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ABSTRACT: Accuracy and transferability are the two highly desirable properties of molecular mechanical force fields. Compared
with the extensively used point-charge additive force fields that apply fixed atom-centered point partial charges to model electrostatic
interactions, polarizable force fields are thought to have the advantage of modeling the atomic polarization effects. Previous works
have demonstrated the accuracy of the recently developed polarizable Gaussian multipole (pGM) models. In this work, we assessed
the transferability of the electrostatic parameters of the pGM models with (pGM-perm) and without (pGM-ind) atomic permanent
dipoles in terms of reproducing the electrostatic potentials surrounding molecules/oligomers absent from electrostatic
parameterizations. Encouragingly, both the pGM-perm and pGM-ind models show significantly improved transferability than the
additive model in the tests (1) from water monomer to water oligomer clusters; (2) across different conformations of amino acid
dipeptides and tetrapeptides; (3) from amino acid tetrapeptides to longer polypeptides; and (4) from nucleobase monomers to
Watson−Crick base pair dimers and tetramers. Furthermore, we demonstrated that the double-conformation fittings using amino
acid tetrapeptides in the αR and β conformations can result in good transferability not only across different tetrapeptide
conformations but also from tetrapeptides to polypeptides with lengths ranging from 1 to 20 repetitive residues for both the pGM-
ind and pGM-perm models. In addition, the observation that the pGM-ind model has significantly better accuracy and transferability
than the point-charge additive model, even though they have an identical number of parameters, strongly suggest the importance of
intramolecular polarization effects. In summary, this and previous works together show that the pGM models possess both accuracy
and transferability, which are expected to serve as foundations for the development of next-generation polarizable force fields for
modeling various polarization-sensitive biological systems and processes.

■ INTRODUCTION
Molecular modeling techniques at the atomic level such as
molecular dynamics (MD) simulations and Monte Carlo
(MC) simulations rely on the development of accurate and
transferable molecular mechanical force fields.1−3 The ability
to transfer parameters from one molecule to another molecule
or across different conformations of the same molecule is
crucial for general-purpose force fields that aim at applications
to a wide range of molecular systems. For this type of force
fields, it is of critical importance to accurately reproduce the
properties and behaviors of not only the training molecules and
conformations used for parameterizations but also larger
testing systems (such as oligomer clusters, molecule com-
plexes, or polymers) and different conformations that are

absent from the parameterization process. For example, Amber
force fields are general-purpose force fields that were designed
for modeling biomolecules such as proteins and nucleic acids,4

whose parameterizations were performed on smaller training
molecules such as amino acid dipeptides and nucleotides in
selected representative conformations.5−7
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One of the most important components of force field
development is the treatment of electrostatic interactions. In
the extensively used point-charge additive force fields, the
electrostatic terms are modeled by the interactions between
fixed atom-centered point partial charges that obey Coulomb’s
law. One commonly used parameterization method for
obtaining the atomic partial charges is to use least-squares
fitting to reproduce the quantum mechanically (QM)
determined electrostatic potential (ESP) at a large number
of grid points around the molecule.8−12 However, these fixed-
point charges suffer from two disadvantages of lacking both
accuracy and transferability. First, charges on atoms that are
buried by the other atoms are often poorly determined, and
their values often have a high degree of uncertainty while
fitting to QM ESPs. Consequently, unphysically large charges
may be assigned to these buried atoms. Second, the ESP-
derived atomic charges are often sensitive to molecular
conformations, leading to a lack of transferability of the
charges across different conformations of identical molecules,
as well as among common functional groups in related
molecules. The problems of the ESP fitting strategy have been
addressed by the restrained electrostatic potential (RESP)
method developed by Bayly et al., which restrains the atomic
charges towards zero using a hyperbolic penalty function to
avoid impractically large charges.13,14 Additionally, the multi-
ple-conformation fitting strategy further improved the trans-
ferability of the ESP-fitted charges.15,16 Using the combination
of the multiple-conformation fitting strategy and the RESP
method, Cieplak et al. derived the charges for all the
ribonucleotides, deoxyribonucleotides, and amino acids using
ESPs calculated at the HF/6-31G* level of theory, which were
incorporated into the Amber ff94 force field.5,6 Since then, the
charge set of the ff94 force field has become the foundation of
various subsequent Amber force fields, including the Amber
ff99 force field,7 the Amber SB (Stony Brook) family force
fields for modeling proteins,17−19 and the Amber OL
(Olomouc) family force fields for modeling nucleic
acids.20−22 The changes made by these subsequent force fields
are mainly in torsional parameters, while the charges remain
mostly unchanged.
Despite the improved accuracy and transferability of the

additive Amber force fields with the charge parameters derived
using the RESP method, the additive force fields suffer from a
major disadvantage of being unable to model the atomic
polarization effects, that is, the redistribution of the atomic
electron density due to the electric field produced by nearby
charged atoms.23 Polarization effects are important in various
biological processes such as protein−ligand bindings,24−26

nucleic acid−ion interactions,27,28 the dielectric environmental
changes during protein folding,29,30 and ion transport through
transmembrane ion channels.31,32 Therefore, a variety of
methods have been proposed to properly incorporate polar-
ization effects into polarizable force fields, including the
induced dipole models,33−40 the fluctuating charge models,41,42

the Drude oscillator models,43,44 and the continuum dielectric
models.45,46

The induced dipole model is one of the most studied
polarizable models, which has been incorporated into various
Amber polarizable force fields, including ff02,33 ff02rl,34 and
ff12pol.35−38 In this model, the induced dipole μi of atom i
subject to the external electric field Ei that comes from all the
atoms other than i is

= E T
n
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where αi is the isotropic polarizability of atom i and Tij is the
dipole field tensor with the matrix form
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where I is the identity matrix; x, y, and z are the Cartesian
components along the vector between atoms i and j at distance
rij; and fe and f t are distance-dependent damping functions that
modify Tij to avoid the so-called “polarization catastrophe”
problem, which is the phenomenon that induced dipole
diverges due to the cooperative induction between induced
dipoles at short distances.23,47 Various damping schemes have
been proposed by Thole,48 which have been incorporated into
the Amber ff12pol force field.35−38 However, one disadvantage
of Thole’s schemes is that they only screen the interactions
between induced dipoles, leading to an inconsistent treatment
of the polarizations due to fixed charges and permanent
multipoles. About a decade ago, a damping scheme that
models atomic electric multipoles using Gaussian electron
densities was proposed by Elking et al.,49−51 which was later
named the polarizable Gaussian multipole (pGM) model.52−55

The pGM model overcomes the disadvantage of Thole’s
schemes by screening all short-range electrostatic interactions
in a physically consistent manner, including the interactions of
charge−charge, charge−dipole, charge−quadrupole, dipole−
dipole, and so on. The formula of damping functions fe and f t
for the pGM model is as follows

=
+

S
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1/3
i is the inverse of the pGM “radius” of

the Gaussian density distribution of atom i; s is a constant
screening factor; and Serf( )ij is the error function of Sij.

In the current pGM model design, the atomic charges and
atomic induced dipoles are always present, while the inclusion
of the atomic permanent dipoles is optional, leading to two
distinct pGM models. The pGM model without atomic
permanent dipoles is named pGM-ind, indicating that the
atomic dipoles of this pGM model only have contributions
from atomic induced dipoles. The pGM model with atomic
permanent dipoles is named pGM-perm, indicating that the
atomic dipoles of this pGM model have contributions from
both induced dipoles and permanent dipoles. Based on the
observation that atomic permanent dipole moments mainly
exist along the direction of covalent bonding interactions, a
local frame for the permanent dipoles formed by covalent basis
vectors (CBVs) that are unit vectors along the directions of
covalent bonds has been proposed for the pGM-perm model,
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so that the atomic permanent dipoles of the pGM-perm model
always exist along the directions of covalent bonds.53 An
alternative pGM-perm model is called pGM-perm-v, where “v”
stands for “virtual”. In the pGM-perm-v model, the CBVs exist
not only along the directions of covalent bonds (1−2
connecting atoms) but also along the directions of virtual
bonds (1−3 connecting atoms) such as between the two
hydrogen atoms of a water molecule. Consequently, in the
pGM-ind model, the electric field Ei at the position of atom i in
eq 1 is only produced by fixed-point charges of all atoms other
than I, while in the pGM-perm and pGM-perm-v models, the
electric field Ei is produced by both point charges and
permanent dipoles of all atoms other than i. The formula of the
electric field Ei for the pGM-ind model is shown in eq 4 and
that for the pGM-perm and pGM-perm-v models is shown in
eq 5.

