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Econometrica, Vol. 51, No. 6 (November, 1983)

INDEPENDENCE OF ALLOCATIVE EFFICIENCY FROM
DISTRIBUTION IN THE THEORY OF PUBLIC GOODS

By THEODORE C. BERGSTROM AND RiCHARD C. CORNES

When is the Pareto optimal amount of public goods independent of income distribu-
tion? Subject to certain simple regularity conditions, the answer is “when preferences of
each individual / can be represented by a utility function of the form U,(X;, Y) = A(Y)
X; + B;(Y) where X; is the amount of the (one) private good consumed by i/ and Y is the
vector of public goods.” Besides proving necessity and sufficiency conditions for utility to
be of this special form, we show implications of this form for Lindahl equilibrium, majority
voting, and the Groves-Clarke mechanism for preference revelation.

If all the seas were one sea,

What a great sea that would be!

If all the trees were one tree,

What a great tree that would be!
And if all the axes were one axe,
What a great axe that would be!
And if all the men were one man,
What a great man that would be!
And if the great man took the great axe,
And cut down the great tree,

And let it fall into the great sea,
What a splish-splash that would be!

NORMALLY AGGREGATE DEMAND for private goods cannot be treated as if it were
the demand of a single gigantic rational consumer. This is possible only if
“income distribution doesn’t affect aggregate demand.” Gorman [11] discovered
restrictions on the form of indirect utility functions that are necessary and
sufficient to allow such aggregation. In early partial equilibrium treatments of
public goods theory by Lindahl [15] and Bowen [6] the efficient amount of public
goods appears to be determined independently of income distribution. Samuel-
son [18, 19] observes that generally an efficient amount of public goods cannot
be determined independently of the distribution of private goods. He points out
that such separation is possible in the special case where preferences of all
consumers are quasi-linear, that is, representable by utility functions that are
linear in private goods. Musgrave [17] responds that although independence of
allocation from distribution is not legitimate in a strict logical sense, separation
of allocational decisions from distributional decisions is a useful simplification of
reality that may in practical situations lead to better decision making than
attempts to simultaneously determine allocation and distribution.

If quasi-linear preferences were necessary for separation of allocation from
distribution, then Musgrave’s case for separation, even as an approximation,
would not be good. Quasi-linearity has strong and rather easily refutable implica-
tions. For example, it implies a zero income elasticity of demand for public
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1754 T. C. BERGSTROM AND R. C. CORNES

goods. Several recent studies of the demand for public goods strongly reject the
hypothesis that the income elasticity of demand for local public goods is close to
zero.! As it turns out, however, separation of allocation from distribution is
possible for a broader class of preferences. This class is essentially dual to the
class of preferences found by Gorman to admit construction of a “representative
consumer” in the theory of demand for private goods® and consists of prefer-
ences that can be represented by a utility function of the form 4(Y)X; + B;(Y)
for each individual i.

In the first section we develop a rigorous theory of when allocation can be
separated from income distribution, or equivalently of when there is a representa-
tive consumer of public goods. In the second section of this paper we show that
the assumption that preferences belong to the class that allows a representative
consumer has interesting implications for Lindahl’s allocation theory and for
Bowen’s majority voting theory. We also demonstrate that demand revealing
mechanisms of the kind introduced by Clarke [8] and Groves and Loeb [13] for
the case of quasi-linear utility can be extended in a simple way to this broader
class of preferences.

1. GENERAL THEOREMS

Let there be n public goods, one private good, and m consumers. Consumer i’s
preferences are represented by a utility function of the form U,(X;, Y) where X; is
his consumption of the private good and Y is the vector of public goods supplied.
An allocation is a vector (X,,...,X,,,Y)€E R™*" specifying each citizen’s
consumption of private goods and the vector of public goods. The set of feasible
aggregate outputs is a set ¥ C R}*" and the set of feasible allocations is the set
(X ..., X,,Y)Z0|(CL,X;,Y) €.F } of allocations that can be achieved by
distributing the private goods from a feasible aggregate output.

