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Optimal Stopping with Private Information

Thomas Kruse and Philipp Strack

March 3, 2015

Abstract

Many economic situations are modeled as stopping problems. Examples include job

search, timing of market entry decisions, irreversible investment or the pricing of American

options. This paper analyzes optimal stopping as a mechanism design problem with transfers.

We show that a under a dynamic single crossing condition a stopping rule can be implemented

by a transfer that only depends on the realized stopping decision if and only if it is a cut-off

rule. We characterize the transfer implementing a given stopping rule using a novel technique

based on constrained stochastic processes.

As an application we prove that in any Markovian optimal stopping problem there exists

a welfare maximizing mechanism that does not require any communication. We discuss

revenue maximization for separable processes.
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Posted-Price Mechanism
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1 Introduction

In an optimal stopping problem information arrives over time and a decision maker decides

at every point in time whether to stop or continue. The stopping decision is irreversible.

Thus, stopping today implies losing the option to stop later with a potentially larger

return.

This paper analyzes the question how the behavior of an agent in an optimal stopping

problem can be influenced through transfers. Our model can be understood as a dynamic

principal-agent model. The agent privately observes a discrete time Markov process and

chooses a stopping rule. The principal observes the stopping decision of the agent, but

not the realization of the process. In order to influence the agent’s stopping decision the

principal commits to a transfer.

For example, the agent could be an unemployed worker who receives job offers until she

stops the process and accepts an offer. The principal could be the unemployment agency

who wants the agent to accept certain offers, but who does not observe the offers that the

agent receives. Alternatively, the agent could be a firm that developed a new technology

and has to decide when to introduce it to the market place. The firm observes private

signals regarding the demand, and this knowledge changes over time. The principal is a

social planner who also takes the consumer surplus into account and has, hence, different

preferences over stopping decisions than the firm.

1.1 Contribution of the Paper

This paper shows that under a dynamic single-crossing condition all cut-off rules can be

implemented without communication. A cut-off rule is a strategy that stops the first time

the value of the process exceeds a time-dependent threshold. Implementation without

communication means that the transfer depends only on the time the agent stops and does

not require her to report any private information.1 This feature resembles a posted-price

mechanism and makes our result especially appealing from an applied perspective. We

provide a closed form solution for the transfer as the expectation over a new type of

stochastic process, we call constrained process.

The aim of our article is different from most articles in the literature as it does not focus

on implementing a specific policy (i.e. the welfare or virtual valuation maximizing one),

1In this sense we understand a contract which offers the agent a menu of time-dependent transfers
to choose from as a mechanism with communication since the transfer conditions on the choice made
(message sent) by the agent.
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but characterize the set of policies that can be implemented in the class of mechanisms

without communication. However, this characterization can then be used to implement

specific policies. To illustrate this point we show that the welfare maximizing policy in a

principal agent problem with interdependent values can always be implemented. Due to

the interdependent value structure this case is to the best of our knowledge not covered

by any of the existing results in the literature. Furthermore, we show that revenue can be

maximized using mechanisms with communication only at time zero in the case of additive

random walks.

For example, those results imply in the context of unemployment benefits that for

one-dimensional Markovian search processes it is without loss of generality from a welfare

perspective to restrict attention to mechanisms in which the worker does not report rejected

offers to the mechanism and the benefits paid to her depend only on the time she has been

unemployed.

To get an intuition, consider a point in time and a value of the process where it is

optimal for the agent to continue. The dynamic single crossing condition implies that

continuing is even better for lower values of the process. Thus, to implement a cut-off rule it

suffices to provide incentives to the (marginal) cut-off type. Taking future transfers as given,

the transfer providing incentives to the marginal type today could be calculated recursively.

But as future transfers are endogenous, this recursive approach is not analytically tractable

as it requires the calculation of the value function at every point in time. We circumvent

these problems attached to the recursive approach by directly constructing transfers using

constrained stochastic processes. We define a constrained process as a Markov process that

has the same dynamics as the original process but is required to stay below the cut-off

whenever the original process exceeds the cut-off.

We show that every cut-off rule can be implemented through a transfer that equals

the agent’s expected marginal incentive to wait evaluated at the process constrained by

the cut-off. The dynamic transfer coincides with the transfers used in static mechanism

design if one replaces the constrained process by the true process observed by the agent.

In stopping problems it is in general not optimal to use a myopic stopping rule which

only compares the payoff of stopping immediately with the expected payoff of stopping

one period later. The gain in expected payoffs from using an optimal policy compared to

such a myopic policy is what the literature on optimal stopping calls the option value. The

option value is the additional payoff the agent gains from the fact that she can update her

decision based on new information she learns when observing the process. We modify the
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transfers from static mechanism design by replacing the true process with its constrained

version and prove that this adjustment compensates the agent exactly for her option value.

As far as we know, this article is the first to use constrained processes in the context of

mechanism design or optimal stopping. We also believe that this paper contributes to the

literature on optimal stopping as we give a new, completely probabilistic characterization

of the option value. In particular, this result has applications in mathematical finance

since it leads to a new characterization of the optimal exercise boundary for American

options (see Section 4.1).

1.2 Related Literature

Optimal stopping theory has been influential in many areas of economics. In labor

economics, the seminal contributions of Stigler [1962] and McCall [1970] established the

perspective on job search as an optimal stopping problem. In finance, the pricing of

American options and other financial contracts is a classical optimal stopping problem, cf.

McKean [1965]. Following McDonald and Siegel [1986] the optimal timing of irreversible

investments and market entry decisions are modeled as stopping problems in the literature

on industrial organizations, cf. Dixit and Pindyck [2008].

To the best of our knowledge we are the first to analyze general optimal stopping as a

principal agent problem with transfers. Several strands of literature consider special cases

of optimal stopping problems and take into account incentives. The literature on optimal

unemployment insurance analyzes how the search (stopping) behavior of an unemployed

can be influenced through transfers (see Shavell and Weiss [1979], Hopenhayn and Nicolini

[1997] and Farhi and Werning [2013] for a model with random productivity). A classical

optimal stopping problem in the literature on revenue management is the sale of multiple

objects to stochastically arriving buyers (cf. Talluri and Van Ryzin, 2005). When the

buyers valuations are private information, this leads naturally to a dynamic mechanism

design problem, which has been analyzed among others in Gallego and Van Ryzin [1994],

Gallien [2006], Gershkov and Moldovanu [2009, 2012] and Board and Skrzypacz [2013].

Board [2007] solves the problem of welfare and revenue maximization for the sale of real

options. Oh and Özer [2013] analyze a delegated optimal stopping problem which arises as

a consequence of asymmetric demand information in a manufacturer supplier relationship.

The decision when to optimally end a manager’s contract leads naturally to a stopping

problem. Garrett and Pavan [2012] derive optimal managerial compensation schemes and

show that the associated separation policy is a cut-off rule with a threshold that depends
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only on time. Closely related Tirole [2014] analyzes optimal stopping as mechanism design

problem and allows for the situation where the principal has limited commitment.

The approach of this paper differs from the standard mechanism-design approach, which

by virtue of the revelation principle restricts attention to truthful (direct) mechanisms. We

do not use direct mechanisms, which allows us to bypass technicalities that a formalization

of the message (cheap talk) protocol between the principal and the agent would entail: the

agent would have to communicate with the principal in every period and, hence, the space

of communication strategies would be very rich. As optimal communication strategies are

not necessarily Markovian, an optimization over those is a hard problem.

The direct mechanism design approach, has been successfully used in different settings,

for example in Bergemann and Välimäki [2010] and Athey and Segal [2013] for welfare

maximization, or in Baron and Besanko [1984], Courty and Li [2000], Battaglini [2005],

Eső and Szentes [2007], Kakade et al. [2011] and Pavan, Segal, and Toikka [2014] for

revenue maximization. Garrett and Pavan [2015] develop a novel approach to revenue

maximization based on the local optimality conditions for the principal in the context of

managerial compensation.