=E rf
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where qj is the point charge of atom j, pj is the permanent
dipole of atom j in the global frame, and rji is the unit vector
pointing in the direction from atom j to atom i.
In a series of recent works, the pGM models have been

further developed and made available to the molecular
modeling community. First, using an optimization method
based on the genetic algorithm, we obtained a set of isotropic
atomic polarizabilities and radii for the pGM models by fitting
to molecular polarizability tensors of 1405 molecules or dimers
calculated at the B3LYP/aug-cc-pVTZ level of theory.52

Second, the closed-form analytical formula of the electrostatic
energy and forces of the pGM models have been derived and
has been interfaced with the particle mesh Ewald method for
molecular simulations under periodic boundary conditions.53

Third, the pGM internal stress tensor expression for constant-
pressure MD simulations of both flexible and rigid body
molecular systems has been derived.54 Finally, following the
idea of charge parameterization by reproducing QM ESPs of
the RESP method, we implemented the PyRESP program,
enabling the electrostatic parameterizations of the point-charge
additive model and various induced dipole polarizable models,
including the pGM-ind, pGM-perm, and pGM-perm-v
models.56

The accuracy of the pGM models has been demonstrated by
various previous works. It has been shown that even without
atomic permanent dipoles, the pGM-ind model can notably
improve the prediction of molecular polarizability anisotropy
compared with the Amber ff12pol force field that is based on
Thole’s damping schemes.52 Moreover, the electrostatic
parameterizations on various molecules with various electro-
static models using the PyRESP program show that the pGM
models consistently produce ESPs and molecular electric
moments with a better agreement with QM-calculated results
than the point-charge additive model.56 A recent work assessed
the accuracy of the pGM models in reproducing QM
interaction energies, many-body interaction energies, as well
as the nonadditive and additive contributions to the many-
body interactions for peptide main-chain hydrogen-bonding
conformers, which showed that the pGM models outperform

all other tested and widely used polarizable and additive force
fields.55

However, there has been no work assessing the trans-
ferability of the pGM models, that is, whether the pGM models
can accurately reproduce the electrostatic properties of larger
molecular systems or different molecular conformations other
than the molecules or conformations used for parametrizations.
This is the primary focus of this work. Another focus of this
work is to find the optimal parameterization strategy for
developing the next-generation polarizable force fields based
on the pGM models. Specifically, we aim to identify how many
and what conformations should be applied for parameterizing
amino acids for the pGM-ind and pGM-perm models that can
give optimal accuracy and transferability for modeling
polypeptides or proteins. The performances of the pGM
models were compared with that of the point-charge additive
model, which we call “additive model” for short. The
electrostatic parameterizations of the additive, pGM-ind, and
pGM-perm models were performed by fitting them to the same
QM ESPs of each data set. One caveat of the pGM-perm and
pGM-perm-v models is that their parameterizations suffer from
the so-called “singularity problem”, which originates from the
use of the permanent dipole local frame formed by CBVs.
Fortunately, the restrained fitting strategy and the multiple-
conformation fitting strategy implemented in the PyRESP
program can theoretically address the singularity problem,
both of which have been demonstrated to successfully improve
the accuracy and transferability of the electrostatic parameters
of the additive model. The details of the singularity problem of
the pGM-perm and pGM-perm-v models as well as the
discussion of how restrained fitting and multiple-conformation
fitting can address this problem can be found in the Appendix.
Therefore, extra attention has been paid to the performance of
the pGM-perm and pGM-perm-v models with different
parametrization strategies in this work.

■ COMPUTATIONAL DETAILS
Data Sets and Geometry Preparations. A total of nine

data sets were generated and used for testing the transferability
of the pGM models in this work, including WAT4, WAT6,
WAT8, WAT10, ALA-di, ALA-tet, ALA-poly, GLY-poly, and
BASE. The WAT4, WAT6, WAT8, and WAT10 data sets
comprise 100 water tetramer clusters, 72 water hexamer
clusters, 13 water octamer clusters, and 10 water decamer
clusters, respectively. The initial geometries of the water
clusters were extracted from 1 ns of MD simulations of a
periodic box of 322 TIP3P waters.57 A total of 100 snapshots
were saved at 10 ps intervals, and all the clusters were extracted
from these 100 TIP3P water boxes by randomly selecting a
water molecule together with the closest water molecules. The
MD simulation was conducted using the sander program from
the AmberTools22 program suite.58 Next, the WAT4 data set
was optimized at the MP2/6-311++G(d, p) level of theory,
and the WAT6, WAT8, and WAT10 data sets were optimized
at the B3LYP/6-311++G(d, p) level of theory.

The ALA-di data set comprises 14 alanine dipeptides (ACE-
ALA-NME) capped with an N-acetyl (ACE) group at the N-
terminal and an N-methylamide (NME) group at the C-
terminal. The ACE and NME caps are used to mimic the
chemical environment within peptides. Each alanine dipeptide
was optimized at the MP2/6-311++G(d, p) level of theory
with the main-chain torsional angles ϕ and ψ fixed according
to Table 1. The ALA-tet data set comprises a total of 16
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alanine tetrapeptides (ACE-ALA3-NME), including (1) those
in the conf1−conf10 conformations optimized at the HF/6-
31G** level of theory by Beachy et al.,59 which were further
optimized at the MP2/6-311++G(d, p) level of theory without
any constraints and (2) those in the aβ, αL, αR, α2, β, and pII
conformations optimized at the MP2/6-311++G(d, p) level of
theory with all the main-chain torsional angles ϕ and ψ
constrained. The main-chain torsional angles ϕ and ψ of each
of the optimized conf1−conf10 conformations and the
torsional angle constraints of the aβ, αL, αR, α2, β, and pII
conformations are given in Table 2.
The ALA-poly and GLY-poly data sets comprise 60 alanine

polypeptides (ACE-ALAn-NME) and 60 glycine polypeptides
(ACE-GLYn-NME), respectively, where n is the number of
repetitive ALA or GLY residues, ranging from 1 to 20. ACE-
ALAn-NME and ACE-GLYn-NME have three conformations
each: aβ, αR, and β. To prepare the ALA-poly and GLY-poly

data sets, three alanine dipeptides (ACE-ALA-NME) and three
glycine dipeptides (ACE-GLY-NME) were optimized at the
ωB97X-D/6-311++G(d, p) level of theory with the main-chain
torsional angles fixed at (ϕ, ψ) = (−140°, 135°), (−57°,
−47°), and (−119°, 113°), corresponding to the aβ, αR and β
conformations, respectively. Next, all the ACE-ALAn-NME and
ACE-GLYn-NME with n greater than or equal to 2 were
generated from optimized alanine and glycine dipeptides by
rigid body translation and rotation with the same ϕ and ψ
torsional angles.

The BASE data set comprises four individual DNA
nucleobases, including adenine (A), thymine (T), guanine
(G), and cytosine (C), each capped with a methyl group to
mimic the chemical environment within nucleosides, two
Watson−Crick (WC) base pairs (A-T and C-G), and eight
stacked WC base pair tetramers (A-T/A-T, A-T/T-A, A-T/C-
G, A-T/G-C, G-C/A-T, G-C/T-A, G-C/C-G, and G-C/G-C).
The WC base pair tetramers are named as follows: the A-T/C-
G tetramer means an A-T base pair is stacked onto a C-G base
pair, where A and T are stacked with C and G, respectively. To
prepare the BASE data set, the two WC base pair dimers were
first optimized at the MP2/6-311++G(d, p) level of theory.
The individual nucleobases were extracted from the WC base
pair dimers without further optimization. The tetramers were
constructed from the WC base pairs by rigid body alignment of
the base pair dimers to the B-DNA geometry created using the
nucgen program,60 without further optimization.

