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Abstract

Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from 

alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 

50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer 

considered a completely irreversible condition, no effective anti-fibrotic therapies are currently 

available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute 

inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality 

rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, 

which improve short-term survival but do not affect long-term survival. Liver transplantation is a 

curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol 

use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms 

underlying ALD are complex and have not been fully elucidated. Various molecules, signaling 

pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD 

progression. This review highlights established and emerging concepts in ALD clinicopathology, 

their underlying molecular mechanisms, and current and future ALD treatment options.

Keywords

Alcoholic liver disease (ALD); Alcoholic hepatitis (AH); Alcoholic cirrhosis; Corticosteroids; 
Liver transplantation

☆Edited by Yuxia Jiang, Peiling Zhu and Genshu Wang.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los 
Angeles, CA, USA., Ekihiro.Seki@cshs.org (E. Seki).
Authors’ contributions
K. Ohashi, M. Pimienta: writing of the manuscript, contributing equally to this work. E. Seki: writing of the manuscript, critical 
revision of the manuscript for important intellectual content, and obtained funding.

Conflict of interest
The authors declare that they have no conflict of interest.

HHS Public Access
Author manuscript
Liver Res. Author manuscript; available in PMC 2019 June 18.

Published in final edited form as:
Liver Res. 2018 December ; 2(4): 161–172. doi:10.1016/j.livres.2018.11.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Excessive or chronic alcohol intake causes serious health problems that affect the brain, 

heart, liver, pancreas, gastrointestinal tract, and immune system. In the United States (US) 

and Europe, alcohol use disorder (AUD) is the fifth leading cause of death. Worldwide, 

alcohol use kills 3.3 million people annually, which accounts for 5.9% of all deaths.1–3 

Although low alcohol consumption might have a beneficial effect on ischemic heart disease, 

alcohol consumption dose-dependently increases the risk of alcoholic liver disease (ALD).4 

In the last two decades, alcohol consumption has decreased slightly in some European 

countries but increased in China and the US.5,6 Concomitantly, the prevalence of ALD has 

increased and is expected to increase further.7

ALD is a spectrum of conditions that ranges from alcoholic steatosis to steatohepatitis, 

fibrosis, and cirrhosis. Up to 50% of cirrhosis-associated deaths are due to alcohol abuse in 

the US.8 To date, there are no US Food and Drug Administration (FDA)-approved anti-

fibrotic agents for cirrhosis. Cirrhosis treatments rely on supportive care measures, such as 

ascites control and the treatment of esophageal varices. Liver transplantation is a potential 

curative treatment, but it is only indicated for end-stage decompensated cirrhosis, and 

patients must abstain from alcohol use for 6 months prior to transplantation.

Excessive and prolonged alcohol use can also cause a distinct clinical syndrome called 

alcoholic hepatitis (AH), which produces severe clinical symptoms including signs of liver 

decompensation (e.g., jaundice, infection, bleeding from esophageal varices, ascites, hepatic 

encephalopathy). Currently, the primary therapy for AH comprises corticosteroids, but the 6-

month-mortality of severe AH is still high (approximately 40%).9 While liver transplantation 

is a treatment option, severe AH patients often die before meeting the transplantation 

criteria. Therefore, only a limited number of severe AH patients can undergo liver 

transplantation.10,11 A better under-standing of molecular mechanisms underlying ALD is 

urgently needed to develop effective therapies. This review highlights the established and 

emerging concepts in ALD clinicopathology and the associated molecular mechanisms as 

well as current and future treatment options for ALD.

2. Risk factors for ALD

Chronic alcohol consumption, the consumption of large quantities of alcohol, and specific 

drinking patterns are associated with progression from steatosis to steatohepatitis, liver 

fibrosis, and cirrhosis (Fig. 1).12 Most patients with ALD do not develop cirrhosis even with 

long-term alcohol use (Fig. 1). Various factors influencing disease progression include 

gender, ethnicity, genetic variants, viral hepatitis, and obesity.13

2.1 Gender and ALD

Women tend to use alcohol less than men; therefore, women have a lower risk for AUD than 

men.14 Large national longitudinal surveys found AUD prevalence to be three-fold greater 

for men than women in the 2001e2002 survey and two-fold greater in the 2012e2013 survey.
15 Despite lower levels of alcohol consumption, women are more susceptible to the 

hepatotoxic effects of alcohol. Women progress rapidly to fibrosis and cirrhosis compared 
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with men, and fibrosis persists even after cessation.16 Women have less gastric alcohol 

dehydrogenase (ADH) activity than men. The reduced gastric alcohol breakdown in women 

allows larger amounts of alcohol to enter the bloodstream and increases alcohol 

bioavailability.17 This alcohol bioavailability has downstream effects on hormone activity.