In contrast to the general dynamic mechanism design approach developed in Pavan,

Segal, and Toikka [2014], we restrict here attention to allocations (stopping decisions) that

can be implemented by transfers that do not require communication. This restriction is

analytically highly convenient: Firstly, it allows for a sharp characterization of the class of

allocations that can be implemented using these simple transfers. Secondly, the transfers

admit a closed form representation based on constrained processes. On the downside,

excluding communication reduces the set of implementable allocations. There are certainly

settings where communication is necessary in order to implement optimal allocations.

Whether this is the case has to be determined on a case-by-case basis. We present two

applications where the restriction is without loss of generality and where either mechanisms

without communication (“welfare maximization”, Section 3.6) or with communication only

in the first period (“revenue maximization”, Section 3.7) prove to be optimal.

The paper proceeds as follows. Section 2 introduces the model. In Section 3 we show

that all cut-off rules are implementable using posted-price mechanisms and derive the

transfer as an expectation over constrained processes. We derive regularity assumptions

under which also the opposite implication holds true: Every implementable stopping rule is

a cut-off rule. Moreover, the transfer implementing a given cut-off is unique. We apply the

results to principal-agent problems with interdependent values and show that there always
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exists a simple welfare maximizing mechanism which does not require any communication.

We discuss revenue maximization for the class of additive random walks. In this case a

revenue maximizing contract is given by a transfer which only depends on the initial type

and the realized stopping decision. In Section 4 we relate the findings to optimal stopping

and derive a new characterization of the option value and the optimal cut-off. Section 5

concludes. All proofs not presented in the main text are given in the Appendix.

2 The Model

2.1 Evolution of the Private Information

Time is discrete and indexed by t ∈ {0, 1, . . . , T} = T, for some fixed time horizon T <∞.

At every point in time t ∈ T the agent privately observes a real-valued Markov process

Xt on a filtered probability space (Ω,F ,P, (Ft)t∈T). The initial value of the process X0 is

distributed according to the distribution function F : R→ [0, 1],

P [X0 ≤ z] = F (z) .

The formulation allows for completely general Markov processes which satisfy the following

weak regularity assumptions.

Standing Assumption 1 (Polynomial Growth). X is of polynomial growth, i.e. there

exists a number p > 0 and a constant C > 0 such that

E [|Xt+1|p |Xt = x] ≤ C(1 + |x|p) for all x ∈ R .

We say that a function φ : R→ R is of polynomial growth if there exists a constant

C̃ > 0 such that |φ(x)| ≤ C̃(1 + |x|p) for all x ∈ R with the same p as in Assumption 1.

Assumption 1 assures that expected values of polynomial growth functions are finite with

respect to the conditional probability measure of the process X.

Standing Assumption 2 (Monotone Transitions). A higher value of the process x′ ≥ x

at time t leads to a higher value of the process at time t + 1 in the sense of first order

stochastic dominance

P [Xt+1 ≤ z |Xt = x′] ≤ P [Xt+1 ≤ z |Xt = x] for all z ∈ R . (1)
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Standing Assumption 3 (Continuous Transitions). For every t ∈ T and for every

continuous, polynomial growth function φ : R→ R the function x 7→ E [φ(Xt+1) |Xt = x]

is continuous.

All Markov processes commonly used in the economic literature satisfy these as-

sumptions. The following result, proven in the Appendix, shows that for processes with

independent, multiplicative or additive random shocks the assumptions are satisfied

Example 1 (Additive Random Walk). Let Xt = X0 +
∑

s≤t εs be the sum of identically

distributed, independent shocks (εt)t∈T with finite second moment E [ε2t ] = σ2 <∞.

Example 2 (Multiplicative Random Walk). Let Xt = X0

∏
s≤t εs be the product of

identically distributed, non-negative, independent shocks (εt)t∈T with finite second moments

E [ε2t ] = σ2 <∞.

Proposition 1 (Regularity of Random Walks). Additive and Multiplicative Random Walks

are of polynomial growth of order p = 2 and have continuous and monotone transitions.

Assumptions 1,2 and 3 are standing assumptions which hold throughout the paper. If

explicitly stated we impose additional assumptions. For some of the uniqueness results we

assume that the probability measure governing the transitions of X has full support.

Condition 1 (Full Support). For every x ∈ R, a < b and t < T we have

P [Xt+1 ∈ [a, b) |Xt = x] > 0 .

Moreover the distribution function F of the initial value X0 is absolutely continuous.

2.2 Strategies and Payoffs of the Agent

Based on her past observations of the process the agent decides when to stop. Denote by

T the set of (Ft)-adapted stopping rules with values in T. A stopping rule is a complete

contingent plan which maps every history observed by the agent into a binary stopping

decision.

The agents payoff consists of three parts. At any time t before stopping the agent

receives a flow payoff f(t,Xt). At the time she stops she receives a final payoff g(τ,Xτ ).

At any time t after stopping she obtains a flow payoff h(t,Xt). The agent is risk-neutral
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and her expected payoff V (τ) when using the stopping rule τ equals

V (τ) = E

[(
τ−1∑
t=0

f(t,Xt)

)
+ g(τ,Xτ ) +

(
T∑

t=τ+1

h(t,Xt)

)]
. (2)

The continuous, polynomial growth payoff functions f, g, h : T× R→ R depend on time t

and the value of the process Xt.

Definition 1 (Marginal Incentive). We define the marginal incentive of the agent z :

T × R → R as the expected change in payoffs when instead of stopping in period t she

stops in period t+ 1

z(t, x) = f(t, x) + E [g(t+ 1, Xt+1)− g(t, x)− h(t+ 1, Xt+1) |Xt = x] . (3)

We will show later that z completely determines the agents preferences over stopping

rules. In static mechanism design with real-valued private information one often imposes

a single crossing condition. This condition ensures that the agent’s change in utility from

getting a higher allocation is decreasing in her private information. In the dynamic setup,

allocations differ in the time dimension. The stopping time τ rather describes when the

agent is getting the object instead of how much of the object the agent is getting. We

impose the following analogue of the static single crossing condition, which requires the

agent’s change in payoffs from stopping one period later to be decreasing in her private

information.

Standing Assumption 4 (Dynamic Single Crossing).

The marginal incentive z(t, x) is strictly decreasing in x for every t ∈ T.

To ensure that Assumption 4 holds one can impose the following monotonicity conditions

on f, g and h. If h is increasing and f and E [g(t,Xt+1)− g(t,Xt) |Xt = x] are decreasing

in x and if there is at least one strict monotonicity, then z is strictly decreasing.

The single crossing condition is satisfied and has a natural interpretation in many

economic models. To illustrate this and the general setup, let us briefly describe three

examples. In a search model, the dynamic single crossing condition means that it is

more costly to reject a good offer than to reject a bad offer. In an irreversible investment

problem where the process X represents the demand, it means that the loss in profits from

entering the market is higher if the demand is higher. In a two-state one-armed bandit

model, the process X is the posterior belief that the state of the world is low. The single
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crossing condition is satisfied since the expected payoff is lower the higher the value of X.

In the following examples we discuss three models in more detail.2

Here δ < 1 denotes a discount factor.

Example 3 (Search without Recall). In every period t ∈ T a worker receives a job-

offer. The wages Xt of the offers are independently drawn from a known distribution

H : R+ → [0, 1], with mean µH =
´

R+
wdH(w). The worker aims at maximizing her

discounted expected income V (τ) = E [
∑∞

t=τ δ
tXτ ] = E

[
δτXτ
1−δ

]
. The marginal incentive

equals

z(t, x) = E

[
δt+1Xt+1

1− δ
− δtXt

1− δ
|Xt = x

]
=
δt (δµH − x)

1− δ
, (4)

and thus satisfies the dynamic single crossing condition for every distribution of job-offers

H.

Example 4 (Search with Recall). A worker receives a job-offer with wage wt every period

t ∈ T. The wages are independently drawn from a known distribution H : R+ → [0, 1].

The worker can recall past offers such that at time t she will accept her best previous

offer, i.e. Xt = max{ws : s ≤ t}. She aims at maximizing her discounted expected income

V (τ) = E [
∑∞

t=τ δ
tXτ ] = E

[
δτXτ
1−δ

]
. The marginal incentive is given by

z(t, x) = E

[
δt+1Xt+1

1− δ
− δtXt

1− δ
|Xt = x

]
=
δt
(
δ
´

R+
max{w, x}dH(w)− x

)
1− δ

. (5)

As ∂z(t, x)/∂x = δt(δ(1−H(x))− 1)/(1− δ) < 0 the dynamic single crossing condition is

satisfied for every distribution of job-offers H.

