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Abstract

Objective: To explain spontaneous EEG through measurements of spatiotemporal patterns of
phase among beta-gamma oscillations.

Methods: High-density 8x8 intracranial arrays were fixed over sensory cortices of rabbits. EEGs
were spatially low pass filtered, temporally band pass filtered and segmented in overlapping
windows stepped at 2 ms. Phase was measured with the cosine as the temporal basis function,
using both Fourier and Hilbert transforms to compensate for their respective limitations. Spatial
patterns in 2-D phase surfaces were measured with the geometric form of the cone as the spatial
basis function.

Results: Two fundamental state variables were measured at each digitizing step in the 64 EEGs:
the rate of change in phase with time (frequency) and the rate of change in phase with distance
(gradient). The parameters of location, diameter, duration, and phase velocity of the cone of
phase were derived from these two state variables. Parameter distributions including recurrence
intervals extending into the low theta range were fractal; the mean values varied with window
duration and interelectrode distance.

Conclusions: The formation of spatial amplitude patterns began with phase transitions that were
documented by phase discontinuities and phase cones. The multiplicity of overlapping cones
indicated that sensory neocortices maintained a scale-free state of self-organized criticality
(SOC) in each hemisphere as the basis for its rapid integration of sensory input with prior
learning stored in cortical synaptic webs. Further evidence came from the fractal properties of
the phase parameters and the self-similarity of phase patterns in the ms/mm to m/s ranges.

Significance: These EEG data suggest that neocortical dynamics is analogous to the dynamics of
self-stabilizing systems, such as a sand pile that maintains its critical angle by avalanches, and a
pan of boiling water that maintains its critical temperature by bubbles that release heat. Beta-
gamma oscillations stem from the ability of neocortex to maintain its stability under continuous
sensory bombardment. Modeling implies that the critical parameter of neocortex (analogous to
angle of repose or temperature) is the mean firing rates of neurons that are homeostatically
regulated by refractory periods everywhere at all times in cortex. The advantage of SOC in
perception may be the ability it gives neocortex to generate instantaneous global phase
transitions (avalanches, bubbles) large enough to include the multiple sensory areas that are
necessary to form Gestalts (multisensory percepts).
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1. Introduction

1.1. Sudden changes in EEG occur simultaneously over large distances: phase transitions
Human perception takes place in rapid frames that engage voluminous sensory input in
situations, such as a feeling about the shoulders when trying on a new coat, an understanding that
a friend is angry or frightened, a flash of recognition of the identity and state of mind of a parent
with one word on the telephone, and so on. Brains are usually in states of arousal and expectancy
before the arrival of stimuli. These states are normally prerequisite for perception. EEG and
MEG from humans and animals in such states give evidence of background spatiotemporal
waves of potential that flicker ceaselessly all over the head, like the background noise of traffic,
wind and surf. How might neurons create these background oscillations through interactions, and
how might these waves contribute to phenomenological experiences before, during and after
expected stimuli?

Recent efforts to open background activity to exploration have included recording scalp EEG
with a high-density electrode array (Freeman et al., 2003) and analyzing the signals with the
Hilbert transform (Freeman, Burke and Holmes, 2003). The unprecedented spatial and temporal
resolution afforded by these new techniques, which were developed from research on rabbit
brains, revealed remarkably detailed patterns in the seemingly featureless chaotic oscillations in
electrical potential found everywhere over the scalp. Most striking was the widespread
synchrony in oscillations at frequencies broadly distributed over the beta-gamma range that were
aperiodically re-initialized at intervals corresponding to rates in the theta-alpha range.  The
distances across which the waves were synchronized varied among subjects and across samples,
ranging up to 189 mm (the length of the array). Evidence was found for textures of amplitude at
the scale of the gyri, 1 to 3 cm in length, indicating synchrony that extended across multiple gyri
and sulci. Temporally the synchrony was interrupted but then re-established in phase jumps.
Each jump lasted only a few ms and recurred at irregular intervals, yet successive jumps were
nearly simultaneous, even over long distances.  In subjects at rest with eyes closed the episodes
of desynchronization on average were correlated with the alpha rhythm.  In subjects holding their
eyes open or intentionally tensing their scalp to introduce EMG, the mean repetition rate often
appeared in the theta range.

A provisional explanation for these episodic patterns in scalp EEG was based on studies of
spatiotemporal patterns of intracranial EEG in rabbits with high-density electrode arrays fixed
surgically over the primary sensory areas (Viana Di Prisco and Freeman, 1985; Barrie, Freeman
and Lenhart, 1996). The olfactory bulb and neocortical areas were found to generate spatial
patterns of amplitude modulation (“AM patterns”) of oscillations in the gamma and beta ranges,
respectively. The patterns lasted 80-100 ms and recurred at rates in the theta-delta range
(Freeman and Barrie, 2000). Each AM pattern expressed a short-lasting state of the cortex, which
formed by an abrupt change in the cortical dynamics known as a phase transition. Each phase
transition had four steps. The very rapid spread of re-initialization of the phase of the beta-
gamma activity (Freeman, 2001, 2004c) was followed by re-synchronization, then by the
stabilization of a pattern, and an increase in amplitude of the AM pattern, all within 24-34 ms
(Freeman, 2003b; Freeman and Burke, 2003; Part 1). These phase-locked spatial patterns in the
EEG revealed organizations of cortical activity that were termed “wave packets” (Freeman,
1975, 2003b). Successive wave packets resembled frames in a black/white cinema with
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successive spatial patterns held briefly. The AM patterns observed in sensory areas were
statistically related to conditioned stimuli, not so much to the features of the stimuli as to the
categories of the stimuli (Ohl, Scheich and Freeman, 2001) that provided for the meanings of the
stimuli for the animals (Freeman, 2003a).

Multiple mini-arrays fixed over the visual, auditory, somatic, olfactory and entorhinal areas
detected multicortical events that involved all three neocortical sensory cortices and the limbic
and olfactory areas (Freeman, Gaál and Jornten, 2003; Freeman and Burke, 2003). The onsets
were virtually simultaneous (Freeman and Rogers, 2003). That finding led to a search for
episodic re-synchronization in scalp EEG, which might give evidence of similar widespread
phase transitions in human cortex (Freeman, Burke and Holmes, 2003). The conclusion was
reached that in both animals and humans the neocortex generated temporally discontinuous,
broad spatial patterns that had the requisite sizes, durations, and repetition rates to qualify as
candidates for Gestalts, the frames of meaning in perception (Freeman, 2003a).

In contrast to the olfactory EEG, which provided an obvious relation of bursts of activity to
respiration (Freeman, 1975), visual inspection of the multichannel EEG recordings from
intracranial electrode arrays on neocortex (Fig. A1.01 in Part 1) gave no clues to the temporal
locations of the sequential neocortical states and the transitions by which they emerged (Barrie,
Freeman and Lenhart, 1996). In both structures it appeared that responses to stimuli might take
the form of abrupt re-organizations of background activity into patterns that were selected by
stimuli following phase transitions that were triggered by the stimuli. Therefore, re-examination
of extant data was undertaken here to answer the question, what is the neural mechanism that
sustains background activity in brains and in particular gives the EEG its dynamic properties?
The aperiodic oscillations for many years have been regarded as dendritic “noise” (Bullock,
1969; Elul, 1972) that is best removed by time-locked averaging of responses to stimuli (event
related potentials, ERP). However, EEG has too much informative structure to be so lightly
dismissed (Watters, 2000). The approach taken here to explain the “spontaneous” EEG is to
measure the distributions of phase defined at frequencies in the beta-gamma range in
multichannel EEG signals, and to calculate the rates of change in phase with time and distance.
A companion report (Freeman, 2004, Part 1) deals with the amplitude distributions. The large
data base needed for the study consisted of EEG records derived from high-density arrays
implanted over sensory cortices in rabbits that were then trained to discriminate conditioned
stimuli in a classical aversive paradigm (Barrie, Freeman and Lenhart, 1996).

These data were interpreted in the context of the theory of self-organization in nonlinear systems
operating far from equilibrium. The term “self-organizing” means that a complex system with
many interacting elements, such as an area of cortex with many synaptically interactive neurons,
develops its own set of preferred states, which it constructs and modifies by changing its
connections in accordance with certain rules. In the case of cortex these are the well-known rules
of learning. The term “nonlinear” means that small inputs can give large outputs and vice versa;
the proportionality and additivity of outputs to inputs of linear systems does not hold.
Physiologists are familiar in principle with nonlinearity in terms of paired-shock testing in search
of facilitation and depression, thresholds and refractory periods. Operating “far from
equilibrium” means that normal cortex does not go to rest, as an isolated nerve cell does when it
is deprived of input; instead, cortex continually boils with background activity that requires
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metabolic energy that is supported by a steady supply of oxygen and glucose and removal of
waste heat and carbon dioxide.

