for the most negative values of η. This observation holds for all estimators. To
explain this effect, we observe that beginning in Figure 3.9C and continuing in panels D-
F, design matrices with η < 0 actually yielded relatively large ρ(Σ, k), with small ρ(Σ, k)
corresponding to matrices with the smallest |η|. As this pattern mirrors that of the selection
accuracy observed in Figure 3.9, we conclude that η tracks the finite sample selection
accuracy performance of the Lasso (and to a lesser extent other estimators) only insofar as
it is monotonically related to ρ(Σ, k). In other words, ρ(Σ, k) is a more reliable measure of
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how feature covariance matrices modulate selection accuracy. Note that in [119], empirical
evaluation was done on the probability that the entire Lasso solution path would contain
the true support, not on the selection accuracy after employing a model selection criteria.

0.0

0.5

1.0

Se
l. 

Ac
c.

A Model Density 0.03

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)

0.0

0.5

1.0

Se
l. 

Ac
c.

D Model Density 0.33

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)

0.0

0.5

1.0

Se
l. 

Ac
c.

B Model Density 0.11

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)

0.0

0.5

1.0

Se
l. 

Ac
c.

E Model Density 0.43

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)
0.0

0.5

1.0

Se
l. 

Ac
c.

C Model Density 0.25

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)
0.0

0.5

1.0

Se
l. 

Ac
c.

F Model Density 0.76

UoI
MCP
SCAD

Lasso
EN

0.0 0.2 0.4 0.60.00

0.75

1.50

(
,k

)

Figure 3.9: Plot of selection accuracy vs. η (top axes in each panel) and ρ(Σ, k) vs η (bottom axes
in each panel) for BIC selection criteria and Gaussian β distribution for different model densities.
Note that k = [Model Density× 500]. At low model densities (panels A, B), the decay in selection
performance is monotonic as η → 0, whereas for higher model densities (panels C-F), the selection
accuracy decays rapidly with |η|, but selection accuracies for regression problems arising from
design matrices correspond to η < 0 are high. In parallel, the relationship between η and ρ(Σ, k)
is monotonic at low model densities, but reverses back on itself at higher model densities, such
that there are many design matrices for which ρ(Σ, k) is large (corresponding to easier regression
problems) but η < 0.
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3.7 Discussion

Connections to Prior Work

Our numerical work corroborates and extends several results from the statistical literature
in a non-asymptotic setting. We found the frequently employed cross-validated Lasso to be
amongst the worst performing selection strategies. It has been shown that using predictive
performance as a criteria for regularization strength selection with the Lasso leads to in-
consistent support recovery [148]. A necessary and sufficient condition for asymptotically
consistent model selection by the Lasso is for the irrepresentable condition to hold [119]. In
the non-asymptotic setting of this study, we find that the parameter α is a more useful modu-
lator of selection accuracy, and that the irrepresentable constant of [119] tracks the selection
accuracy of Lasso only insofar as it tracks α (section S5). We find that the SCAD/MCP
and UoI Lasso select model supports more robustly in the presence of correlated design. It
is known that the SCAD/MCP do not require any strong conditions on the design matrix
for oracular properties to hold [149], and neither does the BoLasso [150], upon which the
selection logic of UoI is partially based on. Our work demonstrates that the choice of model
selection criteria is as important as the choice of estimator to achieve good selection accu-
racy. The model selection criteria we have considered can all be categorized as penalized
likelihood methods. Cross-validation is known to behave asymptotically like the AIC ( [127].
The magnitude of this complexity penalty can be interpreted as a prior on the model size.
We correspondingly find that the BIC performs best in sparse models, whereas the AIC and
CV perform best in dense models. The tension between the BIC and AIC has been noted
in the literature [151]. The asymptotic selection consistency of using BIC to select SCAD
regularization strength has been noted in [128]. Our numerical investigations reveal that
this remains one of the best extant selection strategies in non asymptotic settings with mild
correlated variability as well.

The empirical Bayesian and gMDL procedures were devised with complexity penalties
nominally adaptive to the underlying model density. We find that these methods lead to
good model selection performance across model densities, but only in ideal signal condi-
tions (i.e. case 1) and low design matrix correlations. There is therefore possible room for
methodological development of adaptive complexity penalties. We leave this for future work.

