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ABSTRACT OF THE THESIS

Learning and Investigating a Style-Free Representation for

Fast, Flexible, and High-Quality Neural Style Transfer

by

Chi Zhang

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

We have just witnessed an unprecedented booming in the research area of artistic style trans-

fer ever since Gatys et al . introduced the neural method. One of the remaining challenges

is to balance a trade-off among three critical aspects—speed, flexibility, and quality: (i) the

vanilla optimization-based algorithm produces impressive results for arbitrary styles, but is

unsatisfyingly slow due to its iterative nature, (ii) the fast approximation methods based on

feed-forward neural networks generate satisfactory artistic effects but bound to only a lim-

ited number of styles, and (iii) feature-matching methods like AdaIN achieve arbitrary style

transfer in a real-time manner but at a cost of the compromised quality. We find it consider-

ably difficult to balance the trade-off well by merely using a single feed-forward step and ask,

instead, whether there exists an algorithm that could adapt quickly to any style, while the

adapted model maintains high efficiency and good image quality. Motivated by this idea, we

propose a novel method, coined MetaStyle, which formulates the neural style transfer as a

bilevel optimization problem and combines learning with only a few post-processing update

steps to adapt to a fast approximation model. The qualitative and quantitative analysis in

the experiments demonstrates that the proposed approach achieves high-quality arbitrary

artistic style transfer effectively, with a good trade-off among speed, flexibility, and quality.

We also investigate the style-free representation learned by MetaStyle. Apart from style

interpolation and video style transfer, we also implement well-known style transfer methods

and examine the style transfer results after substituting the original content image inputs

ii



with their style-free representation learned by MetaStyle. This could be thought of as insert-

ing a preprocessing step to the content transformation branch. We show in the experiments

that models trained using the MetaStyle preprocessing step produce consistently lower style

loss and total loss, with a slightly higher content loss, compared to its counterparts without

MetaStyle processing. And therefore, the stylized results achieve a better balance in ap-

propriately combining semantics and styles. This shows that MetaStyle also learns a more

general content representation in terms of adapting different artistic styles.

iii



The thesis of Chi Zhang is approved.

Ying Nian Wu

Demetri Terzopoulos

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2019

iv



To my family and Yuxin

who always brings me fun along the arduous journey.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Neural Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Style Transfer and Perceptual Loss . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 MetaStyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Relation to Johnson et al . [JAF16] . . . . . . . . . . . . . . . . . . . 12

4.1.2 Relation to Gatys et al . [GEB16] . . . . . . . . . . . . . . . . . . . . 12

4.1.3 Relation to Shen et al . [SYZ18] . . . . . . . . . . . . . . . . . . . . . 13

4.2 Network Architecture, Training & Algorithm . . . . . . . . . . . . . . . . . . 13

4.3 Investigating the Style-Neutral representation . . . . . . . . . . . . . . . . . 16

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Comparison with Prior Arts . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Speed and Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Investigating the MetaStyle representation . . . . . . . . . . . . . . . . . . . 21

5.3.1 Style Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



5.3.2 Video style transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.3 MetaStyle as Preprocessing for Gatys et al . [GEB16] . . . . . . . . . 22

5.3.4 MetaStyle as Preprocessing for Johnson et al . [JAF16] . . . . . . . . 23

5.3.5 MetaStyle as Preprocessing for Ghiasi et al . [GLK17] . . . . . . . . . 24

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



LIST OF FIGURES

1.1 Style transfer results using MetaStyle, balancing the three-way trade-off among

speed, flexibility, and quality. Left: the content image and the style-free rep-

resentation learned by MetaStyle. Right: the stylized images from 14 different

styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.1 The proposed MetaStyle framework, in which the model is optimized using the

bilevel optimization over large-scale content and style dataset. The framework

first learns a style-neutral representation. A limited number of post-processing

update steps is then applied to adapt the model quickly to a new style. After

adaptation, the new model serves as an image transformation network with good

transfer quality and high efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Network architecture. Residual Blocks are stacked multiple times to extract

deeper image features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Qualitative comparisons of neural style transfer between the existing methods

and the proposed MetaStyle using bilevel optimization. Arbitrary style transfer

models observe neither the content images nor the style images during training. 20

5.2 Style interpolation and video style transfer. . . . . . . . . . . . . . . . . . . . . 21

5.3 Comparison with Gatys et al .. (Left) The results using (upper) Gatys et al . and

(lower) the proposed MetaStyle. (Right) The perceptual loss. . . . . . . . . . . . 23

5.4 Comparison with Johnson et al .. (Left) The results using (upper) Johnson et al .

and (lower) the proposed MetaStyle. (Right) The perceptual loss during evaluation. 24