EEG background activity, which is not truly “spontaneous”, has several statistical properties that
are characteristic of self-organizing systems; they are fractal, scale-free, and self-similar. The
distributions of the sizes and durations of events are fractal (Mandelbrot, 1983), not normal.
Whereas events in normal distributions have means and standard deviations that are independent
of the dimensions of the tools of measurement, events in fractal distributions have means that
tend to be equal to the standard deviations, and both mean and standard deviation (SD) decrease
with decreasing size of the measuring tool. Systems that are characterized by fractal distributions
of their properties are called and “scale-free” (Wang and Chen, 2003). The classic example is the
length of the coastline of England, which varies with the size of the measuring stick from
kilometers to microns. In histograms the distributions are not bell-shaped but have maximal
numbers at minimal dimensions. Small, brief structures and events have the same appearance
and proportions as large, long-lasting events. This property is called “self-similarity”. It is often
applied to anatomical structures such as dendrites, in which branchlets far from the cell body
have the same appearance as branches close in. The spectra of EEG signals often show the 1/f
power-law distribution across frequencies (Freeman et al., 2003), which is an example of self-
similarity (Pereda et al., 1998; Watters, 2000; Hwa and Ferree, 2002). The self-similarity of
events in a scale-free network offers a key to understanding how cortical gamma synchronization
can be reinitialized by a phase transition over much of a human cerebral hemisphere (Cover
Illustration, Fig. A1.12 in Part 1) without impediment by sulci in under a quarter cycle duration
of a gamma wave (Freeman, Burke and Holmes, 2003). This time frame is as rapid as the re-set
of phase over the much smaller rabbit olfactory bulb (Freeman and Baird, 1987).

All these properties point to a special kind of self-organization, which is termed self-organized
criticality (“SOC”, Bak, 1996; Jensen, 1998). The structural properties of axons and dendrites
have already have been shown to be fractal (Braitenberg and Schüz, 1991). If the distributions of
the spatial and temporal measurements of the EEG data can be shown to be fractal, then the basis
for relations between the animal and human EEG may become apparent through self-similarity
(Cover Illustration). Most importantly, SOC might explain how human cerebral hemispheres can
reorganize their activity patterns almost instantly over distances that can exceed the dimensions
of most dendritic arbors by two to three orders of magnitude and perhaps thereby “bind” (von der
Malsburg, 1983) the sensory information that is held transiently in multiple widely dispersed
areas almost instantly into Gestalts.
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2. Methods

2.1.  Experimental animals and EEG recording

A cursory description has been given in the preceding report, Part 1, of the methods by which the
EEG data were acquired from rabbits that were conditioned to discriminate visual, auditory, or
somatic conditioned stimuli in a classical aversive paradigm. EEG signals were recorded from
high-density 8x8 epidural arrays over one of the three cortices in each of 2 rabbits totaling 6
sessions. Electrode spacing averaged 0.79 mm giving an array window of 5.6x5.6 mm. Sampling
after analog filtering at 0.1-100 Hz was at 500 Hz by 12-bit ADC after multiplexing at 10
microsecond/channel. Blocks of data were stored in 6-s trials including 20 trials with a
reinforced CS+ and 20 trials with a CS- not reinforced. Analysis was done off-line on a
Macintosh platform with MATLAB software.

2.2. Methods for measuring frequency and phase gradient: temporal basis functions

Measurement of EEG requires selection of elementary waves and geometric shapes called “basis
functions” (Freeman, 1975). Basis functions are adjusted and added like weights on a scale until
their sum matches the wave pattern to be measured, which is then said to be “decomposed” into
its numbered parts. In the time domain the most widely used basis function is the sinusoidal
wave of oscillation at one frequency, phase and amplitude. When the wave is started with
maximal amplitude at time zero lag, it is called a “cosine”. For simplicity, that is the basis
function adopted here to get the Fourier phase, φ1(t) (Appendix 2.1). Other options that have
been used with these data have been Fourier decomposition by the FFT to get a range of cosines
in the temporal spectrum (Appendix 1.1, Part 1) followed by selecting the phase at the frequency
having the greatest power (Barrie, Freeman and Lenhart, 1996); decomposition with nonlinear
wavelets that allow the frequency and amplitude to vary with time (Freeman and Viana Di
Prisco, 1986, Freeman, 2003b); and digitizing, in which the basis function is a rectangular wave
with the variables of pulse height and latency, in order to decompose a waveform into a sequence
of rectangular waves at the sample interval. This basis function is the key to using the Hilbert
transform.

For application of any or all of these temporal basis functions to measure EEG waves, the next
step is to select an optimal temporal band pass filter. In prior studies the ultimate criterion for
choosing the upper and lower cut-off frequencies was optimization of the classification of spatial
patterns of amplitude modulation of brief epochs of gamma oscillations (AM patterns) with
respect to conditioned stimuli (CS) (Freeman and Viana Di Prisco, 1986; Freeman and Grajski,
1987; Barrie, Freeman and Lenhart, 1996; Ohl, Scheich and Freeman, 2001; Freeman, Gaál and
Jornten, 2003; Freeman and Burke, 2003). The proximate criterion for optimization of the pass
band was to cross-correlate the unfiltered EEG with the unfiltered analytic phase differences on
each channel, calculate the cospectrum (Fig. A2.03 and Fig. A2.07, D), find the frequency at
which power in the alpha band was maximal, and measure that power (Fig. A1.02, A in
Appendix 1.1, Part 1). Next the low-pass cut-off was applied at a frequency varied in steps from
80 Hz down to 12 Hz to construct a tuning curve (Freeman, Burke and Holmes, 2003). The cut-
off frequency giving the highest power in the alpha range was fixed, and the high-pass cut-off
was applied in steps from 4 to 20 Hz to construct a second tuning curve and find the maximal
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power. These tuning curves gave the optimal pass band for use of the Hilbert transform
(Appendix 1.3, Part 1).

Use of temporal basis functions also required segmentation of the EEG signals. The minimal
duration for the Fourier window was the wavelength of the high pass temporal filter.  The
maximal duration could not exceed the intervals between successive phase transitions, which
served to define periods of “stationarity” in the EEG, meaning that the cortex was maintaining a
defined state with constant statistical properties between transitions (Freeman, 2000).  The
minimal duration for the Hilbert window was the digitizing interval, and the maximal duration
could not exceed the wavelength of the average frequency within the window, owing to the
branch points imposed on calculation of analytic phase by the arctangent (Appendix 1.3, Part 1).
The desired parameters in each window of the multichannel recordings were the frequency in Hz
common to all channels, which multiplied by 2π equaled the temporal phase gradient in rad/s,
and the phase on each channel at that frequency with respect to the phase of the spatial ensemble
average waveform, from which spatial phase gradient was calculated in rad/mm (Appendix 2.2).

2.3. Justification of the choice of the phase cone as the spatial basis function

In the 2-dimensional spatial domain the simplest options for the basis functions to measure the
phase gradient were a plane, a radially symmetric bivariate Gaussian density function, or a
circular cone (Freeman and Baird, 1987). Each basis function was fitted to the phase data by
nonlinear regression with the criterion of minimizing least squares residuals (Appendix 2.2).
Preliminary results from fitting the same olfactory test data with all three basis functions
(Freeman and Baird, 1987) showed that the cone gave the smallest % residuals and the simplest
interpretation of phase velocity as an expression of axonal conduction velocity in m/s (see
equation 4 in Section 2.4). All of these simple basis functions had the drawback that most 8x8
matrices of numbers could be fitted, whether or not they had structure, giving parameters that
might indicate structure where none existed. Stringent statistical controls with data
randomization were needed (Appendix 2.3). The additional requirements were imposed that a
stable cone persist over time in respect to the location and sign of its apex, and that the residuals
from cone fitting be less than 30% of the total variance of the 8x8 phase surface (Freeman and
Barrie, 2000; Freeman, 2003b). The measurement of phase was greatly facilitated by low pass
spatial filtering (Fig. A2.04), for which the criterion was the concave-upward inflection in the
spatial PSDX at high frequency (Fig. A1.02, B, Appendix 1.2, Part 1, Freeman and Baird, 1987;
Barrie, Freeman and Lenhart, 1996). Spatial filtering imposed structure on the data from the 8x8
arrays, so that care had to be taken to study by use of randomized controls the degree to which
structuring occurred (Appendix 2.3).

