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Abstract

Robust Model Predictive Control with Data-Driven Learning

by

Monimoy Bujarbaruah

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In the design of robust Model Predictive Control (MPC) algorithms, data can be used for
primarily two purposes: (A) shrinking the feasible domain of the system uncertainty, and (B)
enlarging the safe operating region of the system. In modern literature (A) is often referred
to with model learning, or model adaptation, and (B) can be interpreted as using data
to learn the model of the surrounding agents in the environment, or to learn environment
constraints. Both (A) and (B) can enlarge the region of attraction of the MPC policy and
improve its performance measured in terms of the closed-loop cost. However, the majority
of the existing MPC algorithms that tackle (A) and (B) suffer from at least one the following
deficiencies: (i) do not provide closed-loop guarantees of feasibility and stability, (ii) present
conservative behavior as a result of over-approximation of the system uncertainty, (iii) are
computationally expensive during online control synthesis, and (iv) cannot simultaneously
handle system and environment constraint uncertainty for safe policy design.

In this dissertation, we present a unified framework to systematically incorporate data-driven
learning in robust MPC design for linear dynamical systems. The proposed algorithms in
the dissertation provide closed-loop guarantees, reduce conservatism in control design, and
are computationally efficient and amenable for real-time implementation. The dissertation
is divided into three parts where we focus on three aspects of learning during control design:
model learning, disturbance distribution support learning, and environment constraint learn-
ing. Model learning and disturbance distribution support learning are instances of problem
type (A), and environment constraint learning is an instance of problem type (B).

In the first part of the dissertation we consider model learning in linear time-invariant (LTI)
and linear parameter-varying (LPV) systems where a reduction in the controller’s conser-
vatism is obtained by coupling novel ways of incorporating model learning in MPC with
novel ways of robustifying the imposed constraints in MPC. We consider both paramet-
ric and non-parametric representation of the model uncertainty and present adaptive MPC
algorithms that ensure robust satisfaction of the imposed state and input constraints.
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In the second part we focus on learning the support of an additive disturbance’s distribution.
We consider the case when the disturbance belongs to the class of parametric distributions,
and construct estimates of its unknown support via the confidence intervals of the underlying
parameters. Robust MPC design with these learned supports can ensure satisfaction of
the imposed constraints with any user-specified probability, while lowering conservatism by
avoiding large outer-approximations of the true support.

Finally in the third part, we focus on learning unknown environment constraints imposed
in the MPC optimization problem. We present a machine learning based algorithm to
learn approximate constraint sets and validate their safety with samples of trajectory data.
We prove that satisfying these approximated constraints with a robust MPC can guarantee
probabilistic satisfaction of the actual constraints in closed-loop. The value of this probability
can be chosen based on the desired trade-off between safety and performance of the controller.

We conclude the dissertation by presenting two applications where the proposed theory has
been successfully tested. The first is for a robotic manipulator learning to play the cup-and-
ball game, where we learn the support of a position measuring camera’s measurement noise
distribution from data and enable the robotic manipulator to play the game successfully
using noisy camera feedback. For this case we present both high-fidelity simulation and
experimental validations. The second application is for collaborative robotics, where we ap-
ply the concept of constraint learning in a decentralized collaborative robotic transportation
scenario with partially known environment information to develop an obstacle avoidance
algorithm. The algorithm allows the robots to adaptively assume leader-follower roles in the
task while learning and avoiding unknown obstacles in their proximity.
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Chapter 1

Introduction

In the past decade there has been a renewed interest in data-driven methods for safe control
design for uncertain systems under state and input constraints[1, 2, 3]. The uncertainty
in these systems can be typically attributed to two factors: (i) model uncertainty (e.g.,
modeling mismatch and inaccuracies), and (ii) exogenous disturbances1. For such uncertain
systems subject to state and input constraints, robust Model Predictive Control (MPC) [4,
5, 6] is a commonly used approach for ensuring robust constraint satisfaction. In the design
of robust MPC algorithms, data can be used for primarily two purposes: (A) shrinking the
feasible domain of the system uncertainty (e.g., model learning, disturbance bound learning),
and (B) enlarging the safe operating region of the system (e.g, constraint learning). Both (A)
and (B) can enlarge the region of attraction of the MPC policy and improve its performance
measured in terms of the closed-loop cost.

In this dissertation, we present a set of algorithms that utilize data-driven learning in
robust MPC design in order to lower controller conservatism and improve its performance
during operation. We focus on linear systems and three main components for learning,
namely: model learning, disturbance distribution support learning, and environment con-
straint learning. The existing work in each of these three cases, their shortcomings, and the
contributions in this dissertation are summarized below:

Model Learning

Data-driven learning has been utilized to lower the conservatism of an MPC by learning
the domain of the model uncertainty. Works such as [7, 8, 9] use a Gaussian Process (GP)
regression [10, 11] for online model learning and adaptation, allowing the room for violations
of the imposed constraints with a certain user-specified probability. However, they provide
no theoretical bounds on the rate of constraint violations by the closed-loop system over
time. Adaptive MPC works such as [12, 13, 14] learn and update the feasible parameters
of a parametric model uncertainty and provide closed-loop guarantees of robust constraint

1We primarily consider the case of perfect state measurements in this dissertation during control design.
Therefore the contribution of measurement noise is omitted in the system uncertainty quantification.
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satisfaction and stability. However these methods can incur high online computational ex-
penses similar to polytopic tube MPC algorithms [15, 16, 17, 18, 19], primarily due to an
increase in the number of constraints in the MPC problem. Balancing this trade-off between
computational complexity and controller conservatism is a key aspect during robust MPC
design for this class of systems 2.

In this dissertation we build a set of adaptive MPC algorithms motivated by the works
of [20, 21, 22, 12, 13, 8]. We learn both parametric and non-parametric model uncertain-
ties using set membership estimation [23] and graph learning algorithms [24, 25]. We also
develop two novel algorithms for robust MPC design for linear systems under both additive
and multiplicative uncertainties, which are used for control design while learning linear pa-
rameter varying (LPV) models. These two robust MPC algorithms can obtain an improved
computational complexity vs conservatism trade-off over methods such as [15, 16, 19, 26, 27],
as we show in Chapter 3 and Chapter 4 with detailed numerical examples. The algorithms
presented in this dissertation have appeared in [28, 29, 30, 31, 30, 32, 33].

Disturbance Distribution Support Learning

If the support of the disturbance distribution is not exactly known, using over-approximations
results in conservative controller behavior [5]. This motivates learning the disturbance sup-
port over time using collected data from the system. In such cases, it is necessary to allow the
possibility of failure, i.e., violation of imposed constraints by the MPC, as the learned support
may not entirely contain the true support of the disturbance. To the best of our knowledge,
the only data-driven approach for learning the support of the disturbance distribution during
robust MPC design is presented in [34], which constructs estimated disturbance support sets
offline using the scenario approach [35, Chapter 12]. The approach in [34] involves solving a
scenario program with potentially large number of samples, which is computationally expen-
sive. Moreover, the rate of constraint violation in closed-loop, i.e., failures, is dependent on
the number of disturbance samples available offline for solving the scenario program. Thus,
[34] is unable to satisfy a desired upper bound on failures at all times, since the required
number of samples could be unavailable during operation.

In this dissertation we present an iterative algorithm called Learning Robustness with
Bounded Failure (LRBF) [36] which learns the supports of additive disturbances in a linear
time-invariant model by utilizing confidence intervals of the parameters that define the para-
metric distributions of the disturbances. Unlike methods such as [37, 34], we can guarantee
a user-specified upper bound on the constraint violation probability by a robust MPC using
these estimated supports, from the very start of the control task. As more iteration data is
collected, the estimated support approaches the true one, and thus lowering the probability
of constraint violations. We use the LRBF algorithm to learn the support of a camera’s
position measurement noise distribution and design an output feedback robust optimal con-
troller, enabling a robotic manipulator to learn to play the cup-and-ball game. The catching

2See Chapter 2 for a detailed discussion.
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of the ball by the manipulator improves as the approximated support of the camera noise is
refined with data, thus improving the accuracy of the catching controller.

Constraint Learning

Data-driven methods are also used to enlarge the ROA and improve the controller per-
formance by learning unknown environment constraints. A set of such algorithms in MPC
design can be found in [38, 39, 40]. However, the systems considered in these aforementioned
works are deterministic, i.e., free of uncertainty. To the best of our knowledge, the literature
on data-driven controller design in the presence of uncertainties in both the system and the
environment constraint set is rather limited.

In this dissertation we develop an iterative algorithm called Iterative Constraint Learning
(ICL) for environment constraint learning [41] during robust MPC design, where approxi-
mations of unknown environment constraints are learned from trajectory data using kernel
support vector machines [42, Chapter 12]. The violation probability of the true unknown
environment constraints is ensured bounded by a user-specified value. The higher this prob-
ability, the lower the incurred average closed-loop cost by the system, thus highlighting
a safety vs performance trade-off, which can be decided by the user. We further extend
this concept of constraint learning to applications in decentralized collaborative robotics
[43], where two robots adaptively assume leader-follower roles during a collaborative object
transportation task and improve their obstacle avoiding MPC planners by inferring unknown
obstacle information in their proximity.

1.1 Outline

We now present an outline of this dissertation in the following section. Chapters 2-8 con-
stitute the theoretical foundations of the dissertation. In Chapters 9-10 we present two
application cases for the proposed theoretical work.

Chapter 2: Background on Robust MPC

In this chapter we present a background on robust MPC algorithms. We highlight the com-
putational complexity vs conservatism trade-off that exists in the design of these algorithms,
and thus motivate the need for (i) two novel robust MPC algorithms that we propose in
Chapter 3 and Chapter 4, and (ii) data-driven learning in conjunction with robust MPC.

Chapter 3: A Simple Robust MPC for LPV Systems

In this chapter we propose a simple algorithm for robust MPC design for LPV systems. This
algorithm uses two bounding strategies for system uncertainty as follows: (i) a worst-case
bound for constraint tightening along the prediction horizon, which is computed by lumping
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up the contribution of matrix uncertainties and the additive disturbances into one “net-
additive term”, and (ii) a terminal set without over-approximating the system uncertainty.
We demonstrate with numerical examples that using these two bounds with an adaptive
horizon strategy leads to an MPC which obtains an improved conservatism vs computational
speed trade-off over existing approaches, such as [15, 27].

Chapter 4: Robust MPC with Optimization-Based Constraint
Tightening

In this chapter we propose an optimization-based constraint tightening strategy for designing
a robust MPC algorithm. The constraint tightenings in the control synthesis problem are a
function of the predicted nominal states and inputs, i.e., the decision variables. This lowers
the conservatism in the proposed control design approach by avoiding worst-case bounds as
used in the “net-additive” uncertainty term in Chapter 3. The resultant MPC problem is
computationally efficient, and obtains an improved ROA over the robust MPC in Chapter 3
for our considered simulation cases.

Chapter 5: Learning Non-Parametric Model Uncertainty in
Robust MPC

In this chapter we propose our first robust adaptive MPC algorithm, where the model un-
certainty is additive and state dependent. We assume the uncertainty is globally Lipschitz,
with a known Lipschitz constant. We utilize a non-parametric recursive system identification
strategy which identifies the graph of the uncertainty from data using its Lipschitz property.
The identification is successively refined with recorded data. The bounds of the uncertainty
evolution along the prediction horizon are obtained via the s-procedure [44, 45], and utilizing
these bounds a robust MPC controller is designed. We demonstrate with numerical examples
that the adaptation of system uncertainty using data shrinks these uncertainty bounds with
time, thus lowering the conservatism of the controller.

Chapter 6: Learning Parametric Model Uncertainty in Robust
MPC

In this chapter we propose a tractable adaptive MPC framework for linear systems that
are subject to bounded additive uncertainty, which is composed of a disturbance, and an
unknown, but bounded parametric offset. We learn and refine the feasible domain of this
offset parameter using collected data via set membership methods. A robust MPC is then
designed for all feasible offsets in the domain, which incurs lower conservatism as the offset
domain is refined with time. We then extend this robust adaptive MPC design to LPV
systems using the robust MPC proposed in Chapter 3.
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Chapter 7: Learning Disturbance Distribution Supports in
Robust MPC

In this chapter we present an approach to design an MPC controller for constrained linear
time-invariant systems performing an iterative task, where the support of the additive dis-
turbance is learned from data. We call our algorithm Learning Robustness with Bounded
Failure (LRBF). We demonstrate that LRBF is able to learn the true support of the distur-
bance asymptotically, and thus lowers the controller’s conservatism over approaches which
use large outer approximations of the unknown disturbance support. Furthermore, while
learning the support of the additive disturbance, we guarantee a user-specified upper bound
on the probability of failure over all iterations.

Chapter 8: Learning Environment Constraints in Robust MPC

This chapter focuses on improving the closed-loop cost performance of a robust MPC con-
troller, while satisfying the safety constraints imposed by the environment. Instead of re-
lying on small inner approximations of the environment constraints, we learn them from
collected system trajectories. For this, we use a classifier, which provides constraint violation-
satisfaction flags at each timestep, given a recorded closed-loop trajectory. Using this flag
information, we compute a constraint estimate set using standard nonlinear regression tools.
The estimated set is verified using a randomized algorithm, which ensures that the MPC
designed to satisfy the estimated sets robustly satisfies the true (i.e., unknown) constraints
with a user-specified probability.

Chapter 9: Playing Cup-and-Ball: An Application of LRBF

In this chapter we demonstrate a fully physics driven model-based hybrid approach for con-
trol design in order for a robotic manipulator to learn to play the cup-and-ball game. The
manipulator uses noisy measurements from a camera to obtain the ball’s position informa-
tion. The camera noise support is refined with data using the tools presented in Chapter 7.
We demonstrate that the aforementioned use of data in designing a feedback controller for
the manipulator improves its catching capabilities with time. Furthermore, the robust opti-
mal control problem solved for control synthesis in this case is with noisy output feedback
[46], and therefore an observer design is also involved before control synthesis.

Chapter 10: Decentralized Robotic Collaboration: An Application
of Constraint Learning

In this chapter we consider the task of two robots collaboratively transporting an object
through an obstacle prone environment without any explicit communication between them.
This implies that the local environment information and the control actions are not shared
between the robots. We solve the control design problem in a decentralized manner by using
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a leader-follower strategy, with the leader robot using an MPC and the follower using a simple
controller, known to the leader. Motivated by the tools of Chapter 8, the leader builds a
map of its unknown obstacles, i.e., constraints in its proximity, purely relying upon its own
estimates and/or haptic feedback from the follower. Thus, the leader’s MPC policy improves
as more data is collected along the task. With numerical simulations we demonstrate that
this proposed obstacle inference/learning approach allows the robots to safely complete the
transportation task, while adaptively switching leader-follower roles based on the inferred
environment information.
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Chapter 2

Technical Background on Robust
MPC

2.1 Invariant Sets for Nominal Systems

In this section we consider deterministic linear time-invariant systems. The following def-
initions of invariant sets will be useful for obtaining feasibility guarantees of robust MPC
controllers. Let X and U denote the state and input constraint sets, respectively.

Definition 2.1 (Positive Invariant Set) Given a policy π(·), a set O ⊆ X is said to be
a positive invariant set for the deterministic autonomous system xt+1 = Axt + Bπ(xt), if

x ∈ O → Ax + Bπ(x) ∈ O.

Definition 2.2 (Maximal Positive Invariant Set) Given a policy π(·), a set O ⊆ X
is said to be the maximal positive invariant set for the deterministic autonomous system
xt+1 = Axt +Bπ(xt), if O is a positive invariant set and it contains all the positive invariant
sets contained in X .

Definition 2.3 (Control Invariant Set) A set C ⊆ X is said to be a control invariant set
for the deterministic system xt+1 = Axt + But, with ut ∈ U if

x ∈ C → ∃u ∈ U : Ax + Bu ∈ C.

2.2 Robust Invariant Sets, Robust Controllable and

Reachable Sets

In this section, we consider uncertain linear time-invariant systems. The following definitions
will be used subsequently to synthesize robust MPC algorithms. Recall, X and U denote
the state and input constraint sets, respectively.



CHAPTER 2. TECHNICAL BACKGROUND ON ROBUST MPC 8

Definition 2.4 (Robust Positive Invariant Set) Given a policy π(·), a set O ⊆ X is
said to be a robust positive invariant set for the uncertain autonomous system xt+1 = Axt +
Bπ(xt) + wt, with wt ∈W if

x ∈ O → Ax + Bπ(x) + w ∈ O, ∀w ∈W.

Definition 2.5 (Maximal Robust Positive Invariant Set) Given a policy π(·), a set
O ⊆ X is said to be the maximal robust positive invariant set for the uncertain autonomous
system xt+1 = Axt + Bπ(xt) + wt, with wt ∈W if O is a robust positive invariant set and it
contains all the robust positive invariant sets contained in X .

Definition 2.6 (Minimal Robust Positive Invariant Set) Given a policy π(·), a set
O ⊆ X is said to be the minimal robust positive invariant set for the uncertain autonomous
system xt+1 = Axt + Bπ(xt) + wt, with wt ∈W if O is a robust positive invariant set and it
is contained in all the robust positive invariant sets contained in X .

Definition 2.7 (Robust Precursor Set) Given a control policy π(·) and the closed-loop
system xt+1 = Axt + Bπ(xt) + wt with wt ∈W for all t ≥ 0, we denote the robust precursor
set to the set S under a policy π(·) as

Pre(S, A,B,W, π(·)) = {x ∈ Rn : Ax + Bπ(x) + w ∈ S,∀w ∈W}. (2.1)

Pre(S, A,B,W, π(·)) defines the set of states of the system xt+1 = Axt +Bπ(xt) +wt, which
evolve into the target set S in one timestep for all wt ∈W.

Definition 2.8 (N -Step Robust Controllable Set) Given a control policy π(·) and the
closed-loop system xt+1 = Axt + Bπ(xt) + wt, we recursively define the N-Step Robust Con-
trollable set to the set S as

Ct→t+k+1(S) = Pre(Ct→t+k(S), A,B,W, π(·)) ∩ X ,

with Ct→t(S) = S,

for k ∈ {0, 1, . . . , N − 1}.

The N -Step Robust Controllable set Ct→t+N(S) collects the states satisfying the state con-
straints which can be steered to the set S in N steps under the policy π(·), for all possible
disturbance realizations.

Definition 2.9 (Robust Successor Set) Given a control policy π(·) and the closed-loop
system xt+1 = Axt + Bπ(xt) + wt, we denote the robust successor set from the set S as

Succ(S,W, π(·)) = {xt+1 ∈ Rn : ∃xt ∈ S,∃wt ∈W such that xt+1 = Axk + Bπ(xt) + wt}.

Given the initial state xt, the robust successor set Succ(xt,W) collects the states that the
uncertain autonomous system may reach in one timestep.
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2.3 Additional Definitions

Definition 2.10 (Lyapunov Function) Consider the equilibrium point x = 0 of an au-
tonomous system xt+1 = f(xt). Let Ω ⊂ Rn be a closed and bounded set containing the
origin. Assume there exists a function V : Rn → R continuous at the origin, finite for every
x ∈ Ω, and such that

V (0) = 0 and V (x) > 0, ∀x ∈ Ω \ {0}, (2.2a)

V (f(x))− V (x) ≤ 0. (2.2b)

Then x = 0 is asymptotically stable in the sense of Lyapunov on Ω, and the function V (·)
satisfying conditions (2.2) is called a Lyapunov Function.

Definition 2.11 (Control Lyapunov Function) Consider system xt+1 = f(xt, ut) sub-
ject to the state and input constraint, xt ∈ X and ut ∈ U . Assume that S is a control invari-
ant set and ℓ(x, u) is the stage cost of the control problem. Then, the function Q : Rn → R
is a control Lyapunov function over the set S if

∀x ∈ S, min
u∈U ,f(x,u)∈S

[
ℓ(x, u) + Q(f(x, u))−Q(x)

]
≤ 0.

Definition 2.12 (Class–K Function) A continuous function α : [0, a) → [0,∞) is called
a class-K function if it is strictly increasing in its domain and if α(0) = 0. The class-K
function belongs to class-K∞ if a =∞ and limr→∞ α(r) =∞.

Definition 2.13 (Class-KL Function) A continuous function β : [0, a)× [0,∞) 7→ [0,∞)
is called a class-KL function if for each fixed s, the function β(r, s) belongs to class-K, and
for each fixed r, (i) the value β(r, s) is decreasing w.r.t. s and (ii) β(r, s)→ 0 for s→∞.

Definition 2.14 (Lipschitz Function) A real valued function α : [a, b] 7→ R is called
Lipschitz with a Lipschitz constant L, if for all x, y ∈ [a, b], we have ∥α(x)−α(y)∥ ≤ L∥x−y∥,
where ∥ · ∥ denotes the norm of a vector.

Definition 2.15 (Minkowski Sum) The Minkowski sum of two sets P ,Q ⊆ Rn is defined
as:

P ⊕Q = {x + y : x ∈ P , y ∈ Q}.

Definition 2.16 (Pontryagin Difference) The Pontryagin difference between two sets P ,Q ⊆
Rn is defined as:

P ⊖Q = {x : x + q ∈ P ,∀q ∈ Q}.
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2.4 Notation

The following notations will be used throughout this dissertation. x+ denotes one timestep
updated value of x. The induced p-norm of any matrix A is given by ∥A∥p = supx ̸=0

∥Ax∥p
∥x∥p ,

where ∥ · ∥p is the p-norm of a vector. The set KB denotes the set of elements obtained
from multiplying each element in the set B with K, i.e., KB = {x : x = bK, b ∈ B}. The
sign u ≥ v between two vectors u, v denotes element-wise inequality. conv(X, Y, . . . , Z)
denotes the set of matrices that can be written as a convex combination of the matrices
X, Y, . . . , Z. In denotes an identity matrix of dimension n and 1n denotes a vector of ones
of length n. The dual norm of any vector norm ∥x∥ for a vector x is defined as ∥x∥∗ =
sup∥v∥≤1(v

⊤x). The consistency property for any induced p-norm and vector q-norm is given

by ∥Xy∥q ≤ ∥X∥p∥y∥q, for any X ∈ Rd1×d2 and y ∈ Rd2 . The submultiplicativity property
for any induced p-norm is given by ∥XY ∥p ≤ ∥X∥p∥Y ∥p. Inequality X ≥ 0 for any matrix
X denotes an element-wise inequality, whereas a conic inequality is denoted by X ⪰ 0. 0n

is a vector of n zeros and 0m×n is an m× n matrix of zeros.

2.5 Robust MPC Problem Formulation

In this section we present an overview of robust MPC design for an uncertain nonlinear
system given by:

xt+1 = f(xt, ut, wt), (2.3)

where xt ∈ Rn is the state, ut ∈ Rm is the input, and wt ∈W ⊂ Rn is the disturbance lying
on a compact support W. The system is subject to state and input constraints

xt ∈ X , ut ∈ U , ∀t ≥ 0, (2.4)

where X and U are compact. We assume that dynamics f(·, ·, ·) is not known exactly, and
we classify the associated uncertainty as follows:

Model Uncertainty: uncertainty in f(·, ·, 0), which we denote as model uncertainty. Such
model uncertainty typically arises due to unknown components in the physics of the model,
e.g., unknown parameters such as mass, moment of inertia, etc.

Exogenous Disturbances: these are external influences in the system evolution, denoted
by wt. Although such external disturbances can have their own evolution dynamics, for
the remainder of this dissertation we focus on the case where the disturbance samples are
stochastic, and in particular i.i.d. in nature.

A nominal estimated model f̄(·, ·, 0) is used for control design. The model uncertainty in
f(·, ·, 0) can be represented either with a parametric or with a non-parametric representation.
These are elaborated next. See Remark 2.3 for the corresponding details on the specific
models considered subsequently in this dissertation.
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Parametric Model Uncertainty

The model may contain some unknown parameters θt ∈ Rp parametrizing fθt(·, ·, 0), which
are estimated during control design as θ̄t. In this context the nominal model is f̄θ̄t(·, ·, 0). The
measure of modeling error in this case is obtained from the error in parameter estimation,
i.e.,

∆θtrt = θtrt − θ̄t,

where the true parameter value θtrt , and thus ∆θtrt is unknown, but is bounded. In this thesis,
we assume that ∆θtrt lies in a known set Ft which is given by:

Ft = {∆θt : ∥∆θt∥ ≤ δt}, with some known δt > 0. (2.5)

Parametric models can be expressive, e.g., neural networks are instances of parametric mod-
els. Nonetheless, based on the specific application under consideration, non-parametric rep-
resentation of uncertain models is also common in MPC literature.

Non-parametric Model Uncertainty

In the non-parametric uncertainty representation approach, the relationship between the
estimated model f̄(·, ·, 0) and the true model f(·, ·, 0) is expressed as:

f(xt, ut, 0) = f̄(xt, ut, 0) + ∆tr
f,t(xt, ut),

where the mismatch function ∆tr
f,t(xt, ut) is unknown and assumed bounded. The equivalent

model error f(·, ·, 0) − f̄(·, ·, 0) for this approach is given by a set of functions Ft. This set
can be characterized by known set-valued maps as given by:

Ft = {∆f,t(·, ·) : ∆f,t(xt, ut) ∈ D(xt, ut)}, (2.6)

whereD(x, u) is a known bounded set of possible values at (x, u), e.g., confidence set obtained
from a Gaussian Process (GP) regression [47]. This set in general is time-varying, i.e.,
Dt(xt, ut). But for simplicity of notations subsequently in Section 2.11 and Chapter 5, we
omit the time index subscript.

The Robust MPC Problem

Let the MPC horizon be N . Let xk|t denote the predicted state at timestep k for any
possible uncertainty realization, obtained by applying the sequence of predicted input policies
{ut|t, ut+1|t(·), . . . , uk−1|t(·)} to system (2.3), and {x̄k|t, uk|t(x̄k|t)} denote the nominal state
and corresponding input respectively. In general for a robust MPC synthesis, we consider
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solving the following optimal control problem at each timestep t:

min
ut|t,ut+1|t(·),...,ut+N−1|t(·)

t+N−1∑
k=t

ℓ(x̄k|t, uk|t(x̄k|t)) + Q(x̄t+N |t) (2.7a)

s.t., xk+1|t = f(xk|t, uk|t(xk|t), wk|t), (2.7b)

x̄k+1|t = f̄(x̄k|t, uk|t(x̄k|t), 0), (2.7c)

xk|t ∈ X , uk|t(xk|t) ∈ U , (2.7d)

xt+N |t ∈ XN , (2.7e)

∀wk|t ∈W, ∀∆θt ∈ Ft, if model (2.5) is used, or

∀∆f,t ∈ Ft, if model (2.6) is used, (2.7f)

∀k = {t, . . . , t + N − 1}, (2.7g)

xt|t = xt, x̄t|t = xt, (2.7h)

with Ut(·) = {ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}, and applying the optimal MPC policy

uMPC
t (xt) = u⋆

t|t, (2.8)

to system (2.3) in closed-loop.

Remark 2.1 Note that we have considered perfect state feedback in (2.7h). Robust MPC
synthesis with noisy output feedback is presented in [46, 48, 49], etc. Although we utilize the
output feedback robust MPC of [46] in Chapter 9 of this thesis, we will primarily limit our
focus to when (2.7h) holds.

Note, the first input ut|t is not a policy, as the state xt is known exactly. The objective is to
minimize the cost associated with the nominal model (2.7c). Constraints (2.7d)-(2.7e) are
satisfied robustly for all possible set of states reachable through any feasible choice of the
true model evolution (2.7b), i.e., for all uncertainty in (2.7f), where Ft is given by (2.5) or
(2.6) depending on parametric or non-parametric uncertainty representation in the model.

Challenges in Solving (2.7), Assumptions and Simplifications

There are three main challenges with solving (2.7), namely:

(C1) The state and input constraints are to be satisfied robustly under the presence of mis-
match between the nominal and the true system models and all possible disturbances.
In other words, (2.7d)-(2.7e)-(2.7f) need to be reformulated so that they can be fed to
a numerical programming algorithm.

(C2) Optimizing over policies {ut|t, ut+1|t(·), ut+2|t(·), . . . } in (2.7) involves an optimization
over infinite dimensional function spaces. This in general is not computationally
tractable [50, 6].
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(C3) The feasibility of problem (2.7) is to be guaranteed robustly at all timesteps t ≥ 0.
That is,

xt ∈ X , uMPC
t (xt) ∈ U , ∀wt ∈W,∀t ≥ 0,

where xt+1 = f(xt, u
MPC
t (xt), wt). Furthermore, the closed-loop system is to be stabi-

lized by the MPC law (2.8).

Remark 2.2 Note that although we choose to show the minimization of the nominal cost
in (2.7a), this cost can be chosen as the expected cost, or the worst-case cost. The choice of
the cost function has no impact on tackling challenges (C1)-(C3). In fact, the set of specific
algorithms discussed in Section 2.9 use a worst-case cost.

To tackle challenge (C1), simplifying assumptions are made in MPC literature to the system
(2.3). In this dissertation, we consider the following three type of simplified systems:

(M1) The system is linear time-invariant with an additive disturbance, i.e.,

xt+1 = Axt + But + wt, (2.9)

with known matrices A and B of appropriate dimensions. In this case the true dis-
turbance free and the nominal models are the same, i.e., f(·, ·, 0) = f̄(·, ·, 0). That
means there is no model uncertainty in the system; the only source of uncertainty is
the disturbance wt.

(M2) The system is linear parameter varying with unknown system matrices and an additive
disturbance, i.e., system (2.3) simplifies to

xt+1 = (Ā + ∆A)xt + (B̄ + ∆B)ut + wt, (2.10)

where we assume that A and B are unknown matrices with estimates Ā and B̄ available
to the control designer. In particular, we consider

A = Ā + ∆tr
A, B = B̄ + ∆tr

B, (2.11)

where the true parametric uncertainty matrices ∆tr
A and ∆tr

B are unknown and belong
to convex and compact sets

∆tr
A ∈ PA, ∆tr

B ∈ PB. (2.12)

Furthermore, we consider that the sets PA and PB are convex hulls of known vertex
matrices {∆(1)

A ,∆
(2)
A , . . . ,∆

(na)
A } and {∆(1)

B ,∆
(2)
B , . . . ,∆

(nb)
B }, with fixed na, nb > 0:

PA = conv(∆
(1)
A ,∆

(2)
A , . . . ,∆

(na)
A ),

PB = conv(∆
(1)
B ,∆

(2)
B , . . . ,∆

(nb)
B ).

(2.13)
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(M3) As a special instance of approximating the nonlinearities in the model in (2.3) as an
additive model uncertainty, we consider a linear time-invariant system with a state
dependent additive uncertainty, i.e., (2.3) simplifies to

xt+1 = Axt + But + d(xt), (2.14)

where the unknown, nonlinear function d(x) is bounded over the state-space, i.e.,
d(x) ∈ D(x) for all x ∈ X for a compact set D(x).

Remark 2.3 In this dissertation when we present algorithms for utilizing data to refine
uncertainty in systems of the forms (M1)-(M3), we consider the following cases:

• For models of the form (M1), for learning an unknown support W of the disturbance wt,
we consider the distribution of wt as a parametric distribution Pθ [51] with unknown
parameters θ, and the estimated supports Ŵθ̂ are obtained from the corresponding con-
fidence intervals of the parameters. The associated algorithm is presented in Chapter 7.

• For models of the form (M2), we consider a specific instance with system matrices
(A(θtrt ), B(θtrt )) with an unknown parameter θtrt ∈ Θt. More specifically,

xt+1 = A(θtrt )xt + B(θtrt )ut + wt, wt ∈W, (2.15)

where θtrt ∈ Rp is a time-varying parameter unknown to the control designer, which
decides the values of the system matrices as:

(A(θtrt ), B(θtrt )) = (A0, B0) +

p∑
i=1

(Aiθ
tr
i,t, Biθ

tr
i,t), (2.16)

with known (Ai, Bi) for i ∈ {0, 1, . . . , p}, where θtri,t denotes the i-th entry of the vector at
t. We refine Θt from collected data. The associated algorithm is presented in Chapter 6.

• For models of the form (M3), we consider d(x) is Ld-Lipschitz with a known Lipschitz
constant Ld, and its possible range D(x) is refined from collected data via information of
the graph of the function d(·). The associated algorithm thus relies on a non-parametric
representation of uncertainty d(x), and is presented in Chapter 5.

To tackle challenge (C2), it is common to restrict the search of optimal policy to a specific
class of feedback policies. In this dissertation, we will focus on the following two design
approaches used in MPC literature:

(P1) Design with affine state feedback policies, resulting in the so-called tube MPC algo-
rithms [52, 15, 53, 46, 19], and

(P2) Design with affine disturbance feedback policies [54, 55, 32, 33].

And finally, to tackle challenge (C3), the terminal set XN and the terminal cost function
Q(·) are chosen appropriately to ensure feasibility and stability properties.
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2.6 The Key, Often Misused Word: “Conservative”

Throughout this dissertation, we will be using the word conservative when discussing the
properties of any control policy. When a control policy is deemed more conservative over
another, it often implies that it has a smaller region of attraction (ROA) than the other.
Although more formally defined in the subsequent chapters, roughly speaking, the ROA of
a policy denotes the set of states from which the policy is able to safely complete the control
task of stabilization, while satisfying the imposed state and input constraints.

Consider the two ROAs for a control problem obtained with policies π1(·) and π2(·), as
shown in Fig. 2.1. In this dissertation, we adhere to the following two methods of comparison

Inside ■ ROA of Policy π1(·) Inside ■ ROA of Policy π2(·)

(a) Policy π1(·) is more conservative than policy π2(·). (b) Conservatism comparison is inconclusive.

Figure 2.1: Comparison of the regions of attraction obtained with policies π1(·) and π2(·).

between any two policies π1(·) and π2(·) while analyzing the two separate situations shown
in Fig. 2.1:

• In a scenario such the one shown in Fig. 2.1a, we deem policy π1(·) more conservative
than policy π2(·). This is because the ROA of π1(·) is entirely contained in the ROA
of π2(·).

• In a scenario such the one shown in Fig. 2.1b, the ROA comparison is inconclusive for
a comment on conservatism, as there are non intersecting parts of the ROAs.

Defining Conservatism via Cost

The notion of conservatism of a policy can also be defined in terms of the closed-loop cost
of trajectories. For example, consider the case of Fig. 2.1a. The average closed-loop cost of
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100 Monte-Carlo runs from 100 sampled initial conditions inside the ROA of π2(·) can be
obtained as shown in Fig. 2.2. We see from Fig. 2.2 that policy π2(·) valid over a smaller

Inside ■ : With Policy π1(·) Inside ■ : With Policy π2(·)
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Figure 2.2: Comparison of the avg. closed-loop costs obtained with policies π1(·) and π2(·).

ROA attains a better average closed-loop cost over policy π1(·) in about 95% of the cases1.
If the notion of conservatism is defined in terms of the closed-loop cost, policy π1(·) would
be deemed more conservative over policy π2(·). However, throughout this dissertation we
will continue to define conservatism through the lens of the size of the ROA and not the
cost of the closed-loop trajectories. We will instead use the cost of closed-loop trajectories
to quantify performance of a control policy.

In the following sections we elaborate the MPC design details for each of the models
(M1)-(M3) considered, with the policy parametrizations (P1)-(P2).

2.7 (M1)/(P1): Linear Time-Invariant Systems with

Additive Disturbance, Design with Affine State

Feedback Policies - Tube MPC

A classical robust MPC approach for linear time-invariant systems with additive disturbance,
i.e., systems of the form (2.9), is the “tube” MPC approach. In tube MPC algorithms for

1Note that Fig. 2.2 has been generated only for explanatory purposes in this remark. The plots are not
from closed-loop simulations of a chosen system inside ROAs shown in Fig. 2.1.
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this class of systems, the system state xt is split into a nominal and an error state as

xt = x̄t + et, (2.17)

and decoupled dynamics equations for each is used. The primary objective is to focus on the
nominal state dynamics during MPC design, while containing all possible evolutions of the
error state within a “tube” around the predicted nominal trajectory. The imposed constraints
on the nominal states and inputs in the MPC optimization problem are appropriately shrunk
from X and U , ensuring that (2.7d)-(2.7e) are satisfied as long as the nominal constrains
are satisfied. We specifically focus on two types of tube MPC algorithms, namely, shrinking
tube MPC and rigid tube MPC. They are elaborated next. For a discussion on additional
tube MPC algorithms such as homothetic and parametric tube MPC, see [56, 57, 58].

Remark 2.4 The number of decision variables in both shrinking tube and rigid tube MPC
algorithms scale linearly with the length of the prediction horizon, i.e., N .

2.7.1 Shrinking Tube MPC

In shrinking tube MPC [52], the nominal state is set to the measured state of the system at
any timestep t, i.e.,

x̄t = xt,

and then the size of the imposed constraint sets on the predicted nominal states/inputs along
the prediction horizon are progressively shrunk to guarantee the satisfaction of (2.7d)-(2.7e).

Policy Parametrization, Nominal and Error Dynamics

The input policy parametrization for shrinking tube MPC is given by:

u(xt) = Kxt + vt, (2.18)

with a fixed feedback gain K such that (A + BK) is stable and vt is an auxiliary control
input which a decision variable. The dynamics of the nominal and error states from (2.17)
using policy (2.18) are then obtained as:

x̄t+1 = (A + BK)x̄t + Bvt, (2.19a)

et+1 = (A + BK)et + wt. (2.19b)

Shrinking Tube MPC Problem

The MPC optimization problem solved focuses on imposing constraints on predicted nominal
states and inputs obtained from (2.18) and (2.19a), such that accounting for all possible errors
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from (2.19b) maintains the satisfaction of (2.7d)-(2.7e). This MPC problem is given by:

min
vt|t,...,vt+N−1|t

t+N−1∑
k=t

ℓ
(
x̄k|t, vk|t

)
+ Q(x̄t+N |t) (2.20a)

s.t., x̄k+1|t = (A + BK)x̄k|t + Bvk|t, k = {t, t + 1, . . . , t + N − 1}, (2.20b)

x̄k|t ∈ X ⊖
k−t−1⊕
i=0

(A + BK)iW, (2.20c)

Kx̄k|t + vk|t ∈ U ⊖
k−t−1⊕
i=0

K(A + BK)iW, (2.20d)

x̄t+N |t ∈ XN ⊖
N−1⊕
i=0

(A + BK)iW, (2.20e)

∀k = {t + 1, . . . , t + N − 1}, (2.20f)

x̄t|t = xt, (2.20g)

and the MPC controller
u⋆
t|t(xt) = Kxt + v⋆t|t

is applied to system (2.9) in closed-loop. A robust positive invariant terminal set XN with
a terminal policy u = Kx, and a terminal cost function Q(·) which is a Lyapunov function
for the closed-loop system x+ = (A + BK)x addresses challenge (C3). Note that in (2.20c)-
(2.20d) the size of the imposed constraint sets on the nominal states and inputs shrink
as k increases along the horizon. This is the shrinking tube property of this algorithm.
Constraints (2.20c)-(2.20d) ensure the satisfaction of (2.7d) by system (2.9).

2.7.2 Rigid Tube MPC

Recall the nominal and error state decomposition from (2.17). In rigid tube MPC [53],
the size of the imposed constraint sets on the predicted nominal states/inputs along the
prediction horizon are kept fixed, while guaranteeing the satisfaction of (2.7d)-(2.7e). The
nominal state at any timestep t is a decision variable in the MPC problem.

Policy Parametrization, Nominal and Error Dynamics

The input policy parametrization for rigid tube MPC is given by:

u(xt) = Kx̄t + Keet + vt, (2.21)

with fixed feedback gains K and Ke such that (A+BK) and (A+BKe) are stable and vt is
an auxiliary control input which a decision variable. The dynamics of the nominal and error
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states from (2.17) using policy (2.21) are:

x̄t+1 = (A + BK)x̄t + Bvt, (2.22a)

et+1 = (A + BKe)et + wt. (2.22b)

Rigid Tube MPC Problem

Consider a robust positive invariant set for the error dynamics (2.22b), denoted by E . Given
a measured state xt, the choice of the nominal state x̄t = x̄t|t is to be made such that the
error state at timestep t, i.e., et = et|t satisfies

et|t ∈ E ,

thus restricting the evolution of the error state in E at all future times. The MPC optimiza-
tion problem is formulated by imposing constraints on predicted nominal states and inputs
given by the following:

x̄k|t ∈ X ⊖ E , (2.23a)

Kx̄k|t + vk|t ∈ U ⊖KeE , (2.23b)

obtained from (2.21) and (2.22a). One can demonstrate that if (2.23) are satisfied, (2.7d)-
(2.7e) must be satisfied. The resulting robust MPC problem is:

min
x̄t|t,vt|t,...,vt+N−1|t

t+N−1∑
k=t

ℓ
(
x̄k|t, vk|t

)
+ Q(x̄t+N |t) (2.24a)

s.t., x̄k+1|t = (A + BK)x̄k|t + Bvk|t, (2.24b)

x̄k|t ∈ X ⊖ E , (2.24c)

Kx̄k|t + vk|t ∈ U ⊖KeE , (2.24d)

x̄t+N |t ∈ X̄N ⊂ X ⊖ E , (2.24e)

∀k = {t, . . . , t + N − 1}, (2.24f)

et|t ∈ E , (2.24g)

where X̄N is the terminal constraint set for the nominal state. The MPC controller

u⋆
t|t(xt) = Kx̄⋆

t|t + Keet|t + v⋆t|t.

is then applied to system (2.9) in closed-loop. A control invariant terminal set X̄N and a
terminal cost function Q(·) which is a control Lyapunov function in the terminal set addresses
challenge (C3). Note that in (2.24c)-(2.24d) the size of the imposed constraint sets on the
nominal states and inputs remain fixed as k increases along the horizon. This is the rigid
tube property of this algorithm. Constraints (2.24c)-(2.24d) ensure the satisfaction of (2.7d)
by system (2.9).



CHAPTER 2. TECHNICAL BACKGROUND ON ROBUST MPC 20

Example 2.1 (Shrinking Tube vs Rigid Tube) We now present an example that com-
pares shrinking and rigid tube MPC algorithms in terms of their ROA. The corresponding
ROAs for this problem are approximated by gridding the state-space in a 50 × 50 grid of
initial conditions and taking the convex hull of the initial conditions for which (2.20) and
(2.24) are feasible. Consider finding shrinking and rigid tube MPC solutions to the robust
infinite horizon optimal control problem given by

min
u0,u1(·),...

∑
t≥0

10 ∥x̄t∥22 + 2 ∥ut(x̄t)∥22

s.t., xt+1 = Axt + But(xt) + wt,
x̄t+1 = Ax̄t + But(x̄t),−8
−8
−4

 ≤ [ xt

ut(xt)

]
≤

8
8
4

 ,

∀wt ∈W, t = 0, 1, 2, . . . ,

(2.25)

with the disturbance support set W = {w : ∥w∥∞ ≤ 0.1}, where

A =

[
1 0.05
0 1

]
, B =

[
0

1.1

]
.

