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Abstract: The collapses of building structures during recent earthquakes have raised 
many questions regarding the adequacy of current seismic provisions to prevent a partial 
or total collapse. They have also brought up questions as to how to determine the collapse 
safety margin of structures, what is the inherent collapse safety margin in code-designed 
structures, and how to strengthen structures to effectively augment such margin. The 
purpose of this paper is to present a comprehensive review of the analytical methods that 
are currently available to assess the capacity of building structures to resist an earthquake 
collapse, point out the limitations of these methods, describe past experimental work in 
which specimens are tested to collapse, and identify what is required for an accurate 
evaluation of the seismic collapse capacity of a structure and the safety margin against 
such a collapse. It is contended that further research is needed before the collapse 
capacities of structures and their safety margin against collapse may be evaluated with 
confidence. 
 
CE Database subject headings: Structural analysis; Structural failures; Earthquake 
engineering; Seismic analysis; Structural safety; Structural stability; Collapse. 
 
 
Introduction 
 
Buildings have partially or totally collapsed during the earthquakes in Valparaiso, Chile 
in 1985 (Wyllie et al. 1986; Leiva and Wiegand 1996); Mexico City in 1985 (Osteraas 
and Krawinkler 1988; Villaverde 1991); Armenia in 1988 (Wyllie and Filson 1989); 
Luzon, Philippines in 1990 (Schiff 1991); Guam in 1993 (Comartin 1995); Northridge, 
Calif. in 1994 (Hall 1994); Kobe, Japan in 1985 (Comartin et al. 1995; Nakashima et al. 
1998); Kocaeli, Turkey in 1999 (Youd et al. 2000); Chi-Chi, Taiwan in 1999 (Uzarski 
and Arnold 2001; Huang and Skokan 2002); and Bhuj, India in 2001 (Jain et al. 2002). 
Many of these collapses occurred in older buildings designed with what is nowadays 
considered inadequate design standards. Others have been attributed to shoddy design 
and construction practices, which undoubtedly was the case in many of them. Several of 
the collapses, however, took place in buildings that were designed and constructed in 
accordance with modern seismic design principles (see Fig. 1.).  An example is the 22-
story steel frame tower of the Pino Suarez complex in Mexico City, which totally 
collapsed during the 1985 earthquake there (Osteraas and Krawinkler 1988; Ger et al. 
1993). Therefore, as demonstrated by the fractures observed in the welded connections of 
modern steel buildings during the 1994 Northridge earthquake (Bertero et al. 1994) and 



the 1995 Hyogoken-Nanbu earthquake (Nakashima et al. 1998), it is possible that many 
of the observed collapses have been the result of deficiencies in our knowledge of the 
regional seismic hazard, the behavior of structural materials under dynamic loads, and the 
postelastic behavior of structural systems. 

 
 

 
 



 
 
 
Fig. 1. Collapse of modern multistory buildings during the (a) 1985 Mexico City 
earthquake (National Geophysical Data Center, NOAA); (b) 1995 Kobe, Japan 
earthquake; and © 1999 Chi-Chi, Taiwan earthquake (National Information Service for 
Earthquake Engineering, University of California, Berkeley) 
 
 

The aforementioned collapses raise many questions regarding the adequacy of 
current seismic provisions to prevent a partial or total collapse. As is well known, modern 
seismic provisions rely on a philosophy based on strong column-weak beam designs, 
story drift limits, and postelastic energy dissipation to guaranty the survivability of 
building structures in the event of a severe earthquake. However, this survivability has 
never been demonstrated analytically, experimentally, or by field studies. In fact, some 
investigators have put into question the validity of such an assumption; that is, the 
assumption that current code provisions are sufficient to avert the collapse of a structure 
if subjected to the extreme earthquake considered in its design. For example, Jennings 
and Husid (1968) note that if repeated excursions into the inelastic range of deformation 
of a structure occur in response to ground shaking, then the accumulated permanent 
deformations in the structure may render gravity forces the dominant forces and make the 
structure collapse by lateral instability. This effect, however, is not properly considered in 
modern design provisions. As noted by Bernal (1987), code provisions account for the P-
∆  effect of gravity loads in terms of an inadequate extrapolation of results pertaining to 
static elastic behavior. In his study of the instability of buildings subjected to 
earthquakes, Bernal (1992) also notes that the safety of a structure against inelastic 



dynamic instability cannot be ensured by simply limiting the maximum elastic story drifts 
of the structure, a finding that has been recently confirmed by Williamson (2003). 
Similarly, Challa and Hall (1994), in their investigation of the collapse capacity of a 20-
story steel frame, observe significant plastic hinging in the structure’s columns and a 
likely collapse of the structure when subjected to a severe earthquake ground motion. 
This despite the fact that, as required by current code provisions, the flexural strength of 
its columns exceeds that of its beams at all joints. Interestingly enough, that observation 
has been recently corroborated by Medina and Krawinkler (2005). For, in a study to 
evaluate the strength demands of a large number of regular moment-resistant frames 
under different ground motions, they find that the potential for the formation of plastic 
hinges in columns is high for regular frames designed according to the strong column-
weak beam requirements of recent code provisions. In a study similar to that of 
Challa and Hall, Martin and Villaverde (1996) also find that a two-story, two-bay frame 
structure collapses under a moderately strong ground motion even when the structure 
meets all the requirements from the 1992 AISC seismic provisions (AISC 1992). 
Likewise, Roeder et al. (1993) and Schneider (1993) observed in a study performed with 
an eight-story steel frame that the minimum design criteria required by the 1988 Uniform 
Building Code [International Conference of Building Officials (ICBO) 1988] are not 
enough to ensure that the inelastic story drifts of the structure are always below the 
maximum values considered in its design. 

The collapses of modern structures during past earthquakes and the unproven 
adequacy of current design standards to prevent these collapses thus bring the question as 
to what is the actual safety margin of structures against an earthquake-induced collapse, a 
question that has acquired renewed importance as a result of the desire of the profession 
to move toward performance-based designs. As is well known, collapse prevention is one 
of the objectives of a performance-based design, and one of its promises is the assurance 
of an adequate safety margin against collapse under the expected maximum seismic load. 
Currently, however, as pointed out by several investigators (Hamburger 1997; Astaneh-
Asl et al. 1998; Li and Jirsa 1998; Bernal 1998; Griffith et al. 2002; Esteva 2002), there 
are no established methods other than the collective judgment of code writers to calculate 
such a safety margin. Even more, it is not known if the available analytical tools are 
adequate enough to evaluate it in a reliable way since the process of collapse involves 
large deformations, significant second-order effects, and a complex material degradation 
due to localized phenomena such as cracking, local buckling, and yielding. What is 
worse, it appears that not even an established criterion exists to identify when and how a 
structure collapses under the effect of dynamic loads. The reason is that reaching an 
unstable condition a singular effective stiffness matrix, for example is not sufficient to 
infer the collapse of a structure under dynamic loads as unloading right after the structure 
reaches such an unstable condition may restore its stability (Araki and Hjelmstad 2000). 

The objective of this paper is to review the methods that are currently available to 
assess the collapse capacities of structures under earthquake ground motions, point out 
the limitations of these methods, describe past experimental work in which specimens are 
tested to collapse, and identify what are the needs and challenges for an accurate 
evaluation of the aforementioned collapse capacities and the safety margin against such a 
collapse. For the purpose of this review, collapse is defined as the condition at which a 
structure, or a significant portion of it, is unable to support its gravity loads during a 



seismic excitation. It may be caused by the gradual deterioration in the stiffness and 
strength of some structural members when subjected to repeated reversed inelastic 
deformations (low-cycle fatigue) or the progressive accumulation of lateral drifts owing 
to the application of a series of large inelastic deformation cycles and significant P-∆ 
effects (incremental collapse). 
 
