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Gravidity influences distinct
transcriptional profiles of
maternal and fetal placental
macrophages at term
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M. Yvonne Kim1,2, Megan R. Ansbro3, Jason Akram1,
Dennis J. Montoya4,5, Moses R. Kamya6,7, Abel Kakuru6,
Grant Dorsey8, Philip J. Rosenthal8, Genhong Cheng9,
Margaret E. Feeney10, Susan J. Fisher1,2 and Stephanie L. Gaw1,2*

1Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive
Sciences, University of California (UCSF), San Francisco, San Francisco, CA, United States, 2Center for
Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences,
University of California (UCSF), San Francisco, San Francisco, CA, United States, 3Obstetrics &
Gynecology Institute, Cleveland Clinic Foundation, Cleveland, OH, United States, 4Department of
Molecular, Cellular & Developmental Biology, David Geffen School of Medicine, UCLA, Los Angeles,
CA, United States, 5Department of Biochemistry and Molecular Medicine, University of California
Davis Health, Sacramento, CA, United States, 6Infectious Diseases Research Collaboration,
Kampala, Uganda, 7Department of Medicine, Makerere University, Kampala, Uganda, 8Division of HIV,
Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San
Francisco, San Francisco, CA, United States, 9Department of Molecular Immunology and Genetics,
University of California, Los Angeles, Los Angeles, CA, United States, 10Division of Experimental
Medicine, Department of Medicine and Pediatrics, University of California, San Francisco, San
Francisco, CA, United States
Introduction: Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells

(HBCs) are myeloid-derived immune cells at the maternal-fetal interface.

Maternal reproductive history is associated with differential risk of pregnancy

complications. The molecular phenotypes and roles of these distinct monocyte/

macrophage populations and the influence of gravidity on these phenotypes has

not been systematically investigated.

Methods: Here, we used RNA sequencing to study the transcriptional profiles of

MIMs and HBCs in normal term pregnancies.

Results:Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes

involved in differentiation and cell organization pathways were more highly

expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes

involved in inflammatory responses and cell surface receptor signaling. Maternal

gravidity influenced monocyte programming, as expression of pro-inflammatory

molecules was significantly higher in MIMs from multigravidae compared to

primigravidae. In HBCs, multigravidae displayed enrichment of gene pathways

involved in cell-cell signaling and differentiation.

Discussion:Our results demonstrated that MIMs and HBCs have highly divergent

transcriptional signatures, reflecting their distinct origins, locations, functions,

and roles in inflammatory responses. Furthermore, maternal gravidity influences
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the gene signatures of MIMs and HBCs, potentially modulating the interplay

between tolerance and trained immunity. The phenomenon of reproductive

immune memory may play a novel role in the differential susceptibility of

primigravidae to pregnancy complications.
KEYWORDS

placenta, myeloid cells, monocyte, Hofbauer cell, pregnancy, gravidity, RNA-
Seq, transcriptomics
1 Introduction

The placenta is the site of maternal-fetal interactions that

mediate nutrient, gas and waste exchange between mother and

fetus. It also maintains immune tolerance critical for healthy

pregnancy. A chimeric organ comprised of tree-like chorionic

villous tissue of embryonic origin, the placenta derives its blood

supply through maternal spiral arteries and maternal-fetal exchange

occurs in the intervillous spaces and chorionic villi (1, 2).

From mid- to late gestation, the most abundant leukocyte in the

placenta is the monocyte/macrophage (3, 4). Placental macrophages

are critical for maintaining the tolerogenic environment that is

required for a healthy pregnancy and defending against pathogens

(5–7). Macrophages at the maternal-fetal interface include three

distinct cell types differing in location and origin: 1) maternal

decidual macrophages, 2) fetal Hofbauer cells (HBCs), and 3)

maternal intervillous monocytes (MIMs) (8). Maternal decidual

macrophages, located at the placental-uterine interface, are the most

well characterized and have been shown to participate in angiogenesis,

spiral artery remodeling, trophoblast invasion, apoptotic cell

phagocytosis, and immunomodulation during normal pregnancies

(9–11). Their overactivation can result in pathological conditions such

as preeclampsia, fetal growth restriction, and stillbirth (12).

Despite their identification over a century ago (13–15), little is

known regarding the phenotype and function of fetal Hofbauer cells

(HBCs). They emerge from the yolk sac as early as the 18th day of

gestation (16, 17). Later in pregnancy, they differentiate from fetal

liver monocytes. HBCs remain at high levels throughout the

pregnancy (18) as tissue-resident macrophages within the

chorionic villous cores (19). Data suggest that HBCs participate

in the immune response to exogenous pathogens (20–22),

inflammatory responses to maternal disease (e.g. obesity,

preeclampsia, and diabetes) (23–26), regulation of nutrient

transport, placental vasculogenesis, and angiogenesis (27, 28).

