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Interactions are essential for the creation of correlated quantum many-body states. While two-
body interactions underlie most natural phenomena, three- and four-body interactions are important
for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional
quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of
artificial quantum systems have emerged as simulators for many-body physics, featuring the ability
to engineer strong interactions. However, the interactions in these systems have largely been limited
to the two-body paradigm, and require building up multi-body interactions by combining two-body
forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an
arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that
there is collectively no interaction until a target total photon number is reached across multiple
distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with
photon lifetimes of ∼ 2 ms coupled to a superconducting transmon circuit, forming a multimode
circuit QED system with single photon cooperativities of ∼ 109. We generate multimode interactions
by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton
state with a chosen total photon number distributed across the target modes. We harness the
interaction for state preparation, preparing Fock states of increasing photon number via quantum
optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions
by generating entanglement purely with uniform cavity drives and multimode photon blockade, and
characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner
tomography.

Engineering an interacting many body system requires
control of many particles distributed across space or over
multiple sites. Recently, superconducting circuit quan-
tum electrodynamics (cQED) has emerged as a platform
for creating photonic fluids and materials [7]. Circuits
can be used to impart effective mass and interactions to
microwave photons, creating exotic systems in which the
band structure and interactions can be precisely engi-
neered and probed at the single site and single photon
(particle) level [8, 9]. In addition to planar circuits, 3D
superconducting microwave cavities have also emerged as
a powerful resource for quantum information science and
quantum optics, possessing the longest coherence times
demonstrated in cQED [10, 11]. These cavities are in-
terfaced with superconducting circuits to perform gate
operations between cavity modes [12–14], and quantum
error correction using a variety of bosonic codes [15–17].
While the bulk of previous work has been performed in
single or two-mode 3D cQED systems, there have also
been efforts to create multimode bosonic systems for
quantum simulation [18], quantum information process-
ing [19], and multimode quantum optics [20] in cQED,
as well as for cavity electromechanics [21, 22]. Here, we
realize a novel bosonic many body system in a 3D multi-
mode cavity with photons acting as particles, spectrally

distinct high quality factor modes (65-95 million) acting
as sites, and interactions mediated by a superconducting
transmon circuit via multimode cQED.

A pure N-body interaction is one in which the sys-
tem remains linear until the Nth quantum is added to
the system. This interaction has been engineered on a
single cavity mode by using a dispersively coupled trans-
mon qubit for photon blockade [23], resulting in quantum
dynamics that excluded a given photon number N. The
notion of blockade [23, 24] is intimately connected with
Quantum Zeno Dynamics (QZD), where repeated mea-
surements suppress the system’s unitary evolution and
modify it’s coherent dynamics [25, 26]. Optical measure-
ments have been used to observe QZD [27, 28] and gen-
erate entanglement [29] in atomic systems. QZD has also
been proposed as a tool for quantum state preparation
of light using atoms [30, 31].

In this work, we broaden the applications of photon
blockade for quantum control by using it to demon-
strate universal operations on qudits realized in arbitrary
bosonic modes of a multimode cavity. We use quantum
optimal control pulses that act exclusively on the cav-
ity mode to prepare all basis Fock states of the qudit,
despite their equal frequency spacing [32]. Furthermore,
we extend the notion of photon blockade to a multimode
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FIG. 1. Schematic of the experimental system. A mul-
timode rectangular 3D storage cavity and a 3D readout cavity
are bridged using a transmon circuit. The multimode Hilbert
space designated by the tensor products is controlled by drives
that are near the transmon |g〉 - |e〉 and cavity frequencies, all
input through the readout port. The inset shows the fre-
quency spectrum of the storage cavity with evenly spaced
modes from 5.4 to 7.5 GHz, obtained by sweeping the cavity
drive near the storage mode frequencies and measuring the
population using the transmon.

system and realize a pure N-body interaction across an
arbitrary number of sites (modes) by selectively driving
the transmon near the transition corresponding to a set
of chosen N-photon states. This dressing results in a fre-
quency shift that blockades those states, effectively par-
titioning the multimode cavity’s Hilbert space and re-
sulting in the creation of entangled W-states using only
uniform drives on the cavity modes.

Our system consists of a multimode rectangular waveg-
uide cavity which supports numerous ultralow loss modes
on one physical device that are manipulated with mul-
timode cQED via integration with a superconducting
transmon circuit, as shown schematically in Fig. 1. We
use the TE10n modes of the cavity to realize a multimode
quantum memory. The cavity is fabricated from high-
purity (5N5) aluminium using the flute method [33], a
design which naturally mitigates seam loss and allows for
high quality factors (65-95 million). The mode spectrum
is controlled by the cavity length and profile. The second
smallest dimension—the cavity width, sets the frequency
of the lowest mode (∼ 5.4 GHz), with higher modes hav-
ing an increasing number of antinodes along the length.
The width is tapered to engineer a frequency spacing of
∼ 250 MHz between the modes (inset of Fig. 1). The
modes of the storage cavity are dispersively coupled to
a transmon circuit, a nonlinear oscillator whose ground
and first excited states implement a qubit with a transi-
tion frequency of ωq/(2π) = 4.99 GHz. The transmon is
placed near one end of the rectangular waveguide, where
all the modes have sufficiently strong zero point fields to
couple to the antenna formed by one of the transmon ca-
pacitor pads, with resonant dipole interaction strengths
ranging from gm/(2π) = 50 − 125 MHz. The second ca-
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FIG. 2. A qubit implemented in any cavity mode us-
ing photon blockade. (a) Energy level diagram in a rotat-
ing frame with an applied blockade drive at Rabi frequency
Ω resonant with |g2i〉 ↔ |e2i〉. Transitions at other pho-
ton numbers are off resonant by (n − 2)|χ|, and only expe-
rience Stark shifts. (b) Population of each Fock state (Pn)
over time (τ) for a constant cavity drive (ε) applied to cav-
ity mode 3 (ν3 = 6.223 GHz), in the presence of a photon
blockade at n = 2 with ε/(2π) = 10 kHz � Ω/(2π) =
107 kHz � |χ3|/(2π) = 1.136 MHz. (c) Wigner tomogra-
phy at τ = 25 µs demonstrating the preparation of |1〉 with
F = Tr[ρmρt] = 0.967± 0.024, after accounting for measure-
ment error by normalizing by the measured fidelity of the
vacuum state.

pacitor pad is coupled to a smaller rectangular waveguide
cavity, whose fundamental mode (7.79 GHz) is strongly
coupled to the microwave line (Qc = 15k). This cav-
ity is used to readout the state of the transmon and, in
turn, the storage cavity modes. In the dispersive limit,
the Hamiltonian of the multimode cavity QED system
realized by the storage cavity and transmon is:

H = ωq |e〉 〈e|+
N−1∑

m=0

{ωma†mam + χma
†
mam |e〉 〈e|

+
km
2
a†mam(a†mam − 1)}+

∑

n 6=m
kmna

†
mama

†
nan,

(1)

where ωm are the storage cavity mode frequencies and
χm are the dispersive shifts – the qubit Stark shifts per
added photon in storage cavity mode m (indexed start-
ing from 0). The coupling to the transmon causes the
cavity modes to inherit Kerr nonlinearities, both a self-
Kerr shift within a single mode (km), and a cross-Kerr
interaction between modes (kmn). The increased detun-
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FIG. 3. Universal control of a qudit using optimal control. (a) Energy level diagram for photon blockade of n = 3. The
blockade drive with Rabi strength Ω resonant with |g3i〉 - |e3i〉 causes those two levels to hybridize and shift by ±Ω. A resonant
cavity drive leads to transitions in the qutrit formed by |0〉 , |1〉 , |2〉, with |3〉 remaining off-resonant and unoccupied. (b)-(d)
The two quadratures of the pulses (I and Q) for a uniform cavity drive and the two optimal control pulses that prepare |1〉 and
|2〉 from |0〉 in mode 3. The optimal control pulses are generated using the GrAPE algorithm. (e) Corresponding spectroscopy
of the population evolution over time for the 3 pulses above. Dashed lines indicate the qubit frequencies corresponding to
n = 0 − 3 photons in mode 3. The thick horizontal green line near the top of the plots marks the frequency of the blockade
tone. (f)-(h) Wigner tomography over time of the uniform drive and optimal control pulses shown in (b)-(d), in the same
order. The dashed green circle indicates the location (in phase space) of the blockade drive. The blockade acts as a wall that
constrains the region of allowed occupation, with the states prepared by interference from the resulting reflections.