Collapse Assessment Methods 
 
Single-Degree-of-Freedom Models 
 
Several methods have been suggested or used in research studies in which structures are 
modeled as single-degree-of-freedom systems to assess their collapse capacity. Takizawa 
and Jennings (1980), for example, employ an equivalent single-degree-of-freedom model 
to examine the ultimate capacity of ductile reinforced concrete frame structures under the 
combined action of strong ground shaking and gravity loads. The model exhibits a 
nondegrading trilinear force-deformation behavior and accounts for the destabilizing 
effect of gravity forces. The single-degree-of-freedom idealization results from linking 
the actual structure to an auxiliary rigid frame that makes the structure follow a specified 
deformation pattern. The actual structure is considered composed of structural elements 
formed with a rigid link and rotational springs at the two ends of the link. For the purpose 
of their study, they analyze a series of rigid and flexible structures under two sets of 
ground motions. One set corresponds to seven records from earthquakes with a 6.0–7.0 
magnitude and a strong shaking duration ranging from 10 to 25 s. The other set consists 
of four short-duration, pulselike motions with high peak accelerations. They were 
recorded in the epicentral areas of magnitude 4.7–5.5 earthquakes epicentral distances 
ranging from 0.2 to 8.5 km, have a duration of 1 – 2 s, and have peak ground 
accelerations between 0.40 and 0.62 g. It is considered that a ground motion leads to a 
collapse if the gravity load and the induced displacements reduce to zero the restoring 
force in the system. For the class of structures and ground motions considered in their 
investigation, Takizawa and Jennings find that: (1) serious damage and collapse are 
significantly influenced by ground motion duration and that, in particular, short-duration 
ground motions have a low destructive capability, even when they have a high peak 
ground acceleration; (2) the stiff structures have a much wider margin between damage 
(ductility ratios greater than 3) and collapse than the flexible ones; and (3) the 
conventional single-parameter measures used to characterize ground motions are 
unsatisfactory to describe their destructive potential. It should be pointed out that the 
conclusion reached by Takizawa and Jennings in regard to the influence of ground 
motion duration in a structural collapse contradicts, as indicated later on, the findings 
reported by Ibarra and Krawinkler in their 2004 study. It is also opposite to the 
observations from other investigators (e.g., Hall et al. 1995; Krawinkler et al. 2003) that 
near-field ground motions, which can be characterized as short-duration, pulse-like 
motions, are capable of causing severe distress in long-period structures. 

In a similar study, Bernal (1987) proposes an empirical formula in terms of 
ductility factor and a stability coefficient that characterizes the influence of gravity loads 
to compute an amplification factor that accounts for P-∆ effects in inelastic structures 



subjected to earthquakes. The formula is derived from amplification spectra generated by 
dividing the inelastic acceleration response spectrum ordinates obtained when gravity 
effects are included by those determined when these effects are not considered. A 
nondegrading elastoplastic single-degree-of-freedom model and an ensemble of four 
recorded earthquake ground motions are used in the generation of these amplification 
spectra. Based on the results from his study, he shows that the amplification formulas 
recommended by seismic codes are unconservative and that this unconservatism 
increases in direct proportion to the ductility factor considered in the design of the 
structure. Bernal (1992) also develops a simplified method to check the safety against 
dynamic instability of two-dimensional buildings. The method is based on the reduction 
of a multistory structure to an equivalent single-degree-of-freedom system and the 
derivation of statistical expressions to correlate the minimum base shear needed to 
prevent instability with some key structural and ground motion parameters. The statistical 
expressions are derived considering elastoplastic and stiffness-degrading systems, 
second-order effects, and an ensemble of 24 earthquake records from firm ground sites. 
The minimum base shear is defined as the yield lateral strength at which an out of bound 
structural response is imminent and is determined from the inspection of maximum 
response versus yield lateral strength plots. With the proposed method, the safety margin 
of a structure is estimated by dividing the actual base shear capacity of the structure by 
such a statistically determined minimum base shear. By comparing the results obtained 
using his method for a series of multistory structures against those attained considering 
the actual structures, Bernal finds that the safety against dynamic instability strongly 
depends on the assumed shape of the failure mechanism, i.e., the configuration of the 
deformed structure just before instability occurs. For buildings with a regular 
configuration, he identifies this failure mechanism using a static limit analysis with 
lateral forces proportional to the structure’s story weights. Using an approach similar 
to the one employed in Bernal’s 1987 study and based on the analysis of bilinear 
oscillators with different post-elastic to elastic stiffness ratios, MacRae (1994) proposes a 
method for considering P-∆ effects on oscillators with different hysteretic characteristics. 
From the results of his investigation, MacRae observes that the post-elastic to elastic 
stiffness ratio is a major parameter that affects the unidirectional accumulation of 
inelastic deformation in a system and, hence, the system’s stability. 

More recently, Williamson (2003) uses a simple model that explicitly considers 
the state of damage in a system to determine the response of a number of single-degree-
of-freedom systems under various earthquake ground motions. The purpose is to study 
the role of damage accumulation and P-∆ effects on the response of inelastic systems. 
The model considered is a rigid column with a concentrated mass at the top and a 
rotational spring with a bilinear, damage-degrading moment-rotation relationship at the 
base. The earthquake vertical acceleration is considered explicitly in the analysis of the 
studied systems. Williamson finds that damage accumulation has a significant effect on 
the behavior of the analyzed systems. He also finds that P-∆ effects are important even 
for small values of the axial force and may lead to responses that are as much as five 
times greater than in the case when P-∆ effects are ignored. In agreement with the 
findings from other investigators (Jennings and Husid 1968; Takizawa and Jennings 
1980), he additionally observes that a system’s response is not affected significantly by 
the earthquake vertical acceleration. In a similar study, Miranda and Akkar (2003) 



propose an empirical equation to estimate the minimum lateral strength that is required to 
prevent the collapse by dynamic instability of single-degree-of-freedom systems. The 
systems considered exhibit a bilinear force-deformation behavior characterized by a post-
yield branch with a negative slope. This force-deformation behavior is intended to 
represent the effect of geometric nonlinearities and strength degradation and leads to 
collapse when the restoring force in the system is reduced to zero. The empirical equation 
is derived through a nonlinear regression using the results from a statistical analysis with 
a large number of systems and an ensemble of 72 ground motions recorded on firm soils 
from California earthquakes. It is expressed as a function of natural period and post-yield 
stiffness as they find that the collapse strength of the systems considered varies 
significantly with these two parameters. Its application for any given system requires a 
reliable estimate of the post-yield stiffness of the system. 