In contrast to fetal-derived HBCs, MIMs are maternal bone

marrow-derived monocytes in the peripheral circulation that enter

and exit the intervillous space through maternal spiral arteries and

veins, respectively. MIMs have been shown to exhibit increased

influx to the intervillous space during spontaneous labor (29). They

also play a significant role in systemic and placental inflammatory

reactions (30–32).
02
MIMs and HBCs express the classic mononuclear phagocyte

cell surface receptors, CD68 and CD14 (33). There is no consensus

on specific markers to distinguish MIMs and HBCs, hence they

have been discriminated from one another (and from decidual

macrophages) chiefly by their anatomic localization at the

maternal-fetal interface (34–36). Further investigation into the

phenotype and role of these distinct placental mononuclear cells

has been hindered by the difficulty of isolating pure populations of

MIMs and HBCs, as they are located in close proximity.

Proper control of immune activation states at the maternal-fetal

interface is required for successful pregnancies (37). M1

macrophages form the first-line in host defense against a variety

of bacteria, protozoa, and viruses, as well as in anti-tumor immunity

(38). In contrast, the M2 subset is characterized by diverse

immunosuppressive activity, and includes wound-healing

macrophages, IL-10 secreting regulatory macrophages, and

tumor-associated macrophages (39). To date, there have been

limited studies investigating the activation states of placental

monocyte/macrophages. Although studies are sparse, HBCs have

been shown to play an anti-inflammatory role in the placenta and

may contribute to maternal-fetal tolerance. These studies have

found that HBCs function predominately in the M2 activation

state during normal pregnancy (18, 28, 40–44). Dysregulation of

M1/M2 phenotypes in the placenta has been associated with

pregnancy complications, such as atopic disease, gestational

diabetes, preeclampsia, preterm birth, and fetal growth restriction

as well as susceptibility to bacterial, protozoal and viral (CMV, HIV,

Zika) infections (6, 15, 26, 45–48). For example, differential

activation of M1/M2 ratios in HBCs has been found to be

associated with birth weight in placental malaria (49).

Limited investigations have characterized monocyte/macrophage

cells of the human placenta. In a targeted investigation, HBCs

underwent dynamic changes in RNA expression of M1/M2

markers across gestation (50). Recent studies utilizing

transcriptomic profiling have used a non-biased approach to

characterize monocyte/macrophage populations using targeted

(cell-selection) or non-targeted (bulk tissue) approaches (51).

Targeted isolation of lung alveolar macrophages in different disease

states revealed great diversity in macrophage activation states (52,

53). Other studies leveraging single cell RNA sequencing (scRNA-

seq) methods on bulk tissue samples have also shown distinct
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populations of monocyte/macrophage cell types at the maternal-fetal

interface, including cells in the placental villi, chorionic membranes,

and the basal plate (54–57). These studies demonstrate the breadth of

macrophage diversity across gestational ages and clinical states and

suggest that mononuclear phagocytes may play a role in pregnancy-

related health and complications.

Despite their close proximity at the maternal-fetal interface, it is

important to distinguish MIMs and HBCs and not investigate them

together as a single group of cells since MIMs are maternal monocytes

originating from the peripheral circulation, whereas HBCs are fetal

macrophages residing within the chorionic villi. We sought to

compare the transcriptional profiles of MIMs and HBCs in normal

term pregnancies to better understand the phenotypes of these cells at

the maternal-fetal interface and to gain insight into their potential

functions. We separated MIMs and HBCs and performed bulk RNA

sequencing (RNA-seq) to characterize the two populations. We also

investigated the influence of maternal gravidity on the activation

states of maternal vs. fetal immune cells in term placentas. Together,

these data provide a valuable analysis of these two cell populations in

normal pregnancy against which alterations that occur in pregnancy

complications can be interrogated.
2 Materials and methods

2.1 Study design

This is a nested case control study of pregnant patients that

delivered from January to February 2015 who were enrolled in a

randomized controlled trial of intermittent preventative treatment

for malaria in pregnancy in Tororo, Uganda (ClinicalTrials.gov

number, NCT02163447). Primigravida participants were compared

to multigravida participants.