Validation of choosing the cone as the spatial basis function came from comparing the results of
measurement with known anatomical, physiological and behavioral properties of the EEG.
Measurements of the gradient of the cone gave estimates of the phase velocity that fell within the
known range of conduction velocities of axons running parallel to the pia (reviewed in Freeman
and Barrie, 2000). Connectivity of individual neurons in neocortical neuropil is sufficiently low
(Braitenberg and Schüz, 1991) that the neurons are not dragged into zero-lag synchrony within
the duration of a phase cone; the radial lag in phase transition is preserved in the cone. Estimates
of the cone diameters were large enough to encompass multiple domains in each primary sensory
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area for perceptual integration (“feature binding”, von der Malsburg, 1983; Singer and Gray,
1995) but small enough to fit within the brain. An electrophysiological criterion was to
demonstrate a peak in the alpha or theta range of the cospectrum of the cross-correlation function
between a sequence of cones and the spatial ensemble average of the unfiltered EEG (Freeman
and Barrie, 2000; Freeman and Rogers, 2002), which was used for optimizing the pass band prior
to use of the Hilbert transform. Identifying stable phase cones and using them to locate AM
patterns improved the classification rate with respect to CSs (Freeman and Barrie, 2000;
Freeman, 2003b), showing that phase cones were relevant to behavior.

2.4. Theoretical validation of using the phase cone as a spatial basis function

From the standpoint of modeling, the cone is significant as a potential marker for the occurrence
of phase transitions in cortical dynamics (Freeman, 2000, 2003a). In a distributed system a phase
transition is unlikely to occur everywhere at the same instant. It begins at one point called a site
of nucleation and spreads radially across the system (Freeman, 1990), just as a snowflake or a
raindrop enlarges with radial symmetry. When a new cortical state appears that is expressed in a
shared oscillatory waveform, the delay in onset imposes a radially symmetric gradient in the
phase that is defined at the peak frequency of the dominant component. With multiple
frequencies there are multiple phase cones that overlap in time and space in all neocortical areas
studied (Freeman and Barrie, 2000; Freeman, 2003b), but not in the prepyriform cortex (Freeman
and Barrie, 2000) where there are no cones, or the olfactory bulb where there is only one cone at
a time with a different phase gradient in rad/s for each frequency but the same phase velocity in
m/s for all frequencies (Freeman and Baird, 1987). Owing to the variability of cone parameters,
measurement of a large number of phase cones was needed to evaluate and classify the
distributions in histograms of the parameters. Both the Fourier and Hilbert transforms were used
to measure phase in order to replicate the measurements where the techniques overlapped, to
complement the limitations of each method, and benefit from the unique strengths of each.

2.5. Methods for parameterization of stable phase cones

Statistical summaries were computed of the data from each subject of the basic parameters of
temporal and spatial wavelengths for each cone (for symbols see Table 1.1 in Freeman, Part1):

Temporal wavelength, Wt = 1000/(2π fi)   ms/rad (1)

This was simply the reciprocal of the frequency measured in Hz and converted to radians/ms
(Appendix 2.1).

Spatial length, Wx  = 1 / |γk|    mm/rad (2)

This was simply the reciprocal of the absolute value of the phase gradient measured in
radians/mm (Appendix 2.2). These two basic parameters gave two physiological parameters for
each cone:

Diameter, Dx = (π/2) Wx    mm (3)
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Each cortical state formed by a phase transition had phase differences that increased with
distance in all directions from the site of nucleation at the apex of the cone. The strength of
synaptic interactions was assumed to be weakened by the phase dispersion. Demonstrably the
spatial coherence fell to lower levels with increasing distances between recording sites. A soft
boundary condition was identified as the half-power radius at which the cosine of the phase
difference fell to 0.7 (π/4 radians = 45°).

Phase velocity, β = 2π fi / γk = Wx / Wt    m/s (4)

Simply put, long spatial wavelengths (large Wx) and high temporal frequencies (low Wt) required
high velocities. Alternatively stated, at any given frequency, fi, the flatter was the phase gradient,
γk, the faster must have been the speed of propagation, β.

Persisting phase cones characterized as “stable” were identified by scanning the cone fits at
successive steps of the moving window in accordance with the following criteria: no change in
sign of gradient, γk, no shift of frequency, fi, outside the temporal pass band, no shift of the apex
by a step exceeding the interelectrode distance, 0.79 mm, and no location of the apex beyond
twice the spatial dimensions of the array (Freeman and Barrie, 2000).  The duration was given by
the window length plus the number of digitizing steps for which the criteria were met times the
digitizing interval (2 ms). The recurrence interval was the time lapse between successive starting
points of cones meeting the criteria. After initial compilation the solutions were screened again
while applying the following additional criteria for qualification: % residuals of cosine fit <20%;
% residuals of cone fit <30; and no value of γk within the standard error of measurement (-.04
rad/mm< γk < .04 rad/mm in Freeman and Viana Di Prisco, 1986). The % residuals criteria were
adopted from prior studies of these data using FFT decomposition (Freeman and Barrie, 2000) or
wavelet decomposition (Freeman, 2003b), which had been validated by optimizing the
behavioral correlation of AM patterns with CS.  Re-evaluation here showed that the prior criteria
were appropriate for evaluating the parameters of phase cones by both Fourier and Hilbert
methods.

2.6. Three methods for randomizing the EEG in space, time, or both space and time

Controls were instituted by modifying the 64 EEGs before spatial and temporal filtering.  The
spatial control was by randomizing the channel order with a table of random numbers.  The
temporal control was from surrogate data obtained by taking the FFT, randomizing the phase
values, and taking the inverse FFT. Randomizing in both temporal and spatial domains
simultaneously was by shuffling each of the 64 traces.  A time point was selected at random in
each signal, and the data after that point were moved as a block and placed in front of the
remaining segment (Appendix 2.3).
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3. Results

3.1. Measurement of phase gradients with the Fourier method
Reliable convergence of nonlinear regression in fitting the cosine basis function to the EEG
segments (Appendix 2.1) was enabled by preprocessing: editing, temporal band pass filtering
(Appendix 1.1, Part 1) preceded by spatial low pass filtering (Appendix 1.2, Part 1), and
segmentation in short, medium and long window durations. Each overlapping window stepped at
2 ms yielded 2 phase surfaces expressed in 8x8 matrices. Detailed analysis was undertaken of the
phase surface incorporating the larger fraction of the total variance. Each matrix representing the
dominant phase surface in a window was fitted with a conic basis function (Appendix 2.2).
Convergence of nonlinear regression in 2-D was achieved in 96% of windows. Two examples
from visual cortex are shown in Fig. 2.01, A and B, with the fitted cones (C and D) and the
residuals (E and F). Randomly about half of the apices were upward (phase lead with a positive
gradient = “explosion”) and half were downward (phase lag with a negative gradient =
“implosion”). Stable cones were identified by 4 criteria (Fig. 2.02, A): the frequency given by
regression was within the temporal pass band; the apex of the cone was within a distance (B) less
than twice the mean radius of the array from its center; the location of the apex remained within
a distance (C) equal to the interelectrode interval (.79 mm) for at least two successive windows;
the sign of the apex (lead or lag) did not change. After initial compilation the solutions were
screened again with the following additional criteria for acceptance: % residuals of cosine fitting
<20%, % residuals of cone fitting <30% (frame D). These 2 criteria were adopted from prior
studies after re-evaluation on the basis of the effects of randomization of the EEG before curve
fitting (Appendix 2.3) supported them.

One further requirement was imposed that no absolute value of the phase gradient, |γk|, be less
than 0.04 rad/mm, which was less than the standard error of phase measurement (Freeman and
Viana Di Prisco, 1986).  This criterion removed about 2.5%of the gradients as outliers for which
the diameter, Dx, exceeded by equation (3) the length and breadth of the rabbit forebrain, ~40
mm, and most estimates of velocities, β, by equation (4) that exceeded 10 m/s. The cones
qualifying as stable were identified by their conformance to all of the criteria (Fig. 2.2, A). Each
criterion was imposed without the others, so there was no dependence on order.