Finally, Adam et al. (2004) propose a procedure to consider P-∆ effects in 
multidegree-of-freedom structures through the use of an equivalent single-degree-of-
freedom system with properties defined based on the results from a pushover analysis see 
the following subsection. The underlying assumption in this procedure is that the 
postyielding global stiffness obtained from a pushover analysis characterizes the global 
or local mechanism involved when the actual structure approaches dynamic instability. 
With it, the collapse capacity of a structure is determined through a series of dynamic 
analyses of the equivalent single-degree-of-freedom system under progressively 
increasing ground motion intensities. Collapse is assumed to occur when a small 
increment in the ground motion intensity produces a large increase in the structural 
response. The study is limited to nondegrading systems. To assess the accuracy of the 
procedure, Adam and coworkers compare the collapse capacities of two single-bay, 
nondeteriorating, multi-degree-of-freedom frame structures obtained using the proposed 
procedure to those determined analyzing the actual structures. An ensemble of 40 ground 
motions is used in this comparative analysis. They conclude that the global P-∆ effects of 
nondeteriorating structures may be predicted with good accuracy with the proposed 
procedure and that in most cases the predictions err on the conservative side. 
 
Nonlinear Static Procedure 
 
The nonlinear static procedure, colloquially known as “pushover analysis,” has become a 
standard method for estimating seismic deformation demands in building structures as 
well as their local and global capacities. As such, it has become a popular tool among 
practicing engineers for the evaluation of the safety of structures against an earthquake-
induced collapse. It is introduced in FEMA Publication No. 273 (1997) and has been 
updated in FEMA Publication No. 356 (2000b). Its use is recommended for structures in 
which “higher mode effects” are not significant. If these higher mode effects are 
significant, then the procedure needs to be supplemented with a linear dynamic analysis. 

In FEMA-356’s nonlinear static procedure, a model of the structure is constructed 
considering explicitly the nonlinear force deformation behavior of its elements. Then, a 
base shear-lateral displacement relationship is established by subjecting this model 
to monotonically increasing lateral forces with a prescribed heightwise distribution until 
the displacement of a control node the center of mass of the building’s roof exceeds a 
target displacement or the structure collapses. The target displacement is intended to 



represent the maximum displacement likely to be experienced by the structure under a 
selected seismic hazard level. The demands at this target displacement element forces, 
story drifts, or plastic hinge rotations are then compared against a series of prescribed 
acceptability criteria. These acceptability criteria depend on the construction material 
steel, reinforced concrete, etc., member type beam, column, etc., member importance 
primary or secondary, and a preselected performance level operational, immediate 
occupancy, life safety, or collapse prevention. A global collapse is assumed to occur 
whenever the base shear-lateral displacement curve attains a negative slope due to 
P-∆ effects and reaches afterward a point of zero base shear. Such point implies no lateral 
resistance and the inability of the structure to resist gravity loads. 

The procedure lacks a rigorous theoretical foundation. It is based on the incorrect 
assumptions that the nonlinear response of a structure can be related to the response of an 
equivalent single degree-of-freedom system and that the distribution over the height of 
the structure of the equivalent lateral forces remains constant during the entire duration of 
the structural response. It neglects duration and cyclic effects, the progressive changes in 
the dynamic properties that take place in a structure as it experiences yielding and 
unloading during an earthquake, the fact that nonlinear structural behavior is load-path 
dependent, and the fact that the deformation demands depend on ground motion 
characteristics. In fact, in correlations with observed damage in several of the buildings 
damaged during the 1994 Northridge earthquake and comparisons with results from 
nonlinear time-history analyses, several investigators (Krawinkler and Seneviratna 1998; 
Chi et al. 1998; Kim and D’Amore 1999; Gupta and Kunnath 2000; Goel and Chopra 
2004; Chopra and Goel 2004; Maison and Hale 2004) have found that the procedure does 
not provide an accurate assessment of building behavior. It may lead to gross  
underestimation of story drifts and may fail to identify correctly the location of formed 
plastic hinges. This is particularly true for structures that deform far into their inelastic 
range of behavior and undergo a significant degradation in lateral capacity. In recognition 
of these deficiencies, improved nonlinear static procedures have been proposed. Among 
these improved procedures are those that use a time-variant distribution of the equivalent 
lateral forces (Bracci et al. 1997; Gupta and Kunnath 2000) and those that consider the 
contribution of higher modes (Sasaki et al. 1998; Chopra and Goel 2002; Goel and 
Chopra 2005). These improved procedures lead to better prediction in some cases, but 
none has been proven to be universally applicable. It is doubtful, thus, that nonlinear 
static methods may be used reliably to predict the collapse capacity of structures and 
estimate their margin of safety against a global collapse. 
 
Step-by-Step Finite-Element Analyses and Detection of Abrupt Response Increase 
 
Several investigators have used a step-by-step finite-element analysis and the detection of 
a sudden increase in lateral displacements to assess the collapse capacities of building 
structures. Ger et al. (1993) investigate the factors that led to the collapse of a 22-story 
steel building during the 1985 earthquake in Mexico City. To this end, they establish first 
realistic nonlinear hysteretic constitutive relationships for the individual members of the 
structure, which consisted of open-web girders, welded box columns, and H-shape 
diagonal braces. Then, using a three-dimensional finite-element model that includes the 
geometric stiffness of its structural elements, they analyze the building under the three 



components of the ground motion recorded at a station near the building’s site during the 
earthquake. From this analysis, they observe that most of the building’s longitudinal 
girders experience severe inelastic behavior, leading to ductility demands that exceeded 
the ductility capacities considered in their design. Because of the failed girders, a 
redistribution of forces takes place and local buckling occurs in the columns of the 
second to fourth floors. This local buckling, in turn, makes the affected columns 
lose their load-carrying capacity. In consequence, the building tilts and rotates, 
experiences significant drifts and P-∆ effects, and eventually collapses. Their results are 
in agreement with field observations of an almost identical building adjacent to the 
collapsed one, which was heavily damaged and was at the verge of collapse during the 
same earthquake. Perhaps a significant conclusion from this study is that it is possible to 
predict the collapse of a building using simplified models, provided realistic force-
deformation relationships are adopted. 

In like fashion, Challa and Hall (1994) investigate the nonlinear response and 
collapse of moment-resisting plane steel frames under the effect of severe earthquake 
ground motions. For this purpose, they analyze a 20-story frame designed to meet the 
Zone 4 requirements of the 1991 Uniform Building Code (ICBO 1991) under ground 
motions of two types. One is of the oscillatory type with long period components a 
scaled-up version of a record from the 1971 San Fernando earthquake, and the other is of 
the impulsive type (simulated displacement pulses intended to represent a near-field 
ground motion). Fiber elements are used to model the members of the frame and shear 
panel elements to model its beam-column joints. In addition, they consider the geometric 
stiffnesses of the elements and realistic stress-strain relationships for both the element 
fibers and the panel zones. They also update the deformed configuration of the structure 
at each time step in the step-by-step analysis of the structure. As such, strain-hardening, 
axial-flexural yield interaction, residual stresses, spread of yielding, P-∆ effects, and 
column buckling are accounted for in the analysis. However, stiffness and strength 
degradation is neglected, as is the effect of torsion and multicomponent ground motions. 
They find that the frame collapses under the oscillatory ground motion. That is, the frame 
reaches a state in which its lateral displacements grow quite large with each cycle of 
response and then a P-∆ instability unbound growth of lateral displacements occurs. The 
collapse takes place despite the fact that structural degradation is not accounted for, 
which, as Challa and Hall recognize, leads to unconservative results. Although 
stiffness and strength degradation is an important factor in the analysis of a structure 
when it is near collapse (Ibarra et al. 2005), it is likely that the consideration of this 
degradation in Challa and Hall’s study would have simply led to an earlier occurrence of 
the collapse or a collapse under a less severe ground motion. 