The liver is the site of steroid hormone metabolism and a target organ of hormonal actions. 

Estrogen receptors are expressed in both parenchymal and non-parenchymal cells of the 

liver. Alcohol consumption increases estrogen receptor expression in human and animal 

livers.18 Hormone activity also affects ALD. For example, estrogen treatment increases but 

ovariectomy reduces alcohol-induced hepatic steatosis. Moreover, estrogen treatment 

increased and ovariectomy decreased tumor necrosis factor (TNF) α production in Kupffer 

cells and plasma endotoxin levels in alcoholfed rats.19 These estrogen-induced changes in 

portal endotoxin, TNFα, and CD14 levels were diminished by treatment with oral 

antibiotics,20 suggesting that estrogen affects Kupffer cell sensitivity and intestinal 

permeability in ALD. Indeed, treatment of human intestinal cells with estrogen in doses 

equivalent to those found in women enhanced alcohol-induced apoptosis.21 These studies 

show that estrogen enhances the sensitivity of Kupffer cells to alcohol and endotoxin, and 

increases alcohol-induced gut permeability.

On the other hand, basal levels of hepatoprotective betaine-homocysteine methyltransferase 

are increased in male mice compared with female mice after ethanol administration.22,23 

The ratio of pro-inflammatory ω−6 and anti-inflammatory ω−3 fatty acids (FAs), which 

affects ALD development, is also different between genders. This ratio was shifted towards a 

pro-inflammatory state in female drinkers but not male drinkers. Levels of the anti-

inflammatory FAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 

higher in male drinkers but not female drinkers.24 These studies show that differences in 

hormone activity and levels of hepatoprotective factors between females and males may 

account for the increase of the susceptibility of females to alcohol-induced liver injury.

2.2. Drinking pattern as a risk for ALD

Recently, there has been the shift in high-risk drinking patterns, such as heavy drinking and 

binge drinking.25 Binge drinking, defined by the National Institute on Alcohol Abuse and 

Alcoholism (NIAAA) as drinking episodes of five or more drinks in men, or four or more 

drinks in women, is on the rise. A 2010 survey by the Centers for Diseases Control reported 

that approximately 38 million US adults (1 in 6) engage in binge drinking. Binge drinking is 

particularly concerning in young adults. Approximately 50% of college students reported 

engaging in binge drinking.26 Binge drinking in young adulthood is a risk factor for alcohol 

abuse and dependence later in life, with consequent risks for developing ALD.27 Because 

women are more susceptible to ALD and the consumption gender gap is narrowing, younger 

women who are more likely to binge drink than drink chronically are particularly vulnerable 

to the deleterious effects of alcohol. Interestingly, experimental animal models suggest that 

female hormones may contribute to high levels of binge drinking in female mice.28 These 

results are consistent with previous studies showing that depleting circulating female 

hormones in rodents reduces alcohol intake.29
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Epidemiological data suggest that binge drinking is partially responsible for increasing rates 

of cirrhosis and cirrhosis-related death, although this conclusion is controversial.30 

Experimental data has shown intra- and extrahepatic changes that acute alcohol intoxication 

and repeated binge drinking exacerbate liver injury, such as Kupffer cell activation, 

increased intestinal permeability, elevated cytokine production, increased oxidative stress, 

mitochondrial dysfunction, and hepatic apoptosis.31–34 The studies investigating the 

pathophysiological effects of binge drinking on the liver have their limitations. Further 

studies investigating the quality of alcohol consumed per binge and binge frequency are 

needed to evaluate how extensively this drinking pattern exacerbates liver injury. Table 1 

shows the various alcohol contents of different alcoholic beverages, which helps to calculate 

the consumption of quantities of alcohol by drinking different beverages.

2.3. Genetic variants

Many common diseases have heritable traits that confer protective or susceptibility effects. 

ALD is a complex disease because both environmental and host factors modify disease 

progression. For example, Hispanics are more prone to ALD, and twin studies showed that 

alcoholic cirrhosis prevalence was increased in monozygotic versus dizygotic twins.35 Few 

heavy drinkers progress to severe ALD, supporting the hypothesis that genetic background 

influences the course of the disease. Aldehyde dehydrogenase 2 (ALDH2) is an enzyme that 

degrades the toxic acetaldehyde resulting from ethanol metabolism. The inactive ALDH2*2 

variant (E487K) is associated with an alcohol flush reaction, and approximately 40% of East 