The locations of the apices prior to imposing the criteria were scattered over the face of the array
and in the surround (Fig. A2.02), usually with clumping, and often with segregation of those
with lead (+) from those with lag (o). The scatter became sparse when the criteria were imposed
with less clumping near the array center but with persisting segregation. The qualifying cones
were treated as a time series for display in a sequence of bars indicating the number of sequential
steps that each stable cone persisted (Fig. A2.03, A). The window duration had to be added to
these steps to get the full duration of each phase cone, but that was omitted from the display
because of the overlap, often of 4 to 6 cones at the same time, unlike the olfactory bulb that had
only one cone at a time (Freeman and Baird, 1987). The PSDT was calculated (Fig. A2.3, C) of
the autocorrelation of the segments (shown in a 250 ms frame in A) representing the phase cones
over the 2000 bins (4 s period of analysis). The PSDT was also calculated (Fig. A2.3, B) of
autocorrelation function of the spatial ensemble average of the unfiltered EEG. The PSDT of the
cross-correlation of the qualifying cone series with the EEG usually showed a peak in the theta
range (D). The maximal power was most often in the delta range.
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Fig. 2.01. A, B. Two examples are shown of phase surfaces, φ1, from the same trial at
different times.  C. The fitted upright cone, Φ, has maximal phase lead at the apex
(‘explosion’). D. The fitted inverted cone has maximal lag at the apex (‘implosion’).  E,
F. Residuals from spatial fitting (Appendix 2.2).
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Fig. 2.02. A.  The bars show the times in a 500 ms segment when each criterion was met.
The overlap of these bars gave the qualifying cones.  The bars indicate the number of
steps to be added to the window shown by the 80 ms inset bar. B. As expected, the
numbers of apices increased with distance from the center of the array to the edge and
then fell rapidly outside the array. C. The distances of serial steps within stable cones
were far less than those between successive stable cones. D. The % residuals fluctuated
widely as the window was moved along the time series.

3.2. Calculation of the parameters of phase cones

The two measured quantities in each frame were the phase gradient with time (frequency f in
Fig. 2.03, A and C) and the phase gradient with distance (slope of the cone β in Fig. 2.04, A and
C). To normalize their distributions for statistical comparisons they were expressed as temporal
wavelength Wt (Fig. 2.03, B and D) and log spatial wavelength Wx (Fig. 2.04, B and D).
Summary values are given in Table 2.1. The distributions of frequencies, fk, conformed to the
spectral pattern within the boundaries imposed by the temporal band pass filter (Fig. 2.03, A and
C). Conversion to temporal wavelength, Wt, by equation (1) flattened the distribution (B and D).
The distributions of phase gradients were bimodal (Fig. 2.04, A and B). On average across all
sets about half had phase lead (‘explosion’) and half had phase lag (‘implosion’). Distributions
from the two sets from visual cortex were biased toward phase lead (A), and those from somatic
cortex more often had phase lag (C), those from auditory cortex were more symmetric. The
absolute spatial wavelengths, Wx, by equation (2) were strongly skewed to shorter values; the
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form of the histograms of log Wx approached the normal density function (B and D). Zero
correlation was consistently found between the two gradients in the temporal and spatial
dimensions (Fig. A2.05).

Fig. 2.03. A, C. The distribution of frequencies of the dominant cosine, fk, mimicked the 1/fα
form of the PSDt.  B, D. The temporal wavelengths, Wt, derived by equation (1) gave
relatively flat distributions, often tending toward Gaussian, enabling statistical
comparisons.  The visual cortex tended to give lower frequencies and longer wavelengths
than the somatic cortex, but the differences were not statistically significant.

One of two main physiological parameters desired from the wavelengths was the phase velocity
at which the domains of spatial coherence were established, so that the relation to axonal
conduction velocities and distances might be examined (Fig. A2.06, A and C). The histograms of
the phase velocities from equation (4) were bimodal and skewed in accordance with the
gradients. Low values were unbounded.  High values were bounded by the limits on resolution of
phase in nearly flat gradients. The other main parameter was the diameter of the domains as
measured by the distance at which the shared power fell to one half owing to the progressive
phase dispersion (B and D). Few diameters were found <5 mm, due in part to the spatial filter at
0.32 c/cm (3 mm wave length) but more to volume conduction that attenuated high spatial
frequencies of dendritic potentials recorded at the pial surface. The few diameters >40 mm were
rejected as exceeding brain size. Summary statistics are given in Table 2.2. The mean values
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differed between sets 2-3 fold, but the SD were half or more of the means. There were too few
sets from the 3 cortices (each contributed by 2 of the 6 rabbits) to judge the statistical
significance of intercortical differences. Phase velocity and diameter were strongly correlated
with each other but not with frequency. Durations were estimated from the number of digitizing
steps over which the qualifying cones were stable plus the window duration (Fig. 2.02, A). The
intervals were measured between starting points.  Both were strongly dependent on the window
length (see Section 3.4).

Fig. 2.04. A, C. The distributions of gradients, γk, were bimodal, usually asymmetric as shown,
but with equal numbers on average.  B, D. Log spatial wavelengths, Wx, calculated from the
absolute values of gradients with equation (2) gave nearly Gaussian distributions.
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Table 2.1.  Mean ± SD of phase parameters: FFT/Hilbert

subject    N/s  frequency    gradient       Wt      Wx
     Hz     rad/mm    ms/rad   mm/rad

Visual152 12.3 28.2±6.1 .126±.073 5.90±1.20 8.3±3.2
       HT 14.2 33.7±7.6 .188±.085 4.95±1.04 5.86±2.1
Visual9520 9.6 26.9±6.6 .172±.078 6.18±1.14 7.3±3.7
       HT 12.0 33.6±7.2 .219±.096 4.96±1.05 5.02±1.8
Auditory531  4.1 34.6±10.1 .063±.019 4.98±1.35 16.9±4.2
        HT 9.8 39.8±10.2 .095±.051 4.29±1.18 11.8±4.3
Auditory553 13.0 31.1±10.3 .123±.050 5.59±1.46 9.4±3.5
       HT 28.8 39.0±10.2 .182±.085 4.37±1.16 6.07±2.2
Somatic592  7.5 39.6±14.6 .109±.040 4.56±1.59 10.5±4.0
       HT 49.7 42.7±10.4 .151±.068 3.97±1.06 7.24±2.4
Somatic220 14.9 35.7±12.4 .073±.025 4.94±1.50 15.2±4.7
       HT 80.1 43.7±11.3 .112±.058 3.91±1.12 10.0±3.7

Mean FFT 10.2 32.7±4.8 .111±.040b 5.36±1.38 11.4±4.1
Mean HT 32.4 38.8±4.3 .158±.048b 4.41±0.46 7.7±2.7
Human FFTa 5.1 26.5±1.9 .066±.017 6.0±0.4 15.5±4.7
Human HT a 21.7 31.5±3.8 .092±.030 5.13±0.70 11.7±3.9

a From Freeman, Holmes and Vanhatalo. (in preparation), pass band 25-50 Hz,
window duration 200 ms, <30% cone residuals.

                           b p < .01

Table 2.1. The two basic parameters of neocortical EEG, temporal wavelength, Wt, and
spatial wavelength, Wx, were evaluated by the Fourier and Hilbert methods. Note the
steep gradient by the Hilbert method that was attributed (Table 3) to the use of a short
window.
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Table 2.2.  Means ± SD of phase cone parameters: FFT/Hilbert

Subject  diameter velocity duration interval frame rate
      mm    m/s    m/s    ms  Hz

Visual152 14.6±6.8 1.68±0.92 88.3±14.0 77.2±105 5.1
      Hilbert 10.2±5.0 1.36±.67 4.1±2.4 69.4±68.8 3.9
Visual9520 11.4±5.8 1.25±0.76 88.3±14.3 97.5±125 2.5
       Hilbert 8.8±4.1 1.17±.60 3.88±2.2 82.1±91.7 5.0
Auditory531 26.6±6.6 3.62±1.20 83.6±6.1 89.2±137 3.9
       Hilbert 20.4±8.3 3.24±1.58 3.35±2.0 97.2±117 5.3
Auditory553 14.7±5.5 1.86±1.01 86.2±9.1 78.5±109 2.9
       Hilbert 10.6±4.97 1.64±0.83 3.90±2.2 42.4±35.9 5.3
Somatic592 16.5±6.3 2.61±1.34 88.1±9.6 127±153 5.5
        Hilbert 12.5±5.4 2.14±1.04 3.77±2.0 49.3±49.2 5.1
Somatic220 23.9±7.4 3.28±1.25 87.1±11.0 66.4±92.1 5.4
       Hilbert 17.5±7.6 3.01±1.42 4.16±2.4 30.9±25.6 5.4

Mean FFT 18.0±6.4 2.38±1.48   86.9±9.6 32.3±30.6 4.2±1.3
Mean Hilbert 13.3±4.6 2.09±0.87 3.9±0.3 61.9±25.3 5.0±0.6
Human FFTa 25.2±6.1 2.67±0.66 205±8.6 685±1280 1.4±0.8
Human HTa 20.6±14.3 2.55±1.63 6.2±3.8 159±232 3.2±0.7

a From Freeman, Holmes, West and Vanhatalo. (submitted), pass band 25-50 Hz,
window duration 200 ms, <30% cone residuals.