In a somewhat different study, Martin and Villaverde (1996) develop a 
methodology to (1) determine analytically if a structure excited by a given earthquake 
ground motion will experience a partial or total collapse, and (2) identify the structural 
elements that fail first and lead in consequence to the collapse of the structure. The 
method is formulated on the basis of a step-by-step, nonlinear, finite-element analysis and 
the examination at each integration step of the updated effective stiffness matrix of the 
structure. A partial or total collapse is detected when one or more of the pivots of the 
triangularized effective stiffness matrix become zero or negative. The part of the structure 
where the collapse is initiated i.e., region of local instabilities is located by identifying the 



structural nodes that correspond to the found zero or negative pivots. Martin and 
Villaverde apply their methodology to a steel cantilever beam and a two-story, three-
dimensional steel moment-resisting frame to validate the adequacy of the method. 

More recently, Mehanny and Deierlein (2001) propose a methodology to evaluate 
the likelihood of a structural collapse under earthquake effects using a component 
damage index developed by them. The methodology involves an inelastic time-history 
analysis with a finite-element model, the calculation of the aforementioned damage index 
for each of the components of the structure in accordance with the results of the analysis, 
the modification of the analytical model according to the calculated damage indices and 
the corresponding local damage effects, and a second-order analysis of this modified 
model under gravity loads alone. The ratio of the gravity load under which the structure 
reaches its global stability limit to the actual gravity load defines a global stability index 
that correlates collapse capacity to ground motion intensity. 
 
Incremental Dynamic Analyses 
 
Incremental dynamic analyses have recently emerged as a powerful means to study the 
overall behavior of structures, from their elastic response through yielding and nonlinear 
response and all the way to global dynamic instability (FEMA 2000a). An incremental 
dynamic analysis involves performing a series of nonlinear dynamic analyses in which 
the intensity of the ground motion selected for the collapse investigation is incrementally 
increased until the global collapse capacity of the structure is reached. It also involves 
plotting a measure of the ground motion intensity e.g., spectral acceleration at the 
fundamental natural period of the structure against a response parameter demand measure 
such as peak story drift ratio. The global collapse capacity is considered reached when 
the curve in this plot becomes flat. That is, when a small increase in the ground motion 
intensity generates a large increase in the structural response. As different ground 
motions i.e., ground motions with different frequency content and different durations lead 
to different intensity versus response plots, the analysis is repeated under different ground 
motions to obtain meaningful statistical averages. 

Incremental dynamic analyses have been proposed as early as 1977 (Bertero 
1980) and have been studied extensively lately by several investigators. Vamvatsikos and 
Cornell (2002), for example, describe the method in detail, determine intensity-response 
curves for several structures (a 20-story moment-resisting steel frame, a 5-story braced 
steel frame, and a 3-story moment-resisting frame with fracturing connections), examine 
the properties of these response-intensity curves, and propose techniques to perform 
efficiently an incremental dynamic analysis and summarize the information obtained 
from the different curves that different ground motions produce. They observe that 
incremental dynamic analyses are a valuable tool that simultaneously addresses the 
seismic demands on structures and their global capacities. They also call attention to 
some unusual properties of the response-intensity curves such as nonmonotonic behavior, 
discontinuities, multiple collapse capacities, and their extreme variability from ground 
motion to ground motion. Recognizing that a complete incremental dynamic analysis 
requires an intense computational effort, Vamvatsikos and Cornell (2004) propose a 
practical method to perform it efficiently, and show, through a detailed example with a 9-
story steel moment-resisting frame, how to apply it, how to interpret the results, and how 



to use these results within the framework of performance-based earthquake engineering. 
By exploiting the relationship between an incremental dynamic analysis and a static 
pushover analysis, they also develop (Vamvatsikos and Cornell 2005) a simplified 
method to estimate the seismic demands and collapse capacities of multi-degree-of-
freedom structures through the use of an equivalent single-degree-of-freedom system.  

Along the same lines, Ibarra and Krawinkler (2004) propose a methodology to 
evaluate the global collapse capacity of deteriorating frame structures under earthquake 
ground motions. The methodology is based on the use of a relative intensity measure, 
which they define as SaT1/g/ , where SaT1 denotes the 5%-damping spectral acceleration 
at T1, the fundamental period of the structure; g is the acceleration due to gravity; and  is 
a base shear coefficient equal to Vy /W, where Vy= yield base shear without P-∆ effects 
and W=weight of the structure. For structures with no overstrength, this intensity 
measure is equivalent to the reduction factor used in building codes for the analysis of 
yielding structures. The methodology is also based on the use of deteriorating hysteretic 
models to represent the cyclic behavior of the structural components under large inelastic 
deformations. These deteriorating models reproduce the important modes of deterioration 
observed in experimental tests. To evaluate collapse capacity, they increase the intensity 
measure until the intensity measure versus normalized maximum roof drift curve 
becomes flat. The relative intensity at which this curve becomes flat is then considered to 
be the collapse capacity of the structure. The evaluation is made using a probabilistic 
format to consider the uncertainties in the frequency content of ground motions and the 
deterioration characteristics of the structural elements. After implementing the 
deteriorating hysteretic models in the computer program Drain2DX (Prakash et al. 1993), 
Ibarra and Krawinkler use the proposed methodology to (1) conduct a parametric study 
with typical frame structures and study the influence of several parameters on the 
collapse capacity of structures; (2) develop collapse fragility curves, and (3) determine 
mean annual frequency curves. The structures considered in the parametric study are stiff 
and flexible single-bay frames with 3, 6, 9,12,15, and 18 stories with plasticity 
concentrated at the beam ends and the base of the columns, i.e., plastic hinges are 
permitted to form only at the beam ends and at the base of the columns. From the 
parametric study, they find that the two parameters that most influence the collapse of a 
structure are the slope of the postyield softening branch in the moment-rotation 
relationship of the yielding members and the displacement at which this softening begins. 
They also find that cyclic deterioration and hence ground motion duration is an important 
but not a dominant factor in the collapse of structures. This latter finding is in contrast 
with the findings from Takizawa and Jennings (1980), who, as described earlier, 
conclude that collapse is significantly influenced by ground motion duration. 

In a similar study, Ayoub et al. (2004) investigate the effect of stiffness and 
strength degradation on the seismic collapse capacity of structures. To this end, they 
perform an incremental dynamic analysis of a single-degree-of-freedom structure with a 
natural period of 1.0 s considering three degrading constitutive models that explicitly 
account for the possibility of collapse. They also develop collapse fragility curves for 
such a system. The constitutive models consider strength softening branch with negative 
stiffness and degradation of strength and stiffness under cyclic loading. It is assumed that 
collapse occurs when the system’s strength is reduced to zero. The three constitutive 
models considered are: (1) a bilinear model, (2) a modified Clough model, and (3) a 



pinching model. An energy-based criterion is used to define strength softening and 
stiffness and strength degradation. The study is carried out employing an ensemble of 80 
ground motions and different levels of degradation. They find that for a given ground 
motion intensity the probability of collapse of systems with low degradation is similar to 
the one for systems with moderate degradation. In contrast, that probability is much 
higher for systems with severe degradation. Observing that collapse assessment requires 
hysteretic models capable of reproducing all the important modes of deterioration 
detected in experimental tests, Ibarra et al. (2005) similarly investigate the effect of 
stiffness and strength degradation on the seismic demands on structures as they approach 
collapse. For this purpose, they develop simple hysteretic models that include stiffness 
and strength deterioration properties; calibrate them utilizing experimental data from tests 
of steel, plywood, and reinforced concrete components; and determine employing 
alternatively some of the proposed models the response of a single-degree-of-freedom 
system with a natural period of 0.9 s and a damping ratio of 5% under an ensemble of 40 
ground motions. They also scale the considered ground motions to various intensity 
levels and develop demand versus intensity curves to evaluate in each case the collapse 
capacity of the system. They conclude that deterioration is an overriding consideration in 
the seismic response analysis of a structure when the structure is near the limit state of 
collapse. 

