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Abstract

Recent years have seen growing interest in characterizing the properties of regional

brain dynamics and their relationship to other features of brain structure and func-

tion. In particular, multiple studies have observed regional differences in the “time-

scale” over which activity fluctuates during periods of quiet rest. In the cerebral

cortex, these timescales have been associated with both local circuit properties as

well as patterns of inter-regional connectivity, including the extent to which each

region exhibits widespread connectivity to other brain areas. In the current study, we

build on prior observations of an association between connectivity and dynamics in

the cerebral cortex by investigating the relationship between BOLD fMRI timescales

and the modular organization of structural and functional brain networks. We charac-

terize network community structure across multiple scales and find that longer time-

scales are associated with greater within-community functional connectivity and

diverse structural connectivity. We also replicate prior observations of a positive cor-

relation between timescales and structural connectivity degree. Finally, we find evi-

dence for preferential functional connectivity between cortical areas with similar

timescales. We replicate these findings in an independent dataset. These results con-

tribute to our understanding of functional brain organization and structure–function

relationships in the human brain, and support the notion that regional differences in

cortical dynamics may in part reflect the topological role of each region within macro-

scale brain networks.

K E YWORD S

brain dynamics, community structure, fmri, functional connectivity, network topology, structural
connectivity, timescale

1 | INTRODUCTION

Even at rest, brain activity is in constant flux. Studying the properties

of these fluctuations and their relationship to other aspects of brain

structure and function can provide important insights into functional

brain organization. There are many different ways to characterize the

properties of neural time series, ranging from simple, commonly used

metrics such as amplitude and frequency, to more complex, special-

ized measures taken from physics and the study of dynamical systems

(Breakspear, 2017; Fulcher et al., 2013; Fulcher & Jones, 2017; Lubba

et al., 2019; Toker et al., 2020). From this menagerie of measures, the

past decade has seen estimates of neural “timescale” emerge as an

increasingly popular way to study the dynamical properties of brain

activity. While there are multiple ways to estimate the timescale of
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neural activity, their common goal is to characterize the degree to

which brain activity (or the information it represents) is similar from

one moment to the next. The literature on neural timescales ranges

from studies using invasive recordings of individual neurons and pop-

ulation activity in animals (Cirillo et al., 2018; Maisson et al., 2021;

Murray et al., 2014; Nougaret et al., 2021; Rossi-Pool et al., 2021;

Runyan et al., 2017; Wasmuht et al., 2018) to BOLD fMRI and

MEG/EEG in humans (Baldassano et al., 2017; Fallon et al., 2020;

Golesorkhi et al., 2021; Hasson et al., 2008; Huang et al., 2018; Ito

et al., 2020; Müller et al., 2020; Raut et al., 2020; Stephens

et al., 2013; Watanabe et al., 2019; Wengler et al., 2020; Zilio

et al., 2021), as well as computational models that seek to provide

mechanistic explanations for regional differences in timescale

(Chaudhuri et al., 2014, 2015; Demirtaş et al., 2019; Gollo

et al., 2015; Li & Wang, 2022). Many of these studies suggest the

presence of a “hierarchy of timescales” in the cerebral cortex which

parallels information processing hierarchies, with shorter timescales in

sensory and motor areas responsible for processing rapidly changing

low-level sensory information and action sequences, and longer time-

scales in higher-order association regions that integrate information

over longer periods in order to support more complex

information processing (such as the construction and maintenance of

increasingly abstract representations). Theoretical accounts have sug-

gested that this hierarchy of timescales—and associated differences in

temporal integration within and between cortical areas (i.e., a diversity

of “temporal receptive windows” [Hasson et al., 2008])—may be key

to how the brain processes and represents dynamically changing

information from both the external environment and internal milieu

(Cavanagh et al., 2020; Hasson et al., 2015; Himberger et al., 2018;

Kiebel et al., 2008; Wolff et al., 2022).

Computational models and emerging empirical work suggest that

regional differences in neural timescales are shaped not only by het-

erogeneity in local circuit properties, but also by the pattern of con-

nections each region receives from distant brain areas (Baria

et al., 2013; Chaudhuri et al., 2014, 2015; Demirtaş et al., 2019; Fallon

et al., 2020; Gao et al., 2020; Gollo et al., 2015; Ito et al., 2020; Li &

Wang, 2022; Müller et al., 2020; Sethi et al., 2017; Watanabe

et al., 2019; Wengler et al., 2020). In particular, emerging evidence

suggests that neural timescales may systematically vary between brain

areas with different topological properties (and thus putatively differ-

ent roles within the larger network). The simplest way to characterize

the topology of a brain area is to simply count how many other areas

it connects to, and how strong those connections are. In mammalian

structural brain networks, high degree “hub” regions exhibit preferen-
tial connectivity to other highly connected regions, forming a “rich
club” of topologically central brain areas whose connections play an

important role in integrating information across the network

(de Reus & van den Heuvel, 2013; Harriger et al., 2012; van den

Heuvel et al., 2012; van den Heuvel & Sporns, 2011, 2013c). High

degree hubs are also a key feature of functional brain networks

(Achard et al., 2006; Buckner et al., 2009; Cole et al., 2010; Grayson

et al., 2014; Tomasi & Volkow, 2011; Zuo et al., 2012). Critically, a

number of recent studies have found that that these high degree hub

regions tend to exhibit longer timescales than less widely connected

brain areas (Baria et al., 2013; Fallon et al., 2020; Gollo et al., 2015;

Sethi et al., 2017). These results suggest a link between temporal inte-

gration and topological integration, and we sought to further explore

this possibility in the current study.

However, while degree is arguably the most fundamental mea-

sure of regional topology (and the network feature which has most

consistently been associated with regional dynamics in prior studies),

it fails to consider another key aspect of brain network topology. In

particular, in addition to high degree hubs, an extensive literature

in network neuroscience has demonstrated that brain networks

exhibit a modular community structure in which regions are more

likely to connect to (or interact with) other regions in the same com-

munity than to regions in other communities (Girvan &

Newman, 2002; Newman, 2006; Sporns & Betzel, 2016). This modular

structure can be found at multiple scales, ranging from microscale

neuronal populations (Lee et al., 2016; Schroeter et al., 2015;

Shimono & Beggs, 2015) to macro-scale functional and structural

brain networks (Crossley et al., 2013; Hagmann et al., 2008; He

et al., 2009; Meunier et al., 2009; Power et al., 2011). This architec-

ture is thought to play a key role in facilitating functional specializa-

tion and flexible reconfiguration by balancing the competing demands

of integration and segregation (Bertolero et al., 2015, 2018;

Bullmore & Sporns, 2009; Sporns, 2013; Sporns & Betzel, 2016). By

considering this modular organization, we can take a more nuanced

view of the role each region plays within the larger network.