Best Practices in Real Data

Proper model selection is essential for interpretability of parametric models. While sufficient
conditions for model selection are available in the literature, they do not provide actionable
results for the practitioner in real data. Our extensive numerical simulations reveal best prac-
tices. Non-convex optimization estimators such as the SCAD and MCP generically perform
better at selection than the Lasso and Elastic Net when the underlying model is sparse.
This in line with both prior numerical work and the understanding that asymptotically,
these estimators are oracular selectors [117], [116]. Our work reveals that this performance
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gap remains even as design matrices become increasingly correlated. While the SCAD and
MCP are nonconvex problems, recent work has shown that the statistical performance of
all stationary points is nearly equivalent [152]. Furthermore, development of the optimiza-
tion algorithms for these estimators has matured to the point where regularization paths
for the SCAD and MCP can be computed in the same order of magnitude of time as the
Lasso/Elastic Net (see for e.g. [153]). Our work provides further motivation for the adop-
tion of these algorithms. The UoILasso algorithm has selection performance competitive with
MCP and SCAD in many cases. Furthermore, as we show in section S4, the OLS-bagging
procedure used in coefficient estimates in UoI leads to lower bias/variance estimates than
SCAD/MCP.

There is a tradeoff between false positive and false negative control achieved by model
selection strategies. False positive control is largely insensitive to the degree of design correla-
tion. Practitioners seeking tight control of false negatives in model selection may be inclined
to use the Elastic Net estimator. The presence of a number of fairly generic α transition
points after which selection accuracy degrades, and false negative & positive magnitude
inflates suggests a heuristic criteria that could be estimated from the sample covariance.
Specifically, combining empirical estimates of the precision matrix with empirical estimates
of βmin and σ2 allows one to estimate α, and therefore have a rough sense of whether selection
and estimation performance is likely to have degraded due to correlated covariates or low
signal strength.

3.8 Conclusions

Our empirical results reveal that the joint choice of sparse estimator and model selection
criteria significantly modulates selection performance. Nevertheless, with the exception of
the previously mentioned [128], theoretical results that capture non-asymptotic behavior of
regularization strength selection via specific model selection criteria are lacking.

We found no inference algorithm to be dominant across underlying model density in
the presence of correlated covariates, including the nominally adaptive empirical Bayes and
gMDL selection criteria. Whether these reflect information theoretic constraints or method-
ological gaps is a potentially avenue of future work. We also believe our observation of
a universal α-transition point across false negatives and coefficient distortion to be novel.
This phenomena is reminiscent of the well known reconstructability transition in compressed
sensing as a function of noise level and sampling density [131]. An average case analysis of
coefficient support distortion as a function of α or other spectral parameters of the design
matrix will be the topic of future work.
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Chapter 4

Conclusion and Future Directions

Understanding the principles by which the brain functions requires studying phenomena
across levels of description and spatiotemporal scales. In this thesis, I addressed this chal-
lenge through the development and characterization of novel theory and statistical analysis
methods. In chapter 1, I presented a normative characterization of behaviorally relevant
neural population dynamics through the lens of feedback control theory. I established fun-
damental links between the anatomy of neural circuits, as constrained by Dale’s Law, their
dynamics, as manifest through non-normal dynamics, to the optimality of various subspaces
with respect to feedback and feedforward control. In chapter 2, I examined the relationship
between local connectivity statistics between neurons and global measures of network func-
tion in the Drosophila hemibrain connectome. I also proposed an algorithmic approach to
directly impose global, or top-down functional measures on networks as constraints within
maximum entropy network models. Chapter 3 empirically investigates the fundamental lim-
its of sparse recovery in linear statistical models with correlated design matrices. The results
provide prescriptive approaches to choosing sparsity-inducing estimators and model selection
criteria with applications to the estimation of functional connectivtiy from neural recordings.