We pick N = 5. The matrix K in (2.18) and (2.21) is chosen as the infinite horizon LQR
gain with Q = diag(10, 10) and R = 2. Matrix Ke = K in (2.21). The terminal set X̄N

in (2.24) is chosen as the maximal positive invariant set for the nominal dynamics (2.22a)
under policy u = Kx̄t, and the set E in (2.24) is chosen as the minimal robust positive
invariant set for the error dynamics (2.22b). In Fig. 2.3 we show the comparison of the
approximate ROAs.

Fig. 2.3 suggests that near the edge of the constraint sets, the constant (and larger) tight-
ening of the state constraints in (2.24) via E results in infeasibility of (2.24), where a slowly
increased tightening along the prediction horizon results in a feasible controller obtained as
a solution to (2.20) from the corresponding states. This indicates a lower conservatism of
the shrinking tube MPC for the considered example, as seen from its larger ROA in Fig. 2.3,
which entirely contains the ROA of the rigid tube MPC. However, recall that the terminal set
in rigid tube MPC can also be a control invariant set, which can enlarge its ROA if chosen
appropriately2. Moreover, computing a (nominal) control invariant X̄N in (2.24) with a fixed
linear feedback policy is cheaper than computing a robust positive invariant XN in (2.20).
Thus, the use of shrinking tube vs rigid tube is dependent on the specific problem at hand,
computational constraints to the designer, etc.

Remark 2.5 The rigid tube MPC’s property of robust control synthesis based on the con-
tainment of error in an invariant set around the nominal trajectory is similar to methods

2An example of such a set can be found in [59], which iteratively enlarges a control invariant terminal set
constructed with collected trajectory data and provides feasibility and stability guarantees of the controller.
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Inside ■ : Shrinking Tube MPC Inside ■ : Rigid Tube MPC

Figure 2.3: Comparison of the approx. ROAs of shrinking tube and rigid tube MPC. The
shrinking tube MPC obtains reduced conservatism in this case over the rigid tube MPC.

developed later, such as [60, 61, 62, 63], which are primarily for nonlinear systems. These
methods exploit planner-tracker hierarchies during control design and maintain the tracking
error in an invariant set around a planner generated trajectory.

2.8 (M1)/(P2): Linear Time-Invariant Systems with

Additive Disturbance, Design with Affine

Disturbance Feedback Policies

The tube MPC algorithms in Section 2.7 utilize a fixed feedback gain along the prediction
horizon in (2.18) and (2.21). Instead, utilizing an input policy of the form

ut(xt) = Ktxt + vt, (2.26)

with time varying feedback gains Kt and optimizing over these gains along the prediction
horizon can lower the conservatism of (2.20) and (2.24). However, optimizing over these
feedback gains directly in a state feedback based robust MPC synthesis results in a non-
convex problem, as shown in [55, Proposition 3]. A convex synthesis is enabled using the
affine disturbance feedback policy parametrization [54, 55], which is proven to be equivalent
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to (2.26) for models (M1) [55, Section 5]. We describe this parametrization and the associated
robust MPC algorithm next.

Policy Parametrization

For all k ∈ {t, . . . , t + N − 1} over the MPC horizon of length N , the control policy
parametrization in this case is given as:

uk|t(xk|t) =
k−1∑
j=t

Mk,j|twj|t + vk|t, (2.27)

where Mk|t are the planned feedback gains at timestep t and vk|t are the auxiliary inputs,
both of which are decision variables. Let us define the stacked disturbances along the MPC
prediction horizon as

wt =
[
w⊤

t|t w⊤
t+1|t · · · w⊤

t+N−1|t
]⊤ ∈ RnN .

Then the sequence of predicted inputs from (2.27) can be stacked together as:

ut = Mtwt + vt

at any timestep t, where matrices Mt ∈ RmN×nN and vt ∈ RmN are obtained by arranging
the decision variables as follows:

Mt =


0 · · · · · · 0

Mt+1,t 0 · · · 0
...

. . . . . .
...

Mt+N−1,t · · · Mt+N−1,t+N−2 0

 , vt =


vt|t
vt+1|t

...
vt+N−1|t

 . (2.28)

MPC Problem

Using policy (2.27), problem (2.7) in this case is simplified to solving:

min
Mt,vt

t+N−1∑
k=t

ℓ(x̄k|t, vk|t) + Q(x̄t+N |t)

s.t., xk+1|t = Axk|t + Buk|t + wk|t,

x̄k+1|t = Ax̄k|t + Bvk|t,

uk|t(xk|t) =
k−1∑
j=t

Mk,j|twj|t + vk|t,

xk|t ∈ X , uk|t(xk|t) ∈ U ,
xt+N |t ∈ XN ,

∀wk|t ∈W,

∀k = {t, . . . , t + N − 1},
xt|t = x̄t = xt.

(2.29)
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A robust positive invariant terminal set XN with the terminal policy u = Kx, and a terminal
cost function Q(·) which is a Lyapunov function for the closed-loop system x+ = (A+BK)x
addresses challenge (C3). Problem (2.29) scales quadratically [64] in the number of decision
variables with the horizon N . An efficient way to solve (2.29) using duality of convex
programs [65, 66, 67] is shown in [55]. We present an example of such a reformulation next.

Example 2.2 We show an example of how to convert (2.29) into a tractable convex opti-
mization problem using duality of convex programs. The example is from [6, Example 15.3].
Consider the system

xt+1 = xt + ut + wt, (2.30)

and let

U = {u : −1 ≤ u ≤ 1},
W = {w : −1 ≤ w ≤ 1}.

The objective of the player is to play three input moves so that x3 ∈ XN , with the set XN

given by

XN = {x : −1 ≤ x ≤ 1}.

The terminal constraint can be rewritten as

x3 = x0 + u0 + u1 + u2 + w0 + w1 + w2 ∈ [−1, 1],

∀w0 ∈ [−1, 1], ∀w1 ∈ [−1, 1], ∀w2 ∈ [−1, 1].

The control inputs are parametrized in the past disturbances following (2.27) as

u0 = v0,

u1 = v1 + M1,0w0,

u2 = v2 + M2,0w0 + M2,1w1.

The input constraints and the terminal constraint are then rewritten as

x0 + v0 + v1 + v2 + (1 + M1,0 + M2,0)w0 + (1 + M2,1)w1 + w2 ∈ [−1, 1], (2.31a)

u0 = v0 ∈ [−1, 1], (2.31b)

v1 + M1,0w0 ∈ [−1, 1], (2.31c)

v2 + M2,0w0 + M2,1w1 ∈ [−1, 1], (2.31d)

∀w0 ∈ [−1, 1], ∀w1 ∈ [−1, 1], ∀w2 ∈ [−1, 1]. (2.31e)

Consider (2.31a) and the one sided inequality given by

x0 + v0 + v1 + v2 + (1 + M1,0 + M2,0)w0 + (1 + M2,1)w1 + w2 ≤ 1, (2.32)

∀w0 ∈ [−1, 1], ∀w1 ∈ [−1, 1], ∀w2 ∈ [−1, 1].
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We replace (2.32) with the most stringent constraint given by

x0 + v0 + v1 + v2 + J⋆(M1,0,M2,0,M2,1) ≤ 1, (2.33)

where we have used

J⋆(M1,0,M2,0,M2,1) = max
w0,w1,w2

(1 + M1,0 + M2,0)w0 + (1 + M2,1)w1 + w2

s.t., w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]. (2.34)

For fixed M1,0,M2,0,M2,1, (2.34) is a linear program and can be replaced in (2.32) by its dual

x0 + v0 + v1 + v2 + d⋆(M1,0,M2,0,M2,1) ≤ 1,

where

d⋆(M1,0,M2,0,M2,1) = min
λu
i ,λ

l
i

λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2

s.t., 1 + M1,0 + M2,0 + λl
0 − λu

0 = 0,

1 + M2,1 + λl
1 − λu

1 = 0,

1 + λl
2 − λu

2 = 0,

λu
i ≥ 0, λl

i ≥ 0, i = 0, 1, 2,

where λu
i and λl

i are the dual variables corresponding to the upper and lower bounds of wi,
respectively. From strong duality [66, Chapter 5], [45, 68, 69, 70], we then impose the
following equivalent constraints to satisfy (2.33)-(2.34)

x0 + v0 + v1 + v2 + λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2 ≤ 1,

1 + M1,0 + M2,0 + λl
0 − λu

0 = 0,

1 + M2,1 + λl
1 − λu

1 = 0,

1 + λl
2 − λu

2 = 0,

λu
i ≥ 0, λl

i ≥ 0, i = 0, 1, 2.

(2.35)

Thus, (2.35) is a convex reformulation of (2.32) with finite number of constraints. Repeating
this same procedure for the other side of the inequality, we see (2.31a) is reformulated as

x0 + v0 + v1 + v2 + λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2 ≤ 1,

− x0 − v0 − v1 − v2 + µu
0 + µu

1 + µu
2 + µl

0 + µl
1 + µl

2 ≤ 1,

1 + M1,0 + M2,0 + λl
0 − λu

0 = 0,

1 + M2,1 + λl
1 − λu

1 = 0,

1 + λl
2 − λu

2 = 0,

− 1−M1,0 −M2,0 + µl
0 − µu

0 = 0,

− 1−M2,1 + µl
1 − µu

1 = 0,

− 1− µl
2 − µu

2 = 0,

λu
i , λ

l
i, µ

u
i , µ

l
i ≥ 0, i = 0, 1, 2,

(2.36)



CHAPTER 2. TECHNICAL BACKGROUND ON ROBUST MPC 25

and (2.31c) is reformulated as
v1 + νu

0 + νl
0 ≤ 1,

− v1 + κu
0 + κl

0 ≤ 1,

M1,0 + κl
1 − κu

1 = 0,

κu
0 , κ

l
0, ν

u
0 , ν

l
0 ≥ 0,

(2.37)

and (2.31d) is reformulated as

v2 + ρu0 + ρu1 + ρl0 + ρl1 ≤ 1,

− v2 + πu
0 + πu

1 + πl
0 + πl

1 ≤ 1,

M2,0 + ρl0 − ρu0 = 0,

M2,1 + ρl1 − ρu1 = 0,

−M2,0 + πl
0 − πu

0 = 0,

−M2,1 + πl
1 − πu

1 = 0,

ρui , ρ
l
i, π

u
i , π

l
i ≥ 0, i = 0, 1,

(2.38)

and (2.31b) remains unchanged. Solving (2.35)-(2.38) provides a solution to our problem.

Example 2.3 In order to show the reduction in conservatism with the policy parametriza-
tion (2.27) over (2.18) and (2.21) we again consider MPC solutions to the problem (2.3),
and compare the ROA of an MPC controller synthesized by solving (2.29) to the ROAs of
shrinking tube and rigid tube MPCs, shown in Fig. 2.3. Parameters Q,R,K are the same
as the ones in Example 2.1. The comparison is shown in Fig. 2.4. Fig. 2.4 demonstrates
that the MPC policy obtained with the affine disturbance feedback parametrization attains the
largest ROA, i.e., the lowest conservatism compared to both shrinking and rigid tube MPC.

As a matter of fact, the disturbance feedback policy class (2.27) subsumes the policy classes
(2.18) and (2.21), as shown in [55]. This explains its reduced conservatism over tube MPC
approaches in Section 2.7, as seen in Fig. 2.4. Therefore, we use the disturbance feedback
based robust MPC algorithm from Section 2.8 for robust adaptive MPC synthesis in Chap-
ter 5 and Chapter 6, and for robust MPC design in conjunction with disturbance distribution
support and environment constraint learning in Chapter 7 and Chapter 8, respectively.

2.9 (M2)/(P1): Linear Parameter Varying Systems,

Design with Affine State Feedback Policies

Consider the state decomposition
xt = x̄t + et
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Inside ■ : Disturbance Feedback Inside ■ : Shrinking Tube Inside ■ : Rigid Tube

Figure 2.4: Comparison of the ROAs of shrinking tube MPC, rigid tube MPC and an MPC
designed with affine disturbance parametrization (2.27).

from (2.17) for system (2.10), written as:

x̄t+1 + et+1 = (Ā + ∆A)(x̄t + et) + (B̄ + ∆B)ut + wt, (2.39)

where x̄t is the certainty equivalent state. Clearly, if one defined the nominal model as
(2.19a) or (2.22a), then we see from simple substitution that using the MPC policies from
Section 2.7 in (2.39), a decomposition of the system dynamics into nominal (i.e., certainty
equivalent) and error states’ dynamics, as done in (2.19) and (2.22) cannot be carried out. In
fact, it is not possible to cancel out the the product between the matrix uncertainty term ∆A

and the nominal state x̄t. Therefore, algorithms from Section 2.7 and Section 2.8 which rely
on a decoupled set of nominal and error state dynamics cannot be utilized. An alternative
set of algorithms are summarized next.

2.9.1 Ellipsoidal ROA Synthesis

Ellipsoidal ROA synthesis methods for system 2.10 are presented in works such as [71, 72, 73,
74]. These methods constrain the evolution of the system state inside an ellipsoidal robust
positive invariant set under a chosen affine control policy, for all possible realizations of the
uncertainty. The associated control gain in the MPC policy is computed typically by solving
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linear matrix inequalities (LMI) [44], which ensures convex controller synthesis. A detailed
summary of these algorithms can be found in [75, Section 5.2].

Policy Parametrization and Invariant Ellipsoid

Consider the following input policy parametrization:

u(xt) = Kxt + vt,

where the feedback matrix K and the auxiliary input vt are decision variables. In the
invariant ellipsoidal approach, the decision variables K and vt are chosen such that

xk|t ∈ E ⊆ X , ∀∆A ∈ PA, ∀∆B ∈ PB, ∀k ≥ t + 1, (2.40)

if xt ∈ E , and uk|t ∈ U for all k ≥ t. Equation 2.40 implies that the set E is thus an ellipsoidal
invariant set for the predicted states of system (2.10). Furthermore, thus restricting the
system state’s evolution to an invariant set allows for the possibility of solving the MPC
optimization problem over an infinite horizon, as opposed to a finite horizon of N in (2.7).
This ensures that E is an invariant set for the closed-loop states of the system as well. In
order to better elaborate the MPC design approach, we focus on a specific example of the
ellipsoidal ROA synthesis algorithm in [71]. This is presented next.

An Example Algorithm From [71]

The MPC proposed in [71] for system (2.10) considers W = ∅, vt = 0, and an additional
simplifying assumption on the matrix uncertainties given by:[

∆tr
A ∆tr

B

]
=

nab∑
i=1

λi

[
∆

(i)
A ∆

(i)
B

]
, with λi ≥ 0,

nab∑
i=1

λi = 1. (2.41)

The approach in [71] finds a solution to an infinite horizon robust optimal control problem
for MPC synthesis. This infinite horizon problem is still solved at every timestep t, as the
MPC policy improves in closed-loop due to the restriction of the search of input policies to
the class of affine state feedback. This MPC optimization problem at any timestep t can is:

min
K

max
∆A∈PA,∆B∈PB

∞∑
k=t

x⊤
k|tQsxk|t + x⊤

k|tK
⊤RKxk|t

s.t., xk+1|t = (A + BK)xk|t,

xk|t ∈ X , Kxk|t ∈ U ,
∀k = t, t + 1, . . . ,

(2.42)

with weight matrices Qs, R ≻ 0, and the state and input constraints in (2.42) considered as:

X = {x : ∥x∥2 ≤ xmax}, (2.43a)

U = {u : ∥u∥2 ≤ umax}, (2.43b)



CHAPTER 2. TECHNICAL BACKGROUND ON ROBUST MPC 28

where xmax and umax are known. Note that (2.42) minimizes a worst-case cost, as opposed
to the nominal cost in (2.7). It is shown in [71, Section 3.2] that the solution K to (2.42)
can be obtained as K = Y Q−1, with decision matrices Y ∈ Rm×n and Q ≻ 0 obtained as
the solutions to the problem:

min
γ,Y,Q≻0

γ

s.t.,


Q Q(Ā + ∆

(i)
A )⊤ + Y ⊤(B̄ + ∆

(i)
B )⊤ QQ

1/2
s Y ⊤R1/2

(Ā + ∆
(i)
A )Q + (B̄ + ∆

(i)
B )Y Q 0 0

Q
1/2
s 0 γIn 0

R1/2Y 0 0 γIm

 ⪰ 0,

(2.44a)[
Q ((Ā + ∆

(i)
A )Q + (B̄ + ∆

(i)
B )Y )⊤

(Ā + ∆
(i)
A )Q + (B̄ + ∆

(i)
B )Y x2

maxIn

]
⪰ 0, (2.44b)[

u2
maxIm Y
Y ⊤ Q

]
⪰ 0, (2.44c)[

1 x⊤
t|t

xt|t Q

]
⪰ 0, (2.44d)

∀i = 1, 2, . . . , nab.

Note that (2.44a) ensures the worst-case infinite horizon cost in (2.42) is bounded from
above by γ, (2.44b) ensures the satisfaction of the state constraints (2.43a), (2.44c) ensures
the satisfaction of the input constraints (2.43b), and (2.44d) ensures that the current state
must be inside the invariant ellipsoid, as required in (2.40). The MPC policy is given by:

uMPC
t (xt) = Y ⋆Q−1,⋆xt, (2.45)

where decision variables Y ⋆, Q⋆ are function of the current state xt = xt|t. Under policy
(2.45), the the invariant ellipsoid in (2.40) obtained as: [71, Eq. 31]

E(xt) = {z : z⊤γ⋆Q−1,⋆z ≤ γ⋆}. (2.46)

As (2.44) is solved at each timestep t, the invariant ellipsoid changes as a function of xt.
However each ellipsoid E(xt) is invariant for (2.10) if the MPC policy (2.45) is rolled out for
all future times without re-solving (2.44), as (2.44) provides a solution valid over an infinite
prediction horizon.

Although computationally efficient (number of decision variables is not a function of the
prediction horizon N , and typically scale polynomially with the dimension of the state-space
[75, Chapter 5]), these algorithms often result in conservative controller behavior arising
from the design limitation into the space of ellipses, e.g., in (2.43). Polytopic and homothetic
tube MPC methods with affine or piecewise affine state feedback policy parametrizations are
introduced in [15, 76, 16, 19] to address such conservatism inherent to ellipsoidal ROA based
methods. We elaborate these algorithms next.
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2.9.2 Polytopic Tube MPC

Although many forms of polytopic tube MPC algorithms exist in literature, we focus on the
ones in [75, Section 5.6], [16, 19]. These have a similar approach when compared to other
polytopic approaches such as the algorithms in [17, 18, 76]. We omit explicitly showing
the dimensions of a set of matrices and vectors in the following sections for the purpose of
notational simplicity. See [75, 19] for these details.

Policy Parametrization

An input policy parametrization for this class of algorithms used in [75, Section 5.6], [19] is
given by:

u(xt) = Kxt + Lvt + ct, with additional dynamics vt+1 =

nab∑
i=1

λi(Mivt + Siwt), (2.47)

with a stabilizing feedback gain K for system (2.10), where L,Mi, Si, ct and v0 are decision
variables and λis satisfy (2.41). Matrices L,Mi and Si for all i = {1, 2, . . . , nab} are chosen
offline to maximize the volume of the terminal set [75, Eq. 5.111]. The terminal set XN in
these algorithms is typically chosen as an ellipsoidal invariant set, which is constructed by
solving an LMI, based on methods similar to [74, 77]. The use of these additional degrees
of freedom in (2.47) via the choice of L,Mis and Sis is thus for the purpose of enlarging the
size of the ROA of the robust MPC [75, Section 5.6].

Designing Polytopic Reachable Sets

Polytopic and homothetic tube MPC methods make use of the following sets:

Xk|t = {x : V x ≤ αk|t}, k = t + 1, t + 2, . . . , t + N, (2.48)

with Xt|t = xt, where V is a matrix chosen offline, and vectors αk|t are the decision variables
in the online MPC synthesis problem. See [75, Chapter 5] for details on how to choose V
offline. Define the 1-step robust reachable set from Xk|t under the MPC policy (2.47) for all
possible matrices (A,B), and disturbances lying in a known support W as follows:

Rk+1|t(vk|t, ck|t) = {xk+1|t : ∃xk|t ∈ Xk|t,∃wk|t ∈W,∃∆A ∈ PA,∃∆B ∈ PB,

s.t., xk+1|t = (Ā + ∆A)xk|t + (B̄ + ∆B)(Kxk|t + Lvk|t + ck|t) + wk|t},

for all k = t, t+ 1, . . . , t+N − 1. The online decision variables vt|t, ck|t, and αk|t defining the
sets in (2.48) are then chosen such that

Xk+1|t ⊇ Rk+1|t(vk|t, ck|t),

∀k = t, t + 1, . . . , t + N − 1,
(2.49)
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thus constraining all possible evolutions of the predicted states within the design sets (2.48).
Constraints (2.49) are imposed by transforming them into the following constraints (obtained
using Farka’s lemma):

HiV = V f1(Ā, B̄,PA,PB,Mi, Si),

αk+1|t ≥ Hiαk|t + f2(w, V,PA,PB, ck|t),

Hi ≥ 0,

∀k ∈ {t + 1, . . . , t + N − 1},
∀i ∈ {1, 2, . . . , nab},

(2.50)

where the exact form of the functions f1 and f2 vary depending on the specific algorithm
used. See [19, Theorem 8], [75, Eq. 5.112] for details on these variations. Matrices Hi for all
i ∈ {1, 2, . . . , nab} have non negative entries, and these are decision variables chosen offline.
See [75, Section 5.6] for further details on these offline optimization problems.

Imposing the State and Input Constraints

The online decision variables vk|t, ck|t, αk|t are also constrained by the requirement of satis-
fying the state and input constraints in (2.7d). Expressing these state and input constraints
in (2.7d) alternatively as:

Cxt + Dut ≤ b, (2.51)

for matrices C,D, b of appropriate dimensions, constraints (2.51) are satisfied robustly along
the prediction horizon by imposing the feasibility of a set of constraints that can be summa-
rized by the following:

Hcαk|t + Dck|t ≤ b, (2.52a)

∀k = {t, t + 1, . . . , t + N − 1},

Hc ≥ 0, αt|t ≥ V

[
xt

vt|t

]
, (2.52b)

HcV =
[
C + DK DL

]
, (2.52c)

Hiαt+N |t + V f3(wt) ≤ αt+N |t, (2.52d)

∀i = {1, 2, . . . , nab},
Hcαt+N |t ≤ 1h, (2.52e)

where (2.52e) are the terminal constraints in the MPC problem, i.e., (2.7e), and f3(·) is linear
in wt. The non-negative entries of matrix Hc with h number of rows are decision variables
chosen offline. See [75, Section 5.6] for further details on the offline problem solved.

Remark 2.6 We have based (2.52) on [75, Section 5.6]. The corresponding equations in
[16, 19] are slightly different as they design matrix V in (2.48) to shape the cross sections of
the reachable sets for error state et = xt − x̄t.
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Polytopic Tube MPC Problem

The resulting polytopic tube MPC problem solved can be expressed as:

min
vt|t,αααt,ct

max
∆A∈PA,∆B∈PB

wt|t,wt+1|t,...,wt+N−1|t

L(xk|t|t+N
k=t , uk|t(xk|t)|t+N−1

k=t )

s.t., xk+1|t = (A + BK)xk|t + B(Lvk|t + ck|t), k = t, . . . , t + N − 1,

(2.50)− (2.52)
(2.53)

where αααt = {αt|t, . . . , αt+N |t}, ct = {ct|t, . . . , ct+N−1|t}, and the cost function L is obtained
via solving an LMI such that it is an upper bound on the worst-case infinite horizon cost.
See [75, Lemma 5.8] for additional details. Note that (2.53) minimizes a worst-case cost. A
nominal cost as used in (2.7) can also be minimized alternatively.

Although convex control synthesis is allowed by these algorithms, the number of con-
straints in the MPC problem from (2.50) and (2.52) increase noticeably with the horizon
length, as shown in [75, Table 5.2]. The number of constraints can be lowered with simpler
choices of V , and thus limiting the shape of the tube cross sections in (2.48). This however
induces additional conservatism in the design. Thus, managing the computational complex-
ity vs conservatism trade-off is a key challenge in the design of these classes of polytopic
tube MPC algorithms.

Example 2.4 (Polytopic Tube MPC vs Ellipsoidal ROA Synthesis) Throughout the
relevant discussion in this dissertation until Chapter 4, we will consider finding MPC solu-
tions to the robust infinite horizon optimal control problem given by

min
u0,u1(·),...

∑
t≥0

10 ∥x̄t∥22 + 2 ∥ut(x̄t)∥22

s.t., xt+1 = Axt + But(xt) + wt, with A = Ā + ∆A, B = B̄ + ∆B,
x̄t+1 = Āx̄t + B̄ut(x̄t),−8
−8
−4

 ≤ [ xt

ut(xt)

]
≤

8
8
4

 ,

∀wt ∈W, ∀∆A ∈ PA, ∀∆B ∈ PB,
t = 0, 1, 2, . . . ,

(2.54)

with disturbance set W = {w : ∥w∥∞ ≤ 0.1}, where

Ā =

[
1 0.15

0.1 1

]
, B̄ =

[
0.1
1.1

]
, A =

[
1 0.05
0 1

]
, B =

[
0

1.1

]
.

For solving (2.54), we consider the matrix uncertainty sets given by

PA : conv
([ 0 ±0.1
±0.1 0

])
, (4 matrices) PB : conv

([ 0
±0.1

]
,

[
±0.1

0

])
. (4 matrices)
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For ellipsoidal ROA synthesis method [71], the disturbance set W = ∅. The comparison of
E(xt) from (2.46) evaluated at3 xt = [5, 4]⊤ and the terminal set of [19] is shown in Fig. 2.5.
We see from Fig. 2.5 that the terminal set of [19] is about 2x in volume compared to the

Inside ■ : Ellipsoidal ROA Method of [71] Inside ■ : Tube MPC of [19]

-8 -6 -4 -2 0 2 4 6 8
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Figure 2.5: Comparison of the ellipsoidal ROA of [71] and the ROA of [19]. The ellipsoidal
terminal set is the ROA of [19] for this example, as pointed out in Remark 2.7.

ROA of [71], despite the presence of the additional additive disturbance considered in [19].

Remark 2.7 Note, the matrix V in (2.48) required for computing optimized tubes could not
be found by following [19, Remark 10], even under an upper bound of 100 on its number of
rows. See [19, Section 3], [75, Lemma 5.7] for a detailed explanation to this fact from the
viewpoint of spectral radius of the resulting dynamics. This yielded the full MPC strategy
in [19, Section 4.2], which solves an optimization problem similar to (2.53), impractical for
obtaining an online MPC solution to the above problem. Therefore, a larger ROA than the
terminal set could not be obtained for the considered example. This highlights the computa-
tional drawbacks of polytopic tube MPC methods, such as [16, 19].

3This is one of the largest ROAs found after sampling 100 states xt and computing (2.46).
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2.10 (M2)/(P2): Linear Parameter Varying Systems,

Design with Affine Disturbance Feedback

Policies

In this section we present an overview of robust MPC design for models of the form (M2) with
policy parametrization (P2). First, we provide a brief introduction to robust MPC design via
system level synthesis, which obtains an alternative parametrization of the system response
via the use of policy. Subsequently, we introduce two novel algorithms presented in Chapter 3
and Chapter 4 of this dissertation.

2.10.1 System Level Synthesis

An alternative set of approaches for robust MPC design for system 2.10 based on system
level synthesis (SLS) [78, 79] are presented in [26, 80, 81, 82]. Unlike typical MPC algorithms
which optimize over inputs and states as decision variables, this method obtains robust con-
straint satisfaction by optimizing over closed-loop system responses. Consider an alternative
representation of the matrix uncertainty in (2.10), given by:

∥∆A∥∞ ≤ ϵA, ∥∆B∥∞ ≤ ϵB.

The used policy parametrization in these methods is given by:

ut = Mtwt, (2.55)

with the associated definitions in (2.28). Briefly speaking, the aforementioned SLS based
robust MPC approaches such as [26, 80, 82] solve an MPC problem that can be summarized
roughly to be of the following form:

min
Φx

t ,Mt,τ,γ,β
L(Φx

t ,Mt, xt) (2.56a)

s.t.,
[
In − ZĀ −ZB̄

] [Φx
t

Mt

]
= In, (2.56b)

f1(Φ
x
t ,Mt,X ,U ,XN ,W, τ, γ, β) ≤ 0, (2.56c)

f2(∥f3(Φx
t ,Mt,X ,U ,XN , ϵA, ϵB, xt)∥) ≤ f4(γ, τ), (2.56d)

where Z is the block downshift operator. We can summarize (2.56) as follows: Cost function
(2.56a) is similar to the nominal cost minimized in (2.7a). Alternatively, worst-case and
expected costs may be chosen. Dynamics (2.56b) is the subspace equation, which indicates
that Φx

t is the predicted response of system (2.10) under the policy (2.55) and ignoring
the effect of model mismatch. Constraints (2.56c)-(2.56d) jointly ensure the satisfaction
of constraints X , U and XN robustly by the predicted states and inputs for all possible
realizations of the model mismatch and disturbances. These are equivalent to (2.7d) and



CHAPTER 2. TECHNICAL BACKGROUND ON ROBUST MPC 34

(2.7e). Functions fi(·) for i = 1, 2, . . . , 4 depend on the exact control design formulation,
which ensure that satisfying (2.56) results in a convex optimization problem for online control
synthesis. The parameters β, τ, γ are chosen offline before control design, typically using grid
search methods [27, 26].

Although online control synthesis is computationally efficient [80, 26], these algorithms
can turn out to be conservative, as shown in [33, 32]. This conservatism primarily stems
from obtaining sufficient conditions in (2.56c)-(2.56d) required for satisfying state and input
constraints (2.7d) and (2.7e). As suggested by the results in the recent papers [26, 80],
polytopic tube MPC algorithms described in Section 2.9.2, such as [15, 76, 19], etc., can
obtain larger ROAs compared to SLS based robust MPC methods. We therefore focus on
robust MPC algorithm design taking polytopic tube MPC methods as benchmarks, and do
not focus on designing SLS based algorithms in the subsequent chapters of this dissertation.

2.10.2 Novel Algorithms Proposed in Chapter 3-4

To better exploit the computational complexity vs conservatism trade-off, in this dissertation
we present two novel algorithms for robust MPC design for system (2.10). In both these
algorithms we use the affine disturbance feedback policy.

Net-Additive Uncertainty Representation and Shrinking Horizons

In the first algorithm, proposed in Chapter 3, we exploit the concept of net-additive uncer-
tainty representation by expressing system 2.10 as:

xt+1 = Āxt + B̄ut + w̃t,

with the net-additive uncertainty term given by

w̃t = (∆Axt + ∆But + wt).

We bound the quantity w̃t with its worst-case bound over the state and input spaces as
follows:

max
t≥0
∥w̃t∥ ≤ max

t≥0,∆A∈PA,∆B∈PB

(∥∆Axt∥+ ∥∆But∥+ ∥wt∥), (2.57a)

≤ max
t≥0,∆A∈PA,∆B∈PB

(∥∆A∥p∥xt∥+ ∥∆B∥p∥ut∥+ ∥wt∥), (2.57b)

= max
∆A∈PA,∆B∈PB

(∥∆A∥p∥x∥max + ∥∆B∥p∥u∥max + ∥w∥max), (2.57c)

= w̃max,

where in (2.57a) we have used the triangle inequality and in (2.57b) the consistency property
of induced norms. Values of ∥x∥max, ∥u∥max and ∥w∥max in (2.57c) can be obtained from
compact constraints (3.1e) and W. For example, as we use polytopic sets X ,U and W in
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Chapter 3, we obtain these maximum values by evaluating the norms at the vertices of the
corresponding polytopes.

The two key design features of the proposed algorithm in Chapter 3 and their benefits can
be summarized as follows: First, we use the conservative bound (2.57) along the prediction
horizon in formulating the robust MPC problem following Section 2.8. This allows for fast
MPC synthesis without the increase in the number of imposed constraints with N , as is the
case with methods described in Section 2.9.2. And second, for the design of the terminal set
XN , we do not over-approximate the system uncertainty. This lowers the conservatism of
the terminal policy over methods described in Section 2.9.2, which use an LMI synthesized
ellipsoidal terminal set. Our terminal set computation may be expensive, but it is computed
offline. Note that due the discrepancy in the uncertainty representations used along the
prediction horizon and in the terminal set, shrinking horizons are used to ensure the feasibility
of the MPC problem. See Chapter 3 for details. Due to the lack of such a shrinking horizon
strategy, SLS based methods such as [26] lose recursive feasibility upon using a similar
terminal set. This is alleviated with the use of shrinking horizons in the most recent SLS
based work [80, 82].

Optimization-Based Constraint Tightening

Our second algorithm is presented in Chapter 4. This algorithm circumvents the conservative
worst-case bounding of a net additive uncertainty term w̃t and uses constraint tightening
strategy which is a function of predicted nominal states and inputs in the MPC optimization
problem, i.e.,

x̄k|t ∈ X ⊖ E tightk|t (x̄i|t|ki=t, ui|t(x̄i|t)|k−1
i=t ,∆,W), k = t + 1, t + 2, . . . , t + N, (2.58)

where ∆ denotes a contribution to the constraint tightening from the uncertainty in system
matrices. The two key design benefits are: First, tightening strategy (2.58) lowers conser-
vatism over using the worst-case bound from (2.57) uniformly across the state-space, as it
depends on optimization variables in the MPC problem, i.e., (x̄k|t, uk|t(x̄k|t)). See Chapter 4
for details of this novel constraint tightening formulation. And second, the online control
synthesis problem is computationally efficient over methods in Section 2.9.2, as we show in
Table 4.2. Computing the bounds ∆ required in (2.58) may be computationally expensive,
but these are computed offline before online control synthesis.

Both of the algorithms in Chapter 3-4 solve convex optimization problems for online
controller synthesis. The details of terminal set selection to address challenge (C3) is in Sec-
tion 3.5. With detailed numerical simulations, we demonstrate in Chapter 3 and Chapter 4
that our proposed algorithms can obtain an improved computational complexity vs conser-
vatism trade-off, over methods elaborated in Section 2.9.2 and Section 2.10.1. The presented
numerical comparisons are with [15, 19, 27]. We use the two novel algorithms proposed in
Chapter 3-4 for robust adaptive MPC synthesis when there is uncertainty present in the
system dynamics matrices A and B. We present an example of the above in Chapter 6.
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2.11 (M3)/(P1) or (P2): Linear Time-Invariant

Systems with State Dependent Additive

Uncertainty

We jointly discuss the cases of using (P1) or (P2) in this scenario. The reformulation of
problem (2.7) in this scenario is given by:

min
ut|t,ut+1|t(·),...,ut+N−1|t(·)

∑t+N−1
k=t ℓ(x̄k|t, uk|t(x̄k|t)) + Q(x̄t+N |t)

s.t., xk+1|t = Axk|t + Buk|t(xk|t) + d(xk|t),
x̄k+1|t = Ax̄k|t + Buk|t(x̄k|t) + d̄(x̄k|t),
xk+1|t ∈ X ,
uk|t(xk|t) ∈ U ,
∀d(xk|t) ∈ D(xk|t),
∀k = {t, t + 1, . . . t + N − 1},
xt+N |t ∈ XN ,
xt|t = x̄t|t = xt,

(2.59)

where D(xt) is a state dependent compact set where the uncertainty d(xt) is guaranteed
to lie, and d̄(x̄t) denotes the certainty equivalent (nominal) estimate of uncertainty at any
point x̄t along the nominal trajectory. Given the sets D(xk|t) for all k ∈ {t, t+ 1, . . . , t+N},
standard robust MPC approaches such as the ones in Section 2.7 and Section 2.8 can be
used for control synthesis. Data-driven methods such as GP regression have been used in
literature to learn and refine these sets D(xk|t) [7, 9, 8]. However, they lack closed-loop
guarantees of robust constraint satisfaction.

In Chapter 5 of this dissertation we present an adaptive MPC algorithm which utilizes
Lipschitz nature of the function d(·), and then designs a robust MPC based on Section 2.8.
Our proposed algorithm guarantees recursive feasibility of the MPC problem, while lowering
its conservatism by successively refining the domain of the uncertainty.

Remark 2.8 A Python based repository which implements a basic set of robust MPC algo-
rithms, including the ones presented next in Chapter 3 and Chapter 4 is now publicly available
at: https://github.com/monimoyb/RMPCPy. The results from the examples in this chapter
can be obtained by running the scripts in this repository.

https://github.com/monimoyb/RMPCPy
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Chapter 3

A Simple Robust MPC for Linear
Parameter Varying Systems

This chapter is based on the published work [33]. In this chapter we propose a simple
algorithm for robust MPC design for linear parameter varying (LPV) systems subject to
a bounded additive disturbance. The algorithm uses a worst-case uncertainty bound of
the system for constraint tightening along the prediction horizon, which is computed by
lumping up the contribution of matrix uncertainties and the additive disturbances into one
“net-additive term”. The worst-case value of this quantity is computed over the sets of
feasible states and inputs, as shown in (2.57).

3.1 Summary of Contributions

We show that the naive net-additive uncertainty approach can lead to an efficient MPC
design, if the terminal constraints are appropriately chosen and an adaptive horizon strategy
is adopted. Our method can also be used to obtain a single roll-out policy for robust
constraint satisfaction, without re-solving the MPC problem. The key contributions of this
chapter are:

• We split the constraint tightening into two cases based on the horizon length. For
a horizon length of one, the robust MPC problem is solved exactly without over-
approximating the uncertainty in the system. For larger horizons, we lump the model
uncertainty into a net-additive component and compute constraint tightenings along
the prediction horizon based on its worst-case bound.

• We solve a set of tractable convex optimization problems online using an adaptive hori-
zon approach for robust MPC synthesis. With an appropriately constructed terminal
set and a terminal cost we prove recursive feasibility of the controller synthesis problem
in closed-loop and input to state stability of the origin.
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3.2 Problem Formulation

We consider the linear systems of the form (2.10). We are interested in synthesizing a robust
MPC for (2.10), by repeatedly solving the following optimal control problem:

min
Ut(·)

t+N−1∑
k=t

ℓ
(
x̄k|t, uk|t

(
x̄k|t
))

+ Q(x̄t+N |t) (3.1a)

s.t., x̄k+1|t = Āx̄k|t + B̄uk|t(x̄k|t), (3.1b)

xk+1|t = Axk|t + Buk|t(xk|t) + wk|t, (3.1c)

with A = Ā + ∆A, B = B̄ + ∆B, (3.1d)

Hxxk|t ≤ hx, Huuk|t(xk|t) ≤ hu, (3.1e)

xt+N |t ∈ XN , (3.1f)

∀wk|t ∈W, ∀∆A ∈ PA, ∀∆B ∈ PB, (3.1g)

∀k ∈ {t, t + 1, . . . , (t + N − 1)},
xt|t = x̄t|t = xt,

with Ut(·) = {ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}, and applying the optimal MPC policy

uMPC
t (xt) = u⋆

t|t, (3.2)

to system (2.10) in closed-loop, where xk|t is the predicted state at timestep k for any
possible uncertainty realization, obtained by applying the set of predicted input policies
{ut|t, ut+1|t(·), . . . , uk−1|t(·)} to system (2.10), and {x̄k|t, uk|t(x̄k|t)} denote the nominal state
and corresponding input respectively. The constraints (3.1e)-(3.1f) are satisfied for all un-
certainty realizations in (3.1g), where Hx ∈ Rs×n, hx ∈ Rs, Hu ∈ Ro×m and hu ∈ Ro

parametrize compact sets. Finally, the stage cost ℓ(x, u) = x⊤Px + u⊤Ru, and the ter-
minal cost Q(x) = x⊤PNx.

3.2.1 Control Policy Parametrization

Recall the quantity w̃t and its bounding from (2.57). For all predicted steps k ∈ {t, t +
1, . . . , t+N−1} over the MPC horizon, the control policy is chosen as per (P2) in Chapter 2,
i.e.,

uk|t(xk|t) =
k−1∑
l=t

Mk,l|tw̃l|t + ūk|t, (3.3)

where Mk|t are the feedback gains at timestep t and ūk|t = uk|t(x̄k|t) are the nominal inputs.

Then the sequence of predicted inputs can be written as ut = M
(N)
t w̃t + ū

(N)
t , where M

(N)
t ∈

RmN×nN and ū
(N)
t ∈ RmN are shown in (2.28), and

ut = [u⊤
t|t, u

⊤
t+1|t(·), . . . , u⊤

t+N−1|t(·)]⊤,

w̃t =
[
w̃⊤

t|t w̃⊤
t+1|t . . . w̃⊤

t+N−1|t
]⊤

,
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with ∥w̃t∥ ≤ w̃max for all t ≥ 0, where w̃max is obtained from (2.57).

Approach Insight

We design a simple and computationally efficient shrinking tube MPC leveraging worst-
case bounds of this net-additive uncertainty only along the prediction horizon, and an exact
system uncertainty representation for the construction of the terminal set. Notice that robust
MPC strategies such as [55, 52] using the net-additive uncertainty bounds both along the
prediction horizon and for the computation of the terminal set, can be extremely conservative
as pointed out in [83, 84]. Therefore, numerous alternative strategies such as polytopic,
homothetic and elastic tube MPC [15, 16, 76] have been introduced to lower this conservatism
by circumventing the net-additive uncertainty bounds, as we discussed in Chapter 2. This
however increases the online computation times of these algorithms [75, 26], as we pointed
out in Section 2.9.2. In Section 3.4, we show with numerical simulations that our approach
balances this trade-off between conservatism and computational complexity. In the example
under study, we obtain about 15x online computation speedup over the polytopic tube MPC
method of [15], while stabilizing about 98% of its region of attraction. Additionally, our
region of attraction is about 28% larger than that of the state-of-the-art polytopic tube
MPC in [19], with about a 50% increase in online computation speeds.

3.2.2 Terminal Set Construction

We present the construction of the terminal set XN in this section to address challenge (C3)
mentioned in Chapter 2. Consider a linear state feedback policy for constructing XN

κN(x) = Kx, (3.4)

where K ∈ Rm×n is the feedback gain. Recall the sets PA and PB from (2.13). We define

PA∆
= {Am : Am = Ā + ∆A, ∀∆A ∈ PA},

PB∆
= {Bm : Bm = B̄ + ∆B, ∀∆B ∈ PB}.

Under policy (3.4), the closed-loop system dynamics matrix considered for constructing the
terminal set satisfies

Acl = A + BK ∈ PA∆
⊕KPB∆

.

Assumption 3.1 Acl
m = (Am + BmK) is stable for all Am ∈ PA∆

and Bm ∈ PB∆
.

Using Assumption 3.1, the terminal set XN can then be computed as the maximal robust
positive invariant set for

xt+1 = (Am + BmK)xt + wt,
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for all Am ∈ PA∆
, Bm ∈ PB∆

, and for all wt ∈W. That is for all x ∈ XN we have that

Hxx ≤ hx, HuKx ≤ hu and (Am + BmK)x + w ∈ XN ,

∀Am ∈ PA∆
, ∀Bm ∈ PB∆

, ∀w ∈W. (3.5)

Fixed point iteration algorithms to numerically compute (3.5) can be found in [6, 75]. Note
that these sets of algorithms typically have no convergence guarantees [85].