Asians have this variant.36 The ALDH2*2 variant promoted chemically-induced 

hepatocellular carcinoma (HCC) development when knocked in to a mouse model.36 While 

several reports have studied the relationship between ALDH2*2 and HCC, the evidence of 

this variant as an independent risk factor for HCC is weak to date.37,38

The patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant, a 

known risk factor for non-alcoholic steatohepatitis (NASH), is strongly associated with the 

development of ALD to cirrhosis.39 A genome-wide association study evaluating two 

independent cohorts of European descent showed that variants of membrane-bound O-

acyltransferase domain-containing 7 (MBOAT7) and transmembrane 6 superfamily member 

2 (TM6SF2) are also risk factors for alcohol-related cirrhosis.38 Unlike the PNPLA3, 

MBOAT7 and TM6SF2 variants, which increase the risk for alcoholic cirrhosis, a recent 

study has revealed that a variant of hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) 

is associated with reduced alcoholic cirrhosis.40 All four genes are associated with lipid 

metabolism, suggesting that molecules produced during lipid metabolism may play a more 

important role in ALD progression than those produced during alcohol metabolism.

2.4. Obesity

The World Health Organization defines overweight and obesity as having a body mass index 

(BMI) greater than 25 kg/m2 and 30 kg/m2, respectively. Given the rising prevalence of 

obesity and metabolic syndrome in the US, weight control is among the top public health 

concerns. The earliest derangement in the ALD spectrum is steatosis, an excessive 

accumulation of triglycerides in hepatocytes. In fact, up to 90% of alcoholics have 

histological evidence of fatty liver.41 The interaction between adipose tissue and alcohol 
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consumption is complex. Epidemiological data shows strong independent associations 

between alcohol intake and BMI, with individuals who consume more alcohol having higher 

BMIs.42 Results from the Third National Health and Nutrition Examination Survey 

(NHANES III) showed that ALD patients had an obesity prevalence of 44.5% and increased 

liver-related mortality.43 Obesity and high alcohol intake synergistically elevated liver 

enzymes. This interaction had multiplicative effects, raising serum alanine aminotransferase 

(ALT) and aspartate transaminase (AST) levels 8.9- and 21-fold, respectively. Obese 

individuals were more susceptible to alcohol-induced liver injury at lower doses than 

healthy-weight counterparts.44 To date, it is unclear if NAFLD is associated with ALD 

progression because of additive injury or if it intensifies alcohol-mediated hepatotoxicity. 

Studies investigating the combined effects of alcohol and body fat on extrahepatic 

mechanisms involved in ALD progression are discussed later in this review.

2.5. Hepatitis C virus (HCV)

An estimated 170 million people are infected with HCV world-wide, and chronic HCV 

infection is a major cause of chronic liver disease.45 Alcohol intake negatively modifies the 

course and outcome of HCV infection. A study of liver biopsies from 1574 HCV patients 

showed that patients consuming over 50 g of alcohol per day had a 34% increase in the rate 

of fibrosis progression per year compared with non-drinkers.46 Another study showed dose-

dependent increases in liver injury at even lower consumption levels among patients with 

HCV. This study showed that as little as 20 g per day in women and 30 g per day in men 

increased histological activity and fibrosis, illustrating the impact of moderate alcohol intake 

on liver injury and steatosis.47 Furthermore, in patients with HCV, alcohol intake increases 

viremia.47

The mechanism underlying the synergistic effect of alcohol and HCV on liver injury remains 

elusive. However, studies implicated altered immune responses, increased oxidative stress, 

viral replication, and fatty changes of the liver in this synergistic effect.48–53 HCV patients 

who drink alcohol develop HCC 2–3 times more frequently than those who do not drink.54 

Studies have suggested that toll-like receptor 4 (TLR4) is one of the factors implicated in the 

synergistic effect of alcohol and HCV on hepatic oncogenesis.55 Despite improvements in 

available HCV treatments, alcohol consumption still increases mortality in patients with 

HCV.56 Among HCV patients who completed anti-HCV interferon therapy, the sustained 

virologic response (SVR) of those who consumed alcohol was comparable to those who did 

not drink; however, alcohol use was associated with treatment discontinuation and a 

subsequent reduction in SVR.57 The effect of direct acting antivirals on liver disease 

mediated by HCV and alcohol needs further investigations.

3. Clinicopathology and spectrum of ALD

3.1. Alcoholic fatty liver

As mentioned above, alcoholic liver steatosis is the earliest stage of ALD and is developed 

in 90% of heavy drinkers. While alcoholic steatosis does not present significant clinical 

symptoms, patients have a slight elevation in the blood levels of AST, ALT, and gamma-

glutamyl transferase as well as an AST/ALT ratio, >2. ALD is often comorbid with 
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metabolic syndrome, which includes hyperlipidemia, diabetes, hypertension, and obesity. 