In closing, I describe several avenues along which the work of this thesis could be ex-
tended. While the work described in chapter 1 examined measures of controllability and
confined its analysis to single brain areas, analysis of the co-recorded activity from multiple
brain areas allows for the analysis of how population activity in one area communicates with
or is controlled by activity in another area. There are currently several proposed mechanisms
by which brain areas communicate [154], including the idea of communication through coher-
ence [155] and the use of communication subspaces [156]. While rigorously establishing the
mechanism of causal effects by one brain area on another requires perturbation experiments
wherein one area is activated or silenced, there is in parallel a need to develop statistical
methods that can identify the coupling between high dimensional population recordings.

The transfer of information between dynamical systems is a necessary component of the
control of one dynamical system by another. Paralleling the development of dimensionality
reduction methods to identify feedforward and feedback controllable subspaces in chapter
1, a promising research direction is to develop dimensionality reduction methods that can
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distinguish between feedforward and feedback communication across multiple co-recorded
brain areas. To do so, I propose using the directed information (DI) [157] as the objec-
tive function for dimensionality reduction. Directed information, closely related to measures
such as transfer entropy and Granger causality [158], is a measure of (directed) information
transfer between dynamical systems and plays a fundamental role in the theory of commu-
nication over channels with feedback. In the case of linear stochastic systems, the existence
of DI in one or both directions between two brain areas is equivalent to testing for the
absence or existence of state feedback [159]. Using this fact, a dimensionality reduction
algorithm immediately suggets itself. Intuitively, the joint activity within two co-recorded
brain regions (denote as Ψ1(t) and Ψ2(t)) is composed of purely local dynamics, feed-forward
interaction subspaces (FFIS) directed from one area to another, and a shared feedback in-
teraction subspace (FBIS). An interaction subspace is comprised of subspaces in both areas
[UΨ1(t), V Ψ2(t)]. An algorithm to identify the FFIS and FBIS takes on the following form:

(1) Find projections U1, V1 applied to Ψ1(t) and Ψ2(t) respectively, such that the dynam-
ics in the projected subspace maximizes the total DI from Ψ1(t) to Ψ2(t): DI(U1Ψ1(t) →
V1Ψ2(t)).

(2) Find a second pair of projections U2, V2 applied to Ψ1(t) and Ψ2(t) respectively, such
that the dynamics in the projected subspace maximizes the total DI from Ψ2(t) to Ψ1(t):
DI(V2Ψ2(t) → U2Ψ1(t)).

(3) The FBIS between Ψ1(t) and Ψ2(t) is defined by the intersections [U1 ∩ U2,V1 ∩ V2].
These are the subspaces with bi-directional information above and beyond self-predictive
information within an area. Correspondingly, the FFISs from Ψ1(t) to Ψ2(t) and Ψ2(t) to
Ψ1(t) contain the complementary DI that is unidirectional, and are obtained from the inter-
sections [U1 ∩ U c

2 , V1 ∩ V c
2 ] and [U2 ∩ U c

1 , V2 ∩ V c
1 ], respectively (Sc denotes the complement

set to S). These FFISs contain DI that is strictly from one area to another, excluding the
FBIS. These definitions formalize the intuitions described above.

The decomposition of co-recorded brain areas into FBIS and FFIS would significantly
enrich the idea of communication subpaces. Analogously to FCCA, the use of linear projec-
tion matrices permits the identification of the single neurons important for mediating the
dynamics within the respective subspaces. An interesting analysis would therefore be to
compare the subspaces and single neurons involved in inter-area communication across areas
with those involved with feedforward and feedback controllable dynamics within areas.

There are also numerous further directions to pursue regarding the relationship between
anatomical structures of neural circuits arising from Dale’s Law and the ability of these
circuits to be controlled. In particular, a widespread observed feature of cortical circuits
is that excitatory subnetworks on their own are unstable; the rapid action of inhibition is
required to maintain overall stability in response to input perturbations [160]. Inhibitory
circuits therefore serve as a local feedback controller for excitatory subnetworks, balancing
these latter circuits’ sensitivity to inputs with homeostatic regulation. The fact that many
circuits in cortex are inhibitory stabilized may have consequences for their ability to be
controlled under feedback. In control theory, the stabilization of an open loop unstable
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system gives rise to an overall system that possesses non-minimum phase characteristics
[161]. In turn, there are well known fundamental limitations in the feedback controllability
of non-minimum phase systems [162]. This raises the possibility of tradeoffs that cortical
circuits must make between feedforward sensitivity to inputs and controllability via top-down
feedback. These tradeoffs could be investigated in models informed by the increasingly well
resolved patterns of local connectivity between excitatory and inhbitory cell types [105,163].