ing from the transmon causes the dispersive shift to de-
crease with mode number, despite the increase in the
interaction strength, with χm/(2π) ranging from −2.39
to −0.55 MHz for the first 9 storage modes (N = 9) that
are used for operations (see supplementary information).
The storage cavity mode lifetimes (Tm1 ∼ 2 ms), dephas-
ing times (Tm2 ∼ 2−3 ms) [33], and qubit coherence times
(T q1 , T

q
2 = 86± 6, 58± 4 µs) result in a system with very

high cooperativity (∼ 109), in which qubit transitions
corresponding to different photon numbers in any cav-
ity mode are well resolved [34]. The dispersive interac-
tion can be used for universal control of the cavity states
by combining cavity displacements with phase gates per-
formed using photon number selective drives (SNAP) on
the transmon, as has been demonstrated previously for a
single cavity mode [35, 36]

We use qubit drives to induce N-body interactions that
exclude a subset of the multimode Hilbert space, enact-
ing multimode control through a combination of block-
ade drives near the qubit frequency, and resonant cav-
ity drives. A schematic of the energy levels of the cou-
pled qubit-cavity system for a single cavity mode (i) is
shown in Fig. 2(a). A coherent qubit drive with Rabi

drive strength Ω � χi at frequency ωq + 2χi selectively
couples the states |g2i〉 and |e2i〉, causing them to hy-
bridize, and shifting their frequencies by ±Ω. This takes
the |1〉 - |2〉 transition off resonance from the |0〉 - |1〉 tran-
sition, so that a mode starting from the ground state will
undergo a Rabi oscillation between |0〉 and |1〉 in the
presence of a cavity drive with strength ε� Ω, as shown
in Fig. 2(b). In phase space, this can be interpreted as
the cavity state “bouncing” off the circle of radius

√
2

defined by the blockade (green circle in Fig. 2(c)). At
the time that corresponds to a π-pulse of the Rabi os-
cillation, the interference pattern produced by bouncing
off of the blockade circle prepares |1〉, as demonstrated
by the cavity Wigner function in Fig. 2(c). Although the
transmon does not appear to participate directly in the
state preparation, its decay and dephasing still limit the
state’s fidelity. This is due to a combination of leakage to
the dressed |2〉 state with subsequent decay via the trans-
mon (ε/(Ω2T q)), and Purcell decay of the |1〉 state from
its dressing with the transmon by the off-resonant block-
ade tone (Ω2/(εχ2T q)), where Tq is the qubit decoherence
time that is the minimum of T 1

q and T 2
q . Optimizing the

cavity drive strength results in a minimum infidelity of
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FIG. 4. Generating multimode N-body interactions via photon blockade. (a) Diagram showing the 3D space of
three-mode Fock states with at most 2 photons in each mode. Applying a sufficiently strong single blockade tone at the mean
qubit frequency corresponding to the |011〉, |101〉, and |110〉 levels effectively blockades the entire plane of states shown in
green. Starting from vacuum (|000〉), the modes are restricted to the subspace below the plane when the cavity drives are
sufficiently weak. This multimode blockade generates a pure M-site N-body interaction. Colors are chosen to correspond to
the same states across diagrams. (b) Qubit spectroscopy measurements. Top panel: coherent states prepared in three modes
(2, 3, 4) with different dispersive shifts, with the same cavity drive strength and duration used below, resulting in occupation
of states with more than 1 photon. Bottom panel: a three-mode W-state prepared by driving the cavity modes simultaneously
in the presence of the multimode blockade interaction for the appropriate time. (c) Population over time for two- (top) and
three-mode (bottom) blockades with constant, equal cavity drive strengths. The results are oscillations between multimode
entangled states and the ground state. The increase in population of the blockaded states is due to leakage and subsequent
decay arising from participation of the transmon.

∼ 1/(χT q), which is comparable to that of SNAP gates
in the absence of cavity decay.

The Rabi oscillations produced by driving the cav-
ity while blockading |2〉 allow us to create arbitrary su-
perpositions of |0〉 and |1〉. This universal control can
be extended to higher dimensional qudits, despite the
nearly identical transition frequency of the d levels, as
shown theoretically in [32]. Similar to the case of d = 2
above, we implement a qudit in mode i by driving the
|gdi〉 ↔ |edi〉 transmon transition to blockade |di〉, as il-
lustrated in the energy level diagram in Fig. 3(a) for a
qutrit obtained by blockade of |3i〉. We demonstrate uni-
versal qutrit control through shaped pulses obtained us-
ing the gradient ascent pulse engineering (GrAPE) algo-
rithm [37], implemented using the optimal control pack-
age developed in [38]. The drift Hamiltonian used to
obtain the pulses is in a doubly rotating frame at the
cavity and blockade drive frequency, and includes the
dispersive shift and self-Kerr interaction of the mode of
interest. The control pulses are constrained to have a
length of 25 µs, with maximum amplitudes ε � Ω, and
pulse bandwidth limited to ±χ/2 around the cavity fre-
quency. The real and imaginary quadratures of the pulse
envelopes used to prepare |1〉 and |2〉 from the vacuum
state with a blockade at |3〉 are shown in Fig. 3(c) and
(d), respectively. A uniform cavity drive (Fig. 3(b)) pro-
duces a superposition of |0〉 , |1〉, and |2〉, shown by the
dashed black qubit spectroscopy curve in Fig. 3(e) and

the Wigner functions in Fig. 3(f). The optimal control
pulses shown in Fig. 3(c) and (d) prepare |1〉 and |2〉 with
fidelities of 0.953± 0.022 and 0.965± 0.022, respectively.
The corresponding Wigner function evolutions are shown
in Fig. 3(g) and (h). The measurements presented here
were performed on cavity mode 3, with ν3 = 6.223 GHz
and χ3 = −1.136 MHz. These methods allow for univer-
sal control of qutrits in any of the cavity modes, and can
be extended to higher dimensional qudits.

We extend photon blockade to implement N-body in-
teractions across multiple modes and utilize them for
quantum state preparation. Creating these interac-
tions requires shifting the energies of multiple multimode
states. We accomplish this by choosing a single drive tone
that blockades a set of multimode states whose dispersive
shifts are sufficiently close in frequency. This creates a
hyper-plane of blockaded states with the same total pho-
ton number, whose energies are all shifted, defining the
multimode N-body interaction. This hyper-plane effec-
tively partitions the space of states that are accessible by
cavity drives weaker than the interaction strength. This
could also be accomplished by using multiple blockade
drives at different frequencies, but we will focus on the
single-tone case.