Within-module degree (WD) and participation coefficient (PC) are

two complementary measures of regional topology which consider

the modular community structure of networks (Guimerà & Nunes

Amaral, 2005), and thus provide important additional context about

regional connectivity patterns above and beyond that provided by

degree alone. In particular, they allow researchers to characterize the

extent to which each brain area exhibits widespread connectivity

within its own community (high WD), and/or diverse connectivity to

regions in other communities (high PC) (Guimerà & Amaral, 2005;

Guimerà & Nunes Amaral, 2005; Power et al., 2013; van den

Heuvel & Sporns, 2013a). Regions with high WD act as hubs within

their respective communities—regardless of the extent to which they

exhibit high overall degree—while regions with high PC may act as

“connectors” between network communities and are thought to play

an important role in coordinating activity or facilitating the integration

or passage of information between communities (Bertolero

et al., 2015, 2017, 2018).

Given their putative roles in integrating information within and

between network communities, we hypothesized that cortical areas

with extensive within-community connectivity (i.e., high WD) or

diverse connectivity across communities (i.e., high PC) would tend to

have longer timescales than less topologically central regions. We also

sought to replicate prior observations of a positive correlation

between regional timescale and overall degree. To test these hypothe-

ses, we mapped cortical timescales in human participants using resting

BOLD fMRI, and characterized the multi-scale community structure of

functional and structural brain networks. Our key methods and
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primary hypotheses were preregistered via the Open Science Frame-

work (Lurie, 2018), and we provide an internal replication of all ana-

lyses in a second independent dataset.

2 | METHODS

2.1 | Resting BOLD fMRI data and preprocessing

For our initial (“discovery”) analysis, we analyzed data from 93 healthy

young individuals (ages 18–35 years) from the Enhanced Nathan Kline

Institute-Rockland Sample (Nooner et al., 2012). These individuals

were selected based on the absence of any history of psychiatric or

neurological illness, as well as the presence of complete imaging data

(i.e., no missing scans). Resting fMRI scans were 10 min in duration

with TR/TE = 1400/30 ms and 2 mm isotropic voxels. Data were pre-

processed using FMRIPRPEP (Esteban et al., 2019). GLM denoising

was applied using Nilearn (Abraham et al., 2014) and included

24 motion parameters plus 6 aCompCor components containing nui-

sance signals from WM and CSF voxels (Behzadi et al., 2007), global

signal regression, and a 0.009 to 0.08 Hz bandpass filter. We chose to

include global signal regression in our primary analysis pipeline

because multiple studies have shown that denoising strategies which

include GSR tend to be more effective than alternative approaches at

removing the potentially confounding effects of head motion and sys-

temic physiological fluctuations (Ciric et al., 2017; Kassinopoulos &

Mitsis, 2022; Parkes et al., 2018; Power et al., 2017; Xifra-Porxas

et al., 2021). However, in light of continued debate regarding the

sources and functional relevance of the global BOLD signal (Li et al.,

2019; Liu et al., 2017; Raut et al., 2021; Schölvinck et al., 2010;

Zhang & Northoff, 2022), we also repeated all analyses of the discov-

ery dataset after applying a denoising strategy which did not include

global signal regression. These control analyses fully replicated all but

one of the effects we observed when using GSR, and we note this

case in the results. Otherwise, we focus on analyses from the GSR

pipeline in the main text and include results from the pipeline without

GSR in the Supplement.

For our validation analysis, we selected a sample of 100 unrelated

healthy young individuals (ages 21–35 years) from the Human Con-

nectome Project (Van Essen et al., 2013) based on a subject list pro-

vided by (Shine et al., 2016). For each individual, we analyzed the first

15 min resting fMRI scan (TR/TE = 720/33 ms, 2 mm isotropic vox-

els) from the first scan session. We used minimally preprocessed data

(Glasser et al., 2013) provided by HCP which had undergone ICA-FIX

denoising (Griffanti et al., 2014), global signal regression, and a 0.009–

0.08 Hz bandpass filter.

Astute readers may note that these two datasets differ in their

acquisition parameters as well as the preprocessing and denoising

strategies applied to the data. In the age of multiple large public data-

sets, the choice of which particular dataset to use in a given analysis is

often based largely on convenience and accessibility. Even when

researchers make these decisions based on the particular features of

each dataset, reasonable arguments can be made about which

features should be prioritized, and thus which dataset should be cho-

sen. Ultimately, however, we desire to identify robust effects which

replicate across a range of possible datasets and analytic workflows.

By attempting to replicate all effects across datasets which differ in

these ways, we can provide at least initial evidence of this robustness.

2.2 | Timescale estimation

We explored two different methods for estimating timescales. First,

we followed the approach introduced by (Murray et al., 2014), in

which timescales are estimated based on an exponential fit to the

decay of the autocorrelation function of each time series. Second,

following (Huang et al., 2018), we characterized timescales based on

lag-1 autocorrelation. We found that timescales estimated based

on these two methods were very highly correlated in both datasets

(r > 0.9), but that lag-1 autocorrelation had significantly higher

test–retest reliability than decay-based estimates (see “Evaluation of

timescale estimation methods” in the Supplement). These results are

consistent with recent work by (Shinn et al., 2021) who found that—for

BOLD fMRI time series—lag-1 autocorrelation is highly correlated with

estimates of long-range dependence and has higher test–retest

reliability than autocorrelation at subsequent lags. Given these results,

and following the principle of parsimony (which dictates that given

two models with similar performance, we should prefer the simpler

model), we chose to focus our analyses on timescales estimated using

lag-1 autocorrelation.

We created group-level timescale maps by taking the median of

lag-1 autocorrelation values for each region across individuals in each

dataset. Because ROI volume can bias timescale estimates by artifi-

cially inflating time series autocorrelation (Afyouni et al., 2019; Fallon

et al., 2019; Sethi et al., 2017; Shinn et al., 2021), the number of vox-

els in each ROI was regressed from group-median timescale estimates

prior to visualization and during all further analyses.

2.3 | Functional connectivity network construction

For each participant, we estimated functional connectivity as the

Pearson correlation between the time series of each pair of 246 ROIs

defined in the Brainnetome atlas (Fan et al., 2016). We then applied

the Fisher r-to-z transform to the correlations estimated from each

individual before averaging edges across participants to create a

group-level network. Due to uncertainties regarding the interpretation

of negative correlations in studies of functional connectivity (Fox

et al., 2009; Murphy et al., 2009; Rubinov & Sporns, 2010), all edges

with negative z-scores were set to zero. Functional connectivity net-

works were otherwise un-thresholded. This process was repeated

separately for the discovery and validation datasets. To identify com-

mon functional network communities across datasets, we combined

the average FC networks from the discovery and validation data into

a single common network prior to community detection. However,

measures of regional network topology (i.e., degree, PC, and WD)
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were computed separately for each dataset based on its respective

average FC network.