Eligibility criteria included healthy, HIV-negative patients ≥ 16

years of age between 12–20 weeks gestational age at the time of

enrolment. Participants were enrolled from June through October

2014. Gestational age was confirmed by ultrasound. Patients were

screened for malaria at the time of enrolment and monitored on a

monthly basis throughout pregnancy and at delivery. All patients

labored and delivered at term. Within 30 minutes of birth, placentas

were gently rinsed twice with cold PBS to remove blood clots and

debris. Maternal and fetal monocyte/macrophages were isolated as

described below. All participants had no evidence of past or active

placental malaria, confirmed by placental histopathology (Rogerson

criteria) (58). Patient characteristics were described in Supplementary

Table 1.
2.2 Ethics statement

Written informed consent was obtained from all study

participants. Ethical approval was obtained from the Uganda

National Council of Science and Technology, the Makerere

University School of Medicine Research and Ethics Committee,

the Makerere University School of Biomedical Sciences Research
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and Ethics Committee, and the University of California,

San Francisco.
2.3 Isolation of maternal
intervillous monocytes

As described previously (59) with modifications, maternal

blood was collected from the intervillous space by flushing spiral

arteries from the maternal surface of the placenta with 30 ml of cold

PBS, allowing fluid to passively drain via gravity for 15 minutes.

Viable monocytes were isolated in a two-step process: 1) density

gradient centrifugation using Ficoll; and 2) depletion of T cells, B

cells, NK cells, dendritic cells, granulocytes, and erythrocytes using

the Dynabeads Untouched Human Monocytes Kit (Invitrogen,

11350D) (Supplementary Figure 1).
2.4 Isolation of placental fetal
Hofbauer cells

As previously reported (35) with modifications, placentas were

washed with cold cytowash to remove excess blood prior to removal

of amniotic membranes and decidual tissue. The remaining

chorionic villi were minced into 5 mm-sized pieces and washed

with cold PBS until clear. At least 50 g of villous tissue was treated

with collagenase (0.075% collagenase, 0.04% DNase, 0.07%

hyaluronidase, 3mM CaCl2) for 30 minutes in a 37°C water bath

with gentle stirring. Immediately thereafter, the samples were

centrifuged (1300 rpm) and the supernatant containing primarily

syncytium was discarded. Undigested tissue was resuspended in

cold cytowash, and digested with trypsin (0.125% trypsin, 0.02%

DNase) for 60 minutes at 37°C, with gentle mixing every 10

minutes. After 60 minutes, additional collagenase was added and

the digestion continued for another 30 minutes, also with gentle

mixing every 10 minutes. The tissue was disaggregated by pipetting

with a 5ml pipette, then filtered over 2x gauze then 1 mm and 90

mM sieves to remove undigested remnants. The cells were collected

and washed 4 times with cold cytowash. The cell pellet was applied

to a discontinuous Percoll gradient and the interface between 20%

and 35% was collected. These cells were washed twice in cytowash,

and HBCs were isolated by negative selection on Dynabeads coated

with anti-EGFR to remove trophoblasts (Santa Cruz Biotechnology,

sc-120) and anti-CD10 to remove fibroblasts (BioLegend, 312202;

Goat anti-mouse IgG, Invitrogen, 110–33). The cells were collected,

washed in PBS, and stored in RNAlater (Invitrogen) at -80°C

(Supplementary Figure 1).
2.5 RNA isolation

RNA was extracted from isolated MIMs and HBCs using a

RNeasy Micro Kit (Qiagen) following the standard manufacturer’s

protocol. RNA quality was assessed using an Agilent 2100

BioAnalyzer (RIN > 7).
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2.6 RNA sequencing

We profiled the transcriptomes of six paired samples of MIMs

and HBCs by bulk RNA-seq at the UCLA Clinical Microarray Core

Facility. cDNA and library construction were conducted using 1 µg

RNA per sample and sequenced on an Illumina HiSeq 2500 to

obtain ~30 million reads per sample.
2.7 Quantitative RT-PCR

We investigated expression levels of target genes to validate our

profiling results and further explore relationships across a larger set

of samples. In total, we examined 19 MIM and 15 HBC samples

(Supplementary Table 1). These were a mixture of remaining

samples from our RNA-seq analysis (MIMs, n=6; HBCs, n=2);

and additional samples from independent placentas collected

concurrently (MIMs, n=13; HBCs, n=13);. We converted purified

RNA samples to cDNA using iSCRIPT Universal TaqMan (Bio-

Rad), and performed qRT-PCR using TaqMan primers for selected

targets (Supplementary Table 2) mixed with TaqMan Universal

Master Mix II, no UNG (Life Technologies, Quant Studio 6).