3.2.3 MPC Problem with Adaptive Horizon

We now present the MPC reformulation of (3.1) which guarantees recursive feasibility and
Input to State Stability. Note, the terminal set XN is robustly invariant to all uncertainty
of the form: ∀∆A ∈ PA, ∀∆B ∈ PB, ∀w ∈ W, ∀t ≥ 0, when the state feedback policy
κN(x) = Kx is used in closed-loop with system (2.10). However, along the prediction
horizon we synthesize bound (2.57) using more conservative tightenings from Hölder’s and
triangle inequalities, and the induced norm consistency property. Thus the uncertainty
bounds along the horizon over-approximate the effect of the true uncertainty used to compute
the terminal set. This implies that the classical shifting argument [6, Chapter 12] for recursive
MPC feasibility cannot be used in this case. To resolve this issue, we solve a set of N
convex optimization problems at any t for control synthesis, with the prediction horizon
Nt ∈ {1, 2, . . . , N}. If one of these N problems is feasible at timestep 0, we guarantee
feasibility of at least one of them for all t ≥ 0.

We first use policy (3.3) to reformulate the robust state constraints in (3.1) along and at
the end of the prediction horizon. Let the terminal set XN in (3.5) be defined by XN = {x :
Hx

Nx ≤ hx
N}, with Hx

N ∈ Rr×n, hx
N ∈ Rr. For a horizon length of Nt, we denote matrices Fx =

diag(INt−1 ⊗ Hx, Hx
N) ∈ R(s(Nt−1)+r)×nNt and fx = [(hx)⊤, (hx)⊤, . . . , (hx

N)⊤]⊤ ∈ Rs(Nt−1)+r.
Also denote the set W̃ = {w̃ ∈ RnNt : ∥w̃t∥ ≤ w̃max}. Then we consider the following two
cases as1:

Case 1: Nt = 1:

max
wt∈W
∆A∈PA
∆B∈PB

Hx
N(Ā + ∆A)xt + (B̄ + ∆B)ū

(1)
t + wt) ≤ hx

N , (3.6a)

Case 2: Nt ≥ 2:

max
w̃t∈W̃

Fx
(
Āxt + Cū

(Nt)
t + (CM

(Nt)
t + G)w̃t

)
≤ fx, (3.6b)

where matrices Ā,C and G are defined in the Appendix.

Remark 3.1 In (3.6a) we exactly propagate the system uncertainty for robustification. This
ensures the feasibility of (3.6a) inside XN , which is a robust positive invariant set computed

1Note that the dimensions of Fx, fx, Ā, C, G and w̃t vary depending on Nt. We omit showing this
dependence explicitly for brevity.
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from (3.5) also using the exact uncertainty representation. As such uncertainty propagation
is computationally intense over multi step predictions, in (3.6b) we over-approximate system
uncertainty using bounds (2.57).

Now, denote the matrices Hu = INt⊗Hu ∈ RoNt×mNt , and hu = [(hu)⊤, (hu)⊤, . . . , (hu)⊤]⊤ ∈
RoNt . Once the state constraints are formulated, the input constraints in (3.1) along the
prediction horizon can be written as:

max
w̃t∈W̃

Hu
(
M

(Nt)
t w̃t + ū

(Nt)
t

)
≤ hu, (3.7)

for Nt ∈ {1, 2, . . . , N}. Using (3.6)-(3.7), we solve at any t:

V MPC
t→t+Nt

(xt, Nt) :=

min
M

(Nt)
t ,ū

(Nt)
t

[
(x̄

(Nt)
t )⊤ (ū

(Nt)
t )⊤

]
Q̄(Nt)

[
x̄
(Nt)
t

ū
(Nt)
t

]
s.t., x̄

(Nt)
t = Āxt + Cū

(Nt)
t ,

(3.6a), (3.7) if Nt = 1, else (3.6b), (3.7),

∀k = {t, t + 1, . . . , t + Nt − 1},
x̄t|t = xt,

(3.8)

for Nt ∈ {1, 2, . . . , N}, where Q̄(Nt) = diag(INt ⊗ P, PN , INt ⊗R). We reformulate (3.8) as a
convex program with standard duality arguments. After solving (3.8) for Nt ∈ {1, 2, . . . , N},
we set

N⋆
t = arg min

N̄∈{1,2,...,N}
V MPC
t→t+Nt

(xt, N̄). (3.9)

Afterwards, we pick the solution associated with N⋆
t , and apply the corresponding optimal

input

u⋆
t|t(xt) = u⋆

t (xt) = ū⋆
t|t, (3.10)

to system (2.10), with V MPC
t→t+N⋆

t
(xt, N

⋆
t ) = J⋆(xt). We then resolve (3.8) at (t+ 1) for Nt+1 ∈

{1, 2, . . . , N}.

3.3 Feasibility and Stability

In this section we prove the feasibility and stability properties of the proposed robust MPC.

3.3.1 Feasibility

Theorem 3.1 Consider the closed-loop system (2.10) and (3.10). Let problem (3.8) be
feasible at timestep t = 0 for some horizon length Nt ∈ {1, 2, . . . , N}. Then problem (3.8)
is feasible at all timesteps t ≥ 1 for some horizon length Nt ∈ {1, 2, . . . , N}, possibly time-
varying.
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Proof Assume that at timestep t problem (3.8) is feasible, and let N⋆
t be the optimal horizon.

We then consider the following two cases:
Case 1: (N⋆

t = 1) Consider the robust state constraints (3.6a):

max
wt∈W

∆A∈PA,∆B∈PB

Hx
N((Ā + ∆A)xt + (B̄ + ∆B)ū

(1)
t + wt) ≤ hx

N . (3.11)

We find hx
N where the max is attained by using duality. Let us denote the corresponding

optimal input policy by

u⋆
t|t(xt) = ū⋆

t|t. (3.12)

Now, let policy (3.12) be applied to (2.10) in closed-loop, so that the system reaches the
terminal set XN . Consider solving (3.11) at this step with a horizon length of Nt+1 = 1. As
(3.6b) uses the same representation of the uncertainty as done in Section 3.2.2, a candidate
policy at timestep (t + 1) is

ut+1|t+1(xt+1) = Kxt+1, (3.13)

which is a feasible solution to (3.8) under constraint (3.11).
Case 2: (N⋆

t ≥ 2) Let us denote the sequence of optimal input policies from timestep t
as {u⋆

t|t, u
⋆
t+1|t(·), · · · , u⋆

t+N⋆
t −1|t(·)}. Consider a candidate policy sequence at the next time

instant:

Ut+1(·) = {u⋆
t+1|t(·), . . . , u⋆

t+N⋆
t −1|t(·)}. (3.14)

Now using standard MPC shifting arguments [52, 15, 55], sequence (3.14) is a feasible policy
sequence at timestep (t + 1) for problem (3.8), with horizon length Nt+1 = N⋆

t − 1.

3.3.2 Stability

To prove the stability of the origin in closed-loop, we first introduce the following set of
assumptions and definitions.

Assumption 3.2 Denote the set of state and input constraints in (3.1e) as X and U , re-
spectively. We assume that the convex, compact sets X ,U and W contain the origin in their
interior.

Recall the notion of N -Step Robust Controllable Set to any set S from Definition 2.8. An
algorithm to compute an inner approximation of such a set is presented in [86, 32], which
we call the approximate N -Step Robust Controllable Set.

Definition 3.1 (ROA of the Robust MPC) The ROA for the proposed robust MPC, de-
noted by R, is defined as the union of the Nt-Step Robust Controllable Sets to the terminal
set XN under the policy (3.10), for Nt ∈ {1, 2, . . . , N}.
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An inner approximation to the ROA, which we call the approximate ROA, can be obtained
using the approximate Nt-Step Robust Controllable Sets for Nt ∈ {1, 2, . . . , N}.

Assumption 3.3 The matrices P and R in ℓ(x, u) = x⊤Px + u⊤Ru are positive definite,
i.e., P ≻ 0 and R ≻ 0.

Assumption 3.4 The matrix PN which defines the terminal cost in (3.8) is chosen as a
matrix PN ≻ 0 satisfying

x⊤
(
− PN + (P + K⊤RK) + Ā⊤

clPN Ācl

)
x ≤ 0 (3.15)

for all x ∈ XN , where Ācl = Ā + B̄K.

Definition 3.2 (ISS Lyapunov Function [87]) Consider the closed-loop system given by

xt+1 = Axt + Bu⋆
t|t(xt) + wt, ∀t ≥ 0. (3.16)

Then the origin is called Input to State Stable (ISS), with a ROAR ⊂ Rn, if there exists class-
K∞ functions α1(·), α2(·), α3(·), a class-K function σ(·) and a function V (·) : Rn 7→ R≥0

continuous at the origin, such that,

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ R,
V (xt+1)− V (xt) ≤ −α3(∥xt∥) + σ(∥w̃i∥L∞),

where w̃i = ∆tr
Axi + ∆tr

Bui + wi and ∥w̃i∥L∞ = supi∈{0,...,t} ∥w̃i∥. Function V (·) is called an
ISS Lyapunov function for (3.16).

Theorem 3.2 Let Assumptions 3.1-3.4 hold and let x0 ∈ R. Then, the optimal cost of
(3.8) with (3.9), i.e., J⋆(xt) is an ISS Lyapunov function for the closed-loop system (3.16).
This guarantees Input to State Stability of the origin of (3.16).

Proof From Assumption 3.3 we know that, α1(∥xt∥2) ≤ ℓ(x, 0) ≤ J⋆(xt) for some α1(·) ∈
K∞ and for all x ∈ R. Moreover, since (3.8) can be reformulated into a parametric QP
for each horizon length Nt, constraint set (3.1e) is compact, and J⋆(0) = 0, from [55,
Theorem 23], we know J⋆(xt) ≤ α2(∥xt∥2) for some α2(·) ∈ K∞ and for all xt ∈ R. We
complete the proof by considering the same two cases :

Case 1: (N⋆
t = 1) Consider the case of N⋆

t = 1. The optimal nominal cost at timestep t is
written as

J⋆(xt) = ℓ(x̄⋆
t|t, ū

⋆
t|t) + (x̄⋆

t+1|t)
⊤PN x̄

⋆
t+1|t

≥ ℓ(x̄⋆
t|t, ū

⋆
t|t) + ℓ(x̄⋆

t+1|t, Kx̄⋆
t+1|t) + ((Ā + B̄K)x̄⋆

t+1|t)
⊤PN((Ā + B̄K)x̄⋆

t+1|t) (3.17a)

= ℓ(x̄⋆
t|t, ū

⋆
t|t) + q(x̄⋆

t+1|t), (3.17b)
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where in (3.17a) we have used Assumption 3.4, and at timestep (t + 1) the feasible input
ūt+1|t = Kx̄⋆

t+1|t as discussed in (3.13). As (3.13) is a feasible policy at timestep (t + 1)
with horizon length Nt+1 = 1, the optimal cost of the MPC problem for any horizon length
N⋆

t+1 = {1, 2, . . . , N} can be bounded from above as:

J⋆(xt+1) ≤ ℓ(x̄t+1|t+1, ūt+1|t(x̄t+1|t+1)) + Q(x̄t+2|t+1) = q(x̄t+1|t+1), (3.18)

with x̄t+1|t+1 = x̄⋆
t+1|t + w̃t, with w̃t = ∆tr

Axt + ∆tr
Bū

⋆
t|t + wt. Combining (3.17b)–(3.18) we

obtain:

J⋆(xt+1)− J⋆(xt) ≤ q(x̄⋆
t+1|t + w̃t)− ℓ(x̄⋆

t|t, ū
⋆
t|t)− q(x̄⋆

t+1|t) ≤ −α3(∥xt∥2) + Lq∥w̃i∥L∞ ,
(3.19)

where q(·) is Lq-Lipschitz as it is a sum of quadratics in X .
Case 2: (N⋆

t ≥ 2) Now consider

J⋆(xt) =

t+N⋆
t −1∑

k=t

ℓ(x̄⋆
k|t, ū

⋆
k|t) + Q(x̄⋆

t+N⋆
t |t) = ℓ(x̄⋆

t|t, ū
⋆
t|t) + q(x̄⋆

t+1|t), (3.20)

where {x̄⋆
t|t, x̄

⋆
t+1|t, . . . , x̄

⋆
t+N⋆

t |t
} is the optimal predicted nominal trajectory under the optimal

nominal input sequence {ū⋆
t|t, ū

⋆
t+1|t, . . . , ū

⋆
t+N⋆

t −1|t}, where ū⋆
k|t = u⋆

k|t(x̄
⋆
k|t) for all k ∈ {t, t +

1, . . . , t + (N⋆
t − 1)}. The quantity q(x̄⋆

t+1|t) provides the total nominal cost from timestep

(t + 1) to (t + N⋆
t ) under the following optimal control policy

{u⋆
t+1|t(·), . . . , u⋆

t+N∗
t −1|t(·)}. (3.21)

We know that (3.14) is a feasible policy sequence for (3.8) at timestep (t + 1) with horizon
length Nt+1 = (N⋆

t − 1). After x̄t+1 = xt+1 is obtained with closed-loop system evolution
(3.16), with this feasible policy sequence (3.21), the optimal nominal cost of (3.8) at timestep
(t + 1) for any N⋆

t+1 ∈ {1, 2, . . . , N} can be bounded as:

J⋆(xt+1) ≤
t+N⋆

t −1∑
k=t+1

ℓ(x̄k|t+1, u
⋆
k|t(x̄k|t+1)) + Q(x̄t+N⋆

t |t+1) = q(x̄t+1|t+1), (3.22)

where we have used the feasible nominal trajectory obtained with the policy (3.21), given as

x̄k|t+1 = Āk−t−1(Āxt + B̄u⋆
t|t(xt) + w̃t) +

k−1∑
i=t+1

Āk−1−iB̄u⋆
i|t(x̄k|t+1),

for k = {t + 2, t + 3, . . . , t + N⋆
t }. Moreover, we know that

x̄t+1|t+1 = x̄⋆
t+1|t + w̃t, (3.23)
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with w̃t = ∆tr
Axt + ∆tr

Bū
⋆
t|t + wt. Combining (3.20)–(3.23):

J⋆(xt+1)− J⋆(xt) = q(x̄⋆
t+1|t + w̃t)− ℓ(x̄⋆

t|t, ū
⋆
t|t)− q(x̄⋆

t+1|t)

≤ −ℓ(x̄⋆
t|t, ū

⋆
t|t) + Lq∥w̃t∥ ≤ −ℓ(x̄⋆

t|t, 0) + Lq∥w̃t∥
≤ −α3(∥xt∥2) + Lq∥w̃i∥L∞ .

(3.24)

Combining (3.19) and (3.24), the origin of (3.16) is ISS according to Definition 3.2.

3.4 Numerical Simulations

We choose N = 5 and compute approximate solutions to the problem (2.54). The feedback
gain K satisfying Assumption 3.1 is chosen as K = −[0.4866, 0.4374]. The source code is
available at https://github.com /monimoyb/RMPC SimpleTube.

3.4.1 Comparison with [15]

The tube cross section (Z) is chosen as the minimal robust positive invariant set for system
(2.10) under a feedback u = −[0.7701, 0.7936]x, and the terminal set (Xf ) is chosen as XN

in (3.5). See [15] for details on these quantities. We then choose a set of Ninit = 100 initial
states xS, created by a 10 × 10 uniformly spaced grid of the set of state constraints. From
each of these initial state samples we check the feasibility of the tube MPC problem in [15,
Section 5]. The code to solve the tube MPC is used from [88]. The convex hull of the
feasible initial states (largest out of horizons N ≤ 5) inner approximates the ROA of the
tube MPC. This is compared to the approximate ROA of our proposed robust MPC. The
comparison is shown in Fig. 3.1. The approximate ROA from our approach is about 1.05x
larger in volume, but containing 98% of that of the tube MPC2. However, for any N ≤ 5,
the tube MPC needs higher computation times than for all Nt ∈ {1, 2, . . . , N} combined in
our approach. This is shown in Table 3.1.

Table 3.1: Comparison of avg. online computation times [sec].

Horizon Proposed Robust MPC Tube MPC in [15]
Nt = 1 0.0026 0.0062
Nt = 2 0.0023 0.0753
Nt = 3 0.0038 0.1612
Nt = 4 0.0056 0.2556
Nt = 5 0.0078 0.3384

2Note, the tube MPC in [15, Section 5] has no recursive feasibility guarantees.

https://github.com/monimoyb/RMPC_SimpleTube
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Inside ■: Proposed Robust MPC Inside ■: Tube MPC in [15]

Figure 3.1: Comparison of the approximate ROA of the proposed robust MPC with N = 5
and the approximate ROA of the tube MPC in [15, Section 5].

3.4.2 Comparison with [19]

Recall (2.54) and Remark 2.7. We show the comparison of the approximate ROA of our
proposed robust MPC and the ellipsoidal ROA of [19] in Fig. 3.2. The ROA of our proposed
approach is is about 28% larger than the corresponding ROA of [19]. The computation
times are compared in Table 3.2. Due to Remark 2.7, the associated online times of [19]
are independent of the horizon, as it only solves an LMI for obtaining the ellipsoidal ROA.
The offline time of our proposed algorithm is the time taken to compute the terminal set.
On the other hand, the large offline computation time in [19] is due to a logarithmic search
required for optimizing a parameter (denoted by α in [19]). We can conclude from Fig. 3.2
and Table 3.2 that our proposed algorithm in this chapter obtains a better computation
complexity vs conservatism trade-off over the tube MPC in [19], considering both online and
offline computation times.

3.4.3 Roll-Out Alternative and Comparison with [84]

A computationally cheaper alternative can be obtained as follows: Once an optimization
problem in (3.8) at timestep t = 0 is feasible for some horizon length N0 = N̄0 ∈ {1, 2, . . . , N},
the corresponding optimal policy sequence: {u⋆

0|0, u
⋆
1|0(·), . . . , u⋆

N̄0−1|0(·)} can be used to ob-
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Inside ■ : Proposed Robust MPC Inside ■ : Tube MPC of [19]

Figure 3.2: Comparison of the approx. ROA of the proposed MPC with N = 5 and the
ROA of [19].

Table 3.2: Comparison of average computation times [sec].

Horizon
Proposed Robust MPC Tube MPC in [19]
online offline online offline

Nt = 1 0.0026 7.12 0.03 53.08
Nt = 2 0.0023 7.12 0.03 53.08
Nt = 3 0.0038 7.12 0.03 53.08
Nt = 4 0.0056 7.12 0.03 53.08
Nt = 5 0.0078 7.12 0.03 53.08

tain a safe open-loop policy for all timesteps as:

Πsafe
ol (xt) =

{
u⋆
t|0(xt), if t ≤ (N̄0 − 1),

Kxt, otherwise.
(3.25)

Policy (3.25) maintains the robust satisfaction of (3.1e) for all timesteps, without re-solving
(3.8). From each of the previous 100 initial state samples, we now check the feasibility of the
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constrained LQR synthesis problem in [84, Section 2.3]. We pick the FIR length (same as
control horizon length) as L = 15, with τ = 0.99 and τ∞ = 0.2. See [84, Problem 2.8] for de-
tails on these parameters. The comparison of the approximate N̄0-Step Robust Controllable
Sets and the approximate region of attraction of the algorithm of [84, Section 2.3] is shown
in Fig. 3.3. The volumes of the approximate N̄0-Step Robust Controllable Sets are bigger
than the approximate ROA of the controller in [84, Section 2.3] for all N̄0 ≤ 5, showing that
the roll-out policy (3.25) yields up to approximately 12x lower conservatism.

■ Approx. N̄0-Step Robust Controllable Set ■ Approx. ROA of Controller in [84]

(a) N̄0 = 2, 3, 4 (comparable sets) (b) N̄0 = 5

Figure 3.3: A safe open-loop policy (3.25) is guaranteed to exist at all times with initial
states in the yellow regions.

3.5 Chapter Summary

We proposed a computationally efficient approach to design a robust MPC for constrained
uncertain linear parameter varying systems. The uncertainty considered included both mis-
match in the system dynamics matrices, and an additive disturbance. The designed MPC is
recursively feasible and the origin of the closed-loop system is Input to State stable. With
detailed numerical simulations and comparisons with [15, 19, 27], we demonstrated that the
proposed approach can be a simple and viable alternative to balance the trade-off between
computational complexity and conservatism in robust MPC design.
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Appendix

As shown in the appendix of [55], matrices Ā, C and G for a horizon N̄ are:

G = InN̄ +
N̄−1∑
k=1

Lk
N̄ ⊗ Āk,

Ā = diag(Ā, Ā2, . . . , ĀN̄−1),

C = G · (IN̄ ⊗ B̄),

with L being the lower shift matrix, where the operation A ⊗ B denotes the Kronecker
product of two matrices A and B.
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Chapter 4

Robust MPC with
Optimization-Based Constraint
Tightening

This chapter is based on the published work [89]. Instead of using the worst-case constraint
tightening tubes around any predicted nominal trajectory as done in Chapter 3, in this
chapter we propose an optimization-based constraint tightening strategy which is a function
of decision variables in the control synthesis problem. This lowers the conservatism in the
proposed control design approach, while keeping it computationally viable for online control
synthesis.

4.1 Summary of Contributions

The key contributions of this chapter are summarized as:

• We propose a novel constraint tightening strategy which is decoupled into two phases.
In the first phase, we bound the effect of model uncertainty on any predicted nominal
(i.e., uncertainty free) trajectory. These bounds are computed offline. This phase is
motivated by [27, 26]. In the second phase, the MPC is designed utilizing the above
bounds, so that the constraint tightenings are functions of decision variables in the
control synthesis problem. This second phase is motivated by tube MPC works such
as [15, 58, 76, 18, 19].

• We solve a tractable convex optimization problem online using a shrinking horizon
approach for the MPC. With an appropriately constructed terminal set and a terminal
cost, we prove robust satisfaction of the imposed constraints by the closed-loop system,
and Input to State stability of the origin.
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4.2 Robust MPC Design

We consider the linear systems of the form (2.10). The major drawback of the robust MPC
approach presented in the previous chapter is the bound (2.57). As pointed out in [80],
this bound can be rather conservative. To alleviate this issue, in this chapter we present the
design of an alternative robust MPC where the constraint tightenings are chosen as functions
of decision variables, instead of using the worst case bounds in (2.57).

4.2.1 Predicted State Evolution

We first denote the sequences of vectors:

ut = [u⊤
t|t, u

⊤
t+1|t(·), . . . , u⊤

t+N−1|t(·)]⊤,
x̄t = [x̄⊤

t|t, x̄
⊤
t+1|t, . . . , x̄

⊤
t+N−1|t]

⊤.
(4.1)

In this section, we use the following two observations: First, keeping the nominal state
trajectory x̄t as a decision variable in the MPC problem (3.1) maintains certain structure that
can be exploited to bound the effect of model uncertainty on a predicted nominal trajectory,
similar to [26, 27]. And second, the predicted nominal trajectory and its associated inputs
along the horizon are computed by reformulating (3.1) and solving a robust optimization
problem, similar to tube MPC approaches such as [15, 58, 76, 18, 19]. We thus attempt to
merge the benefits of both these ideas in this work.

Recall the nominal system dynamics from (3.1b) given as x̄t+1 = Āx̄t + B̄ūt, with ūt =
ut(x̄t). Denote the vectors xt,wt ∈ RnN and ∆ut ∈ RmN as:

xt =
[
x⊤
t+1|t x⊤

t+2|t . . . x⊤
t+N |t

]⊤
,

wt =
[
w⊤

t|t w⊤
t+1|t . . . w⊤

t+N−1|t
]⊤

,

∆ut =
[
∆u⊤

t|t ∆u⊤
t+1|t(·) . . . ∆u⊤

t+N−1|t(·)
]⊤

,

(4.2)

where ∆uk|t(·) = uk|t(·)− ūk|t for k ∈ {t, t+ 1, . . . , t+N − 1}. Using (4.1) and (4.2), we can
write the state evolution along the prediction horizon as:

xt = Axx̄t + Auut + A∆u∆ut + Awwt, (4.3)

where xt denotes the prediction of possible evolutions of the realized states1, and in (4.3)
the predicted nominal states along the horizon, i.e., x̄t from (4.1) appears directly and
not expressed in terms of {xt, ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}, as in [55]. The prediction dy-
namics matrices Ax,Au,A∆u and Aw in (4.3) depend on B̄,∆A,∆B and (Ā + ∆A), (Ā +
∆A)2, . . . , (Ā + ∆A)N−1. We define A∆ = Ā + ∆A for some possible ∆A ∈ PA. Then
A∆ ∈ PA∆

, with the set PA∆
defined as:

PA∆
= {Am : Am = Ā + ∆A, ∆A ∈ PA}. (4.4)

1Note, (4.2) implies (4.3) is a compact state update equation.
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Using (4.4) we rewrite the matrices in (4.3) as follows:

Ax = Ā +
(
Ā1 + Aδ

)
∆A,

Au = B̄ +
(
Ā1 + Aδ

)
∆B,

A∆u =
(
Ā1 − In + Aδ

)
B̄, and

Aw = In + ĀvA∆,

(4.5)

where In = (IN ⊗ In) ∈ RnN×nN , Ā = (IN ⊗ Ā) ∈ RnN×nN , B̄ = (IN ⊗ B̄) ∈ RnN×mN ,∆A =
(IN ⊗∆A) ∈ RnN×nN , and ∆B = (IN ⊗∆B) ∈ RnN×mN . The matrices Ā1, Aδ, Āv and A∆

are defined in 4.7.1 in the Appendix. Matrices Aδ and A∆ depend on parametric uncertainty
matrices ∆A and ∆B. In the next sections, we substitute the matrices from (4.5) in (4.3) in
order to design a control policy that robustly satisfies (3.1e)-(3.1f) along the horizon.

4.2.2 The Novel Optimization-Based Constraint Tightening

The terminal set XN in (3.1f) is defined by XN = {x : Hx
Nx ≤ hx

N}, with Hx
N ∈ RrN×n, hx

N ∈
RrN . We denote the matrices Fx = diag(IN−1 ⊗ Hx, Hx

N) ∈ R(r(N−1)+rN )×nN , and fx =
(hx, hx, . . . , hx

N) ∈ Rr(N−1)+rN for any given N . Using (4.3), the robust state constraints in
(3.1) for predicted states along the prediction horizon and at the end of the horizon can then
be written as:

Fxxt ≤ fx, ∀∆A ∈ PA, ∀∆B ∈ PB, ∀wt ∈W. (4.6)

We guarantee satisfaction of (4.6) using the following: Suppose for any a, b, we need to
guarantee a ≤ b. We first obtain an upper bound c, such that a ≤ c, and then we impose
c ≤ b. This is a sufficient condition for a ≤ b. Accordingly, using (4.3) and (4.5) constraint
(4.6) for all timesteps t ≥ 0 can be replaced row-wise as:

Fx
i ((Ā + Ā1∆A)x̄t + (B̄ + Ā1∆B)ut + · · ·

+ (Ā1 − In)B̄∆ut + wt) + ti1∥x̄t∥+ ti2∥ut∥+ ti3∥∆ut∥+ tiw∥wt∥ ≤ fxi ,

∀∆A ∈ PA, ∀∆B ∈ PB, ∀wt ∈W, (4.7)

for i ∈ {1, 2, . . . , r(N − 1) + rN}, where recall that r and rN are the number of rows of Hx

and Hx
N , respectively. In Appendix 4.7.2 we detail the derivation of (4.7) from (4.6) and the

computation of the bounds {tiw, ti1, ti2, ti3} for rows i ∈ {1, 2, . . . , r(N − 1) + rN}. In (4.7) we
have bounded the effect of model mismatch, i.e., the matrices Aδ,A∆,∆A,∆B on predicted
nominal states. These bounds, denoted as {tiw, ti1, ti2, ti3} for rows i ∈ {1, 2, . . . , r(N−1)+rN},
are computed offline, and are derived in detail in (4.27)-(4.31) in the Appendix, where we
also show that (4.7) is sufficient for (4.6).

In constraint (4.7), note that the decision variables are the predicted nominal trajectory
x̄t, and the sequence of input policies ut. These decision variables multiply effects of the
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bounds ti1, t
i
2 and ti3. In conclusion, the tightening of the original constraint (3.1e) proposed

in (4.7) depends on the optimization variables, x̄t, ut, and ∆ut. This is a key contribution
of our work. Alternatively in [27, 26], the constraint tightening is obtained bounding the
closed-loop system response, which involves the norm of the product between the decision
variables and the uncertainty. Therefore the method in [27, 26] needs to resort to a grid
search over parameters to obtain sufficient conditions for satisfying (3.1e) robustly. Tube
MPC methods such as [15, 76, 18, 19] could lead to tightenings equivalent to (4.7) under
appropriately chosen parametrization of tube cross sections. However, the computation times
of these approaches can increase noticeably with horizon length, primarily due to an increase
in the number of constraints in the MPC problem. See Section 2.9.2, Section 2.10.1 and [75,
Chapter 5] for additional details.

4.2.3 Tractable MPC Problem with Safe Backup

In this section we present the MPC reformulation of (3.1) which guarantees robust constraint
satisfaction at all timesteps t ≥ 0, and Input to State Stability of the origin.

Uncertainty Representation Mismatch

We start with the following observation: The terminal set XN from (3.5) is robustly invariant
to all uncertainty of the form: ∀∆A ∈ PA, ∀∆B ∈ PB, ∀w ∈ W, ∀t ≥ 0, when the state
feedback policy κN(x) = Kx is used in (2.10). However, along the prediction horizon we use
bounds {tiw, ti1, ti2, ti3}, which are obtained by more conservative tightenings from Hölder’s
and triangle inequalities, and induced norm consistency and submultiplicativity properties
(see (4.27)-(4.31) in the Appendix). Thus the uncertainty bounds along the horizon over-
approximate the effect of the true uncertainty used to compute the terminal set. This implies
that the classical shifting argument [6, Chapter 12] for recursive MPC feasibility cannot be
used in this case.

The Use of Shrinking Horizons

As a consequence, to ensure robust satisfaction of constraints (3.1e) by system (2.10) at all
timesteps and Input to State Stability of the origin, we will use the following strategy: (i) at
any given timestep, we solve the MPC reformulation of problem (3.1) in a shrinking horizon
fashion, i.e., we choose the MPC horizon length at timestep t, denoted by Nt, as:

Nt =

{
N − t, if t ∈ {0, 1, . . . N − 2},
1, otherwise.

(4.8)

If the shrinking horizon MPC problem is infeasible, we use the time-shifted optimal policy
from a previous timestep as a safe backup policy to guarantee robust satisfaction of (3.1e),
and (ii) we design the terminal cost matrix PN so that the MPC open-loop cost is a Lyapunov
function inside XN . This design choice, together with the shrinking horizon strategy, which
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guarantees finite time convergence to XN , allows us to show Input to State Stability of the
origin.

Input Policy, Terminal Set, MPC Problem

We use the input policy parametrization from (2.27). Then the sequence of predicted inputs

can be written as ut = M
(N)
t wt+ū

(N)
t at timestep t, where M

(N)
t ∈ RmN×nN and ū

(N)
t ∈ RmN

are shown in (2.28). The terminal set XN is constructed following Section 3.2.2. We introduce
the following set of required notations. Denote the set W = {w ∈ Rn : Hww ≤ hw} with
Hw ∈ Ra×n and hw ∈ Ra. For a horizon length of Nt from (4.8), this gives W = {w ∈ RnNt :
Hww ≤ hw}, with Hw = INt ⊗ Hw ∈ RaNt×nNt and hw = (hw, hw, . . . , hw) ∈ RaNt . Also
denote the matrices Hu = INt⊗Hu ∈ RoNt×mNt , and hu = (hu, hu, . . . , hu) ∈ RoNt . Moreover,

we denote vectors t
(Nt)
j = [t1j , t

2
j , . . . , t

r(Nt−1)+rN
j ]⊤ for the indices j ∈ {w, 1, 2, 3}. We use the

notation x̄
(Nt)
t for each horizon length Nt, to explicitly indicate the varying dimension of the

vector x̄t previously introduced in (4.2).
In (4.7) the input policy was not specified. We now use policy parametrization (3.3) in

(4.7) and consider the following two cases2:

Case 1: (Nt ≥ 2, i.e., t ≤ N − 2)

max
wt∈W

Fx
(
Āx̄

(Nt)
t + B̄(M

(Nt)
t wt + ū

(Nt)
t ) + (Ā1 − In)B̄M

(Nt)
t wt + wt

)
≤ fxtight, (4.9a)

Case 2: (Nt = 1, i.e., t ≥ N − 1)

max
wt∈W
∆A∈PA
∆B∈PB

Hx
N((Ā + ∆A)x̄

(1)
t + (B̄ + ∆B)ū

(1)
t + wt) ≤ hx

N , (4.9b)

for Nt ∈ {1, 2, . . . , N}. The tightened set of constraints fxtight are given by

fxtight = fx−t(Nt)
δ1 ∥x̄

(Nt)
t ∥−t(Nt)

δ3 ∥M
(Nt)
t ∥pwmax − t

(Nt)
δ2 ∥ū

(Nt)
t ∥ − t(Nt)

w wmax, (4.10)

with ∥wt∥ ≤ wmax for all t ≥ 0, where

t
(Nt)
δ1 = t

(Nt)
δA + t

(Nt)
1 , t

(Nt)
δ2 = t

(Nt)
δB + t

(Nt)
2 ,

t
(Nt)
δ3 = t

(Nt)
δB + t

(Nt)
2 + t

(Nt)
3 ,

(4.11)

using the bounds

max
∆A∈PA

∥Fx
i Ā1∆A∥∗ = t

(Nt),i
δA , (4.12a)

max
∆B∈PB

∥Fx
i Ā1∆B∥∗ = t

(Nt),i
δB , (4.12b)

2The dimensions of Fx, fx, Ā, B̄, Ā1, In and wt vary depending on Nt. We omit showing this explicitly
for brevity.
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for i ∈ {1, 2, . . . , r(Nt − 1) + rN}. See 4.7.5 in the Appendix for a derivation of (4.9)-(4.10)
from (4.7) using the bounds (4.11). Having formulated the state constraints, the input
constraints in (3.1e) along the horizon can be written as:

max
wt∈W

Hu
(
M

(Nt)
t wt + ū

(Nt)
t

)
≤ hu, (4.13)

for Nt ∈ {1, 2, . . . , N}. Using (4.9)-(4.13), at any timestep t we then solve

V MPC
t→t+Nt

(xt, t
(Nt), Nt) :=

min
M

(Nt)
t ,z

(Nt)
t

(z
(Nt)
t )⊤Q̄(Nt)z

(Nt)
t

s.t., G(Nt)
eq z

(Nt)
t = b(Nt)

eq xt,

(4.9b), (4.13) if Nt = 1,

(4.9a), (4.13) if Nt > 1,

x̄t|t = xt,

(4.14)

where we have denoted

z
(Nt)
t =

[
(x̄

(Nt)
t )⊤ x̄⊤

t+Nt|t (ū
(Nt)
t )⊤

]⊤
,

t(Nt) = {t(Nt)
w , t

(Nt)
1 , t

(Nt)
2 , t

(Nt)
3 },

Q̄(Nt) = diag(INt ⊗ P, PN , INt ⊗R),

G(Nt)
eq =


In 0 0 · · · 0 0 0 0 · · · 0
−Ā In 0 · · · 0 0 −B̄ 0 · · · 0
0 −Ā In · · · 0 0 0 −B̄ · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · −Ā In 0 0 · · · −B̄

 ,

b(Nt)
eq =

[
In

0nNt×n

]
.

Note, we consider t(1) = 0. We solve problem (4.14) utilizing duality of convex programs.
This is detailed in 4.7.6 in the Appendix. The constraint tightenings in (4.14) used in the
robust state constraints are functions of the decision variables. This is our key contribution.

We assume that (4.14) is feasible at timestep t = 0 with N0 = N . For t ≥ 1, we apply
the following policy

uMPC
t (xt) =

{
ū⋆
t|t, if (4.14) is feasible,

u⋆
t|tf (xt), otherwise

(4.15)

to system (2.10), where tf ∈ {0, 1, . . . , N −1} is the latest timestep where (4.14) was feasible
previously. Thus, the time-shifted optimal policy from a previous timestep is utilized as a
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safe backup, in case (4.14) loses feasibility. As we cannot measure wt due to the presence
of matrix uncertainties in (2.10), see [55, Section 5] for how to obtain the backup policy in
state feedback form required for implementation. We then resolve (4.14) at the next timestep
(t + 1) for horizon lengths Nt+1 obtained from (4.8). The control algorithm is summarized
in Algorithm 1.

Algorithm 1 Robust MPC with Optimization-Based Constraint Tightening

Inputs: xt, N,W,XN , t
(Nt), ∀Nt ∈ {2, 3, . . . , N}

Initialize: t = 0
while t ≥ 0 do

Set horizon length Nt from (4.8);
Solve MPC problem (4.14);
Apply closed-loop input (4.15) to (2.10);
Set t = t + 1;

end while

Remark 4.1 Recall (2.12)–(2.13). One may also efficiently enumerate all possible vertex

sequences of ∆A and ∆B for robustifying the term Fx
i Ā1∆Ax̄

(Nt)
t + Fx

i Ā1∆Bū
(Nt)
t in (4.7)

(with policy (3.3)). This partially replaces the bounds (4.12) to lower conservatism. As we
use the backup policy in (4.15) without requiring recursive feasibility of (4.14), the number
of such sequences is limited to the number of vertices characterizing the uncertain matrices
(i.e., each vertex repeated Nt times along the horizon), and is not combinatorial. See [50,
Figure 3] for further insights into why combinatorial enumerations are required otherwise.

4.3 Robust Constraint Satisfaction and Stability

We first prove the robust satisfaction of constraints (3.1e) for the closed-loop system (2.10)
and (4.15). Afterwards, we show the stability properties of the proposed robust MPC in
Algorithm 1.

4.3.1 Feasibility of Robust Constraints

Theorem 4.1 Let optimization problem (4.14) with tightened constraints (4.10) be feasible

at timestep t = 0 for Nt = N , where the bounds {t(Nt)
w , t

(Nt)
1 , t

(Nt)
2 , t

(Nt)
3 } are obtained by

solving (4.27)-(4.31). Then, the closed-loop system (2.10) and (4.15) robustly satisfies state
and input constraints (3.1e), for all t ≥ 0.

Proof By assumption, at timestep t = 0 problem (4.14) with tightened constraints (4.10) is
feasible, with a horizon length Nt = N . We then prove robust satisfaction of (3.1e) at all
timesteps t ≥ 0 with controller (4.15) in closed-loop, by considering the following two cases:
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Case 1: (2 ≤ Nt < N , i.e., 0 < t ≤ N − 2) As (4.14) is feasible at timestep t = 0 for
Nt = N chosen as per (4.8), let the corresponding optimal policy sequence be

{u⋆
0|0, u

⋆
1|0(·), . . . , u⋆

N−1|0(·)}. (4.16)

For timesteps t ∈ {1, 2, . . . , N − 2} recall that we define the MPC policy in (4.15) as:

uMPC
t (xt) =

{
ū⋆
t|t, if (4.14) is feasible,

u⋆
t|tf (xt), otherwise,

(4.17)

where tf ∈ {0, 1, . . . , N − 1} is the latest timestep when (4.14) was feasible. Policy (4.17)
satisfies (3.1e) robustly for all t ∈ {1, 2, . . . , N − 2}, as it is a solution to the constrained
robust optimal control problem (4.14). Moreover, from (4.16), we have that tf = 0 is a
guaranteed certificate, in case (4.14) continues to be infeasible for all t ∈ {1, 2, . . . , N − 2}.
Case 2: (Nt = 1, i.e., t ≥ N − 1) Consider the timestep t = N − 1, where from (4.8) the
MPC horizon length Nt = 1. In this case we consider the constraints (4.9b):

max
wt∈W
∆A∈PA
∆B∈PB

Hx
N((Ā + ∆A)x̄

(1)
t + (B̄ + ∆B)ū

(1)
t + wt) ≤ hx

N . (4.18)

From (4.17) we know that at timestep t = N − 1, there exists a tf such that control action
u⋆
t|tf (xt) robustly steers the state xt to XN in one timestep. Now, at t = N − 1, we solve

(4.18) exactly (i.e., find hx
N where the max is attained) by using duality arguments in 4.7.6

in the Appendix, without any uncertainty over-approximation. Therefore, the optimization
problem (4.14) with constraint (4.18) is guaranteed to be feasible at t = N−1, with u⋆

N−1|tf (·)
as a feasibility certificate. Let us denote the corresponding optimal policy from t = N − 1 as:

uMPC
t (xt) = ū⋆

t|t. (4.19)

Let policy (4.19) be applied to (2.10) in closed-loop, so that the system reaches the terminal
set XN at timestep t + 1. Consider solving (4.18) at this step with a horizon length of
Nt+1 = 1. As, constraint (4.18) uses the same representation of the system uncertainty
in satisfying (3.1e)-(3.1f) robustly as done in (3.5), we can infer that a candidate policy at
timestep (t + 1) is

ut+1|t+1(xt+1) = Kxt+1, (4.20)

which is a feasible solution to the robust optimization problem (4.14) under constraint (4.18).
Thus, (4.14) is guaranteed to remain feasible at (t + 1) with Nt+1 = 1. This completes the
proof. ■
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Theorem 4.2 Let Assumptions 3.1-3.4 in Chapter 3 hold and let the optimization problem
(4.14) be feasible at timestep t = 0 with Nt = N . Then, xt ∈ XN for all t ≥ N and the origin
of the closed-loop system:

xt+1 = Axt + Bu⋆
t|t(xt) + wt, ∀t ≥ 0. (4.21)

obtained with (2.10)-(4.15) is ISS.

Proof First, we have from Case-2 in the proof of Theorem 4.1 that at timestep t = N − 1,
the problem (4.14) is feasible with horizon Nt = 1 and therefore xt ∈ XN for all t ≥ N .

Now, consider the case of t ≥ N , i.e., Nt = 1. Since (4.14) for Nt = 1 can be reformulated
into a parametric QP, V MPC

t→t+1(xt, 0, 1) is continuous and piecewise quadratic in XN with
V MPC
t→t+1(0, 0, 1) = 0 [90]. Hence, under Assumptions 3.3-3.4, using the standard proof of [55,

Theorem 23], we conclude that the origin of closed-loop system (4.21) is ISS according to
Definition 3.2 in Chapter 3, and V MPC

t→t+1(xt, 0, 1) is ISS Lyapunov function for all t ≥ N . ■

4.4 The ROA and Its Inner Approximation

We define the Region of Attraction (ROA) for Algorithm 1, denoted by R, as the N -Step
Robust Controllable Set to the terminal set XN under the policy (4.15) for t = 0. This
ensures that from Theorem 4.1 and Theorem 4.2 we have ∀wt ∈W:

x0 ∈ R =⇒

{
xt ∈ X , ∀t ≥ 0, and

xt ∈ XN ⊆ X , ∀t ≥ N,

where xt+1 = Axt + BuMPC
t (xt) + wt for all t ≥ 0. Thus, all the initial states in the ROA

are steered to the terminal set XN in maximum of N -steps while robustly satisfying (3.1e),
where the origin of (4.21) is ISS. The ROA can be computed by solving problem (4.14)
as a parametric optimization problem, with parameter xt [6]. However, this computation
may be prohibitive. We therefore use the fact that the ROA is convex and obtain its inner
approximation using a set of vectors. Along each vector, we find an initial state for which
(4.14) is feasible and which minimizes the inner product with the vector. The ROA is then
approximated as the convex hull of these states. This is elaborated below.