Table 2.2. The parameters of phase structures in neocortical EEG were derived from spatial
and temporal wavelengths by equations (1) to (4). The differences on comparing the
results from the two methods were attributed to the differences in window duration
(Table 3).

3.3. Measurement of phase gradients with the Hilbert method

 ty[The spatial and temporal filter settings and basis functions (cosine, cone) were the same for
the Fourier and Hilbert methods, but the windows of measurement differed. The minimal
duration for the Fourier method (e.g., 32 ms at 31 Hz) was set by the wavelength of the
frequency at which the phase was defined. The minimal duration for the Hilbert method was set
by the average wavelength, which determined the interval between break points (Appendix 1.3 in
Part 1), minus the range of variation in phase within that wavelength, so that the entire
distribution was kept between two successive break points. The ranges of these two windows did
not overlap. Referring to Fig. A1.10, B in Part 1, the upper limit on the window length with
atan2 was 12 to 20 ms, depending on whether the low pass filter was set at 80 or 50 Hz, in order
to stay within the intervals between branch points in the sawtooth given by the mean, P(t),
without unwrapping.

Measurements of phase by the Fourier and Hilbert methods were expected to correspond within
the limitations of the two procedures (Le Van Quyen et al., 2001; Quiroga et al., 2002). In both
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methods a phase surface, φ1 or P, was derived centered at each digitizing step and fitted with a
cone, Φ, (Appendix 2.2) irrespective branch points and jumps or dips (“phase slip”, Pikovsky,
Rosenblum and Kurths, 2001). Identification of stable phase cones was done in accordance with
the same criteria as for phase surfaces by the Fourier method, φi,j(t), except that there was no %
residual from fitting a cosine, and the duration was solely by the number of steps without adding
the window duration (Table 2.3). Approximately the same numbers and distributions of cones
were found in the same time periods, though without precise correlation in time (Table 2.1, Fig.
A2.07, A vs. Fig. 2.03, A) or location (Fig. A2.09, C vs. Fig. A2.02, A). The PSDT (Fig. A2.07,
B and C) and cospectrum (D) were quite similar to those from the Fourier approach (Fig. A2.03),
as were the statistics (Tables 1 and 2) and histograms of frequencies (Fig. A2.08, A vs. Fig. 2.03,
A), phase gradients and wavelengths (Fig. A2.09 vs. Fig. 2.04). The striking difference (Table
2.2 and Fig. A2.09, B vs. Fig. 2.05) was that the durations of Hilbert-derived cones were far
shorter than those of Fourier-derived cones, owing to the restrictions on the two methods.
Significant secondary effects were steeper phase gradients and smaller spatial wavelengths by
the Hilbert method, leading to lower phase velocities (Fig. A2.09, C vs. Fig. 2.04, A) and half-
power diameters (Dx), as described in Section 3.4.

3.4. Dependence of the parameters of phase cones on scales of measurement

The results in Table 2.3 showed that the duration of phase cones and also the intervals between
starting times and number of cycles/cone depended on the duration of the window used for
measurement.  Estimates of the phase gradient were less strongly affected, but all of the
parameters derived from that measure were undeniably dependent on the measuring window.
The histograms of durations in log-log coordinates (Fig. 2.05, A, C, E) conformed to a power-
law distribution, as did the histograms of intervals (not shown), indicating that they were fractal
with self-similarity over a varying scale of measurement. Scatter plots of the relation of diameter
to duration gave normal distributions of diameter that were self-similar over the 3 Fourier
window durations and displayed an increase in diameter with increasing window duration (Fig.
2.05, B, D, F).

An incidental finding listed in Table 2.3 was the increase in number of cycles/cone with
increased window duration. Histograms of this parameter conformed to a power-law distribution
(Fig. 2.06, A) when derived with a short window, but with a long window there was a distinctive
loss of self-similarity with the emergence of a substantial excess of cones having a high number
of cycles (E). From the standpoint of the efficacy of cortical dynamics, this excess (also shown in
Fig, A1.08 in Part 1) may be the most significant finding of the entire study, because this
characteristic might serve to identify a subclass of events that had the persisting coherence of a
carrier frequency that would dominate cortical output. Scatter plots of cycles/cone versus
frequency (B, D, F) showed that the preponderance of these events were between 3 and 5
cycles/cone at frequencies between 20 and 40 Hz encompassing the high beta and low gamma
ranges.
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Fig. 2.05. A, B. 32 ms window.  C, D. 80 ms window.  E, F. 128 ms window.  The
distributions of cone durations were fractal with maximal numbers at minimal duration
and near-linear decrease in log number with increasing log duration.  The minimum,
mean, SD, and the number of qualifying cones increased with increasing window
duration. Cones with log diameter >1.3 (20 mm) were essentially global and included
most of the forebrain, as predicted from measurements of global synchrony (Freeman and
Rogers, 2003) and global AM patterns (Freeman and Burke, 2003) in gamma EEG.
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Fig. 2.06. A, C, E. Histograms show the number of cycles in each qualifying cone at the
frequency determined by the Fourier method. B, D, F. Scatter plots show the relation
between the number of cycles and the frequency. Values are inaccessible below the slope
determined by the window duration. The % denotes the proportion of phase cones that
have ≥ 3 cycles/cone. The excess number of events above the fractal distribution in frame
E indicates a predilection for long-lasting events (see also Fig. 1.08, C and Fig. A1.09, C
in Part 1).
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Table 2.3.  Effects of window duration on results from Hilbert and Fourier transforms
Window 2 ms 32 ms a 80 ms 128 ms
Primarily affected:
Duration, ms   4.1±2.4 37.3±8.1 88.3±14.0 138±16.6
Intervals, ms 69.4±68.8 44.7±51.1 77.2±105 172±287
Cycles/cone, number .14 1.6 2.5 4.0
Secondarily affected:
Gradient, γ, rad/mm 0.188±.085 .201±.094 .126±.073 .105±.051
Log Wx, mm/rad .77±.19 .74±.20 .92±.21 1.01±.19
Velocity, m/s   1.36±0.69 1.61±0.80 1.68±0.92 2.13±1.06
Diameter, mm 10.3±5.0 9.7±4.7 14.6±6.8 18.0±7.4
Distance b, mm   2.51±1.20 3.04±1.68 3.19±1.65 3.8±2.5
Unaffected:
Frequency, Hz 33.7±7.5 42.2±10.9 a 28.2±6.1 28.6±5.5
Wt, ms/rad 5.0±1.0 3.99±.87 a 5.90±1.20 5.8±1.2
Frame rate, Hz 5.7±.2 5.6±.3 5.7±2 5.0±.3

• a Temporal pass band 30-80 Hz, otherwise 20-80 Hz
• b From center of array, half-width 2.8 mm

Table 2.3. Parameter values show the sensitivities of estimates of phase structures to the
duration of the window used for measurement.

4. Discussion

4.1. EEG phase data and the concept of self-organized criticality

Phase is easily understood as a difference between the times of zero crossings of two EEG
components at the same frequency. The concept is readily generalized to multiple EEG signals
by computing the spatial ensemble average and measuring the time difference between each
signal and the average as a common reference. It is not difficult to treat aperiodic waveforms as
sums of component frequencies, giving a phase distribution for each component and each pair of
locations. This empirical approach sufficed for analysis of paleocortical EEG from the olfactory
bulb that sustains only one phase cone with each inhalation. This empirical approach suffices for
the OB EEG having only one phase cone at a time, but among neocortical EEG signals every
phase distribution has multiple cones with different gradients at different frequencies, and they
overlap in unpredictable ways. This finding exhausts data-driven analysis. A good hypothesis is
needed to organize the data.

One such is provided by the theory of self-organized criticality (“SOC”, Bak, Tang and
Wiesenfeld, 1987, Bak, 1996, Jensen, 1998; Watters, 2000) backed by modeling cortical
dynamics with nonlinear ordinary differential equations (Freeman, 1975, 2000 and Appendix
2.4). The classic SOC object of study was a sand pile as at the bottom of an hourglass. The
steady drip of sand creates a conic pile that increases slope to a critical angle or repose that is
held thereafter by repeated avalanches. Likewise a pan of water brought to a boil holds a
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constant temperature by forming bubbles of steam An open system of interacting elements,
whether grains of sand, water molecules or neurons, evolves to a stable steady state that is far
from equilibrium. That global state is maintained by repeated adjustments: avalanches of sand,
bubbles of steam, or phase transitions among groups of neurons. The records of the movements
of sand appear chaotic and give temporal and spatial spectra with 1/f α forms. Likewise the EEG
gives records that appear chaotic, with temporal and spatial spectra that are 1/f α, where the
exponent α has been estimated 1 < α < 3 (Pereda et al., 1998; Freeman et al., 2003). In both
systems the appearance of “noise” is illusory. When viewed from the proper perspective,
informative structures in the “noise” become clear. The background EEG especially at the scalp
reveals a robust, structured dynamics, which manifest the mechanics of self-organization that
regulates the multiple brain systems adapting the brain and body to an ever-changing
environment.