All the QM geometry optimizations were performed using
the Gaussian 16 software.61

Electrostatic Parameterizations. The electrostatic pa-
rameterizations of the additive, pGM-ind, pGM-perm, and
pGM-perm-v models require the QM ESPs of a set of points in
the solvent-accessible region around molecules as input. The
QM ESPs of the molecules from the data sets WAT4, WAT6,
WAT8, WAT10, ALA-di, and ALA-tet were calculated at the
MP2/aug-cc-pVTZ level of theory and those of the data sets
ALA-poly, GLY-poly, and BASE were calculated at the ωB97X-
D/aug-cc-pVTZ level of theory. The points were generated
using the strategy developed by Singh et al. on molecular
surfaces (with a density of 6 points/Å2) at each of 1.4, 1.6, 1.8,

Table 1. Main-Chain Torsional Angle Constraints for
Geometry Optimizations of the Alanine Dipeptides from
the ALA-di Data Set and Their QM Molecular Dipole
Moments

conformation ϕ/° ψ/° μ/Debyea

C5 −140 120 1.8190
C7eq −80 80 2.5090
C7ax 60 −70 3.1220
α1 −60 −40 5.9446
α2 −52 −53 5.9848
αl 70 30 5.5989
αp −160 −40 5.1311
β1 −161.9 166.4 3.0836
β2 −130 20 4.5831
aβ −140 135 2.2315
αL 57 47 5.7158
αR −57 −47 5.9860
β −119 113 0.8758
pII −79 150 2.0894

aThe QM molecular dipole moments are calculated at the MP2/aug-
cc-pVTZ level of theory.

Table 2. Main-Chain Torsional Angles of the Optimized Alanine Tetrapeptides in the Conf1−Conf10 Conformations and the
aβ, αL, αR, α2, β, and pII Conformations from the ALA-tet Data Set and Their QM Molecular Dipole Moments

conformation ϕ1/° ψ1/° ϕ2/° ψ2/° ϕ3/° ψ3/° μ/Debyea

Conf1 −158.4 157.1 −158.1 156.5 −157.5 154.0 6.8721
Conf2 −158.3 155.7 −158.9 152.6 −80.1 84.7 2.1669
Conf3 −76.9 95.1 73.8 −59.0 −75.4 85.1 2.2505
Conf4 −159.1 156.0 −79.9 87.9 −160.7 143.3 4.2586
Conf5 −157.4 164.0 −59.9 −35.8 −76.7 90.1 2.8701
Conf6 −85.5 64.8 51.8 28.1 −179.0 139.2 5.8466
Conf7 52.2 −160.6 −88.0 71.2 −166.6 −53.3 9.2910
Conf8 69.3 −74.8 −52.8 134.4 54.3 33.9 3.2394
Conf9 74.3 −54.9 74.5 −53.4 74.4 −50.5 8.3039
Conf10 66.8 20.1 45.6 42.3 68.6 −74.5 8.0954
aβ −140.0 135.0 −140.0 135.0 −140.0 135.0 5.3779
αL 57.0 47.0 57.0 47.0 57.0 47.0 12.7255
αR −57.0 −47.0 −57.0 −47.0 −57.0 −47.0 13.2536
α2 −52.0 −53.0 −52.0 −53.0 −52.0 −53.0 13.3017
β −119.0 113.0 −119.0 113.0 −119.0 113.0 1.9427
pII −79.0 150.0 −79.0 150.0 −79.0 150.0 5.4174

aThe QM molecular dipole moments are calculated at the MP2/aug-cc-pVTZ level of theory.
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and 2.0 times the van der Waals radii.62,63 The QM molecular
dipole moments of alanine dipeptides and alanine tetrapeptides
from the ALA-di and ALA-tet data sets are shown in Tables 1
and 2, and the QM molecular dipole moments of alanine
polypeptides, glycine polypeptides, and WC base pair
tetramers from the ALA-poly, GLY-poly, and BASE data sets
are shown in Tables S1−S3. All QM ESPs and molecular
dipole moments were calculated using the Gaussian 16
software.61

The recently developed PyRESP program was used to
parameterize the atomic charges (and permanent dipoles) of
the molecules from each data set for each electrostatic
model.56 For polarizable models pGM-ind, pGM-perm and
pGM-perm-v, the isotropic atomic polarizabilities derived in
our previous work were used to calculate the induced
dipoles.52 A two-stage parameterization procedure was
adopted.56 In the first stage, all charges (and permanent
dipoles) were set free to change, and a weak restraining
strength of 0.0005 was applied. In the second stage,
intramolecular equivalencing was enforced on all charges
(and permanent dipoles) that share an identical chemical
environment with others, such as those of methyl and
methylene hydrogens. A stronger restraining strength of
0.001 was applied, and all other fitting centers were set frozen
to keep the values obtained from the first stage. In both stages,
the restraints were only applied to nonhydrogen heavy atoms.
The parameters of the individual water molecule for the
WAT4, WAT6, WAT8, and WAT10 data sets have been
derived in our previous work.56 The parameters for the ALA-
di, ALA-tet, ALA-poly, and GLY-poly data sets were obtained
by constraining the total molecular charge to be zero, and the
intramolecular charge of the ACE and NME groups sum to
zero in order to ensure zero net charges of the central amino
acid fragments (−NH−CHR−CO−). For the parameter-
izations of amino acid tetrapeptides, intramolecular equivalenc-
ing was enforced in both the first and second stages to ensure
identical parameters across the three repetitive central amino
acid fragments. For multiple-conformational fittings, intermo-
lecular equivalencing was enforced in both stages to ensure
identical atomic charges and permanent dipoles of the same
molecule in different conformations. The parameters for the
BASE data set were derived using single-conformation fittings
with constraints to enforce net zero molecular charges and no
additional intramolecular charge constraint. For the parameter-
izations of the pGM-ind, pGM-perm, and pGM-perm-v
models, both 1−2 and 1−3 polarization interactions were
included for reasons elucidated before.52,64

Transferability Tests. The transferability of the electro-
static parameters of all electrostatic models were measured by
the relative-root-mean-square errors of the overall molecular
dipoles (RRMSμ) of each data set and the relative-root-mean-
square errors of ESPs (RRMSV) of each molecule (or molecule
oligomer), given by
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and the average-relative-root-mean-square errors of ESPs
(ARRMSV) of each data set is
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where m is the number of molecules for each data set; ni is the
number of ESP points surrounding the molecule (or molecule
oligomer) i; μiQM and μi are the overall molecular dipoles of the
molecule/oligomer i given by QM calculations and molecular
mechanics (MM) calculations, respectively; and VijQM and Vij
are the ESP values at point j of the molecule/oligomer i given
by QM calculations and MM calculations, respectively.

To calculate the total molecular dipole and ESP values of
molecule A with the electrostatic parameters transferred from
the parameterization results of molecule B, the input file (-i)
and qin file (-q) of molecule A are created manually using the
parameters from molecule B, which are provided as the inputs
for the PyRESP program. The control parameter irstrnt of the
PyRESP program is set to 2 so that no parameterization on
molecule A is carried out, and the total molecular dipole and
ESP values of molecule A with the transferred parameters from
molecule B are printed in the output file (-o) of the PyRESP
program.56

All scatterplots, boxplots, and line plots are plotted using the
Python package Matplotlib. The QM ESPs surrounding water
tetramer clusters and the differences between QM- and MM-
calculated ESPs are visualized using the UCSF Chimera
software.65

■ RESULTS AND DISCUSSION
pGM-perm and pGM-perm-v Models Show the Best

Transferability from Water Monomer to Water
Oligomer Clusters. The transferability of the additive,
pGM-ind, pGM-perm, and pGM-perm-v models from water
monomer to water oligomer clusters is tested by investigating
the quality of the overall water cluster dipoles and ESPs
calculated by MM calculations in comparison to those
calculated at the MP2/aug-cc-pVTZ QM level of theory, as
measured by RRMSμ and ARRMSV, respectively. The
parameters of the water monomer for each electrostatic
model have been derived in the original PyRESP work.56 As
discussed in the Appendix, the water molecule is nonsingular,
so a single-conformation fitting is sufficient for the parameter-
ization of the pGM-perm and pGM-perm-v models for the
water molecule. The single set of water monomer parameters is
used in testing all WAT4, WAT6, WAT8, and WAT10 data
sets. Figure 1A shows the scatterplots of MM dipoles
calculated by each electrostatic model for the 100 water
tetramer clusters from the WAT4 data sets versus those
calculated by QM methods. It can be observed that all three
pGM models outperform the additive model, as the RRMSμ of
the pGM-ind (0.0711), pGM-perm (0.0817), and pGM-perm-
v (0.0823) models are only 34, 39, and 39% of that of the
additive model (0.2110), respectively. Figure 1B shows the
boxplots of the RRMSV of each electrostatic model for the
WAT4 data sets, and we can see that the ARRMSV of both the
pGM-perm (0.0788) and pGM-perm-v (0.0790) models are
34% of that of the additive (0.2319) model and 53% of that of
the pGM-ind (0.1481) model. Interestingly, adding the virtual
dipoles along the H−H direction in the pGM-perm-v model
does not improve the quality of calculated overall dipoles and
ESPs, as both the RRMSμ and ARRMSV of the pGM-perm-v
model are slightly higher than those of the pGM-perm model.
To further explore the transferability difference among
different models, the scatterplots of MM versus QM ESPs
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for the water tetramer clusters with the highest QM overall
dipole (Figure 1C, dipole = 4.2850 Debye) and with the lowest
QM overall dipole (Figure 1D, dipole = 0.0008 Debye) are
shown. The pGM-perm and pGM-perm-v models produce the
lowest RRMSV for both water clusters. For the water cluster
with the highest QM dipole, the pGM-perm and pGM-perm-v
models produce RRMSV of 0.0745 and 0.0743, respectively,
both of which are 31% of that of the additive model (0.2393)
and 56% of that of the pGM-ind model (0.1324). For the
water cluster with the lowest QM dipole, the pGM-perm and
pGM-perm-v models produce RRMSV of 0.0785 and 0.0788,
respectively, both of which are 37% of that of the additive