Given a vector v ∈ Rn, we define the following optimization problem at timestep t = 0:

P (N, v) =

min
x0,M

(N)
0 ,ū

(N)
0

x̄N
0

v⊤x0

s.t., (v⊥)⊤x0 = 0,

G(N)
eq

[
(x̄

(N)
0 )⊤ x̄⊤

N |0 (ū
(N)
0 )⊤

]⊤
= b(N)

eq x0,

x̄0|0 = x0,

(4.9), (4.13), (with N0 = N),

(4.22)
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with fxtight chosen as per (4.10), where v⊥ ∈ Rn is a vector perpendicular to v ∈ Rn. Therefore,

given a user-defined set of vectors V = {v(1), v(2), . . . , v(nv)}, problem (4.22) can be solved
repeatedly and the convex hull of the optimal initial states x⋆

0 is an inner approximation to
the ROA. It is clear from Algorithm 2 that the ROA approximation can improve, as the

Algorithm 2 Computation of the Approximate ROA

Inputs: Vectors V = {v(1), v(2), . . . , v(nv)} and N
Initialize: Rap = ∅
for v(i) ∈ V do

Solve P (N, v(i)) from (4.22). Let x⋆
0 be the optimal initial state from P (N, v(i)).

Set Rap = conv{Rap ∪ {x⋆
0}}.

end for
Output: Approximate ROA: Rap ⊆ R.

number of vectors in V increases.

4.5 Numerical Simulations

We present our numerical simulations in this section. Algorithm 1 is implemented with
N = 3 and Nt chosen as per (4.8) for all t ≥ 0. We compare the performance of our
Algorithm 1 with the polytopic tube MPCs of [15, Section 5] and [19, Section 3-4]. For
our comparisons, we compute MPC solutions to (2.54) and utilize Remark 4.1. Gain K
for constructing the terminal set XN is chosen as K = −[0.452, 0.418]. The source code is
available at https://github.com /monimoyb/RMPC MixedUncertainty.

4.5.1 Comparison with [15]

For this comparison, we choose a horizon of 5 for the tube MPC method in [15, Section 5].
The tube cross section parameter (Z) is chosen as the minimal robust positive invariant
set for system (2.10) under a feedback u = −[1.2604, 0.7036]x, and the terminal set (Xf ) is
chosen as our terminal set XN constructed with (3.5) and the aforementioned gain K.

ROA Comparison

Recall the notion of the ROA of Algorithm 1 from Section 4.4 and also its inner approximation
obtained from Algorithm 2. We now choose a set of Ninit = 100 initial states xS, created
by a 10 × 10 uniformly spaced grid of the set of state constraints in (2.54). From each of
these initial state samples we check the feasibility of the tube MPC control problem in [15,
Section 5]. The convex hull of the feasible initial state samples, which inner approximates
its ROA, is then compared to the approximate ROA of Algorithm 1. This comparison is
shown in Fig. 4.1. The approximate ROA of Algorithm 1 is about 1.04x in volume of that
of the tube MPC in [15, Section 5].

https://github.com/monimoyb/RMPC_MixedUncertainty
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Inside ■: Algorithm 1 Inside ■: Tube MPC of [15]

Figure 4.1: Comparison of the approximate ROA of Algorithm 1 with N = 3 and the
approximate ROA of the tube MPC in [15, Section 5].

Computation Time Comparison

The advantage of our proposed approach becomes clearer upon comparing the online com-
putation times. We see from Table 4.1 that for all relevant horizon lengths Nt ∈ {1, 2, 3},

Table 4.1: Average computation times [sec]. Values are obtained with a MacBook Pro
16inch, 2019, 2.3 GHz 8-Core Intel Core i9, 16 GB memory, using the Gurobi solver [91].

Horizon
Algorithm 1 Tube MPC in [15]
online offline online

Nt = 1 0.0019 0 0.0054
Nt = 2 0.0058 0.0279 0.1042
Nt = 3 0.0111 0.0687 0.2057

solving (4.14) is cheaper than computing the tube MPC online, even after adding the offline
computation times required for bounds (4.27)-(4.31). The increase in computation times for
such a polytopic tube MPC can be explained by an increase in the number of constraints
imposed in the MPC problem with horizon N , as explained previously in Section 2.9.2.
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Remark 4.2 In the considered example, computing the set Z for the tube MPC in [15]
required about 49 seconds offline. However, we have chosen not to include this in the com-
parison in Table 4.1, as any alternative simpler choice of Z is also valid. The choice of Z
affects the size of the corresponding ROA [26].

4.5.2 Comparison with [19]

Following the comparison of Chapter 3, we now compare our proposed approach with the
polytopic tube MPC in [19] in this section.

ROA Comparison

Recall Remark 2.7. As a consequence, we compare the ellipsoidal ROA from in [19, Section 3]
as used in Fig. 2.5 with the approximate ROA of Algorithm 1. This comparison is shown in
Fig. 4.2. The approximate ROA of Algorithm 1 is about 30% larger in volume of that of the

Inside ■: Algorithm 1 Inside ■: Tube MPC of [19]

Figure 4.2: Comparison of the approximate ROA of Algorithm 1 with N = 3, and the
ellipsoidal ROA of [19, Section 3].

polytopic tube MPC in [19, Section 3].
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Computation Time Comparison

In this section we compare the computation times of our approach with those from [19,
Section 3]. Table 4.2 shows the average computation times of Algorithm 1, both online and

Table 4.2: Comparison of average computation times [sec].

Horizon
Algorithm 1 Tube MPC in [19]
online offline online offline

Nt = 1 0.0019 0 0.03 53.08
Nt = 2 0.0058 0.0279 0.03 53.08
Nt = 3 0.0111 0.0687 0.03 53.08

offline, for all relevant horizon lengths Nt ∈ {1, 2, 3}. Recall that due to Remark 2.7, the
associated online times of [19] are independent of the horizon length Nt, as it only solves an
LMI for obtaining the ellipsoidal ROA. We see from Table 4.2 that our proposed method
in this chapter obtains lower online and offline computational times over the MPC of [19,
Section 3]. Recall that the large offline computation time in [19, Section 3] is due to a
logarithmic search required for optimizing a parameter (denoted by α in [19]). The offline
computation times of our bounds (4.27)-(4.31) increase as we increase N ≥ 5, however we
limit to N = 3, since increasing the horizon length does not guarantee an enlargement of
the ROA in our approach3.

4.5.3 Comparison with the Robust MPC of Chapter 3

We point out that the approx. ROA of Algorithm 1 is about 4% larger in volume compared
to the approx. ROA of the robust MPC proposed in Chapter 3. This comparison is shown
in Fig. 4.3. Fig. 4.3 validates that for this considered example, the optimization-based con-
straint tightenings used in (4.14) lowers conservatism over using a net-additive uncertainty
based worst-case bound (2.57).

However, for long horizons such as N ≥ 5, computing bounds (4.27)-(4.31) can become
computationally cumbersome. On the other hand, the alternative bounds (4.33)-(4.37) de-
rived using binomial expansions can be rather conservative. In such a scenario, an approach
such as the one proposed in Chapter 3 may be a more preferred option to utilize, which
can yield an improved computation complexity vs conservatism trade-off over Algorithm 1.
Furthermore, increasing the horizon N can enlarge the ROA of the robust MPC in Chap-
ter 3, unlike Algorithm 1. Thus the choice of robust MPC algorithm depends on the specific
problem at hand, and the computational resources available for control design, etc.

3This is because R ⊇ XN may not hold under the MPC policy (4.15), unlike typical MPC approaches.
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Inside ■: Algorithm 1 Inside ■: Robust MPC from Chapter 3

Figure 4.3: Comparison of the approximate ROA of Algorithm 1 and the robust MPC of
Chapter 3 with N = 3.

4.6 Chapter Summary

We proposed another novel approach to design a robust MPC for constrained uncertain
linear parameter varying systems. The uncertainty considered included both mismatch in
the system dynamics matrices, and an additive disturbance. With set based bounds for
each component of the model uncertainty being known at the time of control design, we
proposed an optimization-based constraint tightening strategy utilizing these bounds. The
proposed MPC achieved robust satisfaction of the imposed state and input constraints for all
realizations of the model uncertainty. We further proved Input to State Stability of the origin.
With numerical simulations, we demonstrated that our controller obtained at least 3x and
up to 20x speedup in online control computations and an approximately 4% larger ROA by
volume, compared to the tube MPC in [15]. We obtained up to 3x speedup in online control
computations and an approximately 30% larger ROA by volume compared to the state-of-
the-art polytopic tube MPC of [19]. Due to the proposed optimization-based constraint
tightening approach in this chapter, we also obtained a 4% decrease in conservatism over
the robust MPC proposed in Chapter 3.
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4.7 Appendix

4.7.1 Matrix Definitions

The prediction dynamics matrices Ax,Au,A∆u and Aw in (4.3) for a horizon length4 of N̄
are given by

Ax =


A∆ 0 0 . . . 0

A∆∆A A∆ 0 . . . 0
A2

∆∆A A∆∆A A∆ . . . 0
...

...
...

. . .
...

AN̄−1
∆ ∆A AN̄−2

∆ ∆A . . . . . . A∆

 ∈ RnN̄×nN̄ ,

Au =


B∆ 0 0 . . . 0

A∆∆B B∆ 0 . . . 0
A2

∆∆B A∆∆B B∆ . . . 0
...

...
...

. . .
...

AN̄−1
∆ ∆B AN̄−2

∆ ∆B . . . . . . B∆

 ∈ RnN̄×mN̄ ,

A∆u =


0 0 0 . . . 0

A∆B̄ 0 0 . . . 0
A2

∆B̄ A∆B̄ 0 . . . 0
...

...
...

. . .
...

AN̄−1
∆ B̄ AN̄−2

∆ B̄ . . . A∆B̄ 0

 ∈ RnN̄×mN̄ ,

Aw =


In 0 0 . . . 0
A∆ In 0 . . . 0
A2

∆ A∆ In . . . 0
...

...
...

. . .
...

AN̄−1
∆ AN̄−2

∆ . . . . . . In

 ∈ RnN̄×nN̄ ,

where A∆ = (Ā + ∆A) ∈ PA∆
and B∆ = (B̄ + ∆B) ∈ PB∆

. We write matrices Ā1 and
Aδ ∈ RnN̄×nN̄ as:

Ā1 =


In 0 0 . . . 0
Ā In 0 . . . 0
Ā2 Ā In . . . 0
...

...
...

. . .
...

ĀN̄−1 ĀN̄−2 . . . . . . In

 , Aδ = (Aw − Ā1),

4Equation (4.3) was introduced with a fixed horizon length of N , i.e., N̄ ← N . However, dimensions of
these matrices vary as horizon length is varied later in Section 4.2.3.
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which gives Ax = Ā +
(
Ā1 + Aδ

)
∆A,A

u = B̄ +
(
Ā1 + Aδ

)
∆B, and A∆u =

(
Ā1 −

In + Aδ

)
B̄. The matrix Āv is written as Āv =

[
A

(1)
v A

(2)
v . . . A

(N̄−1)
v

]
, where matrices

{A(1)
v , A

(2)
v , . . . , A

(N̄−1)
v } are given as

A(1)
v =


0 0 0 . . . 0
In 0 0 . . . 0
0 In 0 . . . 0
...

...
...

. . .
...

0 0 . . . In 0

 , A(2)
v =



0 0 0 . . . 0
0 0 0 . . . 0
In 0 0 . . . 0
0 In 0 . . . 0
...

...
...

. . .
...

0 0 In . . . 0


,

and analogously for A(3)
v , A(4)

v , . . . , A(N̄−1)
v .

This gives Aw = In + ĀvA∆, with In = (IN̄ ⊗ In), and

A∆ =


IN̄ ⊗ A∆

IN̄ ⊗ A2
∆

...

IN̄ ⊗ AN̄−1
∆

 ∈ RnN̄(N̄−1)×nN̄ . (4.23)

4.7.2 Deriving (4.7) from (4.6)

Using (4.5) in (4.3), constraints (4.6) can be written as:

Fx

(
Āx̄t + Ā1∆Ax̄t + (Aδ∆A)x̄t + B̄ut + Ā1∆But+

· · ·+ (Aδ∆B)ut + (Ā1 − In + Aδ)B̄∆ut + wt + ĀvA∆wt

)
≤ fx, (4.24)

∀∆A ∈ PA, ∀∆B ∈ PB, ∀wt ∈W.

We obtain an upper bound for the left hand side of inequality (4.24) row-wise as follows:

Fx
i (Āx̄t + B̄ut + (Ā1 − In)B̄∆ut + wt) + Fx

i Ā1∆Ax̄t + Fx
i Ā1∆But + Fx

iAδ∆Ax̄t+

· · ·+ Fx
iAδ∆But + Fx

iAδB̄∆ut + Fx
i ĀvA∆wt,

≤ Fx
i (Āx̄t + B̄ut + (Ā1 − In)B̄∆ut + wt) + Fx

i Ā1∆Ax̄t + Fx
i Ā1∆But + ∥Fx

iAδ∆A∥∗∥x̄t∥+
· · ·+ ∥Fx

iAδ∆B∥∗∥ut∥+ ∥Fx
iAδB̄∥∗∥∆ut∥+ ∥Fx

i ĀvA∆∥∗∥wt∥, (4.25)

for rows i ∈ {1, 2, . . . , r(N̄ − 1) + rN}, where we have used the Hölder’s inequality. Using
bounds (4.27)-(4.31) in (4.25) then yields (4.7). Note that in (4.7) N̄ ← N .
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4.7.3 Bounding Nominal Trajectory Perturbations

For any horizon length5 of N̄ ∈ {2, 3, . . . , N}, we first bound:

max
A∆∈PA∆

∥Fx
iAδ∥∗, where using (4.4) we have Aδ = Āv


IN̄ ⊗ (A∆ − Ā)
IN̄ ⊗ (A2

∆ − Ā2)
...

IN̄ ⊗ (AN̄−1
∆ − ĀN̄−1)

 . (4.26)

Note that for all A∆ ∈ PA∆
=⇒ An

∆ ∈ Pn
A∆

, for n ∈ {1, 2, . . . , N̄ − 1}, where Pn
A∆

is the set
of all matrices that can be written as a convex combination of matrices obtained with the
product of all possible combinations of n matrices out of {(Ā + ∆

(1)
A ), (Ā + ∆

(2)
A ), . . . , (Ā +

∆
(na)
A )}. Hence

max
A∆∈PA∆

∥Fx
iAδ∥∗ ≤ max

∆1∈PA∆

∆2∈P2
A∆

...
∆N̄−1∈P

N̄−1
A∆

∥Fx
i Āv


IN ⊗ (∆1 − Ā)
IN ⊗ (∆2 − Ā2)

...

IN ⊗ (∆N̄−1 − ĀN̄−1)

 ∥∗ = ti0, (4.27)

where we have relaxed all the equality constraints among the matrices {∆1,∆2, . . . ,∆N̄−1}.
Using the above bound (4.27), we get

max
A∆∈PA∆
∆A∈PA

∥Fx
iAδ∆A∥∗ ≤ ti0 max

∆A∈PA

∥∆A∥p = ti1, (4.28)

where we have used the consistency property of induced norms, for any p = 1, 2,∞. Similarly,
bounding terms

max
A∆∈PA∆
∆B∈PB

∥Fx
iAδ∆B∥∗ ≤ ti0 max

∆B∈PB

∥∆B∥p = ti2, (4.29)

and

max
A∆∈PA∆

∥Fx
iAδB̄∥∗ ≤ ti0∥B̄∥p = ti3, (4.30)

and finally

max
A∆∈PA∆

∥Fx
i ĀvA∆∥∗ ≤ max

∆1∈PA∆

∆2∈P2
A∆

...
∆N̄−1∈P

N̄−1
A∆

∥Fx
i Āv


IN̄ ⊗∆1

IN̄ ⊗∆2
...

IN̄ ⊗∆N̄−1

 ∥∗ = tiw, (4.31)

5Note, also the bounds in Section 4.2.2 were introduced with a fixed horizon length of N , i.e., N̄ ← N .



CHAPTER 4. ROBUST MPC WITH OPTIMIZATION-BASED CONSTRAINT
TIGHTENING 67

for i ∈ {1, 2, . . . , r(N̄ − 1) + rN}. Problems (4.27)-(4.31) are maximizing convex functions of
the decision variables over convex and compact domains. Therefore, these maximum bounds
are attained at the extreme points, i.e., vertices of the convex sets {PA∆

,P2
A∆

, . . . ,PN̄−1
A∆
},

PA and PB. Consequently, the optimal values of (4.27)-(4.31) can be obtained by evaluating
the values of each of the terms in (4.27)-(4.31) at all possible combinations of such extreme
points. Since such a vertex enumeration strategy scales poorly with the horizon length N , a
computationally cheaper alternative to bounds (4.27)-(4.31) is presented next.

4.7.4 Computationally Efficient Alternatives of Bounds
(4.27)-(4.31)

Recall the optimization problem from (4.27), given by

max
A∆∈PA∆

∥Fx
iAδ∥∗, with Aδ from (4.26). (4.32)

Using the triangle and Hölder’s inequalities, and the submultiplicativity and consistency
properties of induced norms, (4.32) can be upper bounded for any cut-off horizon Ñ < N̄ as
follows:

max
A∆∈PA∆

∥Fx
iAδ∥∗ ≤ t̃i0 + t̂i0 = ti0, (4.33)

with

t̃i0 = max
∆1∈PA∆

...
∆Ñ−1∈P

Ñ−1
A∆

∥Fx
i Ā

1:(Ñ−1)
v


IN̄ ⊗ (∆1 − Ā)
IN̄ ⊗ (∆2 − Ā2)

...

IN̄ ⊗ (∆Ñ−1 − ĀÑ−1)

 ∥∗

where Ān1:n2
v denotes

[
A

(n1)
v A

(n1+1)
v . . . A

(n2)
v

]
, with the associated matrices defined in

Appendix 4.7.1, Fx
i [n1 : n2] denotes the n1 to n2 columns of the row vector Fx

i , for i ∈
{1, 2, . . . , r(N̄ − 1) + rN}, and

t̂i0 = max
∆A∈PA

(
N̄∑

j=Ñ+1

∥Fx
i [(j − 1)n + 1 : jn]∥∗

( j−Ñ∑
k=1

(

j−k∑
l=1

(
j − k

l

)
∥Ā∥j−k−l

p ∥∆A∥lp)
))

.

Using the above derived bound (4.33) we obtain:

max
A∆∈PA∆
∆A∈PA

∥Fx
iAδ∆A∥∗ ≤ ti0 max

∆A∈PA

∥∆A∥p = ti1, (4.34)
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where we have used the consistency property of induced norms, for any p = 1, 2,∞. Similarly,
we bound

max
A∆∈PA∆
∆B∈PB

∥Fx
iAδ∆B∥∗ ≤ ti0 max

∆B∈PB

∥∆B∥p = ti2, (4.35)

and,

max
A∆∈PA∆

∥Fx
iAδB̄∥∗ ≤ ti0∥B̄∥p = ti3, (4.36)

and finally using A∆ from (4.23)

max
A∆∈PA∆

∥Fx
i ĀvA∆∥∗ ≤ t̃iw + t̂iw = tiw, (4.37)

for all i ∈ {1, 2, . . . , r(N̄ − 1) + rN}, where

t̃iw = max
∆1∈PA∆

...
∆Ñ−1∈P

Ñ−1
A∆

∥Fx
i Ā

1:(Ñ−1)
v


IN̄ ⊗∆1

IN̄ ⊗∆2
...

IN̄ ⊗∆Ñ−1

 ∥∗,

and

t̂iw = max
∆A∈PA

(
N̄−1∑
j=Ñ

∥Fx
iA

(j)
v ∥∗

(
∥(IN̄ ⊗ Ā)j∥p +

j∑
k=1

(
j

k

)
∥(IN̄ ⊗ Ā)∥j−k

p ∥(IN̄ ⊗∆A)∥kp
))

,

where we have used the property of two matrices X and Y yielding:

∥(X + Y )d∥p ≤ ∥Xd∥p +
d∑

k=1

(
d

k

)
∥X∥d−k

p ∥Y ∥kp,

∀d ∈ {Ñ, Ñ + 1, . . . , N̄ − 1}.

This cut-off horizon Ñ can be chosen based on the available computational resources at the
expense of more conservatism over (4.27)-(4.31).

4.7.5 Obtaining (4.9) from (4.7)

Here we derive (4.9) from (4.7). Using bounds (4.11) and (4.27)-(4.31) and policy parametriza-
tion (3.3), constraints (4.7) can be satisfied by imposing:

max
wt∈W

(
Fx

i (Āx̄
(Nt)
t + B̄(M

(Nt)
t wt + ū

(Nt)
t ) + (Ā1 − In)B̄M

(Nt)
t wt + wt) + t

(Nt),i
δ1 ∥x̄(Nt)

t ∥+ · · ·

+ (t
(Nt),i
2 + t

(Nt),i
δB )∥M(Nt)

t wt + ū
(Nt)
t ∥+ t

(Nt),i
3 ∥M(Nt)

t wt∥+ t(Nt),i
w wmax

)
≤ fxi , (4.38)
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where using (4.11) we have used the Hölder’s and the triangle inequality to bound Fx
i Ā1∆Ax̄

(Nt)
t

and Fx
i Ā1∆B(M

(Nt)
t wt + ū

(Nt)
t ) for all rows i ∈ {1, 2, . . . , r(Nt − 1) + rN}. Use the induced

norm consistency property and the triangle inequality in (4.38) as:

(t
(Nt),i
2 + t

(Nt),i
δB )∥M(Nt)

t wt + ū
(Nt)
t ∥+ t

(Nt)
3 ∥M(Nt)

t wt∥,
≤ (t

(Nt),i
2 + t

(Nt),i
δB + t

(Nt),i
3 )∥M(Nt)

t ∥pwmax + (t
(Nt),i
2 + t

(Nt),i
δB )∥ū(Nt)

t ∥,
≤ t

(Nt),i
δ3 ∥M(Nt)

t ∥pwmax + t
(Nt),i
δ2 ∥ū(Nt)

t ∥,

(4.39)

for any p = 1, 2,∞, where we have used the definitions (4.11). Using (4.39) in (4.38) for all
rows i ∈ {1, 2, . . . , r(Nt − 1) + rN}, we define

fxtight = fx−t(Nt)
δ1 ∥x̄

(Nt)
t ∥−t(Nt)

δ3 ∥M
(Nt)
t ∥pwmax − t

(Nt)
δ2 ∥ū

(Nt)
t ∥ − t(Nt)

w wmax,

which yields (4.9) with tightened constraints (4.10).

4.7.6 Reformulation of (4.14) via Duality of Convex Programs

We again consider the following two cases for satisfying the robust state constraints (4.9).

Case 1: (Nt ≥ 2, i.e., t ≤ N − 2) Constraints (4.9a) can be satisfied using duality of convex
programs by solving:

Fx(Āx̄
(Nt)
t + B̄ū

(Nt)
t ) + Λ(Nt)hw ≤ fxtight,

Λ(Nt) ≥ 0,

Λ(Nt)Hw =
(
Fx(B̄M

(Nt)
t + (Ā1 − In)B̄M

(Nt)
t + In)

)
,

where fxtight is obtained from (4.10), and dual variables Λ(Nt) ∈ R(r(Nt−1)+rN )×aNt .

Case 2: (Nt = 1, i.e., t ≥ N − 1) Consider the case of Nt = 1. As pointed out in (4.9b), the
robust state constraint for this case can be simplified and written as

max
wt∈W
∆A∈PA
∆B∈PB

Hx
N((Ā + ∆A)x̄

(1)
t + (B̄ + ∆B)ū

(1)
t + wt) ≤ hx

N ,

which we must solve exactly (i.e., find hx
N where the max is attained) for the uncertainty

representation wt ∈ W, ∆A ∈ PA and ∆B ∈ PB, in order for guarantees of Theorem 4.1
to hold. Using duality of convex programs [67] one can write the robust state constraints
(4.9b) equivalently as:

Hx
N((Ā + ∆

(j)
A )x̄

(1)
t + (B̄ + ∆

(k)
B )ū

(1)
t ) + Λ(1)hw ≤ hx

N ,

Λ(1) ≥ 0, Hx
N = Λ(1)Hw,

∀j ∈ {1, 2, . . . , na}, ∀k ∈ {1, 2, . . . , nb}, (4.40)
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where dual variables Λ(1) ∈ RrN×a.

Input Constraints: Considering the robust input constraints (4.13) for any Nt ∈ {1, 2, . . . , N},
one can similarly show that this is equivalent to:

(γ(Nt))⊤hw ≤ hu −Huū
(Nt)
t ,

(HuM
(Nt)
t )⊤ = (Hw)⊤γ(Nt), γ(Nt) ≥ 0,

by introducing decision variables of γ(Nt) ∈ RaNt×oNt in (4.14) for each horizon length Nt ∈
{1, 2, . . . , N}.
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Chapter 5

Learning Non-Parametric Model
Uncertainty in Robust MPC

This chapter is based on the published work [30]. We focus on the learning of model uncer-
tainty in robust MPC in this chapter. The first case considered is the case of an additive
non-parametric uncertainty, i.e., model (M3) in Chapter 2. The additive uncertainty is
assumed globally Lipschitz, with a known Lipschitz constant.

5.1 Summary of Contributions

We utilize a non-parametric recursive system identification strategy [24], which identifies
the graph of the uncertainty from data using its Lipschitz property. The identification is
successively refined with recorded data. Our main contributions are:

• We provide set based bounds containing all possible realizations of the system uncer-
tainty, using its Lipschitz property. This in contrast to the probabilistic nature of
bounds in [7, 8, 9], due to the use of GP regression. Our uncertainty set bounds are
modified successively with set intersections upon gathering new data.

• Utilizing the above bounds on system uncertainty, we synthesize a robust adaptive
MPC controller by solving convex optimization problems, satisfying imposed state and
input constraints. We prove its recursive feasibility, extending feasibility guarantees of
[22, 92, 31] in presence of state dependent uncertainty. We further demonstrate the
validity and efficacy of the proposed approach through a detailed numerical simulation.

5.2 Problem Formulation

The system model is given by model (M3) introduced in Chapter 2, i.e.,

xt+1 = Axt + But + d(xt), (5.1)
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where d(xt) constitutes the system uncertainty, which is Ld-Lipschitz in its convex and closed
domain dom(d) with a known Ld. The system dynamics are subject to polytopic state and
input constraints of the form:

X = {x ∈ Rn |Hxx ≤ hx}, (5.2a)

U = {u ∈ Rm |Huu ≤ hu}, (5.2b)

where we assume X ⊆ dom(d).

5.2.1 Robust MPC Problem

We wish to design a robust MPC controller by finding solutions to the following optimization
problem at each timestep t:

min
ut|t,ut+1|t(·),...,ut+N−1|t(·)

t+N−1∑
k=t

(x̄⊤
k|tQx̄k|t + u⊤

k|t(x̄k|t)Ruk|t(x̄k|t)) + x̄⊤
t+N |tPN x̄t+N |t

s.t., xk+1|t = Axk|t + Buk|t(xk|t) + d(xk|t),
x̄k+1|t = Ax̄k|t + Buk|t(x̄k|t) + d̄(x̄k|t),
Hxxk+1|t ≤ hx,
Huuk|t(xk|t) ≤ hu,
∀d(xk|t) ∈ D(xk|t),
∀k = {t, t + 1, . . . t + N − 1},
xt+N |t ∈ XN ,
xt|t = x̄t|t = xt,

(5.3)

where xk|t is the predicted state after applying the predicted policy {ut|t, . . . , uk−1|t(xk−1|t)}
for k = {t + 1, . . . , t + N} to system (5.1), XN is the terminal set, PN ≻ 0 is the terminal
cost and matrices Q,R ≻ 0 are weight matrices.

5.2.2 Control Policy Parametrization

We restrict ourselves to the affine disturbance feedback parametrization, as per (P2) in
Chapter 2. For all k ∈ {t, · · · , t + N − 1} over the MPC horizon (of length N), the control
policy is given as:

uk|t(xk|t) =
k−1∑
l=t

Mk,l|td(xl|t) + vk|t, (5.4)

where Mk|t are the planned feedback gains at timestep t and vk|t are the auxiliary inputs.
Let us define d(xt) = [d(xt|t), · · · , d(xt+N−1|t)]

⊤ ∈ RnN . Then the sequence of predicted
inputs from (5.4) can be compactly written as ut = Mtd(xt) + vt at any timestep t, where
Mt ∈ RmN×nN and vt ∈ RmN are shown in (2.28).
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5.3 Uncertainty Learning and Adaptation

At every time instant t, we assume that we have access to measurements d(xi) for all i =
{0, 1, . . . , t− 1}, that is, the realizations of the uncertainty function.

5.3.1 Successive Graph Approximation

Definition 5.1 (Graph) The graph of a function f : Rn → Rn is defined as the set

G(f) = {(x, f(x)) ∈ Rn × Rn| ∀x ∈ dom(f)}.

We use quadratic constraints (QCs) as our main tool to approximate the graph of a function.
A definition appropriate for our purposes is presented below.

Definition 5.2 (QC Satisfaction) A set A ⊂ R2n is said to satisfy the quadratic con-
straint specified by symmetric matrix Qc if[

x
1

]⊤
Qc

[
x
1

]
≤ 0, ∀x ∈ A.

The following proposition uses a QC to characterise a coarse approximation of the graph of
an Ld−Lipschitz function.

Proposition 5.1 The graph G(d) of the Ld−Lipschitz function d(·) inferred at any timestep
t, using the measurement (xi, d(xi)) for any 0 ≤ i < t, satisfies the QC specified by the matrix

Qd
L(xi) =

 −L2
dIn 0n×n L2

dxi
0n×n In −d(xi)

L2
d(xi)

⊤ −d⊤(xi) −L2
d(xi)

⊤xi + d⊤(xi)d(xi)

 ,

where In is the identity matrix of size n and d(xi) = xi+1 −Axi −Bui(xi).

Proof Since d(·) is Ld−Lipschitz, we have by definition for (xt, d(xt)) ∈ G(d) at any
timestep t, and (xi, d(xi)) measured at any i < t

∥(d(xt)− d(xi))∥2 ≤ L2
d∥(xt − xi)∥2,

⇐⇒

 xt
d(xt)
1

⊤

Qd
L(xi)

 xt
d(xt)
1

 ≤ 0, ∀(xt, d(xt)) ∈ G(d).

Definition 5.3 (Envelope) An envelope of a function f : Rn → Rn is defined as any set
Ef ⊆ Rn × Rn with the property

G(f) ⊆ Ef .
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Corollary 5.1 The set defined by

E(xi) = {(x, d) ∈ R2n :

xd
1

⊤

Qd
L(xi)

xd
1

 ≤ 0}

is an envelope containing the graph of Ld−Lipschitz function d(·) for all timesteps t ≥ 0,
after collecting measurements (xi, d(xi)) for any i = 0, 1, . . . , t− 1.

Lemma 5.1 Given a sequence of measurements {xi}t−1
i=0 obtained under dynamics (5.1), we

have

G(d) ⊆
t−1⋂
i=0

E(xi). (5.5)

Proof See Appendix.

5.3.2 Uncertainty Estimation at a Given State

We wish to obtain a set where the possible realizations of d(xt) can lie, which we denote by
D(xt), for any xt ∈ X . Using the collected tuple (xi, d(xi)) from any time instant i < t, we
can obtain a set based estimate of the range of possible values of d(xt), called the sampled
range set as,

S(xi, xt) := E(xi)
∣∣∣
x=xt

= {d :

xt

d
1

⊤

Qd
L(xi)

xt

d
1

 ≤ 0},

for any i < t. As we successively collect (xi, d(xi)) for i = {0, 1, . . . , t−1}, the set of possible
values of d(xt) is obtained and refined with intersection operations as

D(xt) =
t−1⋂
i=0

S(xi, xt) =
t−1⋂
i=0

E(xi)
∣∣∣
x=xt

, (5.6)

with the guarantee d(xt) ∈ D(xt) at any given timestep t ≥ 0. We further note that the set
D(xt) is convex, as it is an intersection of convex sets [24].

Proposition 5.2 Consider a specific state x̃, at time instants t1 and t2, with t1 < t2. Denote
them by x̃t1 and x̃t2 respectively. Then we have D(x̃t2) ⊆ D(x̃t1).

Proof Let xi be the measurements collected at any time instant i < t. From (5.6) we
see that for any given timestep t, the uncertainty domain D(x̃t) is obtained from successive
intersection operations of sampled range sets at x̃t, for all timesteps until t. Hence, D(x̃t2) =
(
⋂t1

i=0 S(xi, x̃t1))
⋂t2

i=t1
S(xi, x̃t2) = D(x̃t1)

⋂t2
i=t1
S(xi, x̃t2), implying D(x̃t2) ⊆ D(x̃t1).
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5.4 The Robust Adaptive MPC Formulation

The main challenges addressed in this section are:

1. Generalizing (5.6) to obtain set based uncertainty bounds along the prediction horizon
of the MPC problem (5.3),

2. Posing a tractable optimization problem to solve (5.3) with feasibility guarantees.

5.4.1 Uncertainty Sets Along the MPC Horizon

Recall the definition of Robust Successor States from Definition 2.9. We slightly modify this
definition to define the Robust Successor States from any set A under any choice of policy
π(·) as follows:

Succ(A,W) :={x+ ∈ X : ∃x ∈ A,∃u ∈ U ,∃w ∈W,

s.t., x+ = Ax + Bu + w},

with state constraints X defined in (5.2a). Given any state xt, an s-procedure based approach
to obtain an ellipsoidal outer approximation to D(xt), denoted by Ed(xt), is presented in [24,
Section V-A]. We then successively obtain ellipsoidal outer approximations for uncertainty
sets D(Xk|t), that is, Ed(Xk|t) ⊇ D(Xk|t), with

D(Xk|t) =
⋃

xk|t∈Xk|t

D(xk|t),

where

Xk|t ⊇ Succ(Xk−1|t, E
d(Xk−1|t)), ∀k = t + 1, t + 2, . . . , t + N, (5.7a)

Xt|t = xt, Xt+N |t = X . (5.7b)

Let sets Ed(Xk|t) for any k = {t, t + 1, . . . , t + N} be

Ed(Xk|t) := {d : (d− pdk|t)
⊤qdk|t(d− pdk|t) ≤ 1} =

[
d
1

]⊤
P̄ d
k|t

[
d
1

]
≤ 0, (5.8)

with P̄ d
k|t =

[
qdk|t −qdk|tpdk|t

−(pdk|t)
⊤qdk|t (pdk|t)

⊤qdk|t(p
d
k|t)− 1

]
, and center pdk|t ∈ Rn and positive definite

shape matrix qdk|t ∈ Sn
++ are decision variables. We consider parametrizations of sets Xk|t as

Xk|t := {x ∈ Rn : (x− pxk|t)
⊤qxk|t(x− pxk|t) ≤ 1} =

[
x
1

]⊤
P̄ x
k|t

[
x
1

]
≤ 0, (5.9)

where P̄ x
k|t =

[
qxk|t −qxk|tpxk|t

−(pxk|t)
⊤qxk|t (pxk|t)

⊤qxk|t(p
x
k|t)− 1

]
for any k = {t, t + 1, . . . , t + N}. Center

pxk|t ∈ Rn and shape matrix qxk|t ∈ Sn
++ can be successively chosen satisfying (5.7a), with

pxt|t = xt and qxt|t = diag(∞, . . . ,∞) ∈ Sn
++, if sets Ed(Xk|t) are found.
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Proposition 5.3 Using s-procedure, Ed(Xk|t) is obtained if the following holds true for some
scalars {ρkt , τ k0 , τ k1 , . . . , τ kt−1} ≥ 0 at each k = {t, t + 1, . . . , t + N}, for all timesteps t ≥ 0:

−ρkt qxk|t 0 ρkt q
x
k|tp

x
k|t

0 qdk|t −qdk|tpdk|t
ρkt (pxk|t)

⊤qxk|t −(pdk|t)
⊤qdk|t (pdk|t)

⊤qdk|t(p
d
k|t)− 1

+ρkt − ρkt (pxk|t)
⊤qxt (pxk|t)

−
t−1∑
i=0

τ ki Q
d
L(xi) ⪯ 0. (5.10)

Proof Consider any vector [x⊤d⊤1]⊤ ∈ R2n+1 such that x ∈ Ed(Xk|t) and [x⊤d⊤]⊤ ∈ G(d).
Given that (5.10) is feasible for each prediction instant k = {t+1, . . . , t+N} at any timestep
t, we multiply [x⊤d⊤1]⊤ on both sides of (5.10)

− ρkt

[
x
1

]⊤
P̄ x
k|t

[
x
1

]
+

[
d
1

]⊤
P̄ d
k|t

[
d
1

]
−

xd
1

⊤
t−1∑
i=0

τ ki Q
d
L(xi)

xd
1

 ≤ 0,

for some {ρkt , τ k0 , . . . , τ kt−1} ≥ 0. Now using Corollary 5.1, (5.9) and (5.12), we can infer[
d
1

]⊤
P̄ d
k|t

[
d
1

]
≤ 0.

We reformulate the feasibility problem (5.10) as a Semi-definite Program (SDP) in the Ap-
pendix. After finding Ed(Xk|t) using (5.10), to efficiently compute (5.7a), we use polytopic
outer approximations Pd(Xk|t) ⊇ Ed(Xk|t) instead of Ed(Xk|t), given by

Pd(Xk|t) := {d : Hd
k|td ≤ hd

k|t}, (5.11)

∀k = {t, t + 1, . . . , t + N}.

The choice of this polytope is designer specific.

Remark 5.1 Consider the state xk|t for prediction step k at timestep t in (5.3). From Propo-
sition 5.3 we know that d(xk|t) ∈ D(Xk|t) ⇒ d(xk|t) ∈ Pd(Xk|t), but d(xk|t) ∈ Pd(Xk|t) ⇏
d(xk|t) ∈ D(Xk|t). As a consequence, Pd(Xk|t) ⊈ Pd(Xk|t−1) is possible. Hence, for ensuring
recursive feasibility of solved MPC problem (detailed in Theorem 5.1), we impose constraints
in (5.3) robustly for all d(xk|t) satisfying

d(xk|t) ∈ Pd(Xk|t) ∩ Pd(Xk|t−1), (5.12)

∀k ∈ {t, . . . , t + N − 1},

with the initialization

{qd−1|−1, q
d
0|−1, . . . , q

d
N−2|−1} = {0n×n, . . . , 0n×n} ∈ Rn×Nn.
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5.4.2 Terminal Conditions

Terminal set XN is chosen as the maximal robust positive invariant set [93, 94] obtained with
a state feedback controller u = Kx, dynamics (5.1) and constraints (5.2), with properties

XN ⊆ {x|Hxx ≤ hx, HuKx ≤ hu},
(A + BK)x + d(x) ∈ XN ,

∀x ∈ XN , ∀d(x) ∈ Pd(X ).

(5.13)

Fixed point iteration algorithms to numerically compute (5.13) can be found in [6, 75].

5.4.3 Tractable MPC Problem

The tractable MPC optimization problem at timestep t is given by:

min
Mt,vt

t+N−1∑
k=t

(x̄⊤
k|tQx̄k|t + v⊤k|tRvk|t) + x̄⊤

t+N |tPN x̄t+N |t

s.t., xk+1|t = Axk|t + Buk|t(xk|t) + d(xk|t),

x̄k+1|t = Ax̄k|t + Bvk|t + d̄k|t,

uk|t(xk|t) =
k−1∑
l=t

Mk,l|td(xl|t) + vk|t,

Hxxk+1|t ≤ hx, Huuk|t(xk|t) ≤ hu,

∀d(xk|t) ∈ Pd(Xk|t) ∩ Pd(Xk|t−1),

∀k = {t, . . . , t + N − 1},
xt+N |t ∈ XN , ∀d(xN |t) ∈ Pd(X ),

xt|t = xt, x̄t|t = xt, d̄k|t ∈ Pd(Xk|t),

(5.14)

where the parameters {pdk|t, qdk|t} for k = {t, t+1, . . . , t+N}, that is, uncertainty containment

ellipses in (5.14), are computed before solving (5.14) at each timestep t, by finding solutions
of (5.10). Nominal uncertainty estimate d̄k|t is chosen as the Chebyshev center (i.e., center
of the largest volume ℓ2 ball in a set) of Pd(Xk|t). After solving (5.14) at timestep t, in
closed-loop we apply

ut(xt) = v⋆t|t, (5.15)

to system (5.1) and then resolve (5.14) at t + 1.

Remark 5.2 Terminal set XN might be empty initially, due to conservatism resulting from
a large volume of the set Pd(X ). As more data is collected and the graph of d(·) is refined
as in (5.5)–(5.6), Ed(X ), and so Pd(X ) is refined with new data by solving (5.10) (for only
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k = t + N , if data collected until instant t) with an updated Qd
L(·). This eventually results

in a nonempty XN . Once (5.14) is feasible with this XN , during the control process one may
further update and enlarge XN to lower conservatism of (5.14).

Algorithm 3 Robust Adaptive MPC with Additive Lipschitz Uncertainty

Initialize: Pd(X ) = Rn; j = 0;

begin exploration (offline)
1: while XN is empty do
2: Apply exploration inputs uj to (5.1). Collect (xj, d(xj)) at j + 1. Set j = j + 1;
3: Solve (5.10) with k = j + N to get Pd(X ). Compute XN from (5.13);
4: end while
end exploration set jmax ≡ t = 0.

begin control process (online)
5: while during control for t ≥ 0 do
6: Obtain Pd(Xk|t) for k = {t, t + 1, . . . , t + N − 1} from feasibility of (5.10);
7: if larger XN desired then Update Pd(X ) from (5.10) (with k = t + N). Update XN ;
8: end if
9: Solve (5.14) and apply MPC (5.15) to (5.1);
10: end while

Theorem 5.1 Let optimization problem (5.14) be feasible at timestep t = 0. Assume the
state dependent uncertainty d(·) bounds along the horizon are obtained using (5.10), (5.7),
and (5.11). Then, (5.14) remains feasible at all timesteps t ≥ 0, if the state xt is obtained
by applying the closed-loop MPC control law (5.15) to system (5.1).

Proof Let the optimization problem (5.14) be feasible at timestep t. Let us denote the
corresponding optimal input policies as [u⋆

t|t(·), u⋆
t+1|t(·), · · · , u⋆

t+N−1|t(·)]. Assume the MPC

controller u⋆
t|t is applied to (5.1) in closed-loop and Ed(Xk|t+1) for k = {t+1, t+2, . . . , t+N+

1} are obtained according to (5.10), (5.11) and (5.7). Consider a candidate policy sequence
at the next time instant as:

Πt+1(·) = [u⋆
t+1|t(·), . . . , u⋆

t+N−1|t(·), Kxt+N |t+1]. (5.16)

From (5.12) and Proposition 5.2 we conclude the sequence [u⋆
t+1|t(·), u⋆

t+2|t(·), . . . , u⋆
t+N−1|t(·)]

is an (N − 1) step feasible policy sequence at t + 1 (excluding terminal condition), since at
previous timestep t, it robustly satisfied all stage constraints in (5.14). With this feasible
policy sequence, xt+N |t+1 ∈ XN . From (5.13) we conclude that (5.16) ensures the satisfaction
of xt+N+1|t+1 ∈ XN .
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5.5 Numerical Example

In this section we demonstrate both the aspects of exploration and robust control of our
robust adaptive MPC, highlighted in Algorithm 3. We wish to compute feasible solutions to
the following infinite horizon control problem

min
u0,u1(·),...