A way to understand the phase patterns is to see cones as resembling avalanches. Their times and
locations of onset are predictable not locally but only in the average. They overlap so that any
grain of sand or neuron may participate in multiple cones or avalanches simultaneously. The
sizes and durations of cones and avalanches give histograms that are fractal. The smallest and
briefest are the most numerous, the distributions in time, space and frequency follow power laws,
the patterns are self-similar across multiple scales  (Ingber, 1995; Wright and Liley, 1996;
Linkenkaer-Hansen, 2001; Hwa and Ferree, 2002), and estimates of the means and SD depend
on the size of the measuring tool. These functional similarities indicate that neocortical dynamics
is scale-free (Wang and Chen, 2003): the largest events are in the tail of a continuous distribution
and share the same mechanism of onset with the smallest and the same brief time of onset
despite their large size (Cover Illustration). The spatiotemporal patterns of coordinated analytic
phase differences (CAPD) are self-similar over wide scales of time and space, as shown by
comparing the rabbit image in Fig. A1.04 in Part 1 with the raster from human scalp data in Fig.
A1.12 and those in Freeman, Burke and Holmes (2003).

Though the spatial window was not varied in the present study, data on hand indicate that
estimates of the mean diameters of phase cones vary in proportion to the aperture width: 10-12
mm for the olfactory bulb with a 3.5x3.5 mm array (Freeman and Baird, 1987), 18 mm with a
5.6x5.6 mm array in the present study, 25 mm in human temporal cortex with a 10x10 mm
subdural array (Freeman et al., in preparation), and several cm on the scalp with an 189 mm
linear array with 3 mm spacing (Freeman, Burke and Holmes, 2003). The available evidence
indicates that neocortex in mammalian brains of all sizes may conform to a scale-free network
(Wang and Chen, 2003) having no characteristic event size; large-scale phase structures (CAPD)
seen with scalp EEG arrays and phase cones seen with small intracranial arrays appear to be
events of like kind.

4.2. A neural mechanism for self-organized criticality in neocortex

The invariant feature of boiling water is the temperature, and that of the sand pile is the critical
angle of repose of the cone. A comparable feature in brains may be the mean level of background
activity of neural populations. This feature has been investigated by modeling the dynamics of
the olfactory system (Freeman, 1975; Kozma and Freeman, 2001, Appendix 2.4) as mixed
populations of excitatory and inhibitory neurons having 3 types of local feedback (mutual
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excitation, mutual inhibition, and negative feedback) and long-range excitatory interactions with
divergence and distributed delays. The local negative feedback interaction between excitatory
and inhibitory neurons supports bulbar oscillations in the gamma range, but only under barrages
of input relayed from odorant receptors through the olfactory bulb. When the nasal passages are
blocked or the olfactory nerve to the bulb is cut, the gamma oscillations disappear (Becker and
Freeman, 1968) in both the bulb and prepyriform cortex, leaving only unstructured background
activity: random pulse trains having constant mean rates with SD equal to the means, forming a
sheet of steady state activity resembling white noise with dendritic potentials resembling colored
noise with 1/f spectra. Owing to the lack of structure the basal state is “symmetric”. The
hypothesis is proposed that the mean rate of background firing of axons and the mean
transcortical d.c. dendritic potential in this state are analogous to the steepness of the critical
angle of the sand pile without input, because thresholds and refractory periods provide local
homeostatic regulation of neural firing everywhere in normal cortex (Freeman, 1975, 2000;
Appendix 2.4). The featureless basal state holds over the whole of the interconnected
populations. By this hypothesis input serving as a “control parameter” induces a phase transition
that breaks the symmetry (Haken, 1983), leading to the emergence of structure from disorder by
virtue of an “order parameter” (Section 4.2 in Part 1). The mechanism of destabilization is
provided by the nonlinear gain function that governs the conversion of dendritic wave density to
axonal pulse density at the trigger zones in populations of neurons (Freeman, 2000). The
inference that the basal state is scale-free implies that the symmetry-breaking can be either by
implosion or explosion, meaning lead or lag at the apex of the cone, as observed in the olfactory
bulb (Freeman and Baird, 1987) and neocortex (Freeman and Barrie, 2000), and as proposed by
Kozma (2003) in terms of the ratio of short to long axonal connections in small-world networks
(Watts and Strogatz, 1998). Further mathematical modeling will be needed to determine whether
the scale-free dynamics can explain the phase transitions by implosion.

4.3. Conclusion

Under the proposed hypothesis neocortical self-organized dynamics is qualitatively the same in
rats, rabbits, cats and humans. The greater size of the human brain’s neocortical neuropil permits
the embedding of a larger number of microscopic networks that are specialized for a variety of
functions. The repetitive, near-instantaneous reorganization and integration over vast areas of
cortex during human cognition are predicted to follow rules similar to those found in animals
(Freeman, Gaál and Jornten, 2003; Freeman and Burke, 2003; Freeman and Rogers, 2003), when
the subjects are engaged in simpler cognitive tasks.  Scalp EEG may prove to be the most
valuable means of access to cognitive dynamics in humans, because smoothing by the
intervening tissues gives access to the largest patterns. Perhaps by sheer size those patterns may
be most likely to constitute Gestalts, which control the brain stem populations that implement
behaviors. The problem for understanding the neurodynamics of perception now becomes that of
explaining how multiple mesoscopic wave packets that enable “feature binding” of sensory
information in mnemonic context (Singer and Gray, 1995) are subsumed into macroscopic
Gestalts by global phase transitions.
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Appendix 2.1. Temporal basis functions for measuring frequency and phase

The 64 EEG signals were filtered in each trial first spatially (Appendix 1.2) and then temporally
(Appendix 1.1) and segmented with an overlapping window 32, 40 or 64 bins in length, stepped
at 2 ms intervals for a total of 2000 steps (4 s).  The spatial ensemble average was calculated of
the 64 EEG in each window (Fig. A2.01). Its FFT gave the temporal PSDT from which the
frequency was found at peak power in the window. The ensemble average was fitted using
nonlinear regression with the cosine having that frequency as an initial guess. After regression
the fitted cosine at the new frequency, f1, was subtracted from the EEG.  The FFT was taken of
the difference to find a second frequency, f2, at peak power by regression.  These 2 frequencies
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were fixed, and the 2 phase values served as initial guesses for nonlinear regression to fit the sum
of the two cosines from equation (Fig. A2.01) to each of the 64 EEG segments by minimizing
the sum of least square residuals while allowing the phase, φj(t), and amplitude, Vj(t) to vary:

Vj(T) =  Σ Vi,j (t) cos [ 2π fi T + φI,j (t)] + R(T),  i = 1,2;  T = 1, w;  j = 1,64 . (A2.1)

where T denoted time within a window of length w starting at time t, Vj(T) was the fitted curve,
and R(T) denoted the residuals.  The larger component served to estimate the frequency, f1, of
the carrier oscillation in the window, and the lesser component served to filter non-white noise
(clutter) from the signal (Freeman, 1975) and improve the signal-to-noise ratio. Equation (A2.1)
with fixed frequencies gave the desired 8x8 phase surface at each time step, φ1,j(t), j = 1,64, t = 1,
for the dominant component at the fixed frequency, using the phase of the ensemble average as
the reference. The criterion of goodness of fit was minimization of the least squares residuals
expressed as % of the total variance.  The % residuals fluctuated erratically with time (Fig. 2.02,
D in text).

Fig. A2.01.  Examples are shown in 80 ms windows of fitting the sum [dark curve] of 2
cosines [light curves] to the digitized, filtered EEG [solid dots] with the residuals [open
dots] from a single channel.  The ratio off the sum of squares of the residuals to the sum
of squares of the data times 100 gave the % residuals.  The threshold for an acceptable fit
was 20%.