Reactions were carried out for 40 cycles. At least 3 technical

replicates were analyzed for all comparisons. Differential

expression between HBCs vs. MIMs was calculated via the DDCT
method. We normalized expression using the mean CT of

housekeeping genes, GAPDH and ACTB.
2.8 Statistical analysis

For RNA-seq, FASTQ files were aligned to the human reference

genome (GRCh37/hg19) using BWA (Burrows-Wheeler

Alignment tool). Aligned BAM files were processed using

htseqcount to obtain counts-per-million (CPM) values. Genes

with CPM values > 0.5 in at least two samples were considered

expressed above background. Data were further transformed using

VOOM (60) and differentially expressed transcripts were identified

using LIMMA. Genes missing a HGNC symbol were excluded in

downstream analyses. In total, we examined 18,802 unique RNAs

using this approach. We identified differentially expressed

transcripts based on: 1) cell type of origin (MIMs vs. HBCs); or

2) cell type vs. gravidity. We defined differentially expressed

transcripts between MIMs and HBCs as p<0.00001 (unadjusted);

absolute FC > 4, false discovery rate <0.1%). In gravidity-based

analyses, we considered genes expressed with high confidence in

each cell type (average CPM > 0.5) and applied a cut-off of

unadjusted p<0.05, absolute FC > 2. We conducted principal

components analysis and hierarchical clustering of FC values

using average linkage and Euclidean distance (pheatmap, RRID:

SCR_016418) (61). Cell/tissue enrichment of the most abundant

top 2% genes in each cell type was conducted using CTen (62).

Functional enrichment analysis of Gene Ontology (GO) Biological

Processes was evaluated via DAVID and a cut-off criteria of p<0.01;

fold enrichment > 1.5, and minimum differentially expressed

transcripts ≥10 (MIMs vs. HBCs) or ≥5 (cell type vs. gravidity)
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per GO term. Terms were grouped based on GO classifications.

Raw and normalized data were deposited in the NCBI Gene

Expression Omnibus (GSE244241).

For qRT-PCR, we employed Dunnett’s test (SSPS) to determine

significant differences in expression (p<0.05). Relative FC values

were expressed as average log2 ratios between MIMs and HBCs.
3 Results

3.1 Location of MIMs and HBCs at the
maternal-fetal interface

We isolated paired MIMs and HBCs from human term

placentas. Circulating MIMs are located in the intervillous space

(IVS) of the placenta, where maternal blood circulates (Figure 1).

HBCs reside in the chorionic villi (CV), which consists of an outer

syncytiotrophoblast (STB) layer, an inner layer of cytotrophoblasts

(CTBs), stroma, and fetal blood vessels. MIMs and HBCs were

purified from the placental tissue as described.
3.2 Differences in gene expression
between MIMs and HBCs

We conducted mRNA profiling of MIMs and HBCs. The

distribution of average gene counts was similar in the two cell

types for all placental samples (Figure 2A). The top 2% of abundant

genes in MIMs and HBCs (319 genes; dashed line; Figure 2A) were

significantly enriched for macrophage-progenitor signatures

(myeloid CD33+ and monocyte CD14+) as determined by cell

type enrichment analysis (Figure 2B). Genes abundantly expressed

in MIMs were highly enriched for expression profiles associated

with placental tissue, suggesting that the placental reference gene

expression database may include genes of maternal blood origin.

The profiles of abundant genes in MIMs and HBCs were enriched

for signatures of whole blood, which includes both monocytes and

myeloid cells. Additionally, these profiles were akin to other organs

with high levels of tissue-resident macrophages.

Principal component analysis of all transcripts clearly separated

MIMs from HBCs with Dimension 1 accounting for 51.7% of the

variability (Figure 2C). LIMMA identified 976 differentially

expressed (Figure 2D; red circles) transcripts between the two cell

types (p<0.00001, absolute FC > 4). Within this subset, 663 genes

(69%) were upregulated in MIMs whereas 294 genes (31%) were

upregulated in HBCs. Hierarchical clustering of differentially

expressed genes also highlighted the distinct profiles of these two

cell types and confirmed the similarity of samples within each cell

type (Figure 2E). The 25 most upregulated genes in HBCs vs. MIMs

included molecules involved in inflammatory responses (CXCR6,

CCR4, CCL20, CD6, CD28, IL1A, TNFAIP6; Figure 2F). The 25

most upregulated genes in MIMs vs. HBCs included molecules

linked to IL-6-regulated cytokine pathways (NLRP10, TWIST1) and

macromolecule metabolism (PKIB, PPP1R14C, POU2F3, TRIM40,

TWIST1; Figure 2G). Overall, our analyses demonstrate distinct

transcriptomic signatures between these two cell types.
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3.3 Validation of genes differentially
expressed in MIMs vs. HBCs