The presence of metabolic syndrome and a prior history of heavy alcohol consumption 

independently affect ALD progression. Histology of tissues with alcoholic steatosis has 

numerous large- and small-sized lipid droplets in the hepatocyte cytosol. These changes 

begin in zone 3 (centrilobular zone) and subsequently extend into zone 2 and zone 1 

(periportal zone).58 These changes can be reversed by 4e6 weeks of abstinence.59

3.2. Alcoholic steatohepatitis, fibrosis, and cirrhosis

Approximately 20%e40% of heavy drinkers progress from alcoholic steatosis to 

steatohepatitis and fibrosis. Alcoholic steatohepatitis and fibrosis are characterized 

histologically by neutrophil infiltration, hepatocyte ballooning, necrosis, the appearance of 

Mallory-Denk bodies, cholestatic changes, megamitochondria, and perivenular and 

pericellular fibrosis (Fig. 1).60 These pathological changes start in zone 3 due to the higher 

cytochrome P450 2E1 (CYP2E1) expression compared with other zones and progress 

towards the portal vein area (zone 1) or neighboring central vein. Patients with alcoholic 

steatohepatitis can be asymptomatic (sub-clinical alcoholic steatohepatitis) or present with 

severe clinical symptoms, defined as AH. Among patients with fibrosis, including those who 

are asymptomatic, 8%–20% will develop cirrhosis.41 Alcohol abuse is the leading cause of 

cirrhosis-mediated death in the US (44%–48% of all cirrhosis-mediated deaths), higher even 

than that caused by HCV.41 Because direct acting antivirals are highly effective treatments 

for hepatitis B and C virus, ALD and NAFLD are likely to become the leading indications 

for liver transplantation in the near future. Alcoholic cirrhosis is a significant risk factor for 

the development of HCC, which is associated with the consumption of large quantities of 

alcohol. The 10-year cumulative incidence of HCC ranges from 6.8% to 28.7%.61–64

3.3. AH

Consuming large quantities of ethanol (>100 g/day) can cause AH, an acute clinical 

syndrome of ALD. Patients with severe AH present with severe clinical symptoms, 

including fever, jaundice, ascites, hepatic encephalopathy, gastrointestinal tract bleeding 

from esophageal varices and gastro-duodenal ulcers. While AH can develop at any stage of 

ALD, 40% of alcoholic cirrhosis may develop AH and 80% of severe AH occurs in patients 

with alcoholic cirrhosis (acute-on-chronic condition) (Fig. 1). The prognosis of these 

patients is very poor compared with that of AH patients with steatosis alone.65 The 

American Association for the Study of Liver Diseases (AASLD) guidelines demonstrated 

correlations between AH severity and serum bilirubin levels, prothrombin time (PT)/

international normalized ratio (INR), Maddrey’s discriminant function (MDF) score, serum 

creatinine levels, and model for end-stage liver disease (MELD) score. Severe AH is defined 

by an MDF score >32 or MELD score >18. The 1-month mortality rate of this condition is 

as high as 30%–50%.66,67 Of the patients who survive to 6 months, 70% will progress to 

cirrhosis (Fig. 1).

Several histological features are associated with AH outcomes. Neutrophil accumulation was 

associated with better outcomes in severe AH patients despite neutrophils playing a 

prominent role in promoting alcohol-induced liver inflammation.65 Reduced regenerative 

response and the presence of proliferating hepatocytes were associated with poorer and 
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better prognosis, respectively.68,69 In addition, the presence of proliferative hepatic 

progenitor cells and ductular reactions were associated with poorer prognosis.70 A recent 

study identified 123 genes associated with survival in severe AH patients.71 Among the 123 

dysregulated genes, 51 were associated with patients with severe AH and poor prognosis, 

and 72 were associated with patients with alcoholic cirrhosis or non-severe AH. This study 

showed that lipocalin-2 (LCN2), interleukin 1 receptor like 1 (IL1RL1), C-X-C motif 
chemokine ligand (CXCL) 1, CXCL2, and keratin 19 (KRT19) were associated with poorer 

prognosis, whereas interleukin (IL)-33 and fibroblast growth factor (FGF) 21 were 

associated with better prognosis.71

4. Established and emerging molecular mechanisms of ALD

4.1. Oxidative stress in ALD

Hepatocytes are the primary cell type that metabolizes ethanol. Ethanol is primarily 

metabolized to acetaldehyde by ADH (Fig. 2). Acetaldehyde is then metabolized to non-

toxic acetate by cytosolic ALDH1 and mitochondrial ALDH2. When ethanol concentrations 

are high, CYP2E1, another alcohol-metabolizing enzyme, metabolizes ethanol to 

acetaldehyde and generates reactive oxygen species (ROS).72 While both ethanol and 

acetaldehyde are direct hepatotoxins, excessive ROS production and the subsequent 

production of inflammatory cytokines can promote alcohol-induced liver injury and 

inflammation (Fig. 2). Chronic alcohol consumption leads to the upregulation of hepatic 

CYP2E1 levels, which enhances ROS production.72 In addition, ethanol and acetaldehyde 

directly injure hepatocyte mitochondria, upregulating mitochondrial ROS production and 

further promoting liver injury and inflammation.