Background EEG analytic phase 27 Walter J Freeman

Appendix 2.2. Spatial basis function for measuring phase gradients
The algorithm for preparatory spatial filtering was given in Appendix 1.2 (Part 1). An important
methodological difference here was that in previous work the spatial filter was applied to the 8x8
phase matrix, whereas in the present study the spatial filter was applied to the EEGs before
determination of the frequencies and phases.  A comparison was undertaken to evaluate the
degree to which the spatial filter applied to the phase surfaces (Table A2.1, A, Methods 1-3) had
biased earlier estimates of the gradients of the fitted cones by making them appear steeper than
was the case, and altered the locations of their apices by making them appear closer to the center
of the array than was the case (Freeman and Barrie, 2000). The standard adopted for reference
was Method 4 (B in Table A2.1) using the FFT. Method 2 using nonlinear wavelets (Freeman,
2003b) gave parameters that most closely approximated those of Method 4, followed by Method
6 using the spatial SDj of φ 1,j(t) and Pj(t) for the criteria to identify qualifying phase cones
(Appendix A1.3 and Fig. A1.10). The Hilbert Method 5 also overestimated the phase gradients,
γk, owing to the short duration of the window (Table 2.3) that distorted estimates of phase
gradient, velocity, diameter and distance.

The spatial pattern of phase was measured by fitting a cone, Φ(t), in 2-D to the 8x8 phase
surface, either φ1,j(t) from the Fourier method or Pj(t) from the atan2 function (equation (A1.5) in
Appendix 1.3), at each window step, Δt (2 ms), by using nonlinear regression to fit Φ(t) in
equation (A2.2) to the surface with termination of iteration by minimization of least squares
residuals:

Φ(t) = Φo(t) + γ(t) ([xj – xo]2 + [yj – yo]2 ) .5 ,  j = 1, 64, (A2.2)

where Φo(t) was the offset of the vertical offset apex from the plane of fit, xj , yj gave the distance
of the apex in mm from the center of the electrode array at xo, yo, and γ(t) was the gradient of the
cone in rad/mm in the t-th step of the window.  Two passes were made with each phase surface,
one with the location of the phase maximum as the starting guess, the other with the phase
minimum for initiation.  The result was selected that had the least number of iterations to
completion.  On average convergence to solutions was achieved in >90-95% of windows with
cones. Attempts to fit two cones simultaneously to the same phase surface did not converge.  The
% residuals was given by:

    j j

% residual = 1/j Σ [ Φj(t) – φ1,j(t)]2  / Σ [φ1,j(t)]2, (A2.3)

or P j(t) in place of φ1,j(t).  The value for γ (t) was averaged:
         n

γk = Σ γ (t n), (A2.4)

where n was the number of time steps across which a stable phase cone had been defined.  The
frequencies, fi, were similarly averaged to get fk for the k-th cone,  Φk. Comparing the residuals
from the filtered (Fig. A2.04, A) and unfiltered (Fig. A2.04, B) EEG data showed that filtering
substantially reduced the % residuals without significantly altering their temporal structure.
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Fig. A2.02. The locations of apices of qualifying cones are shown as + for phase lead and o for
phase lag from three cortices.  The inset rectangle shows the 5.6x5.6 mm array. The
segregation of the apices by sign in data from the somatic cortices is unexplained.

Fig. A2.03.  A. The example shows the time series of qualifying cones (less the 80 ms
window length) in 2000 steps (4 s). Each bar shows only the number of steps across
which it was tracked. The actual duration was that number plus the 40-step (80 ms)
window (see inset bar). That bar was omitted because the overlap of cones would have
obscured the display. B. The PSDt of the EEG was taken from the autocorrelation over 5
trials totaling 20 s.  C. The PSDt was taken of the autocorrelation of the phase cones (less
the 80 ms window) treated as a step function (black = 1, white = 0).  D. The cospectrum
from the cross-correlation of EEGs and phase cones revealed a peak in the theta range.
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Fig. A2.04. A. The % residuals are shown for an 80 ms moving window stepped at 2 ms in a
representative time segment lasting 2000 bins (4 s) with no spatial filter.  B. The % residuals
were re-calculated after spatial filtering at the low pass setting shown in Fig. A1.02, B (Part
1).  The values were reduced with little effect on the temporal structure of the sequence of %
residuals.

Fig. A2.05. The log values of temporal and spatial wavelength, Wt and Wx, were uncorrelated,
irrespective of the sign of the gradient (+ = lead, o = lag).
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Fig. A2.06.  A, C. Phase velocity, β, was calculated from the gradient and frequency with
equation (4) giving bimodal distributions.

B, D. Cone diameter was estimated from absolute value of the gradient by equation (3). The
distributions were skewed in relation to the asymmetry of β. Most likely the distributions are
fractal like those for duration but truncated at the lower end by a combination of spatial
filtering and volume conduction.
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Fig. A2.07. A. The same criteria used to qualify phase cones derived from FFT (Fig. A2.03)
were applied to the analytic phase surfaces.

B. The PSDt of the EEG was calculated from the autocorrelation of the spatial ensemble average
of the unfiltered EEG across five 4 s trials.

C. The PSDt of the phase cones was calculated from the autocorrelation of the qualifying cones
exemplified in frame A.

D.  The cospectrum was calculated from the cross-correlation of the EEG and qualifying phase
cones as in Fig. A2.03, D.
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Fig. A2.08. A. Frequency was calculated from the average of the analytic phase differences in
the visual cortical EEG in the period of each stable phase cone after unwrapping (see Fig.
2.03, A and Table 1).

B. Temporal wavelength, Wt, was calculated as in Fig. 2.03, B.
C. Phase gradients from cones, Φ, fitted to analytic phase surfaces, P, without unwrapping

(Appendix 1.3) were steeper than φ1 from the Fourier method (Fig. 2.04, A and Table 2.2).
D. Spatial wavelengths, Wx, appeared to be shorter (Fig. 2.04, B) owing to the shorter window of

measurement.
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Fig. A2.09.  A. Locations of apices by the Hilbert method closely resembled those from the
Fourier method in location and sign (Fig. 3, A).

B. Estimates of duration were severely limited by the branch points (Appendix 1.3) in deriving Φ
(Table 2.2).

C. Analytic phase velocities were slower (see Fig. 2.06, A and Table 3).
D. Analytic phase cone diameter was smaller than the phase cone diameter from the Fourier

method (Fig A2.06, B).

Appendix 2.3. Controls by randomization of the EEG data.

The cosine and the cone were simple basis functions that could fit any structure in noise. The
spatial and temporal filters needed to measure phase patterns (Fig. XI, A on p. 267 in Freeman,
2000) imposed artificial structure in the EEG data by enhancing oscillation at the center
frequency of the temporal pass band, and by enhancing a conic pattern with its apex of either
sign at the center of the array (Table A2.1, A). The 1/fα distributions of frequencies, fi, in log-log
coordinates and the scatter of the apices often outside the array (Fig. A2.02 and Fig. A2.09)
showed that the filters did not significantly bias the parameter values of the stable cones with low
residuals. The question arose, whether phase cones existed in fractal distributions, such that
many of the cones with residuals >30% were intrinsic to the data. An answer was sought by
randomizing the EEG data before filtering and curve fitting. The phase in the PSDT was



Background EEG analytic phase 34 Walter J Freeman

randomized to give surrogate data with reduced temporal structure. The channel order was
randomized to reduce spatial structure. Shuffling (Freeman and Rogers, 2002) randomized in
both the temporal and spatial domains:

 vk(t) = [v1,j(r, r+1,..., 64), v1,j(1, 2,..., r-1)], (A2.5)

where φ1,j (t) was the original phase time series of 64 points for one channel, and r was a point
chosen from a uniformly distributed random variable with values from 1 to 64.

Comparing histograms of the % residuals (Fig. A2.10) showed the effects of randomization on
the results first on fitting cosines (A) and then on fitting cones (B). The test data were from 5
trials in one session and animal, each with 2000 digitizing steps (4 s) totaling 20 sec of
recording. The asterix in each frame shows the threshold previously adopted (Freeman and
Barrie, 2000) for qualifying segments (20% in the time domain and 30% in the spatial domain).
The surrogate data showed reduction in the total number of convergences of regression in curve
fitting (C) and modest increases in residuals when convergence was achieved in fitting cones
(D). Shuffling had little effect on fitting cosines (E), but it completely blocked convergence on
fitting cones. Channel randomization had no effect on fitting cosines, but it substantially
increased the residuals on fitting cones (F).

On the basis of finding time-invariant, long-range correlations, Watters (2000) concluded that the
distributions of key properties of the EEG are fractal, which is in accord with a state of self-
organized criticality. The present results have shown that the phase surface in every time period
and area of cortex contained a fractal distribution of co-existing phase cones that formed by
mesoscopic phase transitions. Most of these phase cones were rejected by the criteria of the %
residuals, which were designed to exclude spurious results from fitting noise. However, the mean
estimates of the temporal and spatial wavelengths, Wt and Wx, of the full distributions did not
differ from those of the restricted subset (Table A2.2), nor did the derived estimates of phase
velocity and half-power diameter (Fig. A2.11, A).