This plane is shown in Fig. 4(a) for 2 photons and
3 modes, whose boundary contains the blockaded states
for the two-mode case. The interaction is implemented
with a blockade drive offset from the qubit frequency by
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FIG. 5. Multimode Wigner tomography. (a) The pulse
sequence involves displacements of each of the modes followed
by a qubit Ramsey measurement with a wait time τ – acting
as an approximate joint parity measurement, and resulting in
the overall measurement of a generalized multimode Wigner
operator. This operator is measured for a set of known dis-
placements of each of the modes, from which the density ma-
trix (ρ) is obtained. (b) Real part of the reconstructed ρ, for
a two-mode entangled state of modes 3 and 4, and (c) for a
three-mode entangled state of modes 2, 3 and 4. The phases
of the superpositions are extracted by maximizing the inner
product of the measured ρ and an ideal W-state with free
phases (insets). The gauge freedom in the phase definition
for each mode is used to make the density matrices real.

the average dispersive shifts of combinations of adding
2 photons, i.e., δνb = χi + χj for 2 modes (i, j), and
δνb = (2χi + 2χj + 2χk)/3 for 3 modes (i, j, k). As in
the single mode case, the blockade drive must be weak
enough to satisfy Ω � δνb − |χi,j,k| so as to not target
states with a different total photon number. On the other
hand, the drive must also be strong enough to simultane-
ously blockade all the multimode states with a total of 2
photons. For example, in the two-mode case, blockading
|20〉, |02〉, and |11〉 requires Ω > |δχ| = |χi − χj |. In our
system, these criteria can be satisfied for all mode pairs
that are nearest neighbours in frequency (see supplemen-
tary information). Subsequently, driving all cavity modes
with sufficiently weak drives (ε < Ω) in the presence of
the blockade interaction results in constrained multimode
dynamics within the space of 0 and 1 photon when start-
ing from the vacuum state. In particular, driving the
modes with equal strengths for an appropriate time re-
sults in the preparation of W-states, (|10〉 + eiφ |01〉)

√
2

and (|100〉+ eiφ1 |010〉+ eiφ2 |001〉)/
√

3 for the two- and
three-mode cases, respectively.

We first demonstrate this interaction with qubit spec-
troscopy. In the absence of the blockade drive, indepen-
dent weak drives in each mode produce coherent states
with occupation in the two photon levels |200〉 , |020〉 or
|002〉, as shown in Fig. 4 (b, top). However, in the pres-
ence of the blockade, the states with more than 1 photon

have no occupation, as shown in Fig. 4(b, bottom). Here,
3 modes are driven simultaneously with equal strengths
for the time required to prepare a W-state, resulting in
peaks only at |100〉 , |010〉 and |001〉. Using the peak
heights from spectroscopy, we measure the population os-
cillations as a function of time in Fig. 4(c) when 2 (top)
or 3 (bottom) modes are simultaneously driven. We see
that most of the population remains in the 0 and 1 pho-
ton multimode subspace, and that the populations are
consistent with a W-state at the time when the vacuum
state is emptied.

To completely characterize the entangled states pre-
pared in this system, we perform multimode Wigner to-
mography using the protocol shown in Fig. 5(a). A pho-
ton in mode m causes the qubit to accrue a known phase
θm = 2πχmτR, where τR is the wait time during a qubit
Ramsey measurement. For modes with different χ’s, the
phase accrues at different rates. Prior schemes have ad-
dressed this by using higher transmon levels to perform
a joint parity measurement [39], Π̂ = eiπ

∑
mNm , where

Nm is the number of photons in mode m. Here, we in-
stead perform tomography using a generalization of a
joint parity measurement, which forgoes the need for
dispersive shift engineering or the use of higher trans-
mon levels. A qubit Ramsey sequence with idle time
corresponding to phase angles θm measures the operator
Π̃ = cos(

∑
m θmNm). Adding cavity displacements prior

to the Ramsey measurement (U =
⊗

mD(αm)) measures

the generalized Wigner function W̃ = UΠ̃U†, which re-
duces to the usual joint Wigner function for θm = π.
This function is measured for a set of mode displace-
ments, whose results are inverted to reconstruct the mul-
timode density matrix (see supplementary information).
The real parts of the density matrices obtained from
a reconstruction for W-states of two and three modes
are shown in Fig. 5(b) and (c), with state fidelities of
F = Tr[ρMρT ] = 0.918±0.012 and 0.864±0.014, respec-
tively.

In summary, we have used photon blockade to realize
a multimode N-body interaction in arbitrary modes of
a multimode cQED system. We demonstrate the abil-
ity to prepare Fock states of increasing photon number
in any mode, using a new scheme that involves optimal
control pulses acting only on the cavity in the presence of
a blockade drive. We also prepare entangled W-states of
photons in up to three modes with a scheme that easily
generalizes to larger numbers of modes. To character-
ize the entanglement of the prepared states, we develop
a new protocol for multimode Wigner tomography that
does not require engineering the dispersive interaction.
In future work, more exotic interactions and partitions
of the multimode Hilbert space can be implemented by
applying multiple blockade tones. Additionally, states
prepared and evolved in separate blockade subspaces can
be made to interfere with each other, thereby realizing
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a multimode analog of phase space tweezers [30]. The
multimode cQED system demonstrated in this work ad-
vances the state-of-the-art in terms of number of modes,
lifetimes, and cooperativities, and is a promising new
platform for exploring interactions and many-body states
of microwave photons relevant for quantum optics, quan-
tum simulation, and quantum error correction.
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I. CRYOGENIC SETUP AND CONTROL
INSTRUMENTATION
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Supplementary Figure 1 | Schematic of the cryogenic setup,
microwave wiring and filtering, and control instrumentation.

The multimode cavity device is heat sunk to an OFHC
copper plate connected to the base stage of a Bluefors
LD-400 dilution refrigerator (7-8 mK). The sample is sur-
rounded by a can containing two layers of µ-metal shield-
ing, with the inside of the inner layer connected to a can
made out of copper shim that is attached to the copper
can lid and painted on the inside with Berkeley black.
A schematic of the cryogenic setup, control instrumenta-
tion, and device wiring is shown in SFig. 1. The device is
machined from a single piece of 5N5 aluminium and con-
sists of a readout cavity and a multimode storage cavity
fabricated using the flute method described in [S1]. The
cavities are bridged by a 3D transmon circuit whose fab-
rication is detailed in the next section. All controls are
performed through the readout cavity, by driving at the

qubit and storage mode frequencies. The pulses are di-
rectly digitally synthesized using a 4-channel, 64 GSa/s
arbitrary waveform generator (Keysight M8195A). The
combined signals are sent to the device after being atten-
uated at each of the thermal stages, as shown in SFig. 1.
The transmitted signal from the readout resonator passes
through three cryogenic circulators (thermalized at the
base stage) and is amplified using a HEMT amplifier (an-
chored at 4 K). Outside the fridge, the signal is filtered
(tunable narrow band YIG filter with a bandwidth of 80
MHz) and further amplified. The amplitude and phase of
the resonator transmission signal are obtained through a
homodyne measurement, with the transmitted signal de-
modulated using an IQ mixer and a local oscillator at
the readout resonator frequency. The homodyne signal
is amplified (SRS preamplifier) and recorded using a fast
ADC card (Keysight M3102A PXIe 500 MSa/s digitizer).