5.5 Loss dynamics during training of the original PCIN model and the one with

MetaStyle preprocessing. As could be seen, although the content loss of the

MetaStyle extention is slightly higher, both style loss and the total loss are con-

sistently lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



5.6 Stylization using the original PCIN model and the MetaStyle extention. The first

row shows the images stylized by PCIN and the second by MetaStyle PCIN. It

could be seen that style inheritance by MetaStyle PCIN is stronger. . . . . . . . 27

ix



LIST OF TABLES

1.1 Pros and cons of existing neural style transfer methods in the three metrics:

speed, flexibility, and quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 Network architecture used in MetaStyle. . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Speed and flexibility benchmarking results. Param lists the number of parameters

in each model. 256/512 denotes inputs of 256×256/512×512. # Styles represents

the number of styles a model could potentially handle. ?Note that MetaStyle

adapts to a specific style after very few update steps and the speed is measured

for models adapted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

x



ACKNOWLEDGMENTS

I’d like to express my sincere gratitude towards my advisor Dr. Song-Chun Zhu for his

guidance and mentorship and all the colleagues in VCLA, in particular, Yixin Zhu for showing

me how proper research should be conducted, Feng Gao for our deep collaboration across

numerous projects, Hangxin Liu for being an example of devotion, Xu Xie for helping me

re-familiarize with C++, and Mark Edmonds for creating a welcoming working environment.

Last but not least, I’d like to thank my family members and my significant other, Yuxin

Chi, for their continual emotional support for my study.

The work here is supported by the International Center for AI and Robot Autonomy

(CARA).

xi



CHAPTER 1

Introduction

To reduce the strenuous early-day efforts in producing pastiche, the computer vision and

machine learning community have joined forces to devise automated algorithms to render

a content image in the same style from a source artistic work. The style transfer problem

covers a wide range of work, and at the beginning was phrased as a texture synthesis [DF81,

ZWM98] problem. [EL99] first proposed to solve this problem by growing texture pixels one

by one outward using a non-parametric sampling, and [WL00] accelerated this process by

a tree-structured vector quantization. Patch-based sampling methods [EF01, LLX01] were

later proposed to improve the synthesis quality and efficiency. [KEB05], however, viewed

the problem from an energy minimization perspective and jointly optimized the objective

using an EM-like algorithm. The concept of image analogies [HJO01] was also introduced to

produce the “filtered” results and later extended by [ZZ11] to tailor to portrait paintings.

With the recent boost of deep neural networks and large datasets in computer vision,

[GEB16] first discovered that combining multi-level VGG features [SZ14] trained on the Im-

Figure 1.1: Style transfer results using MetaStyle, balancing the three-way trade-off among

speed, flexibility, and quality. Left: the content image and the style-free representation

learned by MetaStyle. Right: the stylized images from 14 different styles.
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Method Speed Flexibility Quality Drawback

Optimization-based Slow Any High Run for each content-style pair

Fast approximation Fast Single High Train long for each new style

Feature-matching Fast Any/Several Compromised Limited set of styles, low quality

Table 1.1: Pros and cons of existing neural style transfer methods in the three metrics:

speed, flexibility, and quality.

ageNet [DDS09] successfully captured the characteristics of the style while balancing the

statistics of the content, producing impressive results for the task of artistic style transfer.

This serendipitous finding has brought to life a surge of interests in the research area of style

transfer. Iterative optimization methods [GEB15, GEB16, LW16] generate artistic images

that well interpolate between arbitrary style space and content space; but due to its iterative

nature, these methods are generally slow, requiring hundreds of update steps for each content-

style pair and becoming impractical for deployment in products. Fast approximation meth-

ods using feed-forward neural networks trained with perceptual loss [JAF16, DSK17, ZD17]

overcome the speed problem and usually result in satisfactory artistic effects; however, good

quality is limited to a single or a small number of style images, sacrificing the flexibility

in the original method. Feature-matching methods [HB17, SLS18] achieve arbitrary style

transfer in real-time, but these models come at the cost of compromised style transfer qual-

ity, compared to the methods mentioned above. Table 1.1 summarizes the pros and cons of

existing methods in the field.

To address these problems, we argue that it is nontrivial to use either sheer iterative

optimization methods or single-step feed-forward approximations to achieve the three-way

trade-off among speed, flexibility, and quality. In this work, we seek to find, instead, an

algorithm that would fast adapt to any style by a small or even negligible number of post-

processing update steps, so that the adapted model keeps high efficiency and satisfactory

generation quality.

Specifically, we propose a novel style transfer algorithm, coined MetaStyle, which for-

mulates the fast adaptation requirement as the bilevel optimization, solvable by the recent
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meta-learning methods [FAL17, NAS18]. This unique problem formulation encourages the

model to learn a style-free representation for content images, and to produce a new feed-

forward model, after only a small number of update steps, to generate high-quality style

transfer images for a single style efficiently. From another perspective, this formulation

could also be thought of as finding a style-neutral input for the vanilla optimization-based

methods [GEB16], but transferring styles much more effectively.