Example 5 (A Bandit Model of Rational Learning). There are two states of the world

θ ∈ {l, h}. The returns (Rt) from running a company are distributed according to Hθ : R→
[0, 1] depending on the state θ. A manager observing the returns decides at which time τ to

liquidate the firm in order to maximize expected discounted returns V (τ) = E
[∑τ−1

t=0 δ
tRt

]
.

As the expected returns depend only on the conditional probability that the world is

in low state Xt = P [θ = l | Ft], using the law of iterated expectations, we can rewrite

the objective function as V (τ) = E
[∑τ−1

t=0 δ
t (µh −Xt(µh − µl))

]
. Here, µθ =

´
R rdHθ(r)

denotes the expected return conditional on the state of the world θ. Without loss of

2Note that the restriction to one-dimensional processes precludes search models where workers have
different types. In a learning model a special signal structure needs to be assumed to ensure that the
posterior belief is a one-dimensional Markov process. Examples are the commonly used normal prior with
normal signals or any prior which assigns probability only to two states.
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generality we assume µh ≥ µl. The marginal incentive equals z(t, x) = δt (µh − x(µh − µl))
and the dynamic single crossing condition is satisfied for every pair of distributions Hl, Hh.

For some results we assume in addition that z is unbounded, which ensures that it

is optimal to stop for sufficiently high values of the process and optimal to continue for

sufficiently low values of the the process.

Condition 2 (Unbounded Marginal Incentive).

We have limx→∞ z(t, x) = −∞ and limx→−∞ z(t, x) =∞ for every t ∈ T.

3 Implementable Stopping Rules and Transfers

We want to characterize how the behavior of the agent can be influenced using a transfer

π : T → R that only depends on the realized stopping decision, but not on the path of

the process X the agent observes. The transfer π is paid to the agent in addition to her

payoffs f, g, h and is thereby changing her preferences over stopping times.

Definition 2 (Implementable Stopping Rule). A stopping rule τ ? is implemented by a

transfer π if τ ? is the minimal3 stopping rule satisfying

sup
τ∈T

V (τ) + E [π(τ)] = V (τ ?) + E [π(τ ?)] . (6)

We say that τ ? is implementable if there exists a transfer π that implements it.

Such a transfer rule has multiple attractive economic features: As the transfer π is

independent of the realization of the process X it can be paid even if the realization

of X is unobservable. The only required information is the realized stopping decision.

Intuitively, it suffices to know that the agent stopped, instead of for what reasons she

stopped. Furthermore, as the transfer depends only on the stopping decision it requires

no communication.

The expected payoff V defines a preference relation over stopping times. The agent

prefers the stopping time τ over τ ′ if and only if V (τ) ≥ V (τ ′). The next result, proven in

the Appendix, shows that the preferences of the agent over stopping times depend only on

her marginal incentive to delay the allocation.

3A stopping rule τ is minimal in a set of stopping rules S ⊆ T if τ ≤ τ ′ almost surely for all τ ′ ∈ S.
Note that minimal stopping times are almost surely unique. If τ, τ ′ ∈ S ⊆ T are minimal stopping times
in S, then τ ≤ τ ′ ≤ τ and hence τ = τ ′ almost surely.
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Proposition 2. The expected payoff of the agent when using the stopping rule τ can be

represented as the sum of the payoff of stopping in period zero plus her expected marginal

incentives

V (τ) = E

[
τ−1∑
t=0

z(t,Xt)

]
+ V (0).

Proposition 2 shows that the agent’s preferences over stopping times are completely

determined by the marginal incentive z to delay the allocation to the next period. Note

that Proposition 2 is a result about expected payoffs. The realized payoffs for a given path

of X may differ. As a consequence of Proposition 2 the definition of implementability can

be simplified. A stopping time τ ? is implemented by the transfer π if τ is the minimal

stopping time satisfying4

sup
τ∈T

E

[
τ−1∑
t=0

z(t,Xt) + π(τ)

]
= E

[
τ?−1∑
t=0

z(t,Xt) + π(τ ?)

]
. (7)

It is convenient to generalize the agent’s payoff V and to allow for arbitrary initial times t

and initial values x. Let Tt,T denote the set of all stopping rules with values in the set

{t, . . . , T}. For any stopping rule τ ∈ Tt,T we define the agent’s expected continuation

value by

Vt,x(τ) = E

[(
τ−1∑
s=t

f(s,Xs)

)
+ g(τ,Xτ ) +

(
T∑

s=τ+1

h(s,Xs)

) ∣∣Xt = x

]
. (8)

For every transfer π we introduce the agent’s value function vπ : T× R→ R as

vπ(t, x) = sup
τ∈Tt,T

(Vt,x(τ) + E [π(τ) |Xt = x])− Vt,x(t).

Hence, vπ(t, x) − π(t) is the difference between the expected payoff when continuing

optimally and stopping immediately. Put differently, the difference vπ(t, x)− π(t) is the

agent’s willingness to pay for the option to stop after period t. It follows from the argument

in Proposition 2 that vπ is the supremum of the sum of expected future marginal incentives

and the transfer, when the agent follows the optimal continuation strategy

vπ(t, x) = sup
τ∈Tt,T

E

[
τ−1∑
s=t

z(s,Xs) + π(τ) |Xt = x

]
. (9)

4We use the convention
∑t−1

s=t · = 0.
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Since the agent always has the opportunity to stop immediately, i.e. to choose τ = t, it

follows vπ(t, x)−π(t) ≥ 0. At each time t the agent faces the binary decision of continuing

or stopping. Given a value x of the process at time t she bases her decision on whether

the value of the option to continue is positive. If vπ(t, x)− π(t) = 0, then there is no gain

from continuing and the agent stops. If vπ(t, x)− π(t) > 0, the agent continues at least

one more period. Intuitively, it follows that the minimal optimal stopping rule for the

agent is given by5

τ ? = inf {t ≥ 0 |Xt ∈ Dπ(t)} ∧ T, (10)

where the so-called stopping region Dπ(t) is defined by Dπ(t) = {x ∈ R | vπ(t, x) = π(t)}. If

the agent decides to stop at time t, she receives the transfer π(t). If it is optimal to continue,

she obtains the marginal incentive z(t, x) plus the expected value of continuing optimally

in the next period E [vπ(t+ 1, Xt+1) |Xt = x] . This leads to the dynamic programming

principle which represents the value function in recursive form for all t ∈ T and x ∈ R

vπ(t, x) = max {π(t), z(t, x) + E [vπ(t+ 1, Xt+1) |Xt = x]} . (11)

For a rigorous derivation of Eq.s (10) and (11) we refer to Peskir and Shiryaev [2006,

Chapter 1, Theorem 1.9]. The following Lemma establishes the regularity of the value

function for every transfer.

Lemma 1. vπ is non-increasing, continuous and of polynomial growth in x.

We introduce the notion of cut-off rules. Cut-off rules are stopping rules such that the

agent stops the first time the process X exceeds a time-dependent threshold b. A mapping

b : T→ R6 with b(T ) = −∞ is called a cut-off.

Definition 3 (Cut-Off Rule). A stopping rule τ is a cut-off rule if there exists a cut-off b

such that almost surely

τ = inf {t ≥ 0 |Xt ≥ b(t)} ∧ T.

We denote the cut-off rule corresponding to the cut-off b by τb. If −∞ < b(t) <∞ for all

t < T we call b a finite cut-off and τb a finite cut-off rule.

The next Lemma shows that under the full support condition we can uniquely recover

the cut-off b of a cut-off rule τ .

5We use the notation x ∧ y = min{x, y} .
6Here and in the sequel R = R ∪ {∞} ∪ {−∞}
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Lemma 2. Suppose that the process X has full support, i.e. Condition 1 holds. Then for

every cut-off rule τ there exists a unique cut-off b satisfying τ = τb almost surely.

In Section 3.1 we show that every implementable stopping rule is a cut-off rule. In

Section 3.3 we show that all cut-off rules are implementable. The associated transfer admits

an explicit representation in terms of the constrained version of X which we introduce in

Section 3.2.