Finally, Lee and Foutch (2002) evaluate the performance of 20 steel frame 
buildings designed according to the recommendations of the 1997 NEHRP provisions 
(FEMA 1998) and considering prequalified post-Northridge beam-column connections. 
To this end, the buildings are subjected to a nonlinear time-history analysis under an 
ensemble of 20 earthquake ground motions. For a performance objective of collapse 
prevention, they scale the ground motions so as to have spectral accelerations that have a 
2% probability of being exceeded in 50 years. The analytical models used in the analysis 
account for the ductility of beam-column joints, the panel zone deformations, and the 
influence of interior gravity frames. The behavior of the beam-column joints is 
characterized by a gradual strength degradation after a rotation of 0.03 rad. To evaluate 
the buildings’ performance for the afore mentioned collapse prevention objective, they 
compare the maximum story drift demands against the buildings’ drift capacities. Local 
and global drift capacities are considered in this comparison. The local drift capacities are 
the maximum drift angles the beam-column joints can sustain before losing their gravity 
load carrying ability. Based on the results from full-scale experiments, they consider a 
local drift capacity of 0.07 rad. The global drift capacities are determined by performing 
an incremental dynamic analysis for each of the buildings and plotting the corresponding 
maximum story drift ratio versus spectral acceleration curves. A building’s global drift 
capacity is considered to be the maximum story drift ratio at which the maximum story 
drift ratio versus spectral acceleration curve becomes flat, or, alternatively, the maximum 
story drift ratio at which this curve reaches a slope equal to 20% of the slope in the elastic 
region of the curve. However, if this slope is not reached before a story drift ratio of 
0.10 is attained, it is assumed that the global drift capacity is equal to 0.10. Based on the 
calculated drift demands and assumed local and global capacities, Lee and Foutch 
conclude that all the buildings considered in the study satisfy the collapse prevention 
performance objective. 
 



Shake Table Collapse Experiments 
 
Only a few experiments have been conducted in which structural models are tested all the 
way to collapse. Kato et al. (1973) test simple models to collapse or near collapse on a 
shaking table and compare their response with the response obtained analytically 
considering strain hardening and P-∆ effects. The models are formed with 15 cm (5.9 in.) 
high H steel columns fixed at both ends and a concentrated mass on top of the columns. 
They conclude that except for some softening of the hysteresis loops due to Bauschinger 
effect, the test results are well predicted by the analytical model. 

Vian and Bruneau 2003 also test to collapse on a shaking table 15 simple 
specimens, each built with four steel columns connected to a rigid mass. The column 
heights range from 91.7 mm (3.6 in.) to 549.5 mm (21.6 in.) and are designed to have a 
slenderness ratio of 100, 150, or 200. The tests are conducted under the N-S component 
of the 1940 El Centro ground acceleration record, progressively increasing the intensity 
of the motion until the specimens collapse. From their test results, they observe that the 
inelastic behavior of the specimens has a high dependence on the traditional stability 
factor [defined for a single-story structure as P/K0H, where P= vertical load; K0=initial 
stiffness; and H= story height]. Specimens with a stability factor of less than 0.1 are able 
to withstand the ground motions with larger ductility demands and accumulated drifts 
than those with a stability factor of more than 0.1. They also compare their experimental 
results against those obtained analytically using a simple hysteretic model. They find that 
the analytical results do not provide a good match to the experimental data. 

On a shake table too, Kanvinde (2003) tests to collapse or near collapse 19 simple 
structures with a story height of 254 mm (10 in.), a bay width of 610 mm (24 in.), and a 
floor plan of 305 mm by 610 mm (12 in. by 24 in.). The structures are built with four 
steel flat columns connected to a rigid 1.425 kN (320 lb) steel mass. They are tested 
under two of the ground motions recorded during the 1994 Northridge earthquake: 
Obregon Park and Pacoima Dam. The specimens collapse after plastic hinges are formed 
at the top and bottom of the columns and a story mechanism is formed. Kanvinde also 
conducts a nonlinear, large displacement, dynamic analysis of the specimens to evaluate 
the ability of analytical tools to predict their response under very large displacements. For 
this purpose, he uses the open system for Earthquake Engineering simulation 
(OpenSEES) program being developed by the Pacific Earthquake Engineering Research 
Center (OpenSEES 2005). The hysteretic model used in the analyses is the Giufré-
Menegotto-Pinto model, which is characterized by a yield envelope and a nonlinear 
hardening exponential law. The parameters for this model are determined from 
monotonic and cyclic tests of the columns used to build the experimental models. By 
comparing the displacement time histories obtained analytically and experimentally, 
Kanvinde finds that the analytical simulations predict with an average error of about 15% 
the results from the shake table tests. 

Similarly, Elwood and Moehle (2003) conduct shake table tests of two one-half 
scale reinforced concrete plane frames to investigate the mechanisms that lead to the 
seismic collapse of reinforced concrete frames with nonductile or low-ductility columns. 
The focus of the tests is the loss of column axial capacity due to column shear failure and 
the redistribution of loads that takes place in a structure after the axial failure of a 
column. The two test specimens consist of three columns fixed at their base and 



interconnected by a beam at their upper end. The only difference between the two 
specimens is the magnitude of the axial force applied to the center column. This center 
column is designed with widely spaced transverse reinforcement to make it vulnerable to 
a shear failure and a subsequent axial failure during the tests. A scaled version of a 
ground motion recorded during the 1985 Chile earthquake is used as input. Elwood and 
Moehle also compare the measured response of the test specimens with results from a 
nonlinear dynamic analysis of an analytical model of the shake table specimens. This 
analytical model is formulated with a proposed column element that incorporates 
empirical models that predict the column drifts at the time of shear and axial load 
failures. These empirical models are developed to account for and evaluate the influence 
of such failures in a building frame analysis. They find that the analytical model provides 
a good estimate of the measured drifts up to the point of shear failure but fails to capture 
the large displacements that occur after that. Because of the underestimation of the 
column drifts, it also fails to detect the axial failure of the center column in the specimen 
with the larger central axial load. 

Although not precisely a shake table experiment, it is also worthwhile describing 
the full-scale experiment conducted by Nakashima et al. (2006). Nakashima and 
coworkers test to collapse under quasistatic cyclic loading a full-scale model of a steel 
moment-resisting frame. The frame has three stories, two bays in the longitudinal 
direction, and one bay in the transverse direction. The plan dimensions are 12 m by 8.25 
m (39.4 ft by 27.1 ft) and the total height is 8.5 m (27.9 ft.) The columns and beams are 
made with cold-formed square tubes and hot-rolled wide flange sections, respectively. 
The floors are formed with metal deck sheets and cast-in-place reinforced concrete. The 
horizontal loading is applied by two jacks placed at the center of the third floor along the 
frame’s longitudinal direction. The loading protocol consists of displacement amplitudes 
that produce overall drift angles horizontal displacements at the loading point over frame 
height of 1/ 200, 1/ 100, 1/ 75, 1/ 50, 1/ 20, and 1/ 15 rad, with each amplitude repeated 
two or three times. In this test, they observe that in the last portion of the loading the first-
story shearforce resistance decreases significantly owing to column local buckling, 
plastic elongation of the anchor bolts at the base of the columns, and crashing of the 
concrete underneath the column base plates. In the end, local buckling occurs at the top 
of the columns of this story and a story collapse mechanism develops. 