Our model is instantiated using a neural network. The network structure is inspired by

the finding [DSK17] that scaling and shifting parameters in instance normalization layers

[UVL17] are specialized for specific styles. In contrast, unlike prior work, our method im-

plicitly forces the parameters to find no-style features in order to rapidly adapt and remain

parsimonious in terms of the model size. The trained MetaStyle model has roughly the same

number of parameters as described in [JAF16], and requires merely 0.1 million training steps.

Comprehensive experiments with both qualitative and quantitative analysis, compared

with prior neural style transfer methods, demonstrate that the proposed method achieves a

good trade-off among speed, flexibility, and quality. Figure 1.1 shows sample results using

the proposed style transfer.

Apart from the proposed MetaStyle algorithm, we also investigate the representation

learned by MetaStyle. Specifically, we investigate the learned representation in tasks of

style interpolation and video style transfer. We also consider substituting the content image

inputs in famous arbitrary style transfer methods (e.g ., [ZD17] and [GLK17]) with the style-

free representation obtained after running the MetaStyle model. During retraining of these

models, we notice that the style loss and the total loss of MetaStyle-processed models are

consistently lower than their counterparts’, though the content loss becomes slightly higher.

Images stylized using the MetaStyle extention also show a better balance between semantics

and styles. These effects demonstrate the generalizability of the learned representation from

MetaStyle.

The contributions of the work could be summarized as follows:

• We propose a new style transfer method called MetaStyle to achieve the three-way
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trade-off in speed, flexibility, and quality. To the best of our knowledge, this is the first

work that formulates the style transfer as the bilevel optimization so that the model

could be easily adapted to a new style with only a small number of updates, producing

high-quality results while remaining parsimonious.

• The proposed method provides a style-free representation, from which a fast feed-

forward high-quality style transfer model could be adapted after only a small number

of iterations, making the cost of training a high-quality model for a new style nearly

negligible.

• We also investigate the learned representation of MetaStyle and show in the experi-

ments that models trained with a MetaStyle preprocessing step show consistently lower

style loss and total loss, with better stylized results.
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CHAPTER 2

Related Work

2.1 Neural Style Transfer

By leveraging the pre-trained VGG model [SZ14], [GEB16] first proposed to explicitly sep-

arate content and style: the model has a feature-matching loss involving the second-order

Gram matrices (later called perceptual loss) and iteratively updates the input images (usu-

ally hundreds of iterations) to produce high-quality style transfer results. To overcome the

speed limit, [JAF16] recruited an image transformation network to generate stylized results

sufficiently close to the optimum solution directly. Concurrent work by [ULV16] instantiated

a similar idea using multi-resolution generator network and further improved the diversity

of the generated images [UVL17] by applying the Julesz ensembles [ZWM98, ZLW00]. Note

that each trained model using any of these methods is specialized to a single style.

Significant efforts have been made to improve the neural style transfer. [LW16] modeled

the process using an Markov random field (MRF) and introduced the MRF loss for the task.

[LWL17] discovered that the training loss could be cast in the maximum mean discrepancy

framework and derived several other loss functions to optimize the content image. [CYL17]

jointly learned a style bank for each style during model training. [DSK17] modified the

instance normalization layer [UVL17] to condition on each style. [ZD17] proposed to use a

CoMatch layer to match the second-order statistics to ease the learning process. Although

these approaches produce transfer results of good quality in real-time for a constrained set of

styles, they still lack the generalization ability to transfer to arbitrary styles. Additionally,

these approaches sometimes introduce additional parameters proportional to the number of

the styles they learn.
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Recent work concentrated on more generalizable approaches. A patch-based style swap

layer was first introduced [CS16] to replace the content feature patch with the closest-

matching style feature patch, and a compromised inverse network was employed for fast

approximation. The adaptive instance normalization layer [HB17] was introduced to scale

and shift the normalized content features by style feature statistics and act as the bottleneck

in an encoder-decoder architecture, while similarly [LFY17] applied recursive whitening and

coloring transformation in multi-level pre-trained auto-encoder architecture. More recent

works include a ZCA-like style decorator and an hourglass network that were integrated in a

multi-scale manner [SLS18] and a meta network that was trained to generate parameters of

an image transformation network [SYZ18] directly. These methods, though efficient and flex-

ible, often suffer from compromised image generation quality, especially for the unobserved

styles. In contrast, the proposed model could adapt to any style quickly without sacrificing

the speed or the image quality, making its final performance on par with fast approximation

methods, e.g ., [JAF16].

Additionally, our model is also parsimonious, requiring roughly the same number of

model parameters as [JAF16], using merely 0.1 million iterations. In comparisons, e.g .,

[GLK17] extended the conditional instance normalization framework [DSK17], but required

a pre-trained Inception-v3 [SVI16] to predict the parameters for a single style. This model

requires 4 million update steps, making training burdensome.