To validate the RNA-seq results (Figure 2D, blue marked genes,

Supplementary Table 3), we used quantitative RT-PCR to assess the

expression of selected genes that were highly differentially expressed

(TWIST1, CYP19A1, CCL2, S1PR1; p<0.00001) and two genes with a

more modest difference (GREM1, p=0.003; IL6, p=0.002). Using a

larger sample set, which included additional placentas, we confirmed

the expression of CCL2 and S1PR1 to be significantly higher in HBCs

vs. MIMs and expression of CYP19A1 and TWIST1 to be significantly

higher inMIMs vs. HBCs (Figure 3A). Expression of IL6 and GREM1

was increased in HBCs vs. MIMs. Overall, the magnitude and

directionality of expression differences assayed by the two

platforms were strongly positively correlated (R2 = 0.8541, Figure 3B).
3.4 Mapping differentially expressed genes
to biologic processes

We evaluated differentially expressed genes between MIMs and

HBCs for enrichment of biological processes (Figure 4A). Fifty GO

terms were identified as overrepresented (Supplementary Table 4)

and included processes related to cell motility, adhesion,

inflammation, cell death, signal transduction, communication,
Frontiers in Immunology 05
metabolism, and organization. MIMs had greater expression of

genes related to cytoskeleton organization, intracellular signal

transduction and cell differentiation. In contrast, HBCs tended

toward increased expression of specific biological processes

related to inflammation, single organismal cell-cell adhesion and

cell surface receptor signaling pathways.

Further exploration of a subset of genes involved in the

inflammatory response (Figure 4B) confirmed robust differences

in gene expression between MIMs and HBCs. Those with known

functions in macrophage biology that were more highly expressed

in MIMs compared to HBCs included CYP19A1, TGM2, SNAP23

and VAMP8. Macrophage-associated genes that were more highly

expressed in HBCs vs. MIMs were KDM6B, NFKB1, CXCL3,

CCL20, IL1A, CCL2, CSF1, IL10, IL23A, CCR7 and IRAK2.

Overall, these findings demonstrate that MIMs and HBCs have

different transcriptional profiles and suggest potential drivers of

differences in the function and behavior of these cells.
3.5 Expression of M1/M2 markers in MIMs
and HBCs

We compiled a panel of thirty-one molecules associated with pro-

and anti-inflammatory states (M1 vs. M2, respectively) based on

published data (Supplementary Table 5) (37, 40, 63–68). We relaxed
FIGURE 1

Anatomical localization of maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) within the placenta. MIMs and HBCs reside in
unique placental compartments within close proximity. HBCs originate from the fetal yolk sac and reside in the chorionic villi (encircled with dashed
lines). MIMs are derived from the maternal bone marrow and, ultimately, enter the placenta via the maternal spiral arteries that provide oxygenated
blood to the intervillous space. MIMs and HBCs highly express CD68+ (brown) in histological cross-sections of the chorionic villi and intervillous
space. CTB, cytotrophoblast; CV, chorionic villi; FB, fibroblast; fEC, fetal endothelial cell; fRBC, fetal red blood cell; HBC, Hofbauer cell; IVS,
intervillous space; MIM, maternal intervillous monocyte; STB, syncytiotrophoblast. Created with BioRender.com.
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A B

FIGURE 3

mRNA validation of differentially expressed genes between MIMs and HBCs. (A) Relative expression of genes identified to be differentially expressed
between HBCs (purple circle) and MIMs (teal circle) via qRT-PCR. Expression values (DDCT) were normalized to housekeeping genes (GAPDH, ACTB)
and adjusted by the average MIM expression. Asterisks indicate significant differences between MIMs and HBCs (***p<0.0005; **p<0.005; *p<0.05).
Bars reflect mean and standard error (SE). (B) Correlation plot between RNA-seq and qRT-PCR expression levels of HBC/MIM fold change values in
log2 format. Regression line signifies relationship between fold change differences of MIMs and HBCs quantified via RNA-seq vs. qRT-PCR (slope =
1095; R2 = 0.8541).
A