The effect of phase randomization in the surrogate data was to increase the phase gradients and
decrease both the velocities and the diameters (Fig. A2.11, B), because the randomization in the
surrogate EEGs introduced high spatial frequency noise into the phase surfaces. The effect of
channel randomization was the reverse: a substantial increase in phase velocities and diameters
(Fig. A2.11, C). The mean diameter approached the length of the rabbit brain (4 cm). These
changes were consistent with flattening of the phase matrices by channel randomization, so that
the phase gradients were very low and thereby gave inflated estimates of spatial wavelength,
phase velocity and cone diameter. The mean distance of apices from the center of the array was
decreased slightly with surrogate data and channel randomization. This could not be tested with
shuffling, which  effectively destroyed the conic phase structure (see also Fig. 16 in Freeman,
Burke and Holmes, 2003). The conclusion was that a majority of phase cones in the EEG data
with % residuals >30% belonged to the self-organized fractal distribution, and that a minority
resulted from fitting the cone to noise.
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Fig. A2.10. The distributions are shown of the % residuals from fitting cosines (A) and cones
(B) to the 80 ms windows in 4 s of EEGs from 5 trials totaling 20 s and selecting those
cones that qualified under the first 4 criteria shown in Fig. 2.02, A.

C, D. The procedure was repeated on surrogate EEG data.
E. Shuffling had little effect on cosine residuals, but it abolished cone fits.
F. Channel randomization had no effect on cone fits.  Very few cones qualified after

shuffling.  The asterixes indicate the criteria adopted for qualifying results from
regression (Fig. 2.02, A).
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Fig. A2.11.  A. The distributions are shown of the values for phase velocity (left) and diameter
(right) of qualifying cones before (light bars) and after (dark bars) exclusion by the %
residual criteria.  Exclusion reduced the means and SD.

B. The surrogate data showed decrease in values for phase velocity and diameters by an increase
in the high spatial frequencies of the phase surfaces.

C. Channel randomization increased estimates of phase velocity and diameter by flattening
the phase surfaces.



Background EEG analytic phase 37 Walter J Freeman

Appendix 2.4. Mathematical basis to model neocortex at self-organized criticality (SOC)

Brains maintain immense numbers of largely autonomous neurons whose main function is
keeping themselves alive and healthy for the life span of their host. They are unique among cells
in having long filaments by which they interact with others at near and far distances. Modeling
of the dynamics of mass actions among populations of neurons (Freeman, 1975, 2004) has been
done with a hierarchy of K-sets (for Katchalsky).

A KO set represents a non-interacting collection of neurons that can be described as an average
neuron with a state-dependent, linear, 2nd order ordinary differential equation (ODE) for dendritic
integration and a sigmoid static nonlinearity for axon transmission.  The KO set is governed by a
point attractor with zero output and stays at equilibrium except when perturbed.

A KIe set represents a collection of excitatory neurons that has sufficient functional connection
density to maintain a state of background activity by mutual excitation (positive feedback), by
which it normally operates far from thermodynamic equilibrium. Its dynamics are described with
2 two coupled KO sets and piece-wise linearization of the ordinary differential equations at the
operating point. The equations have a Lyapunov exponent with zero real and imaginary parts
representing a point attractor with non-zero output. The stability of the KIe set under impulse
perturbation is demonstrated using the periglomerular cells in the olfactory bulb (summarized in
Fig. 2, p. 198 in Freeman, 2000). Its critical contribution is the sustained level of excitatory
output that it sends into the bulb, from which it is relayed to the prepyriform and other parts of
the forebrain. The set point (level of sustained excitatory output) appears to be governed by
histaminergic nuclei in the hypothalamus in conjunction with arousal. Neural interaction by
stable mutual excitation is a key to understanding SOC in brains.

A KII set represents a collection of excitatory and inhibitory cells described by KIe and KIi sets,
having three types of feedback: positive excitatory, positive inhibitory, and negative. Under
sustained excitation from a KIe set but without the equivalent of sensory input, the KII set is
governed by the zero Lyapunov exponent of the KIe set (summarized in Fig. 5 on p. 110 in
Freeman, 2000). With simulated sensory input comprising a control parameter the KII set
undergoes a phase transition to oscillation at a narrow band frequency in the gamma range (Gray
and Skinner, 1988; Ahrens and Freeman, 2001). This state is governed by a limit cycle attractor
with a Lyapunov exponent with zero real and non-zero imaginary parts (summarized in Fig. 7.17
on p. 442 in Freeman, 1975; Principe et al., 2001). KII has both point and limit cycle attractors.

A KIII set is formed by the interaction of 3 KII sets through long axonal pathways with
distributed delays. It simulates the dynamics of the bulb, prepyriform and anterior nucleus that
together generate aperiodic, chaotic oscillations with 1/f α spectra (Kozma and Freeman, 2001).
The KIII set is governed by a chaotic attractor having at least one positive Lyapunov exponent
(Freeman, 1988). It is stabilized by the KIe mechanism but gives no evidence of SOC. A KIV set
is formed by the interaction of 3 KIII sets. It is used to model the interactions of the primordial
vertebrate forebrain in the genesis of simple forms of intentional behavior (Kozma, Freeman and
Erdí, 2003). It, too, is stable but does not display SOC.
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A KV set is proposed to model the unique properties of neocortex, which maintains multiple
unstable periodic orbits that appear as overlapping phase cones. It is postulated that the robust
background activity of the neocortex manifests the continuous engagement of the organism with
its environment. Sensory-driven thalamic input to cortex is described as a control parameter
(Steriade, 1997; Miller and Schreiner, 2000) that induces the oscillations observed in the EEG
and in the classic spectral peaks. In the absence of such input the endogenous truly
“spontaneous” activity would be that maintained at self-organized criticality by mutual excitation
that is governed by a global point attractor. This much has been shown experimentally (Freeman,
2000; Kozma and Freeman, 2001; Principe et al., 2001). Proof using nonlinear differential
equations and possibly new forms of mathematics will be required to integrate the K-sets into an
organic whole.

Table A2.1.  Comparison of six methods for measuring phase gradients
This example is from one subject, the other five subjects gave similar findings.

Method  frequency    gradient diameter velocity distance
Units Hz     ms/rad    mm   m/s    mm
A. Spatial filter applied to phase surface after temporal filtering and cosine fitting
1. aPhase PSDt 32.2±7.1 .22±.09  7.1±2.9 1.05±0.06 2.2±1.6
2. bWavelets 37.1±8.3 .12±.07 14.7±3.4 1.90±1.13 4.5±2.2
3. cCosines 22.3±6.9 .21±.08  8.6±3.3 0.77±0.40 1.6±0.6
B. Spatial filter applied to EEG before temporal filtering and cosine fitting
4. cFFT 28.2±6.1 .13±.07 14.6±6.8 1.68±0.92 3.2±1.6
5. dHilbert 33.7±7.6 .19±.08 10.2±5.0 1.36±0.72 2.7±2.0
6. eAP, APdiff 32.7±7.2 .16±.06 11.3±5.0 1.48±1.24 2.6±1.6

aFrom the phase spectrum given by the FFT (Freeman and Barrie, 2000)
bFrom nonlinear regression of AM-FM wavelet decomposition (Freeman, 2003b)
cPresent study, test case for this purpose
dSee Tables 1 and 2 for detailed comparisons of the results of Methods 4 and 5.
eSee Appendix 1.3 in Part 1 for the definition of the analytic phase and sequential differences.
Qualification for phase cones was by spatial SDx of Pj(t) < .5 rad and spatial SDx of Δpj(t) < 0.1
rad (see Symbol Table 1 in Part 1).

Table A2.2. Effect of varying threshold of % cone residuals for qualifying cones.
Estimates of the temporal wavelength, Wt, and spatial wavelength, Wx, were not
significantly affected by changing the threshold criteria of % threshold despite dramatic
changes in the numbers and intervals of phase cones. Window duration was 80 ms.

Threshold counts intervals durations Wt log Wx
% N/s ms ms ms/rad mm/rad
20 5.2 184±210 87.3±13.1 5.01±.97 .77±.19
30 12.3 69.4±68.6 88.3±14.0 4.95±1.01 .77±.19
40 25.6 38.9±36.2 88.6±14.4 4.95±1.07 .79±.20
50 36.2 27.5±23.6 85.2±14.8 4.97±1.12 .80±.22
100 57.8 17.2±12.0 82.1±15.2 4.90±1.15 .78±.25