2.2 Meta-Learning

Meta-learning has been successfully applied in few-shot learning with early work dated back

to the 1990’s. Here we only review one branch focusing on initialization strategy [FFS18]

that influences our work. [RL16] first employed an LSTM network as a meta-learner to

learn an optimization procedure. [FAL17] proposed model-agnostic meta-learning (MAML)

so that a model previously learned on a variety of tasks could be quickly adapted to a new

one. This method, however, required second-order gradient computation in order to derive

gradient for the meta-objective correctly, and therefore consumed significant computational
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power, though a first-order method was also tested with compromised performance.

Following their work, [NAS18] generalized MAML to a family of algorithms and extended

it to Reptile. Reptile coupled sequential first-order gradients with advanced optimizers,

such as Adam [KB14], resulting in an easier implementation, shorter training time and

comparable performance. A recent work [SYZ18] modeled the process of neural style transfer

using an additional large group of fully-connected layers such that the parameters of an

image transformation network could be predicted. In contrast, the proposed method remains

parsimonious with a single set of parameters to train and adapt.

As we will show in the Section 4.1, the meta network is, de facto, a special case in the

proposed bilevel optimization framework. To the best of our knowledge, our work is the first

to explicitly cast neural style transfer as the bilevel optimization problem in the initialization

strategy branch.
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CHAPTER 3

Background

Before detailing the proposed model, we first introduce two essential building blocks, i.e.,

the perceptual loss and the general bilevel optimization problem, which lay the foundation

of the proposed approach.

3.1 Style Transfer and Perceptual Loss

Given an image pair (Ic, Is), the style transfer task aims to find an “optimal” solution Ix that

preserves the content of Ic in the style of Is. [GEB16] proposed to measure the optimality

with a newly defined loss using the trained VGG features, later modified and named as

the perceptual loss [JAF16]. The perceptual loss could be decomposed into two parts: the

content loss and the style loss.

Denoting the VGG features at layer i as φi(·), the content loss `content(Ic, Ix) is defined

using the L2 norm

`content(Ic, Ix) =
1

Ni

‖φi(Ic)− φi(Ix)‖22 , (3.1)

where Ni denotes the number of features at layer i.

The style loss `style(Is, Ix) is the sum of Frobenius norms between the Gram matrices of

the VGG features at different layers

`style(Is, Ix) =
∑
i∈S

‖G(φi(Is))−G(φi(Ix))‖2F , (3.2)

where S denotes a predefined set of layers and G the Gramian transformation.

The transformation could be efficiently computed by

G(x) =
ψ(x)ψ(x)T

CHW
(3.3)
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for a 3D tensor x of shape C ×H ×W , where ψ(·) reshapes x into C ×HW .

The perceptual loss `(Ic, Is, Ix) aggregates the two components by the weighted sum

`(Ic, Is, Ix) = α`content(Ic, Ix) + β`style(Is, Ix). (3.4)

3.2 Bilevel Optimization

We formulate the style transfer problem as the bilevel optimization in the form simplified

by [FFS18]

minimize
θ

E(wθ, θ)

subject to wθ = arg min
w

Lθ(w),
(3.5)

where E is the outer objective and Lθ the inner objective. Under differentiable Lθ, the

constraint could be replaced with ∇Lθ = 0. However, in general, no closed-form solution

of wθ exists and a practical approach to approximate the optimal solution is to replace the

inner problem with the gradient dynamics, i.e.,

minimize
θ

E(wT , θ)

subject to w0 = Ψ(θ)

wt = wt−1 − δ∇Lθ(wt−1)

(3.6)

where Ψ initializes w0, δ is the step size and T the maximum number of steps. [FFS18] proved

the convergence of Equation 3.6 under certain conditions. Though they did not model their

problems using bilevel optimization but rather an intuitive motivation, [FAL17] and [NAS18]

both use the identity mapping for Ψ, with the former computing the full gradient for θ to

optimize the outer objective, and the latter one only the first-order approximate gradient.
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CHAPTER 4

MetaStyle

In this section, we first detail the intuition behind and the formulation of the proposed

framework, explain the design choices and discuss relations to the previous approaches. Then

the network architecture is presented with the training protocol and the detailed algorithm.

Finally, we discuss how we investigate the representation learned by MetaStyle.

4.1 Problem Formulation

MetaStyle is tasked with finding a three-way trade-off among speed, flexibility, and quality

in neural style transfer. To achieve such a balance, however, we argue that it is nontrivial

to either merely use iterative optimization methods or simply adopt single-step feed-forward

approximations. To address this challenge, we consider a new approach where we first learn

a style-neutral representation and allow a limited number of update steps to this neutral

representation in the post-processing stage to adapt to a new style. It is expected that the

model should generate a stylized image efficiently after adaptation, be general enough to

accommodate any new style, and produce high-quality results.

To this end, we employ an image transformation network with content image input

[JAF16] and cast the entire neural style transfer problem in a bilevel optimization framework

[FFS18]. As discussed in Equation 3.6, we choose to model θ as the network initialization

and wT the adapted parameters, now denoted as ws,T , to emphasize the style to adapt to.