Another source of ROS is neutrophil that plays a key role in AH. The presence of 

neutrophils impacts AH disease severity.65 Ethanol upregulates intercellular adhesion 

molecule-1 (ICAM-1) expression on the surface of neutrophils and E-selectin expression on 

sinu-soidal endothelial cells, enhancing the trafficking of circulating neutrophils to the liver. 

Additionally, the secretion of chemokines (CXCL1, C-C motif chemokine ligand (CCL2), 

and CXCL8) produced by Kupffer cells and hepatic stellate cells promote neutrophils 

migration and infiltration to damaged liver tissues.73,74 ROS from neutrophils, as well as 

IL-1β and TNFα from Kupffer cells, promote hepatocyte apoptosis and local inflammation.
75 Thus, ROS produced by excessive alcohol metabolism, damaged mitochondria and 

neutrophils mediates ethanol-induced liver injury and inflammation.

4.2. The gut-liver axis and hepatic inflammation in ALD

Excessive alcohol consumption can cause bacterial overgrowth and change the composition 

of the intestinal microbiome (e.g. decreased Lactobacillus and Bacteroides).76–78 Alcohol 

abuse also increases intestinal permeability by disrupting intestinal barrier function and tight 

junction integrity through decreased expression of occludins and zonula occludens. This 

disruption facilitates the translocation of bacterial products from the intestine to the liver 

through the portal vein (Fig. 3).79,80 Bacterial products include lipopolysaccharide (LPS, 

a.k.a. endotoxin), a Gram-negative bacterial cell-wall component. LPS translocation 

activates TLR4 in Kupffer cells and hepatic stellate cells, inducing the production of pro-

Ohashi et al. Page 7

Liver Res. Author manuscript; available in PMC 2019 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory cytokines and mediators (e.g., IL-1, IL-6, TNFα, and ROS) and subsequently 

promoting liver inflammation and fibrosis.81 Intestinal fungi also play a role in ALD. 

Ethanol consumption increased the population of fungi in the intestine and β-D-glucan, a 

fungal cell wall component, in plasma.82 Importantly, mice treated with antifungals and 

those with a knockout of Dectin-1, a pattern recognition receptor for β-D-glucan, had less 

alcohol-induced steatosis and injury compared with control mice, indicating that intestinal 

fungi play a detrimental role in ALD development.82

Similar to microbe-derived molecules, host-derived alarmins, called damaged-associated 

molecular patterns (DAMPs), can activate liver-disease-promoting inflammatory signals. In 

ethanol- and acetaldehyde-damaged hepatocytes, the nuclear protein high mobility group 

box 1 (HMGB1) is translocated to the cytosol and released into systemic circulation.83,84 

Hepatocyte-specific HMGB1 knockout mice had reduced alcohol-induced liver injury 

compared with controls, indicating the detrimental effect of HMGB1 in ALD.83 Thus, gut-

derived pathogen-associated molecular patterns (PAMPs) and damaged-liver-derived 

DAMPs contribute to ALD progression.

4.3. Altered lipid metabolism in ALD

Alcohol-induced steatosis is characterized by the formation of lipid droplets containing 

triglyceride and esterified cholesterol in the cytosol of hepatocytes, because of ethanol-

induced alteration of hepatic lipid metabolism. Ethanol reduces the activity of adenosine 

monophosphate-activated kinase (AMPK), peroxisome proliferator-activated receptor 

(PPAR) a, and sirtuin 1 (SIRT1), which reduces FA β-oxidation (Fig. 2).85–87 Reduced β-

oxidation promotes steatosis. Reductions in AMPK activity increases mammalian target of 

rapamycin complex 1 (mTORC1) activity, which triggers the transcription and activation of 

sterol regulatory element-binding protein-1c (SREBP-1c) and PPARg.88 Reduction of 

AMPK also directly enhances SREBP-1c by increasing its stability.86,87 Further, when 

AMPK is activated, it phosphorylates and inactivates acetyl-Co A carboxylase 1 (ACC1). 