II. FABRICATION OF THE TRANSMON
CIRUIT

The transmon qubit was fabricated on a 430 µm
thick C-plane (0001) sapphire wafer with a diameter of
50.8 mm. The wafer was cleaned with organic solvents
(Toluene, Acetone, Methanol, Isopropanol, and DI wa-
ter) in an ultrasonic bath to remove contamination, then
annealed at 1200 °C for 1.5 hours. Prior to film de-
position, the wafer underwent a second clean with or-
ganic solvents (Toluene, Acetone, Methanol, Isopropanol,
and DI water) in an ultrasonic bath. The junction was
made out of aluminum using a combination of optical
and electron-beam lithography. The base layer of the
device, which includes the capacitor pads for the trans-
mon, consists of 120 nm of Al deposited via electron-
beam evaporation at 1Å/s. The features were defined
via optical lithography using AZ MiR 703 photoresist
and exposure by a Heidelberg MLA150 Direct Writer.
The resist was developed for 1 minute in AZ MIF 300
1:1. The features were etched in a Plasma-Therm induc-
tively coupled plasma (ICP) etcher using chlorine based
etch chemistry (30 sccm Cl2, 30 sccm BCl2, 10 sccm Ar).
This was followed by a second layer of optical patterning
and thermal evaporation of 50 nm of Au for the align-
ment marks used for ebeam lithography. The resist was
subsequently removed by leaving the wafer in 80◦C N-
Methyl-2-pyrrolidone (NMP) for 4 hours. The junction
mask was defined through electron-beam lithography of
a bi-layer resist (MMA-PMMA) in the Manhattan pat-
tern using a Raith EBPG5000 Plus E-Beam Writer, with
overlap pads that allow for direct galvanic contact to the
optically defined capacitors. The resist stack was devel-
oped for 1.5 minutes in a solution of 3 parts IPA and
1 part DI water. Before deposition, the overlap regions
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on the pre-deposited capacitors were milled in-situ with
an argon ion mill to remove the native oxide. The junc-
tion was then deposited with a three step electron-beam
evaporation and oxidation process. First, an initial 35
nm layer of Al was deposited at 1 nm/s at an angle of
29◦ relative to the normal of the substrate, azimuthally
parallel to one of the fingers in the Manhattan pattern.
Next, the junction was exposed to 20 mBar of a high-
purity mixture of Ar and O2 (80:20 ratio) for 12 minutes
to allow the first layer to grow a native oxide. Finally,
a second 120 nm layer of Al was deposited at 1 nm/s
at the same 29◦ angle relative to the normal of the sub-
strate, but azimuthally orthogonal to the first layer of
Al. After evaporation, the remaining resist was removed
via liftoff in 80◦C NMP for 3 hours, leaving only the
junction directly connected to the base layer. After both
the evaporation and liftoff, the device was exposed to an
ion-producing fan for 30 minutes to avoid electrostatic
discharge of the junction.

III. CALIBRATION OF THE MULTIMODE
HAMILTONIAN

The Hamiltonian of the multimode cavity QED system
realized by the transmon and the storage modes is:

H = ωq |e〉 〈e|+
N−1∑

m=0

{ωma†mam + χma
†
mam |e〉 〈e|

+
km
2
a†mam(a†mam − 1)}+

∑

n6=m
kmna

†
mama

†
nan,

(1)

where ωq is the frequency of the transmon |g〉 - |e〉 transi-
tion, ωm the memory mode frequencies, χm the dispersive
shifts, km the self-Kerr shift of each mode, and kmn the
cross-Kerr interactions between the modes. The value
of ωq is obtained through a standard Ramsey measure-
ment on the transmon. The χm are initially calibrated
by performing qubit spectroscopy with a resolved pulse
swept near the qubit frequency, following a coherent drive
at the cavity frequency. The χm are then determined
more precisely with a Ramsey experiment on the trans-
mon |g〉 - |e〉 transition after the addition of a photon in
the cavity mode, as shown in SFig. 2(a). The photon is
added to the cavity either by initializing the transmon in
|f〉 and then driving the |f0〉 − |g1m〉 transition, or by
performing a Rabi oscillation on the cavity in the pres-
ence of a blockade at n = 2, as described in the main text.
The km of the cavity modes are obtained by performing
a cavity Ramsey experiment, with the measured values
shown in SFig 2(b). This experiment is conducted by
varying the time (τ) between two coherent cavity pulses
(with the the phase of the second cavity pulse advanced
by 2πνRτ) and subsequently measuring the population
in |0〉 using a resolved transmon π pulse. The magni-
tude of the coherent state α injected in the cavity is also
swept, and the resulting data is fit to the expression:
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Supplementary Figure 2 | Calibrations of multimode cavity
dispersive shift and self-Kerr interactions. (a) Dispersive shift
calibration for each of the manipulable modes. The
measurement is performed by placing a photon in a mode,
followed by a qubit Ramsey and fitting to the resulting
oscillation frequency. An example is shown in the inset. (b)
Self-Kerr calibration for each of the modes. The measurement
is performed through cavity Ramsey and fitting to the resulting
spectrum vs. time and the magnitude |α| of the cavity
displacement. (c) Self-kerr data for cavity mode number 3. (d)
Cross-shift between mode pairs. The measurement is performed
by placing a photon in mode m, then sweeping the cavity
frequency when probing the 0 to 1 photon peak of mode n.

P0(t) = | exp(−α2)
∑
n

1
n!α

2n exp(−itn(ωm + kmn/2))|2,
as shown in SFig. 2(c) for cavity mode 3. The cross-
Kerrs kmn are obtained by adding a photon to mode m
and performing cavity spectroscopy on a different mode
n. This procedure is also repeated, on the same mode to
verify the consistency of the self-Kerr shifts. The values
of kmn are shown in SFig. 2(d). A summary of all mea-
sured quantities relevant to the Hamiltonian, as well as
Liouvillian terms corresponding to transmon and cavity
decoherence and decay, is provided in STable 1.

The minimal description of the dynamics during the
blockade of a single mode includes the dispersive coupling
between the transmon and the cavity, a Rabi drive on the
transmon |g〉-|e〉 transition, the self-Kerr of the mode,
and the cavity drive. The corresponding Hamiltonian in
the frame rotating at the dressed mode and transmon
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Parameter Hamiltonian/Liouvillian Term Quantity Value
Transmon frequency ωq |e〉 〈e| ωq/(2π) 4.99 GHz

Storage cavity frequencies ωma
†
mam ωm/(2π) 5.46 - 7.51 GHz

Readout frequency ωra
†
rar ωr/(2π) 7.79 GHz

Readout dispersive shift χra
†
rar |e〉 〈e| χr/(2π) 1 MHz

Storage mode dispersive shifts χma
†
mam |e〉 〈e| χm/(2π) see SFig. 2

Storage mode self-Kerrs km
2
a†mam(a†mam − 1) km/(2π) ”

Storage mode cross-Kerrs kmna
†
mama

†
nan kmn/(2π) ”

Transmon |e〉 → |g〉 relaxation 1
T

q
1

(1 + n̄)D
[
|g〉 〈e|

]
T q1 86± 6 µs

Transmon |g〉 − |e〉 dephasing ( 1
T

q
2
− 1

2T
q
1

)D
[
|e〉 〈e|

]
T q2 58± 4 µs

Readout linewidth κrD[ar] κr/(2π) 0.52 MHz
Storage mode relaxation 1

Tm
1
D[a] Tm1 ∼ 2 ms, see [S1]

Transmon thermal population n̄
T

q
1
D
[
|e〉 〈g|

]
n̄ 1.2± 0.5 %

Storage mode dephasing " Tm2 ∼ 2− 3 ms, see [S1]

Supplementary Table 1 | Multimode cQED system parameters

frequencies is:

Ĥ = χâ†â |e〉 〈e|+ κ

2
â†â

(
â†â− 1

)

+ {Ω(t) |g〉 〈e|+ ε(t)â+ c.c.} .
(2)

To blockade the |n0〉 Fock state of a single mode, the
transmon is driven at frequency ωq + χn0. The blockade
drive can thus be expressed as Ω(t) = Ω̃e−iχn0t. We
make the blockade drive term static through the frame
transformation Û = e−iχ|e〉〈e|n0t, resulting in:

˜̂
H = χ

(
â†â− n0

)
|e〉 〈e|+ κ

2
â†â

(
â†â− 1

)