Nakashima and coworkers also perform a series of numerical simulations with an 
analytical model of the tested frame to investigate how well commonly used methods of 
analysis can predict the observed experimental behavior of the frame. In this analytical 
model, the beams and columns are represented with elastic beam elements and bilinear 
rotational springs at the ends of the elements. A rotational spring is also inserted at the 
bottom of the first-story columns to account for the flexibility of the column base plates 
and anchors. P-∆ effects and the deformation of the panel zones at the beam-column 
joints are accounted for. They find that with the proper adjustment of the basic material 
properties, strain hardening after yielding, and the composite action between the steel 
beams and the reinforced concrete floor slabs, the numerical simulations are capable of 
accurately predicting the observed cyclic behavior of the frame up to a drift angle of 
1/ 25 rad. Because the simple analytical model used cannot account for the deterioration 
that takes place in the structural elements at large drifts, the numerical simulations fail to 
reproduce the experimental results in the last portion of the loading. 



 
Needs and Challenges 
 
It may be inferred from the foregoing literature review that the assessment of the capacity 
of a structure to resist an earthquake-induced collapse is a complicated task. The reason is 
that many factors are involved and it is difficult to account for many of these factors 
accurately. Factors that may significantly affect the collapse capacity of a structure are: 
(1) the characteristics of the ground motion e.g., intensity, frequency content, and 
duration exciting the structure; (2) the dynamic properties of the structure; (3) the 
geometry of the structure e.g., torsional effects; (4) the post-elastic and post-buckling 
behavior of its components; (5) the strength and stiffness of these components; (6) the 
degradation of this strength and this stiffness after several loading cycles; (7) the 
interaction between vertical loads and lateral drifts; (8) the interaction of the structure 
with its nonstructural  components e.g., the effect of components such as stairways and 
cladding on structural stiffness and strength; (9) soil-structure interaction e.g., the 
additional lateral displacements and damping introduced by the flexibility of the 
foundation soil, or the changes in the configuration of the structure due to large soil 
settlements or localized soil failures; and (10) residual stresses and initial imperfections 
e.g., the influence of fabrication residual stresses and member out-of-straightness on 
member stiffness. It seems, therefore, that an accurate analytical prediction of the 
collapse capacity of a structure is possible only if the prediction is attained through a 
step-by-step dynamic finite-element analysis in which (1) the equations of motion are 
established on the basis of the deformed configuration of the structure; (2) this deformed 
configuration is updated at each step; (3) nonlinear large-deformation elements are used; 
(4) the mesh considered is sufficiently fine to accurately account for the spread of 
plasticity, local instabilities, and crack formation; (5) a characteristic response of the 
structure is monitored to identify a rapid increase in its magnitude; and (6) the analysis is 
repeated under a sufficiently large number of different ground motions with different 
characteristics to obtain statistically meaningful averages.  

It may also be inferred from the presented literature review that the currently 
available methods to assess the collapse capacity of a structure are not completely 
satisfactory. Those based on single-degree-of-freedom models, although simple, are 
unreliable because, as pointed out by Bernal (1992, 1998), the collapse capacity of a 
structure strongly depends on the assumed shape of the failure mechanism and this shape 
cannot be predicted a priori, not even with the help of a pushover analysis. Nonlinear 
static methods are also unreliable because, as discussed earlier, they lack a theoretical 
foundation, are based on incorrect assumptions, and neglect important effects. The 
methods based on finite-element models seem to be fine except that to be reliable it is 
necessary to account properly for the many factors listed earlier. This renders them 
computationally demanding and therefore impractical. Likewise, the methods based on an 
incremental dynamic analysis, besides being also computationally demanding, may also 
be unreliable. The reason is that these methods are based on ground motion intensity 
versus structural response curves that are difficult to interpret as these curves may turn 
out to be non-monotonic and discontinuous, may not reach a plateau to clearly indicate a 
collapse occurrence, or may exhibit this plateau at several levels of the ground motion 
intensity (Vamvatsikos and Cornell 2001). They may also be substantially different from 



ground motion to ground motion and thus show a considerable dispersion. This means 
that the methods based on an incremental dynamic analysis may require the consideration 
of a large number of ground motions to obtain the pertinent statistical averages with a 
high level of confidence (Krawinkler et al. 2003), or the search for alternative intensity 
measures to reduce such dispersion. With methods based on an incremental dynamic 
analysis, the results may also depend on the selection of the parameter used to measure 
the ground motion intensity spectral acceleration at the fundamental period of the 
structure versus Arias intensity, for example.  

Lastly, it may be observed that (1) the reliability of collapse assessment methods 
may be affected by the accuracy and convergence problems that are likely to occur due to 
the high levels of nonlinear behavior and large displacements a structure may experience 
when it is near collapse; (2) the adequacy of the available collapse assessment methods 
has not been verified through experimental or field studies; (3) only a few shake table 
experiments have been carried out to study the collapse of structures and verify the 
adequacy of collapse assessment methods; (4) realistic models of real structures have 
never been tested to collapse under earthquake excitations; (5) little information is 
currently available about the real capacity of structures to resist a collapse; and (6) little is 
known about the inherent safety margin against collapse in code-designed structures 
(Maison and Bonowitz 2004).  

It is clear, thus, that further research is needed before the collapse capacities of 
structures and the associated safety margin against collapse may be evaluated with 
confidence. There is a need for experiments with realistic full-scale specimens 
subassemblies and whole structures in which the specimens are tested all the way to 
collapse. These experiments are needed to (1) advance the understanding of the 
conditions that lead to a collapse in real, full-scale, three-dimensional structures; (2) 
evaluate the capability of existing numerical analysis techniques to predict building 
behavior at the deformation levels involved when a structure is near collapse; (3) assess 
the adequacy of current collapse assessment methods; (4) generate data on the hysteretic 
behavior of structural components as they approach the failure state; and (5) calibrate 
simplified analysis models. There is also a need to evaluate the inherent safety margin in 
current seismic provisions against a structural collapse and establish whether or not this 
safety margin is adequate enough. 

Ultimately, the great challenge for the profession is the development of simplified 
techniques that correlate well with experiments and advanced methodologies to estimate 
in a reliable way the aforementioned collapse capacities and safety margin. These 
techniques are urgently needed to facilitate (1) the scrutinization of present and future 
code provisions in regard to their ability to provide an adequate safety margin against 
collapse; (2) the development of design procedures that explicitly would make structures 
resist a collapse with a specified safety margin; and (3) the identification and 
strengthening of weak structural components that may compromise the collapse capacity 
of a structure. Undoubtedly, the availability of such techniques could help improve the 
seismic performance of building structures and minimize the number of catastrophic 
failures during earthquakes. 
 
 
 



References 
 
Adam, C., Ibarra, L. F., and Krawinkler H. 2004. “Evaluation of P-delta effects in non-
deteriorating MDOF structures from equivalent SDOF systems.” Proc., 13th World Conf. 
on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 3407. 
AISC. 1992. Seismic provisions for structural steel buildings, Chicago. 
 