We note that while all of the timescale analyses we report in this

paper focus exclusively on cortical regions of interest, subcortical

ROIs from the Brainnetome atlas were included when constructing the

functional and structural connectivity networks. As such, the network

communities we identify reflect not only patterns of intracortical con-

nectivity, but also cortico-subcortical connectivity and connectivity

between subcortical regions. Likewise, the degree, PC, and WD of

each cortical region is influenced by connections with subcortical

ROIs and the community membership of those areas. We took this

approach because many cortical areas have extensive connectivity to

subcortical regions, and the patterning of these connections is

thought to play a critical role in shaping the functional properties of

the cerebral cortex (Alexander et al., 1986; Haber 2016; Müller

et al., 2020; Oldham & Ball, 2023; Shepherd & Yamawaki, 2021). As

such, accurately characterizing the topological properties of cortical

areas necessarily requires considering connectivity with

subcortical ROIs.

2.4 | Structural connectivity network construction

We constructed a single structural connectivity network from a pub-

licly available, expert-curated voxelwise “population-average” atlas of

the human structural connectome (Yeh et al., 2018). This atlas was

derived from high-resolution, multi-shell diffusion MRI images from

842 participants from the Human Connectome Project (Van Essen

et al., 2013). Complete details of how the atlas was produced can be

found in (Yeh et al., 2018), but we review them briefly here. Images

for each participant were transformed to MNI space using q-space dif-

feomorphic registration (Yeh & Tseng, 2011), which preserves spins

and fiber geometry and estimates the spin distribution function (SDF)

at each voxel. Voxelwise SDFs were averaged across participants to

create a group-average template, after which multiple runs of deter-

ministic tractography (Yeh et al., 2013) were used to estimate

550,000 streamlines describing connectivity across the entire brain.

All streamlines were then reviewed and labeled by a team of expert

neuroanatomists to identify fiber tracts, remove anatomically implau-

sible (i.e., false positive) connections, and manually seed additional

streamlines to identify known fascicles which were missing from the

initial set of connections. The final atlas contains �145,000 voxelwise

streamlines describing the representative white matter connectivity of

cortical and subcortical regions in the human brain.

Based on this atlas, we estimated structural connectivity as the

number of streamlines connecting each pair of ROIs. The resulting

whole-brain connectome had an edge density of 0.103, with all but two

regions connected to the rest of the network by at least one streamline.

However, because the distribution of streamline counts was highly

skewed and spanned several orders of magnitude (0 to 1027), we

followed the common practice of applying a log transformation to edge

weights prior to subsequent analyses (Fornito et al., 2016). Due to the

nature of the log transformation (i.e., log(1) = 0), edges with only a

single streamline were set to zero, leading to four additional regions

becoming disconnected (Figure S1).

2.5 | Measures of regional topology

In weighted networks (such as those used in this study) the sum of

the weights of all connections to a region is variously referred to as

the “strength” or “weighted degree” of a node. In the interest of

brevity—and to avoid confusion when discussing the strength of con-

nectivity between pairs of regions—we refer to this measure simply as

“degree”. This measure, as well as PC and WD, were computed using

functions in the Brain Connectivity Toolbox (Rubinov & Sporns, 2010)

and the “bctpy” Python package (https://github.com/aestrivex/

bctpy).

2.6 | Multiscale community detection

Prior to calculating community-aware topological measures such as

PC and WD, one must first identify (or impose) a “partition” which

splits the network into communities and describes which regions

belong to each community. While there are many different data-

driven methods for identifying communities in complex networks, by

far the most common are those which select an optimal partition

based on modularity (Q), a mathematically defined quality function

which describes the extent to which connections are concentrated

within rather than between communities (Newman, 2006). However,

all such “modularity maximization” algorithms suffer from a “resolu-
tion limit” such that they are unable to detect communities smaller

than a given scale which depends on the size of the network and den-

sity of within-community connections (Fortunato &

Barthélemy, 2007). To counter this limitation, methods have been

developed (e.g., Blondel et al., 2008) that incorporate a “resolution
parameter” (γ) which allows users to adjust the scale at which commu-

nities are identified (i.e., fewer larger communities vs. more smaller

communities).

However, as noted above, the modular architecture of neural

systems manifests at multiple scales, and this is true even for the

macro-scale functional and structural brain networks amenable to

investigation by human neuroimaging (Betzel & Bassett, 2017). For

example, one might initially consider a coarse 2 community partition

for human functional brain networks, composed of “task positive” and
“task negative” subsystems (Fox et al., 2005). At finer scales, we might

identify the “canonical” macroscale functional brain networks

(e.g., default, frontoparietal, visual, somatomotor, etc. [Damoiseaux

et al., 2006; Power et al., 2011; Smith et al., 2009; Uddin et al., 2019;

Yeo et al., 2011]), each of which can in turn be further decomposed

into multiple smaller communities (Akiki & Abdallah, 2019; Ashourvan

et al., 2019; Meunier et al., 2009; Smith et al., 2009; Yeo et al., 2011).

This sort of hierarchical community structure is consistent with a view

of the brain as a complex dynamical system which operates across

multiple spatial and temporal scales, but poses a challenge to
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researchers insofar as there is likely no single “correct” scale at which

define network communities. Further, because participation coeffi-

cient and within-module degree are defined relative to a particular

partition, there is no guarantee that these measures will show a con-

sistent relationship across scales to other features of brain structure

and function.

To identify network communities at multiple scales, we applied

the Louvain algorithm (Blondel et al., 2008) to the structural and func-

tional connectivity networks while varying the resolution parameter

(γ) across a range of values (0.5 to 3.5, in increments of 0.1). As γ

increases, the algorithm is biased toward detecting smaller and smaller

communities, thus also increasing the number of communities identi-

fied. Like all community detection methods which rely on modularity

maximization, the Louvain algorithm is stochastic, and the partitions it

identifies are degenerate (i.e., many possible partitions will have

approximately the same modularity) (Good et al., 2010). As such, we

ran the algorithm 1000 times for each value of γ and used consensus-

based clustering (Bassett et al., 2013; Lancichinetti &

Fortunato, 2012) to identify a single stable partition at each resolu-

tion. This resulted in 31 community partitions for each network, with

the number of non-singleton communities (# regions >1) ranging from

3 to 21 for the functional connectivity network, and from 2 to 13 for

the structural connectivity network.

2.7 | Identification of maximally representative
community partitions

To identify a maximally representative partition (MRP) for each net-

work, we first computed the variation of information

(VI) (Meil�a, 2003)—an information-theoretic measure of distance—

between each pair of partitions across all 31 scales. We then identi-

fied the MRP for each network as the partition with the lowest

median VI (and thus the highest similarity with the most other parti-

tions). We note that our approach is conceptually different from how

VI (and other measures of partition similarity, such as the Rand index)

have most often previously been used to select brain network parti-

tions (i.e., to select the scale at which stochastic runs of a community

detection algorithm show the least variability [e.g., Betzel et al., 2017;

Betzel & Bassett, 2017; Shafiei et al., 2019]), and is more closely anal-

ogous to the approach taken by (He et al., 2018) and (Bazinet

et al., 2021), who used partition similarity to identify domains of sta-

bility across scales. Our method builds on this work and is based on

the idea that representative features of community structure should

be present across a wide range of scales, particularly in a hierarchically

organized system like the brain.