+ {Ω |g〉 〈e|+ ε(t)â+ c.c.} .
(3)

The blockade is valid in the regime that ε
√
n0 < Ω <

χ. The first of these conditions prevents leakage to
|g̃, n0〉 , |ẽ, n0〉, while the second selectively blockades only
the |g, n0〉 ↔ |e, n0〉 transition and minimally affects

transitions corresponding to other photon numbers. This
Hamiltonian can be simplified by individually diagonal-
izing each photon number subspace (|g, n〉, |e, n〉). The
blockade drive is resonant with |g, n0〉 → |e, n0〉, splitting
those levels by 2Ω and mixing them equally. For levels
on either side of n0, the dressing between the ground and
excited states is proportional to Ω/ (χ (n− n0)) to lead-
ing order in Ω/χ. The Hamiltonian can be rewritten in
terms of these dressed states as:

H − χ
(
â†â− n0

)
= ξ(t)

(√
n+ 1 |g̃, n〉 〈g̃, n+ 1|+ c.c

)

+
∑

n

√
χ2 (n− n0)

2

4
+ Ω2

(
|ẽ, n〉 〈ẽ, n| − |g̃, n〉 〈g̃, n|

)
(4)

In the above, we have dropped the drive terms that cou-
ple the dressed ground and excited states, which are off-
resonant and suppressed by Ω/χ. The physics of the
blockade can be approximated within a truncated Hilbert
space that involves only the dressed transmon ground
state, described by the following Hamiltonian:

H ≈
∑

n

([
−
√
χ2 (n− n0)

2
/4 + Ω2 + χ(n− n0)

]
|g̃, n〉 〈g̃, n|+ ξ(t)

(√
n+ 1 |g̃, n〉 〈g̃, n+ 1|+ c.c

))

≈
∑

n

(
− Ω2

4χ (n− n0)
|g̃, n〉 〈g̃, n|+ ξ(t)

(√
n+ 1 |g̃, n〉 〈g̃, n+ 1|+ c.c

))
.

(5)

We characterize the blockade interaction with the exper-
iments shown in SFig. 3. SFig. 3(a) depicts the Stark
shift of the cavity |0〉 - |1〉 as a result of a blockade at
|2〉. Driving the cavity in the presence of the blockade
generates Rabi oscillations that can be used to prepare
a photon in the cavity, as shown in (b), with the theo-

retical infidelity versus the time for a cavity blockade π
pulse shown in (d). As is evident from the Hamiltonian
SEqn. (5), the blockade drive Stark shifts the other cavity
Fock states. The resulting blockade spectrum is probed
using the following cavity spectroscopy experiment. We
first prepare the cavity in |1〉 through the method de-
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Supplementary Figure 3 | Blockade calibrations. (a) Cavity
spectroscopy in the presence of the blockade drive. The fitted
center frequency is marked by the vertical dashed black line,
and indicates the Stark shift from the bare cavity resonance
frequency due to the blockade. (b) Populations over time
produced by a constant cavity drive (ε/(2π) = 10 kHz) with a
blockade drive (Ω/(2π) = 107 kHz) at |2〉, resulting in a Rabi
oscillation between the |0〉 and |1〉 levels. (c) Spectrum
showing the energy level splitting as a function of the blockade
drive strength Ω. The central vertical blue line shows the
|0〉 - |1〉 transition, which bends due to the Stark shift. The left
and right lines show the Rabi split |1〉 - |2〉 transitions. The
corresponding theoretical curves are indicated by the dashed
black lines. (d) Theoretical blockade infidelity as a function of
the the time required for a blockade π pulse (1/(2ε)), for
different blockade drive strengths Ω, as a result of both
transmon decoherence and cavity decay.

scribed above. We then sweep the frequency of a weak
cavity drive tone, and perform spectroscopy as a func-
tion of the Rabi amplitude (Ω) of the blockade drive. We
observe peaks corresponding to the Stark shifted |0〉 - |1〉
transition and the two Rabi split |1〉 - |2〉 transitions, as
shown in SFig. 3(c). The Rabi amplitude Ω is calibrated
using transmon Rabi oscillations.

IV. GENERATION OF OPTIMAL CONTROL
PULSES IN THE PRESENCE OF THE

BLOCKADE DRIVE

Optimal control pulses were generated with the
GrAPE algorithm using the package developed in [S2]
using two methods. The first approach used the Hamil-
tonian in SEqn. (3), which is in the frame rotating at the
blockade frequency, using a Hilbert space with 2 trans-

mon levels and 5-7 cavity levels,. It includes a fixed
transmon blockade drive included in the drift Hamilto-
nian and a cavity drive term in the control Hamiltonian.
The cavity drives were written as real time-dependent
fields (x(t), y(t)) acting on the quadratures x̂ = a + a†

and ŷ = −i(a − a†). We impose amplitude constraints
on the optimal control pulses to satisfy the blockade cri-
terion ε

√
n0 < Ω < χ, setting a maximum allowed cavity

drive amplitude of 2π × (10− 15) kHz ≈ Ω/10. We also
explicitly forbid population of the dressed eigenstates at
and above the blockaded level to reduce unwanted leak-
age.

The pulses produced typically had a bandwidth much
greater than χ. While this can be decreased by adding
bandwidth constraints during the optimal control pulse
generation, here we filtered the pulses to a bandwidth of
±χ/2 about the cavity frequency after generation, with
no detriment to the simulated or experimentally mea-
sured fidelities.

The second approach used the simplified Hamiltonian
given by SEqn. (5), which includes only the cavity photon
number states below the blockade level (n0) and the cav-
ity drive (ε). It correctly incorporates the Stark shifts of
the cavity levels, but approximates the blockade as per-
fect, with leakage minimized solely by constraining the
cavity drive strength. This simpler optimal control prob-
lem resulted in faster pulse convergence and had similar
experimental performance for the state preparation se-
quences of |1〉 , |2〉 while blockading |3〉. This improved
convergence arises from not needing to manage inter-
ference effects to cancel leakage through the blockaded
level. It also allowed for the implementation of a qutrit
shift gate operation that simultaneously takes |0〉 → |1〉,
|1〉 → |2〉, and |2〉 → |0〉. The pulses heuristically resulted
in a gate fidelity of ∼ 0.8, which was 5% worse than the
simulated fidelity when including mode and transmon de-
coherence and decay in accordance with STable 1. The
decay and decoherence times of all of the manipulable
cavity modes are >∼ 2 ms [S1].

To convert between the optimal control pulse ampli-
tudes (in frequency units) and the control voltages out-
put by the arbitrary waveform generator (AWG), we
measured transfer functions for the blockade and cav-
ity drives. The cavity transfer function was determined
by driving the target cavity mode for varying times and
drive amplitudes and measuring the photon number dis-
tribution of the resulting coherent state (|α〉) using re-
solved qubit spectroscopy. For a given cavity drive am-
plitude, we measured |α| as a function of the drive du-
ration (τ) and extract the cavity drive strength from the
slope (|ξ| = 2|α|/τ). This process was repeated for differ-
ent cavity drive amplitudes to obtain the transfer func-
tion for the cavity drive strength versus the AWG control
amplitude in SFig. 4(a). The qubit transfer function was
obtained by driving the transmon |g〉 - |e〉 transition at
a fixed amplitude and fitting the resulting Rabi oscilla-
tion. The blockade Rabi drive strength Ω extracted as
a function of the control voltage is shown in SFig. 4(b).
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While the transfer functions are linear at higher ampli-
tudes, they become nonlinear at amplitudes < 25 mV
due to rounding/digitization artifacts from the AWG (8
bit). When input into the experiment, the transfer func-
tion data was linearly interpolated with an odd copy re-
flected about the origin to handle negative drive fields
produced by the optimal control. The optimal control
pulses are finally shifted back to the lab frame according
to f(t) = x(t) cos(ωmt)− y(t) sin(ωmt), where ωm is the
frequency of the target mode.