One widely believed computational role played by feedback within cortex is to enable
the predictive coding of sensory inputs. In this normative model of hierarhical sensory
processing, a generative model of the external world emerges as higher processing layers
learn to predict the activity of lower processing layers in response to stimuli [73]. In the
parlance of control theory, predictive coding is a model of hierarchical output regulation
or stabilization around quiescence. It is a well known fact in control theory that output
regulation, or what might alternatively be called distubrance rejection, requires that the
controller contain an internal model that can effectively simulate the dynamics of the external
disturbance system [7]. In fact, the presence of an internal model is both necessary and
sufficient for robust regulation across both linear and nonlinear systems [164–166]. This
connection suggests a novel mechanism for predictive coding through the feedback control
of population dynamics. Internal models of the external world may be learned by cortex
serving as a homeostatic regulator of the collective dynamics of lower levels of processing.

This framework could dispense with a key challenge faced by traditional predictive cod-
ing models, which posit that prediction and prediction error computations are performed by
specialized single neurons [167]. To date, experimental evidence for these neurons has been
scant. Predictive coding through population level feedback control would not necessarily re-
quire such neurons, as internal models could be encoded in a distributed fashion. Prediction
errors would be subsumed by residual output firing, which would also be distributed across
the population of output neurons within a processing layer. Such a reframing of the compu-
tation to occur through population dynamics mirrors the transition made in motor control,
where models in which individual neurons tuned to particular kinematic variables have given
way to computation through population dynamics [24]. Population level predictive coding
also suggests a normative role for feedback controllable dynamics within sensory cortex, as
one interpretation of these dynamics is that they require controllers of low complexity to
regulate. In a hierarchical setting, structuring dynamics to be feedback controllable could
help control the implementational cost of top down regulation in deeper layers. A simple
computational study in which these ideas could be instantiated would involve training an
RNN to serve as a regulator for the dynamics of another RNN perturbed by an external
stimulus. During training, the emergence of an internal model could be tracked by peri-
odically decoupling the controller RNN, stimulating its open loop dynamics and applying
information bottleneck approaches [168] to identify subspaces predictive of the open loop
dynamics of the controlled RNN.

Predictive coding is just one of many proposed normative theories of sensory processing.
Others include, but are not limited to, the infomax principle [169], sparse coding [3], and
predictive information coding [4]. While theories abound, a key challenge remains adjudi-
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cating which of these normative theories provides a better characterization of experimentally
recorded neural responses. Ideally, one could construct a hypothesis test that would deter-
mine, at a particular level of statistical significance, whether observed responses were optimal
according to a particular normative theory, and further design stimuli that would maximally
discriminate between competing hypotheses. The framework proposed in chapter 2 to place
functional constraints on maximum entropy models provides a means of constructing null
distributions for these hypothesis tests. Similarly to [170], to each normative theory, one
could formulate an energy based model for observed neural responses that in addition to
modelling low firing rate statistics, contained a term penalizing suboptimality according to
each normative theory. For example, a model corresponding to the infomax theory would
contain a term proportional to the mutual information between the stimulus distribution
and the neural responses. Hypothesis testing could then be conducted via likelihood ratio
comparison of models induced by competing normative theories. Such a framework could
put head to head competing first principles explanations for neural activity.

It is the hope of the author that these future directions, among others, can be pursued
in the ensuing years.
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Varga, editor, Geršgorin and His Circles, pages 35–72. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[148] Chenlei Leng, Yi Lin, and Grace Wahba. A note on the lasso and related procedures
in model selection. Statistica Sinica, 16(4):1273–1284, 2006. Publisher: Institute of
Statistical Science, Academia Sinica.