For the functional connectivity network, the community partition

at γ = 1.8 (eight communities) exhibited the lowest median VI

(Figure S2A), and visual inspection of the pairwise VI matrix

(Figure S2B) confirmed that this partition had good similarity to other

partitions across a wide range of scales, ranging from γ = 1.3 (five

communities) to γ = 3.5 (21 communities). The selected partition at

γ = 1.8 also occurs at the visual asymptote of the modularity

maximization function (Figure S2A), such that past this point, modular-

ity (Q) only shows modest gains with increasing resolution. In agree-

ment with prior studies of functional brain organization, the eight

communities identified at this resolution (Figure S3) show excellent

correspondence with “canonical” macro-scale human functional brain

networks (Power et al., 2011; Smith et al., 2009; Uddin et al., 2019;

Yeo et al., 2011).

For the structural connectivity network, the partition at γ = 2.5

exhibited the lowest median VI (Figure S4A). However, visual inspec-

tion of the pairwise VI matrix (Figure S4B) revealed that while the par-

tition at this resolution is highly similar to other partitions within the

domain of resolutions γ ≥ 2.0, it has relatively low similarity to parti-

tions at coarser scales. In contrast, the partition at γ = 2.0 has only a

marginally higher median VI than the global minima at γ = 2.5, while

showing good similarity to partitions across a much wider range of

resolutions (γ = 0.9 to γ = 3.0, 4 to 12 communities). Further, the par-

tition at γ = 2.0 has the lowest total VI. For these reasons, we judged

the partition at γ = 2.0 to be maximally representative. This partition

contained seven non-singleton (N regions >1) communities

(Figure S5).

2.8 | Evaluating the relationship between
timescales and topological features

The statistical comparison of spatial maps describing different aspects

of brain structure and function is a core practice in neuroimaging.

However, the spatial autocorrelation inherent in brain maps violates

the assumptions of independent samples that are key to valid para-

metric statistical inference (Alexander-Bloch et al., 2018;

Bartlett, 1935). This lack of independence inflates the variance of the

sampling distribution of the test statistic (e.g., correlations, t-values,

etc.) and reduces the effective degrees of freedom, leading to inflated

Z-scores and high rates of false-positives when using traditional para-

metric tests. As such, it is necessary to evaluate whether two brain

maps show an association above-and-beyond that induced by their

autocorrelation. To do this, we calculated p-values for all statistical

tests using non-parametric permutation testing and 10,000 surrogate

timescale maps generated using an autocorrelation-preserving spatial

null model (Burt et al., 2020). These were implemented using a

custom-developed Python package (https://github.com/danlurie/

PyPALM), which facilitates the use of arbitrarily complex null models

when evaluating multivariable linear models.

2.9 | Correction for multiple comparisons

Given the large number of tests performed in this study, we take a

multi-pronged approach to guarding against false-positive results.

First, we use the Benjamini–Hochberg method (Benjamini &

Hochberg, 1995) to control the False Discovery Rate (FDR) at

q = 0.05 across all statistical tests in each dataset (with the exception

of a small number of post-hoc tests conducted to evaluate the
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independence of predictors). We report corrected p-values as pFDR
perm,

and uncorrected p-values as pperm. Second, while we report the results

from each dataset separately, we require each effect to be significant

in both datasets in order to reject the overall null hypothesis.

2.10 | Comparing effects and correcting for
selective inference

Inference regarding differences in effects necessitates formally testing

these differences: it is not enough to simply observe that one effect is

significant and the other isn't (Gelman & Stern, 2006; Nieuwenhuis

et al., 2011). The classic example of such comparisons is checking for

a significant interaction when conducting an analysis of variance,

though our use of multiple models (one for each measure) rather than

a single unified model (containing all measures) precludes a formal

interaction test. As such, we rely on the method introduced by

(Zou, 2007) for comparing correlations. In this approach, a confidence

interval is computed for the difference in effects while accounting for

dependence (i.e., measures estimated from the same data) and over-

lapping variables (e.g., X is overlapping in a comparison of corrX�Y and

corrX�Z). If the confidence interval includes zero, we are unable to

reject the null hypothesis for a difference between correlations (and

vice versa). Because we are primarily concerned with establishing

whether one feature of network topology is more strongly associated

with timescale than another (rather than whether the direction of the

association differs between features), we computed confidence inter-

vals using the absolute value of partial correlations. However, because

we seek to compute confidence intervals for only a portion of the

effects we have estimated (i.e., that subset of paired effects for which

one effect is significant and the other is not), we are faced with an

issue of selective inference (a.k.a. circular inference, double-dipping,

or “voodoo” statistics [Kriegeskorte et al., 2009; Vul et al., 2009]).

Failing to account for such selection risks biased inference. As such,

we control the False Coverage-statement Rate (FCR) using the

approach proposed by (Benjamini & Yekutieli, 2005) and adapted for

neuroimaging by (Rosenblatt & Benjamini, 2014). This method is a

generalization of the Benjamini-Hochberg FDR procedure

(Benjamini & Hochberg, 1995) to the case of selected multiple CIs. As

with correction for multiple testing, we apply the FCR adjustment

across all comparisons within each dataset.

2.11 | Evaluation of potential confounding due to
regional differences in tSNR

We evaluated the possibility that timescale estimates may be con-

founded by regional differences in signal to noise ratio. For each par-

ticipant, we calculated tSNR by dividing the temporal mean by the

standard deviation of ROI time series from images which had under-

gone only basic preprocessing (e.g., volume realignment and global

intensity normalization). We then calculated the median of these

values across participants in each dataset and computed the

correlation between timescale and tSNR across cortical ROIs. In the

discovery data, we found a weak positive correlation between time-

scale and tSNR, but this effect was not significant (r = 0.175,

pperm = 0.424). In the validation data, the correlation between time-

scale and tSNR was notably stronger (r = 0.374, pperm = 0.058). This

effect was substantially reduced when excluding the 21 cortical areas

with the lowest tSNR (i.e., the bottom decile) (r = 0.119,

pperm = 0.541). As such, while the main text presents analyses which

include all cortical ROIs, we confirmed that all key findings in the vali-

dation data were robust to the exclusion of low signal ROIs (see

“Robustness to tSNR” in the Supplement). The only effect which

failed to replicate in this control analysis was the relationship between

timescale and functional connectivity degree, and we note this when

reporting the results of that analysis.