3.1 All Implementable Stopping Rules are Cut-off Rules

It is known that if one imposes the single crossing condition in a static mechanism design

problem, an allocation rule can be implemented if and only if it is monotone. In the

dynamic setup, cut-off rules play the role of monotone allocations. Indeed, Assumption 2

implies that a cut-off rule τb is monotone in the sense of first order stochastic dominance:

For any t < s the probability that X exceeds b before time s is increasing in the conditional

value of X at time t

P [τb ≤ s |Xt = x′] ≤ P [τb ≤ s |Xt = x] for all x′ < x < b(t) .

The next Proposition shows that only cut-off rules are implementable.

Proposition 3. If the stopping rule τ is implementable, then τ is a cut-off rule.

While the proof of Proposition 3 is given in the Appendix the intuition is straightforward:

The gain from continuing vπ equals the sum of future marginal incentives z. The marginal

incentive is decreasing in x by Assumption 4. By Assumption 2 higher values of x today

lead to higher values in all later periods (in the sense of first order stochastic dominance).

Thus, if it is optimal for an agent with value x = Xt to stop the process then stopping is

also optimal for all agents with higher values Xt = x′ > x .

The next result provides a condition on the marginal incentive such that at every point

in time at least some agents stop and some continue, i.e. every implementable cut-off b(t)

is finite. Under Condition 2 the marginal incentive z(t, x) to delay the stopping decision

from time t to t + 1 gets arbitrarily large as x decreases. We show that this condition

suffices to guarantee that for any transfer π there exists some level x ∈ R where it is

strictly optimal for the agent to continue. Moreover there exists a finite threshold x > x

where it is optimal to stop. In between these two levels there exists a number b(t) ∈ [x, x]

where the agent is indifferent between stopping and continuing.

13
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Random Walk and Constrained Random Walk

Figure 1: The binomial random walk (dashed blue line) and the constrained binomial
random walk (solid red line) starting in X0 = 8 constrained by the constant cut-off
b(t) = 10.

Proposition 4. If Condition 2 holds and the stopping rule τ is implemented by a transfer

π, then τ is a cut-off rule with a finite cut-off b. The agent is indifferent between stopping

and continuing at the cut-off

vπ(t, b(t)) = π(t) = sup
τ∈Tt+1,T

E

[
τ−1∑
s=t

z(s,Xs) + π(τ) |Xs = b(t)

]
. (12)

3.2 Constrained Processes

In this section we introduce a distortion of the process X that plays the crucial role in

designing mechanisms in optimal stopping problems. For a given cut-off b we convert X

to a new process X̃ which is called the constrained version of X. It is characterized as

the Markov process which evolves as X below b, but is constrained to be on the cut-off b

whenever X tries to exceed it. We show that the transfer implementing the given cut-off

rule τb can be represented as an expectation over the constrained version X̃ of X.

For an illustration we first present the construction of a constrained random walk (see

also Figure 1).
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Example 6 (Constrained random walk). As in Example 1 let X be a random walk, i.e.

Xt = X0 +
∑

s≤t εs with P [εs = 1] = P [εs = −1] = 1
2
. In this case the constrained version

can be constructed path-by-path. First, set X̃0 = X0 ∧ b(0) and then define X̃ recursively

by X̃t+1 = (X̃t + εt+1) ∧ b(t+ 1) for all t < T .

For general Markov processes we take a different approach to construct the constrained

version. We first modify the transition probabilities of the original process X and then

we define X̃ as the Markov process having these new transition probabilities. To simplify

notation we define the transition kernel Pt,s of X for t < s ∈ T , which acts on polynomial

growth, measurable functions by

(Pt,sφ)(x) = E [φ(s,Xs) |Xt = x] .

Assumption 2 implies that the kernel Pt,t+1 preserves monotonicity: If φ : R → R is

non-increasing then Pt,t+1φ is non-increasing as well. Assumptions 1 and 3 ensure that for

every continuous, polynomial growth function φ the function Pt,t+1φ is continuous and of

polynomial growth as well.

For every t < T we define the transition kernel of the constrained process P̃t,t+1 which

acts on bounded, measurable functions by

(P̃t,t+1φ)(x) = E [φ(Xt+1 ∧ b(t+ 1)) |Xt = x] . (13)

We extend the family of kernels to a semi-group (P̃t,s)t≤s via the composition P̃t,sφ =

P̃t,t+1(P̃t+1,t+2 . . . (P̃s−1,sφ)). The operator P̃t,t is defined to be the identity. Then there

exists a Markov process X̃ on some filtered probability space (Ω̃, F̃ , P̃, (F̃t)t∈T) with the

transition kernel P̃ . We call X̃ the constrained version of X.

Above, we defined the constrained process X̃ as the unique Markov process which

follows the same transitions as the original process which is constrained by the cut-off

P̃
[
X̃t+1 ∈ A | X̃t = x

]
= P

[
Xt+1 ∧ b(t+ 1) ∈ A |Xt = x

]
.

The constrained process has two important properties: First, the transition probabilities

of X̃ and X coincide below the cut-off, i.e. for all set below the cut-off A ⊂ (−∞, b(t+ 1))

P̃
[
X̃t+1 ∈ A | X̃t = x

]
= P

[
Xt+1 ∈ A |Xt = x

]
.
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Second, the constrained process X̃ never exceeds the cut-off, i.e.

P̃
[
X̃t+1 > b(t+ 1) | X̃t = x

]
= 0 .

3.3 All Cut-Off Rules are Implementable

As shown in Section 3.1 only cut-off rules are implementable. In this section we prove the

opposite direction, i.e. every finite cut-off rule is implementable. For a given cut-off rule

we define the transfer and explicitly verify that it implements the cut-off rule. In static

mechanism design every monotone allocation rule is implemented by a transfer equal to

the integral over marginal incentives (cf. Guesnerie and Laffont [1984]). In the dynamic

context cut-off rules are the equivalent of monotone allocation rules.7 The transfer π

implementing a finite cut-off rule τb equals the expected future marginal incentive z to

delay the allocation evaluated at the process X̃ constrained by the cut-off b

π(t) = Ẽ

[
T−1∑
s=t

z(s, X̃s) | X̃t = b(t)

]
for t < T and π(T ) = 0 . (14)

Theorem 1. Every finite cut-off rule τb is implemented by the transfer defined in Eq.

(14).

While the proof is given in the Appendix the result can be understood intuitively:

Suppose the transfer (π(s))s∈{t+1,t+2,...} provides incentives to stop if and only if Xs ≥ b(s)

for all s > t . Then for any agent with a value Xs ≥ b(s) it is optimal to stop and thus she

behaves exactly as an agent with value Xs = b(s) . Therefore, we can identify all agent

above the cut-off with the agent on the barrier who finds it also optimal to continue.

Consequently, the continuation value if Xt = b(t) is given by the sum of marginal incentives

if we replace the original process by the constrained process

sup
τ

E

[
τ−1∑
s=t

z(s,Xs) + π(τ) |Xt = b(t)

]
= E

[
τ−1∑
s=t

z(s, X̃s) | X̃t = b(t)

]
.

As on the cut-off the agent is indifferent between stopping with the transfer π(t) and

7Under the single crossing condition and additional regularity assumptions one can use Proposition 2
to establish that the set of cut-off rules coincides with the set of Markovian average monotone allocations
in the sense of Corollary 1 from Pavan, Segal, and Toikka [2014]. Theorem 3 of Pavan et al. then implies
that cut-off rules can be implemented in a direct mechanism, using transfers that depend on the complete
history of reports.
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receiving the above continuation value, Eq. (14) follows.

3.3.1 Comparative Statics

The closed form solution for the transfer obtained in Eq. (14) allows to easily derive

comparative statics. First, as the transfer is the sum of marginal incentives, increasing the

marginal incentive z increases the transfer.

Corollary 1. The transfer defined in Eq. (14) is nondecreasing in z, i.e. let z(t, x) ≤
ẑ(t, x) for all t and x and let π, π̂ be the associated solutions of Eq. (14), then π(t) ≤ π̂(t).

Intuitively, if the incentive to continue increases, the transfer to the agent when she

stops has to increase to motivate her to maintain her stopping decision.