A feasible aggregate output (X, Y) is defined to be always Pareto efficient if
every allocation (X, ..., X,,Y) such that 37_, X, = X is Pareto optimal. Let
& C.¥ be the set of always Pareto efficient aggregate outputs. In general, even
where Pareto optimal allocations exist, & can be empty because the efficient
amount of public goods is not independent of the distribution of private goods. A
minimal requirement for determining efficient outputs of public goods indepen-
dently of income distribution is that the set & is nonempty. We define allocation
and distribution to be weakly independent if & is a nonempty set. As it turns out,
subject to certain technical qualifications, a necessary and sufficient condition
for allocation and distribution to be weakly independent is that for each i,
preferences of consumer i are representable by a utility function of the form
A(Y)X; + B,(Y). Sufficiency is very easily proved. In particular:

'Examples of such studies are Borcherding and Deacon [5] and Bergstrom and Goodman [2].
Other similar studies are reviewed by Inman [14].
2This duality is discussed explicitly in Bergstrom and Cornes [4].
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THEOREM 1: If preferences of every consumer i are representable by a utility
function of the form A(Y)X;+ B/(Y), then any aggregate allocation (X,Y) that
maximizes A(Y)X + 3, B,(Y) on & is always Pareto efficient. If, furthermore, the
set F is compact and utility functions are continuous, then allocation and distribu-
tion are weakly independent.

PRrOOF: Suppose that (X,Y) maximizes A(Y)X + 3,B(Y) on F. Let
X, .. ,Y) be any allocation such that 2 X=X and suppose that
X,,...,X,,Y) is Pareto superior to (Xl, ..., X,,Y). Then A(Y)X,+ B,(Y)
Z A(Y)X, + B,(Y) for all i with strict inequality for some i. Therefore 4(Y)
S X, +3,B(Y)>A(Y)X +3,B,(Y). Since (X,Y) maximizes 4(Y)X +
S, B,(Y) on .Z it must be that (3 X,,Y) & % . Therefore (X, ..., X,,Y) must
be Pareto optimal. If the functions 4 (Y)X, + B;(Y) are all continuous and & is
compact, there exists (X,Y) that maximizes 4(Y)X + 3, B,(Y) on .. By the
previous argument (X,Y) is always Pareto efficient so that & is nonempty.

Q.E.D.

The converse result is more difficult and requires some qualification. Evidently
if the feasible set is very special, allocation and distribution can be independent
for a very wide class of preferences. We are interested in the implications of the
stronger assumption that allocation and distribution are independent for every
finite feasible set # C R1*". It will be helpful to consider a binary relation
with the property that the set & of always Pareto efficient aggregate outputs is
equal to the set of maximal elements of & on . Let us define & so that
(X, Y)O(X',Y") if and only if there exist allocations (X,..., X,,Y) and
X{,...,X,,Y) such that >, X;=X, >, X/=X',-and (X,,...,X,,Y) is
Pareto superior to (X7, ..., X,,Y’). From the definitions of & and & the
following is immediate.

REMARK 1: The set & of always Pareto optimal aggregate outputs is equal to
the set of maximal elements of @ on & .

Therefore allocation and distribution are weakly independent precisely when
@ has at least one maximal element on % . If a binary relation has a cycle, then
the finite set whose elements constitute the cycle does not have a maximal
element.? These facts together with Remark 1 enable us to assert the following.

REMARK 2: If allocation and distribution are weakly independent for every

finite feasible set % C R.1*", then the binary relation (© has no cycles in
Ri+n.4

3A bmary relation & has a cycle if there is a finite set {x,, ..., x;} such that x;,,® x; for
j=1 » k — 1 and such that x,@ x;..

4The converse is also true. That is, if & has no cycles then & has at least one maximal element
on any finite set (Sen [20]). In fact if & has no cycles and is continuous then it has at least one
maximal element on any compact set (Bergstrom [3]).
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The relation & should not be confused with the Kaldor-Hicks—Samuelson
partial order which was central to the “new welfare economics” (see Chipman
and Moore [7]). The K.H.S. relation has (X, Y)K.H.S.(X’, Y’) if and only if for
every (X1, ..., X,,,Y’) such that 3, X/ = X’ there exists some (X,,...,X,,,Y)
such that 3,X;=X and such that (X,,..., X,,,Y) is Pareto superior to
Xi,...,X,,,Y). The set of K.H.S. maximal elements on % is the set of
aggregate outputs which are potentially efficient in the sense that if (X, Y) is
K.H.S. maximal then some distribution of X accompanied by Y would be Pareto
optimal. The set of K.H.S. maximal elements generally includes & as a proper
subset.