Thus, ethanol upregulates ACC1 activity through the reduction of AMPK activity.87 The 

ethanol-induced reduction in hepatic SIRT1 activity also enhances the transcriptional 

activity of SREBP-1c.86,87 The reduced SIRT1 activity by ethanol is associated with reduced 

DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of 

mTORC1, which enhances SREBP-1c transcription and cytoplasmic translocation of lipin-1, 

and inhibits transcriptional activity of PPARα.89 Together, ethanol exposure reduces AMPK, 

SIRT1 and PPARα activity and upregulates the expression and activity of SREBP-1c, 

ACC1, and PPARγ, which promotes lipogenesis.85,86,89–91 The pivotal role of lipin-1 has 

been implicated in ALD. Ethanol upregulated hepatic lipin-1 expression but blocked lipin-1 

nuclear translocation, which suppresses FA β-oxidation, promoting alcohol-induced fatty 

liver.92 Decreased very-low-density lipoproteins (VLDL) secretion is also associated with 

alcohol-induced steatosis. Microsomal triglyceride transfer protein (MTP) assembles VLDL 

for the lipid secretion. Hepatic MTP levels were decreased in ethanol-fed animals and the 

PPARα agonist can increase VLDL secretion by upregulating MTP.93 Decreased VLDL 

secretion is also mediated by increased lipin-1 in ALD.94 In addition, ethanol upregulates 

lipolysis in peripheral and visceral fat tissues, increasing the overload of circulating FAs in 
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the liver, which promotes alcoholic steatosis (Fig. 2).11,95,96 Circulating FAs can also 

activate TLR4 signaling, promoting liver inflammation (Fig. 3).97

Alcohol abuse also impairs lipid-droplet catabolism and lipolysis in hepatocytes. Lipolysis is 

regulated by cytosolic neutral lipases, such as adipose triglyceride lipase (ATGL), and 

lipophagy, a specialized form of autophagy associated with lysosomal degradation of lipid 

droplets (Fig. 2). In hepatocytes, alcohol impairs the b-adrenergic-mediated breakdown of 

lipid droplets by inhibiting protein-kinase A-mediated phosphorylation of hormone-sensitive 

lipase and ATGL recruitment to lipid droplets.98 Autophagy is upregulated by increased 

AMPK and/or reduced mTORC1 activity. Ethanol exposure decreases AMPK and increases 

mTORC1 activity, thereby reducing autophagy activity.93,99 Reduced autophagy could 

enhance lipid accumulation through impaired lipophagy. Enhanced autophagy by autophagy 

inducers, rapamycin and carbamazepine, suppressed ethanol-induced hepatic steatosis and 

injury.100 Recent studies of alcohol-induced steatosis showed that Rab7 and dynamin 2 

(Dyn2) play roles in lipophagy.101,102 Rab7 is a Rab family guanosine triphosphate-binding 

protein that mediates the fusion of autophagosomes and lysosomes with lipid droplets. Rab7 

activity is reduced in hepatocytes following ethanol exposure.101 In hepatocytes, Dyn2, a 

guanosine triphosphatase, is associated with autophagic lysosomal reformation, the terminal 

step of autophagy. Ethanol impairs Dyn2 activity.102 These studies implicated that reduced 

Rab7 and Dyn2 activities by ethanol exposure impair lipophagy, promoting the 

accumulation of lipid droplets.

With respect to FA b-oxidation, ethanol and acetaldehyde suppress this activity by directly 

damaging mitochondria. Damaged mitochondria are eliminated via mitophagy. Mitophagy is 

an autophagy-mediated mitochondrial regulation mechanism that plays a role in maintaining 

mitochondrial functions, including β-oxidation. Parkin is an E3 ubiquitin ligase that 

regulates mitophagy through ubiquitination of damaged mitochondrial proteins. Mice 

deficient in Parkin had increased alcohol-induced liver injury, steatosis, and inflammation 

compared with controls because mitochondria-mediated β-oxidation was suppressed and 

ROS production increased.103 A very recent study demonstrated that chronic ethanol 

exposure induced the mTORC1 translocation to lysosome, in which mTORC1 inhibited 

transcription factor EB (TFEB) activity through the phosphorylation of TFEB. TFEB plays a 

crucial role in lysosomal biogenesis and the induction of autophagy-related gene expression. 

Additionally, TFEB controls mitochondrial biogenesis and FA β-oxidation through 

peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α regulation.99 Thus, 

the inhibited TFEB activity by ethanol enhances alcohol-mediated steatosis and injury 

through the inhibition of lysosomal and mitochondrial biogenesis and autophagy. p62/

sequestosome 1 (SQSTM1) is an adaptor protein of autophagosome and binds to 

ubiquitinated damaged proteins.104 These damaged proteins are degraded through 

proteasome and/or autolysosome. In ALD, both autophagy and proteasome functions are 

impaired. p62 is accumulated in hepatocytes.99 Interestingly, p62 is a component of 

Mallory-Denk body. The accumulation of p62, ubiquitinated proteins, and cytokeratin 8/18 

by impaired autophagy and proteasome is associated with the formation of Mallory-Denk 

body in ALD.105 Because p62 can activate mTORC1, accumulated p62 may contribute to 

hepatic steatosis in ALD.106 Taken together, ethanol and acetaldehyde promote hepatic lipid 

accumulation by inhibiting lipid degradation through the suppression of autophagy activity, 
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mitochondrial and liposomal dysfunctions, impaired FA β-oxidation and lipid secretion, and 

by increasing lipogenesis in the liver.