T is restricted to be small, usually in the range between 1 and 5. Both the inner and

outer objective is designed to be the perceptual loss averaged across datasets. However,

as described in meta-learning [FAL17, NAS18], the inner objective uses a model initialized

10



Figure 4.1: The proposed MetaStyle framework, in which the model is optimized using the

bilevel optimization over large-scale content and style dataset. The framework first learns

a style-neutral representation. A limited number of post-processing update steps is then

applied to adapt the model quickly to a new style. After adaptation, the new model serves

as an image transformation network with good transfer quality and high efficiency.

with θ and only optimizes contents in the training set, whereas the outer objective tries

to generalize to contents in the validation set. Ψ is the identity mapping. Formally, the

problem could be stated as

minimize
θ

Ec,s[`(Ic, Is,M(Ic;ws,T ))]

subject to ws,0 = θ

ws,t = ws,t−1 − δ∇Ec[`(Ic, Is,M(Ic;ws,t−1))],

(4.1)

where M(·; ·) denotes our model and δ the learning rate of the inner objective. The expec-

tation of the outer objective Ec,s is taken with respect to both the styles and the content

images in the validation set, whereas the expectation of the inner objective Ec is taken with

respect to the content images in the training set only. This design allows the adapted model

11



to specialize for a single style but still maintain the initialization generalized enough. Note

that for the outer objective, ws,T implicitly depends on θ. In essence, the framework learns

an initialization M(·; θ) that could adapt to M(·;ws,T ) efficiently and preserve high image

quality for an arbitrary style. Figure 4.1 shows the proposed framework.

The explicit training-validation separation in the framework forces the style transfer

model to generalize to unobserved content images without over-fitting to the training set.

Coupled with this separation, MetaStyle constrains the number of steps in the gradient

dynamics computation to encourage quick adaptation for an arbitrary style and, at the same

time, picks an image transformation network due to its efficiency and high transfer quality.

These characters serve to the trade-offs among speed, flexibility, and quality.

We now discuss MetaStyle’s relations to other methods.

4.1.1 Relation to Johnson et al . [JAF16]

Johnson et al .’s method finds an image transformation model tailored to a single given style,

minimizing the model parameters by

minimize
w

Ec[`(Ic, Is,M(Ic;w))], (4.2)

where the expectation is taken with respect to only the contents. In contrast, in Equation 4.1,

we seek a specific model initialization θ, which is not the final parameters used for the style

transfer, but could adapt to any other style using merely a small number of post-processing

updates. Assuming there exists an implicit, unobserved neutral style, MetaStyle could be

regarded as learning a style-free image transformation. Only after learning is complete, do

we use Equation 4.2 to quickly adapt the initialization to any style.

4.1.2 Relation to Gatys et al . [GEB16]

Starting with the content image, Gatys et al . finds the minimizer of the perceptual loss using

iterative updates. From this iterative update perspective, MetaStyle could be regarded as

learning to find a good starting point for the optimization algorithm. This learned transfor-

12



Figure 4.2: Network architecture. Residual Blocks are stacked multiple times to extract

deeper image features.

mation generates a style-neutral image while dramatically reducing the number of update

steps.

4.1.3 Relation to Shen et al . [SYZ18]

Shen et al .’s method is a special case of the proposed bilevel optimization framework, where

T = 0 and Ψ is a highly nonlinear transformation, parameterized by θ, that uses a style

image to predict parameters of another image transformation network.

4.2 Network Architecture, Training & Algorithm

Our network architecture largely follows that of an image transformation network described

in [DSK17]. However, unlike the original architecture, the output of the last convolution layer

is unnormalized and activated using the Sigmoid function to squash it into [0, 1]. Upsampled

convolution, which first upsamples the input and then performs convolution, and reflection

padding are used to avoid checkerboard effects [ZD17]. Inspired by the finding [DSK17] that

scaling and shifting parameters in the instance normalization layers specialize for specific

styles, we append an instance normalization layer after each convolution layer, except the

13



Algorithm 1: MetaStyle

Input : content training dataset Dtr, content validation dataset Dval, style dataset

Dstyle, inner learning rate δ, outer learning rate η, number of inner updates

T

Output: trained parameters θ

randomly initialize θ

while not done do

initialize outer loss E ← 0

sample a batch of styles from Dstyle
for each style Is do

ws ← θ

for i← 1 to T do

sample a batch Btr from Dtr
compute inner loss Lθ using Is and Btr
ws ← ws − δ∇Lθ

end

sample a batch Bval from Dval
increment E by loss from Is and Bval

end

θ ← θ − η∇E
end

last. See Figure 4.2 for a graphical illustration. This design forces the parameters in instance

normalization layers to learn from an implicit, unobserved neutral style while keeping the

model size parsimonious. Table 4.1 provides detailed network architecture design. Note

that all the convolution layers use the “same” padding before the operation, and all the

upsamplings are of nearest sampling with a scale factor of 2.