∑
t≥0

x̄⊤
t Qx̄t + u⊤

t (x̄t)Rut(x̄t)

s.t., xt+1 = Axt + But(xt) + 0.05

[
tan−1(xt(1))

xt(2)

]
−1
−1
−4

 ≤ [ xt

ut(xt)

]
≤

1.5
3
1

 ,

∀d(xt) ∈ D(xt),
x0 = x̄0 = xS, t = 0, 1, . . . ,

(5.17)

with initial state xS = [−1, 2]⊤, where

A =

[
1.2 1.5
0 1.3

]
, B = [0, 1]⊤.

Algorithm 3 is implemented with a control horizon of N = 3, and the feedback gain
K in (5.13) is chosen to be the optimal LQR gain for system x+ = (A + BK)x with
Q = 10I2 and R = 2. The source code is available in the repository https://github.com

/monimoyb/AMPC StateDepUncertainty.

5.5.1 Exploration for Uncertainty Learning

We initialize Pd(X ) = Rn, resulting in an empty terminal set XN in (5.14). In this section,
we present the ability of Algorithm 3 to explore the state-space with randomly generated
inputs uj ∼ N (0, 1), in order to eventually obtain a nonempty XN for starting the control
process. Let the time indices during exploration phase be denoted by j. Fig. 5.1 shows the
sets Ed(x) at four fixed query points

xj = {[−1, 2]⊤, [1, 1]⊤, [−1, 1]⊤, [−2,−1]⊤},

as data is collected until time instant j. This can be obtained from the feasibility of (5.10)
(with k = j). As j increases, Ed(x) for each x is contained in the successive intersections of
ellipsoids, from (5.6). The intersection shrinks for all points, as claimed in Proposition 5.2.
This is seen in Fig. 5.1, which indicates improved information of D(x) with added data, for
all x ∈ X . At jmax = 30, a nonempty XN is obtained in Fig. 5.2. This is when we start the
control process and set timestep t = 0.

https://github.com/monimoyb/AMPC_StateDepUncertainty
https://github.com/monimoyb/AMPC_StateDepUncertainty


CHAPTER 5. LEARNING NON-PARAMETRIC MODEL UNCERTAINTY IN
ROBUST MPC 80

-0.0396 -0.0392 -0.039

0.0998

0.1

0.1002

0.0388 0.0392 0.0396

0.0496

0.0498

0.05

-0.1 0 0.2
-0.1

0.1

0.2

-0.2 0 0.2

-0.1

0

0.2

Figure 5.1: Uncertainty bound D(x) estimation at query points with successive intersection
of ellipses obtained from measured data. Star (⋆) denotes the true value of d(x), lying in the
intersection.

5.5.2 Robust Constraint Satisfaction

If the MPC problem (5.14) is feasible for parameters defined in (5.17), it ensures robust
satisfaction of constraints in (5.17) for all timesteps t > 0. This is highlighted with a
realized trajectory in Fig. 5.3. Furthermore, the terminal set is recomputed and improved at
a t > 0 with (5.13), having refined Pd(X ) estimation (rectangles with sides of length equal
to major and minor axes of Ed(·)) from (5.10) (with k = t + N). The set grows, as seen in
Fig. 5.2, resulting in lesser conservatism of (5.14).

5.6 Chapter Summary

We proposed a robust adaptive MPC framework to achieve robust satisfaction of state and
input constraints for uncertain linear time-invariant systems. The system uncertainty is
additive, and assumed state dependent and globally Lipschitz. An envelope containing the
uncertainty range is constructed with Quadratic Constraints (QCs), and is refined with data
as the system explores the state-space. Upon collection of sufficient data, the system is able
to solve a robust MPC problem for all times from a given initial state. The algorithm further
reduces its conservatism by incorporating online model adaptation during control.



CHAPTER 5. LEARNING NON-PARAMETRIC MODEL UNCERTAINTY IN
ROBUST MPC 81

Figure 5.2: Terminal set construction. The set grows as estimation of d(x) is improved from
measurements.
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Figure 5.3: State trajectory with robust constraint satisfaction.
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Appendix

Proof of Lemma 5.1

For any (x, d(x)) ∈ G(d), we have from the Lipschitz inequality,

∥d(x)− d(y)∥ ≤ Ld∥x− y∥, ∀y ∈ X ,

and choosing y = xi for i = 0, 1, . . . t− 1 in the above inequality, using Corollary 5.1 yields,

(x, d(x)) ∈ E(xi), ∀i = 0, 1, . . . t− 1,

⇒ (x, d(x)) ∈
t−1⋂
i=0

E(xi).

Since the above is true for any (x, d(x)) ∈ G(d), we can conclude that

G(d) ⊆
t−1⋂
i=0

E(xi).

SDP for Solving (5.10)

For all k = {t + 1, . . . , t + N}, along MPC horizon, let us use the variable nomenclature

p(Xk|t) = −ρkt qxk|t+
t−1∑
i=0

τ ki L
2
dIn, q(Xk|t) = ρkt (qxk|t)

⊤pxk|t−
t−1∑
i=0

τ ki L
2
dxi, r(Xk|t) = −

t−1∑
i=0

τ ki In, s(Xk|t) =

t−1∑
i=0

τ ki d(xi), and t(Xk|t) = ρkt

(
1−(pxk|t)

⊤qxk|tp
x
k|t

)
−

t−1∑
i=0

τ ki

(
−L2

dx
⊤
i xi+d⊤(xi)d(xi)

)
−1. Finding

the minimum trace ellipsoid satisfying (5.10) is posed as an SDP [45, Section 11.4] as:

min
ξ

trace((qdk|t)
−1)

s.t.,


p(Xk|t) 0 q(Xk|t) 0

0 r(Xk|t) s(Xk|t) −In
q⊤(Xk|t) s⊤(Xk|t) t(Xk|t) (pdk|t)

⊤

0 −In pdk|t −(qdk|t)
−1

 ⪯ 0,

ρkt ≥ 0, τ ki ≥ 0, qdk|t ≻ 0, ∀i = {0, 1, . . . , t− 1},

with ξ = {qdk|t, pdk|t, ρkt , τ k0 , . . . , τ kt−1} and 0 ∈ Rn×n.
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Chapter 6

Learning Parametric Model
Uncertainty in Robust MPC

This chapter is based on the published work [31]. In this chapter, we propose a unified and
tractable adaptive MPC framework for linear systems of the form (M2) in Chapter 2. We
specifically focus on systems (2.15)-(2.16). However, as a first simplified step, we consider a
linear time-invariant system with known system matrices (A,B) that is subject to bounded
additive uncertainty, which is composed of: (i) a disturbance, and (ii) an unknown, but
bounded time-varying parametric offset. The presence of such an unknown offset is common
in various practical systems, e.g., the steering system of a vehicle [95]. We learn and refine
the feasible domain of this parameter using collected data. The results are then extended
for systems of the form (2.15)-(2.16) in Section 6.7.

6.1 Summary of Contributions

Given an initial estimate of the additive offset’s domain, we iteratively refine it using a Set
Membership Method based approach [22], as new data becomes available. In order to design
an MPC controller with the unknown offset, we make sure the constraints on states and
inputs are satisfied for all feasible offsets at a time instant. Here a “feasible offset” is an
offset belonging to the current estimation of the offset’s domain. As the feasible offset domain
is updated with data progressively, we obtain an on-line adaptation in the MPC algorithm.
Furthermore, the offset uncertainty present in the system is considered time-varying and its
maximum rate of change is assumed bounded and known [96, 97]. The main contributions
of this chapter can be summarized as follows:

• We propose a Set Membership Method based model adaptation algorithm to estimate
and update the time-varying offset uncertainty, using a so-called Feasible Parameter
Set. The model adaptation algorithm guarantees containment of the true offset uncer-
tainty in the Feasible Parameter Set at all times. This extends the works of [21, 22,
97, 12] to time-varying model uncertainties in state-space.



CHAPTER 6. LEARNING PARAMETRIC MODEL UNCERTAINTY IN ROBUST
MPC 84

• We propose an adaptive MPC algorithm for systems perturbed by such an additive
time-varying offset uncertainty and a disturbance. The framework handles robust con-
straints on system states with hard input constraints, while using data to progressively
obtain offset uncertainty adaptation. With appropriately chosen terminal conditions,
we guarantee recursive feasibility and Input to State Stability (ISS) of the proposed
adaptive MPC algorithm, which is an addition to the work of [7, 98, 8, 9]. Compared
to [99, 100, 96], the computation of terminal invariant set is simpler, as we focus on
linear systems. Moreover, as opposed to [20, 101, 8], we utilize the model adaptation
information in real-time for modifying the imposed constraints in the MPC problem.

• We extend our results to linear parameter varying systems of the form (2.15)-(2.16).
Merging the parameter adaptation algorithm with the robust MPC from Chapter 3 we
demonstrate computational efficiency of the adaptive MPC and successive enlargement
of the ROA in a numerical example.

6.2 Problem Formulation

Before considering parametric uncertainty in models of the form (M2) shown in Chapter 2,
we consider a simplified case of an uncertain linear time-invariant system of the form:

xt+1 = Axt + But + Eθat + wt, (6.1)

where xt ∈ Rn is the state at timestep t, ut ∈ Rm is the input, and A and B are known
system matrices of appropriate dimensions. At each timestep t, the system is affected by
disturbance wt ∈ W ⊂ Rn. For simplicity, W is assumed to be a hyperrectangle containing
zero as:

W = {w : −w̄ ≤ w ≤ w̄}. (6.2)

We also consider the presence of θat ∈ Rp, a bounded, time-varying offset uncertainty, which
enters the system through the constant known matrix E ∈ Rn×p.

Assumption 6.1 We assume the true offset θat to be time-varying. The bounds on the rate
of change of this offset are known and given by θat − θat−1 = ∆θat ∈ P, for all t ≥ 0, where
the set

P = {∆θa ∈ Rp : Kθ∆θa ≤ lθ, Kθ ∈ Rrθ×p, lθ ∈ Rrθ}. (6.3)

Assumption 6.2 We also assume that the true offset θat lies within a known and nonempty
polytope Ω at all times, which contains zero in its interior. That is,

θat ∈ Ω, ∀t ≥ 0, where, Ω = {θ : Hθ
0θ ≤ hθ

0}, (6.4)

for matrices Hθ
0 ∈ Rr0×p and hθ

0 ∈ Rr0.
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We assume that the offset θat is not known exactly. Therefore, we propose a parameter
estimation framework to refine our knowledge of θat as more data is collected, thus introducing
adaptation.

6.3 Parametric Uncertainty Adaptation

The domain of feasible offset θat is denoted by Θt at timestep t, and is called the Feasible
Parameter Set [22]. The goal is to ensure that constraints (6.8a) are satisfied for all θt ∈ Θt.
This guarantees constraint satisfaction in presence of the true unknown offset θat ∈ Θt. Our
initial estimate for Θ0 is Ω from Assumption 6.2, i.e., Θ0 = Ω. The Feasible Parameter Set is
then adapted at every timestep as new measurements are available, utilizing Assumption 6.1
and Assumption 6.2. Based on only the measurements at timestep t, we denote the potential
domain of the feasible offset at timestep t, St

t as:

St
t = {θt ∈ Rp : −w̄ +

¯
ν ≤ −xt + Axt−1 + But−1 + Eθt ≤ w̄ + ν̄},

where bounds w̄ are given by (6.2), and from (6.3), we apply:

¯
ν = min

ν
{Eν : Kθν ≤ lθ},

ν̄ = max
ν
{Eν : Kθν ≤ lθ}.

(6.5)

Now, for any q ≤ t, the feasible set of offsets for timestep t, based on information until
timestep q, is obtained as:

Sq
t = {θt ∈ Rp : −w̄ + (t− q + 1)

¯
ν ≤ −xq + Axq−1 + Buq−1 + Eθt ≤ w̄ + (t− q + 1)ν̄},

Using all the above information until timestep t, we obtain the Feasible Parameter Set at
timestep t, as:

Θt = Ω ∩
( ⋂
q=1,2,...,t

Sq
t

)
.

The above Feasible Parameter Set at timestep t can be written as:

Θt = {θt ∈ Rp : Hθ
t θt ≤ hθ

t}, (6.6)

where Hθ
t ∈ Rrt×p and hθ

t ∈ Rrt , rt = r0+2t is the number of facets in the Feasible Parameter
Set polytope Θt at any given t. As new data is obtained at the next timestep (t + 1), it can
be proven that [97]:

Hθ
t+1 = [(Hθ

t )
⊤,−E⊤,+E⊤]⊤ ∈ Rrt+1×p,

hθ
t+1 =

 hθ
t + ∆hθ

t

−xt+1 + Axt + But + w̄ −
¯
ν

xt+1 − Axt −But + w̄ + ν̄

 ∈ Rrt+1 ,

∆hθ
t =

[
0⊤
r0
,−

¯
ν⊤, ν̄⊤, . . . ,−

¯
ν⊤, ν̄⊤]⊤ ∈ Rrt .

(6.7)
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Proposition 6.1 Assume that (6.2) and Assumption 6.1 hold. Then the Feasible Parameter
Set obtained using (6.6)–(6.7) is nonempty and contains the true offset at all times, i.e.,
Θt ̸= ∅ and θat ∈ Θt for all t ≥ 0.

Proof See Appendix.

6.4 The Robust Adaptive MPC

In this section we present formulation of the proposed robust adaptive MPC algorithm. We
study robust constraints on states and hard constraints on inputs. We define C ∈ Rs×n,
G ∈ Rs×n, D ∈ Rs×m, b ∈ Rs. We can then write the constraints ∀t ≥ 0 as:

Z := {(x, u) : Cx + Du ≤ b}. (6.8a)

We assume the above state and input constraint sets are compact and they contain the
origin. This assumption is key for the stability proof in Section 6.5.

6.4.1 Robust MPC Problem

The MPC controller has to solve the following finite horizon robust optimal control problem
at each timestep:

min
Ut(·)

t+N−1∑
k=t

ℓ(x̄k|t, uk|t(x̄k|t)) + Q(x̄t+N |t)

s.t., xk+1|t = Axk|t + Buk|t(xk|t) + Eθk|t + wk|t,

x̄k+1|t = Ax̄k|t + Buk|t(x̄k|t) + Eθ̄t,

Cxk|t + Duk|t(xk|t) ≤ b,

xt+N |t ∈ XN ,

∀θk|t ∈ Θk|t, ∀wk|t ∈W,

∀k = {t, . . . , t + N − 1},
xt|t = xt, x̄t|t = xt, θ̄t ∈ Ω,

(6.9)

with Ut(·) = {ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}, where xt is the measured state at timestep t,
xk|t is the prediction of state at timestep k, obtained by applying predicted input poli-
cies {ut|t, . . . , uk−1|t(xk−1|t)} to system (6.1), and {x̄k|t, uk|t(x̄k|t)} denote the disturbance-free
nominal state and corresponding input respectively. We use a nominal point estimate of
offset, θ̄t ∈ Ω to propagate the nominal trajectory. The predicted Feasible Parameter Sets
Θk|t are elaborated in the following section. Notice, the above minimizes the nominal cost,
comprising of positive definite stage cost ℓ(·, ·) and terminal cost Q(·) functions. The termi-
nal constraint XN and terminal cost Q(·) are introduced to ensure feasibility and stability
properties of the MPC controller [5, 6], as we highlight in Section 6.5.
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Remark 6.1 One may design point estimates θ̄t of the offset for performance improvement,
i.e., lower cost in (6.9). Following [92], one option is to construct the nominal offset estimate
θ̄t recursively with Least Mean Square filter as

θ̃t = θ̄t−1 + µE⊤(xt − x̄t|t−1), (6.10a)

θ̄t = ProjΩ(θ̃t), (6.10b)

where Proj(·) denotes the Euclidean projection operator, and scalar µ ∈ R can be chosen
such that 1

µ
> ∥E∥2.

Proposition 6.2 If supt≥0 ∥xt∥ <∞ and supt≥0 ∥ut∥ <∞, then θ̄t ∈ Ω and

sup
m̃∈N,wt∈W,θ̄0∈Ω

m̃∑
t=0

∥x̃t+1|t∥2

1
µ
∥θ̄0 − θa0∥2 +

m̃∑
t=0

∥wt∥2
≤ 1, (6.11)

where x̃t+1|t = Axt + But − x̄t+1|t is the one step prediction error, ignoring the effect of wt

in closed-loop, and N denotes the set of natural numbers.

Proof See Appendix.

With bound (6.11) on prediction error, finite gain ℓ2 stability of the resulting MPC algorithm
can be trivially proven by following [92, Theorem 14], [75, Theorem 3.2]. However, since
we only focus on the robust constraint satisfaction aspect of (6.9), we will use the nominal
offset estimate θ̄t = 0p×1 for all t ≥ 0 in the subsequent sections.

6.4.2 Predicted Feasible Parameter Sets

These Predicted Feasible Parameter Sets are constructed along an MPC horizon at timestep
t, when the measurement at next timestep (t + 1) is yet to be available.

Definition 6.1 (Predicted Feasible Parameter Sets) The Predicted Feasible Parameter Sets
at any timestep t, are the predicted feasible domains of the true offset θa over a prediction
horizon of length N , based on the information until timestep t. These sets are denoted as
Θk|t = {θ ∈ Rp : Hθ

k|tθ ≤ hθ
k|t} for all k ∈ {t, t + 1, . . . , t + N − 2}, where

Hθ
k+1|t = Hθ

k|t ∈ Rrt×p, (6.12a)

hθ
k+1|t = hθ

k|t +
[
0⊤
r0
,−

¯
ν⊤, ν̄⊤, ..,−

¯
ν⊤, ν̄⊤]⊤ , (6.12b)

with the terminal condition,

Θt+N |t = Ω, (6.13)

where Ω is defined in Assumption 6.2.
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In principle, the Predicted Feasible Parameter Sets in (6.12) are formed after measuring xt

at any timestep t, and expanding the obtained (from (6.6)) Feasible Parameter Set Θt over
the entire horizon of length N , incorporating parameter rate bounds (6.3).

Proposition 6.3 The Predicted Feasible Parameter Sets satisfy the property Θk|t+1 ⊆ Θk|t,
for all k ∈ {t + 1, t + 2, . . . , t + N}.

Proof See Appendix.

6.4.3 Control Policy

We restrict ourselves to the affine disturbance feedback parametrization, as per (P2) in
Chapter 2. For all k ∈ {t, . . . , t + N − 1} over the MPC horizon (of length N), the control
policy is given as:

uk|t(xk|t) =
k−1∑
j=t

Mk,j|t(wj|t + Eθj|t) + vk|t, (6.14)

where Mk|t are the planned feedback gains at timestep t and vk|t are the auxiliary inputs.
Let us define wt = [w⊤

t|t, . . . , w
⊤
t+N−1|t]

⊤ ∈ RnN , θθθt = [θ⊤t|t, . . . , θ
⊤
t+N−1|t]

⊤ ∈ RpN and E =

diag(E,E, . . . , E) ∈ RnN×pN . Then the sequence of predicted inputs from (6.14) can be
stacked together and compactly written as ut = Mt(wt +Eθθθt) +vt at any timestep t, where
Mt ∈ RmN×nN and vt ∈ RmN are shown in (2.28).

6.4.4 Tractable Reformulation

Using Section 6.4.2 and Section 6.4.3, we solve the following tractable reformulation of robust
MPC problem (6.9):

J⋆
R(t, xt) :=

min
Mt,vt

t+N−1∑
k=t

ℓ(x̄k|t, vk|t) + Q(x̄t+N |t)

s.t., xk+1|t = Axk|t + Buk|t + Eθk|t + wk|t,

x̄k+1|t = Ax̄k|t + Bvk|t,

uk|t =
k−1∑
j=t

Mk,j|t(wj|t + Eθj|t) + vk|t,

Cxk|t + Duk|t ≤ b,

xt+N |t ∈ XN ,

∀θk|t ∈ Θk|t, ∀wk|t ∈W,

∀k = {t, . . . , t + N − 1},
xt|t = xt, x̄t|t = xt.

(6.15)
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We use state feedback to construct terminal set XN = {x ∈ Rn : YRx ≤ zR, YR ∈
RrR×n, zR ∈ RrR}, which is the maximal robust positive invariant set obtained with a
state feedback controller u = Kx, dynamics (6.1) and constraints (6.8a). This set has the
properties:

XN ⊆ {x|(x,Kx) ∈ Z},
(A + BK)x + w + Eθ ∈ XN ,

∀x ∈ XN , ∀w ∈W, ∀θ ∈ Ω.

(6.16)

Notice that (6.15) is a time-varying convex optimization problem with ∞−number of con-
straints. An efficient way to reformulate (6.15) is shown in the Appendix. After solving
(6.15), in closed-loop, we apply,

ut(xt) = u⋆
t|t = v⋆t|t (6.17)

to system (6.1). We then resolve the problem again at the next (t+ 1)-th timestep, yielding
a receding horizon strategy.

Algorithm 4 Robust Adaptive MPC with Time-Varying Parametric Additive Uncertainty

1: Set t = 0; initialize Feasible Parameter Set Θ0 = Ω;
2: Compute the parameter rate of change bounds

¯
ν and ν̄ from (6.5);

3: Form Predicted Feasible Parameter Sets Θk|t for k = {t, . . . , t + N} using (6.12) and
(6.13);

4: Compute v⋆t|t from (6.15) and apply ut = v⋆t|t to (6.1);

5: Obtain xt+1, and update Θt+1 as given in (6.7);
6: Set t = t + 1, and return to step 3.

6.5 Feasibility and Stability Guarantees

In this section we discuss feasibility and stability properties of Algorithm 4.

Assumption 6.3 The stage cost ℓ(·, ·) in (6.15) is chosen as ℓ(x̄k|t, vk|t) = x̄⊤
k|tPx̄k|t +

v⊤k|tRvk|t for some P = P⊤ ≻ 0 and R = R⊤ ≻ 0, which is continuous and positive def-
inite.

Assumption 6.4 The terminal cost Q(·) in (6.15) is chosen as a Lyapunov function in the
terminal set XN for the nominal closed-loop system x+ = (A + BK)x, for all x̄ ∈ XN . That
is, Q((A + BK)x)−Q(x) ≤ −x⊤(P + K⊤RK)x.

6.5.1 Feasibility

Theorem 6.1 Let Assumptions 6.1-6.2 hold and consider the robust optimization problem
(6.15). Let this optimization problem be feasible at timestep t = 0 with Θ0 = Ω with Ω
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defined in Assumption 6.2. Assume the Feasible Parameter Set Θt in (6.15) is adapted based
on (6.6)-(6.7). Then, (6.15) remains feasible at all timesteps t ≥ 0, if the state xt is obtained
by applying the closed-loop MPC control law (6.15)-(6.17) to system (6.1).

Proof Let the optimization problem (6.15) be feasible at timestep t. Let us denote the corre-
sponding optimal input policies as [u⋆

t|t, u
⋆
t+1|t(·), . . . , u⋆

t+N−1|t(·)]. Assume the MPC controller

u⋆
t|t is applied to (6.1) in closed-loop and Θt+1 is updated according to (6.7). Consider a can-

didate policy sequence at the next timestep as:

Ut+1(·) = [u⋆
t+1|t(·), . . . , u⋆

t+N−1|t(·), Kxt+N |t+1]. (6.18)

We observe the following two facts: (i) from Proposition 6.3, Θk|t+1 ⊆ Θk|t, for all k ∈
{t + 1, t + 2, . . . , t + N}, and (ii) from (6.16), terminal set XN is robust positive invariant
for all w ∈ W, and for all θ ∈ Ω, with state feedback controller Kx. Using (i) we conclude
[u⋆

t+1|t(·), u⋆
t+2|t(·), . . . , u⋆

t+N−1|t(·)] is an (N − 1) step feasible sequence at (t + 1) (excluding

terminal condition), since at previous timestep t, it robustly satisfied all stage constraints
in (6.15) for Θk|t, for all k ∈ {t + 1, t + 2, . . . , t + N − 1}. With this feasible sequence,
xt+N |t+1 ∈ XN . Using (ii) we conclude, appending the (N − 1) step feasible sequence with
Kxt+N |t+1 ensures xt+N+1|t+1 ∈ XN , satisfying the terminal constraint at (t + 1).

6.5.2 Input to State Stability

Recall Definition 2.8. We denote the N -step robust controllable set to the terminal set XN

under the MPC policy (6.17) by X0, which is compact and contains the origin.

Definition 6.2 (Input to State Stability [102]): Consider system (6.1) in closed-loop with
the MPC controller (6.17), obtained from (6.6)-(6.7)-(6.15), given by

xt+1 = Axt + Bv⋆t|t + Eθat + wt, ∀t ≥ 0. (6.19)

The origin is defined as Input to State Stable (ISS), with a region of attraction X0 ⊂ Rn,
if there exists K∞ functions α1(·), α2(·), α3(·), a K function σ(·) and a function V (·, ·) :
R×X0 7→ R≥0 continuous at the origin such that,

α1(∥xt∥) ≤ V (t, x) ≤ α2(∥xt∥), ∀x ∈ X0, ∀t ≥ 0,

V (t + 1, xt+1)− V (t, xt) ≤ −α3(∥xt∥) + σ(∥wi + Eθai ∥L∞),

where ∥ · ∥ denotes the Euclidean norm and signal norm ∥di∥L∞ = supi={0,1,...,t} ∥di∥.

Theorem 6.2 Let Assumptions 6.1-6.4 hold. Then, the optimal cost of (6.15), i.e., J⋆
R(·, ·)

is an ISS Lyapunov function for closed-loop system (6.19).



CHAPTER 6. LEARNING PARAMETRIC MODEL UNCERTAINTY IN ROBUST
MPC 91

Proof From Assumption 6.3 we know that at timestep t, α1(∥xt∥2) ≤ ℓ(xt, 0) ≤ J⋆
R(t, xt)

for some α1(·) ∈ K∞. Moreover, since (6.15) is a parametric QP, J⋆
R(t, 0) = 0, and XR

0

is compact, using similar arguments as [55, Theorem 23], we know J⋆
R(t, xt) ≤ α2(∥xt∥2)

for some α2(·) ∈ K∞. Note that as opposed to [55], our α2(·) is not obtained via Lipschitz
continuity of the value function, since in our case, V (t, x) is assumed continuous only at the
origin. The existence of α2(·) is ensured by the compactness of the constraint sets in (6.8).
Now say

J⋆
R(t, xt) =

t+N−1∑
k=t

ℓ(x̄⋆
k|t, v

⋆
k|t) + Q(x̄⋆

t+N |t) = ℓ(x̄⋆
t|t, v

⋆
t|t) + q(x̄⋆

t+1|t), (6.20)

where [x̄⋆
t|t, . . . , x̄

⋆
t+N |t] is the optimal predicted nominal trajectory under the optimal nominal

input sequence
U⋆
t (x̄t) = [u⋆

t|t(x̄t|t), . . . , u
⋆
t+N−1|t(x̄t+N−1|t)]

applied to nominal dynamics in (6.15), and q(x̄⋆
t+1|t) provides the total cost from (t + 1) to

(t + N) under policy U⋆
t (x̄t). We proved that (6.18) is a feasible policy sequence for (6.15)

at timestep (t + 1), where xt+1 = x̄t+1 is obtained with (6.19). With this feasible sequence,
the optimal cost of (6.15) at (t + 1) is bounded as

J⋆
R(t + 1, xt+1) ≤

t+N−1∑
k=t+1

ℓ(x̄k|t+1, v
⋆
k|t) + Q(x̄t+N |t+1) = q(x̄t+1|t+1), (6.21)

where we have used Assumption 6.4 and the feasible nominal trajectory

x̄k|t+1 = Ak−t−1(Axt + Bv⋆t|t + wt + Eθat ) +
k−1∑
i=t+1

Ak−1−iBu⋆
i|t(x̄k|t+1),

for k = {t + 2, . . . , t + N}. Moreover, we know

x̄t+1|t+1 = x̄⋆
t+1|t + wt + Eθat . (6.22)

Combining (6.20)–(6.22) we obtain,

J⋆
R(t + 1, xt+1)− J⋆

R(t, xt) = q(x̄⋆
t+1|t + wt + Eθat )− ℓ(x̄⋆

t|t, v
⋆
t|t)− q(x̄⋆

t+1|t),

≤ −ℓ(x̄⋆
t|t, v

⋆
t|t) + Lq∥wt + Eθat ∥,

≤ −ℓ(x̄⋆
t|t, 0) + Lq∥wt + Eθat ∥,

≤ −α3(∥xt∥2) + Lq∥wi + Eθai ∥L∞ , with α1(·) = α3(·),

where q(·) is Lq-Lipschitz, as q(·) is a sum of quadratic terms in compact (6.8a). Hence the
origin of (6.19) is ISS.



CHAPTER 6. LEARNING PARAMETRIC MODEL UNCERTAINTY IN ROBUST
MPC 92

6.6 Numerical Simulations

We consider the following infinite horizon optimal control problem with unknown offset θat
that satisfies Assumption 6.1 and Assumption-6.2:

min
u0,u1(·),...

∑
t≥0

∥x̄t∥22 + 10 ∥ūt∥22

s.t., xt+1 = Axt + But(xt) + Eθat + wt,
x̄t+1 = Ax̄t + Būt + Eθ̄t,[
−5
−2.5

]
≤ xt ≤

[
5

2.5

]
,

− 4 ≤ ut(xt) ≤ 4,

∀wt ∈W, ∀θt ∈ Θt,
x0 = xS, x̄0 = xS,
t = 0, 1, . . . ,

(6.23)

where

A =

[
1.2 1.5
0 1.3

]
, B = [0, 1]⊤,

and Feasible Parameter Set Θt is updated based on (6.6)–(6.7) for all timesteps t ≥ 0. The
disturbance wt ∈W = {w ∈ R2 : ||w||∞ ≤ 0.1}. The initial Feasible Parameter Set is defined
as

Ω = Θ0 = {θ ∈ R2 : [−0.5,−0.5]⊤ ≤ θ ≤ [0.5, 0.5]⊤}.
The true offset parameter θat is time-varying, with rate bounded by the polytope

P := [−0.05,−0.05]⊤ ≤ ∆θat ≤ [0.05, 0.05]⊤.

For numerical simulations, we generate a true offset that starts from

θa0 = [0.49, 0.49]⊤,

and has a rate of change
∆θat = [−0.0395,−0.0395]⊤,

as shown in Fig. 6.1. The matrix E ∈ R2×2 is picked as the identity matrix. The robust
adaptive MPC in (6.15)-(6.17) is implemented with a control horizon of N = 6, and the
feedback gain K in (6.16) is chosen to be the optimal LQR gain for system x+ = Ax+Bu with
parameters QLQR = I2 and RLQR = 10. The initial state is chosen as xS = [−3.21,−0.25]⊤.

Fig. 6.1 shows the recursive adaptation of the Feasible Parameter Set and time evolution
of the true offset θat . The true parameter lies within Ω, and is always captured by Θt at all
timesteps. Fig. 6.2 shows the Monte Carlo simulations for 100 different sampled trajectories
with our robust adaptive MPC, which highlights satisfaction of constraints in (6.23) robustly
for all feasible offset uncertainties θt ∈ Θt and disturbances wt ∈ W, for all t ≥ 0. Such
robust satisfaction of constraints is crucial for safety critical applications with an uncertain
system.
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Figure 6.1: Feasible Parameter Set evolution
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Figure 6.2: Monte Carlo simulations depicting robust constraint satisfaction

6.7 The Extension to Parametric Uncertainty in an

LPV Model

Recall (2.15) and (2.16) and to be consistent with the notations in this chapter we denote
θtrt = θat . That is, we consider a specific case of model (M2) in Chapter 2 of the form:

xt+1 = A(θat )xt + B(θat )ut + wt, wt ∈W,
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where θat ∈ Rp is a time-varying parameter unknown to the control designer, which decides
the values of the system matrices as:

(A(θat ), B(θat )) = (A0, B0) +

p∑
i=1

θai,t(Ai, Bi).

These LPV models for robust adaptive MPC synthesis are considered in works such as [12,
13, 103]. Matrices (Ai, Bi) for i = 0, 1, . . . , p are known. Parameter θat ∈ Ω, with ∆θat ∈ P
for all t ≥ 0. An algorithm similar to the one in Section 6.3 is presented in [12] for adaptation
of the feasible parameter sets Θt with collected data. A robust MPC algorithm presented in
Chapter 3 or Chapter 4 can then be used for control design. All the guarantees of recursive
feasibility and input to state stability follow.

6.7.1 ROA Enlargement

For the sake of simplicity and WLOG, consider a system defined by the following with a
time-invariant parameter, i.e., θat = θa for all t ≥ 0:

Ā =

[
0.5 0.2
−0.1 0.6

]
, B̄ =

[
0

0.5

]
,

θa =
[
0.2 0.8 0.05

]⊤
, Θ0 = {θ :

−1.5
−1.5
−1.5

 ≤ θ ≤

1.5
1.5
1.5

},
with matrices

A1 =

[
0.042 0
0.072 0.03

]
, B1 =

[
0.01

0

]
,

A2 =

[
0 0
0 0

]
, B2 =

[
0.02
0.01

]
,

A3 =

[
0.015 0.019
0.009 0.035

]
, B3 =

[
0
0

]
,

subject to box state and input constraints

X = {x :

[
−1
−1

]
≤ x ≤

[
1
1

]
},

U = {x : −1 ≤ x ≤ 1},

and a disturbance ∥w∥∞ ≤ 0.2. We use the parameter adaptation algorithm of [12, Sec-
tion 3.1] and the MPC algorithm of Chapter 3 with N = 3, Q = 10, R = 1 and a feedback
gain K satisfying Assumption 3.1 chosen as K = −[0.85, 1.5].
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(a) Θ0 (b) Θ1

(c) Θ2 (d) Θ50

Figure 6.3: Evolution of the Feasible Parameter Sets. The Feasible Parameter Sets are
shrunk and refined over time with collected state-input data from the system.

From Fig. 6.3 we see parameter adaptation altering the volume of the Feasible Parameter
Sets as time passes. The Feasible Parameter Set Θ0 is the largest in volume and is shrunk
at each timestep. The effect of this lowering in the domain of model uncertainty is seen in
terms of the controller properties in Fig. 6.4, where we see an increase in the volume of the
ROA. The enlargement of the ROA seen in Fig. 6.4 indicates that the robust adaptive MPC
lowers its conservatism due to the refinement of the Feasible Parameter Sets over time.

6.7.2 Control Computation Times

Table 6.1 further shows the computational efficiency of the algorithm. The adaptive robust
MPC obtains similar online control computation times compared to the robust MPC of
Chapter 3. Thus, the ROA results from Fig. 6.4 and the computation time values from
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(a) Initial approx. ROA

(b) Final approx. ROA

Figure 6.4: Evolution of the approx. ROA. The approx. ROA grows over time, as the shrink-
ing of the Feasible Parameter Sets Θt over time reduces the conservatism of the controller.

Table 6.1 suggests the potential of utilizing tools from Chapter 3 and Chapter 4 for adaptive
MPC applications and obtaining an edge in balancing the computational complexity vs
conservatism trade-off over counterpart algorithms such as [12, 13, 103, 14].
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Table 6.1: Avg. online computation times [sec] using the robust MPC from Chapter 3.
Values are obtained with a MacBook Pro 16inch, 2019, 2.3 GHz 8-Core Intel Core i9, 16 GB
memory, using the Gurobi solver.

Horizon Robust Adaptive MPC for LPV Systems
Nt = 1 0.0033
Nt = 2 0.0026
Nt = 3 0.0038

6.8 Chapter Summary

We first proposed a robust adaptive MPC framework for uncertain linear time-invariant
systems, where we learn a bounded and time-varying additive offset-parameter uncertainty
in the model with available data. We proved recursive feasibility and input to state stability
of the resulting MPC algorithm. We then extended the parameter adaptation strategy
to linear parameter varying systems and designed a robust adaptive MPC utilizing the
control approach from Chapter 3. We demonstrated that model parameter adaptation lowers
the controller conservatism over time, while keeping the control synthesis computationally
efficient.
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Appendix

Proof of Proposition 6.1

We prove Proposition 6.1 using induction, following the proof of the same in [97]. At timestep
t = 0 we know that Θ0 = Ω and from Assumption 6.2, Ω is nonempty and θa0 ∈ Ω. Now
using inductive argument, let us assume that the claim holds true for some t ≥ 0. That is,
for some nonempty Θt, we have θat ∈ Θt. Now we must prove Θt+1 ̸= ϕ and θat+1 ∈ Θt+1. Let
us define the following matrices:

Hθ
t = [(Hθ

0)
⊤, (H̄θ

t )
⊤]⊤ ∈ Rrt×p,

hθ
t = [(hθ

0)
⊤, (h̄θ

t )
⊤]⊤ ∈ Rrt ,

∆hθ
t = [(0r0)

⊤, (∆h̄θ
t )

⊤]⊤ ∈ Rrt ,

where rt = r0 + 2t, ∀t ≥ 0 is the number of faces of the Feasible Parameter Set polytope Θt.
Now from Assumption 6.2 we know:

Hθ
0θ

a
t+1 ≤ hθ

0, (6.24)

and from inductive assumptions we know that H̄θ
t θ

a
t ≤ h̄θ

t . Therefore, we can ensure the
following holds:

H̄θ
t θ

a
t+1 ≤ h̄θ

t + ∆h̄θ
t . (6.25)

Moreover, we know that:

− Eθat+1 ≤ −xt+1 + Axt + But + w̄ −
¯
ν, (6.26a)

+ Eθat+1 ≤ xt+1 − Axt −But + w̄ + ν̄. (6.26b)

Hence, from (6.24), (6.25) and (6.26) we can have, Hθ
t+1θ

a
t+1 ≤ hθ

t+1, where

Hθ
t+1 = [(Hθ

0)
⊤, (H̄θ

t )
⊤,−E⊤, E⊤]⊤ ∈ Rrt+1×p, hθ

t+1 =


hθ
0

h̄θ
t + ∆h̄θ

t

−xt+1 + Axt + But + w̄ −
¯
ν

xt+1 − Axt −But + w̄ + ν̄

 ∈ Rrt+1 .

This proves that Θt+1 is nonempty and contains the actual offset uncertainty θat+1 at the
(t + 1)-th timestep. This concludes the proof.

Proof of Proposition 6.2

Utilizing the contraction property of Euclidean projection in (6.10b) similar to [92], we can
write

1

µ
∥θ̄t+1 − θat+1∥2 −

1

µ
∥θ̄t − θat ∥2 ≤

1

µ
∥θ̃t+1 − θat+1∥2 −

1

µ
∥θ̄t − θat ∥2,
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where ∥ · ∥ is the Euclidean norm. This gives

1

µ
∥θ̄t+1 − θat+1∥2 −

1

µ
∥θ̄t − θat ∥2

≤ 1

µ
∥θ̃t+1 − θat ∥2 +

2

µ
(θ̃t+1 − θ̄t)

⊤(θ̄t − θat ) +
2

µ
θ̃⊤t+1(θ

a
t − θat+1),

=
1

µ
∥µE⊤(x̃t+1|t + wt)∥2 + 2(x̃t+1|t + wt)

⊤E(θ̄t − θat ) +
2

µ
θ̃⊤t+1(θ

a
t − θat+1),

≤ 1

µ
∥µE⊤(x̃t+1|t + wt)∥2 + 2(x̃t+1|t + wt)

⊤E(θ̄t − θat ) +
2

µ
∥θ̃t+1∥∥(θat − θat+1)∥.

Consider Ω and P sets from Assumption 6.1 and Assumption 6.2. Define supω∈Ω ∥ω∥ = ωM

and supp∈P ∥p∥ = pM . Then the above inequality can be written as

1

µ
(∥θ̄t+1 − θat+1∥2 − ∥θ̄t − θat ∥2) ≤

1

µ
∥µE⊤(x̃t+1|t + wt)∥2 + 2(x̃t+1|t + wt)

⊤E(θ̄t − θat ) +
2ωMpM

µ
,

≤ (µ∥E∥2 − 1)∥x̃t+1|t + wt∥2 − ∥x̃t+1|t∥2 + ∥wt∥2 +
2

µ
ωMpM ,

≤ −∥x̃t+1|t∥2 + ∥wt∥2,

since from Remark 6.1 we know 1
µ
> ∥E∥2, and we have used xt+1 − x̄t+1|t = x̃t+1|t + wt and

x̃t+1|t = E(θat − θ̄t). Summing both sides of the inequality from 0 to m̃ leads to a telescopic
sum on the LHS, and we obtain,

1

µ
∥θ̄m̃+1 − θam̃+1∥2 +

m̃∑
t=0

∥x̃t+1|t∥2 ≤
m̃∑
t=0

∥wt∥2 +
1

µ
∥θ̄0 − θa0∥2,

which, upon division by RHS on both sides gives

sup
m̃∈N,wt∈W,θ̄0∈Ω

m̃∑
t=0

∥x̃t+1|t∥2

1
µ
∥θ̄0 − θa0∥2 +

m∑
t=0

∥wt∥2
≤ 1.

Proof of Proposition 6.3

From the definition of Θt+1|t in (6.12), we see that,

Hθ
t+1 = [(Hθ

t+1|t)
⊤,−E⊤,+E⊤]⊤, hθ

t+1 =

 hθ
t+1|t

−xt+1 + Axt + But + w̄ −
¯
ν

xt+1 − Axt −But + w̄ + ν̄

 .
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So Θt+1|t+1 ⊆ Θt+1|t. Now, the matrices of the Predicted Feasible Parameter Sets at next
timestep, Hθ

k|t+1 and hθ
k|t+1 for all k ∈ {t + 2, . . . , t + N − 1} are formed from Hθ

t+1 and hθ
t+1

by construction. Therefore, for all k ∈ {t + 2, . . . , t + N − 1},

Hθ
k|t+1 = [(Hθ

k|t)
⊤,−E⊤,+E⊤]⊤, hθ

k|t+1 =

 hθ
k|t

−xt+1 + Axt + But + w̄ −
¯
ν

xt+1 − Axt −But + w̄ + ν̄

 ,

where Hθ
k|t and hθ

k|t are given by (6.12). So, for all k ∈ {t + 2, . . . , t + N − 1}, each of the
sets for Θk|t+1 are formed by the same inequalities which form Θk|t, appended by two extra
rows from the new measurement. Therefore, Θk|t+1 ⊆ Θk|t for all k ∈ {t+ 2, . . . , t+N − 1}.
Moreover, from (6.13), Θt+N |t = Ω. Using this,

Hθ
t+N |t+1 = [(Hθ

0)
⊤,−E⊤,+E⊤]⊤, hθ

t+N |t+1 =

 hθ
0

−xt+1 + Axt + But + w̄ −
¯
ν

xt+1 − Axt −But + w̄ + ν̄

 ,

and therefore Θt+N |t+1 ⊆ Θt+N |t = Ω from the definition of Ω in (6.4).