model (0.2138) and 52% of that of the pGM-ind model
(0.1526). Once again, the RRMSV of the pGM-perm and
pGM-perm-v models are very similar.

Figure 2 illustrates the QM ESPs surrounding the water
tetramer clusters with the highest and lowest QM overall
dipoles, as well as the differences between QM ESPs and MM
ESPs calculated by each electrostatic model. It can be observed
that the additive model is unable to accurately reproduce the
ESP of polar regions, that is, regions with high ESP absolute
values. Specifically, the additive model tends to generate ESPs
with lower values than QM results where the QM ESPs have
large positive values but generate ESPs with higher values than

Figure 1. Transferability tests of the additive, pGM-ind, pGM-perm, and pGM-perm-v models from water monomer to water tetramer clusters. (A)
Scatterplots of MM dipoles of each electrostatic model versus QM dipoles. Each plot shows a total of 100 data points, with each point representing
a water tetramer. (B) Boxplots of the RRMSV of each electrostatic model with QM results. Each plot shows a total of 100 data points, with each
point representing a water tetramer. (C) Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water tetramer with the
highest QM dipole (dipole = 4.2850 Debye). Each plot shows a total of 4660 data points, with each point representing an ESP point. (D)
Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water tetramer with the lowest QM dipole (dipole = 0.0008 Debye).
Each plot shows a total of 4339 data points, with each point representing an ESP point. For (A,C,D), the dashed lines correspond to perfect
matching.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01048
J. Chem. Theory Comput. 2023, 19, 924−941

929

https://pubs.acs.org/doi/10.1021/acs.jctc.2c01048?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01048?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01048?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01048?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


QM results where the QM ESPs have large negative values.
The pGM-ind model improves the ESP fitting significantly. It
is noteworthy that both the pGM-ind and additive models have
an identical number of electrostatic parameters. Therefore, the
significant improvement observed in the pGM-ind model over
the additive model is a piece of strong evidence for the critical
roles that intramolecular polarization plays in transferability.
The pGM-perm and pGM-perm-v models give ESPs nearly
identical to those of QM results in both polar and nonpolar
regions. Note that the ESP differences with QM results given
by the pGM-perm and pGM-perm-v models are almost
indistinguishable. Therefore, we conclude that the additional
dipoles along the H−H virtual bond in the pGM-perm-v
model do not improve the ESP fitting quality and trans-
ferability compared with the pGM-perm model for the water
tetramer clusters.
After analyzing the transferability from water monomer to

water tetramer clusters, we examined the transferability of each
electrostatic model from water monomer to water oligomers
with larger sizes, including hexamer, octamer, and decamer
clusters from the WAT6, WAT8, and WAT10 data sets,
respectively. The scatterplots of MM dipoles of each
electrostatic model versus QM dipoles, the boxplots of the
RRMSV of each electrostatic model with QM results, and the
scatterplots of MM ESPs of each electrostatic model versus
QM ESPs for the water hexamer, octamer, and decamer
clusters with the highest and lowest QM dipoles are shown in
Figures S1−S3. The RRMSμ and ARRMSV of each water
oligomer cluster size produced by each electrostatic model are
summarized in Figure 3. The pGM-ind, pGM-perm, and pGM-
perm-v models consistently outperform the additive models in
terms of both RRMSμ and ARRMSV, regardless of the water
oligomer cluster sizes. Although the pGM-ind model performs
slightly better than the pGM-perm and pGM-perm-v models in
terms of RRMSμ, the latter two models significantly outper-
form the pGM-ind model in terms of ARRMSV. Another
observation is that the RRMSμ and ARRMSV of each water
oligomer cluster data set produced by the pGM-perm and
pGM-perm-v models are essentially indistinguishable, as their
plots overlap each other, consistent with the earlier

observations in the case of water tetramers. In fact, as
discussed in the original PyRESP work,56 the virtual dipoles in
the pGM-perm-v model may lead to the overfitting problem
and is expected to increase the computational time in
simulations. Furthermore, the virtual dipole may cause
additional singularity problems during parameterization, as
discussed in the Appendix. For these reasons, the trans-
ferability test of the pGM-perm-v model will only be
performed for the water oligomer clusters for illustration
purposes. For other data sets, we will only test the
transferability of the additive, pGM-ind, and pGM-perm
models.
Electrostatic Parameters of the pGM Models Derived

with Amino Acid Dipeptides Transfer Well across
Different Conformations and to Tetrapeptides. In the
previous subsection, we have shown that the pGM-perm and
pGM-ind models outperform the additive model in terms of
the transferability from water monomer (training molecule) to
water oligomer clusters (testing molecules). Next, we move on
to compare the transferability of the additive, pGM-ind, and
pGM-perm models across different conformations of amino
acids, as well as from short amino acid dipeptides (training
molecules) to longer amino acid tetrapeptides (testing
molecules). The reason why we are interested in amino acids
is that they are the building blocks of proteins, so the
electrostatic parameterizations of amino acids are of critical
importance for the development of force fields for modeling
biomolecules. Therefore, we aim to explore the best para-
metrization strategy of amino acids for developing the next-
generation polarizable Amber force field based on the pGM
models. As discussed in the Appendix, every amino acid
molecule is singular in the context of parameterization of the
pGM-perm model due to the existence of the sp3 α-carbon in
every amino acid backbone. Therefore, the combination of
restrained fitting and multiple-conformation fitting imple-
mented in the PyRESP program will be explored for the
electrostatic parameterizations of each model, which are
expected to improve the transferability of each model and to
mitigate the singularity problem of the pGM-perm model.
Alanine was selected as the model amino acid for testing the

Figure 2. Visualization of QM ESPs surrounding water tetramer clusters and the differences between QM- and MM-calculated ESPs of the additive,
pGM-ind, pGM-perm, and pGM-perm-v models. The upper panel shows the water tetramer with the highest QM dipole (4.2850 Debye) and the
lower panel shows the water tetramer with the lowest QM dipole (0.0008 Debye). The leftmost column shows the QM ESPs, with red color
indicating a positive ESP value and blue color indicating a negative ESP value. All other columns show the differences between QM ESPs and MM
ESPs, with red color indicating that QM ESP is greater than MM ESP and blue color indicating that QM ESP is less than MM ESP.
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transferability of each electrostatic model. In this test, five
alanine dipeptides (ACE-ALA-NME) in αR (QM dipole =
5.9860 Debye), β (0.8758 Debye), C7eq (2.5090 Debye), aβ
(2.2315 Debye), and C5 (1.8190 Debye) conformations from
the ALA-di data set were used for electrostatic parameter-
ization because of their wide range of molecular dipole
moments, as shown in Table 1. A total of nine parameter-
ization combinations of the five conformations were tested,
including three single-conformation fittings (αR, β, and C7eq),
three double-conformation fittings (αR/β, αR/C7eq, and β/
C7eq), one triple-conformation fitting (αR/β/C7eq), one four-
conformation fitting (αR/β/C7eq/aβ), and one five-conforma-
tion fitting (αR/β/C7eq/aβ/C5).
We first tested the transferability of the additive, pGM-ind,