For training, we use small-batch learning to approximate both the inner and outer ob-

jective. The inner objective is approximated by several batches sampled from the training

dataset and computed on a single style, whereas the outer objective is approximated by

a style batch, in which each style incurs a perceptual loss computed over a content batch

sampled from the validation dataset. The problem is solvable by MAML [FAL17] and sum-

marized in Algorithm 1. After training, θ could be used as the initialization to minimize
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Operator Channel Stride Kernel Padding Activation

Network — Input 3

Convolution 32 1 9 Reflection

Instance Norm 32 ReLU

Convolution 64 2 3 Reflection

Instance Norm 64 ReLU

Convolution 128 2 3 Reflection

Instance Norm 128 ReLU

Residual Block 128

Residual Block 128

Residual Block 128

Residual Block 128

Residual Block 128

Upsampling

Convolution 64 1 3 Reflection

Instance Norm 64 ReLU

Upsampling

Convolution 32 1 3 Reflection

Instance Norm 32 ReLU

Convolution 3 1 9 Reflection Sigmoid

Residual Block — Input 128

Convolution 128 1 3 Reflection

Instance Norm 128 ReLU

Convolution 128 1 3 Reflection

Instance Norm 128

Addition 128

Table 4.1: Network architecture used in MetaStyle.
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Equation 4.2 to adapt the model to a single style or to provide the starting point M(Ic; θ)

for optimization-based methods.

During training, we use the time-based learning rate decay for both the outer and the

inner objective optimization, i.e.,

κ =
1

1 + k × t
κ0, (4.3)

where κ denotes the learning rate for either the outer or the inner objective, t the number

of iterations, κ0 the initial learning rate, and k = 2.5 × 10−5. To reduce the computation,

we do not iteratively sample a new content batch from the training set Dtr in the inner

objective optimization, but share the same content batch Btr in each iteration. Similarly,

we use the same content batch Bval from the validation set Dval during each outer objective

update. Note that this procedure accelerates the convergence. In contrast to [FAL17] and

[NAS18], we find that the first-order gradient approximations lead to serious fluctuations

during training and no convergence is observed. In addition, increasing T to the values as

large as 5 does not notably improve performance. Therefore, we set T = 1 in the reported

experiment results. Such a setting encourages the model to fast adapt to any style and

also significantly reduces GPU memory consumption. To further stabilize training, we only

update parameters in instance normalization layers in inner objective optimization. This

design implicitly encourages the instance normalization layers to find a set of parameters

that specializes in a style-neutral representation, corresponding to the finding in [DSK17].

4.3 Investigating the Style-Neutral representation

Experimental settings of style interpolation and video style transfer have been detailed in

[HB17, SLS18], and here we only discuss how MetaStyle could be used as a preprocessing

step.

As mentioned above, our model M(·; θ) initialized with θ could be generally regarded

as one that strips off the styles in the content images, i.e., one that produces a style-

free representation while preserving the semantic structures in the original images. This
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design introduces new possibilities in investigating style transfer methods in the sense that

MetaStyle representation could be swapped in into any style transfer methods, e.g ., [GEB16,

JAF16, LFY17, HB17, GLK17] as a preprocessing step in the content transformation branch.

Specifically, MetaStyle preprocesses each content image such that its original style is stripped

off and transferring a new style becomes easier. As an example for the arbitrary style transfer

setting, the problem could be formulated as

minimize
w

Ec,s[`(Ic, Is,M(MetaStyle(Ic; θ), Is;w)], (4.4)

where we explicitly separate notations for our MetaStyle model and general style transfer

model M(·, ·; ·). The formulation is similar for the vanilla optimization setting and the fast

approximation setting.
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CHAPTER 5

Experiments

5.1 Implementation Details

We train our model using MS-COCO [LMB14] as our content dataset and WikiArt test set

[Nic16] as our style dataset. The content dataset has roughly 80,000 images and the WikiArt

test set 20,000 images. We use Adam [KB14] with a learning rate 0.001 to optimize the outer

objective and vanilla SGD with a learning rate 0.0001 for the inner objective. All batches are

of size 4. We fix α = 1, β = 1× 105 across all the experiments. Content loss is computed on

relu2_2 of a pre-trained VGG16 model and style loss over relu1_2, relu2_2, relu3_3 and

relu4_3. The entire model is trained on a Nvidia Titan Xp with only 0.1 million iterations.

For investigation into MetaStyle representation, apart from style interpolation and video

style transfer, we retrain the vanilla optimization-based style transfer algorithm [GEB16], the

fast approximation method [JAF16], and Google’s predicted conditional instance normaliza-

tion (PCIN) [GLK17], except that the content image inputs are preprocessed by the trained

MetaStyle representation, i.e., MetaStyle(Ic; θ). The hyperparameters of these models are

fine-tuned on the MS-COCO and WikiArt datasets.