B

D

E F G

C

FIGURE 2

Differentially expressed genes between MIMs and HBCs. (A) Distribution of average gene counts [log2 normalized counts per million (CPM)] in MIMs and
HBCs. (B) Cell/tissue enrichment of the most abundant genes in each cell type (top 2%, dashed line in panel A). (C) Multidimensional scaling plot of MIM
(teal squares) and HBC (purple circles) transcriptomes. Paired MIMs and HBCs denoted by sample IDs. (D) Volcano plot displaying significance (negative
log p-value) and fold difference in expression (log2). Red dots signify differentially expressed genes between the two cell populations (p<0.00001;
absolute FC > 4). Genes labeled in blue were validated via qRT-PCR. (E) Hierarchical clustering plot displaying absolute mRNA expression of differentially
expressed genes. Expression of the top 25 most up- (F) or down- (G) regulated genes in terms of fold change (FC) in HBCs vs. MIMs.
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our cut-off criteria (p<0.01, absolute log2FC > 1, average log counts >

0) to explore the expression profiles of these markers in MIMs and

HBCs. Fifteen genes were differentially expressed between MIMs and

HBCs. Of these, 13 were more highly expressed in HBCs and

included M1 and M2 markers (Figure 4C). The average fold-

increase of these molecules was 19.6 (range 4.5 to 75). Examples of

the largest differences between MIMs and HBCs included IL23A (75-

fold), IL1A (61.8-fold), and VEGFA (18.8-fold). Two M2 markers,

TGM2 (13.2-fold) and VEGFB (2.1-fold), were the only markers that

were more highly expressed in MIMs vs. HBCs.
3.6 Gene expression differences
by gravidity

We next assessed differences in gene expression in MIMs and

HBCs between primigravida and multigravida pregnancies.
Frontiers in Immunology 07
Gravidity influenced the expression of 120 and 95 genes in MIMs

and HBCs, respectively (p<0.05; absolute FC > 2; Figure 5A).

Overlap in these subsets was limited to five genes: C15ORF48,

ZNF135, OR2B11, MSC, and LINC01291. Hierarchical clustering

showed that in MIMs, 85% (158/186) of the differentially expressed

genes were more highly expressed in multigravidae (Figure 5B). In

HBCs, differentially expressed genes were equally distributed in the

up- and down-regulated categories (50.6% and 49.4%, respectively).

GO analyses of these data is shown in Supplementary Table 6.

Figure 5C depicts a portion of the results for each cell type with

statistically significant biological processes denoted by solid color

bars. System development and response to lipids were the only

processes that were significantly differentially expressed in

association with gravidity in both cell types. MIM genes that were

differentially expressed as a function of gravidity were involved in

inflammation (e.g., inflammatory response, response to cytokines);

migration/adhesion (e.g., single organismal cell-cell adhesion,
A

B C

FIGURE 4

Functional enrichment analysis of differentially expressed genes between MIMs and HBCs. (A) Selected enriched biological processes (criteria:
p<0.01, number of differentially expressed genes associated with enriched term ≥ 10) and the number of differentially expressed genes with higher
expression in MIMs or HBCs in each category. (B) Hierarchical clustering of differentially expressed genes associated with inflammatory response
pathway (GO:0006954). (C) Relative expression of M1/M2 markers in HBCs vs. MIMs. A panel of 31 genes associated with pro- (M1) and anti- (M2)
inflammatory activation states were identified based on current literature. Out of this panel, 15 genes were differentially expressed between MIMs
and HBCs (average log2count > 0, p<0.01 and absolute log2FC > 1).
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leukocyte migration); cell cycle processes (e.g., mitotic cell cycle);

protein metabolism; response to lipids; programmed cell death;

signal transduction; system development and organizational

pathways (e.g., cytoskeleton) (Figure 5C). Cytokine response

genes influenced by gravidity (n=20) included IL1A, IFNB1, F3,

CXCL3, CCL20, and CXCL2. Genes in this category were

upregulated in multigravidae vs. primigravidae. By comparison,

HBC genes that were differentially expressed as a function of

gravidity were involved in system development, cell-cell signaling,

ion transport, response to lipids and positive regulation of cell

proliferation. There was a notable lack of inflammatory response

pathways. Individual genes that were differentially expressed

between multigravidae and primigravidae, included transcription

factors (e.g., WNT5B), ion transporter genes (e.g., KCNMA1) and

major cytokines (e.g., CCL13 and IFNG). Overall, gravidity was
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associated with changes in transcription profiles of MIMs and