3 | RESULTS

3.1 | Mapping cortical timescales with resting
BOLD fMRI

Following preprocessing and denoising, we extracted the average

BOLD time series from each of 210 cortical regions of interest

defined in the Brainnetome atlas (Fan et al., 2016). Timescales are

commonly estimated based on the autocorrelation properties of neu-

rophysiological time series (e.g., Gao et al., 2020; Murray et al., 2014;

Raut et al., 2020; Watanabe et al., 2019), with greater autocorrelation

indicating longer timescales. Here, we use the lag-1 autocorrelation, a

straightforward measure which we found to be highly correlated with

more traditional methods for estimating timescale (i.e., those based on

the decay of the autocorrelation function), while having better test–

retest reliability than decay-based estimates (see “Evaluation of time-

scale estimation methods” in the Supplement).

Group-level timescales (Figure 1) were highly similar between

datasets (rs = 0.79). Cortical areas with the longest timescales (≥80th

percentile of all cortical areas in both datasets; Figure S6) include the

dorsal cuneus and precuneus, bilateral superior parietal lobule, and

posterior lateral temporal cortex, as well as left anterior medial pre-

frontal cortex and retrosplenial cortex. Cortical areas with the shortest

timescales (≤20th percentile) include bilateral inferior parietal lobule,

medial orbitofrontal cortex, anterior cingulate, and portions of medial

and inferior temporal cortex, as well as left temporal operculum and

anterior insula, and right medial superior frontal gyrus.

3.2 | Timescales are associated with multiple
features of regional brain connectivity

3.2.1 | Cortical areas with longer timescales tend to
have greater structural connectivity degree

As predicted, we observed a positive partial correlation (covarying for

ROI volume) between timescale and degree in both the functional and
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F IGURE 1 Cortical timescales are consistent across independent datasets. We used lag-1 autocorrelation to estimate the timescale of
regional resting BOLD fMRI time series in two datasets of healthy young adults. Our initial (“discovery”) analysis used data from 93 participants
from the Nathan Kline Institute-Rockland Sample. We then attempted to replicate our findings in a validation sample of 100 individuals from the
Human Connectome Project. The validation data exhibits overall higher values of lag-1 autocorrelation than the discovery data due to the
significantly shorter TR (720 vs. 1400 ms).

F IGURE 2 Cortical areas with longer timescales tend to have greater overall structural connectivity. We found that functional connectivity
degree (a) was positively correlated with regional timescale, but this effect was not significant in the discovery data (b) or in the validation data
when excluding ROIs with low tSNR (Supplement: “Robustness to tSNR”). In contrast, the relationship between timescale and structural
connectivity degree (d) was significant in both the discovery (e) and validation datasets (f). Panel (a) visualizes FC degree in the discovery dataset.
Asterisks highlight partial correlations which are significant at FDR q ≤ 0.05.
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structural connectivity networks (Figure 2). This relationship was sig-

nificant in both datasets for structural connectivity degree (discovery:

r = 0.269, pFDR
perm =0.0469; validation: r=0.419, pFDR

perm =0.0006). Our

control analysis of the discovery data without global signal regression

produced a correlation between timescale and SC degree of compara-

ble magnitude to that seen in the GSR pipeline (r=0.259, Δr=�0.1,

FCR-adjusted 95% CI= [�0.036, 0.056]), though this effect did not

meet the threshold for significance after correction for multiple com-

parisons (pFDR
perm =0.0502). In contrast, while the correlation between

timescale and functional connectivity degree was significant in the

validation data when including all cortical ROIs (r=0.385,

pFDR
perm =0.0280), this effect disappeared when excluding regions with

low tSNR (r=0.124, pFDR
perm =0.544), nor did it reach significance in the

discovery data (r=0.300, pFDR
perm =0.1732).

F IGURE 3 Longer timescales are associated with greater within-community functional connectivity across scales, and greater within-
community structural connectivity at coarse scales. (a–d) Brain areas with greater within-community functional connectivity tend to have longer
timescales. This relationship was significant in both datasets across the majority of network scales. (e–h) Timescales were also positively
correlated with within-community structural connectivity, but this effect only replicated at the two coarsest network scales. Panel (a) visualizes
FC WD in the discovery dataset. Asterisks highlight partial correlations that are significant at FDR q ≤ 0.05.
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3.2.2 | The relationship between timescales and the
modular structure of human brain networks

Within-module degree quantifies the extent to which a region has a

strong or widespread connectivity to other brain areas within the

same network community. However, because communities often dif-

fer in size, raw WD values are z-scored across all regions in each com-

munity. This is necessary because the preferential within-community

connectivity in modular networks will bias regions in larger communi-

ties to have a higher degree simply due to community size. Thus, the

normalized (z-scored) metric provides information about the extent of

within-community connectivity of each region relative to other

regions in the same community. In contrast, participation coefficient

provides a measure of the extent to which a region is diversely con-

nected across multiple network communities. A low PC (approaching

0) indicates that a region connects only to other regions within the

same network community, while a high value (approaching 1) indi-

cates that connections are distributed evenly across communities.

We took a two-pronged approach to our investigation into the

relationship between cortical timescales and PC/WD. First, we identi-

fied communities in each network across a wide range of scales and

selected a single partition for each network which was most similar to

the community structure present across scales. We then computed

PC and WD relative to this “maximally representative partition”
(MRP) and calculated the correlation between these measures and

regional timescales. Second, we evaluated the degree to which our

effects replicated when PC and WD were calculated relative to the

community structure identified at all other scales. This allowed us to

evaluate the robustness of our findings across multiple scales of net-

work organization, as well as the opportunity to identify scale-specific

effects (should they exist).

Longer timescales are associated with greater within-community

functional connectivity across scales, and within-community

structural connectivity at coarse scales

As predicted, we found that cortical areas with greater WD in the

functional connectivity network tend to have longer timescales

(Figure 3). This relationship was significant in both datasets across the

majority of network scales (Figure 3d), including the scale which we

identified as exhibiting the maximally representative community struc-

ture (discovery: r = 0.368, pFDR
perm =0.0011; validation: r=0.364,

pFDR
perm =0.0006; Figure 3b,c). Regional timescales were also positively

correlated with WD in the structural connectivity network. This effect

was significant in the validation data across the majority of scales, but

only reached significance in the discovery data at the two coarsest

scales (Figure 3h). At these coarse scales, cortical areas were split

between just two communities (Figure S7). To investigate the possibil-

ity that the relationship between timescale and SC WD was scale-

dependent, we compared correlations across scales by computing

confidence intervals for the difference in absolute effect size

(Zou, 2007). Effects were considered significantly different if the False

Coverage-statement Rate (FCR) corrected (Benjamini &

Yekutieli, 2005) 95% CI did not include zero. In the validation data,

the strength of the relationship between timescale and SC WD was

significantly stronger at the two coarsest scales (γ= [0.5, 0.6]) than at

finer scales (γ= [1.8, 2.5, 2.6, 2.7, 3.3, 3.4, 3.5]), but there was no sig-

nificant difference in effect size across scales in the discovery data.