5.2 Comparison with Prior Arts

We compare the proposed MetaStyle with existing methods [GEB16, JAF16, LFY17, HB17,

SYZ18, SLS18, CS16] in terms of speed, flexibility, and quality. Specifically, for these existing

methods, we use the pre-trained models made publicly available by the authors. To adapt

MetaStyle to a specific style, we train the MetaStyle model using only 200 iterations on MS-
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COCO dataset, which amounts to an additional 24 seconds of training time with a Titan

Xp GPU. For Gatys et al ., we optimize the input using 800 update steps. For Chen et al .,

we use its fast approximation model. All five levels of encoders and decoders are employed

in our experiments involving Li et al ..

5.2.1 Speed and Flexibility

Table 5.1 summarizes the benchmarking results regarding style transfer speed and model

flexibility. As shown in the table, our method achieves the same efficiency as Johnson et

al . and Shen et al .. Additionally, unlike Shen et al . that introduces a gigantic parameter

prediction model, MetaStyle is parsimonious with roughly the same number of parameters

as Johnson et al .. While Johnson et al . requires training a new style model from scratch,

MetaStyle could be immediately adapted to any style with a negligible number of updates

under 30 seconds. This property significantly reduces the efforts in arbitrary style transfer

and, at the same time, maintains a high image generation quality, as shown in the next

Method Param 256 (s) 512 (s) # Styles

Gatys et al . N/A 7.7428 27.0517 ∞

Johnson et al . 1.68M 0.0044 0.0146 1

Li et al . 34.23M 0.6887 1.2335 ∞

Huang et al . 7.01M 0.0165 0.0320 ∞

Shen et al . 219.32M 0.0045 0.0147 ∞

Sheng et al . 147.22M 0.5089 0.6088 ∞

Chen et al . 1.48M 0.2679 1.0890 ∞

Ours 1.68M 0.0047 0.0145 ∞?

Table 5.1: Speed and flexibility benchmarking results. Param lists the number of parameters

in each model. 256/512 denotes inputs of 256×256/512×512. # Styles represents the number

of styles a model could potentially handle. ?Note that MetaStyle adapts to a specific style

after very few update steps and the speed is measured for models adapted.
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Figure 5.1: Qualitative comparisons of neural style transfer between the existing methods

and the proposed MetaStyle using bilevel optimization. Arbitrary style transfer models

observe neither the content images nor the style images during training.

paragraph.

5.2.2 Quality

Figure 5.1 shows the qualitative comparisons of the style transfer between the existing meth-

ods and the proposed MetaStyle method. We notice that, overall, Gatys et al . and Johnson

et al . obtain the best image quality among all the methods we tested. This observation

coheres with our expectation, as Gatys et al . iteratively refines a single input image using

an optimization method, whereas the model from Johnson et al . learns to approximate op-

timal solutions after seeing a large number of images and a fixed style, resulting in a better

generalization.

Among methods capable of arbitrary style transfer, Li et al . applies style strokes ex-
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(a) Two-style interpolation results. The content image and style images are shown on the two ends.

(b) Video style transfer results. The left pane shows the style and the right pane contents and stylized video

sequence.

Figure 5.2: Style interpolation and video style transfer.

cessively to the contents, making the style transfer results become deformed blobs of color,

losing much of the image structures in the content images. Looking deep into Huang et al .,

we notice that the arbitrary style transfer method produces images with unnatural cracks

and discontinuities. Results from Shen et al . come with strange and peculiar color regions

that likely result from non-converged image transformation models. Sheng et al . unnecessar-

ily morphs the contours of the content images, making the generated artistic effects inferior.

The inverse network from Chen et al . seems to apply the color distribution in the style image

to the content image without successfully transferring the strokes and artistic effects in style.

In contrast, MetaStyle achieves a right balance between styles and contents comparable

to Johnson et al .. Such property should be attributed to the image transformation network

shown in Johnson et al ., while the fast adaptation comes from our novel formulation.

For more examples stylized by MetaStyle, please refer to the supplementary file of

[ZZZ18].

5.3 Investigating the MetaStyle representation

In this section, we first present the performance of MetaStyle on style interpolation and video

style transfer to show the generalizability of the representation, and then we quantitatively
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and qualitatively compare performance of previous methods with and without MetaStyle

preprocessing.

5.3.1 Style Interpolation

To interpolate among a set of styles, we perform a convex combination on the parameters of

adapted MetaStyle models learned after 200 iterations using

w =
∑
si∈S

γiwsi

subject to
∑
i

γi = 1

∀i, γi ≥ 0,

(5.1)

where S denotes the style set, si a specific style in the set, w the adapted parameters, and

γ the weighting coefficient. Figure 5.2a shows the results of a two-style interpolation.

5.3.2 Video style transfer

We perform the video style transfer by first training the MetaStyle model for 200 iterations

to adapt to a specific style, and then applying the transformation to a video sequence frame

by frame. Figure 5.2b shows the video style transfer results in five consecutive frames. Note

that our method does not introduce the flickering effect that harms aesthetics.