HBCs, commonly modulating genes related to system

development, response to lipids, and inflammatory response in

both cell types. Our analyses of placental macrophages from two

distinct origins suggest inherent programming influenced by

gravidity status.
4 Discussion

We purified MIM and HBC populations from two placental

compartments in the setting of uncomplicated term deliveries. RNA

sequencing revealed stark differences in the transcriptional

signatures of these two cell populations. Both MIMs and HBCs

expressed diverse combinations of M1 and M2 subtype markers
A B

C

FIGURE 5

The influence of gravidity on gene expression in MIMs and HBCs. (A) Genes identified to be differentially expressed due to gravidity [primigravida (PG)
or multigravida (MG) placentas] in the two cell types (p<0.05; absolute FC > 2). Five differentially expressed genes in common between MIMs and
HBCs due to gravidity are shown in the box with their previously described functions (69–74). (B) Relative expression (based on average expression of
primigravidae) of genes significantly influenced by gravidity in MIMs or HBCs. Hierarchical clustering denotes genes higher in multigravidae vs.
primigravidae or vice versa in each cell type. (C) Select enriched biological processes associated with gravidity in MIMs or HBCs (p<0.01; number of
differentially expressed genes ≥6 in any cell type). Filled bars indicate significance (p<0.01). Hatched bars indicate non-significance.
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(Figure 3C); interestingly, HBCs expressed significantly higher

levels of both M1 and M2 markers than MIMs. We found

distinct transcriptional profiles of MIMs and HBCs with mixed

M1/M2 gene expression, lending credence to ongoing discussions

that the M1/M2 dichotomy (33) does not fully capture the

heterogeneous profiles of placental immune cells. Furthermore,

much of what is known about macrophage function has been

developed through in vitro stimulation experiments that may not

accurately reflect the in vivomicroenvironment. Unbiased “-omics”

approaches may reveal the broad spectrum of activation states of

these cells at the maternal-fetal interface. Overall, our findings

highlight the divergent phenotypes of MIMs and HBCs in healthy

pregnancies at term, which likely reflects their separate origins and

adaptability to changing microenvironments in the distinct

compartments they occupy throughout pregnancy.

Most studies to date have suggested that HBCs predominantly

exhibit an anti-inflammatory, M2-like phenotype (15, 28, 40–44).

However, our data demonstrate that HBCs exhibit greater

phenotypic heterogeneity than previously described. HBCs

expressed both M1 (e.g. IL6 and IL23A) and M2 (e.g. IL10 and

VEGFA) markers at high levels (Figure 4C). This is consistent with

limited functional analyses of HBCs showing that they express high

levels of toll-like receptors and secrete the pro-inflammatory

cytokines IL-6 and IL-8 in response to inflammatory stimuli (75).

Other studies have demonstrated phagocytic activity of HBCs

across all trimesters (21, 35, 36, 76). Comparison of cytokine

profiles of HBCs from early and late gestation has shown

increased expression of inflammatory mediators as pregnancy

progresses (77). The broad expression of M1 markers in our

study also suggests that there may be other pro-inflammatory

functional roles for HBCs in normal term placentas. Future

studies of HBCs in different disease states, especially leveraging

single cell approaches, will help to further elucidate the full

spectrum of HBC functional states.

Our results showed that TWIST1 was 51-fold more highly

expressed in MIMs compared to HBCs, which was confirmed by

qRT-PCR. Expression of this molecule has been linked to the

downregulation of NFKB mediated pro-inflammatory cytokine

production in both murine and human macrophages (78, 79). In

vitro studies investigating human monocyte derived macrophages

revealed that TWIST1 downregulated cytokine responses to NOD2,

a sensor of bacterial peptidoglycan, through an epigenetic

mechanism that enabled the formation of immune memory

responses (80, 81). Thus, an anti-inflammatory phenotype of

MIMs may be regulated by epigenetic modifications. Other

differentially expressed regulators (e.g., NLRP10 and SLUT2B1)

may be similarly regulated.

Most investigations focusing on MIMs to date been limited to

various disease states such as malaria, preeclampsia, and obesity

(24, 30, 49). We found 13-fold higher expression of TGM2 and 5-

fold higher expression of SNAP23 in MIMs compared to HBCs.

TGM2 is an anti-inflammatory macrophage marker in both human

and mouse (82). In mouse studies, TGM2 plays a protective role in

LPS-induced apoptosis of macrophages (83). SNAP23 regulates
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phagosome formation and maturation in macrophages as well as

TLR4 transport upon LPS stimulation (84, 85). We also found that

MIMs are mixture of M1/M2 subtypes at term (57, 86). It is possible

that the upregulation of biological processes related to metabolism

is indicative of a transition that occurs at parturition (29). More

studies are needed to fully understand the phenotypic changes that

occur during normal pregnancy and birth, as well as in the context

of pregnancy complications such as preterm birth.