If the incentive to delay stopping is nonnegative z ≥ 0 then the transfer obtained in

Eq. (14) is decreasing over time. To see this note that π(t) and π(t+ 1) differ in two ways:

First, the sum defining π(t) includes the marginal incentive z(t, b(t)) at time t which is

by assumption positive. Second, the expectation over the other elements of the sum is

taken conditional on X̃t = b(t) instead of X̃t+1 = b(t+ 1). As X̃t+1 is smaller b(t+ 1) by

definition of the constrained process, the transition operator of the constrained process is

monotone and z is monotone by the single crossing assumption the expectation over the

difference of the other elements of the sum is positive as well.

Corollary 2. The transfer defined in Eq. (14) is nonincreasing over time if z(t, x) ≥ 0

for all (t, x).

Intuitively, as the incentive to wait is positive the agent has to be compensated less at

later points in time as she has less opportunity to wait.

Due to the monotonicity of z the transfer obtained in Eq. (14) is monotone in the

constrained process X̃. As the reflected process X̃ is monotone (in the sense of FOSD) in

the cut-off b it thus follows that the transfer is monotone decreasing in the cut-off.

Corollary 3. The transfer is nonincreasing in the barrier, i.e. let b(t) ≤ b̂(t) for all t and

π, π̂ the solutions of Eq. (14) for the cut-offs b, b̂ then π(t) ≥ π̂(t).

3.4 Examples

One advantage of the solution method based on constrained processes is the explicit

characterization of transfers derived in Eq. (14). The next two examples provide formulas

for the transfers in search models with and without recall.
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Example 7 (Search without Recall continued). In a search problem without recall, as

defined in Example 3, the independence of the offers Xt implies that a constrained version of

X is given by X̃t = Xt∧b(t) . Using that the marginal incentive equals (1−δ)−1δt (δµH − x)

(see Eq. (4)), every finite cut-off rule τb can implemented by the transfer

π(t) = Ẽ

[
T−1∑
s=t

z(s, X̃s) | X̃t = b(t)

]
= E

[
T−1∑
s=t

z(s,Xs ∧ b(s)) |Xt = b(t)

]

=
δt(δµ− b(t))

1− δ
+

T−1∑
s=t+1

δs
(
δµH −

´
R+
w ∧ b(s)dH(w)

)
1− δ

.

Example 8 (Search with Recall continued). In a search problem with recall, defined

as in Example 4, the process X of the current best offer is non-decreasing. Therefore a

constrained version of X for a decreasing cut-off b is given by X̃t = Xt ∧ b(t). Using that

the marginal incentive equals (1− δ)−1δt
(
δ
´

R+
max{w, x}dH(w)− x

)
(see Eq. (5)), we

obtain that every finite cut-off rule τb with a decreasing cut-off b can be implemented by

the transfer

π(t) = E

[
T−1∑
s=t

z(s,Xs ∧ b(s)) |Xt = b(t)

]
=

T−1∑
s=t

δt
(
δ
´

R+
max{w, b(s)}dH(w)− b(s)

)
1− δ

.

3.5 Uniqueness of the Transfer

An important result in static mechanism design and auction theory is the revenue equiv-

alence theorem. It was first observed in Vickrey [1961] that many classical auction

mechanisms (first-price auctions, Dutch auctions, English auctions, and second-price

auctions) lead to the same expected transfers. This result was later generalized to many

other auction setups and mechanism design problems. The revenue equivalence theorem

states that the expected transfers implementing a given allocation rule are unique up

to a constant. The following proposition shows that revenue equivalence holds in the

dynamic model, if one imposes a full support condition similar to the one necessary in

static mechanism design problems.8

8The same result is derived in Theorem 2 in Pavan, Segal, and Toikka [2014] for general “regular”
environments. The environment presented in this paper is not regular in the sense of Pavan et al. as
g, h are neither assumed to be differentiable (U-D) nor Lipschitz continuous (U-ELC). Furthermore, the
processes considered in this paper do not necessarily have bounded impulse responses (F-BIR). The
techniques used here to establish the payoff equivalence do not rely on envelope arguments.
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Proposition 5 (Payoff Equivalence). Suppose that X has full support (Condition 1) and

let τ be a finite cut-off rule, then the transfer implementing τ is unique up to an additive

constant.

Proof. Let π, π̂ be two payments implementing τ such that π(T ) = π̂(T ) and let v = vπ

and v̂ = vπ̂ denote the associated value functions. We show that the two value functions

coincide: v(t, x) = v̂(t, x) for all t ∈ T and x ∈ R. This implies uniqueness of the transfer

since by Lemma 2, there exists b such that b is the unique cut-off satisfying τ = τb and

hence Eq. (12) holds for vπ as well as for vπ̂ with the same cut-off b. In particular we have

π(t) = v(t, b(t)) = v̂(t, b(t)) = π̂(t). At time T we clearly have v(T, x) = v̂(T, x) for all

x ∈ R. Using this as induction basis we obtain by Eq. (12) for t < T

π(t) = z(t, b(t)) + Pt,t+1v(t, b(t)) = z(t, b(t)) + Pt,t+1v̂(t, b(t)) = π̂(t).

Therefore the dynamic programming principle (11) implies v(t, x) = v̂(t, x) for all x ∈
R.

The reason why uniqueness fails without the full support condition is the same as in

static mechanism design with a discrete type space: As for every realization of the process

X that happens with positive probability, the agent might have a strict preference, we can

slightly change the transfer without influencing the agent’s optimal strategy. Similarly if

the cut-off is infinite, i.e. the agent should stop/continue for every realization of Xt, there

might be no agent who is indifferent and we can increase/decrease the transfer without

changing the agent’s behavior.

If Condition 2 is satisfied, i.e. the marginal incentive is unbounded, all implementable

stopping rules are finite cut-off rules by Proposition 4 and hence the transfers are always

unique up to a constant.

3.6 Welfare in Principal Agent Problems

In this section we use the characterization of implementable stopping rules to construct a

simple welfare maximizing mechanism for general optimal stopping problems. Suppose

there is a principal who aims at maximizing social welfare

W (τ) = E

[(
τ−1∑
t=0

f̂(t,Xt)

)
+ ĝ(τ,Xτ ) +

(
T∑

t=τ+1

ĥ(t,Xt)

)]
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over stopping rules τ ∈ T . As in Section 2 the agent’s expected payoff V (τ) is determined

by the triplet of functions f, g, h. As the functions f̂ , ĝ, ĥ do not necessarily coincide with

f, g, h, the principal and the agent in general want to use a different stopping rule in

order to maximize their payoff. Assume the principal’s and the agent’s payoffs satisfy

the dynamic single crossing condition. Let us denote by τ̂ the minimal stopping time

which is optimal for the principal W (τ̂) = supτ∈T W (τ) . If the principal could observe the

realization of the process X directly, she would use the policy τ̂ . A direct implication of

our results is that the principal can implement τ̂ even if the agent observes the process X

privately.

Theorem 2. There exists a transfer π : T → R which only conditions on the time the

agent stopped that implements the principal optimal stopping time τ̂ , i.e.

V (τ̂) + E [π(τ̂)] = sup
τ∈T

V (τ) + E [π(τ)] .

Proof. As the minimal optimal stopping rule is implementable by a transfer of zero the

principal’s objective function W is maximized by a cut-off rule τ̂ by Proposition 3. By

Theorem 1 there exists a transfer π which only conditions on the time the agent stopped

that implements τ̂ .

Note that a simple transfer which conditions only on when the agent stopped and does

not require any communication, suffices to maximize welfare. This might make the results

appealing from an applied perspective. For example, in the context of job search this

means that there is no need for the worker to report her job-offers to the unemployment

agency to implement a welfare maximizing mechanism.

3.7 Revenue Maximization

While the previous section discussed the case when the principal has no preferences over

transfers this section discusses revenue maximization. Transfers without communication

cannot be used to implement the revenue maximizing allocation. Still, in the case of an

additive random walk we can use the results developed in the previous sections to establish

a result similar to Board [2007]: The revenue maximizing contract for selling an investment

option is a menu of option contracts and as such only requires communication in the first

period. While Board [2007] focuses on the time-homogeneous case the analysis below
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shows that this result continues to hold in the time-inhomogeneous case if one allows for

time-dependent strike prices.