1. Measuring the FFT of the optimal control pulses

The Fourier transform of the optimal control pulse can
be measured in-situ by using the cavity as a narrow band
(∼ 20 Hz) spectral filter. We apply the optimal control
pulse to the cavity mode (with the blockade drive off)
while varying the central carrier frequency, and measure
the resulting photon number distribution via resolved
qubit spectroscopy. Since the mode only responds on
resonance, the magnitude of the resulting coherent state
(|α(ωc)|) as a function of the carrier frequency (ωc) allows
us to determine the FFT of the optimal control pulse.
The experimentally measured |α(ωc)| and the theoreti-
cal FFT of the AWG output pulse with the calibrated
transfer function are shown in SFig. 4(c).

V. WIGNER TOMOGRAPHY

Single mode Wigner tomography is performed via a
measurement of the photon number parity (Π̂) following
a series of displacements of the cavity mode. This effec-
tively measures the Wigner operator, Ŵ(α) = D̂αΠ̂D̂−α.
The measurements of the Wigner operator for a set of
mode displacements αi, xi = Tr[Ŵ(αi)ρ] were inverted to
reconstruct the density matrix ρ following the procedure
described in [S3]. By converting the Wigner operator and
density matrix to vectors, we express xi = 〈〈W(αi)|ρ〉〉,
and construct a matrix M with Mij = 〈〈W(αi)|j that
represents measurements of the Wigner operator at all
the displacements. The number of columns of M is d2,
where d is the truncated dimension of the Hilbert space
of the cavity up to which the tomography is valid, while
the rows correspond to the points in phase space where
measurements are sampled (> d2). Since M is a non-
square matrix, we calculate the density matrix by act-
ing the Moore-Penrose pseudoinverse of M on the vec-
tor of measurements ~x , i.e., |ρ〉〉 = (MTM)−1(MT~x).
The density matrix extracted from this inversion is made
physical by forcing it to have unit trace and imposing
positive semi-definiteness. We constrain the trace of the
density matrix through the use a Lagrange multiplier (λ)
and perform the inversion as below:

[
|ρ〉〉
λ

]
=

[
MTM 〈〈I|T
〈〈I| 0

]−1 [MT~x
1

]
. (6)
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Supplementary Figure 4 | Cavity and qubit drive calibrations.
(a) Qubit calibration performed by fitting to Rabi oscillations as
a function of AWG amplitude, with an example oscillation
shown in the inset. For both the qubit and cavity, the
calibration function is not strictly linear at all amplitudes due to
digitization effects from the 8-bit control electronics. (b) The
cavity drive calibration is performed by populating the cavity
with coherent states and fitting the resulting photon number
Poisson distribution, as a function of AWG amplitude. An
example of a prepared state and fit is shown in the inset. The
function is calibrated individually for each mode involved in our
experiments. (c) Fourier transform of the optimal control pulse
used to generate Fock state |1〉 in the cavity. The theoretical
and experimental spectrums are in good agreement, particularly
around the mode frequency where most of the contribution
resides.

Positive semi-definiteness is usually imposed with
Cholesky decomposition or other methods. We instead
impose that condition using the algorithm presented
in [S4], involving diagonalizing M, iteratively redis-
tributing any negative eigenvalues equally across the re-
maining positive ones, and subsequently reconstructing
ρ.

The displacements we perform are to an optimized set
of points in phase space that are chosen with the method
described in [S3], and are shown in SFig. 5(a). In par-
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Supplementary Figure 5 | Multimode Wigner tomography
calibrations. (a) Pulse sequence for Wigner tomography of 3
modes. Sequential cavity displacements are followed by a qubit
Ramsey measurement with wait time τR. (b) Set of cavity
displacements used to reconstruct the cavity state with Wigner
tomography. The 75 points used in the single mode case (blue)
and the 18 points used for each mode in the three-mode
tomography case (orange) are shown. Dashed circles indicate
the square root of the maximum photon number to which the
reconstruction is accurate. (c) Ramsey sequence after the
addition of a single photon in each mode. Dashed vertical lines
indicate the times that correspond to a perfect parity
measurement for each mode. This is subsequently used to
calibrate the angles θj that correspond to a wait time τR. (d)
Calibrating the bandwidth of the parity measurement. The
pulse sequence is a cavity displacement followed by two π/2
pulses, where the second π/2 pulse either has phase 0 (blue) or
π (orange). The finite bandwidth of the qubit π/2 pulses and
the increasing dispersive shift at larger |α| result in imperfect
π/2 pulses, reducing the range of possible measurement results.
(e) Calibration of the cross-Kerr between the readout resonator
and a cavity mode. The pulse sequence is a cavity displacement
of magnitude |α| followed by readout. This does not
significantly affect the measurements presented in this work,
since the values of |α| used in the Wigner tomography
experiments were < 2.

ticular, the set of points minimizes the condition number
κ—the absolute value of the ratio of the maximum to
the minimum eigenvalue of M. Minimizing κ increases
the likelihood ofM being invertible, and reduces ampli-
fication of error from the inverted ρ—measurement noise
of magnitude ε results in an error no greater than κε in

the reconstructed density matrix. For our single mode
experiments, we used a total of 75 Wigner points with
a maximum photon number of 7, with κ = 1.6. For the
multimode measurements of the single-photon W-state,
we used 18 Wigner points and a maximum photon num-
ber of 3 per cavity mode.

A. Generalized Wigner tomography

The parity measurement in Wigner tomography is per-
formed using a qubit Ramsey sequence that is composed
of two broadband π/2 pulses with opposite phases, sep-
arated by a wait time τ = 1/(2χm) during which the
qubit acquires a θ = π phase if a single photon is in cav-
ity mode i, followed by qubit readout. Since rotations
are only distinguishable modulo 2π, all odd (even) pho-
ton numbers will place the qubit in the excited (ground)
state, resulting in a measurement of photon number par-
ity Π̂ = cos(πN̂). A similar qubit Ramsey sequence
that idles for an arbitrary τ corresponds to a phase shift
of θ = 2πχmτ for a single photon in mode m, and a
measurement of Θ̂ = cos(θN̂). Displacing the cavity
mode prior to this general qubit Ramsey sequence allows
for the measurement of a generalized Wigner operator
Ŵ(α, θ) = D̂αΘ̂D̂−α. As long as θ is known, we can in-
vert the measurements of the expectation value of this
operator for a series of known displacements to obtain
the density matrix, like in the case of θ = π. The er-
ror in reconstruction fidelity is dependent on θ, with the
smallest error occurring around θ = π—where the gen-
eralized Wigner function has maximum contrast, and is
also the least sensitive to errors in the calibration of θ.

B. Multimode Wigner tomography

Multimode Wigner tomography has previously been
performed via measurements of the joint photon num-
ber parity following displacements of each of the cav-
ity modes, effectively corresponding to a measurement of
a joint Wigner operator. However, joint photon num-
ber parity measurements become challenging when the
modes do not have the same χm, requiring the use of
higher transmon levels [S5], or additional transmons [S6].
The generalized Wigner tomography protocol described
in the previous section provides a workaround, allowing
us to replace the joint photon number parity operator⊗

m Π̂m with a generalized operator
⊗

m Θ̂m. Since θm
need not be identical between modes, a single qubit Ram-
sey time τ that corresponds to different θm for each mode
m can be utilized to perform the measurement. We can
then characterize our state without engineering χm.