We also explored the relationship between maternal gravidity

and gene expression in MIMs and HBCs (Figure 5). In both cell

types, increased gravidity was associated with differential

expression of genes related to multiple pathways, including

metabolism, development, and cell signaling. However, only five

genes were differentially expressed in both MIMs and HBCs as a

function of gravidity. Interestingly MSC and C15ORF48 were both

more highly expressed in multigravidae compared to primigravidae;

both genes have been linked to suppression of pro-inflammatory

response (69–71). Our analyses suggest a novel influence of

gravidity on the gene signatures of MIMs and HBCs. As many

pregnancy complications, such as preeclampsia, are more common

in primigravidae, we hypothesize that epigenetic mechanisms

involved in gene regulation and programming shape the gene

signatures and innate memory of MIMs, which may work to

facilitate success of subsequent pregnancies. Furthermore, the

epigenetic profiles of MIMs and other placental immune cells in

multigravid environments could also affect the gene signatures of

fetal HBCs. Though multiple studies have delved into the vast

epigenetic landscape that shapes normal and disease states in

pregnancy (31, 87, 88), future work is needed to determine how

gravidity influences MIMs and HBCs throughout pregnancy in

this context.

Our profiles of maternal-derived MIMs and fetal-derived HBCs

are consistent with recent work from Vento-Tormo et al. that

identified distinct subsets of placental macrophage populations

using scRNA-seq (56). Many of the most highly differentially

expressed genes we reported for MIMs and HBCs were also

identified by their study (Supplementary Figure 2). The

differences between the markers we report and the scRNA-seq

study could be due to differences in the methods of analyses. We

directly compared purified MIMs and HBCs vs. the Vento-Tormo

et al. study that profiled all cells at the maternal-fetal interface,

including MIMs and HBCs. Another significant difference was the

gestational age of sampling. Vento-Tormo, et al. analyzed first

trimester placentas vs. in our study we focused on term samples.

Thomas et al. have recently proposed that earlier studies on

HBCs have been contaminated by a population of maternal myeloid

cells they termed placental associated maternal macrophages

(PAMMs) that localize to the placental surface (36). PAMM

contamination is unlikely in our study, as our HBC purification

technique discarded the first two rounds of tissue digestion

containing the syncytial layer and any associated PAMMs. Our

methods combined with those described by Thomas et al. may

simplify identification and isolation of HBCs for future

transcriptomic, epigenetic and functional studies.
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Our study had limitations. The limited sample size, particularly

after further stratification by gravidity, constitutes one of our main

limitations. Due to limited resources at our study site, we were not

able to conduct confirmatory flow cytometry assays on our purified

MIMs and HBCs to further characterize these cell types. The

prevalence of M1 genes and pro-inflammatory markers in MIMs

and HBCs could be due to parturition, which is a pro-inflammatory

state. Studies suggest that maternal macrophages exhibiting an M1

phenotype promote cervical ripening, uterine contractions, and

delivery (57, 89, 90). It is also possible that the switch to an M1-

subtype helps protect the fetus and mother from infection following

amniotic sac rupture and prevents placental retention. Also, studies

report an increase in activated monocytes in preterm labor as

compared to normal pregnancies (91), additional evidence that

activated macrophages may play a significant role during

parturition. Finally, this study was focused on placentas from

African patients with likely lifetime exposures to malaria and

many other infectious agents that are endemic to the region.

Thus, the results might not be fully representative of those in

other populations. Finally, our study is limited to MIMs and

HBCs within the placenta. As MIMs are peripheral monocytes

that enter and exit the placental intervillous spaces, the analysis of

peripheral monocytes in parallel may provide further insights into

the local responses of MIMs within the placenta.

The primary strengths of our study were the isolation and

purification of MIMs and HBCs using a targeted cell approach

based on placental anatomy and the comparisons of samples from

primigravidae and multigravidae. Our technique can be

implemented with limited resources, enabling further studies on

MIMs and HBCs in under-resourced settings. We demonstrated

that maternal and fetal myeloid cells at the maternal-fetal interface

exhibit diverse gene signatures, with greater transcriptional

heterogeneity than previously reported. Our results also suggest a

novel influence of maternal gravidity on the transcriptional states of

both MIMs and HBCs. Understanding the interactions between

these two cell populations is critical to uncover mechanisms of

immunoregulation in the context of reproductive memory and

placental disease.
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