and pGM-perm models across different conformations of
alanine dipeptides within the ALA-di data set, which contains a
total of 14 conformations. The transferability test results are
shown in Figures S4−S12. Among all the three single-
conformation fittings, the C7eq conformation gives the best
overall performance for the transferability of the pGM-ind and
pGM-perm models, with RRMSμ of 0.0386 and 0.0641, and
ARRMSV of 0.1074 and 0.1237, respectively. Among all the
three double-conformation fittings, the combination of the αR
and β conformations gives the best overall performance for the
pGM-ind and pGM-perm models, with RRMSμ of 0.0244 and
0.0239, and ARRMSV of 0.1004 and 0.0858, respectively.
Figure 4A,B summarizes the RRMSμ and ARRMSV of the ALA-
di data set of each electrostatic model parameterized with
alanine dipeptides in one to five conformations, where the
single-conformation fitting and double-conformation fitting are
C7eq and αR/β, respectively. One observation is that for all the
additive, pGM-ind, and pGM-perm models, both RRMSμ and
ARRMSV reached convergence with double-conformation
fittings, and multiple-conformation fittings with more than
two conformations do not significantly improve the trans-
ferability across different conformations of alanine dipeptides
in the ALA-di data set. Another observation is that the pGM-
perm model performs the best among the three models in
terms of both RRMSμ and ARRMSV. Taking double-
conformation fitting as an example, the RRMSμ and ARRMSV
of the pGM-perm model are 0.0239 and 0.0858, respectively,
which are 98 and 85% of those of the pGM-ind model (0.0244
and 0.1004), and 39 and 54% of those of the additive model
(0.0607 and 0.1601). One exception is the case of single-
conformation fitting, where the pGM-perm model shows worse
transferability than the pGM-ind model, as the RRMSμ and

ARRMSV of the pGM-ind model (0.0386 and 0.1074) are 60
and 87% of those of the pGM-perm model (0.0641 and
0.1237). The worse performance of the pGM-perm model with
single-conformation fitting might be explained by its singularity
problem, suggesting that multiple conformations should be
used in the parameterization of amino acids. Even so, the
pGM-perm model still performs much better than the additive
model, as the RRMSμ and ARRMSV of the pGM-perm model
are only 38 and 62% of those of the additive model (0.1687
and 0.1994).

Next, we tested the transferability of each electrostatic model
from alanine dipeptides (ACE-ALA-NME) to longer alanine
tetrapeptides (ACE-ALA3-NME). Specifically, the electrostatic
parameters derived with the nine combinations of alanine
dipeptides in the previously used five conformations (αR, β,
C7eq, αR/β, αR/C7eq, β/C7eq, αR/β/C7eq, αR/β/C7eq/aβ,
and αR/β/C7eq/aβ/C5) from the ALA-di data set were used
to calculate the RRMSμ and ARRMSV of alanine tetrapeptides
from the ALA-tet data set, which contains a total of 16
conformations. The transferability test results are shown in
Figures S13−S21. Among all the three single-conformation
fittings, the β conformation gives the best overall performance
for the transferability of the pGM-ind and pGM-perm models,
with RRMSμ of 0.0443 and 0.1169, and ARRMSV of 0.1096
and 0.1333, respectively. This is in contrast to the trans-
ferability test across alanine dipeptides in different conforma-
tions where the best performance is given by the C7eq
conformation. Among all the three double-conformation
fittings, the combination of αR and β conformations gives
the best overall performance for the pGM-ind and pGM-perm
models, with RRMSμ of 0.0247 and 0.0785 and ARRMSV of
0.1054 and 0.1221, respectively. This is consistent with the
transferability test across different alanine dipeptide con-
formations. Figure 4C,D summarizes the RRMSμ and
ARRMSV of the ALA-tet data set of each electrostatic model
parameterized with alanine dipeptides in one to five
conformations, where the single-conformation fitting and
double-conformation fitting are β and αR/β, respectively. It
can be observed that the transferability of the additive, pGM-
ind, and pGM-perm models from alanine dipeptides to alanine
tetrapeptides shows somewhat different patterns compared
with the transferability across alanine dipeptides in different
conformations. First, the pGM-ind model consistently gives
the lowest RRMSμ, and it gives the lowest ARRMSV when less
than three conformations were used for parameterizations. The
superior performance shown by the pGM-ind model is

Figure 3. RRMSμ and ARRMSV of the WAT4, WAT6, WAT8, and WAT10 data sets of the additive, pGM-ind, pGM-perm, and pGM-perm-v
models parameterized with the water monomer. Note that the plots of the pGM-perm and pGM-perm-v models overlap each other.
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somewhat surprising, given that the pGM-ind model does not
take atomic permanent dipoles into account, in contrast to the
pGM-perm model. Second, for the pGM-perm model, both
RRMSμ and ARRMSV reached convergence with triple-
conformation fitting. In the case of single-conformation fitting,
it performs even worse than the additive model. This again
illustrates the impact of the singularity problem of the pGM-
perm model.
Electrostatic Parameterization of the pGM Models

with Amino Acid Tetrapeptides Leads to Improved
Transferability across Different Conformations and to
Longer Polypeptides. The transferability of the electrostatic
parameters derived from dipeptides is unsatisfactory for the
pGM-perm model, particularly from dipeptides to tetrapep-
tides. In addition to the potential singularity problem, we
hypothesize that part of the reason is that there are two
terminal groups (ACE and NME) in each dipeptide, making
the terminal/amino acid ratio to be 2, much higher than that in
polypeptides in which this ratio can be orders of magnitude
lower. Therefore, we attempted to perform parameterizations
using tetrapeptides in which three repetitive amino acid
residues are present, making it possible to mimic multiple
chemical environments and multiple conformations. The
alanine tetrapeptides (ACE-ALA3-NME) in αR (QM dipole
= 13.2536 Debye), β (1.9427 Debye), pII (5.4174 Debye), aβ
(5.3779 Debye), and αL (12.7255 Debye) conformations from
the ALA-tet data set were selected for parameterizations
because of their wide range of molecular dipole moments as
shown in Table 2. A total of nine parameterization

combinations of the above five conformations were tested,
including three single-conformation fittings (αR, β, and pII),
three double-conformation fittings (αR/β, αR/pII, and β/pII),
one triple-conformation fitting (αR/β/pII), one four-con-
formation fitting (αR/β/pII/aβ), and one five-conformation
fitting (αR/β/pII/aβ/αL).

We first tested the transferability of each electrostatic model
across different conformations of alanine tetrapeptides within
the ALA-tet data set, which contains a total of 16
conformations. The transferability test results are shown in
Figures S22−S30. Among all the three single-conformation
fittings, the pII conformation gives the best overall perform-
ance for the transferability of the pGM-ind and pGM-perm
models, with RRMSμ of 0.0305 and 0.1143 and ARRMSV of
0.0997 and 0.1253, respectively. Among all the three double-
conformation fittings, the combination of αR and β
conformations gives the best overall performance for the
pGM-ind and pGM-perm models, with RRMSμ of 0.0270 and
0.0354, and ARRMSV of 0.0984 and 0.0846, respectively.
Figure 5 summarizes the RRMSμ and ARRMSV of each
electrostatic model of the ALA-tet data set parameterized with
alanine tetrapeptides using one to five conformations, where
the single-conformation fitting and double-conformation fitting
are pII and αR/β, respectively. Similar to the transferability test
across different conformations of the ALA-di data set, both the
RRMSμ and ARRMSV of the additive and pGM-perm models
reached convergence with double-conformation fittings, and
multiple-conformation fitting with more than two conforma-
tions do not significantly improve the transferability across