In the case of two modes, we used cavity modes 3
and 4 and combined the measurements at three differ-
ent Ramsey times τ1, τ2, and τ3 to reconstruct the state
density matrix. While only one τ is necessary, addi-
tional times improve the accuracy of the final state re-
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Supplementary Figure 6 | Density matrix reconstruction and multimode Wigner tomography data for a two-mode W-state. (a)
Real and (b) Imaginary part of the density matrix of the reconstructed two-mode state. The value of φ = −0.730 for the state
(|10〉+ eiφ |01〉)

√
2 is determined by the maximum fidelity projection, and is shown in the inset. The corresponding state fidelity is

0.918± 0.012. c) The 6 orthogonal 2D slices of the two-mode Wigner function through the origin of phase space, involving all
combinations of the real and imaginary quadratures of both modes.

construction. The set of τ ’s at which we measured was
{τj} =

[
419.8, 483.3, 454.0

]
ns, which corresponds to

{θ3} =
[
π, 3.63, 3.39

]
and {θ4} =

[
2.74, π, 2.94

]
. For

these sets of angles, the condition numbers are κ3,4 = 1.6.
For the three mode case, we used modes 2,3, and 4 of our
cavity, and chose the Ramsey time that corresponds to
θ3 = π. We made this choice because χ3 is between χ2

and χ4, resulting in a set of {θ} that are as close to π as
possible. This is desirable for reasons as discussed in Sec-
tion VA. The resulting tomography angles for this single
value of τ are (in radians) {θ2, θ3, θ4} =

[
3.44, π, 2.64

]
.

The corresponding values of κ are κ2,3,4 = 1.6.
In addition to the density matrices of the multimode

W-states presented in the main text, here we provide 2D
slices of their multimode Wigner functions. These can
be seen for the two and three mode states in SFig. 6
and 7, respectively. The slices correspond to all pairwise
combinations of real and imaginary quadratures of each
of the modes, leading to 6 slices in the two-mode case
and 15 in the three-mode case.

C. Multimode state phase determination and
gauge freedom

We determine the phases φj of our multimode W-
states, (|10〉 + eiφ |01〉)

√
2 in the two mode case and

(|100〉+eiφ1 |010〉+eiφ2 |001〉)/
√

3 in the three mode case,
by maximizing the fidelity of the projection onto those
states as a function of the φj ’s. That is, we map our pre-
pared state onto the appropriate (two- or three-mode)
expected W-state while sweeping the phase parameters,

and pick the angles that give us the projected value clos-
est to 1. This is shown in the insets of SFig. 6 and SFig. 7.
We are able to prepare states with different phases by
varying the relative phases of our cavity drives. There
is a 2π gauge freedom in the definition of the phase of
each cavity mode. For a given choice of these phases, we
determine the phase of the prepared states using Wigner
tomography. These phases can be can be modified by
a gauge transformation, allowing us to make the recon-
structed density matrices real, as in Fig. 5 of the main
text.

D. Systematic errors in Wigner tomography

In addition to experimental noise, the Wigner tomog-
raphy reconstruction has systematic errors that appear in
the parity measurement and come from two main sources.
The first source is the limited bandwidth of the parity
measurement. We mitigate this by using DRAG pulse
shaping to maximize the bandwidth of the pulses (Gaus-
sian pulse with σ = 5 ns). The second source is readout
error arising from the cross-Kerr interaction between the
storage and readout modes. This results in a systematic
shift in the readout voltage of transmon states that de-
pends on the number of photons in the storage modes.
We calibrate both these errors using the protocols de-
scribed below, and use them to correct the Wigner to-
mography. The correction to the bandwidth of the par-
ity measurement is calibrated by displacing the cavity
to a phase space point used in the Wigner tomography
and subsequently applying two π/2 pulses with either the
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Supplementary Figure 7 | Density matrix reconstruction and multimode Wigner tomography data for a three-mode W-state. (a)
Real and (b) Imaginary part of the density matrix of the reconstructed three mode state. The values of φ1 = −0.403, φ2 = −0.866
of the prepared state (|100〉+ eiφ1 |010〉+ eiφ2 |001〉)/

√
3 are again determined by the maximum fidelity projection, and shown in

the inset. The corresponding state fidelity is 0.864± 0.014. (c) The 15 orthogonal 2D slices of the three-mode Wigner function
through the origin of phase space, involving all combinations of the real and imaginary quadratures of the three modes.

same or opposite phase, with no wait time in between.
This would ideally place the qubit in either the excited
or ground state, corresponding to Pe = 1 or 0, respec-
tively. However, despite the large bandwidth of the qubit
π/2 pulses, the dispersive shift takes the pulses off reso-
nance for larger |α|. As shown in SFig. 5(d), this reduces
the contrast of the parity measurement and therefore the
Wigner operator measurement. We compensate for this
effect by scaling the Wigner operator measurement for a
given state and displacement using a linear transforma-
tion (W(α, ρ)→ aW(α, ρ) + b), that takes the upper and
lower bounds for the parity measurement (c1, c2) to their
ideal values (1, 0), i.e. a, b = 1/(c1 − c2),−c2/(c1 − c2).
This correction is performed for each Wigner point used
in the tomography, with varying calibrated values of a
and b. Wigner points with larger values of |α| deviate
more from the ideal 0 to 1 range, as the magnitude of
the cross-Kerr and dispersive shift effects scales with |α|.

VI. MASTER EQUATION SIMULATIONS OF
BLOCKADE DYNAMICS

We simulate multimode blockade dynamics using a
master equation that includes the decay of the cavity
modes (κm = 1/Tm1 ), as well as the decay (γq = 1/T q1 )

and dephasing (γqφ = 1/T q2 − 1/(2T q1 )) of the transmon:

˙̂ρ =− i[Ĥ, ρ̂] +
∑

m

κmD[âm]ρ̂+ γqn
th
q D[|e〉 〈g|]ρ̂

+ γq(1 + nthq )D[|g〉 〈e|]ρ̂+ γφqD[|e〉 〈e|]ρ̂.
(7)

Here, D is the Lindblad dissipator, and Ĥ is the block-
ade Hamiltonian given by SEqn. (3) for the single-mode
case. We include the thermal occupation of the trans-
mon (nthq = 1.2 ± 0.5%), but ignore the thermal pop-
ulation of the storage cavity modes (nthm ≤ 0.01%).
For the case of multiple cavity modes and drives, this
Hamiltonian—written in a frame co-rotating with the
blockade (νb = νq + δνb) and cavity mode frequencies
(νm), generalizes to:

Ĥ =

{∑

m

χmâ
†
mâm − δνb

}
|e〉 〈e|

+
∑

m

km
2
â†mâm

(
â†mâm − 1

)
+
∑

m 6=n

kmn
2
â†mâmâ

†
nân

+ {Ω |g〉 〈e|+
∑

m

εm(t)âm + c.c.}, (8)

where Ω is the blockade Rabi frequency, km, kmn the self
and cross-Kerr interactions, and εm(t) the time depen-
dent cavity drive amplitudes. All the drive tones are sent
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Supplementary Figure 8 | Simulations of single-mode optimal
control. State evolution vs. time produced by a uniform cavity
drive (a) and optimal control pulses and optimal control pulses
that prepare |g1〉 (b) or |g2〉 (c), in the presence of a blockade
drive at n = 3. Populations were measured directly using qubit
spectroscopy (circles), and were also extracted from the density
matrices obtained from Wigner tomography (diamonds). The
results of the master equation simulations are represented by
the solid lines.

through the readout port and are directly coupled only
to the readout resonator (Ĥd = εr cos(ωdt)(âr + â†r)).
However, the coupling between the transmon and the
modes and their resulting dressing leads to effective
transmon and storage mode drives when the readout is
driven on resonance with either of them. To lowest or-
der in the dispersive approximation, the resulting trans-
mon and storage mode drives are Ω ≈ εrgr/(2∆r) and
εm ≈ εrgrgm/(2∆r∆m), respectively. For generating
the optimal control pulses, we treat the drives as be-
ing directly on the transmon and the storage modes.
This approximation is valid because the detuning be-
tween the transmon and the readout (∆r) and storage
modes (∆m) is large compared to the coupling strengths
(gr, gm), which we additionally verify using master equa-
tion simulations that include the readout cavity/drive.