Two more definitions will help to state our necessity theorem succinctly. A
vector of public goods Y° is a worst supply of public goods if for all i and all
X;20,Y 20, U(X,,Y) = U(X,, Y°. For example, if preferences are monotone
increasing in Y, then Y°=0 is a worst supply of public goods. Differences in
public goods are always compensatable by private goods if for all i and every
Y =0, Y =0, and X; = 0 there exists X/ = 0 such that U(X/,Y") = U,(X,, Y).}

THEOREM 2: Let preferences of every consumer be representable by a continuous
utility function that is monotone increasing in X;. Assume that there exists a worst
supply Y ° of public goods and that differences in public goods are always compensat-
able by private goods. If allocation and distribution are weakly independent for every
finite feasible set, then there exist continuous functions A(Y),B\(Y), ..., B, (Y)
such that preferences of each consumer i are representable by a utility function of
the form A(Y)X; + B,(Y).

Proor: From our assumptions it follows that for every (X;,Y), there exists a
unique X; such that U,(X/, Y% = U,(X,, Y). Therefore we can define UXX,;,Y)
so that U;(UX(X;,Y), Y% = U,(X,,Y). Since preferences are monotone increas-
ing, U¥(X;,Y) represents i’s preferences. Furthermore, we see from the definition
that U¥(X;, Y°) = X; for all X,.

We can show that if 33X, =3 X/ =X, then 3,U*X,,Y)=3,UXX/,Y).
For suppose not. Then without loss of generality, let 3%, U*(X,, Y) — X, U*(X/,
Y)=68>0. Let Z,=UXX;,Y)—(8/2n) and let Z/ = U*(X/,Y)+ (8/2n).
Then 3,Z,= > Z/ = Z. Now UXZ,, Y% = Z, < U*(X,, Y) for all i and U*(Z;,
Y% =Z/ > UXX/,Y) for all i. Therefore (X, Y)S(Z, Y° and (Z, Y)O(X, Y).
But according to Remark 2, our assumption that allocation and distribution are
weakly independent implies that  has no cycles. This is a contradiction.

From the result of the previous paragraph it follows that 3\, U*(X,,Y)

= U, X;,Y) for some function U. An equation of this functional form is

3 An example of a utility function where differences in public goods are not always compensatable
would be U(X,Y)=Y—-(1/(1+X)). Let Y=2, X=1, and Y’ =1. Then U(X,Y)= 3/2 and
UX',Y)<1forall X'=0.
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known as Pexider’s functional equation. It is well known (see Aczel [1]) that
Pexider’s functional equation implies that U*(X;,Y) = A(Y)X; + B;(Y) for all i.
Since UF*(X;, Y) represents i’s preferences, Theorem 2 is established. Q.E.D.

According to Theorem 1, if utility functions are of the form 4(Y)X,; + B;(Y),
then every aggregate output (X, Y) that maximizes the “aggregate utility func-
tion” A(Y)X + 3, B;(Y) is always Pareto efficient. It would be convenient
if every Pareto optimal allocation (X¥,...,X7,Y*) had the property that
G XF, Y*) maximizes A(Y)S,; X; + >, B,(Y) on ¥ . Then we could claim, not
only that there exist always Pareto efficient aggregate outputs, but also that a
redistribution from any Pareto efficient allocation leads to another Pareto effi-
cient allocation. This is not the case, however, as we see from Example 1.

ExaMPLE 1: There are two consumers with identical (quasi-linear) utilities of
the form A(Y)X, + B,(Y) whereA(Y) =1and B,(Y) = VY fori=1 and 2. The
set of feasible aggregate outputs is ¥ = {(X,Y)=0|X + Y = 3}.