4.4. The crosstalk between adipose tissue and the liver

Alcohol consumption promotes adipose-tissue lipolysis via ATGL and inhibits the uptake of 

circulating free FAs for storage in adipose tissue. The result is an increase in circulating non-

esterified FA levels, which increases FA flux to the liver and promotes alcohol-induced fatty 

liver.107 Experimental evidence suggests that adipose tissue has roles in regulating immunity 

and inflammation, and recent data support a role for adipose-tissue dysfunction in ALD 

pathogenesis. Studies have demonstrated that alcohol mediates oxidative stress, 

inflammation, and cell death in adipose tissue. ALD severity and adipose-tissue 

inflammation have been correlated in humans.44 In rats, chronic ethanol administration 

increased adipocyte CYP2E1 expression. This increased CYP2E1 induced oxidative stress 

and adipocyte death, provoking inflammatory responses.108 Another study showed alcohol-

mediated adipocyte death was facilitated by CYP2E1, Bcl-2 homology 3 (BH3)-interacting 

domain death agonist, and complement component C1Q, causing adipose-tissue 

inflammation.109 Alcohol consumption also alters adipokine production. Alcohol abuse 

increased serum levels of leptin, a pro-inflammatory and pro-fibrogenic adipokine that 

promotes inflammation in adipose tissue and the liver.110,111 Adiponectin is an anti-

inflammatory adipokine that inhibits TNFα production in Kupffer cells via AMPK.112 

Acute and moderate ethanol consumption increased serum adiponectin levels, whereas 

chronic alcohol abuse decreased them.113,114 Together, these data show that FAs, 

inflammatory cytokines, and adipokines derived from adipose tissue affect ALD 

development.

4.5. Extracellular vesicles (EVs)

Exosomes are small EVs (50e150 nm) that are shed from most cell types, including 

hepatocytes, macrophages, and hepatic stellate cells. They contain various macromolecules, 

including proteins, messenger ribonucleic acids (mRNAs), microRNAs (miRNAs), and other 

non-coding RNAs.115 Ethanol exposure increases EV production in hepatocytes. The cargo 

contained in ethanol-mediated EVs are thought to regulate ALD pathogenesis. Ethanol-

mediated EV release was mediated through caspase-3 activation in damaged hepatocytes.116 

Ethanol-induced EVs contained CD40 ligand, which stimulated macrophages and 

subsequently promoted ALD.116 EVs derived from damaged hepatocyte also contained 

mitochondrial deoxyribonucleic acid (DNA) that promoted ALD through activation of 

TLR9.117–119 The miRNAs present in EV cargos also contributed to ALD development. One 

study demonstrated that hepatocyte-derived EVs horizontally transfer miR-122 to 

monocytes, promoting ALD.120 ALD-mediated circulating EVs also contain heat shock 

protein 90 (Hsp90), which enhances monocyte chemotactic protein (MCP-1) production in 

macrophages and reduces the number of M2 macrophages in ALD.121 Further, ethanol-

exposed human monocytes secrete EVs containing miR-27a that polarize naïve monocytes 

to M2 macrophages. These M2 polarized macrophages have increased IL-10 and 

transforming growth factor (TGF)-β production and phagocytic activity.122 In ALD, EV-

mediated cargos released from damaged hepatocytes and monocytes regulate liver 

inflammation by modulating macrophage activation and polarization.
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4.6. Impaired liver regeneration in ALD

Although hepatocytes have the profound capacity to regenerate after liver injury or loss of 

liver tissues, the regenerative capacity of hepatocytes is significantly impaired in ALD. This 

was observed in rodent models with chronic ethanol exposure and patients with AH.68,123 In 

rodent models, chronic ethanol-feeding impairs regenerative response by lacking an 

induction of cell cycle genes and altered hepatic miRNA profile after partial hepatectomy.124 

MiR-21 was significantly upregulated in the ALD liver and suppressed regenerative 

responses after hepatectomy in ethanol-treated rats.125 In AH patients, p21 and p27, cell 

cycle inhibitors, were upregulated. p27 upregulation might be induced by miR-34a that is 

upregulated in AH patients.126 These factors could contribute to the inhibition of liver 

regeneration in AH patients. Impaired hepatocyte regeneration is associated with the poor 

prognosis of AH patients.68 IL-1 inhibits liver regeneration and is upregulated in ALD.127 

Inhibition of IL-1 signaling by IL-1 receptor antagonist recovered regenerative capacity in 

ALD.128 IL-22 has a capacity to promote liver regeneration.129 IL-22 treatment and IL-1 

inhibition might be good therapeutic strategies, not only to inhibit inflammation, but also to 

promote regeneration in ALD.