For simplicity and without affecting the qualitative results we assume that the principal

has no intrinsic preferences over stopping rules, i.e. f̂ , ĝ, ĥ ≡ 0 and aims at minimizing

the expected transfer E [π] subject to the constraint that every time zero type x finds it

optimal to participate in the mechanism

E

[(
τ−1∑
t=0

f(t,Xt)

)
+ g(τ,Xτ ) +

(
T∑

t=τ+1

h(t,Xt)

)
+ π |X0 = x

]
≥ 0 . (15)

Throughout the section we assume that Xt = X0 +
∑t

s=1 εs is an additive random walk (cf.

Example 1).9 The distribution of the initial value F is absolutely continuous, with strictly

positive density F ′ on [0, x) with x ≤ ∞, and decreasing hazard rate d(x0) = 1−F (x0)
F ′(x0)

.

Furthermore, we assume that f, g, h are differentiable in x with bounded derivative.

In particular this implies that the marginal incentive z is differentiable and Lipschitz

continuous.

While up to now we restricted attention to mechanisms without communication we

allow for communication in this section. In each period t after observing the realization

of the process Xt the agent reports X̂t. A mechanism maps the agent’s reports into a

stopping decision τ and a transfer π.

Definition 4 (Incentive Compatible Mechanism). Let τ : RT → T map reported types X̂

into stopping decision and π : RT → R map reported types into payments.10 A mechanism

(τ, π) is incentive compatible if reporting truthfully maximizes the agent’s payoffs over the

space of all reporting strategies (Ft-adapted stochastic processes).

The assumptions of this section ensure that the environment is regular in the sense

of Pavan, Segal, and Toikka and it follows from Theorem 1 in that paper that in any

incentive compatible mechanism the expected payment E [π] satisfies

−E [π] = E

[
τ−1∑
t=0

z(t,Xt)− zx(t,Xt)
1− F (X0)

F ′(X0)

]
− V0 (16)

where V0 is the expected value of an agent conditional on X0 = 0. Hence, an upper bound

9The case of an multiplicative random walk could be derived analogous using that ∂Xt

∂X0
= Xt

X0
. The

second order single crossing condition in this case is given by x 7→ zx(t, x)x non-decreasing.
10Formally τ is a stopping rule if τ(X) = τ(X ′) if Xt = X ′t for all t ≤ τ.
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on the revenue is given by setting V0 = 0 and maximizing the virtual valuation defined in

Eq. (16). To ensure that the stopping rule maximizing Eq. (16) is a cut-off rule for every

fixed value of X0, we impose the following condition.

Condition 3 (Second Order Single Crossing). The marginal incentive z is convex.

Observe that Condition 3 is for example satisfied in an standard irreversible investment

model where the agent is risk-averse (u concave) over the returns X she receives in every

period t after investing and the investment cost are independent of X, i.e.

V (τ) = E

[
T∑

t=τ+1

u(t,Xt)− c(τ)

]
.

Under Condition 3 the virtual valuation defined in Eq. (16) is maximized by a cut-off

stopping time, where the cut-off depends not only on time t but also on the initial value

X0.

Proposition 6 (Virtual Valuation Maximizing Allocation). Under Condition 3 there

exists a function b : T× R+ → R such that the virtual valuation

E

[
τ−1∑
t=0

z(t,Xt)− zx(t,Xt)d(X0)

]

is maximized by the stopping rule τ ? = min{t ∈ T : Xt ≥ b(t,X0)} ∧ T . Furthermore,

b(t, x0) is non-increasing in x0 .

Proof. For every x0 the function x 7→ z(t, x) − zx(t, x) d(x0) is decreasing and thus

Proposition 3 implies that for a fixed x0 the optimal stopping rule is a cut-off stopping

rule.

Note, that z(t, x)− zx(t, x) d(x0) is decreasing in x0 as the generalized hazard rate d is

decreasing and zx < 0 . Consequently, for every (t, x) such that it is optimal to stop if the

initial value was x0, i.e.

sup
τ

E

[
τ−1∑
s=t

z(s,Xs)− zx(s,Xs)d(x0)

]
= 0 ,

it is also optimal to stop for all higher x′0 ≥ x0 .
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The next theorem establishes that the virtual valuation maximizing allocation of

Proposition 6 can be implemented using simple transfers that only depend on the initial

value of the process and the realized stopping time.

Theorem 3 (Revenue Maximizing Mechanism). There exists a mechanism maximizing

revenue (in the class of all incentive compatible mechanisms) where the agent reports only

her initial value X0 and is free to choose any stopping time. The transfer depends only on

X0 and the realized stopping time τ.

The Proof of Theorem 3 given in the Appendix shows that an agent with a higher

initial value X0 has a stronger preference to use an early stopping time and thus one can

construct payments that make truthful reporting at time zero incentive compatible.

Similar to Theorem 3 Garrett and Pavan [2015] show in a model of managerial

compensation where private information evolves according to an autoregressive process

that communication in the first period suffices to implement the revenue maximizing

allocation.

Example 9 (Selling an Irreversible Investment Option). Consider a monopolistic seller

of an investment opportunity, which can only be exploited by the buyer. We model the

investment problem of the buyer as a standard irreversible investment problem (c.f. Dixit

and Pindyck, 2008). If the buyer invests at time τ she pays investment costs c(τ) and

receives profits Xt depending on a privately observed state Xt at all times t ≥ τ such that

the overall utility of the buyer is given by

T∑
t=τ+1

δtu(Xt)− δτc(τ) .

In this problem the marginal incentive is given by

z(t, x) = δt (δc(t+ 1)− c(t)− δE [u(x+ εt)])

and thus satisfies the first and second order single crossing condition if u is increasing

and concave. By Theorem 3 a revenue maximizing contract is given by a menu of time

dependent price schedules such that the buyer selects one at time zero and makes a

payment only depending the time of investment τ.
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4 Relation to Optimal Stopping

In this section we provide a new closed form characterization of the option value in general

optimal stopping problems as an expectation over constrained processes. We consider the

standard optimal stopping problem, where the agent optimizes her expected payoff V (τ)

over the set of stopping rules τ ∈ T .11 We say that τ ? is the minimal optimal stopping

rule, if it is the minimal stopping rule satisfying V (τ ?) = supτ∈T V (τ).12

The notion of implementability introduced in Definition 2 generalizes the notion of

optimality in the sense that every minimal optimal stopping rule is implementable by a

transfer of zero. Hence, we get the following immediate corollary of Proposition 3, which

reproduces the well known result from optimal stopping theory (see e.g. Jacka and Lynn,

1992).

Corollary 4. The minimal optimal stopping rule is a cut-off rule.

Proof. As every minimal optimal stopping rule is implementable, the optimal stopping

rule is a cut-off rule by Proposition 3.

We define the agent’s option value w : T× R→ R as the difference from stopping at

time t with the value x and continuing with the optimal continuation strategy13

w(t, x) = sup
τ∈Tt,T

Vt,x(τ)− Vt,x(t).

Similar arguments as in the proof of Proposition 2 show that w equals the sum of marginal

incentives z if the agent uses the optimal stopping rule, i.e.

w(t, x) = sup
τ∈Tt,T

E

[
τ−1∑
s=t

z(s,Xs) |Xt = x

]
.

Note that by definition the option value w(t, x) is non-negative as the agent can always

choose τ = t and stop immediately. The option value plays an important role in many

economic applications of optimal stopping, especially in irreversible investment and search

theory. In particular it characterizes the minimal optimal stopping rule as the first time

the option value equals zero τ ? = min{t : w(t,Xt) = 0} .
11Recall that the value V and its generalization Vt,x are defined in Eq.s (2) and (8), respectively.
12Throughout the section we maintain the Standing Assumptions 1, 2, 3 and 4.
13In the mathematical finance literature w is called the time value of V .
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The next result is a new closed form representation of the option value in terms of

constrained processes. Moreover, it provides a new characterization of the optimal stopping

cut-off b.

Proposition 7 (Characterization of the Option Value).