In Example 1, 4(Y)X + 3, B;(Y) is maximized on ¥ when X =2and Y= 1.
Every allocation of the form (X, X,,1) where X; =0, X, =0and X, + X, =2 is
Pareto optimal. But there are some other Pareto optima for which aggregate
outputs do not maximize A(Y)X + >, B,(Y) on % . These are the boundary
optima in which one consumer or the other receives no private goods. In fact it is
not hard to show that every outcome in which one consumer or the other receives
no private goods and where 1/4=Y <1 and X =3 — Y is Pareto optimal.
However any redistribution of private goods from one of these boundary optima
yields an allocation which is not Pareto optimal.

In Example 1, the only troublesome Pareto optimal allocations are boundary
optima in which at least one consumer receives no private goods. It would be
useful to know whether it is generally true that the only Pareto optima which do
not remain Pareto optimal under redistribution of private goods are boundary
optima of this type. We define an interior allocation to be an allocation
(X ..., X,,, Y) such that X; > O for all ;. We define an interior Pareto optimum
to be a Pareto optimal interior allocation. We will say that allocation and
distribution are essentially independent if for every interior Pareto optimum
(X, ...,X,,7), the aggregate output (3, X;, Y) belongs to the set & of always
Pareto efficient aggregate outputs. We are able to show the following.

THEOREM 3: Let all consumers have preferences representable by quasi-concave
utility functions of the form A(Y)X; + B;(Y) and let the set ¥ be convex. Then
allocation and distribution are essentially independent. The set g_f interior Pareto
optzma consists of those Pareto optimal allocattons Xy, ..., X,,Y) such that
S, X,,Y) maximizes A(Y)X +3,B(Y) on &
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ProOF OF THEOREM 3: Suppose that X, .. ,X,,Y)is an 1nter1or Pareto
optimum and (E .»Y) does not maximize A(Y)X +>,B,(Y) on ¥ . Then

there exists (X ,Y) €. such that
A(T)X+ ZB(Y)} —[A(Y)Z)?i +2B,.()7)]

=8 >0 for some (/\:’,)Z’)E?

Define

_ AT +B(V)+ 2B (F

= n .

X = — for each i.

A(Y)

Then

A(Y)X + B(Y ) >A(Y)X,+ B(Y) foreachi
and >, X X.If X = 0, for each i, then the allocauon (X e X Y) would
be fea51b1e and Pareto superior to (X, . . ", Y) which would lead 1 immedi-

ately to a proof by contradiction. In general however it may be that X, <0 for
some I. Therefore we proceed as follows. Define X;(A) = X, + A(X, — X)). Since

X, .. ., Y) is an interior Pareto optimum, there exists a sufficiently small Y
such that X; (}\) > 0 for all i. Let Y(}\) Y+ }\( Y — Y). Since .7 is a convex set,
0.¢ 2(}\), e X 0\) Y(}\)) € & and since utility functions are quasi-concave,

A(YN)X,A) + B(Y(R)) > A(Y)X,+ B(Y) forallli.

Therefore (X, ():) , X (}\), Y(}\)) is feasible and Pareto superior to X,

"> Y). This contradlcts our assertion that (X, .. > Y) is Pareto opti-
mal It follows that (3, X, Y) maximizes 4 (V)X + 3, B (Y) on .% . According
to Theorem 1, it then must be that (3,X,,Y) is an always Pareto efficient
aggregate output. Therefore allocation and distribution are essentially indepen-
dent. Q.E.D.

To see that the convexity assumption is needed for Theorem 3, consider the
following example.

EXAMPLE 2: There are two consumers. Consumer i has utility of the form
A(Y)X; + B,(Y) where A(Y)=1 and B,(0) = B,(0)=0, B,(1)=1, By(1)=1.
Let ¥ = {(1,1),(2,0)}.
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If aggregate output is (1, 1) then the set of possible distributions of utility is
{(upu)|1=u; =2, 1 =u, =14, and u, + u, = 21)}. If aggregate output is (2, 0)
then the set of possible distributions of utility is {(u,,u%,)|0=u; =2,0=u, =2,
and u; + u, = 2}. It is easily verified that every allocation obtained by distribut-
ing private goods from the aggregate output (1, 1) is Pareto optimal. Thus (1, 1) is
an always Pareto efficient aggregate output and allocation and distribution are
weakly independent. Some of the interior allocations obtained by distribution
from the aggregate output (2,0) are also Pareto efficient. In fact all allocations
(x,,x,,0) such that x, >3 and x, = 1 — x, are Pareto efficient. But (2,0) is not
an always Pareto efficient aggregate output, since all of the allocations (x,, x,,0)
such that x, =2 and x, = 1 — x, are Pareto dominated by allocations obtainable
from the aggregate output vector (1, 1). Therefore allocation and distribution are
not essentially independent. Furthermore, we see that interior Pareto optima of
the form (x,, x,,0) do not maximize 4A(Y)>,; X; + 3,;B,(Y) on & .