Figure 4. RRMSμ and ARRMSV of the ALA-di and ALA-tet data sets of the additive, pGM-ind, and pGM-perm models parameterized with alanine
dipeptides from the ALA-di data set in one to five conformations. (A,B) RRMSμ and ARRMSV of the ALA-di data set. The one to five
conformations are C7eq, αR/β, αR/β/C7eq, αR/β/C7eq/aβ, and αR/β/C7eq/aβ/C5, respectively. (C,D) RRMSμ and ARRMSV of the ALA-tet data
set. The one to five conformations are β, αR/β, αR/β/C7eq, αR/β/C7eq/aβ, and αR/β/C7eq/aβ/C5, respectively.
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different conformations in the ALA-tet data set. As in the
transferability test from alanine dipeptides to alanine
tetrapeptides, the pGM-ind model consistently shows the
lowest RRMSμ (around 0.03) among all the three models,
regardless of the number of alanine tetrapeptide conformations
used for parameterizations. In terms of ARRMSV, the pGM-
perm model shows the best performance with multiple-
conformation fittings. In contrast, with single-conformation
fitting, the pGM-ind model again outperforms the pGM-perm
model, as the ARRMSV of the pGM-ind model (0.0997) is
80% of that of the pGM-perm model (0.1253). This is
consistent with the transferability test across different
conformations of the ALA-di data set, which can be explained
again by the singularity problem of the pGM-perm model.
Encouragingly, for the pGM-perm model, double-conforma-
tion fitting using tetrapeptides leads to significantly improved
transferability than using dipeptides, as the RRMSμ reduced
from 0.0785 to 0.0354, and the ARRMSV reduced from 0.1221
to 0.0846. Finally, the additive model consistently gives the
worst transferability as measured by both RRMSμ and
ARRMSV. For example, with double-conformation fittings,
the RRMSμ of the pGM-ind (0.0270) and pGM-perm
(0.0354) models are only 21 and 28% of that of the additive
model (0.0891), and the ARRMSV of the pGM-ind (0.0984)
and pGM-perm (0.0846) models are 46 and 39% of that of the
additive model (0.1994).
In addition to the transferability across different conforma-

tions, another question that needs to be addressed is the
transferability across polypeptide chains with different lengths.
This is a rather critical question because, for practical purposes,
all protein force fields are parameterized using short peptides
or model compounds and are applied to proteins that can be
hundreds of amino acids long. Therefore, we need to know
how well the electrostatic parameters obtained from
parameterizing tetrapeptides transfer to longer polypeptides.
To answer this question, transferability tests were performed
using the ALA-poly and GLY-poly data sets containing a total
of 60 alanine polypeptides (ACE-ALAn-NME) and 60 glycine
polypeptides (ACE-GLYn-NME), respectively, where n ranges
between 1 and 20. ACE-ALAn-NME and ACE-GLYn-NME are
each represented by three conformations: aβ, αR, and β. Due
to the large molecular size of long polypeptides such as ACE-
ALA20-NME (212 atoms) and ACE-GLY20-NME (152 atoms),
the ωB97X-D DFT method was used for both geometry
preparations and ESP calculations for the two data sets to save

computational resources. The electrostatic parameters (atomic
charges and permanent dipoles) of alanine polypeptides and
glycine polypeptides were both obtained by αR/β double-
conformation fittings to the ESPs calculated at the ωB97X-D/
aug-cc-pVTZ level of theory, using alanine tetrapeptides (ACE-
ALA3-NME) from the ALA-poly data set and glycine
tetrapeptides (ACE-GLY3-NME) from the GLY-poly data
set, respectively. The reparameterization of alanine tetrapep-
tides is necessary to ensure that the parameters are consistent
with other alanine polypeptides, since the ESPs of alanine
tetrapeptides in the ALA-tet data set were calculated using a
different QM method (MP2/aug-cc-pVTZ), which leads to
slightly different ESPs. The RRMSμ and ARRMSV of the ALA-
poly data set and the GLY-poly data set of each electrostatic
model are shown in Figure 6A−D, respectively. Encouragingly,
with αR/β double-conformation fittings, both the pGM-ind
and pGM-perm models show great transferability to alanine
and glycine polypeptides with lengths ranging from 1 to 20,
although the pGM-perm model performs slightly better than
the pGM-ind model. Interestingly, both the pGM-ind and
pGM-perm models exhibit higher ARRMSV at the shorter end
compared to longer polypeptides. This indicates that the
underlying chemical environment in peptides of one to two
amino acids is somewhat different from that of longer
polypeptides, likely due to the unrealistically high terminal/
amino acid ratio in short peptides. This explains why
electrostatic parameterization with dipeptides leads to
unsatisfactory transferability to longer tetrapeptides. The
additive model consistently shows the worst transferability to
alanine and glycine polypeptides among all the three
electrostatic models. In general, the longer the polypeptides
are, the higher the RRMSμ and ARRMSV the additive model
produces. Therefore, we conclude that double-conformation
fitting using amino acid tetrapeptides in the αR and β
conformations is a sound strategy for amino acid electrostatic
parametrizations for the pGM models. In the future develop-
ment of the pGM force fields for proteins, this strategy is
expected to be applied to the systematic electrostatic
parameterizations for all amino acids.
The pGM models outperform the additive model in

transferability from nucleobase monomers to WC base
pair dimers and tetramers. Besides amino acids, another
key component of force field development for modeling
biomolecules is the electrostatic parameterizations of nucleo-
tides, the building blocks of nucleic acids including DNA and

Figure 5. RRMSμ and ARRMSV of the ALA-tet data set of the additive, pGM-ind, and pGM-perm models parameterized with alanine tetrapeptides
from the ALA-tet data set in one to five conformations. The one to five conformations are pII, αR/β, αR/β/pII, αR/β/pII/aβ, and αR/β/pII/aβ/
αL, respectively.
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RNA. Nucleotides are composed of three subunits, including a
nucleobase, a five-carbon sugar, and a phosphate group. The
ability of nucleobases to form hydrogen-bonding WC base
pairs and to stack upon each other through π−π interactions
leads directly to the double-stranded helical structures of DNA
molecules. Therefore, in this subsection, we aim to compare
the transferability of the additive, pGM-ind, and pGM-perm
models from the DNA nucleobase monomers, including
adenine (A), thymine (T), guanine (G), and cytosine (C),
to the WC base pair dimers and stacked WC base pair
tetramers formed by the four DNA nucleobases. All
monomers, dimers, and tetramers used in this work are from
the BASE data set. Each nucleobase is capped with a methyl
group to mimic the chemical environment within nucleosides.
The two WC base pair dimers include the A-T base pair with
two hydrogen bonds and the G-C base pair with three
hydrogen bonds. The eight stacked WC base pair tetramers
include A-T/A-T, A-T/T-A, A-T/C-G, A-T/G-C, G-C/A-T,
G-C/T-A, G-C/C-G, and G-C/G-C. For instance, the A-T/C-
G tetramer is formed by stacking the A-T base pair onto the C-
G base pair, where A and T are stacked with C and G,
respectively.
Since the nucleobases are rigid molecules in nature, each

DNA nucleobase monomer was parameterized using single-
conformation fitting to ESPs calculated at the ωB97X-D/aug-
cc-pVTZ level of theory. Table 3 shows the molecular dipole
and quadrupole moments calculated by each electrostatic
model and QM methods as well as the RRMSV of the A-T and

G-C WC base pair dimers. It can be seen that the pGM-ind
and pGM-perm models produce molecular dipole moments
and quadrupole moments with better agreement with the QM
moments than the additive model. However, nucleobases are
also singular molecules in terms of the parameterizations of the
pGM-perm model due to the existence of sp2 carbons in all

Figure 6. RRMSμ and ARRMSV of the ALA-poly and GLY-poly data sets of the additive, pGM-ind, and pGM-perm models parameterized with
alanine or glycine tetrapeptides. (A,B) RRMSμ and ARRMSV against the length of alanine polypeptides from the ALA-poly data set. Each model is
parameterized with alanine tetrapeptides from the ALA-poly data set using the αR/β double-conformation fitting. (C,D) RRMSμ and ARRMSV
against the length of glycine polypeptides from the GLY-poly data set. Each model is parameterized with glycine tetrapeptides from the GLY-poly
data set using αR/β double-conformation fitting.

Table 3. Molecular Dipole/Quadrupole Moments and
RRMSV of the A-T and G-C WC Base Pair Dimers Fitted
with the A, T, G, and C Monomers with the Additive, pGM-
ind, and pGM-perm Models

WC base pair additive pGM-ind pGM-perm QM

Dipole Moments/Debyea

A-T 2.3174 1.8483 1.9134 1.9010
G-C 4.6236 5.9753 5.9603 6.0874

Quadrupole Moments/Debye Angstromsb

A-T Qxx 46.5515 41.0910 40.7533 43.5328
Qyy −19.7216 −17.9977 −17.5097 −18.6448
Qzz −26.8299 −23.0933 −23.2436 −24.8879

G-C Qxx 46.5542 43.6740 43.6416 46.3355
Qyy −20.9126 −19.4755 −19.1479 −20.4689
Qzz −25.6416 −24.1985 −24.4937 −25.8666

RRMSV
A-T 0.1454 0.1250 0.0904
G-C 0.1657 0.1183 0.0766

aDipole moment relative to the center of mass. bQuadrupole
moments along the principal axes.
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nucleobases (see Appendix), which can explain the observation
that the pGM-ind model gives slightly better agreement with
the QM-calculated electric moments than the pGM-perm
model. On the other hand, the RRMSV consistently decreases
with the order of the additive, pGM-ind, and pGM-perm
models for both WC base pairs. For the A-T base pairs, the
RRMSV of the pGM-ind (0.1250) and pGM-perm (0.0904)
models are 86 and 62% of that of the additive model (0.1454);
for the G-C base pairs, the RRMSV of the pGM-ind (0.1183)
and pGM-perm (0.0766) models are 71 and 46% of that of the
additive model (0.1657). Therefore, the pGM models
outperform the additive model significantly in terms of
transferability to WC base pairs with the single-conformation
fitting with the A, T, G, and C monomers. Note that the G-C
base pair (QM dipole = 6.0874 Debye) has a much higher
overall dipole moment than the A-T base pair (1.9010 Debye).