[149] Po-Ling Loh and Martin J. Wainwright. Support recovery without incoherence: A case
for nonconvex regularization. Ann. Statist., 45(6):2455–2482, December 2017.

[150] Francis R. Bach. Bolasso: Model Consistent Lasso Estimation through the Bootstrap.
In Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
pages 33–40, New York, NY, USA, 2008. Association for Computing Machinery. event-
place: Helsinki, Finland.



BIBLIOGRAPHY 111

[151] Yuhong Yang. Can the strengths of AIC and BIC be shared? A conflict between model
indentification and regression estimation. Biometrika, 92(4):937–950, December 2005.

[152] Po-Ling Loh and Martin J. Wainwright. Regularized M-Estimators with Nonconvexity:
Statistical and Algorithmic Theory for Local Optima. J. Mach. Learn. Res., 16(1):559–
616, January 2015. Publisher: JMLR.org.

[153] Tuo Zhao, Han Liu, and Tong Zhang. Pathwise coordinate optimization for sparse
learning: Algorithm and theory. Ann. Statist., 46(1):180–218, February 2018. Pub-
lisher: The Institute of Mathematical Statistics.

[154] Adam Kohn, Anna I Jasper, João D Semedo, Evren Gokcen, Christian K Machens,
and M Yu Byron. Principles of corticocortical communication: proposed schemes and
design considerations. Trends in Neurosciences, 43(9):725–737, 2020.

[155] Andre M Bastos, Julien Vezoli, and Pascal Fries. Communication through coherence
with inter-areal delays. Current opinion in neurobiology, 31:173–180, 2015.

[156] João D Semedo, Amin Zandvakili, Christian K Machens, M Yu Byron, and Adam
Kohn. Cortical areas interact through a communication subspace. Neuron, 102(1):249–
259, 2019.

[157] Haim H Permuter, Young-Han Kim, and Tsachy Weissman. Interpretations of directed
information in portfolio theory, data compression, and hypothesis testing. IEEE Trans-
actions on Information Theory, 57(6):3248–3259, 2011.

[158] Pierre-Olivier Amblard and Olivier JJ Michel. The relation between granger causality
and directed information theory: A review. Entropy, 15(1):113–143, 2012.

[159] P Caines and C Chan. Feedback between stationary stochastic processes. IEEE Trans-
actions on Automatic Control, 20(4):498–508, 1975.

[160] Sadra Sadeh and Claudia Clopath. Inhibitory stabilization and cortical computation.
Nature Reviews Neuroscience, 22(1):21–37, 2021.

[161] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control theory.
Courier Corporation, 2013.

[162] Jesse B Hoagg and Dennis S Bernstein. Nonminimum-phase zeros-much to do about
nothing-classical control-revisited part ii. IEEE Control Systems Magazine, 27(3):45–
57, 2007.

[163] Elodie Fino, Adam M Packer, and Rafael Yuste. The logic of inhibitory connectivity
in the neocortex. The Neuroscientist, 19(3):228–237, 2013.

[164] Bruce A Francis and William M Wonham. The internal model principle for linear
multivariable regulators. Applied mathematics and optimization, 2(2):170–194, 1975.



BIBLIOGRAPHY 112

[165] Walter Murray Wonham. Towards an abstract internal model principle. IEEE Trans-
actions on Systems, Man, and Cybernetics, (11):735–740, 1976.

[166] Christopher I Byrnes, Francesco Delli Priscoli, Alberto Isidori, Christopher I Byrnes,
Francesco Delli Priscoli, and Alberto Isidori. Output regulation of nonlinear systems.
Springer, 1997.

[167] Fabian A Mikulasch, Lucas Rudelt, Michael Wibral, and Viola Priesemann. Where is
the error? hierarchical predictive coding through dendritic error computation. Trends
in Neurosciences, 46(1):45–59, 2023.

[168] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck
method. arXiv preprint physics/0004057, 2000.

[169] Jim W Kay and WA Phillips. Coherent infomax as a computational goal for neural
systems. Bulletin of mathematical biology, 73:344–372, 2011.

[170] Wiktor M lynarski, Michal Hled́ık, Thomas R Sokolowski, and Gašper Tkačik. Statis-
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