Since Theorem 3 requires that 4(Y)X; + B;(Y) be quasi-concave, it would be
useful to have a simple recipe for constructing quasi-concave functions of this
form and a simple diagnostic test to tell us whether a given function of this form
is quasi-concave. Remark 3 supplies both.

REMARK 3: Let U(X,Y)= A(Y)X + B(Y) where A(Y) >0 forall Y 0. Let
a(Y)=1/A(Y) and B(Y)= B(Y)/A(Y). Then U(X,Y) is quasi-concave on
R1*7if and only if a(Y) is a convex function and B(Y) is a concave function.®

ProoF: Quasi-concavity of 4(Y) on R!*"is seen to be equivalent to convexity
of the function A(Y)=u - a(Y) — B(Y) for all u = 0. But ~2(Y) is convex for all
u = 0 if and only if a(Y) is convex and B(Y) is concave. Q.E.D.

2. APPLICATIONS

If preferences are representable by utility functions of our special form, then
several of the standard problems in the theory of public finance and welfare
economics have interesting special solutions.

A. Lindahl Equilibrium

A Lindahl equilibrium occurs when individual “tax prices” are adjusted in
such a way that, given their tax prices, consumers agree unanimously on the
amount of public goods to be provided. Lindahl equilibrium is known to be
Pareto optimal and to belong to the “core” when public goods are desirable
(Foley [10)]). In case utility functions are of the special form

1) A(Y)X, + By(Y)

6We are indebted to Professor J. A. Mirrlees for suggesting this condition.
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Lindahl equilibrium has a very special structure. As it turns out, in this case
Lindah] tax schedules will be affine in wealth. This means that such taxes could
be collected by means of a proportional wealth tax (at the same rate for
everyone) augmented by a “head tax” that may be positive or negative for an
individual depending on the private functions, B;(Y).

We conduct this discussion with a simplified formal model which could be
extended in a straightforward way to more general environments. Let there be
one private good and one public good. Each i has an initial endowment W, of
private good. Public goods can be made from private goods at constant unit cost
c. The set of feasible allocations, then, is

{(Xl,...,Xm,Y)|ZX,-+cY=2_W,}.

A Lindahl equilibrium consists of tax shares ¢; for each i where 3,4, =1 and
a feasible allocation (X, .. > Y) such that for all i, (X,,Y) maximizes
U,(X;,Y) subject to the budget constralnt X;+t,cY=W,. In L1ndah1 equilib-
rium, therefore, each consumer’s marginal rate of substitution between public
and private goods equals his tax price fc.

If utility functions are of the form (1), then marginal rates of substitution take
the form a(Y)X; + v,(Y) where a(Y) = A (Y)/A(Y) and y(Y) = B/(Y)/A(Y).
Therefore, in Lindahl equilibrium,

() ne=a(Y)X, +v(Y)=a(Y)[ W, = 1,cY] + v(Y).
Rearranging equation (2), we have

oY) . ()

©)) e = — W, A
1+ a(Y)Y 1+a(Y7)Y

From (2) we see that, as promised, each consumer’s tax share is an affine
function of his wealth. Summing equation (2) over the i’s, recalling that Siti=1,
and rearranging terms, we find that:

@  e= a(7>[;W,~— c?] +3w(¥)

which is just the Samuelson first order condition for efficiency applied to this
case. Thus if the government knows the utility functions, it could compute
Lindahl equilibrium simply by solving equation (4) for Y and then assessing
taxes 4,cY where t;c is found from equation (3). These taxes will just pay for ¥
and all consumers, given their tax rates, will agree that Y is the “right” amount of
public goods.