The observation that the additive model gives higher RRMSV
for the G-C base pair than for the A-T base pair, while the
pGM models give lower RRMSV for the G-C base pair than for
the A-T base pair indicates that the pGM models can better
model the polarization effects in the highly polar G-C base
pairs.

Figure 7A−C shows the scatterplot of MM dipoles of the
eight WC base pair tetramers from the BASE data set
calculated by each electrostatic model versus those calculated
at the ωB97X-D/aug-cc-pVTZ level of theory. It can be
observed that the RRMSμ of the pGM-ind (0.0141) and pGM-
perm (0.0209) models are much lower than that of the
additive model (0.1293), as the RRMSμ of the pGM-ind and
pGM-perm models are only 11 and 16% of that of the additive
model. The slightly better performance of the pGM-ind model
than the pGM-perm model is consistent with the better electric

Figure 7. Transferability tests of the additive, pGM-ind, and pGM-perm models from A, T, G, and C monomers to WC base pair tetramers. (A−C)
Scatterplots of MM dipoles of each electrostatic model versus QM dipoles. (D) Boxplots of RRMSV of each electrostatic model with QM results.
Each scatterplot or boxplot shows a total of eight data points, with each point representing a WC base pair tetramer.
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moment agreement with QM results given by the pGM-ind
model for WC base pair dimers, which might be caused by the
singularity problem of the pGM-perm model. Figure 7D shows
the boxplots of the RRMSV of the WC base pair tetramers of
each electrostatic model, and we can see that the ARRMSV
decreases in the order of the additive (0.2000), pGM-ind
(0.1063), and pGM-perm (0.0737) models, as the ARRMSV of
the pGM-ind and pGM-perm models are 53 and 37% of that of
the additive model. To further explore the transferability
difference among different models, the scatterplots of MM
ESPs versus the QM ESPs for the G-C/G-C tetramer with the
highest QM overall dipole (dipole = 10.5748 Debye) and the
A-T/T-A tetramer with the lowest QM overall dipole (dipole =
2.1904 Debye) are shown in Figure 8. Once again, for both
WC base pair tetramers, the RRMSV of the pGM-perm model
are the lowest and those of the pGM-ind model are the second
lowest. For the G-C/G-C tetramer, the RRMSV of the additive,
pGM-ind, and pGM-perm models are 0.1804, 0.1016, and
0.0678, respectively. For the A-T/T-A tetramer, the RRMSV of
the additive, pGM-ind, and pGM-perm models are 0.2301,
0.1092, and 0.0781, respectively.

■ DISCUSSION AND CONCLUSIONS
Two desirable properties of molecular mechanical force fields
are accuracy and transferability. Various previous works have
demonstrated the accuracy of the pGM models.52,55,56 In this
work, we assessed the transferability of the electrostatic
parameters of the pGM-ind and pGM-perm models by
exploring whether the pGM models can accurately reproduce
the electrostatic properties of larger molecular systems or

different molecular conformations other than the molecules or
conformations used for parametrizations. Encouragingly, as
measured by RRMSμ and ARRMSV, both the pGM-ind and
pGM-perm models show significantly better transferability
than the point-charge additive model. This has been
demonstrated in the transferability tests (1) from water
monomer to water oligomer clusters with various sizes; (2)
across different conformations of amino acid dipeptides or
tetrapeptides with widespread distributions of molecular dipole
moments; (3) from amino acid tetrapeptides to longer
polypeptides with up to 20 amino acid residues; and (4)
from nucleobase monomers to WC base pair dimers and
tetramers, which play key roles in the formation of double-
stranded helical structures of DNA molecules. This and
previous assessments together show that the accurate and
transferable pGM models have the potential to serve as
foundations for developing the next-generation polarizable
force fields for modeling various biological processes that are
sensitive to polarization effects.

Another focus of this work is to identify the optimal
parameterization strategy of amino acids for developing the
next-generation polarizable force fields based on the pGM
models. Taking previous Amber force fields as examples, the
amino acid charge sets of the ff94 additive force field5,6 and the
ff02 polarizable force field33 were both derived with C5/αR
double-conformation fittings using amino acid dipeptides and
that of the ff12pol polarizable force field35−38 was derived with
the αR/β/pII triple-conformation fittings, also using amino
acid dipeptides. The electrostatic terms of the ff94 force field
were parameterized using the RESP program,13,14 which have

Figure 8. Scatterplots of the MM ESPs of the additive, pGM-ind, and pGM-perm models versus QM ESPs for representative WC base pair
tetramers. The upper panel is for the G-C/G-C tetramer with the highest QM dipole (dipole = 10.5748 Debye). Each plot shows a total of 14015
data points, with each point representing an ESP point. The lower panel is for the A-T/T-A tetramer with the lowest QM dipole (dipole = 2.1904
Debye). Each plot shows a total of 14 196 data points, with each point representing an ESP point.
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remained unchanged in various subsequent additive Amber
force fields for almost 30 years.6,7,17−22 The electrostatic terms
of the ff02 and ff12pol force fields were parameterized using an
iterative charge fitting program named i_RESP.23 Recently, the
PyRESP program that performs electrostatic parameterizations
for the pGM models using a direct matrix form solvation
approach has been implemented.56 Therefore, we aim to
identify the amino acid conformations and the number of
conformations for parameterizing the pGM models that lead to
optimal transferability. We first tested parametrizations using
dipeptides in 1−5 conformations, and the electrostatic
parameters derived by fitting dipeptides transfer well across
the 14 different dipeptide conformations. However, the pGM-
perm model gives unsatisfactory transferability from dipeptides
to tetrapeptides. Therefore, we moved on to test para-
metrizations using tetrapeptides directly. Encouragingly, the
αR/β double-conformation fitting with tetrapeptides shows
great transferability not only across different tetrapeptide
conformations but also from tetrapeptides to longer poly-
peptides with lengths ranging from 1 to 20 repetitive amino
acid residues for both the pGM-ind and pGM-perm models. In
the future development of the pGM force fields for proteins,
the αR/β double-conformation fittings with tetrapeptides are
expected to be applied to derive the electrostatic parameters of
all amino acids systematically.
An important question is, between the pGM-ind and pGM-

perm models, which one has better transferability. In theory,
the more elaborate pGM-perm model with atomic permanent
dipoles has a higher degree of freedom for parametrization,
which can better reproduce the ESPs used for fitting and give a
better description for molecular electrostatic properties such as
electric moments, leading to better transferability. This is
indeed the case for water molecules as shown in Figures 1−3,
where the pGM-perm and pGM-perm-v models yield much
lower ARRMSV than the pGM-ind model, regardless of the
water oligomer cluster size. Additionally, all pGM models give
similar RRMSμ for each water oligomer cluster data set.
However, as discussed in the Appendix, the parameterization
of the pGM-perm model suffers from the singularity problem
for most biomolecules due to the use of the permanent dipole
local frame formed by CBVs. In contrast, the pGM-ind model
does not have this problem since it does not take atomic
permanent dipoles into account. In theory, the singularity
problem can be addressed by the restrained fitting strategy as
well as the multiple-conformation fitting strategy implemented
in the PyRESP program. As shown in Figures 4−7, for single-
conformation fittings of alanine dipeptides, alanine tetrapep-
tides, and nucleobases, which are all singular molecules, the
pGM-ind model consistently shows better transferability than
the pGM-perm model, as measured by both RRMSμ and
ARRMSV. With multiple-conformation fittings, the pGM-perm
model generally outperforms the pGM-ind model, especially in
the transferability from amino acid tetrapeptides to longer
amino acid polypeptides. Therefore, we conclude that the
pGM-perm model can be expected to give better transferability
than the pGM-ind model for nonsingular molecules such as
water. For singular molecules such as amino acids and
nucleotides, if there are more than one conformation available
for multiple-conformation fittings, the pGM-perm model is
expected to give better transferability; otherwise, the pGM-ind
model is expected to give better transferability for single-
conformation fittings.