A. Single-mode optimal control pulses

We first use the master equation simulations to obtain
the expected fidelity in experiments involving the block-
ade of a single cavity mode, corresponding to the data
presented in Fig. 3 of the main text. An analysis of the
population evolution generated by a uniform cavity drive,
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Supplementary Figure 9 | Simulations of two- and three-mode
W-states. Populations of different multimode states in the
presence of uniform cavity drives and a blockade drive at the
mean of the frequencies corresponding to two photons for (a)
two (ν3, ν4; Ω/(2π) = 207 kHz) and (b) three cavity modes
(ν2, ν3, ν4; Ω/(2π) = 227 kHz). For two cavity modes, in
addition to monitoring populations through qubit spectroscopy
(circles), we extract populations from the reconstructed density
matrices obtained from Wigner tomography (diamonds). For
the 3 mode case, this comparison to tomography is only made
for a pulse corresponding to the preparation of the three-mode
W-state (τ = 15µs). In both cases, the cavity drive strength on
each mode was ε/(2π) = 10 kHz. The populations obtained
through master equation simulations in the presence of
transmon decoherence and cavity decay are represented by the
solid lines.

and the optimal control pulses used to prepare |1〉 and
|2〉 while blockading |3〉, is shown in SFig. 8.

The populations are extracted from the density matri-
ces reconstructed from Wigner tomography (diamonds),
as well as through number resolved qubit spectroscopy
(circles), from the raw data presented in Fig. 3 of the
main text. We note that we account for the measure-
ment error arising from the decay during the resolved
qubit pulse used for the spectroscopy—a Gaussian pulse
with σ = 0.9 µs (duration = 4σ), by normalizing by the
height of the |0〉 peak obtained from spectroscopy of the
vacuum state. No such normalization is performed for the
density matrices obtained from the Wigner tomography,
which accounts for the slightly lower extracted popula-
tions. Apart from this difference (∼ 5%), the populations
extracted using both these methods are found to be con-
sistent.
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Supplementary Figure 10 | Comparison of simulated, prepared, and ideal multimode W-states. (a) Absolute value of the
two-mode W-state density matrix. Populations are represented with colors ranging from red to blue. Dashed black boxes indicate
the ideal W-state populations, while yellow boxes show the simulated populations after accounting for the effects of cavity and
transmon decoherence and decay. (b) Same as (a), but for the three-mode case. (c) W-state entanglement witness for 2 and 3
modes. The purple circles correspond to measurements of the two-mode witness as function of the cavity pulse duration in the
presence of the blockade drive. The orange ? corresponds to the measured witness for the three-mode state at the time
corresponding to the W-state. The solid lines represent the result of master equation simulations of the witness. The orange band
between -1/3 and 0 are the witness values that indicate W-state-like tripartite entanglement.

The master equation simulations of a uniform cavity
drive in the presence of a |g3i〉 ↔ |e3i〉 blockade drive
match well with the experimentally measured popula-
tions. We varied the Hamiltonian parameters relevant
for the blockade (χ, k,Ω, δ) in the simulations, and found
that the independently calibrated parameter values also
produced the best overlap with the measured state. De-
spite this, the population trajectories measured by ap-
plying slices of the optimal control pulses that prepared
|1〉 and |2〉 at varying times did not perfectly match
with the simulations. Given the close match between
the experimental and simulated trajectories for a uni-
form pulse, the discrepancy in the trajectory is believed
to be due to distortions of the optimal control pulse from
impedance mismatches along the drive line before reach-
ing the device. While the trajectories themselves deviate,
the final states prepared by the optimal control pulses
still result in fidelities of F = 0.953 ± 0.022 (|14〉) and
0.965 ± 0.022 (|24〉), compared to simulated fidelities of
0.981 and 0.974, respectively.

B. Simulations of multimode N-body interactions

We simulate the dynamics arising from the multi-
mode blockade interactions by using the Hamiltonian
in SEqn. 8 in the master equation in SEqn. 7). The
Hamiltonian—co-rotating at the blockade and cavity fre-
quency, is valid for a single blockade drive frequency, as

is used in all the experiments presented in this work.
We prepare two- and three-mode W-states by using a

blockade drive detuned from the qubit frequency by the
average of the dispersive shifts from adding 2 photons
in any combination of modes. For the two-mode case,
we study the temporal evolution arising from uniform
(and equal strength) cavity drives on both modes (3, 4)
in the presence of the blockade drive using photon num-
ber resolved qubit spectroscopy and two-mode Wigner
tomography. The extracted populations in the different
multimode Fock states are shown as a function of the
drive duration in SFig. 9(a). At a time τ = 18.7 µs,
this produces an entangled two-mode W-state, |ψ〉 =

(|10〉 + eiφ |01〉)
√

2. The measured fidelity from Wigner
tomography (F = Tr [ρW ρ] = 0.918 ± 0.012), and that
obtained from master equation simulations (0.919) were
consistent.

A similar comparison between the experiment and
master equation simulations for the three-mode W-state
preparation sequence is shown in SFig. 9(b). Here, the
populations are measured as a function of the cavity
drive duration using photon number resolved qubit spec-
troscopy. For both this experiment and the two-mode
case, we used a longer resolved qubit π pulse (Gaussian
pulse with σ ∼ 3 µs) than in the single mode case, in
order to accurately resolve the differences between the
dispersive shifts.

At the cavity drive duration that corresponds to the
W-state, we reconstruct the state using three-mode
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Wigner tomography, resulting in the density matrices
and Wigner functions shown in SFig. 7. The simulated
fidelity of the three-mode W-state was F = 0.896, com-
pared to the experimental measured value of 0.864 ±
0.014. A comparison of the simulated, measured, and
ideal state populations that produce these fidelities is
shown in SFig. 10 for both the two- and three-mode W-
states. The simulations (yellow edge boxes) include loss
and decoherence effects from the transmon and cavity, as
well as the qubit temperature. The simulated and mea-
sured data are generally in good agreement. The ideal
W-states (black dashed edge boxes) are included to serve
as a guide. In order for the blockade drive to simultane-
ously address the dispersively shifted peaks correspond-
ing to 2-photons in any combination of modes, we pick
a blockade Rabi strength (Ω/(2π) = 227 kHz) which is
roughly twice that used in the single-mode blockade ex-
periments, resulting in 5% higher participation of the
transmon in the cavity levels from off-resonant dressing.

From the reconstructed density matrices for two- and
three-mode W-state preparation shown in SFig. 10(a)
and (b), we additionally extract the W-state entangle-
ment witness [S7,S8],

ŴN =
N − 1

N
−|WN 〉 〈WN | ⇒

〈
ŴN

〉
=
N − 1

N
−F . (9)

where N is the number of entangled modes. For each
measured density matrix ρ, we extract the witness by
sweeping the free phases that characterize the W-state
to maximize the state fidelity F = Tr[ρρW ]. The results
of these measurements are presented in SFig. 10(c). In
the two-mode case, we evaluate the witness as a func-
tion of the duration of the cavity drive, while in the
three-mode case, we evaluate it at the single time cor-
responding to the creation of the W-state. We note that
−1/3 <

〈
Ŵ3

〉
= −0.2 < 0 indicates genuine tripar-

tite entanglement for the three-mode W-state (the orange
band in SFig. 10).
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