Dualization of the MPC Problem

In this section we show how the robust MPC problem (6.15) can be reformulated for efficient
solving. The constraints in (6.15) can be compactly written with similar notations as [55]:

FRvt + max
wt,θθθt

(FRMt + GR)(wt + Eθθθt) ≤ cR + HRxt, (6.27)

where we denote, vt = [v⊤t|t, v
⊤
t+1|t, . . . , v

⊤
t+N−1|t]

⊤ ∈ RmN , θθθt = [θ⊤t|t, . . . , θ
⊤
t+N−1|t]

⊤ ∈ RpN

for all θk|t ∈ Θk|t, for all k ∈ {t, . . . , t + N − 1}, E = diag(E, . . . , E) ∈ RnN×pN and
wt = [w⊤

t|t, . . . , w
⊤
t+N−1|t]

⊤ ∈ RnN . The matrices above in (6.27) FR ∈ R(sN+rR)×mN , GR ∈
R(sN+rR)×nN , cR ∈ RsN+rR and HR ∈ R(sN+rR)×n are obtained as:

FR =


D 0s×m · · · 0s×m

CB D · · · 0s×m
...

. . . . . .
...

CAN−2B CAN−3B · · · D
YRA

N−1B YRA
N−2B · · · YRB

 , GR =


0s×n 0s×n · · · 0s×n

C 0s×n · · · 0s×n
...

. . . . . .
...

CAN−2 CAN−3 · · · 0s×n

YRA
N−1 YRA

N−2 · · · YR

 ,

cR = [b⊤, . . . , b⊤, z⊤R ],

HR = −[C⊤, (CA)⊤, . . . , (CAN−1)⊤, (YRA
N)⊤]⊤.

For k = {t, . . . , t + N − 1}, denote the set of polytopes SR
k|t = {w ∈ W, θ ∈ Θk|t : SR

k|t(w +

Eθ) ≤ hR
k|t}. Then we can define a polytope SR = {wt+Eθθθt ∈ RnN : SR(wt+Eθθθt) ≤ hR, SR ∈
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RaR×nN , hR ∈ RaR} with, SR = diag(SR
t|t, . . . , S

R
t+N−1|t), hR = [(hR

t|t)
⊤, . . . , (hR

t+N−1|t)
⊤]⊤.

Now (6.27) can be written with auxiliary decision variables ZR ∈ RaR×(sN+rR) using duality
of linear programs as,

FRvt + Z⊤
Rh

R ≤ cR + HRxt,

(FRMt + GR) = Z⊤
RS

R,

ZR ≥ 0,

which is a tractable linear programming problem that can be efficiently solved with any
existing solver for real-time implementation of Algorithm 4.
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Chapter 7

Learning Disturbance Distribution
Supports in Robust MPC

This chapter is based on the published work [36]. In this chapter, we present an approach to
design an MPC controller for systems of the form (M1) in Chapter 2, performing an iterative
task [104], where the support of the additive disturbance is learned from collected iteration
data. As the true support is unknown, robust satisfaction of the imposed constraints are not
guaranteed by the resultant MPC which uses the learned estimates. Instead, we guarantee
a user-specified upper bound on the probability of constraint violations by the closed-loop
system over all iterations.

7.1 Summary of Contributions

The main contributions of this chapter can be summarized as:

• We introduce the notion of a Confidence Support, which is guaranteed to contain the
true disturbance support with a specified probability. Constructing and updating the
Confidence Supports after each iteration is computationally cheap, unlike [34].

• Using these Confidence Supports, we present a robust MPC design and demonstrate
satisfaction of desired upper bound on probability of failure in each iteration. For
any value of user-specified upper bound on probability of failure, the controller is able
to learn robust satisfaction of imposed constraints asymptotically, without suffering
conservatism that is inherent to existing approaches [22, 92, 13].

7.2 Problem Formulation

We consider uncertain linear time-invariant systems of the form (2.9), with xt ∈ Rd as
the state at timestep t, ut ∈ Rm the input, and A and B are known system matrices of
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appropriate dimensions1. At each timestep t, the system is affected by an independently

and identically distributed (i.i.d.) random disturbance wt
iid∼ P with a convex and compact

support W ⊂ Rd. We aim to satisfy state and input constraints on the system robustly.
We define Hx ∈ Rs×d, hx ∈ Rs, Hu ∈ Ro×m and hu ∈ Ro. We can then write the imposed
constraints X and U for all timesteps t ≥ 0, given by:

X = {x ∈ Rd |Hxx ≤ hx}, U = {u ∈ Rm |Huu ≤ hu}

jointly as:

Z := {(x, u) : Hxx ≤ hx, Huu ≤ hu}. (7.2)

We assume that system (2.9) performs the same task repeatedly for J number of times. Each
task execution is referred to as iteration. Our goal is to design a controller that, at each
iteration j, solves the finite horizon robust optimal control problem:

min
uj
0,u

j
1(·),...

T−1∑
t=0

ℓ
(
x̄j
t , u

j
t

(
x̄j
t

))
s.t., xj

t+1 = Axj
t + Buj

t(x
j
t) + wj

t ,

x̄j
t+1 = Ax̄j

t + Buj
t(x̄

j
t),

Hxx
j
t ≤ hx, Huu

j
t(x

j
t) ≤ hu,

∀wj
t ∈W,

xj
0 = xS, t = {0, 1, . . . , (T − 1)},

(7.3)

where xj
t , uj

t and wj
t denote the realized system state, control input and disturbance at

timestep t of the jth iteration respectively, and (x̄j
t , u

j
t(x̄

j
t)) denote the disturbance-free nom-

inal state and corresponding nominal input. Notice that (7.3) minimizes the nominal cost
over a time horizon of length T ≫ 0 in any jth iteration with j ∈ [J ]. Here we use [J ]
to denote the set {1, 2, . . . , J}. As task duration T ≫ 0, for computational tractability we
try to approximate a solution to the optimal control problem (7.3), by solving a simpler
constrained optimal control problem with prediction horizon N ≪ T in a receding horizon
fashion.

In this chapter, we consider the support W of disturbance wj
t to be an unknown, convex

and compact set. We estimate W using observed disturbance samples. At the start of
iteration j, the estimated support is Ŵj.

7.3 Iterative MPC Problem

The MPC controller solves a finite horizon optimal control problem at each timestep t in the
jth iteration. Since the disturbance support W is unknown and is estimated with Ŵj built

1Note the use of d in this chapter for the dimension of the state-space, as n will be used to denote the
number of data samples.
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from data, robust satisfaction of (7.2) along the iteration is not guaranteed. This implies
that the closed-loop task execution might fail. We will formally define this notion of failure
after defining the closed-loop controller in this section. We attempt to design a robust MPC
controller in the jth iteration with our best estimate Ŵj of disturbance support W, by solving
the following optimal control problem:

V MPC,j
t→t+N(xj

t , Ŵj, X̂ j
N) :=

min
Uj
t (·)

t+N−1∑
k=t

ℓ(x̄j
k|t, v

j
k|t) + Q(x̄j

t+N |t)

s.t., xj
k+1|t = Axj

k|t + Buj
k|t + wj

k|t,

x̄j
k+1|t = Ax̄j

k|t + Bvjk|t,

uj
k|t =

k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Hxx
j
k|t ≤ hx, Huu

j
k|t ≤ hu,

xj
t+N |t ∈ X̂

j
N ,

∀wj
k|t ∈ Ŵj,

∀k = {t, . . . , t + N − 1}, xj
t|t = x̄j

t|t = xj
t ,

(7.4)

where U j
t (·) = {uj

t|t, . . . , u
j
t+N−1|t(xt+N−1|t)}, xj

t is the measured state at timestep t, xj
k|t

is the prediction of state at timestep k, obtained by applying predicted input policies
{uj

t|t, . . . , u
j
k−1|t(xk−1|t)] to system (2.9) and {x̄j

k|t, v
j
k|t} with vjk|t = uj

k|t(x̄
j
k|t) denote the

disturbance-free nominal state and corresponding input respectively. In (7.4) we have
used the affine disturbance feedback parametrization to tackle challenge (C2) introduced
in Chapter 2. The MPC controller minimizes the cost over the predicted disturbance free

nominal trajectory
{
{x̄j

k|t, v
j
k|t}

t+N−1
k=t , x̄j

t+N |t

}
, which comprises of the positive definite stage

cost ℓ(·, ·), and the terminal cost Q(·). We use state feedback to construct terminal set
X̂ j

N = {x ∈ Rd : Ŷ jx ≤ ẑj, Ŷ j ∈ Rrj×d, ẑj ∈ Rrj}, which is the (T − N) step robust con-
trollable set to the set of state constraints in (7.2), obtained with a state feedback controller
u = Kx, dynamics (2.9) and constraints (7.2). This set has the properties:

X̂ j
N ⊆ {x|(x,Kx) ∈ Z},

Hx((A + BK)ix +
i−1∑
ĩ=0

(A + BK)i−ĩ−1wĩ) ≤ hx,

Hu(K((A + BK)ix +
i−1∑
ĩ=0

(A + BK)i−ĩ−1wĩ)) ≤ hu,

∀x ∈ X̂ j
N , ∀wi ∈ Ŵj, ∀i = 1, 2, . . . , (T −N).

(7.5)
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After solving (7.4), in closed-loop, we apply

uj
t = vj,⋆t|t (7.6)

to system (2.9). We then resolve the problem (7.4) again at the next (t + 1)-th timestep,
yielding a receding horizon strategy.

Remark 7.1 Computing sets such as (7.5) can become expensive in certain scenarios, where
for example the number of constraints in Z, or the dimension d of states is too large. In
such cases one may opt for data driven methods such as [104, 105] or simple approximation
methods such as [106, 107] to construct these terminal sets.

Assumption 7.1 (Well Posedness) We assume that given an initial state xS, optimiza-
tion problem (7.4) is feasible at all timesteps 0 ≤ t ≤ T − 1 with true uncertainty support
Ŵj = W for all iterations j ∈ [J ].

Since W is unknown and is being estimated with Ŵj in the jth iteration, we might lose the
feasibility of (7.4) during 0 ≤ t ≤ T − 1. We formalize this with the following definition:

Definition 7.1 (State Constraint Failure) A State Constraint Failure at timestep t in
iteration j is the event

[SCF]jt : Hxx
j
t > hx. (7.7)

That is, a State Constraint Failure implies the violation of imposed constraints (7.2) by
system (2.9) in closed-loop with MPC controller (7.6).

Remark 7.2 Let T j < T denote the timestep in the jth iteration when a State Constraint
Failure occurs. In that case, problem (7.4) becomes infeasible at T j. We then stop the jth

iteration and update Ŵj update−→ Ŵj+1. When T j = T , it denotes a successful iteration without
any State Constraint Failure.

The probability of State Constraint Failure [SCF]jt is a function of the sets Ŵj. In certain
safety critical applications, it is necessary to keep the probability of [SCF]jt very low, whereas
in other applications a higher probability can be tolerated. However, it is not enough to
focus on probability of [SCF]jt alone. For example, a low probability of [SCF]jt can be
achieved by considering worst-case apriori estimates for W but it results in deteriorated
controller “performance”. Thus, it is desirable to not only keep probability of [SCF]jt low,
but also maintain satisfactory controller performance during successful iterations (as defined
in Remark 7.2). Let the closed-loop cost of a successful iteration j be denoted by

V̂j(xS, w
1:j) =

T−1∑
t=0

ℓ(xj
t , v

j,⋆
t|t ). (7.8)



CHAPTER 7. LEARNING DISTURBANCE DISTRIBUTION SUPPORTS IN ROBUST
MPC 106

where notation w1:j denotes the set
j
∪
i=1

T−1
∪
t=0

wi
t. We use average closed-loop cost E[V̂j(xS, w

1:j)]

to quantify controller performance. The goal is to lower the performance loss defined as

[PL]j = |E[V̂j(xS, w
1:j)]− E[V⋆(xS, w

1:j)]|, (7.9)

where E[V⋆(xS, w
1:j)] denotes the average closed-loop cost of the jth iteration if W had been

known, i.e., Ŵj = W for all j ∈ [J ].
In the next section, we introduce two design specifications (D1) and (D2) to formalize this

joint focus on lowering probability of State Constraint Failure and maintaining satisfactory
controller performance. We then show how the sets Ŵj are constructed according to these
specifications.

7.4 LRBF: Learning Robustness with Bounded

Failure

We consider the following design specifications:

(D1) Closed-loop MPC control law (7.6) ensures that system (2.9) in the jth iteration satisfies
a user specified upper bound α on probability of State Constraint Failure (Definition
7.1),

(D2) Minimize [PL]j (as defined in (7.9)) over all iterations j ∈ [J ] while satisfying (D1).

For satisfaction of (D1) we require,

P(Hxx
j
t > hx) ≤ α. (7.10)

Since the above probability is difficult to compute, we consider an alternative notion of
failure in order to upper bound the probability of State Constraint Failure.

Definition 7.2 (Disturbance Support Failure) A Disturbance Support Failure at any
timestep t in iteration j is the event

[DSF]jt : wj
t /∈ Ŵj. (7.11)

As the MPC controller (7.4) is robust to all wj
t ∈ Ŵj, we have [SCF]jt ⊆ [DSF]jt . There-

fore, probability of Disturbance Support Failure is an upper bound for probability of State
Constraint Failure, i.e., P([SCF]jt) ≤ P([DSF]jt). Therefore, we focus on the following speci-
fication:

P(wj
t /∈ Ŵj) ≤ α. (7.12)

In the next few sections, we discuss how such sets Ŵj can be constructed based on disturbance
samples observed during the iterative task.
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7.4.1 Need for Distributional Assumption on P
Consider i.i.d. samples Z1:n = (Z1, . . . , Zn) from an unknown distribution P . All we know
about the distribution is that its support S is convex and compact. Our objective is to find
an estimate Ŝ(Z1:n) for the support S such that for a user specified failure probability α,

P(Z̄ /∈ Ŝ(Z1:n)) ≤ α, (7.13)

where Z̄ is an i.i.d. draw from P . The convex hull Chull(Z1:n) of observed samples (Z1, . . . , Zn)
is an intuitive estimator for the support S. It is clear that Chull(Z1:n) ⊆ S. Let A\B denote
the set {y | y ∈ A and y /∈ B}. It turns out that P(S \Chull(Z1:n))→ 0 as n→∞ [108], i.e.,
Chull(Z1:n) asymptotically converges to the support S. However, Chull(Z1:n) may not satisfy
(7.13) for an arbitrary user specified failure probability α. In order to do so, Chull(Z1:n) may
need to be scaled up in a suitable manner. We illustrate through a simple example that an
upper bound on failure probability cannot be guaranteed without additional assumptions on
the distribution P .

Consider an unknown univariate distribution P with support S ⊂ R. Suppose we observe
i.i.d. samples Z1:4 = {−1, 0.5, 1,−0.2} from this distribution. The objective is to find Ŝ(Z1:4)
that satisfies (7.13) with α = 0.1. As we know that S is convex and compact, it is clear
that Chull(Z1:4) = [−1, 1] ⊆ S. However, it is unclear whether Ŝ = Chull(Z1:4) would satisfy
(7.13) with α = 0.1. Consider two potential distributions P1,P2 with densities p1(·), p2(·)
respectively such that

p1(z) = 0.4I{|z| ≤ 1}+ 0.1I{1 ≤ |z| ≤ 2},
p2(z) = 0.4I{|z| ≤ 1}+ 0.01I{1 ≤ |z| ≤ 11},

where I{·} denotes the indicator function. Note that both these distributions are equally
likely to generate the observed samples as they have the same distribution on Chull(Z1:4) =
[−1, 1]. Observe that Ŝ = 1.5Chull(Z1:4) satisfies (7.13) for P1, whereas Ŝ has to be set to
6Chull(Z1:4) to get the same probability of failure for P2. Thus, without any additional as-
sumption about the distribution, it is not possible to give any probability of failure guarantees
just based on sets constructed from observed samples.

Assumption 7.2 We assume that the unknown distribution P defined in Section 7.2 belongs
to a finite dimensional parametric family {Pθ : θ ∈ Θ,Θ ⊆ Rl}.

We next explore how to construct the sets Ŵj using Assumption 7.2, so that design specifi-
cation (D1) is satisfied. For that purpose, we introduce the notion of Confidence Supports
which are closely related to the notion of confidence intervals in classical statistics. Subse-
quently in Section 7.4.3 we present our algorithm.
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7.4.2 Confidence Support of a Distribution

Consider i.i.d. samples Z1:n = (Z1, . . . , Zn) from a distribution Pθ parametrized by θ ∈ R,

i.e., Zi
iid∼ Pθ. In classical statistics, the notion of confidence interval provides a convenient

way to characterize the uncertainty of parameter θ from the observed samples Z1:n.

Definition 7.3 (Confidence Interval) A set C(Z1:n) is a (1 − α)-confidence interval for
the parameter θ of distribution Pθ if

P(θ /∈ C(Z1:n)) ≤ α. (7.14)

If θ ∈ Rd, d > 1, then the term confidence region is used for the set C(Z) as defined above.

Remark 7.3 Note that C(Z) is a random set as it is a function of the collection of random
samples Z1:n, whereas θ is an unknown deterministic parameter. We refer the reader to [51,
Chapter 9] for an introduction to confidence intervals and methods to compute them.

We now introduce an analogous definition for the support of a distribution.

Definition 7.4 (Confidence Support) A set S(Z1:n) is a (1− α)-Confidence Support of
a distribution Pθ with support Sθ if

P(Sθ ⊆ S(Z1:n)) ≥ 1− α, (7.15)

i.e., S(Z1:n) contains the support Sθ of Pθ with probability greater than or equal to (1− α).

Using the above notion of Confidence Supports, we now demonstrate how the disturbance
support estimates Ŵj (as defined in iterative MPC problem (7.4)) can be computed based
on observed disturbance samples.

7.4.3 Computing Ŵj

Consider i.i.d. disturbance samples wj
t ∼ Pθ, θ ∈ Rl with support W. Let wj

t (q) denote the

qth element of wj
t ∈ Rd. Let w1:j denote the set

j
∪
i=1

T i

∪
t=0

wi
t. Recall that [d] denotes the set

{1, 2, . . . , d}. We make the following simplifying assumption:

Assumption 7.3 The elements of random vector wi
t ∈ Rd are independently distributed,

wj
t (q) ∼ Pq

θq
, q ∈ [d], (7.16)

where θ = (θ1, . . . , θd) and {Pq
θq

: θq ∈ Θq, Θq ⊂ Rl/d} is the corresponding parametric family

for the qth element. Remark 7.4 contains a discussion about the general case.
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At the start of the jth iteration, the collection of samples w1:j−1 would have been observed.
As the uncertainty distribution Pθ is completely specified by θ, we can compute a (1 − α)-
Confidence Support Ŵj

(
w1:j−1

)
by computing confidence regions for the individual parame-

ters (θ1, . . . , θd). Note that the confidence regions and supports are functions of the observed
disturbance samples w1:j−1. For notational convenience, we represent such sets without
explicitly showing this dependence.

Lemma 7.1 Let Θ̂j
q be a (1−αq)-confidence region for θq. Consider Ŵj

q =
⋃

θ̄q∈Θ̂j
q

Supp(Pq

θ̄q
),

where Supp(Pq

θ̄q
) denotes the support of distribution Pq

θ̄q
. Then, Ŵj = Ŵj

1 × · · · × Ŵj
d is a

(1−
∑

q αq)-Confidence Support of Pθ.

Proof By definition, W = Supp(P1
θ1

)× · · · × Supp(Pd
θd

). As Ŵj = Ŵj
1 × · · · × Ŵj

d, we have

P(W ̸⊆ Ŵj) = P(
d
∪
q=1

Supp(Pq
θq

) ̸⊆ Ŵj
q)

= P(
d
∪
q=1

θq /∈ Θ̂j
q),

≤
d∑

q=1

P(θq /∈ Θ̂j
q), (7.17)

≤
d∑

q=1

αq, (7.18)

where (7.17) follows from the union bound and (7.18) follows from Θ̂j
q being a (1 − αq)-

confidence region for θq.

Thus, a (1−α)-Confidence Support can be constructed using (1−αq)-confidence regions by
setting αq = α

d
. We now show that such a Confidence Support has a bounded probability of

Disturbance Support Failure, as defined in (7.11).

Proposition 7.1 Let Ŵj be a (1 − α)-Confidence Support of Pθ computed using samples
w1:j−1. Then, we have

P(wj
t /∈ Ŵj) ≤ α, 0 ≤ t ≤ T − 1. (7.19)

Proof Note that both wj
t and Ŵj are random. Using the law of total probability, we have

P(wj
t /∈ Ŵj) = P(wj

t /∈ Ŵj|W ⊆ Ŵj)P(W ⊆ Ŵj) + P(wj
t /∈ Ŵj|W ̸⊆ Ŵj)P(W ̸⊆ Ŵj),

= P(wj
t /∈ Ŵj|W ̸⊆ Ŵj)P(W ̸⊆ Ŵj),

≤ P(W ̸⊆ Ŵj), (7.20)

≤ α, (7.21)

where (7.21) follows from the fact that Ŵj is a (1− α)-Confidence Support of Pθ.
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Remark 7.4 The Confidence Supports constructed in this section also hold in the case that
the elements of wj

t are dependent. However, as we are not exploiting the correlations across
dimensions, the above approach would yield a hyper-rectangle outer-approximation to the
actual support as iteration j goes to infinity. Confidence regions for the parameter θ rather
than individual elements θq are needed in such a case to converge to the true support, but
such regions are in general difficult to compute.

Remark 7.5 As long as the confidence regions Θ̂j
q converge to the true parameter θq in

probability, the Confidence Supports asymptotically converge to the true uncertainty support,
i.e., Ŵj →W in probability. The MPC controller (7.6) thus asymptotically learns to satisfy
(7.2) robustly.

7.4.4 The LRBF Algorithm

We present our Learning Robustness from Bounded Failure (LRBF) algorithm which uses
Confidence Supports Ŵj from Section 7.4.3 in MPC optimization problem (7.4). This guar-
antees satisfaction of (7.10) (i.e., design requirement (D1)) by system (2.9) in closed-loop
with controller (7.6).

Algorithm 5 Learning Robustness with Bounded Failure (LRBF)

Inputs: Z, Ŵ1, xS.
for j = 2, . . . , J do

Computing Confidence Support Ŵj

for q = 1, . . . , d do
Compute (1− α

d
)-confidence region Θ̂j

q for θq

Compute Ŵj
q = ∪θ̄q∈Θ̂q

Supp(Pq

θ̄q
)

end for
Set Ŵj = Ŵj

1 × · · · × Ŵj
d

Solving MPC problem (7.4) using Ŵj

for t = 0,1, . . . , T − 1 do
Apply vj,⋆t|t from (7.6) with Ŵj as uncertainty

end for
end for

Remark 7.6 We assume that for all iterations j ∈ [J ], at timestep t = 0, MPC problem
(7.4) is feasible with disturbance supports Ŵj constructed in Algorithm 5. This guarantees
that we are able to collect at least one data point in each iteration to update Confidence
Support Ŵj while satisfying (7.10). In case such an assumption is not satisfied, Ŵj can be
scaled down (for e.g., by increasing α).
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Remark 7.7 The convergence of Ŵj to the true support W can be sped up by keeping the
iteration running until timestep T despite State Constraint Failure. This can be done by
introducing slack variables in MPC problem (7.4). Details can be found in the Appendix.

7.4.5 Case Studies

We now demonstrate our approach for two parametric distribution families: (i) uniform
distribution, and (ii) truncated normal distribution.

Uniform Distribution.

Consider the uniform distribution with hyper-rectangle support W = [−θ1, θ1]×· · ·×[−θd, θd].
Then we have,

Pq
θq

= Unif(−θq, θq), q ∈ [d].

Let w̄j(q) = maxw̄∈w1:j−1 |w̄|, q ∈ [d] and let T j =
∑j−1

i=1 T
i. The following set turns out to

be a (1− α
d
)-confidence interval for θq,

Θ̂j
q =

[
w̄j(q),

w̄j(q)(
α
d

)1/T j

]
.

A derivation of the above confidence interval can be found in the Appendix. Using Lemma 7.1,
we have the (1− α)-Confidence Support Ŵj = Ŵj

1 × · · · × Ŵj
d, where

Ŵj
q =

[
− w̄j(q)(

α
d

)1/T j ,
w̄j(q)(
α
d

)1/T j

]
. (7.22)

Remark 7.8 This can be extended to the asymmetric case with Pq
θq

= Unif(−θ1q , θ2q). In
this case, there is no analytical expression for the Confidence Support but it can be computed
numerically.

Truncated Normal Distribution.

Consider the truncated normal distribution with mean µq, variance σ2
q , and support [µq −

3σq, µq + 3σq], i.e.,

Pq
θq

= Ntrunc(µq, σ
2
q , 3), q ∈ [d].

As the distribution is fully specified by µq and σq, we have θq = [µq, σq]
⊤. Although it is

difficult to derive exact confidence intervals in this case, approximate confidence intervals for
µq and σq can be computed via the Bootstrap [109, Chapter 13]. Let [µj

min(q), µj
max(q)] and
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[σj
min(q), σj

max(q)] denote the (1− α
2d

)-Bootstrap confidence intervals for µq and σq respectively.
By union bound, we have the following approximate (1− α

d
)-confidence interval for θq,

Θ̂j
q = {[µ, σ]⊤| µ ∈ [µj

min(q), µj
max(q)],

σ ∈ [σj
min(q), σj

max(q)]},

which gives us an approximate (1− α)-Confidence Support Ŵj = Ŵj
1 × · · · × Ŵj

d, where

Ŵj
q = [µj

min(q)− 3σj
max(q), µj

max(q) + 3σj
max(q)]. (7.23)

7.5 Numerical Simulations

In this section we find approximate solutions to the following iterative optimal control prob-
lem in receding horizon:

V j,⋆(xS) =

min
uj
0,u

j
1(·),...

T−1∑
t=0

10
∥∥x̄j

t − xref

∥∥2
2

+ 2
∥∥uj

t(x̄
j
t)
∥∥2
2

s.t.,

xj
t+1 = Axj

t + Buj
t(x

j
t) + wj

t ,

x̄j
t+1 = Ax̄j

t + Buj
t(x̄

j
t),−30

−30
−40

 ≤ [ xj
t

uj
t(x

j
t)

]
≤

30
30
40

 ,∀wj
t ∈W,

xj
0 = xS, t = 0, 1, . . . , T − 1.

We consider two parametric distributions:

Pq
θq

= Unif(−3, 3), (7.24a)

Pq
θq

= Ntrunc(0, 1, 3), (7.24b)

with q ∈ {1, 2}. In both cases, W = [−3, 3] × [−3, 3]. We construct Bootstrap confidence
intervals for the truncated normal case by re-sampling 1000 times. System matrices A =[
1.2 1.3
0 1.5

]
and B = [0, 1]⊤ are known. We solve the above optimization problem with the

initial state xS = [0, 0]⊤ and reference point xref = [27, 27]⊤ for task duration T = 20 steps
over J = 30 iterations. Algorithm 5 is implemented with a control horizon of N = 4,
and the feedback gain K in (7.6) is chosen to be the optimal LQR gain for system x+ =
(A + BK)x with parameters QLQR = 10I2 and RLQR = 2. The source code is available at
https://github.com /monimoyb/LRBF. The goal is to show:

https://github.com/monimoyb/LRBF
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• Design specification (D1) is satisfied. Consequently, a lower probability of Disturbance
Support Failure across all iterations using support Ŵj from Algorithm 5, compared to
that from the convex hull support estimate Chull(w1:j−1).

• The performance loss [PL]j rapidly approaches 0 within the first few iterations. How-
ever, in the initial iterations, there is a significant trade-off between a desired up-
per bound α on probability of State Constraint Failure and average closed-loop cost
E[V̂j(xS, w

1:j)] (defined in (7.8)). That is, lower the upper bound α, higher is the
average closed-loop cost in the initial iterations. This suggests the need for tailoring
the confidence level (1− α) in Algorithm 5 according to the application at hand.

7.5.1 Bounding the Probability of Failure (D1)

In this section, we demonstrate satisfaction of design specification (D1) by Algorithm 5 and
compare the probability of Disturbance Support Failure P(wj

t /∈ Ŵj) for any timestep t in the
jth iteration, with Ŵj obtained using Algorithm 5 and Ŵj = Chull(w1:j−1). This probability
is estimated by averaging over 100 Monte Carlo draws of disturbance samples w1:J , i.e.,

P(wj
t /∈Wj) ≈ 1

100

100∑
m̃=1

(1F(wj
t ))

⋆m̃,

where

(1F(wj
t ))

⋆m̃ =

{
1, if wj

t /∈ (Ŵj)⋆m̃|(w1:j−1)⋆m̃,

0, otherwise,

and (·)⋆m̃ represents the m̃th Monte Carlo sample. Fig. 7.1 shows this comparison for uni-
formly distributed disturbance (7.24a). Using LRBF to construct Confidence Supports Ŵj

allows for lowering P(wj
t /∈ Ŵj), i.e., probability of [DSF]jt as defined in (7.11) below a user

specified bound α, as opposed to simply utilizing Ŵj = Chull(w1:j−1). We plot the probabil-
ity of [DSF]jt for 2 different values of α = 0.05 and α = 0.70. We see that for α = 0.05 the

probability of [DSF]jt with LRBF is on average 94% smaller than that from the convex hull

support estimate for all iterations j ∈ [30]. Similarly for α = 0.70, the probability of [DSF]jt
is on average 61% lower than that with the convex hull support estimate across all j ∈ [30].

The same trend is seen in Fig. 7.2 for truncated normal distribution (7.24b), where
probability of [DSF]jt is at least 99% and 96% lower than convex hull support estimate
for α = 0.05 and α = 0.70 respectively until iteration j = 3, and reaches a value of 0
for both values of α afterwards. The above trend in probability of [DSF]jt is explained by

Proposition 7.1, which relates the desired confidence (1−α) for support Ŵj to the probability
of [DSF]jt . Moreover, from Fig. 7.1 and Fig. 7.2 we see that in practice probability of [DSF]jt
is always at least 60%−80% lower than corresponding chosen α. This highlights satisfaction
of (D1) and also the conservatism in Proposition 7.1 arising from the upper bound in (7.20).
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Figure 7.1: Probability of Disturbance Support Failure vs iteration number for uniformly
distributed disturbance on W.

0 5 10 15 20 25 30

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b
a
b

il
it

y
 o

f 
D

is
tu

rb
a
n

c
e
 S

u
p

p
o

rt
 F

a
il
u

re

1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

Figure 7.2: Probability of Disturbance Support Failure vs iteration number for truncated
normal distribution of disturbance on W.
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7.5.2 Performance Loss Reduction Over Iterations

In Fig. 7.3 and Fig. 7.4, we approximate the average closed-loop cost E[V̂
j
(xS, w

1:j)] of the
jth iteration by taking an empirical average over 100 Monte Carlo draws of w1:J as,

E[V̂
j
(xS, w

1:j)] ≈ 1

100

100∑
m̃=1

V̂j(xS, (w
1:j)⋆m̃), (7.25)

for α = 0.05, and α = 0.70. The cost values are normalized by V⋆(xS), which denotes the
empirical average closed-loop cost of the jth iteration if W had been known, i.e., Ŵj = W.
For both cases of α, we see that in Fig. 7.3 and Fig. 7.4 the average closed-loop cost rapidly
approaches V⋆(xS). For (7.24a) in Fig. 7.3, cost (7.25) approaches to within 0.5% of V⋆(xS)
after just 5 iterations whereas for (7.24b) in Fig. 7.4, it is within 3% of V⋆(xS) in the same
duration.

However, the average closed-loop cost incurred in earlier iterations has a trade-off with
desired α. This trade-off is also highlighted in Fig. 7.3 and Fig. 7.4 for (7.24a) and (7.24b)
respectively. We see from Fig. 7.3 and Fig. 7.4 that for lower value of probability of [SCF]jt
with α = 0.05, we pay a maximum of 13% higher average closed-loop cost for (7.24a), and
a maximum of 10% higher average closed-loop cost for (7.24b) compared to V⋆(xS) until
iteration j = 5. Allowing for higher probability of [SCF]jt with α = 0.70 proves to be cost-
efficient, where we only pay a maximum of 0.3% higher average closed-loop cost for (7.24a),
and a maximum of 4% higher average closed-loop cost for (7.24b) compared to V⋆(xS) in
the same duration. This essentially reflects the key trade-off between specifications (D1)
and (D2) in the initial iterations. Thus, the upper bound α of [SCF]jt must be chosen in an
application-specific manner.

7.6 Chapter Summary

We proposed an approach to design an MPC for constrained linear time-invariant systems
performing an iterative task, where the system is subject to a bounded additive disturbance
whose distribution support is not exactly known. The goal was to learn to satisfy state and
input constraints robustly by constructing and then successively refining estimates of the
disturbance distribution support. Using disturbance measurements after each iteration, we
constructed Confidence Support sets, which contain the true support of the disturbance dis-
tribution with a given (high) probability. As more data is collected, the Confidence Supports
converge to the true support of the disturbance. This enabled design of an MPC controller
that avoids conservative estimate of the disturbance support, while simultaneously bound-
ing the probability of constraint violation. We demonstrated the efficacy of the proposed
approach with a detailed numerical example with both uniform and truncated Gaussian
distribution of the additive disturbance.
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Figure 7.3: Normalized average closed-loop cost (7.25): Uniform disturbance.
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Figure 7.4: Normalized average closed-loop cost (7.25): Truncated normal disturbance.
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Appendix

Speeding up Convergence of Ŵj

In order to speed up convergence of Ŵj in Algorithm 5 to the true support W, the following
MPC optimization problem with slack variables is solved:

Ṽ MPC,j
t→t+N(xj

t , Ŵj, X̂ j
N) :=

min
Uj
t (·)

t+N−1∑
k=t

ℓ(x̄j
k|t, v

j
k|t) + Q(x̄j

t+N |t) + Λ∥sjt∥22

s.t., xj
k+1|t = Axj

k|t + Buj
k|t + wj

k|t,

x̄j
k+1|t = Ax̄j

k|t + Bvjk|t,

uj
k|t =

k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Hxx
j
k|t ≤ hx + sjt , Huu

j
k|t ≤ hu,

Ŷ jxj
t+N |t ≤ ẑj + ŝjt , with X̂ j

N = {x : Ŷ jx ≤ ẑj},

sjt = [(sjt)
⊤, (ŝjt)

⊤]⊤ ≥ 0,

∀wj
k|t ∈ Ŵj,

∀k = {t, . . . , t + N − 1},
xj
t|t = x̄j

t|t = xj
t ,Λ≫ 0,

(7.26)

with sj0 = 0 (from Remark 7.6), and then closed-loop control law uj
t = vj,⋆t|t is applied to

system (2.9). By solving the relaxed optimization problem (7.26) which is feasible for all
timesteps 0 ≤ t ≤ T − 1 in the jth iteration, we ensure that after each iteration, a set of T

additional samples are obtained for the update Ŵj update−→ Ŵj+1. From Section 7.4.3 we can
infer that this speeds up the convergence of Ŵj.

Derivation of Confidence Support (7.22)

Consider wj
t (q)

iid∼ Unif(−θq, θq). This implies that
|wj

t (q)|
θq

iid∼ Unif(0, 1). Let w̄j(q) =

maxw̄∈w1:j−1 |w̄|. Then, for any c ∈ [0, 1] we have,

P

(
w̄j(q)

θq
≤ c

)
= P

( ⋂
w̄∈w1:j−1

|w̄|
θq
≤ c

)
= Πw̄∈w1:j−1P

(
|w̄|
θq
≤ c

)
, (7.27)

= cT
j

,
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where (7.27) follows as w̄ ∈ w1:j−1 are independent. Setting c = α
1

T j
q , we have

P

(
w̄j(q)

θq
≤ α

1

T j
q

)
= αq, and therefore P

(
α

1

T j
q ≤ w̄j(q)

θq
≤ 1

)
= 1− αq,

which gives us

P

(
w̄j(q) ≤ θq ≤

w̄j(q)

α
1

T j
q

)
= 1− αq.

Setting αq = α
d

and using Lemma 7.1 completes the derivation.
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Chapter 8

Learning Environment Constraints in
Robust MPC

This chapter is based on the published work [41]. In this chapter, we propose an algorithm to
design a safe controller for an uncertain system while learning polyhedral state constraints.
We consider a linear time-invariant system of the form (M1) in Chapter 2, performing an
iterative task. The environment constraints of the task are assumed polyhedral, characterized
by a set of hyperplanes, some of which are unknown to the control designer. We assume that
violations of the unknown constraints can be directly measured from closed-loop trajectories.

8.1 Summary of Contributions

Our algorithm iteratively constructs estimates of the unknown constraints using collected
system trajectories. These estimates are then used to design a robust MPC controller [55,
31] for safely achieving the control task despite the uncertainty. The main contributions of
this chapter are as follows:

• Given a user-specified upper bound ϵ on the probability of violating the true constraint
set Z within any jth task iteration, we construct constraint estimates Ẑj from previously
collected closed-loop task data, using convex hull operations (for ϵ = 0) or a Support
Vector Machine (SVM) classifier (for ϵ ∈ (0, 1)). We then design an MPC controller to
robustly satisfy Ẑj along the jth iteration, for all possible additive disturbance values.

• When Ẑj is formed with the SVM classification approach (for ϵ ∈ (0, 1)), we provide
an explicit number of successful task iterations to obtain before the estimated set Ẑj is
deemed safe with respect to ϵ. Here, “successful task iterations” refers to closed-loop
trajectories satisfying the unknown constraints Z.

• When Ẑj is formed using the convex hull approach (for ϵ = 0), we show how to design a
robust MPC that provides satisfaction of the true constraints Z at all future iterations
k ≥ j.
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8.2 Problem Setup

We consider linear time-invariant systems of the form (2.9). We define Hx ∈ Rs×n, hx ∈ Rs,
Hu ∈ Ro×m, and hu ∈ Ro, and formulate the state and input constraints imposed by the
task environment for all timesteps t ≥ 0 as (7.2). Our goal is to design a controller that, at
each iteration j, aims to solve the finite horizon robust optimal control problem (7.3). In
this work we consider constraints of the form:

Hx =

[
Hb

x

Hub
x

]
, hx =

[
hb
x

hub
x

]
,

where the superscripts {b, ub} denote the known and unknown parts of the constraints,
respectively. That is to say, we consider a scenario in which we only know a subset of
the system’s environment constraint set. At the beginning of the jth task iteration we
construct approximations of Hx and hx, denoted as Ĥj

x and ĥj
x, respectively, using closed-

loop trajectories of the system from previous task iterations. The estimated constraints form
a safe set estimate Ẑj:

Ẑj := {(x, u) : Ĥj
xx ≤ ĥj

x, Huu ≤ hu}. (8.1)

These estimates are refined iteratively using new data as the system continues to perform
the task, and are used to solve an estimate of (7.3).

8.3 Iterative MPC Problem

Since the true constraint set Z is not completely known, we use our estimate Ẑj built from
data and formulate this MPC problem as:

Vt→t+N
MPC,j(xj

t , Ẑj, X̂ j
N) :=

min
Uj
t (·)

t+N−1∑
k=t

ℓ(x̄j
k|t, v

j
k|t) + Q(x̄j

t+N |t)

s.t., xj
k+1|t = Axj

k|t + Buj
k|t + wj

k|t,

x̄j
k+1|t = Ax̄j

k|t + Bvjk|t,

uj
k|t =

k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Ĥj
xx

j
k|t ≤ ĥj

x, Huu
j
k|t ≤ hu,

xj
t|t = x̄j

t|t,

xj
t+N |t ∈ X̂

j
N ,

∀wj
k|t ∈W,∀k = {t, . . . , t + N − 1},

(8.2)
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where U j
t (·) = {uj

t|t, . . . , u
j
t+N−1|t(xt+N−1|t)}, xj

t is the measured state at timestep t, xj
k|t is the

predicted state at timestep k, obtained by applying predicted policies {uj
t|t, . . . , u

j
k−1|t(xk−1|t)}

to system (2.9). We denote the disturbance-free nominal state and corresponding input as
{x̄j

k|t, v
j
k|t} with vjk|t = uj

k|t(x̄
j
k|t). In (8.2) we have used the affine disturbance feedback

parametrization to tackle challenge (C2) introduced in Chapter 2. The MPC controller

minimizes the cost over the predicted nominal trajectory
{
{x̄j

k|t, v
j
k|t}

t+N−1
k=t , x̄j

t+N |t

}
, which

is comprised of a positive definite stage cost ℓ(·, ·) and terminal cost Q(·). We use state
feedback uj

t = Kxj
t with (A + BK) being stable to construct a terminal set X̂ j

N = {x ∈ Rn :

Ŷ jx ≤ ẑj, Ŷ j ∈ Rrj×n, ẑj ∈ Rrj}, which is the (T −N) step robust controllable set to the
set of state constraints in (8.1) under the terminal policy, with the properties:

X̂ j
N ⊆ {x | (x,Kx) ∈ Ẑj},

Ĥj
x((A + BK)ix +

i−1∑
ĩ=0

(A + BK)i−ĩ−1wĩ) ≤ ĥj
x,

Hu(K((A + BK)ix +
i−1∑
ĩ=0

(A + BK)i−ĩ−1wĩ)) ≤ hu,

∀x ∈ X̂ j
N , ∀wi ∈W, ∀i = 1, 2, . . . , (T −N).

(8.3)

After solving (8.2) at timestep t of the jth iteration, we apply

uj
t = vj,⋆t|t (8.4)

to system (2.9). We then resolve the problem (8.2) again at the next (t + 1)-th timestep,
yielding a receding horizon strategy.

Assumption 8.1 (Well-Posedness of Task) We assume that given an initial task state
xS, the optimization problem (8.2) is feasible at all timesteps 0 ≤ t ≤ T − 1 for the true
constraint set Ẑj = Z as defined in (7.2), for all iterations j ∈ {1, 2, . . . }. We further assume
that 0n×1 ∈ Z.

8.3.1 Successful Task Iterations

At each iteration, the true constraint set Z is unknown and being estimated with Ẑj built
from data. Depending on how Ẑj is constructed, robust satisfaction of the true constraints
(7.2) during an iteration may not be guaranteed. It is thus possible that (7.2) becomes
infeasible at some point while solving (8.2) during 0 ≤ t ≤ T − 1 along any jth iteration. We
formalize this with the following definition:

Definition 8.1 (Successful Iteration) A Successful jth Iteration is defined as the event

[SI]j : Hxx
j
t ≤ hx, ∀t ∈ [0, T ]. (8.5)
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That is, an iteration is successful if there are no state constraint violations during 0 ≤ t ≤ T .
Otherwise, the iteration is deemed failed; that is, an Iteration Failure event is implicitly
defined as [IF]j = ([SI]j)c, where ([·])c denotes the complement of an event.

The probability of a Successful Iteration [SI]j is a function of the sets Ẑj since xj
t is the

closed-loop trajectory obtained when applying the feedback controller (8.2)-(8.4).