These results suggest that hubs of functional network communities

tend to have longer timescales across multiple levels of network orga-

nization, and that a similar effect exists within structural connectivity

networks at very coarse scales.

Longer timescales are associated with more diverse structural

connectivity

We observed a weak negative correlation between cortical timescales

and FC participation coefficient at the majority of network scales.

These relationships did not reach significance at any scale in either

dataset (Figure 4a–d). At each network scale, we used confidence

interval tests to compare the strength of these correlations to those

we observed between timescale and FC WD. In both datasets, we

found that the relationship between timescale and FC PC was signifi-

cantly weaker than the relationship with FC WD at multiple scales

(γ = [1.3, 1.4, 1.5, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5]). This suggests that in

functional connectivity networks, the extent of within-community

connectivity, but not the diversity of between-community connectiv-

ity, is associated with longer timescales.

Participation coefficient in the structural connectivity network

showed a significant positive correlation with cortical timescales at

multiple network scales (Figure 4e–h), including when PC was com-

puted relative to the maximally representative community structure

(discovery: r = 0.282, pFDR
perm =0.0368; validation: r=0.366,

pFDR
perm =0.0020). In the validation data, this relationship was signifi-

cantly stronger than the relationship between timescale and FC PC at

multiple scales (γ= [1.9, 2.0, 2.9, 3.3, 3.4, 3.5]), but this difference was

only significant in the discovery data at the two finest scales (γ= [3.4,

3.5]). Together, these results suggest that longer timescales in the

cerebral cortex are associated with structural connectivity which is

more diversely distributed across network communities.

Functional connectivity WD and structural connectivity PC capture

distinct aspects of brain organization

Our observation that cortical timescales exhibit a significant positive

correlation with both FC WD and SC PC could in theory result from a

correlation between the two measures of regional network topology.

To evaluate this possibility, we first calculated the correlation

between FC WD and SC PC at each network scale. This revealed that

these two measures are only weakly correlated (discovery: mean

[SD] = 0.085 [0.048], validation: 0.128 [0.051]). Second, we tested

whether the relationship between timescale and SC PC remained sig-

nificant when controlling for FC WD, and vice versa. For these control

analyses, we focused on SC PC and FC WD calculated relative to the

maximally representative community partition of each network

(γ = 2.0 and γ = 1.8, respectively). The correlation between timescale

and SC PC remained significant when controlling for FC WD (discov-

ery: r = 0.268, pperm = 0.0119; validation: r = 0.363, pperm = 0.0019)

as did the correlation with FC WD when controlling for SC PC
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(discovery: r = 0.358, pperm = 0.0009; validation: r = 0.361,

pperm = 0.0009). Similarly, we evaluated the possibility that the rela-

tionship between timescale and FC WD could be explained by overall

functional connectivity degree. We found that the relationship

between timescale and functional connectivity WD remained signifi-

cant in both datasets when controlling for FC degree (discovery:

r = 0.287, pperm = 0.0009; validation: r = 0.255, pperm = 0.0099).

3.3 | Preferential functional connectivity between
regions with similar timescales

Brain areas with similar properties (e.g., in terms of their anatomy

[Barbas & Rempel-Clower, 1997; Wei et al., 2019]), function (Smith

et al., 2009; Yeo et al., 2016), or topology (Bertolero et al., 2017; van

den Heuvel & Sporns, 2011) preferentially connect to each other.

F IGURE 4 Longer timescales are associated with more diverse structural connectivity. (a–d) In the functional connectivity network, we
observed a weak negative correlation between cortical timescales and participation coefficient at most scales, but this effect was not significant
at any scale in either dataset. (e–h) In contrast, participation coefficient in the structural connectivity network exhibited a significant positive
correlation with cortical timescales in both datasets across multiple scales. Panel (a) visualizes FC PC in the discovery dataset. Asterisks highlight
partial correlations that are significant at FDR q ≤ 0.05.
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Based on this principle of “similar prefers similar” (Goulas et al., 2016),
we tested whether regions with similar timescales are more strongly

interconnected than regions with dissimilar timescales, as well as if

timescales are more similar between pairs of regions in the same net-

work community compared to pairs belonging to different communi-

ties. Because brain areas are more likely to connect to other nearby

regions compared to more distant areas (Alexander-Bloch et al., 2013;

Bullmore & Sporns, 2012; Ercsey-Ravasz et al., 2013), both of these

analyses accounted for the potentially confounding effect of Euclid-

ean distance between regions in addition to the spatial autocorrela-

tion of the timescale map. We also tested whether timescales differed

between network communities.

To test for preferential connectivity between regions with similar

timescales, we first computed the difference in timescale between

each pair of cortical areas. We then calculated the partial correlation

(covarying for Euclidean distance) between the absolute value of pair-

wise timescale differences and the strength of functional and struc-

tural connectivity between each pair. We found a small but significant

negative correlation between pairwise functional connectivity

strength and timescale differences in both datasets (Table 1), suggest-

ing that cortical areas tend to exhibit marginally stronger functional

connectivity to other areas with similar timescales. Given the positive

correlation we observed between timescale and degree, we con-

ducted a control analysis to ensure that preferential connectivity

between regions with similar timescales was not a byproduct of the

“rich club” phenomenon (i.e., preferential connectivity between high

degree hubs). To do this, we regressed degree from timescale esti-

mates prior to calculating pairwise differences. As before, we

observed a significant negative correlation in both datasets.

Because the population structural connectome we analyzed is

sparse (i.e., only �10% of possible edges are present), we undertook

two complementary analyses of preferential connectivity in the SC

network. First, we evaluated the correlation between pairwise struc-

tural connectivity strength and timescale differences, but limited this

analysis to region pairs connected by at least one streamline. We

observed a very weak (but significant) relationship between timescale

similarity and structural connectivity strength in the validation dataset,

but this effect did not replicate in the discovery data or when

accounting for SC degree (Table 1). Second, we binarized the struc-

tural connectivity network and tested whether the distribution of

timescale similarities was different for connected versus unconnected

pairs of brain areas. As with the correlation analysis, we did not find

evidence of preferential structural connectivity between areas with

similar timescales. When controlling for regional degree, functional

connectivity strength had a significantly stronger correlation with

timescale similarity than did structural connectivity strength in both

datasets (discovery: Δr = �0.149, FCR-adjusted 95% CI = [�0.206,

�0.092]; validation: Δr = �0.097, FCR-adjusted 95% CI = [�0.154,

�0.041]). Together, these results suggest that there is preferential

functional connectivity (but not preferential structural connectivity)

between cortical areas with similar timescales.