Araki, Y., and Hjelmstad, K. D. 2000. “Criteria for assessing dynamic collapse of 
elastoplastic structural systems.” Earthquake Eng. Struct. Dyn., 298, 1177–1198. 
 
Astaneh-Asl, A., Modjtahedi, D., and McMullin, K. 1998. “Stability of damaged steel 
moment frames in Los Angeles.” Eng. Struct., 204–6, 433–446. 
 
Ayoub, A., Mijo, C., and Chenouda, M. 2004. “Seismic fragility analysis of degrading 
structural systems.” Proc., 13th World Conf. on Earthquake Engineering, Vancouver, 
B.C., Canada, Paper No. 2617. 
 
Bernal, D. 1987. “Amplification factors for inelastic P-∆ effects in earthquake analysis.” 
Earthquake Eng. Struct. Dyn., 155, 635–651. 
 
Bernal, D. 1998. “Instability of buildings during seismic response.” Eng. Struct., 204–6, 
496–502. 
 
Bernal, D. 1992. “Instability of buildings subjected to earthquakes.” J. Struct. Eng., 1188, 
2239–2260. 
 
Bertero, V. V. 1980. “Strength and deformation capacities of buildings under extreme 
environments.” Structural engineering and structural mechanics, A Volume Honoring 
Edgar P. Popov, K. Pister, ed., Prentice-Hall, Englewood Cliffs, N.J., 188–237. 
 
Bertero, V. V., Anderson, J. C., and Krawinkler, H. 1994. Performance of steel building 
structures during the Northridge Earthquake, Rep. No. UCB/EERC-94/09, Earthquake 
Engineering Research Center, Univ. of California, Berkeley, Calif. 
 
Bracci, J. M., Kunnath, S. K., and Reinhorn, A. M. 1997. “Seismic performance and 
retrofit evaluation of reinforced concrete structures.” J. Struct. Eng., 1231, 3–10. 
 
Challa, V. R. M., and Hall, J. F. 1994. “Earthquake collapse analysis of steel frames.” 
Earthquake Eng. Struct. Dyn., 2311, 1199–1218. 
 
Chi, W. M., El-Tawil, S., Deierlein, G. G., and Abel, J. F. 1998. “Inelastic analysis of a 
17-story steel framed building damaged during Northridge.” Eng. Struct., 204–6, 481–
495. 
 
Chopra, A. K., and Goel, R. K. 2002. “A modal pushover analysis procedure for 
estimating seismic demands for buildings.” Earthquake Eng. Struct. Dyn., 313, 561–582. 



 
Chopra, A. K., and Goel, R. K. 2004. “Evaluation of modal and FEMA pushover 
analyses: Vertically ‘regular’ and irregular generic frames.” Earthquake Spectra, 201, 
255–271. 
 
Comartin, C. D., ed. 1995. “Guam earthquake of August 8, 1993 Reconnaissance 
Report.” Earthquake Spectra, Supplement B to Vol. 11. 
 
Comartin, C. D., Greene, M., and Tubbesing, S. K., eds. 1995. “The Hyogo-Ken Nanbu 
earthquake, January 17, 1995.” Preliminary Reconnaissance Rep., Earthquake 
Engineering Research Institute, Oakland, Calif. 
 
Elwood, K. J., and Moehle, J. P. 2003. “Shake table tests and analytical studies on the 
gravity load collapse of reinforced concrete frames.” Rep. 2003/01, Pacific Earthquake 
Engineering Research Center, Univ. of California, Berkeley, Calif. 
 
Esteva, L. 2002. “Optimum damage-control policies for structural systems under seismic 
risk conditions.” Proc., 3rd World Conf. on Structural Control, F. Casciati, ed., Wiley, 
Chichester, U.K., 1, 33–46. 
 
FEMA. 1997. “NEHRP guidelines for the seismic rehabilitation of buildings.” Publ. No. 
273, prepared by the Applied Technology Council for the Building Seismic Safety 
Council, Washington, D.C. 
 
FEMA. 1998. “NEHRP recommended provisions for seismic regulations for new 
buildings and other structures: Part I-provisions.” Publ. No. 302, 1997 Ed., prepared by 
the Building Seismic Safety Council for the Federal Emergency Management Agency, 
Washington, D.C. 
 
FEMA. 2000a. “Recommended seismic design criteria for new steel moment frame 
buildings.” Publ. No. 350, Washington, D.C. 
 
FEMA. 2000b. “Prestandard and commentary for the seismic rehabilitation of buildings.” 
Publ. No. 356, prepared by the American Society of Civil Engineers for the Federal 
Emergency Management Agency, Washington, D.C. 
 
Ger, J. F., Cheng, F. Y., and Lu, L. W. 1993. “Collapse behavior of Pino Suarez Building 
during 1985 Mexico City earthquake.” J. Struct. Eng., 1193, 852–870. 
 
Goel, R. K., and Chopra, A. K. 2004. “Evaluation of modal and FEMA pushover 
analyses: SAC buildings.” Earthquake Spectra, 201, 225–254. 
 
Goel, R. K., and Chopra, A. K. 2005. “Extension of modal pushover analysis to compute 
member forces.” Earthquake Spectra, 211, 125–139. 
 



Griffith, M. C., Kawano, A., and Warner, R. F. 2002. “Towards a direct collapse-load 
method of design for concrete frames subjected to severe ground motions.” Earthquake 
Eng. Struct. Dyn., 3110, 1879–1888. 
 
Gupta, B., and Kunnath, S. K. 2000. “Adaptive spectra-based pushover procedure for 
seismic evaluation of structures.” Earthquake Spectra, 162, 367–391. 
Hall, J. F., ed. 1994. “Northridge Earthquake January 17, 1994: Preliminary 
Reconnaissance Report.” Publ. No. 94–01, Earthquake Engineering Research Institute, 
Oakland, Calif. 
 
Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. 1995. “Nearsource ground 
motion and its effects on flexible buildings.” Earthquake Spectra, 114, 569–605. 
 
Hamburger, R. O. 1997. “A framework for performance-based earthquake resistive 
design.” The EERC-CUREE Symp. in Honor of Vitelmo V. Bertero, UCB/EERC Rep. 
No. 97/05, Earthquake Engineering Research Center, Univ. of California, Berkeley, 
Calif., 101–108. 
 
Huang, S. C., and Skokan, M. J. 2002. “Collapse of the Tungshing building during the 
1999 Chi-Chi earthquake in Taiwan.” Proc., 7th U.S. National Conf. on Earthquake 
Engineering, Boston. 
 
Ibarra, L. F., and Krawinkler, H. 2004. “Global collapse of deteriorating MDOF 
systems.” Proc. 13th World Conf. on Earthquake Engineering, Vancouver, B.C., Canada, 
Paper No. 116. 
 
Ibarra, L. F., Medina, R. A., and Krawinkler, H. 2005. “Hysteretic models that 
incorporate strength and stiffness deterioration.” Earthquake Eng. Struct. Dyn., 3412, 
1489–1511. 
 
International Conference of Building Officials ICBO. 1988. Uniform building code, 
Whittier, Calif. 
 
International Conference of Building Officials ICBO. 1991. Uniform building code, 
Whittier, Calif. 
 