B. Majority Voting Equilibrium

A serious disadvantage of the Lindahl allocation method is that it requires the
government to know details of individual preferences which are private informa-
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tion and which individuals may have an incentive to conceal. A less stringent
requirement would be that the government knows 4 (Y) and has a good estimate
of B(Y) = (1/n)3; B,(Y). Then the government would know an “average utility
function”

®) A(Y)X;+ B(Y)

although it would not know detailed individual preferences. The government
would know enough to find an efficient amount of public goods since it needs
only to choose Y to maximize

(6) A(Y)S X+ S B(Y)=A(Y)S X+ nB(Y)

subject to the feasibility constraint.
If taxes are assessed according to an “average” Lindahl schedule, we have:

M pe=—20) gy, O
1+ (7)Y 1+a(7)7
where
_._ A(Y)
"I
and
o _B(Y) 7
(=g < w2

Suppose tax shares are set by the schedule (7) and consumers are allowed to vote
on the amount of public goods. If the amount of public goods were Y, then the
utility of consumer i after paying his taxes would be

®) U(Y)=A(Y)[ W, — t,cY] + B,(Y).

If consumer i has convex preferences, then the function [Z(Y) will be quasi-
concave in Y and hence single-peaked. Consumer i’s “peak” is Y* where Y}

i

maximizes (7,.( Y). Let ¥* be the median of the Y¥’s. Since preferences are single
peaked, Y* would be the only stable outcome of a pairwise majority voting
process. By straightforward calculation we see that

© U/(Y)20  as a(Y)[W,— e | +v(Y)Z e
Substituting from (7) into (9) and rearranging terms we have
(10) U/(Y)20 as v(Y)2v(Y).

Therefore Y*2 Y as v:(Y)2 3(Y).

1
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Suppose, now, that the functions v,(-) are symmetrically distributed over the
population. Then the mean, 7(Y), of the terms, v;(Y), will equal their median.
This fact, together with (10), implies that just as many people will want more as
will want less public good. Therefore Y= )7*, the median of the favorite
amounts. It follows that if taxes are assessed according to (7) and if preferences
are symmetrically distributed in this sense, then majority vote will select the
Pareto efficient quantity, Y. This generalizes a result of Bowen [6] who showed
that if preferences are symmetrically distributed and quasi-linear and if taxes are
the same for everyone, then the majority rule outcome is Pareto optimal.

C. Demand-Revealing Mechanisms’

Clarke [8] and Groves and Loeb [13] have demonstrated that if utility is
quasi-linear, then there exists an “incentive compatible” mechanism that deter-
mines the supply of public goods and individual tax rates. This mechanism uses
information supplied by consumers about their own preferences and has the
property that honest revelation of preferences is a dominant strategy for each
consumer. The amount of public goods selected will satisfy the Samuelson
marginal rate of substitution conditions. Groves and Ledyard [12] suggest that in
more realistic cases where the demand for public goods is income responsive, it
may be necessary to settle for a preference revelation mechanism in which honest
revelation is a Nash equilibrium but not a dominant strategy. They concede,
however, that Nash equilibrium in this context is a less persuasive game theoretic
“solution” than dominant strategy. We show here that the Clarke, Groves—Loeb
results generalize to the case where utility functions are of the form:

(11)  U(X,,Y)=A(Y)X,+ B(Y)

where U, is strictly quasi-concave.®

The procedure in its simplest form assumes that the function 4(Y) is public
information.” The mechanism induces consumers to honestly reveal the “private
information” B;(Y), in their utility functions. Let the technology be as follows.
Each consumer / has a: "nitial endowment of private goods, W;. Public good is
produced from private _oods at a total cost C(Y) where C’(Y) >0 and C”(Y)
Z 0. The set of feasible allocations is then the convex set: {(X,,...,X,,,Y)|
> X+ C(Y)= W)}. All consumers are asked to reveal their functions B;(-).
Each i then reports a function M;(-) (possibly different from B;(:)). Let M
=(M,(-), ..., M,(+)) be the vector of functions reported.

7 After this paper was written, we discovered a recent paper by Joseph Sicilian [21] which reports
results similar to the results of this section.

8Conn [9] has shown a different way in which the Clarke-Groves—Loeb results can be extended
beyond the quasi-linear case.