8.3.2 Control Design Objectives

Our aim is not only to keep the probability of [IF]j low along each iteration, but also to
maintain satisfactory controller performance in terms of cost during successful iterations.
Let the closed-loop cost of a successful iteration j under observed disturbance samples wj

be denoted by

V̂j(xS, w
j) =

T−1∑
t=0

ℓ(xj
t , v

j,⋆
t|t ),

where notation wj denotes [wj
0, w

j
1, . . . , w

j
T−1]. We use the average closed-loop cost E[V̂j(xS, w

j)]
to quantify controller performance. Specifically, our goal is to lower the iteration performance
loss, defined as

[PL]j = E[V̂j(xS, w
j)]− E[V⋆(xS, w

j)], (8.6)

where E[V⋆(xS, w
j)] denotes the average closed-loop cost of an iteration if Z had been known,

i.e. if Ẑj = Z for all j ∈ {1, 2, . . . }.
To formalize this joint focus on obtaining a low probability of Iteration Failures while

maintaining a satisfactory controller performance, we summarize our control design objec-
tives as:

(C1) Design a closed-loop MPC control law (8.4) which ensures that the system (2.9) main-
tains a user-specified upper bound on the probability of Iteration Failure [IF]j (8.5),
for all iterations j ∈ {1, 2, . . . }.

(C2) Minimize [PL]j (as defined in (8.6)) at each iteration j ∈ {1, 2, . . . }, while satisfying
objective (C1).

However, as we start the control task from scratch without assuming the initial availability
of a large number of trajectory data samples, and it is difficult in general to obtain statistical
properties of estimated constraint sets Ẑj, methods such as [37, 34, 36] cannot be used to
satisfy (C1)-(C2) directly. We therefore relax the above two specifications and formulate two
control design specifications (D1) and (D2) in the next section.
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8.4 Iterative Constraint Learning

We consider the following design specifications:

(D1) Design a closed-loop MPC control law (8.4) which ensures that the system (2.9) main-
tains a user-specified upper bound ϵ on the probability of Iteration Failure, after some
iteration j ∈ {1, 2, . . . }.

(D2) Minimize [PL]j (as defined in (8.6)) after some iteration j ∈ {1, 2, . . . }.

We wish to find the smallest index j̄, such that (D1) and (D2) are satisfied for all j ≥
j̄. The design specifications (D1)-(D2) indicate that the approach to construct estimated
state constraint sets proposed, is our best possible attempt to satisfy (C1)-(C2), given the
information available at each iteration j.

Assumption 8.2 (Feasibility Classification) Given a system state trajectory, we assume
that a classifier is available to check the feasibility of each point in the trajectory based on
whether it satisfies the true state constraints in (7.2). This classifier returns a corresponding
sequence of feasibility flags.

Assumption 8.3 (Simulator) We assume that each iteration is run until completion at
timestep T , and that state constraint satisfaction as described in Assumption 8.2 is checked
only at the end of the simulation.

We note that Assumption 8.3 could be relaxed in several ways. For example, constraint
satisfaction could be checked in real-time and the simulations stopped if violations occur.
One could also run physical experiments and check the feasibility of (7.2) in real-time, by
observing if the physical experiment fails. Some constraint violations may be hard to evaluate
during physical experiments, but this discussion goes beyond the scope of this dissertation.

8.4.1 Constructing Constraint Estimates Ẑj

We show how the estimated constraint sets Ẑj are constructed in order to satisfy the design
specifications (D1) and (D2). This process depends on the user-specified upper bound ϵ on
the probability of Iteration Failure. To satisfy (D1) we search for the smallest j̄, such that

P([IF]j) ≤ ϵ, (8.7)

for all j ≥ j̄, where ϵ ∈ (0, 1) is the bound on the probability of Iteration Failure. At the
start of the first iteration, j = 1, we use only the known information about the imposed
constraints:

Ẑ1 := {(x, u) : Hb
xx ≤ hb

x, Huu ≤ hu}. (8.8)
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Next, consider any j ∈ {1, 2, . . . }. Let the closed-loop realized states collected until the end
of the jth iteration be

x1:j = [x1:j
0 , x1:j

1 , . . . , x1:j
T ], (8.9)

where x1:j
i ∈ Rn×j is a matrix containing all states corresponding to timestep i from the first

j iterations. Let f j(x) : Rn 7→ R denote a curve that separates the points in (8.9) according
to whether they satisfy all true state constraints in (7.2), such that f j(0n×1) ≤ 0. Based on
Assumption 8.2, such a binary classification curve can be obtained with supervised learning
techniques. We use a kernelized Support Vector Machine algorithm [42, Chapter 12].

Let a polyhedral inner approximation1 of the intersection of f j(x) ≤ 0 and the known
state constraints in Ẑ1 be given by:

P̂j+1
svm = {x : Ĥj+1

x,svmx ≤ ĥj+1
x,svm} (8.10)

= {x : f j(x) ≤ 0} ∩ {x : Hb
xx ≤ hb

x}.

We then use (8.10) to form the constraint set estimates for the following iteration:

Ẑj+1
svm := {(x, u) : Ĥj+1

x,svmx ≤ ĥj+1
x,svm, Huu ≤ hu}, (8.11)

setting Ẑj+1 = Ẑj+1
svm in our robust optimization problem (8.2) for j ∈ {1, 2, . . . }. In other

words, at each iteration j > 1, the estimated state constraints in Ẑj are formed out of the
SVM classification boundary learned from all previous state trajectories, intersected with
the known state constraints.

Remark 8.1 In case the set Ẑj+1
svm in (8.11) yields either infeasibility of (8.2) or an empty

terminal set X̂ j+1
N for any iteration j ∈ {1, 2, . . . }, the set of estimated state constraints

can be scaled appropriately until feasibility of (8.2) is obtained. Such scaling is not further
analyzed in the remaining sections of this chapter.

Since the estimated constraint sets (8.11) are not necessarily inner approximations of
the true unknown constraints (7.2), the closed-loop state trajectories in future iterations
may result in Iteration Failures with a nonzero probability. In the following proposition we
quantify the probability of an Iteration Failure, given a Ẑj̄, for some j̄ ∈ {1, 2, . . . }.

Proposition 8.1 Consider Ẑ1
svm = Ẑ1 from (8.8) for j̄ = 1 or a constraint estimate set Ẑj̄

svm

from (8.11) formed using trajectories up to iteration j̄ − 1 for j̄ > 1. Let this set Ẑj̄
svm be

used as the constraint estimate set for the next Nit task iterations, beginning with iteration
j̄. If for a chosen ϵ ∈ (0, 1) and 0 < β ≪ 1, Successful Iterations are obtained for the next

Nit ≥ ln 1/β
ln 1/(1−ϵ)

iterations, then P([IF]j) ≤ ϵ with confidence at least 1 − β for all subsequent

task iterations j ≥ j̄ using Ẑj = Ẑj̄
svm.

1Approximation techniques are elaborated in Section 8.5.
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Proof See Appendix.

Proposition 8.1 requires that the polytope P̂j+1
svm for j ∈ {1, 2, . . . } is updated only if new

violation points for constraints (7.2) are seen at the end of an iteration j. This update
strategy is highlighted in Algorithm 6. If no violations are seen for Nit successive iterations,
a probabilistic safety certificate is provided and Algorithm 6 is terminated.

8.4.2 Safety vs Performance Trade-Off

Proposition 8.1 proves that constructing estimated constraint sets as per (8.11), can result
in satisfaction of (8.7) for some ϵ ∈ (0, 1). However, for certain applications, violations of
constraints (7.2) may be too expensive to allow for a nonzero probability of failure, and
we instead require ϵ = 0. In such cases, we can utilize the closed-loop system trajectories
for obtaining guaranteed inner approximations of (7.2), so that P([IF]j) = 0 for all future
iterations j ≥ j̄, for some j̄ to be determined.

Recalling (8.9), let the closed-loop realized states collected until the end of the jth itera-
tion be denoted as

x1:j = [x1:j
0 , x1:j

1 , . . . , x1:j
T ], (8.12)

and let x̂j denote the collection of states from (8.12) which satisfy all true state constraints
in (7.2). Then an inner approximation the of state constraints in (7.2) is provided by the
polyhedron:

P̂j+1
cvx = {x : Ĥj+1

x,cvxx ≤ ĥj+1
x,cvx} (8.13)

= conv([0n×1, x̂
j]),

where conv(·) denotes the convex hull operator. We can now define

Ẑj+1
cvx := {(x, u) : Ĥj+1

x,cvxx ≤ ĥj+1
x,cvx, Huu ≤ hu}, (8.14)

and use Ẑj = Ẑj
cvx for j ∈ {2, 3, . . . } in (8.2) as a robust alternative to (8.11).

Proposition 8.2 If Ẑj̄
cvx (8.14) yields feasibility of (8.2) for some j̄ ∈ {2, 3, . . . }, then

Ẑj̄
cvx ⊆ Z,

and Ẑj
cvx = Ẑj̄

cvx for all j ≥ j̄.

Proof Let the closed-loop realized states collected until the end of the (j̄ − 1)th iteration be

x1:j̄−1 = [x1:j̄−1
0 , x1:j̄−1

1 , . . . , x1:j̄−1
T ], (8.15)
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and let x̂j̄−1 be the collection of all trajectory points in (8.15) that satisfy the state constraints
in (7.2). Following (8.13) we form P̂ j̄

cvx = {x : Ĥ j̄
x,cvxx ≤ ĥj̄

x,cvx} as,

P̂ j̄
cvx = conv([0n×1, x̂

j̄−1]).

By the convexity of the true unknown state constraints (7.2) and Assumption 8.1, we have
that P̂ j̄

cvx ⊆ {x : Hxx ≤ hx}. This implies Ẑj̄ ⊆ Z.
Furthermore, since (8.2) is feasible at timestep t = 0 in iteration j̄, (8.2) remains feasible

with system (2.9) in closed-loop with the MPC controller (8.6) at all future timesteps t ≤
(T − 1).2 It follows that xj̄

t ∈ P̂ j̄
cvx for all 0 ≤ t ≤ T , which implies P̂ j̄+1

cvx = P̂ j̄
cvx from (8.13).

Extending this argument, we can similarly prove P̂j
cvx = P̂ j̄

cvx for all j > j̄, which implies
Ẑj

cvx = Ẑj̄
cvx for all j > j̄. This completes the proof.

Proposition 8.2 implies that if we find a j̄ for which (8.14) yields feasibility of (8.2), then
the probability of Iteration Failure at iteration j is exactly 0 for all j ≥ j̄. Moreover,
Proposition 8.2 suggests that after the j̄th iteration, the constraint estimation update (8.14)
can be terminated.

The update strategy (8.14) strictly ensures that Ẑj
cvx ⊆ Z for all j ∈ {2, 3, . . . }, which is

not necessarily true for sets obtained using the SVM method (8.11). However, choosing this
robust constraint estimation can increase the performance loss (8.6) over successful iterations
after j ≥ j̄. This is the safety vs. performance trade-off, which the user can manage with an
appropriate choice of ϵ. Given any ϵ ∈ (0, 1) or ϵ = 0, the chosen strategy lowers performance
loss while satisfying (D1). Thus we satisfy (D2) with (D1).

Remark 8.2 Following Remark 8.1, if the optimization problem (8.2) is infeasible or the
terminal set X̂ j

N constructed in (8.3) using the estimate Ẑj
cvx is empty, one can switch to

constraint estimates (8.11) and collect additional trajectory data, since P̂j1
cvx ⊆ P̂j2

cvx, for any
2 ≤ j1 < j2.

8.4.3 The RMPC-ICL Algorithm

We present our Robust MPC with Iterative Constraint Learning (RMPC-ICL) algorithm,
which uses the estimated constraint sets Ẑj from Section 8.4.1 or Section 8.4.2 while solving
(8.2) in an iterative fashion. The algorithm terminates upon finding the smallest j̄ such that
(8.7) is satisfied.

8.5 Numerical Simulations

We verify the effectiveness of the proposed Algorithm 6 in a simulation example. The
source code is available at https://github.com /monimoyb/ConstraintLearning. We find

2This recursive feasibility property is stated without proof. Interested readers can look into the standard
detailed proofs in [6, Chapter 12].

https://github.com/monimoyb/ConstraintLearning
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Algorithm 6 RMPC-ICL Algorithm

Initialize: j = 1, l = 0, Ẑ1
svm = Ẑ1

cvx = Ẑ1 from (8.8)
Inputs: W, ϵ, β,N and xj

0 = xS for all j ∈ {1, 2, . . . }
Data: x̃1 = [x1

0, x
1
1, . . . , x

1
T ], P̂2

cvx formed with (8.13);

1: while j ≥ 2 do
2: if Points in x̃j−1 violate (7.2) then
3: Construct Ẑj

svm with (8.11); construct X̂ j
N with (8.3);

4: else
Ẑj

svm = Ẑj−1
svm;

5: l = l + 1; (if l ≥ ln 1/β
ln 1/(1−ϵ)

, break; (8.7) is

satisfied)
6: end if
7: if P([IF]j) = 0 desired then
8: Construct Ẑj

cvx with (8.14); construct X̂ j
N with (8.3);

9: if Problem (8.2) is feasible with Ẑj
cvx then

10: Use Ẑj = Ẑj
cvx for solving (8.2);

11: break; (P([IF]j) = 0 is satisfied)
12: else
13: Use Ẑj = Ẑj

svm for solving (8.2);
14: end if
15: else
16: Use Ẑj = Ẑj

svm for solving (8.2);
17: end if

18: Set x̃j = xS, t = 0;
19: while 0 ≤ t ≤ T − 1 do
20: Solve (8.2) and apply MPC (8.4) to (2.9);
21: Collect states and append xj = [xj, xj

t+1];
t = t + 1

22: end while
j = j + 1

23: end while

approximate solutions to the following iterative optimal control problem in receding horizon:

min
uj
0,u

j
1(·),...

T−1∑
t=0

10
∥∥x̄j

t − xref

∥∥2
2

+ 2
∥∥uj

t(x̄
j
t)
∥∥2
2

s.t.,

xj
t+1 = Axj

t + Buj
t(x

j
t) + wj

t ,[
Hb

x

Hub
x

]
xj
t ≤

[
20× 14

5× 12

]
, ∀wj

t ∈W,

− 30 ≤ uj
t(x

j
t) ≤ 30, ∀wj

t ∈W,

xj
0 = xS, t = 0, 1, . . . , (T − 1),

(8.16)
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where

W = [−0.5, 0.5]× [−0.5, 0.5],

A =

[
1 1
0 1

]
, B = [0, 1]⊤

are known. The known and unknown parts of the state constraints are parametrized by the
polytopes {x : Hb

xx ≤ 0} and {x : Hub
x x ≤ 0} respectively, where the matrices are given by

Hb
x =


1 0
0 1
−1 0
0 −1

 , Hub
x =

[
1 1
1 −1

]
.

We solve the above optimization problem (8.16) with the initial state xS = [−15, 15]⊤ and
reference point xref = [5, 0]⊤ for task duration T = 10 steps over all the iterations. Algo-
rithm 6 is implemented with a control horizon of N = 4, and the feedback gain K in (8.3)
is chosen to be the optimal LQR gain with parameters QLQR = 10I2 and RLQR = 2. The
optimization problems are formulated with YALMIP interface [110] in MATLAB, and we
use the Gurobi solver to solve a quadratic program at every timestep for control synthesis.
The goal of this section is to show:

• Our approach finds an iteration index j̄ such that (8.7) is guaranteed to hold for all
iterations j ≥ j̄.

• Performance loss [PL]j over Successful Iterations (after j ≥ j̄) increases as the tolerable
probability ϵ of Iteration Failure is lowered. This highlights the safety vs. performance
trade-off.

8.5.1 Bounding the Probability of Iteration Failure

We demonstrate satisfaction of design specification (D1) by Algorithm 6. First, we focus
on the SVM-based approach. We choose an SVM classifier with a Radial Basis kernel
function [42, Chapter 12]. For introducing exploration properties, the SVM classifier f 0(x)
was initially warm-started by exciting the system (2.9) with random inputs and collecting
trajectory data for two trajectories. After that the control process was started by solving
(8.2). The polytopes Pj+1

svm were generated by taking a convex hull of randomly generated
1000 test points before each iteration, which were classified as f j(xj

test) ≤ 0 for j ∈ {1, 2, . . . }.
We consider two cases of tolerable Iteration Failure, with respective probabilities of 30%

and 50%, corresponding to ϵ = 0.3 and ϵ = 0.5 (see Table I). The associated estimated
constraint sets Ẑj̄ were obtained for j̄ = 5 and j̄ = 3 respectively 3. These sets satisfy design

3We note that the exact value of j̄, as well as the associated estimated constraint sets, depend on the
disturbance sequence. Running this example several times will yield similar results, but not the exact same
results.
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requirement (D1) and are shown in Fig. 8.1. As expected, the constraint set estimated with
ϵ = 0.5 is larger than the set estimated with ϵ = 0.3. Both estimated sets partially violate
the true constraint set (outlined in black).

Furthermore, in order to verify the certificate obtained using Proposition 8.1, we run 100
offline Monte-Carlo simulations (or trials) of iterations by solving (8.2), with Ẑ1:100 = Ẑj̄, for
each of the above Ẑj̄ sets, and estimate the actual resulting Iteration Failure probability. This
probability is estimated by averaging over 100 Monte Carlo draws of disturbance samples
w0:T−1 = [w0, w1, . . . , wT−1], i.e.,

P(x0:T /∈ Ẑj̄
s) ≈

1

100

100∑
m̃=1

(1F(x0:T ))⋆m̃,

where

(1F(x0:T ))⋆m̃ =

{
1, if x0:T /∈ Ẑj̄

s|(w0:T−1)
⋆m̃,

0, otherwise,

and (·)⋆m̃ represents the m̃th Monte Carlo sample4. The values obtained were ϵ̂ ≈ 0.01 and

Figure 8.1: Estimated state constraint sets with varying bounds for P([IF]j).

ϵ̂ ≈ 0.04 for ϵ = 0.3 and ϵ = 0.5 respectively. Thus we see that, in practice, the actual
probability of Iteration Failure is about 92%− 96% lower than the corresponding chosen ϵ.
This highlights the conservatism of the bounds given in Proposition 8.1.

We next verify the satisfaction of design requirement (D1) when the estimated constraint
sets are obtained using the robust convex hull based approach from Section 8.4.2. We use

4For brevity, with slight abuse of notation, we use Ẑj̄
s to denote the corresponding state constraints.
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the same 100 draws of disturbance sequences w1:100 = [w1
0:T−1, w

2
0:T−1, . . . , w

100
0:T−1] as for the

SVM-based approach above. The resulting constraint estimate set is shown in Fig. 8.1 and
is obtained at j̄ = 4. Using this set in (8.2) ensures no Iteration Failures for all j ≥ j̄, as
proven in Proposition 8.2. These results from Section 8.5.1 are summarized in Table I.

8.5.2 Safety vs. Performance Trade-Off

For the same Monte Carlo draws of w1:100, we approximate the average closed-loop cost
E[V̂ j̄(xS, w0:T )] by taking an empirical average over the 100 Monte Carlo draws,

E[V̂ j̄(xS, w0:T−1)] ≈
1

100

100∑
m̃=1

V̂
j̄
(xS, (w0:T−1)

⋆m̃),

with Ẑj̄ sets obtained in Fig. 8.1. The cost values are normalized by V⋆(xS), which denotes
the empirical average closed-loop cost if Z had been known.

The results are summarized in Table I. We see that the average closed-loop cost shows an
inverse relationship with the tolerable Iteration Failure probability ϵ. For lower probabilities
of [IF]j with ϵ = 0.30, we pay a 3% lower average closed-loop cost compared to V⋆(xS).
Allowing for higher probability of [PL]j with ϵ = 0.50 proves to be cost-efficient, where
we pay around 7% lower average closed-loop cost compared to V⋆(xS). The cost for the
approach in Section 8.4.2 is the highest, with a 4% higher average closed-loop cost compared
to V⋆(xS). This directly reflects the safety vs. performance trade-off. This also shows that
our approach lowers performance loss for any given ϵ, satisfying (D2) with (D1).

Table 8.1: The safety vs performance trade-off.

ϵ j̄ ϵ̂ E[V̂ j̄(xS, w0:T−1)]/V⋆(xS) ≈
0 4 0 1.04

0.3 5 0.01 0.97
0.5 3 0.04 0.93

8.6 Chapter Summary

We proposed a framework for an uncertain linear time-invariant system to iteratively learn
to satisfy unknown polyhedral state constraints in the environment. From historical trajec-
tory data, we constructed an estimate of the true environment constraints before starting
an iteration, which the MPC controller robustly satisfies at all times along the iteration. A
safety certification is then provided for the estimated constraints, if the true (and unknown)
environment constraints are also satisfied by the controller in closed-loop. We further high-
light a trade-off between safety and controller performance, numerically demonstrating that
a controller designed with estimated constraint sets which are deemed highly safe, result in
a higher average closed-loop cost incurred across iterations.
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Appendix

Proof of Proposition 8.1

Recall matrices Hx and hx defined in (7.2). Let us denote Hx = Hx ⊗ IT and hx = hx ⊗
IT . Let [Hx]i and [hx]i denote the ith row of Hx and hx respectively. For a fixed initial
condition x1:j

0 = xS and a random disturbance realization w = [w0, w1, . . . , wT−1], consider
the corresponding closed-loop trajectory

x(w) = [x⊤
0 , x

⊤
1 , . . . , x

⊤
T ]⊤.

Now consider the following function

Q(w) := max
i
{[Hx]ix(w)− hi},

and then define Q̂Nit
:= maxj=1,2,...,Nit

{Q(wj)}, where wj for j ∈ {1, 2, . . . , Nit} are a collec-
tion of independent samples of w drawn according to P. It follows [111, Theorem 3.1] that,

if Nit ≥ ln 1/β
ln 1/(1−ϵ)

, then

PNit
[
P[Q(w) > Q̂Nit

] ≤ ϵ
]
≥ 1− β.

Proposition 8.1 now follows upon setting Q̂Nit
= 0.
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Chapter 9

Playing Cup-and-Ball: An
Application of LRBF

This chapter is based on the published work [112]. In this chapter, we demonstrate a fully
physics driven model-based hybrid approach for control design in order for a robotic ma-
nipulator to learn to play the cup-and-ball game. The controller guarantees a constrained
motion, while accounting for our best estimates of uncertainty in the system model and
sensing errors. For obtaining the position of the ball required for closed-loop control design,
noisy measurements obtained from a camera are used. The support of this camera noise
is refined with data using the tools presented in Chapter 7, which improves the catching
capabilities of the robot.

9.1 Summary of Contributions

We use a mixed open-loop and closed-loop control design, motivated by works such as [113,
114, 115]. First, the swing-up phase is designed offline and then an open-loop policy is
applied to the robotic manipulator. We use a cart with inverted pendulum model of the cup-
and-ball joint system for swing-up policy design. For this phase, as we solve a constrained
finite horizon non-convex optimization problem, we only consider a nominal disturbance-free
model of the system. The swing-up trajectory is thus designed to ensure that the predicted
difference in positions of the ball and the cup vanishes at a future time once the nominal
terminal swing-up state is reached and the cup is held fixed.

After a swing-up, we switch to online closed-loop control synthesis once the ball starts
its free-fall. We consider presence of only a camera that takes noisy measurements of the
ball’s position at every timestep. We design the feedback controller in the manipulator’s
end-effector [116] space. This results in a linear time-invariant (LTI) model for the evolution
of the difference between the cup and the ball’s positions, thus allowing us to solve convex
optimization problems online for control synthesis. In order to guarantee a catch by mini-
mizing the position difference, it is also crucial to ensure that during the free-fall of the ball,
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the control actions to the manipulator do not yield a configuration where the string is taut,
despite uncertainty in the model and noise in camera position measurements. Uncertainty
in the LTI model primarily arises from low level controller mismatches in the manipula-
tor hardware, and an upper bound of this uncertainty is assumed known. Bounds on the
measurement noise induced by the camera are assumed unknown. We present a method to
increase the probability of a catch, as the estimate of the support of camera measurement
noise distribution is updated. Our contributions are summarized as:

• Offline, before the feedback control of the manipulator, we design a swing-up trajectory
for the nominal cup-and-ball system that plans the motion of the ball to a state from
which a catch control is initiated.

• Using the notion of Confidence Support from Chapter 7, which is guaranteed to contain
the true support of the camera measurement noise with a specified probability, we use
online robust feedback control for enforcing bounds on the probability of failed catches.

• With high-fidelity Mujoco simulations and preliminary physical experiments we demon-
strate that the manipulator gets better at catching the ball as the support of the camera
measurement noise is learned and as the Confidence Support and closed-loop policy
are updated.

9.2 Generating A Swing-up Trajectory

The swing-up phase begins with the arm in the home position such that the ball is hanging
down at an angle of 0 radians from the vertical plumb line, as seen in Fig. 9.1.

9.2.1 System Modeling

We model the system such that the cup is a planar cart with point-mass mc and the ball
acts as a rigid pendulum (mass mb and radius r) attached to the cup. Assuming planar xz-
motion of the ball, we derive the Lagrange equations of motion [116] with three generalized
coordinates q(t) = (xcup(t), zcup(t), ϕ(t)), which denote the x position of the cup, z position
of the cup, and swing angle of the ball with respect to the plumb line of the cup respectively
at any time t ≥ 0. We reduce the equations to the general nominal form

M(q(t))q̈(t) + C(q(t), ˙q(t)) ˙q(t) + G(q(t)) = F (t), ∀t ≥ 0, (9.1)

where M(q(t)) is the inertia matrix, C(q(t), q̇(t)) is the Coriolis matrix, G(q(t)) is the
gravity matrix, and F (t) is the external input force at time t. Here q̇(t) denotes the velocity
of the cup and the angular velocity of the ball, and q̈(t) denotes the acceleration of the cup
and the angular acceleration of the ball at any time t ≥ 0. System (9.1) in state-space form
is

˙̄x(t) = f(x̄(t), F (t)), (9.2)

where nominal state x̄(t) = [q⊤(t), q̇⊤(t)]⊤ ∈ R6 for all time t ≥ 0.
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Figure 9.1: Manipulator with Kendama along with coordinate frame.

9.2.2 Optimization Problem

We discretize system (9.2) with one step Euler discretization and a sampling time of Ts =
100Hz. The discrete time system can then be written as

x̄i+1 = x̄i + Tsf(x̄i, Fi) = fd(x̄i, Fi), ∀i ∈ {0, 1, . . . },

where ai denotes the sampled time version of continuous variable a(t). To generate a force
input sequence for the swing-up, we solve a constrained optimal control problem over a finite
planning horizon of length N , given by:

min
F0,...,FN−1

N−1∑
i=0

x̄⊤
i Qsx̄i + F⊤

i RsFi

s.t., x̄i+1 = fd(x̄i, Fi),
x̄i ∈ X , Fi ∈ F ,
x̄0 = xinit,
x̄N = xf , i = 0, 1, . . . , (N − 1),

(9.3)

where weight matrices Qs, Rs ≻ 0, and constraint set X is chosen such that the ball remains
within the reach of the UR5e manipulator. Initial state xinit is known in the configuration as
shown in Fig. 9.1. Due to the nonlinear dynamics fd(·, ·), the optimization problem (9.3) is
non-convex. Moreover, typically a long horizon length N is required. Hence, we solve (9.3)
offline and apply the computed input sequence F⋆ = [F ⋆

0 , F
⋆
1 , . . . , F

⋆
N−1] in open-loop to the

manipulator.
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9.2.3 Terminal Conditions of the Swing-Up

Predicted Behaviour

The nominal terminal state xf in (9.3) is selected such that the ball is swinging to ϕ = 2.44
rad with an angular velocity of ϕ̇ = 4.18 rad/s. At these values, the string is calculated to
lose tension and the ball begins free-fall. The chosen value of xf ensures that the predicted
difference in positions of the ball and the cup (both modeled as point masses) vanishes at a
future time, if the cup were held fixed and the ball’s motion is predicted under free-fall.

Actual Behaviour

When considering the nominal system (9.1), we have ignored the presence of uncertainties.
Such uncertainties may arise due to our simplifying assumptions such as: (i) the string is
mass-less so the swing angle is only affected by the ball and cup masses, (ii) there are no
frictional and aerodynamic drag forces to hinder the conservation of kinetic and potential
energy of the system, (iii) the cup mass is decoupled from the mass of the manipulator,
and (iv) there is no mismatch of control commands from the low level controller of the
manipulator and F . Due to such uncertainties, realized states xi for i ∈ {0, 1, . . . , N} do not
exactly match their nominal counterparts.

A set of 100 measured roll-out trajectories of the ball after the swing-up are shown in
Fig. 9.2 for a fixed open-loop input sequence F⋆. We see from Fig. 9.2 that after N timesteps
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End-effector Trajectory in Swing-Up

Figure 9.2: Start of catch phase (i.e., i = N) for 100 trajectories. Red line indicates the
trajectory of the cup/end-effector during swing-up. Blue dots indicate ball positions during
swing-up and pink dots indicate a position after catch phase is started. Closed-loop control
begins when the relative position is in Etr.
of swing-up, the ball and the cup arrive at positions where their relative position is in a set
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Etr. A key assumption of well posedness will be imposed on this set in Section 9.3.4 in order
for our subsequent feedback control policy to deliver a catch in experiments.

9.3 Designing Feedback Policy In Catch Phase

For the catch phase we start the time index t = 0 where the swing up ends, i.e., i = N . There
are two main challenges during the design of the feedback controller, namely (i) position
measurements of the ball from a noisy camera, and (ii) presence of mismatch between desired
control actions and corresponding low level controller commands.

Assumption 9.1 We assume that the UR5e end-effector gives an accurate estimate of its
own position. The assumption is based on precision ranges provided in [eseries].

9.3.1 Problem Formulation

During free-fall of the ball we design our feedback controller for the manipulator position
only in end-effector space, with desired velocity of the end-effector as our control input. The
joint ball and end-effector system in one trial can be modeled as a single integrator as:

et+1 = Aet + But + wt(et, ut), (9.4a)

yt = et + vt, (9.4b)

with error states and inputs (i.e., relative position and velocity)

et =

[
xcup
t − xball

t

zcupt − zballt

]
, ut =

[
vcupx,t − vballx,t

vcupz,t − vballz,t

]
,

where wt(et, ut) ∈ Wm ⊂ R2, is a bounded uncertainty which arises due to the discrepancy
between (i) the predicted and the actual velocity of the ball at any given timestep1, and
(ii) the commanded and the realized velocities of the end-effector, primarily due to the low
level controller delays and limitations. System dynamics matrices A = I2 and B = dt · I2
are known, and sampling time dt = 0.01 second. We assume an outer approximation W to
the set Wm, i.e., Wm ⊆ W is known, and is a polytope. We consider noisy measurements

of states due to the noise in camera position measurements, corrupted by vt
i.i.d.∼ P , with

Supp(P) = V, where Supp(·) denotes the support of a distribution. We assume V is not
exactly known.

Using the set Etr (see Fig. 9.2), a set E containing the origin where the string is not taut
and (9.4) is valid can then be chosen. We choose:

γ(i) = ∥vert(i)(Etr)∥∞, i ∈ {1, 2},
E = {x : −γ ≤ x ≤ γ}, γ = [γ(1), γ(2)]⊤, (9.5)

1we use the camera position information for ball’s velocity estimation
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where vert(i)(A) denotes ith row of all the vertices of the polytope A, and as introduced
previously, ∥ · ∥ denotes the vector norm. This ensures

e0 ∈ Etr =⇒ e0 ∈ E . (9.6)

As (9.6) holds true, we impose state and input constraints for all timesteps t ≥ 0 as given
by:

et ∈ E , ut ∈ U , (9.7)

where set U is a polytope. We formulate the following finite horizon robust optimal control
problem for feedback control design:

min
u0,u1(·),...

T−1∑
t=0

ℓ (ēt, ut (ēt)) + Q(ēT )

s.t., et+1 = Aet + But(et) + wt(et, ut),
ēt+1 = Aēt + But(ēt),
yt = et + vt,

et ∈ E , ut(et) ∈ U ,
∀wt(et, ut) ∈W, ∀vt ∈ V,
e0 ∈ E , t = 0, 1, . . . , (T − 1),

(9.8)

where et, ut and wt(et, ut) denote the realized system state, control input and model uncer-
tainty at timestep t respectively, and (ēt, ut(ēt)) denote the nominal state and corresponding
nominal input. Notice that (9.8) minimizes the nominal cost over a task duration of length
T decided by the user, having considered the safety restrictions during an experiment. The
cost comprises of the positive definite stage cost ℓ(·, ·), and the terminal cost Q(·).

The main challenge in solving problem (9.8) is that it is difficult to obtain the camera
measurement noise distribution support V. Resorting to worst-case a-priori set estimates
of V as in [22, 13] might result in loss of feasibility of (9.8). To avoid this, we use a data-
driven estimate of V denoted by V̂(n), where n is the number of samples of noise vt used to
construct the set.

9.3.2 Control Formulation

As we have noisy output feedback in (9.12), we follow [46] for a tractable constrained finite
time optimal controller design strategy. We repeatedly solve (9.8) at times 0 ≤ t ≤ (T − 1)
in a shrinking horizon fashion [6, Chapter 9]. We make the following assumption for this
purpose:

Assumption 9.2 The sets Wm,W,V, and U contain the origin in their interior.
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Observer Design and Control Policy Parametrization

We design a Luenberger observer for the state as

êt+1 = Aêt + But + L(yt − êt),

where the observer gain L is chosen such that (A − L) is Schur stable. The control policy
parametrization for solving (9.8) is chosen as:

ut = ūt + K(êt − ēt),

where state feedback policy gain matrix K is chosen such that (A + BK) is Schur stable.

Optimal Control Problem

Consider the tightened constraint sets,

Ē(n) = E ⊖ (Rest(n)⊕Rcon(n)), (9.9a)

Ū(n) = U ⊖KRcon(n), (9.9b)

where following [46, Proposition 1-2], the set Rest(n) is our best estimate of the minimal
Robust Positive Invariant set Rest for estimation error δeestt = et − êt dynamics defined as

δeestt+1 = (A− L)δeestt + wt(et, ut)− Lvt, (9.10)

and the set Rcon(n) is our best estimate of the minimal Robust Positive Invariant set Rcon

for the control error δecont = êt − ēt dynamics defined as

δecont+1 = (A + BK)δecont + Lδeestt + Lvt, (9.11)

with vt ∈ V̂(n) and wt(et, ut) ∈W. We use the phrase best estimate for the above sets, since
V̂(n) is an estimate of true and unknown set V.

Using these sets we then solve the following tractable finite horizon constrained optimal
control problem at any timestep t ≥ 0 as an approximation to (9.8):

V ⋆
t→T (Ē(n), Ū(n),Rcon(n), êt) :=

min
ēt,ūt,...,ūT−1

T−1∑
k=t

ℓ(ēk, ūk) + Q(ēT )

s.t., ēk+1 = Aēk + Būk,

uk = ūk + K(êk − ēk),

ēk ∈ Ē(n), ūk ∈ Ū(n),

êt − ēt ∈ Rcon(n),

ēT = 0,

∀k ∈ {t, t + 1, . . . , (T − 1)},

(9.12)
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where êt is the observed state at timestep t, and {ēk, ūk} denote the nominal state and
corresponding input respectively predicted at timestep k ≥ t. After solving (9.12), in closed-
loop we apply

u⋆
t (et) : u⋆

t = ū⋆
t + K(êt − ē⋆t ) (9.13)

to system (9.4). We then resolve the problem (9.12) again at the next (t + 1)-th timestep,
yielding a shrinking horizon strategy. The choice of initial observer state is made as follows:

ê0 ∈ −(Rest(n)⊖ E). (9.14)

Assumption 9.3 (Manipulator Speed) If any feasible solution is found to (9.12) satis-
fying velocity error constraints Ū(n), the manipulator has enough velocity authority to satisfy
these constraints, where the predicted ball velocity is obtained using forward Euler integration
at free-fall.

Recall the set Etr containing the set of all possible errors e0 at the start of the catch
phase, shown in Fig. 9.2. We now make the following assumption.

Assumption 9.4 (Well Posedness) We assume that given state e0 ∈ Etr, optimization
problem (9.12) is feasible at all timesteps 0 ≤ t ≤ (T − 1) with model uncertainty support
W, and true measurement noise support V̂(n) = V used in (9.10)-(9.11) and (9.14), when
(9.13) is applied to (9.4) in closed-loop. This implies that et ∈ E for all 0 ≤ t ≤ T , where E
is obtained from Etr following (9.5).

Definition 9.1 (Trial Failure) A Trial Failure at timestep t is the event

[TF]t : et /∈ E , 0 ≤ t ≤ T.

That is, a Trial Failure implies the violation of imposed constraints (9.7) by system (9.4) in
closed-loop with feedback controller (9.13).

Note that a Trial Failure is a possible scenario only because V is unknown and is estimated
with V̂(n) in (9.12). Intuitively, a Trial Failure implies one of the following:

(P1) Problem (9.12) losing feasibility during 0 < t < T . This happens if V̂(n) ̸⊃ V.

(P2) Problem (9.12) losing feasibility initially at t = 0, and/or sets Ē(n), Ū(n) becoming
empty. This can happen if V̂(n) ⊃ V.

9.3.3 Constructing Set V̂(n)

As described in Section 9.3.1 the set V̂(n) is an estimate of the measurement noise support
V, derived from n samples of noise vt. The set V̂(n) is then used to compute Rest(n) and
Rcon(n) in (9.10)-(9.11), used in (9.12) and (9.14). We consider the following two design
specifications while constructing set V̂(n), given a fixed sample size n.
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(D1) Probability of the event V̂(n) ̸⊃ V is bounded with a user specified upper bound ϵ.

(D2) Estimate V̂(n) ensures event (P2) in Trial Failure occurs with a vanishing probability,
while satisfying specification (D1).

Satisfying (D1) using Distribution Information

Fig. 9.1 shows the configuration of the system when n noise samples are collected to con-
struct V̂(n). Let Assumption 9.1 hold true and the ball is held still, vertically below the
end-effector at a position, whose z-coordinate zcup = z̄ is fixed and known from previous
UR5e end-effector measurements, and x-coordinate is fixed at xball = 0. We then collect n
camera position measurements of the ball at this configuration. The discrepancy between
the known position and the measurements yield values of noise samples vn = [v0, v1, . . . , vn].
For a fixed environment,2 the distribution of collected samples is shown in Fig. 9.3, which is
approximately a truncated normal distribution. We thereby consider this distribution family
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Figure 9.3: Camera measurement noise distribution histogram for a fixed camera environ-
ment using n = 400, 000 samples.

in Fig. 9.3 conditioned on any environment as

Pq
θq
|env = Ntrunc(µq, σ

2
q , 3), with q ∈ {1, 2}, (9.15)

where Pθ denotes that the distribution P belongs to a parametric family (truncated normal)
parametrized by θ = (µ, σ), q denotes the qth dimension (x and z directions), and parameters
(µq, σq) are unknown. For a parametric distribution such as (9.15), for any chosen ϵ ∈ (0, 1),

set V̂(n) is then constructed as the (1− ϵ)-Confidence Support of Pθ|env using the method
proposed in Chapter 7, which ensures

P(V̂(n) ̸⊃ V) ≤ ϵ. (9.16)

Note that (9.16) is a sufficient condition to guarantee that if (D2) holds, solving (9.12) and
applying (9.13) to (9.4) gives

P(et /∈ E) ≤ ϵ, 0 ≤ t ≤ T, (9.17)

if V̂(n) is used to construct sets Rest(n) and Rcon(n).
2camera environment is parametrized by factors such as lighting conditions, camera field of view, etc.
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Satisfying (D2) using Assumption 9.4

Since Assumption 9.4 holds, there exists a number of noise samples nϵ for any ϵ ∈ (0, 1),
such that V̂(nϵ) satisfies (D2). Thus, only the sample size n has to be chosen3 for V̂(n)
appropriately to satisfy (D2), having ensured (9.17). This guarantees that constructing sets
Rcon(n) and Rest(n) using V̂(n) and then designing a feedback control by solving (9.12)
results in problem (9.12) being feasible throughout the task with probability at least β =
(1 − ϵ)T−1. Value of ϵ can be chosen small enough for any user-specified level β can be
attained.

9.3.4 Obtaining Successful Catches

Constructing V̂(n) as per Section 9.3.3 to ensure (9.17) is still not a sufficient condition
to obtain a catch in an experiment with specified probability β, as our model (9.4) does
not account for additional factors such as object dimensions, presence of contact forces,
etc. Therefore we introduce the notion of a successful catch, which is defined as the ball
successfully ending up inside the cup at the end of a roll-out. Thus, a successful catch
accounts for the dimensions of the ball and the cup, and the presence of contact forces.

Assumption 9.5 (Existence of a Successful Catch) We assume that given an initial
state e0 ∈ Etr, an input policy obtained by solving (9.12) can yield a successful catch, if true
measurement noise support V were known exactly.

Remark 9.1 From Chapter 7 we know that as long as confidence intervals for parameters
(µ, σ) in (9.15) converge, V̂(n)→ V as n→∞. So, if sample size n is increased iteratively
approaching n → ∞, obtaining a successful catch guaranteed owing to Assumption 9.5.
However if a precise positioning system like Vicon is used to collect the noise samples, due
to limited access to such environments, collecting more samples and increasing n could be
expensive. We therefore stick to our method of constructing V̂(n) for a fixed n as per
Section 9.3.3, and we attempt successful catches with multiple roll-outs by solving (9.12).
For improving the empirical probability of successful catches in these roll-outs, one may then
increase n and thus update the control policy. We demonstrate this in Section 9.4.2 and
Section 9.4.3.

9.4 Experimental Results

We present our preliminary experimental findings in this section. For our experiments, the
original Kendama handle was modified to be attached to a 3D printed mount on the UR5e
end-effector, as shown in Fig. 9.1. A single Intel RealSense D435 depth camera running at 60
FPS was used to estimate the position and velocity of the ball. The source code is available
at https://github.com /monimoyb/kendama.

3for n fixed, ϵ can be increased while constructing V̂(n) to satisfy (D2).

https://github.com/monimoyb/kendama
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9.4.1 Control Design in the Catch Phase

Once the swing-up controller is designed as per Section 9.2.2 and an open-loop swing-up
control sequence is applied to the manipulator, we design the feedback controller by finding
approximate solutions to the following problem:

min
u0,u1(·),...

T−1∑
t=0

500 ∥ēt∥22 + 0.4 ∥ut(ēt)∥22

s.t.,
et+1 = Aet + But(et),
ēt+1 = Aēt + But(ēt),
yt = et + vt,

et ∈ E ,
[
−8m/s
−8m/s

]
≤ ut(et) ≤

[
8m/s
8m/s

]
,

∀vt ∈ V,
t = 0, 1, . . . , (T − 1),

(9.18)

where set Etr = [−0.316m, 0.349m]× [−0.2095m, 0.2457m], shown in Fig. 9.2. Note that for
this specific scenario the presence of model uncertainty can be ignored. Set V is unknown,
and we consider Assumption 9.4 holds. System matrices A,B are from Section 9.3.1.