Let b be a finite cut-off. If b satisfies

0 = Ẽ

[
T−1∑
s=t

z(s, X̃s) | X̃t = b(t)

]
, (17)

for all t ∈ T, then τb is the optimal stopping rule and the option value of waiting is the

expected sum over future marginal incentives evaluated at the constrained process, i.e. for

all x ∈ R and all t ∈ T

w(t, x) = Ẽ

[
T−1∑
s=t

z(s, X̃s) | X̃t = x ∧ b(t)

]
. (18)

Under Condition 1 the converse holds true as well. If τb is optimal, then b satisfies Eq.

(17) for all t ∈ T.

Proof. Assume that Eq. (17) holds. Then Theorem 1 implies that τb is implemented by

the zero transfer which means that τb is the minimal optimal stopping time. Eq. (18)

follows from Eq. (21).

Now assume that τb is a minimal optimal stopping rule. Hence, it is implemented by the

zero transfer. By Theorem 1 it is also implemented by the transfer t 7→
∑T−1

s=t Ẽ[z(s, X̃s) | X̃t =

b(t)]. Then Proposition 5 implies Eq. (17).

4.1 A New Pricing Formula for the American Option

A classical problem in finance is the pricing of American options and the description of the

optimal exercise strategy. No analytic solution exists for the optimal exercise strategy and

the valuation of American options. In seminal articles Kim [1990], Jacka [1991] and Carr

et al. [1992] derived an integral equation that characterizes the optimal exercise boundary

in a Black Scholes framework. As we show in this section, our results on optimal stopping

lead to a new characterization of the exercise boundary and the price of American options

as expectations over constrained price processes.

The American put option gives its holder the right - but not the obligation - to sell a

share of a given stock at a prespecified strike price K > 0 at any time before maturity
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T − 1. If the market is free of arbitrage the discounted price process is a martingale under

some measure P, i.e. if the price process (Xt)t∈T is Markov then E
[
Xt+1

1+r
|Xt = x

]
= x .

Given the price process of the stock and a constant interest rate r the fair price of the

American option is given by

sup
τ∈T

E
[
1{τ<T}(1 + r)−τ (K −Xτ )

]
.

Note that if the agent does not exercise the option before time T she receives a payoff of

zero.The marginal incentive is weakly increasing and given by

z(t, x) =

− r K
(1+r)t+1 if t < T − 1

− K−x
(1+r)T−1 if t = T − 1

.

In the following proposition we apply our characterization of the optimal stopping

boundary to the American option. This leads to a new simple representation of the price

of the American put option as the expected discounted value of the constrained price at

the time of maturity. Furthermore, it is worth noting that this characterization holds for

any one-dimensional Markov price process.

Proposition 8 (Exercise Boundary of the American Option). Any barrier b solving

K

(1 + r)t
= E

[
X̃T−1

(1 + r)T−1
| X̃t = b(t)

]
. (19)

is an optimal exercise barrier and the arbitrage free price of the American option given the

stock price equals x at time t equals

P (t, x) = E

[
X̃T−1

(1 + r)T−1−t
| X̃t = x

]
− x .

Proof. By Corollary 4, there exists a barrier b such that it is optimal to exercise the option

the first time the price of the stock falls below b.14 By Proposition 7 the barrier b is

14All arguments presented in the paper before hold for a lower barrier if the marginal incentive is strictly
increasing. If the marginal incentive is only weakly monotone a closer inspection of the proofs yields
that Proposition 3, Proposition 5 and Corollary 4 still hold. Theorem 1 and Proposition 7 only hold in a
weaker version where we do not impose minimality.
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characterized by the equation

0 = E

[
T−1∑
s=t

z(s, X̃s) | X̃t = b(t)

]
= −

T−2∑
s=t

r K

(1 + r)s+1
− E

[
K − X̃T−1

(1 + r)T−1
| X̃t = b(t)

]

This implies Eq. (19). The arbitrage-free price of the American option is given by

P (t, x) = (1 + r)t sup
τ≥t

E
[
1{τ<T}(1 + r)−τ (K −Xτ ) |Xt = x

]
= (1 + r)t

(
E

[
X̃T−1

(1 + r)T−1−t
| X̃t = x

]
− K

(1 + r)t
+

K − x
(1 + r)t

)

= E

[
X̃T−1

(1 + r)T−1−t
| X̃t = x

]
− x .

5 Discussion and Conclusion

We characterized transfers as expectations over constrained processes. In setups where one

can construct the constrained process explicitly, this leads to a closed form representation

of the transfer. We illustrate this point by constructing constrained processes for search

with and without recall (Examples 3 and 4) which leads to closed form solutions of the

transfer implementing a given cut-off rule. For continuous time diffusion processes one can

show that our definition of constrained processes coincides with reflected processes defined

in the probability theory literature. As for the Brownian Motion and the Geometric

Brownian Motion a closed form solution for the reflected process is known, a further

characterization of the transfer can be obtained in those cases.
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Appendix

Proof of Proposition 1. We first consider the multiplicative case. By definition

E
[
|X2

t+1| |Xt = x
]

= x2E
[
ε2t+1

]
= x2σ2 ≤ σ2(1 + |x|2)

and hence X is of polynomial growth of order p = 2. For every x < x′ and any increasing

function φ we have that

E [φ(Xt+1) |Xt = x′]− E [φ(Xt+1) |Xt = x] = E [φ(εt+1x
′)− φ(εt+1x)] ≥ 0.

Setting φ(x) = 1{x≥z} yields that the process X has monotone transitions. Next, let φ

be a continuous, polynomial growth function. Appealing to the dominated convergence

theorem yields

lim
h→0
|E [φ(Xt+1) |Xt = x+ h]− E [φ(Xt+1) |Xt = x]|

≤ lim
h→0

E [|φ(εt+1(x+ h))− φ(εt+1x)|] = E
[
lim
h→0
|φ(εt+1(x+ h))− φ(εt+1x)|

]
= 0 .

Hence X has continuous transitions.

Let us now turn to the additive random walk. We have

E
[
|X2

t+1| |Xt = x
]

= E
[
(x+ εt+1)

2] ≤ 2(x2 + σ2)

and hence X is of polynomial growth of order p = 2. For every x < x′ and any increasing

function φ we have that

E [φ(Xt+1) |Xt = x′]− E [φ(Xt+1) |Xt = x] = E [φ(x′ + εt+1)− φ(x+ εt+1)] ≥ 0.

As in the case of a multiplicative random walk setting φ(x) = 1{x≥z} yields that the process

X has monotone transitions. Finally, let φ be a continuous, polynomial growth function.

Again we employ the dominated convergence theorem to obtain

lim
h→0
|E [φ(Xt+1) |Xt = x+ h]− E [φ(Xt+1) |Xt = x]|

≤ E
[
lim
h→0
|φ(x+ h+ εt+1)− φ(x+ εt+1)|

]
= 0 .
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Proof of Proposition 2. Let τ ∈ T be an arbitrary stopping rule. We will show that

V (τ) = E

[
τ−1∑
t=0

z(t,Xt)

]
+ E

[
g(0, X0) +

T∑
t=1

h(t,Xt)

]

which yields the claim. To this end we rewrite V (τ) as follows

V (τ) = E

[(
τ−1∑
t=0

f(t,Xt)− h(t,Xt)

)
+ g(τ,Xτ )− h(τ,Xτ )

]
+ E

[
T∑
t=0

h(t,Xt)

]
. (20)

Using the the tower property of conditional expectations we can represent the expected

payoff E [g(τ,Xτ )− h(τ,Xτ )] as a sum of flow payoffs as follows

E [g(τ,Xτ )− h(τ,Xτ )]

= E [g(0, X0)− h(0, X0)] + E

[
τ−1∑
t=0

g(t+ 1, Xt+1)− h(t+ 1, Xt+1)− g(t,Xt) + h(t,Xt)

]
= E [g(0, X0)− h(0, X0)]

+ E

[
τ−1∑
t=0

E [g(t+ 1, Xt+1)− h(t+ 1, Xt+1)− g(t,Xt) + h(t,Xt)| Ft]

]

= E [g(0, X0)− h(0, X0)] + E

[
τ−1∑
t=0

z̃(t,Xt)

]
,

with

z̃(t, x) = E [g(t+ 1, Xt+1)− h(t+ 1, Xt+1) |Xt = x]− g(t, x) + h(t, x)

= z(t, x)− f(t, x) + h(t, x).