To test whether timescales were more similar within versus

between communities, we compared the distribution of timescale dif-

ferences for pairs of regions in the same community to the distribu-

tion of differences for pairs where each region belonged to a different

community. We repeated this analysis at every network scale. In the

validation data, we found that timescales were significantly more simi-

lar within versus between communities of the functional connectivity

network at two intermediate network scales (γ = 2.0 and γ = 1.8,

both with seven communities), but neither of these effects were sig-

nificant in the discovery data (Figure S8). In the structural connectivity

network, we did not find evidence of greater within-community time-

scale similarity at any scale in either dataset. Finally, we investigated

whether timescales differed significantly between network communi-

ties by running an ANOVA at each scale. We repeated this analysis

for the structural and functional connectivity networks. The main

effect of network community failed to reach significance (relative to

the spatial null model) at any scale in either dataset (Figure S9).

4 | DISCUSSION

In an analysis of resting BOLD fMRI data, we demonstrate that a fun-

damental property of regional brain dynamics—their autocorrelation-

based timescale—is associated with multiple features of macro-scale

brain connectivity. By considering the modular organization of neural

systems, our results provide new insights into the relationship

between connectivity and dynamics in the cerebral cortex. We find

that cortical regions with longer timescales tend to have extensive

within-community functional connectivity, as well as structural con-

nections which are more diversely distributed across network commu-

nities. We also show that functional connectivity between brain areas

with similar timescales tends to be stronger than functional connectiv-

ity between areas with dissimilar timescales, and replicate prior obser-

vations of an association between BOLD timescales and overall

structural connectivity degree. These effects replicate across two dif-

ferent datasets and a wide range of topological scales.

A major contribution of this work is our demonstration that corti-

cal timescales are related to features of network topology which con-

sider the modular organization of structural and functional brain

TABLE 1 Preferential connectivity.

Model Discovery Validation

FC strength r = �0.182 (0.0005) r = �0.151 (0.0005)

FC strength (adj.

degree)

r = �0.165 (0.0005) r = �0.159 (0.0005)

SC strength r = �0.027 (0.6143) r = �0.100 (0.0288)

SC strength (adj.

degree)

r = �0.016 (0.6978) r = �0.062 (0.1472)

SC connected versus

not

t = �9.797 (0.2259) t = �9.82 (0.1235)

SC connected versus

not (adj. degree)

t = �8.618 (0.2935) t = �9.054 (0.1236)

Note: Parentheses contain pFDR
perm. Significant effects are highlighted in

italics.
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networks. We show that brain areas with long timescales also tend to

have higher within-community functional connectivity, and that this

effect is at least partially independent of the extent to which these

regions also exhibit high overall functional connectivity degree. Within

the modular community structure of functional brain networks, these

hubs are topologically positioned to facilitate segregated processing

by integrating information within functionally specialized subsystems

(Bertolero et al., 2018; Sporns, 2013; van den Heuvel &

Sporns, 2013b), and our results suggest that this role is reflected in

their dynamics. In contrast, we did not find evidence for a relationship

between timescales and the extent to which each cortical area

exhibits diverse functional connectivity across communities. This find-

ing runs counter to our initial predictions, but is consistent with the

fact that regions with diverse connectivity do not necessarily also

exhibit widespread connectivity (i.e., regions with high PC do not nec-

essarily also have high within-community or overall degree; [Oldham

et al., 2019]). Indeed, we found that FC PC was negatively correlated

with FC WD across scales in both datasets (Figure S10). Together,

these results suggest that long timescales may reflect topologically

local rather than global integration within functional connectivity net-

works. Further, they are consistent with the possibility that timescale

hierarchies may exist within each functionally specialized network

module, though further work is needed to directly test this

hypothesis.

We also found that regions with longer timescales tend to have

more diverse structural connectivity. This finding stands in contrast to

our failure to observe an analogous association between timescale

and participation coefficient in the functional connectivity network,1

and underscores the fact that functional connectivity patterns do not

necessarily mirror the organization of the underlying structural con-

nectome. The relationship between structural connectivity and func-

tional connectivity is complex and spatially heterogeneous, and many

areas with highly correlated brain activity do not have direct anatomi-

cal connections (Suárez et al., 2020; Vázquez-Rodríguez et al., 2019;

Zamani Esfahlani et al., 2022). Similarly, as evidenced in our results,

network communities in the structural connectome do not necessarily

correspond to functionally specialized information processing mod-

ules. As such, the functional significance of structural connectome

topology is not always readily apparent, and must often be discovered

iteratively through experimentation rather than intuition. Our results

add to this literature. Recent work suggests that regions with diverse

structural connectivity have a topology which favors global multi-

synaptic interactions (Bazinet et al., 2021). Further, many the regions

identified by Bazinet and colleagues as having the strongest prefer-

ence for topologically global multi-synaptic interactions overlap with

areas we found to have the longest timescales, while many of the

areas with the strongest preference for topologically local mono-

synaptic interactions overlap with regions we identified as having the

shortest timescales. This suggests that long timescales in regions with

diverse structural connectivity may reflect the integration of signals

across a wide range of remote brain areas, including regions to which

they exhibit no direct anatomical connections. Our results may also

provide insight into recent reports of timescale disruption in psychiat-

ric disorders (Watanabe et al., 2019; Wengler et al., 2020), as regions

with diverse structural connectivity are also more likely to exhibit dis-

rupted activity in these conditions (Crossley et al., 2014).

In addition to our findings on the relationship between timescales

and regional topology, we observed a weak but significant correlation

between the strength of functional connectivity between brain areas

and the extent to which they exhibit similar timescales. The magni-

tude of this effect is comparable to that found in a recent report by

(Shafiei et al., 2020), who found a positive correlation between func-

tional connectivity strength and the extent to which two areas exhibit

similar time series properties. Shafiei and colleagues also found evi-

dence that the properties of resting BOLD time series are more similar

between structurally connected regions than unconnected regions,

and that time series properties are more similar between regions in

the same network community than between regions in different com-

munities. We did not find evidence for either of these effects, nor did

we find evidence that timescales differ significantly between network

communities. These results suggest that network communities may

contain regions with a diversity of timescales, rather than timescales

being similar across regions in each community. Additional work is

needed to formally evaluate this hypothesis.