°This does not seem unreasonable since if 4(Y) is common to everyone’s utility function, anyone
could discover 4(Y) by introspection. If one wished, however, it would not be difficult to devise a
mechanism in which honest revelation of 4(Y) is a Nash equilibrium and honest revelation of B;(Y)
is dominant strategy.
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The government chooses an amount of public goods Y (M) so as to maximize
12) AW~ C(Y)) + 3 M,(Y).
J J

Consumer i is assessed a tax bill equal to

2= Mi(Y) + Ri(M)

(13) Ti(M)=W,.—EW.+CYM)—( !
7 J ( ( ) A ( Y( M ))

where R,(M) is a function that may depend on the information sent by all

consumers other than i but must be entirely independent of i’s own message.

Since for each i,
(14 Xi(M)=W,—-T(M),

it follows from (11), (13), and (14) that if the vector of functions reported is M,
then /’s utility is

a5 AY(M)| ZW,— C(Y(M)) |+ 3 M(¥(M)
J J#=i

+B,(Y(M)) + R(M).

Since R;(M) is independent of M,(-), we notice from (15) that the only way in
which /’s stated function M,(-) affects his final utility is through the dependence
of (15) on Y(M). Therefore, given any choice of messages by the other players,
the best choice of M, for i is the one that leads the government to choose Y (M)
to maximize

(16) A(Y)[ZWJ.— C(Y)} + Z.Mj(Y)+B,.(Y).

J Ji
But recall that the government seeks to maximize (13). Therefore if i reports his
true function, so that M;(Y)= B,(Y), then the government in maximizing (13)
will also maximize (16). It follows that regardless of the message sent by others,
consumer / can do no better than to report the truth. Honest revelation is
therefore a dominant strategy.

Let (T}, ..., T,,Y) be an equilibrium for this process. That is, Y maximizes
(12) where M;(-) = B,(*) for all i and T; = T;(B,(-), . . ., B,(-)). If it happened
that >, 7, = C(Y), then the allocation (X,,...,X,,Y) where X;= W, — T,

would be Pareto optimal. This is a consequence of Theorem 3 and the fact that ¥
maximizes A(Y)[X,; W, — C(Y)]+ X; B(Y).

Here, as in the case of quasi-linear utility, it is in general impossible to find
functions, R;(-), that guarantee that 3\, T, = C(Y). For the quasi-linear case,
Clarke and Groves—Loeb were able to find functions R;(M) that guarantee
feasibility in the sense that tax revenues at least cover costs.'® We can extend

For expository simplicity, we extend the Clarke tax. The Groves-Loeb tax includes the Clarke
tax as a special case (Loeb [16]). The generalization of the Groves—Loeb tax is a straightforward
extension of the argument used here.
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their idea to our broader class of preferences. Suppose that for each i, the
government sets a “target share”, ®; = 0 where >, ®, = 1. The government tries
to fix R;(M) so that T;(M) = ©,C(Y(M)) for each i. From (13) we see that

(A7) A(Y(M))[T(M)—-6,C(Y(M))]

=A(Y(M))|(1-0,)C(Y(M))- Eiwj

— Z.Mj(Y(M)) — R(M).
J#i
From equation (17) and the assumption that A(Y(M)) >0, we see that the
government could guarantee that T,(M) = 0,C(Y(M)) if it could set

19 RM)ZAY M) (1= 8)C(r(M) = T W] = S MY(M))
To this end, the government may choose

a9 RO =min {40 (1-0)C() = 3 W] - S w7,

Y J*Ei J#i
It can be seen that R;,(M) as defined in (19) does not depend in any way on #’s
stated function M;(-). Furthermore, it is clear that R;,(M) defined in this way
satisfies the inequality (18). From (17) it follows that T;(M) = 0,C(Y(M)). Since
>0, =1, it must be that 3, T;(M) = C(Y(M)).

The fact that a simple extension of the Clarke tax performs equally satisfacto-
rily on a larger class of preferences than the quasi-linear reduces the sting of one
of the list of criticisms of this mechanism found in Groves and Ledyard [12].
Whether in this environment the Clarke tax is likely to perform as well as
alternative mechanisms in which honest preference revelation is a Nash equilib-
rium rather than a dominant strategy equilibrium remains an open question.
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