Then Eq. (20) implies

V (τ) = E

[(
τ−1∑
t=0

f(t,Xt)− h(t,Xt) + z̃(t,Xt)

)]
+E

[
g(0, X0)− h(0, X0) +

T∑
t=0

h(t,Xt)

]
,

which yields the claim.

Proof of Lemma 1. We proceed by backward induction. At time T the value function

vπ(T, x) = π(T ) does not depend on x and hence satisfies the assertions of the Lemma. At
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time t < T the induction hypothesis yields that the function x 7→ Pt,t+1v(x) is continuous,

non-increasing and of polynomial growth of order p. Then the dynamic programming

principle (11) and the single crossing condition yield the claim for vπ.

Proof of Lemma 2. Suppose that Condition 1 holds. We show that b is unique. To this

end assume that there exist two cut-offs b and b̂ such that τ = τb = τb̂ and b(t) < b̂(t) for

some t ∈ {0, . . . , T − 1}. By conditioning on Ft−1 and using the Markov property of X

we obtain

P[τb = t] = P[Xt ≥ b(t), τb > t− 1] = E[E[1{Xt≥b(t)}|Xt−1]1{τb>t−1}].

Similar considerations for τb̂ yield

0 = P[τb = t]− P[τb̂ = t] = E[E[1{Xt≥b(t)} − 1{Xt≥b̂(t)}|Xt−1]1{τb>t−1}]

= E[E[1{b(t)≤Xt<b̂(t)}|Xt−1]1{τb>t−1}].

By the full support condition the random variable E[1{b(t)≤Xt<b̂(t)}|Xt−1] is strictly positive.

Moreover, the full support assumption implies that the event {τb > t− 1} happens with

positive probability. This leads to the contradiction

E
[
E[1{b(t)≤Xt<b̂(t)} |Xt−1]1{τb>t−1}

]
> 0 .

Proof of Proposition 3. Denote by π the transfer implementing τ . Let τD be the first

hitting time of X of the stopping region

τD = inf{t ≥ 0 |Xt ∈ Dπ(t)} = inf{t ≥ 0 | vπ(t,Xt) = π(t)} .

Then Peskir and Shiryaev [2006, Theorem 1.9] yields that τD is a minimal optimal stopping

rule for the agent’s stopping problem given the transfer π. Fix a point in time t and a value

of the process x ∈ Dπ(t) such that it is optimal to stop. By Lemma 1 the value function

vπ is non-increasing and hence for every point x′ ≥ x we have π(t) = vπ(t, x) ≥ vπ(t, x′) .

By definition the value function vπ is bounded from below by π(t) and hence we have

vπ(t, x′) = π(t). Thus every value x′ ≥ x is in the region x′ ∈ Dπ(t) where it is optimal

for the agent to stop. This implies that the stopping region Dπ(t) is an interval which is

unbounded on the right. Again by Lemma 1 the function x 7→ vπ(t, x) is continuous and

hence Dπ(t) is closed. Therefore there exists some b(t) ∈ R such that Dπ(t) = [b(t),∞).
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This implies that τD is a cut-off rule with cut-off b. For every minimal optimal stopping

rule we have τ = τD almost surely and hence τ is a cut-off rule.

Proof of Proposition 4. Let b be the cut-off from Proposition 3 such that Dπ(t) = [b(t),∞)

and τ = τb almost surely. Under Condition 2, since vπ is non-increasing in x, there exist

x, x ∈ R such that

z(t, x) + E [vπ(t+ 1, Xt+1) |Xt = x] ≤ π(t) < z(t, x) + E [vπ(t+ 1, Xt+1) |Xt = x] .

Hence, at x it is optimal for the agent to stop and we have x ∈ Dπ(t). In particular it

follows that b(t) ≤ x <∞. The agent strictly prefers continuing to stopping at x which

means that x /∈ Dπ(t) and consequently b(t) > x > −∞. We deduce that τ is a finite

cut-off rule.

Since b(t) is the minimal element of Dπ(t) we have that vπ(t, b(t)) = π(t). On the other

hand we have vπ(t, x) = z(t, x) +Pt,t+1vπ(x) for all x < b(t). Now taking the limit x↗ b(t)

yields vπ(t, b(t)) = z(t, b(t)) + Pt,t+1vπ(b(t)), where we used Lemma 1 and Assumption 3.

The definition of vπ establishes Eq. 12.

Proof of Theorem 1. First, we claim that for the transfer defined in Eq. (14) the value

function defined in Eq. (9) satisfies

vπ(t, x) =
T−1∑
s=t

P̃t,sz(x ∧ b(t)). (21)

To prove Eq. (21) we proceed via backward induction. At time T we have by definition

π(T ) = 0 and vπ(T, x) = 0 for all x ∈ R. At time t < T first observe that we have by

induction hypothesis

E [vπ(t+ 1, Xt+1) |Xt = x] =
T−1∑
s=t+1

E
[
P̃t+1,sz(Xt+1 ∧ b(t+ 1)) |Xt = x

]
=

T−1∑
s=t+1

P̃t,sz(x) .

The dynamic programming principle implies

vπ(t, x) = max
{
π(t), z(t, x) + E [vπ(t+ 1, Xt+1) |Xt = x]

}
= max

{
π(t),

T−1∑
s=t

P̃t,sz(x)
}
.

By the single crossing condition and Assumption 2 we obtain that the mapping x 7→ P̃t,sz(x)
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is non-increasing for every s > t. As we have by definition π(t) =
∑T−1

s=t P̃t,sz(b(t)) this

yields Eq. (21).

The fact that x 7→ z(t, x) is strictly decreasing implies that x 7→
∑T−1

s=t P̃t,sz(x) is

strictly decreasing as well. From Eq. (21) we conclude that the stopping region is equal to

the interval Dπ(t) = [b(t),∞). Then Peskir and Shiryaev [2006, Theorem 1.9] yields that

τb is a minimal stopping rule implemented by π, i.e. solves Eq. (7).

Proof of Theorem 3. By Theorem 1 we can find a transfer φ(τ, x̂0) depending only on the

realized stopping time and the initial report that implements the cut-off stopping time

τ(x̂0) = min{t ∈ T : Xt ≥ b(t, x̂0)} ∧ T ,

for every not necessarily truthful time zero report x̂0. Thus, it only remains to verify that

we can make reporting truthfully at time zero incentive compatible. We do so by adding a

constant ψ(x̂0) depending on x̂0 but independent of the realized stopping time τ to the

transfer φ.

Denote by W (x0, x̂0) the value of the agent if her initial type is x0 and she deviates

by reporting x̂0 and after time zero uses the optimal strategy τ(x̂0). The derivative of W

with respect to her initial type x0 if she reported to be of type x̂0 is given by

∂

∂x0
W (x0, x̂0) =

∂

∂x0
E

[(
τ(x̂0)−1∑
t=0

f(t,Xt)

)
+ g(τ(x̂0), Xτ(x̂0))

+

(
T∑

t=τ(x̂0)+1

h(t,Xt)

)
+ φ(τ(x̂0), x̂0) |X0 = x0

]

= E

τ(x̂0)−1∑
t=0

zx(t,Xt) |X0 = x0

+
∂

∂x0
V (0, x0) .

Note that, ∂
∂x0
V (0, x0) is independent of the reported type x̂0. As the stopping time

τ(x̂0) is pathwise non-increasing in x̂0 by Proposition 6 and zx < 0 by the single crossing

assumption it follows that ∂
∂x0
W (x0, x̂0) increases in x̂0. Define the payment

ψ(x̂0) = W (x̂0, x̂0) +

ˆ x̂0

0

∂

∂x0
W (y, y)dy .

The function Φ(x0, x̂0) = W (x0, x̂0)− ψ(x̂0) satisfies the assumptions of Lemma 1 from

Pavan, Segal, and Toikka and hence the transfer π(τ, x̂0) = φ(τ, x̂0)− ψ(x̂0) implements

the allocation from Proposition 6 and (τ, π) is a revenue maximizing mechanism.
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