Jain, S. K., Lettis, W. R., Murty, C. V. R., and Bardet, J. P., eds. 2002. “Bhuj, India, 
Earthquake of January 26, 2001, Reconnaissance Report.” Earthquake Spectra, 
Supplement A to Vol. 18. 
 
Jennings, P. C., and Husid, R. 1968. “Collapse of yielding structures during earthquakes.” 
J. Engrg. Mech. Div., 945, 1045–1065. 
 
Kanvinde, A. M. 2003. “Methods to evaluate the dynamic stability of structures—Shake 
table tests and nonlinear dynamic analyses.” Winner EERI Annual Student Paper 
Competition, Earthquake Engineering Research Institute, Oakland, Calif. 



 
Kato, B., Akiyama, H., Suzuki, H., and Fukuzawa, Y. 1973. “Dynamic collapse tests of 
steel structural models.” Preprints, 5th World Conf. on Earthquake Engineering, Rome. 
Kim, S., and D ’Amore, E. 1999. “Push-over analysis procedure in earthquake 
engineering.” Earthquake Spectra, 1153, 417–434. 
 
Krawinkler, H., Medina, R., and Alavi, B. 2003. “Seismic drift and ductility demands and 
their dependence on ground motions.” Eng. Struct., 255, 637–653. 
 
Krawinkler, H., and Seneviratna, G. D. P. K. 1998. “Pros and cons of a pushover analysis 
of seismic performance evaluation.” Eng. Struct., 204–6, 452–464. 
 
Lee, K., and Foutch, D. A. 2002. “Performance evaluation of new steel frame buildings 
for seismic loads.” Earthquake Eng. Struct. Dyn., 313, 653–670. 
 
Leiva, G., and Wiegand, W. 1996. “Analysis of a collapsed building using the 
displacement seismic design approach.” Proc., 11th World Conf. on Earthquake 
Engineering, Acapulco, Mexico, Paper No. 1512. 
 
Li, Y. R., and Jirsa, J. O. 1998. “Nonlinear analyses of an instrumented structure 
damaged in the 1994 Northridge earthquake.” Earthquake Spectra, 142, 265–283. 
 
MacRae, G. A. 1994. “P-∆ effects on single-degree-of-freedom structures in 
earthquakes.” Earthquake Spectra, 103, 539–568. 
 
Maison, B. F., and Bonowitz, D. 2004. “Discussion of ‘Seismic performance evaluation 
of pre-Northridge steel frame buildings with brittle connections’.” J. Struct. Eng., 1304, 
690–691. 
 
Maison, B. F., and Hale, T. H. 2004. “Case study of a Northridge welded steel moment-
frame building having severed columns.” Earthquake Spectra, 203, 951–973. 
 
Martin, S. C., and Villaverde, R. 1996. “Seismic collapse of steel frame structures.” 
Proc., 11th World Conf. on Earthquake Engineering, Acapulco, Mexico, Paper No. 475. 
 
Medina, R. A., and Krawinkler, H. 2005. “Strength design issues relevant for the seismic 
design of moment-resisting frames.” Earthquake Spectra, 212, 415–439. 
 
Mehanny, S. S. F., and Deierlein, G. G. 2001. “Seismic damage and collapse assessment 
of composite moment frames.” J. Struct. Eng., 1279, 1045–1053. 
 
Miranda, E., and Akkar, D. 2003. “Dynamic instability of simple structural systems.” J. 
Struct. Eng., 12912, 1722–1726. 
 



Nakashima, M., Inoue, K., and Tada, M. 1998. “Classification of damage to steel 
buildings observed in the 1995 Hyogoken-Nanbu earthquake.” Eng. Struct., 204–6, 271–
281. 
 
Nakashima, M., Matsumiya, T., Suita, K., and Liu, D. 2006. “Test on full-scale three-
story steel moment frame and assessment of ability of numerical simulation to trace 
cyclic inelastic behavior.” Earthquake Eng. Struct. Dyn., 351, 3–19. 
 
OpenSEES. 2005. Open system for earthquake engineering simulation, Pacific 
Earthquake Engineering Research Center, http://opensees.berkeley.edu. 
 
Osteraas, J., and Krawinkler, H. 1988. “The Mexico earthquake of September 19, 1985—
Behavior of steel buildings.” Earthquake Spectra, 51, 51–88. 
 
Prakash, V., Powell, G. H., and Campbell, S. 1993. “DRAIN-2DX: Basic program 
description and user guide.” Report No. UCB/SEMM1993/17, Univ. of California, 
Berkeley, Calif. 
 
Roeder, C. W., Schneider, S. P., and Carpenter, J. E. 1993. “Seismic behavior of 
moment-resisting steel frames: Analytical study.” J. Struct. Eng., 1196, 1866–1884. 
 
Sasaki, K. K., Freeman, S. A., and Paret, T. F. 1998. “Multimode pushover procedure 
MMP—A method to identify the effects of higher modes in a pushover analysis.” Proc., 
6th U. S. National Conf. on Earthquake Engineering, Seattle, Wash. 
 
Schiff, A. J., ed. 1991. “Philippines Earthquake Reconnaissance Report.” Earthquake 
Spectra, Supplement A to Vol. 7. 
 
Schneider, S. P., Roeder, C. W., and Carpenter, J. E. 1993. “Seismic behavior of 
moment-resisting steel frames: Experimental study.” J. Struct. Eng., 1196, 1885–1902. 
 
Takizawa, H., and Jennings, P. C. 1980. “Collapse of a model for ductile reinforced 
concrete frames under extreme earthquake motions.” Earthquake Eng. Struct. Dyn., 8, 
117–144. 
 
Uzarski J., and Arnold C., Tech. eds. 2001. “Chi-Chi, Taiwan, Earthquake of September 
21, 1999, Reconnaissance Report.” Earthquake Spectra, Supplement A to Vol. 17. 
 
Vamvatsikos, D., and Cornell, C. A. 2002. “Incremental dynamic analysis.” Earthquake 
Eng. Struct. Dyn., 313, 491–514. 
 
Vamvatsikos, D., and Cornell, C. A. 2004. “Applied incremental dynamic analysis.” 
Earthquake Spectra, 202, 523–553. 
 



Vamvatsikos, D., and Cornell, C. A. 2005. “Direct estimation of seismic demand and 
capacity of multidegree-of-freedom systems through incremental dynamic analysis of 
single degree of freedom approximation.” J. Struct. Eng., 1314, 589–599. 
 
Vian, D., and Bruneau, M. 2003. “Tests to structural collapse of single degree of freedom 
frames subjected to earthquake excitations.” J. Struct. Eng., 12912, 1676–1685. 
 
Villaverde, R. 1991. “Explanation for the numerous upper floor collapses during the 1985 
Mexico City earthquake.” Earthquake Eng. Struct. Dyn., 203, 223–241. 
 
Williamson, E. B. 2003. “Evaluation of damage and P-∆ effects for systems under 
earthquake excitation.” J. Struct. Eng., 1298, 1036–1046. 
 
Wyllie, L. A. et al. 1986. “The Chile Earthquake of March 3, 1985.” Earthquake Spectra, 
22, 249–513. 
 
Wyllie L. A., Jr., and Filson J. R., eds. 1989. “Armenia Earthquake Reconnaissance 
Report.” Earthquake Spectra. 
 
Youd T. L., Bardet J. P., and Bray J. D., eds. 2000. “Kocaeli, Turkey, earthquake of 
August 17, 1999 Reconnaissance Report.” Earthquake Spectra, Supplement A to Vol. 16. 
 
 