5.3.3 MetaStyle as Preprocessing for Gatys et al . [GEB16]

As mentioned in Section 4.1, MetaStyle, before adaptation, provides a style-neutral repre-

sentation and serves as a better starting point for the optimization-based method. Also,

transforming the content inputs using MetaStyle before optimization could be more broadly

regarded as preprocessing. We empirically illustrate in Figure 5.3, in which we compare

initializing the optimization with either the content image or the style-neutral representa-

tion. We notice that after 150 steps, Gatys et al . only starts to apply minor style strokes

to the content while MetaStyle-initialized method could already produce a well-stylized re-
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sult. Given that MetaStyle is not directly formulated to find a good starting point, this

effect is surprising, showing the generalization ability of the representation discovered by the

proposed MetaStyle.

5.3.4 MetaStyle as Preprocessing for Johnson et al . [JAF16]

Similar to the previous section, we could directly insert MetaStyle before optimizing the

fast approximation model in Johnson et al . [JAF16], and treat it as a preprocessing step.

However, due to the extreme similarity of the network architectures used in MetaStyle and

[JAF16] and the training objectives in MetaStyle’s adaptation step and the training step in

[JAF16], one simpler strategy is to directly initialize the network using MetaStyle’s learned

parameters and optimize the objective thereafter. Figure 5.4 shows the results after 200 train-

ing iterations and the curve for the perceptual loss during evaluation. It is evident that while

Johnson et al . still struggles to figure out a well-balanced interpolation between the style

Figure 5.3: Comparison with Gatys et al .. (Left) The results using (upper) Gatys et al . and

(lower) the proposed MetaStyle. (Right) The perceptual loss.
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manifold and the content manifold, MetaStyle could already generate a high-quality style

transfer result with a good equilibrium between style and content. This contrast becomes

even more significant considering that a fully trained model from Johnson et al . requires

about 160,000 iterations and an adapted MetaStyle model only 200. The loss curve also

shows consistently lower evaluation error compared to Johnson et al ., numerically proving

the generalizability of the learned representation.

5.3.5 MetaStyle as Preprocessing for Ghiasi et al . [GLK17]

As discussed above, we insert MetaStyle into the content transformation branch in the PCIN

model proposed by [GLK17]. Clearly, the MetaStyle module could be considered as a pre-

processing step. Another possibility in incorporating MetaStyle is treating it as initialization

and jointly optimizing it together with other modules. However, in a preliminary study, we

notice that treating MetaStyle as fixed preprocessing achieves much lower losses and bet-

Figure 5.4: Comparison with Johnson et al .. (Left) The results using (upper) Johnson et al .

and (lower) the proposed MetaStyle. (Right) The perceptual loss during evaluation.
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ter stylization results. Therefore, here we only report results obtained using MetaStyle as

a fixed preprocessing step. Figure 5.5 shows the loss dynamics of PCIN models with and

without MetaStyle preprocessing. As shown in the figure, the total loss and the style loss of

the MetaStyle version are consistently lower than the original PCIN model. We also show

the stylization results in Figure 5.6. While stylization by both methods produces images

of satisfactory transfer effects, images stylized by the MetaStyle extention exhibit stronger

inheritance from different styles, with more realistic stylized strokes coming from their style

sources. This visual effect also coheres with the numerical results, where the style loss ob-

tained from the MetaStyle version is consistently lower. In terms of content loss, although

the MetaStyle version has a slightly higher content loss, the semantics in the content sources

are extremely well-preserved.
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Figure 5.5: Loss dynamics during training of the original PCIN model and the one with

MetaStyle preprocessing. As could be seen, although the content loss of the MetaStyle

extention is slightly higher, both style loss and the total loss are consistently lower.

26



Figure 5.6: Stylization using the original PCIN model and the MetaStyle extention. The

first row shows the images stylized by PCIN and the second by MetaStyle PCIN. It could

be seen that style inheritance by MetaStyle PCIN is stronger.
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CHAPTER 6

Conclusion

In this work, we present the MetaStyle, which is designed to achieve a right three-way trade-

off among speed, flexibility, and quality in neural style transfer. Unlike previous methods,

MetaStyle considers the arbitrary style transfer problem in a new scenario where a small

(even negligible) number of post-processing updates are allowed to adapt the model quickly

to a specific style. We formulate the problem in a novel bilevel optimization framework and

solve it using MAML. In experiments, we show that MetaStyle could adapt quickly to an

arbitrary style within 200 iterations. Each adapted model is an image transformation network

and achieves the high efficiency and style transformation quality on par with Johnson et al ..

We also investigate the representation learned by MetaStyle. We show in experiments that

the representation learned by the proposed bilevel optimization could not only generalize

in the style interpolation task and video style transfer task, but also work as a plug-in

preprocessing step to help the optimization-based method, the fast approximation method,

and the complex arbitrary style transfer method converge. Both quantitative and qualitative

evaluations show that MetaStyle could serve as a fast, flexibly, and high-quality neural style

transfer method, with broadly generalizable style-free representation.
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