The topography of timescales we observe in the cerebral cortex is

largely consistent with the results of previous studies which have

mapped timescales in the primate brain using BOLD fMRI (Baria

et al., 2013; Fallon et al., 2020; Ito et al., 2020; Manea et al., 2022;

Müller et al., 2020; Raut et al., 2020; Shafiei et al., 2020; Shinn

et al., 2021; Watanabe et al., 2019; Wengler et al., 2020). However, it

is important to note that while some of these studies (Ito et al., 2020;

Raut et al., 2020) have found a sensory-association gradient of length-

ening timescales consistent with electrophysiological findings

(e.g., Gao et al., 2020; Murray et al., 2014) and theoretical models

(Cavanagh et al., 2020; Hasson et al., 2015; Himberger et al., 2018;

Kiebel et al., 2008; Wolff et al., 2022), our results and those from mul-

tiple other recent papers (Baria et al., 2013; Fallon et al., 2019; Manea

et al., 2022; Shafiei et al., 2020; Shinn et al., 2021; Wengler

et al., 2020) suggest that BOLD timescales may at least partially

diverge from this canonical axis of cortical organization. In particular,

we found that many regions which sit near the top of canonical infor-

mation processing hierarchies (e.g., limbic areas [Mesulam, 1998])

actually exhibit some of the shortest timescales in the cerebral cortex,

and that the majority of sensory and motor regions did not have par-

ticularly short timescales. As such, while a handful of studies have

found relatively good correspondence between BOLD timescales and

timescales estimated from electrophysiological recordings (Manea

et al., 2022; Watanabe et al., 2019), more work is needed to evaluate

the extent to which timescales estimated from these different modali-

ties reflect the same or distinct phenomena, as well as to identify fac-

tors which may confound studies of hemodynamic timescales

(e.g., signal dropout, proximity to draining veins, or regional differ-

ences in characteristics of the hemodynamic response function).

1Though we note that the difference in effects between FC PC and SC PC was only

significant in both datasets at the two finest scales.
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Finally, we replicate and extend prior observations that areas with

greater inter-regional structural connectivity (i.e., greater degree) tend

to exhibit slower BOLD dynamics (Baria et al., 2013; Fallon

et al., 2019; Sethi et al., 2017). Whereas prior studies focused exclu-

sively on connections between cortical areas within each hemisphere,

our analyses considered structural connections both within and

between cortical hemispheres, as well as between cortical and subcor-

tical regions. In the population-average structural connectome we

analyzed here, interhemispheric connections make up almost half

(46%) of all edges present in the network, while connections between

cortical areas and subcortical regions make up almost a third (29%). As

such, failing to consider these connections when analyzing the topol-

ogy of structural connectivity networks will inherently provide an

incomplete picture of brain network organization and the extent to

which each region exhibits widespread or diverse connectivity. Fur-

ther, we believe ours is the first study on the relationship between

regional dynamics and structural connectivity degree to consider and

correct for the potentially confounding effects of both ROI volume

and spatial autocorrelation. These corrections are far more than a for-

mality; the majority of the null effects we report are significant when

failing to correct for one or the other of these confounds. Overall, our

results demonstrate that this relationship is replicable, statistically

robust, and not unique to the special case of intra-hemispheric con-

nectivity between cortical areas. Possible mechanistic explanations

for this relationship come from computational models, which suggest

that widespread inputs may stabilize the dynamics of high degree

regions (Gollo et al., 2015), and that local synaptic integration may act

as a low pass filter on these inputs (Baria et al., 2013).

In contrast to our findings for structural connectivity, we did not

observe a significant correlation between timescale and functional

connectivity degree in either dataset.2 That said, we caution readers

against drawing any strong conclusions based on these results, as the

magnitude of the effects we did observe are comparable to those for

structural connectivity degree. As such, our findings on the relation-

ship between timescale and functional connectivity degree sit in an

ambiguous statistical “limbo” (de Hollander et al., 2014); not them-

selves significant, but not significantly weaker than the significant

effects we did observe. We are aware of two previous human resting

fMRI studies which found a tendency for regions with slower dynam-

ics to exhibit greater functional connectivity degree (Baria et al., 2013;

Shinn et al., 2021). While additional work is needed to determine

exactly which factors are driving the discrepancy between our current

findings and those in prior reports, we note that our use of weighted

degree and consideration of all positive connections differs from the

methods used by (Baria et al., 2013) and (Shinn et al., 2021), both of

whom estimated degree as the number of connections exceeding a

given threshold.

This study has several limitations. First, while we analyzed fMRI

data from multiple datasets, we compared timescales estimated from

those data to a single common structural connectome. As such, our

analyses of each dataset are not fully independent. Second, our analy-

sis focused on group-level estimates of timescale and connectivity,

and the effects we observe may not fully generalize in individual par-

ticipants (Fisher et al., 2018). Third, we used only a single parcellation

of cortical and subcortical areas, and it is possible that our results

might differ when using alternative region definitions or when investi-

gating timescales and connectivity at the level of individual voxels.

Fourth, the parcellation we chose did not include any cerebellar

regions. Fifth, recent work suggests that the generative null model we

used to account for spatial autocorrelation may not exactly control

the false positive rate (Markello & Misic, 2021). Sixth, we focused

exclusively on communities identified through modularity maximiza-

tion, and thus did not consider other kinds of network organization

such as core-periphery or disassortative community structure (Betzel

et al., 2018; Faskowitz et al., 2018). Seventh, we did not account for

the potentially confounding effect of time series autocorrelation on

functional connectivity estimates (Afyouni et al., 2019;

Bartlett, 1935). Our findings should be considered in light of these

limitations.

5 | CONCLUSION

We found that cortical timescales estimated from resting BOLD fMRI

are associated with the modular organization of structural and func-

tional brain networks. In particular, we show that longer timescales

are associated with diverse structural connectivity and widespread

within-community functional connectivity. In addition, we replicate

prior observations that regions with long timescales tend to have

higher overall structural connectivity, and find evidence for preferen-

tial functional connectivity between cortical areas with similar time-

scales. Overall, these results provide new insights into a key feature

of functional brain organization—intrinsic regional dynamics—and pro-

vide an important empirical link between the literature on cortical

timescales and network-centric perspectives which seek to under-

stand the brain as a complex dynamical system. More specifically, we

provide evidence for an association between temporal integration and

topological integration in the cerebral cortex, and support the notion

that the functional properties of each cortical area are shaped by

(or at least associated with) the unique pattern of connections each

region makes with the rest of the brain. Additional work is needed to

evaluate whether the observed associations are the result of causal

influences of network topology on regional dynamics, or if they reflect

common principles of cortical organization which shape both local cir-

cuit features and patterns of inter-regional connectivity. One poten-

tially promising avenue to help adjudicate this question may be

through analysis of data from studies which manipulate the connectiv-

ity profile of selected cortical areas, such as through non-invasive

brain stimulation in humans or experimentally induced lesions in

model organisms. Future studies may also benefit from moving

beyond the special case of timescales to explore the diversity of ways

in which neural time series vary across the brain, and by investigating

connectivity-dynamics associations within individual participants.

2This effect was significant in the validation data in our initial analysis, but became

substantially weaker and failed to reach significance when excluding cortical ROIs with

low tSNR.
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Finally, our work underscores the importance of considering both

structural connectivity and functional connectivity when studying the

relationship between brain connectivity and dynamics, as these two

modalities have imperfect correspondence and reflect distinct fea-

tures of neuroanatomy and physiology.
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