9.4.2 Mujoco: Increasing Successful Catches

We first conduct exhaustive Mujoco [117, 118] simulations of the catching problem, having
formed V̂(n) as per Section 9.3.3, with n = 100 and then iteratively increasing to n = 2000.
Sets V̂(n) are formed using the tools presented in Chapter 7. The task duration in this
case is T = 25 steps. The trend in the percentage of successful catches with 1000 roll-outs
corresponding to each n, varying from n = 50 to n = 2000, is shown in Fig. 9.4. For
n = 50, 46.9% of the roll-outs result in a successful catch. The number increases to 68.3%
for n = 2000. Thus we prove that our proposed approach enables successful learning of
the kendama ball catching task in high-fidelity Mujoco simulations. Note that although the
percentage of successful catches demonstrably improves, but it does not attain a perfect
100% value. This is due to the simulated nonlinearities in Mujoco at the time of impact,
which are not captured by our linear model (9.4) in the catching phase.

9.4.3 UR5e: Learning to Catch

In order to validate the findings from Mujoco simulations, we conduct 50 roll-outs of the
catching task on our experimental UR5e robot by solving (9.12). Fig. 9.5 shows the per-
centage of roll-outs conducted for each iteration (i.e., for each value of n), that resulted in
the ball successfully striking the center of the cup. The percentage increases from 41.46%
to 61.62%. Furthermore, another crucial quantity at the time of impact is the commanded
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Figure 9.4: Percentage of successful catches vs sample size n.
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Figure 9.5: Percentage of times the ball hitting the cup center among all roll-outs vs sample
size n.

relative velocity (9.13) in z-direction, a lower value of which indicates an increased likelihood
of the ball not bouncing out. The average value and the standard deviation of of (u⋆

Tim−1)
∗m̃
z

for m̃ ∈ {1, 2, . . . , 50} is shown in Fig. 9.6, where (·)∗m̃ denotes the m̃th roll-out and Tim ≤ T
denotes the time of impact. As seen in Fig. 9.6, the mean of the relative velocity at impact
lowers from 0.38 m/s to −0.06 m/s. This together with Fig. 9.5 indicates a possibility of
increasing successful catch counts as n is increased. As a matter of fact, at the end of this
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at impact, i.e., [u⋆

Tim−1]z vs sample size n.

learning process, the robot learns to catch the ball successfully, and repeatably. An example
case is demonstrated in: video link. However, a noticeable difference is seen in this case
between the Trial Failure probability and the rate of failed catches. Recall their difference
from Section 9.3.4. We discuss this in the next section.

9.4.4 Catch Percentage in Experiments

The percentage of successful catches by the robot during experiments is found to be lower
than the values obtained in Fig. 9.4. We hypothesize that this is due to the presence of
un-modeled factors in our simplified system model (9.4), such as the vibrations of the table
and the robot arm, contact dynamics, low-level controller delays/saturation, etc. Therefore,
an informative extension would be to collect the ball’s position information at impact during
successful catches using a position tracking unit such as Vicon, and compare the correspond-
ing set of error values, denoted by E trcatch with the set Rest(n)⊕Rcon(n) for an n≫ 0. A set
E trcatch ⊂ Rest(n)⊕Rcon(n) with:

volume(E trcatch)≪ volume(Rest(n)⊕Rcon(n))

would be demonstrably suggestive of the limitations of linear modeling used in this chapter.
We leave such a validation and potential policy improvements as a future extension of the
presented work in this Chapter.

https://www.dropbox.com/s/ih4a5uld197rd42/Kendama2020_Successful_Catch.mp4?dl=0
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9.5 Chapter Summary

We proposed a model based control strategy for the classic cup-and-ball game. The control
problem was divided into two sub-tasks, for swinging the ball up, and then catching the free-
falling ball, respectively. The swing-up trajectory ensures that a successful catch is possible
with our feedback control design approach. Subsequently, a convex optimization problem
was solved online during the ball’s free-fall to control the manipulator and catch the ball.
The controller utilized noisy position measurements of the ball from a camera, and the
support of this noise distribution was iteratively learned from data using the algorithm from
Chapter 7. Thus, the closed-loop control policy iteratively updates. We theoretically proved
that under the considered modeling assumptions, the probability of a catch increases in the
limit. Preliminary experimental results and high-fidelity simulations support our analysis.
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Chapter 10

Decentralized Robotic Collaboration:
An Application of Constraint
Learning

This chapter is based on the published work in [43]. Obstacle avoidance in collaborative
robotics has primarily considered known obstacles and solving a centralized problem with
explicit communication [119, 120, 121, 122, 123, 124]. The use of implicit communication,
such as force and torque measurements or estimates on rigid bodies [125, 126, 127, 128, 129,
130, 131, 132, 133, 134] remains challenging for obstacle avoidance when the robots rely only
on local controllers in unstructured and unknown or partially known environments. In this
proposed work, we extended the notion of constraint learning presented in Chapter 8 to such
robotic applications, where robots learn information of unknown obstacles in their proximity
via the interaction information during collaboration.

10.1 Summary of Contributions

We consider the task of two robots collaboratively transporting an object, constraining the
robots’ inputs to comply with the object’s physical constraints. We consider no explicit
communication, so the local environment information and the control actions are not shared
between the robots. We solve the control design problem by using a leader-follower strategy
with the leader using an MPC and the follower using a simple controller, known to the leader.
With this schema, the leader can solve the collaborative transportation task with the help
of the follower, while building a map of its unknown obstacles. Such a map is obtained by
estimating the follower’s inputs to infer missing local information about the environment
sensed by the follower. Our key contributions can thus be summarized as follows:

• We propose a leader-follower strategy for two robots collaboratively transporting an
object in a partially known environment with obstacles. The leader solves an MPC
problem based on its known set of obstacles and plans a trajectory to reach the target



CHAPTER 10. DECENTRALIZED ROBOTIC COLLABORATION: AN
APPLICATION OF CONSTRAINT LEARNING 147

position, while avoiding collisions for the whole system (i.e., the two robots combined
with the object to be transported).

• We present a simple control policy for the follower that is reactive to obstacles detected
by the follower (and possibly undetected by the leader). This follower control policy
is designed so that it allows the leader to infer the position of obstacles not directly
sensed.

• Motivated by [125], we introduce a strategy for allowing leader-follower role switches
during the task. We present a detailed numerical example of two point robots trans-
porting a rigid rod in an initially unknown environment. On this example our proposed
approach allows the leader’s MPC controller to learn the undetected obstacles and suc-
cessfully complete the task, with the leader-follower roles appropriately switched.

Control design with three or more robots is not addressed in this work. In order to estimate
the inputs of the other robot, we assume each robot can estimate the states of the joint
system, i.e., the two robots with the object to be transported. For the considered example
of two point robots transporting a rigid rod, this estimation is done with measurements
of robots’ own positions and the rod orientation. For more complicated systems, similar
estimates may be obtained using additional sensors. We do not present this in this chapter.

10.2 Problem Formulation

In this section, we formulate the collaborative obstacle avoidance problem with the leader-
follower control architecture. Such a leader-follower hierarchy is common in control design
[135, 126, 136, 125]. We limit ourselves to the case of only one follower. We refer to the two
robots with the object to be transported as the joint system.

10.2.1 Environment Constraints

Let the environment be defined by the set X . We assume obstacles are static, although
the proposed framework can be extended to dynamic obstacles. Let the set of obstacles be
denoted by O. Therefore, the safe set for the joint system is given by S = X \ O. At the
beginning of the task, we assume that the robots do not have any prior information about the
environment. During the control task, the robots detect obstacles and store their positions.
At any timestep t, let the set of obstacle constraints known to the leader and the follower
(detected at t and stored until t) be denoted by Cl,t and Cf,t, respectively. We denote:

Cl,t ∪ Cf,t = Ot, with Ot−Ts ⊆ Ot, ∀t ≤ T,

where Ts is the sampling time of both the leader and the follower robot controllers (defined
next in Section 10.2.2), and T ≫ Ts is the task duration.
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10.2.2 System Modeling

We consider that the leader and the follower robots transport the same object as they move.
The state space equation of the joint system is of the form:

St+Ts = f(St, ut, vt), (10.1)

where St ∈ Rn is the joint system state, ut ∈ Rm is the input of the leader and vt ∈ Rp is
the input of the follower at timestep t, and f(·, ·, ·) is any nonlinear map.

Remark 10.1 In general the states St contain the positions and velocities of the center of
masses of the leader, the follower and the object being transported.

A block diagram of the joint system is shown in Fig. 10.1, where the red and the blue parts
indicate the operations carried out by the leader and the follower, respectively. We consider

Figure 10.1: Block diagram of the joint system with leader follower controllers.

the case where the leader does not have full information of all the detected obstacles in Ot,
i.e., Cl,t ⊂ Ot. We further consider that no explicit communication between the leader and
the follower is available. Similar to [125, 126, 127, 128, 129, 130, 131, 132, 133], we enable
both the agents to infer each other’s inputs as “implicit” communication. We first make the
following assumption.

Assumption 10.1 The leader and the follower can estimate the joint system states St at
all timesteps.

We introduce the following notation: let (·)(j)t denote the value of the quantity (·)t as inferred

by robot j ∈ {l, f}. The leader and the follower’s estimates of St are thus denoted by Ŝ
(l)
t

and Ŝ
(f)
t , respectively. We denote the coordinates of the center of mass of the follower by
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Rt = [Xf,t, Yf,t]
⊤, and the leader/follower estimates R̂

(l/f)
t = [X̂

(l/f)
f,t , Ŷ

(l/f)
f,t ]⊤. Often such

states are already included in Ŝ
(l/f)
t , as pointed out in Remark 10.1. If they are not a part

of Ŝ
(l/f)
t , they need to be estimated as well in our control approach.

Method Outline: At timestep t, the leader uses Ŝ
(l)
t to compute the control action ut for the

joint system to avoid its known set of obstacles Cl,t. As there is no explicit communication,
the follower infers the leader’s inputs ut via its state estimates, inducing a delay in the
application of its inputs. That is, at timestep t + δ (with a δ ≪ Ts), the follower uses Ŝ

(f)
t+δ

and R̂
(f)
t+δ to infer ût . The follower also uses R̂

(f)
t+δ to build a map of its detected obstacles,

and computes vt+δ as a function of ut and these obstacles. During the inference time between
t and t + δ the follower keeps applying the previous input v(t−Ts)+δ. The leader then infers
the follower’s inputs vt+δ via its state estimates to learn additional obstacles. That is, at

timestep (t+2δ)1, the leader uses Ŝ
(l)
t+2δ to estimate v̂t+δ, based on which it learns the position

of any additional obstacles in the follower’s proximity at t + δ using R̂
(l)
t+δ. The leader then

computes updated Cl,t+Ts . We detail the algorithm in Section 10.3. In the next sections,
we present the controller synthesis. We discuss the effect of the time delay δ in details
in Section 10.3.3-10.3.4, when we distinguish between the leader and the follower applied
inputs.

Remark 10.2 We consider that the leader and follower robots have synchronized clocks. A
short discussion of non synchronized clocks is presented in Section 10.3.6.

For clarity of presentation in this chapter, we present a specific case of model (10.1). Specif-
ically, we model both the leader and the follower as point robots ml and mf , with global
coordinates Xl, Yl and Xf , Yf , respectively, transporting a rigid rod, as shown in Fig. 10.2.
The connecting rod of length (ll + lf ) has a mass mr. Assuming the rod is of uniform
density, the rod has an inertia, Jr, of 1

12
mr(ll + lf )2. The total mass of the joint sys-

tem is therefore m = mr + ml + mf . The total moment of inertia of the joint system is

J = Jr + mr(
ll−lf
2

)2 + mll
2
l + mf l

2
f . The leader’s inputs on the rod are the axial force Fal,

perpendicular force Fpl, and the torque τl. The corresponding follower’s inputs are Faf , Fpf

and τf . Denoting T =
(−Fpf lf+Fplll+τl+τf )

J
and define:

q1 = −(ll sin θT + ll cos θθ̇2) +
1

m
(cos θ(Fal + Faf )− sin θ(Fpl + Fpf )),

q2 = (ll cos θT − ll sin θθ̇2) +
1

m
(sin θ(Fal + Faf )) + cos θ(Fpl + Fpf )).

(10.2)

Due to the rigid coupling with the rod, the leader’s position, and translational and angular
velocity states are sufficient to define the evolution of the joint system. Accordingly, using
(10.2), the state-space equation for the joint system is:

Ṡ(t) = fc(S(t), u(t), v(t)) =
[
Ẋl q1 Ẏl q2 θ̇ T

]⊤
, (10.3)

1the leader’s inference can be made at timestep (t+ δ + µ) with δ < µ ≤ Ts. We use δ ≪ Ts and µ = δ
only to simplify notations. See Table 10.1.
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Figure 10.2: Model of the joint system. The leader and the follower are point masses
connected by the rigid rod. The follower reacts to a critical obstacle Ccr, as defined in
Section 10.3.1.

with S(t) = [s1, s2, s3, s4, s5, s6]
⊤, u(t) = [Fal, Fpl, τl]

⊤, and v(t) = [Faf , Fpf , τf ]⊤ at time t,
where the states are representative of variables given by:

s1 = Xl, s2 = Ẋl, s3 = Yl, s4 = Ẏl, s5 = θ, s6 = θ̇.

We discretize (10.3) with the sampling time of Ts for both the leader and the follower to
obtain its discrete time version similar to (10.1). Furthermore, for this specific model (10.3),
Assumption 10.1 can be stated as: both the leader and the follower can estimate the leader’s
position, velocity, as well as the angular speed and orientation of the rod at all times. For
simplicity of presentation, we consider that the robots measure their positions, velocities,
and the rod’s angle and angular speed. Accordingly, estimators Ŝ

(l)
t and Ŝ

(f)
t are:

Ŝ
(l)
t =

[
Xl,t Ẋl,t Yl,t Ẏl,t θt θ̇t

]⊤
, (10.4a)

Ŝ
(f)
t =



X̂
(f)
l,t

˙̂
X

(f)
l,t

Ŷ
(f)
l,t

˙̂
Y

(f)
l,t

θt
θ̇t


=



Xf,t + (ll + lf ) cos θt
Ẋf,t − (ll + lf ) sin θtθ̇t
Yf,t + (ll + lf ) sin θt
Ẏf,t + (ll + lf ) cos θtθ̇t

θt
θ̇t

 . (10.4b)

In the absence of perfect position, velocity and rod orientation measurements, one can design
appropriate state observers, such as a particle filter or an extended Kalman filter to obtain
their estimates, if Assumption 10.1 holds.
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10.2.3 Input Constraints

We consider constraints on the inputs of both the leader and the follower, which are given by
ut ∈ U and vt ∈ V for all t ≥ 0. For our specific example in this chapter, with F̄a, F̄p, τ̄ ∈ R+,
we consider the same box constraints:

U = V := {w : −
[
F̄a F̄p τ̄

]⊤ ≤ w ≤
[
F̄a F̄p τ̄

]⊤}. (10.5)

10.3 Control Synthesis

We enumerate the steps involved in our leader-follower control synthesis briefly next, which
constitute our collaborative obstacle avoidance with environment learning algorithm.

(I) At any timestep t, the leader designs an MPC controller with horizon of N steps with
NTs ≪ T for the joint system to reach a specified target position Star, while avoiding
all the stored obstacles in Cl,t. This is shown in Section 10.3.2.

(II) If there are no obstacles in its proximity, the follower uses a control strategy to support
the actions of the leader. The inference of the leader actions by the follower is described
in Section 10.3.3.

(III) In the case where critical obstacles (as defined later in Definition 10.1) are detected
by the follower, the follower applies an additional input contribution in order to avoid
these critical obstacles, as we show in Section 10.3.1.

(IV) The leader estimates the follower’s applied inputs and uses this as an “implicit” com-
munication to build a map of its possibly unseen obstacles lying in the follower’s
proximity. The leader then updates its set of known obstacles Cl,t+Ts , as we show in
Section 10.3.4. The leader MPC problem is solved again at the next timestep with
the updated environment information.

We now elaborate the above steps (I)-(IV) in the following sections. The resulting collabo-
rative obstacle avoidance with environment learning algorithm is in Section 10.3.6.

10.3.1 Follower Policy Parameterization

In the set of all obstacles seen by the follower, we define a critical obstacle point, due to
which the follower chooses to apply a reactive input.

Definition 10.1 (Critical Obstacle Points) We define a critical obstacle point at timestep
t as a point in the set of obstacles Cf,t which is within a radius of dcr from the follower’s
center of mass. Thus, the follower computes:

Ccr,t = arg min
c∈Cf,t

∥R̂(f)
t − c∥

s.t., ∥R̂(f)
t − c∥ ≤ dcr, (10.6)
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where ∥ · ∥ denotes the Euclidean norm.

In case of multiple critical obstacle points satisfying (10.6), we pick the critical obstacle point
as the one that maximizes

max
c∈Ccr,t

˙̂
R

(f)
t · (c− R̂

(f)
t )

∥ ˙̂
R

(f)
t ∥∥(c− R̂

(f)
t )∥

,

that is, the one having the maximum relative velocity component towards the follower’s
center of mass. The inputs applied by the follower are then given by:

vt =

{
f1(ut), if no critical obstacle point at t,

f2(ut, dcr, dt, ϕt) otherwise,
(10.7)

where f1(·) and f2(·, ·, ·, ·) can be any function chosen such that vt ∈ V , ut is the input of

the leader, dt = ∥R̂(f)
t − Ccr,t∥, ϕt is the angle between the vector connecting the follower

center of mass to critical obstacle point and the follower center of mass to that of the leader,
respectively. For our considered specific example, this is shown in Fig. 10.2.

We now make the following assumption ensuring when a critical obstacle point is seen,
the follower applies a separate input, as opposed to what it would have applied otherwise.

Assumption 10.2 We assume in (10.7):

∀t ≥ 0, ∄ ut, dt, ϕt : dt ≤ dcr, f1(ut) = f2(ut, dcr, dt, ϕt).

We also make the following assumption that will be used for the leader’s control synthesis
in Section 10.3.2 and for learning critical obstacle points in Section 10.3.4.

Assumption 10.3 We assume that the functions f1(·) and f2(·, ·, ·, ·) are known to the
leader.

Assumption 10.3 holds true, since such basic information can be shared offline before the
task begins. Otherwise, these functions can be learned offline from data. Our specific choice
of (10.7) in this chapter is given by:

vt =


K2ut, if no critical obstacle point at t,

K2ut + K1(dcr − dt)

 cosϕt

− sinϕt

0

 otherwise,
(10.8)

where in dt we directly measure Rt, i.e., R̂
(f)
t = Rt (see (10.4b)), and the gains K1 and K2

known to the leader, chosen to satisfy (10.5). Without any loss of generality in (10.8), we
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have not included a reactive torque upon seeing critical obstacle points. Hence, only the first
2× 2 sub-matrix of K1 need to be invertible. We choose K2 ∈ [0, 1), and

K1 = diag
( F̄a(1−K2)

dcr
,
F̄p(1−K2)

dcr
, 0
)
,

ensuring the follower’s inputs are saturated only at dt = 0.

10.3.2 MPC Controller of the Leader

Using Assumption 10.1 and Assumption 10.3, the constrained finite time optimal control
problem that the leader has to solve for its MPC controller synthesis at timestep t is:

min
Ut

N∑
k=1

[(St+kTs|t − Star)
⊤Qs(St+kTs|t − Star) + u⊤

t+(k−1)Ts|tQiut+(k−1)Ts|t]

s.t., St+kTs|t = f(St+(k−1)Ts|t, ut+(k−1)Ts|t, vt+(k−1)Ts|t),

B(St+kTs|t) ∈ X \ Cl,t,
ut+(k−1)Ts|t ∈ U , vt+(k−1)Ts|t = f1(ut+(k−1)Ts|t),

∀k ∈ {1, 2, . . . , N}, St|t = Ŝ
(l)
t ,

(10.9)

where B(·) is a set of position coordinates defining the joint leader-follower system, input
sequence Ut = {ut|t, . . . , ut+(N−1)Ts|t}, Star is the target state, and Qs, Qi ≽ 0 are the weight
matrices. Note, in order to avoid a mixed integer formulation arising due to all possible
combinations of the follower’s critical obstacle points in Cl,t along the prediction horizon, in
(10.9) the leader computes the predicted vk|t using only f1(·). For model (10.3) with follower
policy (10.8), the leader uses (10.4a) to estimate:

Rt+kTs|t =

[
s1,t+kTs|t − (lf + lr) cos s5,t+kTs|t
s3,t+kTs|t − (lf + lr) sin s5,t+kTs|t

]
, (10.10a)

B(St+kTs|t) = {x : ∃α ∈ [0, 1], x = α

[
s1,t+kTs|t
s3,t+kTs|t

]
+ (1− α)Rt+kTs|t}, (10.10b)

vt+(k−1)Ts|t = K2ut+(k−1)Ts|t ∈ U , St|t = Ŝ
(l)
t , (10.10c)

in (10.9), for all k ∈ {1, 2, . . . , N}, with U from (10.5). Solving (10.9)-(10.10) is difficult,
mostly due to the non-convexity of the imposed state constraints X \ Cl,t, and that too for
all values of parameter α ∈ [0, 1]. Therefore, we solve an approximation to (10.9)-(10.10), as
shown in the Appendix. After finding a solution to (10.9), the leader applies input

ut = u⋆
t|t (10.11)

to joint system (10.1) in closed-loop. Since the follower has no direct access to (10.11) to
apply its own inputs according to (10.7), it estimates the leader’s inputs. This is elaborated
in the next section.
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10.3.3 Applying the Follower’s Inputs

The follower uses Ŝ
(f)
t to construct an estimate ût of the leader’s inputs ut. This inference

is done in a time duration of δ ≪ Ts after timestep t, as introduced in Fig. 10.1 and
Section 10.2.2. For this inference to be feasible, we make the following sufficient assumption.
Let Ŝ

(f)
t ∈ Yf , ∀t ≥ 0.

Assumption 10.4 We assume that the map from the set U to the set Yf is invertible.

Assumption 10.4 ensures that by using its set of estimates for the leader’s states, the follower
has the ability to uniquely infer the input ut applied by the leader. Between the timesteps t
and t + δ the follower applies its previous inputs vt−Ts+δ. Afterwards, the follower applies

vt+δ =

{
f1(ût), if no critical obstacle point at t + δ,

f2(ût, dcr, dt+δ, ϕt+δ), otherwise,
(10.12)

where the computation of ût uses Assumptions 10.1 and 10.4. For our considered system
model (10.3), the follower’s estimates of the joint system states (i.e., the leader’s states) are
given in (10.4b). This satisfies Assumption 10.4. The construction of the estimate ût and
the corresponding form of the follower’s applied inputs

vt+δ =


K2ût, if no critical obstacle point at t + δ,

K2ût + K1(dcr − dt+δ)

 cosϕt+δ

− sinϕt+δ

0

 otherwise,
(10.13)

where dt+δ = ∥Rt+δ−Ccr,t+δ∥, are derived in detail in the Appendix. Here we directly measure

Rt+δ, i.e., R̂
(f)
t+δ = Rt+δ (see (10.4b)). Similar derivations can be conducted for variations

of (10.3), e.g., the rigid connections in the system replaced by elastic spring contacts, if
Assumption 10.4 holds.

10.3.4 Learning Critical Obstacle Points via Input Inference

The leader infers the reactive feedback of the follower in vt+δ in (10.7) at timestep t + 2δ.
Using this, the leader’s estimate of the critical obstacle point seen by the follower at timestep
t+δ is denoted as Ĉ(l)cr,t+δ. For obtaining this estimate we first need the following assumption,

along with Assumptions 10.1-10.3 stated in Section 10.3.1. Let Ŝ
(l)
t ∈ Yl, ∀t ≥ 0.

Assumption 10.5 We assume that the map from the set V to the set Yl is invertible and
f2(·, dcr, ·, ·) is an invertible function for any chosen value of the critical distance dcr.

We choose function f2(·, dcr, ·, ·) satisfying Assumption 10.5. Assumption 10.5 ensures the
leader is able to uniquely infer the critical obstacle points using its estimated follower’s
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inputs. Satisfying Assumptions 10.1-10.3 and Assumption 10.5, the construction of Ĉ(l)cr,t+δ

for model (10.3) and follower policy (10.8) is shown in detail in the Appendix. For this
estimation the leader uses (10.4a) and computes estimates of the corresponding follower
states as:

X̂
(l)
f,t+δ = Xl,t+δ − (ll + lf ) cos θt+δ,

Ŷ
(l)
f,t+δ = Yl,t+δ − (ll + lf ) sin θt+δ,

(10.14)

and then obtains:

Ĉ(l)cr,t+δ =

[
X̂

(l)
f,t+δ + d̂t+δ cos(θt+δ − ϕ̂t+δ)

Ŷ
(l)
f,t+δ + d̂t+δ sin(θt+δ − ϕ̂t+δ)

]
, (10.15)

where d̂t+δ and ϕ̂t+δ are the leader’s estimate of dt+δ and ϕt+δ, respectively. With the inferred

Ĉ(l)cr,t, the leader then updates and uses:

Cl,t+Ts = Cl,t ∪ δCl,t+Ts ∪ Ĉ
(l)
cr,t+δ, (10.16)

where δCl,t+Ts denotes the new obstacle constraints detected by the leader at the next
timestep. The process is then repeated from timestep (t+Ts) onward.

10.3.5 Leader-Follower Role Switching

Although the leader learns Ĉ(l)cr,t+δ and updates its controller, this can still lead to failure in
avoiding obstacles in tight environments. For example, if the follower approaches a tight
corner with multiple obstacles, the leader may not have sufficient time to generate a feasible
trajectory for the joint system, as it does not directly detect the whole obstacle map from
the follower and infers only the critical obstacle points detected by the follower. Therefore,
switching the roles of the leader and the follower in these scenarios can be useful, enabling
the leader to directly see all the obstacles in the tight corner. Such a role switching strategy
of the leader and the follower is motivated by [125], where the roles are switched with a fixed
frequency. In general, we define a time dependent role switching function for an agent as:

fswt : (x, C, t) 7→ {0, 1}, (10.17)

where x and C denote the switching deciding states and obstacles of the agent, respectively,
and 0 denotes no switching and 1 denotes a switch trigger.

10.3.6 The complete Algorithm

We summarize our proposed collaborative obstacle avoidance with environment learning al-
gorithm with system model (10.3) and follower policy parametrization (10.8) in Algorithm 7.
As a specific choice for (10.17), we pick:
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Algorithm 7 Collaborative Obstacle Avoidance with Environment Learning

Initialize: t = 0, v(t−Ts)+δ, S0

Inputs: Star, Qi, Qs, dcr, U , K1, K2, T, δ,N, Ts,X
Data: Cl,t, Cf,t
1: while t ≤ T do
2: Leader at t: Get ut from (10.9)-(10.11). Apply to (10.3);
3: Follower at t: Apply v(t−Ts)+δ to (10.3) in [t, t + δ);
4: Follower at t + δ: Compute Ccr,t+δ with (10.6);

Obtain R̂
(f)
t+δ from (10.4b);

Infer ût (see Appendix);
Apply vt+δ in (10.13) to (10.3);

5: Leader at t + 2δ: Obtain R̂
(l)
t+δ from (10.14);

Obtain Ŝ
(l)
t+2δ from (10.4a);

Estimate v̂t+δ. Get d̂t+δ, ϕ̂t+δ from (10.13);

Estimate Ĉ(l)cr,t+δ with (10.15);

6: Follower at t + Ts: Check fswt(R̂
(f)
t+δ, Ccr,t+δ) and pick switch;

7: Leader at t + Ts: Check fswt(R̂
(l)
t+δ, Ĉ

(l)
cr,t+δ) and pick switch;

8: t = t + Ts;
9: end while

fswt(Rt+δ, Ct+δ) =

{
1, if ∥Rt+δ − Ct+δ∥ ≤ dthr,

0 otherwise,
(10.18)

where dthr is a chosen distance threshold value, and the follower and the leader use Ct+δ =

Ccr,t+δ, Ct+δ = Ĉ(l)cr,t+δ, and Rt+δ = R̂
(f)
t+δ and Rt+δ = R̂

(l)
t+δ obtained from (10.4), respectively.

Having evaluated (10.18) at timestep t+ δ, the agents decide the role switch trigger accord-

ingly for control design at t+ Ts. Since the error between R̂
(f)
t+δ and R̂

(l)
t+δ is zero (see (10.4)),

the switch happens simultaneously at t+Ts without any explicit communication, if the leader
has an accurate estimate (10.15). We alternately keep changing the cost in (10.9)-(10.10)
with role switches, penalizing the deviation of the initial leader from Star.

Remark 10.3 (Unsynchronized Clocks) If the leader’s and the follower’s clocks are un-
synchronized, the order of operations shown in Algorithm 7 can no longer be ensured. How-
ever, for a small sampling time Ts, the performance of Algorithm 7 does not change notice-
ably. This was observed during the numerical experiments in Section 10.4 with the chosen
value of Ts in Table 10.1. In such cases, check (10.18) may result in two leaders for a fraction
of the sampling time, when both robots apply MPC controllers by solving (10.9)-(10.11).

Remark 10.4 (Imperfect Estimation) If the estimate C(l)cr,t+δ has large errors, one may
alternatively decide role switches with a fixed time period, similar to [125]. In such a case,
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the leader may not include C(l)cr,t+δ in (10.16), and instead include a time-varying penalty in
(10.9) based on its inferred obstacles.

10.4 Numerical Experiments

We present our numerical simulations in this section. First we detail the problem setup,
and then we compare the results from Algorithm 7 with two alternative strategies. We
consider synchronous clocks for these experiments. The source code is available at in:
github.com/monimoyb/LeadFollowRobots . We use Python 3.7.3 and the SLSQP solver in
SciPy 1.6.

10.4.1 Experimental Setup

The parameters of the problem are shown in Table 10.1. We consider the set of obstacles
in Cl,t and Cf,t as a collection of discrete point coordinates, since we simulate the detection
of these obstacles with a lidar-like angle sweep. Both the leader and the follower record
point cloud information of surrounding obstacles lying within a radius of 1.2 meters, with a
resolution of 3.6 degrees. The critical distance, as defined in (10.6), is chosen as dcr = 1.1
meters. We solve the leader’s MPC controller synthesis problem (see Appendix for this

Table 10.1: Table of parameter values. Note, the results presented are after relaxing δ ≪ Ts.

Parameter Value Parameter Value
ml 0.04 kg mf 0.04 kg
ll 0.8 m lf 0.8 m
mr 0.01 kg Ts 0.03 s
dcr 1.4m K2 0.5
F̄a 5 N F̄p 5 N
τ̄ 0.5 Nm δ 0.02 s
N 3 T 2.7 s

approximation to (10.9)-(10.10)) with semi-definite weight matrices

Qs = diag(120, 4, 120, 4, 0, 0.01),

Qi = diag(0.05, 0.05, 0.01),

and with

Star = [3, 0, 3.95, 0, 0, 0]⊤, S0 = [7.5, 0, 7.2, 0, 0.1, 0]⊤.

https://github.com/monimoyb/LeadFollowRobots
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10.4.2 Trajectory Comparison with Alternative Strategies

We now present the results of two alternative strategies and compare them with the ones
from Algorithm 7. In all the following figures, the red dot represents the leader and the blue
dot represents the follower. The red star denotes the target position of the leader.

No Environment Learning

The first strategy is an MPC based standard leader-follower obstacle avoidance strategy
motivated by [120, 122, 123, 126, 124], where the leader applies the MPC controller (10.9)-
(10.11), the follower applies (10.8), and the leader does not infer any obstacle information
from the follower’s inputs. So the set of obstacles used by the leader for MPC design is
updated as:

Cl,t+Ts = Cl,t ∪ δCl,t+Ts , ∀t ≥ 0.

The trajectory of the joint system with this strategy is shown in Fig. 10.3. The red crosses

4 6 8

4

5

6

7

8

Figure 10.3: Trajectory snapshot of the rod without learning obstacles from the follower
inputs. The task fails due to collision.

denote the obstacle points directly seen by the leader, which are successfully avoided. How-
ever, the rod hits the left most obstacle around position (4,6.2) on the follower’s side. This
obstacle remains unknown to the leader, as it is not inferred from follower inputs.
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No Role Switching

The second strategy is similar to Algorithm 7, with the exception that there is no switching of
the leader-follower roles. Such a fixed role assignment is a standard practice in the literature,
e.g., [128, 129, 127, 126]. As opposed to Strategy 1, here we update the leader’s known set
of obstacles as (10.16), having inferred critical obstacle points (10.15) using the follower’s
estimated inputs. The trajectory of the joint system with this strategy is shown in Fig. 10.4.
The blue crosses denote the follower’s critical obstacle points inferred by the leader. As
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Figure 10.4: Trajectory snapshot of the rod with a fixed leader-follower role allotment and
learning obstacles from the follower inputs. The task still fails due to collision.

seen in Fig. 10.4, the follower still collides with the left most obstacle around position (4,6),
despite the leader learning additional blue obstacle points using the follower’s feedback. This
shows that a fixed role allotment here is inhibiting.

Algorithm 7

We now demonstrate the results using Algorithm 7, where we switch the roles of the leader
and the follower using (10.18) and a threshold distance of dthr = 0.8 meters. The trajectory of
the joint system is shown in Fig. 10.5. As seen in Fig. 10.5, the joint system now successfully
avoids all the obstacles after incorporating the leader-follower switch. After the switch, the
leader directly faces the left most obstacle and collects multiple cloud points on its surface
(the red crosses). These additional obstacle cloud points are missing in Fig. 10.3, where
there is no obstacle inference by the leader, and also in Fig. 10.4, where the leader relies on
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Figure 10.5: Trajectory snapshot of the rod with a switching leader-follower role allotment
and learning obstacles from the follower inputs. The task succeeds.

the follower for inferring only one critical obstacle point (the blue crosses) at a time. The
task also succeeds, as the initially chosen leader reaches Star by T = 2.7 seconds.

10.4.3 Multiple Trials with Varying Environment

We now conduct 100 trials with each of the above three strategies, with varying positions
of the left most obstacle and the one at the center of the environment. The variations are
contained in the purple regions shown in Fig. 10.6. The shape and the size of the obstacles
are unchanged, and one of their vertices is chosen uniformly in the shown regions. Successful
trials are only recorded if the joint system avoids all the obstacles and the initially chosen
leader robot reaches a neighborhood of radius 0.5 meters around Star within T = 2.7s, i.e.,
90 steps. Table 10.2 summarizes the results. Table 10.2 shows that Algorithm 7 outperforms
the rest with the highest success rate, while reaching the target neighborhood fastest.

10.5 Chapter Summary

We proposed a leader-follower strategy for a two-robots collaborative transportation task in a
partially known environment with obstacles. The leader solves an MPC problem at any given
time with its known set of obstacles to plan a feasible trajectory and complete the task. The
follower’s policy is designed to assist the leader, but also react to additional obstacles in its
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Figure 10.6: Zones containing varying obstacle positions with the given joint system’s initial
configuration.

Table 10.2: Strategy comparison across 100 trials. Strategy 1: No Environment Learning,
Strategy 2: No Role Switching, Strategy 3: Algorithm 7. CFT denotes: Collision Free Trials.

Feature Strategy 1 Strategy 2 Strategy 3
Successful Trials (%) 0 24 86
Collision Failures (%) 100 56 14

Timed-Out Failures (%) 0 20 0
Avg. # of Steps in a CFT N/A 87 49

proximity which might be unseen to the leader. The difference between the predicted and the
actual follower inputs is used by the leader to infer additional unseen environment constraints.
This is an extension of the constraint learning concept presented in Chapter 8. We also
propose a switching strategy for the leader-follower roles, improving the obstacle avoidance
performance of the joint system in tight environments. In the shown numerical simulation
results, our algorithm outperformed two alternative strategies, obtaining the lowest collision
rate and the fastest average task completion speed.
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Appendix

Tractable Approximation of (10.9)-(10.10)

We first introduce the following notation: let dist(x, C) denote the shortest distance in ℓ2
norm from point x to all points in the set C. Then the approximation of (10.9)-(10.10) is:

min
Ut

N∑
k=1

[
(St+kTs|t − Star)

⊤Qs(St+kTs|t − Star)+

+
d∑

i=1

ℓ
(

dist(αi

[
s1,t+kTs|t
s3,t+kTs|t

]
+ (1− αi)Rt+kTs|t, Cl,t)

)
+ u⊤

t+(k−1)Ts|tQiut+(k−1)Ts|t

]
s.t., St+kTs|t = f(St+(k−1)Ts|t, ut+(k−1)Ts|t, vt+(k−1)Ts|t),

(10.10a) and (10.10c),

∀k ∈ {1, 2, . . . , N},
(10.19)

where ℓ(·) is a positive definite cost function and αi ∈ [0, 1] for i ∈ {1, 2, . . . , d} are d sampled
values of the parameter α.

Applying the Follower’s Inputs for Model (10.3)

Recall the follower estimates from (10.4b). As mentioned in Section 10.3.3, the follower

obtains these estimates at t + δ, denoted by
˙̂
X

(f)
l,t+δ,

˙̂
Y

(f)
l,t+δ and θ̇t+δ. The follower then uses

the following equations:

˙̂
X

(f)
l,t+δ =

˙̂
X

(f)
l,t + q̂1δ,

˙̂
Y

(f)
l,t+δ =

˙̂
Y

(f)
l,t + q̂2δ, and θ̇t+δ = θ̇t + T̂ δ, with

T̂ =
(−Fpf,t−Ts+δlf + F̂

(f)
pl,t ll + τf,t−Ts+δ + τ̂

(f)
l,t )

J
,

q̂1 = −(ll sin θtT̂ + ll cos θtθ̇
2
t ) +

1

m
(cos θt(F̂

(f)
al,t + Faf,t−Ts+δ)− sin θt(F̂

(f)
pl,t + Fpf,t−Ts+δ)),

q̂2 = (ll cos θtT̂ − ll sin θtθ̇
2
t ) +

1

m
(sin θt(F̂

(f)
al,t + Faf,t−Ts+δ)) + cos θt(F̂

(f)
pl,t + Fpf,t−Ts+δ)),

solves for ût = [F̂
(f)
al,t , F̂

(f)
pl,t , τ̂

(f)
l,t ]⊤, and applies (10.13). Note, Assumption 10.4 is satisfied, as

the leader’s inputs appear in the above set of equations linearly and have unique solutions.
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Learn Critical Obstacles with Model (10.3) and Policy (10.8)

At timestep t + 2δ, just after the follower applies (10.13), the leader has access to its state
estimates (i.e., directly measured) using (10.4a). It then uses the following equations:

Ẋl,t+2δ = Ẋl,t+δ + q̂1δ, Ẏl,t+2δ = Ẏl,t+δ + q̂2δ, and θ̇t+2δ = θ̇t+δ + T̂ δ, with

T̂ =
(−F̂ (l)

pf,t+δlf + Fpl,tll + τ̂
(l)
f,t+δ + τl,t)

J
, τ̂

(l)
f,t+δ = K2τl,t,

q̂1 = −(ll sin θt+δT̂ + ll cos θt+δ(θ̇t+δ)
2)+

1

m
(cos θt+δ × (Fal,t + F̂

(l)
af,t+δ)−sin θt+δ(Fpl,t + F̂

(l)
pf,t+δ)),

q̂2 = (ll cos θt+δT̂ − ll sin θt+δ(θ̇t+δ)
2)+

1

m
(sin θt+δ × (Fal,t + F̂

(l)
af,t+δ)) + cos θt+δ(Fpl,t + F̂

(l)
pf,t+δ)),

and solves for v̂t+δ = [F̂
(l)
af,t+δ, F̂

(l)
pf,t+δ, τ̂

(l)
f,t+δ]

⊤. Note, Assumption 10.5 is satisfied, as the
follower’s inputs appear in the above set of equations linearly and have unique solutions.
The leader infers dt+δ and ϕt+δ by solving:

ϕ̂t+δ = − arctan

(
F̂

(l)
pf,t+δ −K2Fpl,t

F̂
(l)
af,t+δ −K2Fal,t

)
, (10.20a)

∥F̂ (l)
af,t+δ −K2Fal,t∥22 =

(
F̄ 2
a (1−K2)

2

d2cr
cos2 ϕ̂t+δ +

F̄ 2
p (1−K2)

2

d2cr
sin2 ϕ̂t+δ

)
× (dcr − d̂t+δ)

2,

(10.20b)

where F̄a/p is the axial/perpendicular force constraint, as shown in (10.5). The leader then
uses (10.20) in (10.14) to infer the critical obstacle point using (10.15).
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Chapter 11

Conclusion and Future Work

In this dissertation we presented a set of algorithms for incorporating data-driven learning
in robust MPC in order to lower conservatism and improve controller performance. In the
following sections we present concluding remarks and lay out possible directions for future
extensions of the work presented throughout the dissertation.

Concluding Summary

We primarily focused on model learning, disturbance distribution bound learning and en-
vironment constraint learning. For model learning we developed a set of adaptive MPC
algorithms that adapt both parametric and non-parametric model uncertainties with data
and ensure recursive satisfaction of robust constraints by the MPC. We additionally de-
veloped two novel robust MPC algorithms for LPV systems that can be utilized in these
adaptive MPC approaches. For learning the disturbance distribution support we proposed
a framework that can satisfy bounds on user-specified probability of constraint violations
by the MPC, while avoiding conservative estimates of these support sets. We used this
framework in an output feedback MPC to update the camera noise bounds and enable a
robotic manipulator to play the cup-and-ball game. The manipulator’s catching capabilities
improved in experiments, as the camera noise support was refined with collected data. The
proposed constraint learning framework in the dissertation used nonlinear classifiers to learn
approximations of the environment constraints, satisfying which guarantees the satisfaction
of the true constraints with a user-specified probability. We finally extended this concept of
constraint learning for developing an obstacle inference and avoidance algorithm for decen-
tralized robotic transportation tasks with only partial environment information available to
each of the robots. With detailed simulations we validated that the robots inferred obstacle
information via their state estimates and/or haptic feedback, incorporated this informa-
tion to update their MPC planners, and adaptively switched leader-follower roles to safely
complete the task.
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Future Research Scope

A few very useful future extensions of the proposed work in this dissertation are as follows:
(i) The construction of the invariant sets, Minkowski sum, Pontryagin difference, etc., re-
quired for the theoretical tools presented in Chapter 2-Chapter 9 are rendered impractical
for high dimensional systems. Thus, a set of tractable tools for high dimensional systems
need to be developed. (ii) The disturbance distribution support learning work in Chap-
ter 7 may be extended to incorporate a wider class of distributions. Moreover, for non i.i.d.
disturbances, exploration strategies can be studied and incorporated in the design for data
efficient learning. (iii) The 2D-planar modeling of the system in Chapter 9 can be extended
to 3D, which will significantly lower modeling errors currently present in the planar model.
(iv) A more useful and generalized version of constraint learning may be attempted using
expert demonstrations, as opposed to relying on potentially expensive constraint violations
as done in Chapter 8. (v) The work in Chapter 10 may be extended to more than two robots.
The assumptions of perfect state measurement are also to be relaxed. This will lead to the
reformulation of the obstacle avoidance problem in terms of a cost or reward learning, as
opposed to exact point-wise inference of obstacles.
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