Another important question for future users who wish to
parameterize nonstandard molecules (such as small-molecule
ligands) is as follows: What types of conformations should be
used for parameterizing the pGM models in general? For
molecules that have rigid conformations such as nucleobases,
there are probably not too many choices. However, the
transferability tests on amino acids provide some insights for
the parameterizations of flexible molecules. For the parameter-
izations of both the alanine dipeptides and alanine tetrapep-
tides, we tested the single-conformation fittings and double-
conformation fittings using conformations with the highest
(αR for both dipeptide and tetrapeptide), lowest (β for both
dipeptide and tetrapeptide), and intermediate (C7eq for
dipeptide and pII for tetrapeptide) molecular dipole moments.
As shown in Figures S4−S6 and S22−S24, among all single-
conformation fittings, the conformations with intermediate
dipole moments (C7eq or pII) consistently give the best overall
performance for the transferability of the pGM-ind and pGM-
perm models. In contrast, as shown in Figures S7−S9 and
S25−S27, among all double-conformation fittings, the best
overall performance is consistently given by the combination of
the conformations with the highest (αR) and lowest (β) dipole
moments. Therefore, for selecting conformations for the
parameterizations of flexible molecules, conformations with
intermediate molecular dipole moments are recommended for
single-conformation fittings, while the combination of
conformations with widespread molecular dipole moments
(such as conformations with the highest and lowest dipoles
from all available conformations) is recommended for
multiple-conformation fittings.

Our goal is to develop applicable and accessible pGM force
fields for the molecular modeling community to perform
simulation works on biomolecular systems that are sensitive to
polarization effects. In future works, the electrostatic
parameters of all standard amino acids (in any protonation
states) and nucleotides for the pGM models will be derived
using the strategy of restrained fitting in combination with
multiple-conformation fitting provided by the PyRESP
program.56 A polarizable water model based on the pGM
models will also be developed and analyzed. In addition, the
van der Waals parameters for the pGM models need to be
reoptimized using a similar strategy as was used in the
development of the ff12pol force field.38

■ APPENDIX

Singularity Problem of the pGM-perm and pGM-perm-v
Models and Solutions
The parameterizations of the pGM-perm and pGM-perm-v
models suffer from the singularity problem that originates from
the use of the permanent dipole local frame formed by CBVs.
Since CBVs are along the direction of covalent bonds (and
virtual bonds for pGM-perm-v), some molecules are “singular
molecules” due to the existence of “singular atoms”. Taking
carbon dioxide (CO2) as an example, the two covalent bonds
associated with the central carbon atom are colinear, so the
two permanent C−O dipoles oriented in opposite directions
can be assigned any value to give zero net dipole to the carbon
atom. Therefore, the carbon atom in CO2 is a singular atom,
and the CO2 molecule is a singular molecule. Figure A1 gives
several examples of singular and nonsingular molecules. The
water (H2O) molecule is nonsingular. Similar to the case of
CO2, there are two covalent bonds associated with the central
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oxygen atom of water. However, the permanent O−H dipoles
are not colinear, so there only exists one solution for the value
of the O−H dipole to give the correct atomic dipole for
oxygen. The carbon atom of the ethene (C2H4) molecule and
the nitrogen atom of the ammonia (NH3) molecule both have
three covalent bonds associated. However, ethene is singular,
but ammonia is nonsingular. The two C−H dipoles and the
C−C dipole of each carbon atom in the ethene molecule are
coplanar, so the net atomic dipole of the ethene molecule can
be produced by infinitely many linear combinations of the
three dipoles. In contrast, the three N−H dipoles of the
nitrogen atom in the ammonia molecule are not coplanar, so
there only exists one solution for the value of the N−H dipole
to give the correct atomic dipole for nitrogen. For atoms
associated with more than three covalent bonds (and virtual
bonds), such as the central carbon of the methane (CH4)
molecule, regardless of how these bonds are oriented, there
will always be infinitely many linear combinations of the
dipoles on these bonds that can produce the net atomic dipole
for the atom. Therefore, any atoms associated with more than
three bonds are singular atoms, and any molecules containing
this type of atoms are singular molecules. Furthermore, the
virtual dipoles of the pGM-perm-v model may cause additional
singularity problems during parameterization. For example, the
oxygen atoms in CO2 are nonsingular atoms in the pGM-perm
model but they are singular atoms in the pGM-perm-v model,
since the O−C covalent dipole and O−O virtual dipole are
colinear.
The general rule for checking whether an atom is singular in

the context of pGM-perm and pGM-perm-v models is as
follows: first, count the number of covalent bonds and virtual
bonds associated with this atom. If there is only one bond, the
atom is nonsingular; if there are more than three bonds, the
atom is singular. In the case of two bonds, the atom is singular
if the two bonds are colinear and nonsingular if the two bonds
are not colinear. In the case of three bonds, the atom is
singular if the three bonds are coplanar and nonsingular if the
two bonds are not coplanar. In fact, most biomolecules are
singular molecules due to the widespread existence of sp3

carbons, such as the α-carbon in every amino acid backbone

and the five carbons in the sugar unit of every nucleotide. If
there is at least one singular atom in the molecule, the
molecule is a singular molecule.

The mathematical explanation of the singularity problem is
that the electrostatic parameterization of a molecule using the
PyRESP program essentially computes the least-squares
solution of the following equation56

=MQ V (A1)

where Q is a vector for all the point charges and permanent
point dipoles of the molecule being parameterized, and the
details of the equation can be found in our original PyRESP
work.56 The least-squares solution can be obtained by solving
the following equation, the proof of which can be found in
most linear algebra textbooks

=M MQ M VT T (A2)

If eq A2 has a unique solution, the square symmetric matrix
MTM needs to be positive, definite, and invertible. However,
for the parameterization of singular molecules such as methane
with the pGM-perm or pGM-perm-v models, the matrix M
contains linearly dependent columns, and the matrix MTM
becomes a singular matrix, which is not invertible.

One solution to the singularity problem is the restrained
fitting implemented in the PyRESP program, which was
originally implemented in its ancestor program RESP.13,14 The
RESP program applies the following hyperbolic restraining
function χ to the least-squares fitting of additive models

= +
=

a q b b( )
i

n

i
1

2 2

(A3)

where qi is the point charge of atom i; a is the scale factor that
defines the restraining strength; and b determines the
“tightness” of the hyperbola around its minimum, which has
been recommended to be set to 0.1 to make the restraint
appropriately tight.13 The PyRESP program extends the
restraining functions of the RESP program by applying an
additional penalty function with the same format as eq A3 for
restraining atomic permanent dipoles and allowing the users to
choose different restraining strength a for point charges and

Figure A1. Several examples of singular and nonsingular molecules in the context of parameterization of the pGM-perm model. The upper panel
shows examples of singular molecules, and the lower panel shows examples of nonsingular molecules. In the left column, the singular carbon atom
of the carbon dioxide (CO2) molecule has two covalent bonds; in the middle column, the singular carbon atom of the ethene molecule has three
covalent bonds; and in the right column, the singular carbon atom of the methane molecule has four covalent bonds.
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permanent dipoles. In the restrained fitting process, the partial
derivative of the penalty function χ to each electrostatic
parameter is added to the diagonal terms of the matrix MTM,
introducing nonlinearity into the singular matrix. Therefore,
the matrix MTM becomes invertible, and eq A2 has a unique
solution.
Another solution to the singularity problem is the multiple-

conformation fitting. By enforcing intermolecular equivalences
among multiple conformations of the same molecule, the rows
and columns of the matrix MTM corresponding to equivalent
permanent dipoles are added up to form a single row and
column, giving rise to a smaller matrix MTM. This operation
essentially eliminates the linear dependence of the linearly
dependent columns of the matrix M, and the resulting smaller
matrix MTM becomes invertible. However, the disadvantage of
the multiple-conformation fitting strategy is that it may be
difficult, if not impossible, to construct multiple optimized
conformations for small rigid singular molecules such as CO2,
ethene, and methane. It is only an appropriate strategy for
parameterizing large singular molecules such as amino acids
and nucleotides.
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