4.7. Animal models for preclinical studies of ALD

To elucidate the numerous mechanisms of ALD, we need animal models that mimic the 

broad spectrum of ALD in humans. Currently, there are several rodent ALD models, with 

each having different feeding durations and methods as well as the presence or absence of 

binge ethanol gavage. Different models present with different degrees of hepatocyte injury, 

fatty changes, inflammatory cell infiltration, and fibrosis. The acute single-binge injection 

model can be used to study of acute ethanol response or mild steatosis. Experimental 

conditions for this model are easily performed, but the mice do not develop fibrosis.130 The 

most widely used ALD model involves chronically feeding an ethanol-containing Lieber-

DeCarli diet to mice for 4e8 weeks. This model produces a mild elevation in serum ALT 

levels, hepatic fat accumulation, and mild liver inflammation but no fibrosis.131 A chronic 

ethanol-containing Lieber-DeCarli diet model modified to include ethanol binges for 3 days 

results in severe liver damage and some degree of fibrosis; however, this model is associated 

with high mortality.127 NIAAA researchers developed a 10 day-chronic ethanol feeding with 

binge ethanol injection model (a.k.a. NIAAA model or Gao-Binge model) that presents with 

increased serum ALT levels, steatosis, and neutrophil accumulation, resembling early AH 

pathophysiology in humans. However, this model again does not develop fibrosis.74 The 

experimental conditions of this model are easy to perform, and it is widely used in the basic 

research field. The Tsukamoto-French intra-gastric ethanol-feeding model is one of the best 

models of alcoholic steatohepatitis, recapitulating most of the human pathophysiology. The 

combination of the Tsukamoto-French intra-gastric ethanol-feeding model with weekly 

ethanol binges and ad libitum feeding of a high-fat diet presents with robust neutrophil 

infiltration and liver fibrosis, which mimic severe AH and alcoholic fibrosis, respectively, as 

well as steatosis, inflammation, and elevated serum ALT levels. However, the use of this 

model is limited due to the advanced surgical skills required and the associated animal 

maintenance.132
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5. Existing and potential therapies for ALD

5.1. Currently available management for ALD

5.1.1. Abstinence and supportive care—Abstinence is the most common 

preventative measure for ALD patients. Abstinence can improve liver steatosis, injury, and 

unfavorable outcomes in patients with early-stage ALD. However, some patients with the 

progressive ALD can still progress to cirrhosis despite sobriety.133 There are several FDA-

approved medications (e.g., disulfiram, naltrexone) for AUD, but these medications often 

have hepatoxic properties; therefore, their use is limited for ALD patients.134 Baclofen and 

metadoxine can effectively preventing alcohol relapse with fewer hepatotoxic effects; 

however, these agents are not approved for this indication by the FDA.134 Because obesity, 

sarcopenia, and malnutrition are associated with ALD, weight management and nutritional 

support (e.g., ~2000 kcal with 1.2–1.5 g/kg/d protein and supplementation with amino acids 

(branched, leucine), zinc, vitamin D, thiamine, folate, cyanocobalamin, and selenium) can 

improve the course of ALD.11,135

5.1.2. Corticosteroids—Corticosteroids have been used to treat patients with AH for 

several decades. Corticosteroids downregulate TNFα production and upregulate IL-10 

production in AH, reducing short-term mortality and incidence of encephalopathy.136 

However, these measures do not improve long-term survival.66,137 Because corticosteroids 

can improve short-term survival, it is critical to identify severe AH that responds to 

corticosteroids early. The Lille model was developed to evaluate the response to 

corticosteroids in severe AH patients following 7 days of treatment.138 The Lille model is 

useful for predicting short-term survival in patients with severe AH. Based on this model, 

40% of severe AH patients do not respond to corticosteroids, and their 6-month mortality is 

approximately 75%.138 The high mortality may be associated with the increased risk of 

infection (spontaneous bacterial peritonitis, urinary tract infection, pneumonia) due to 

corticosteroid use; corticosteroid-treated AH patients with an infection have significantly 

lower survival compared with those without an infection.139

5.1.3. N-acetylcysteine (NAC)—NAC, a glutathione precursor antioxidant, is widely 

used in clinical settings to treat acetaminophen-induced acute liver failure.140 Because ROS 

plays a central role in ALD progression, NAC has been investigated as a treatment for ALD. 

However, treatment of severe AH with NAC alone did not improve the short-term survival 

compared with corticosteroids alone. By contrast, combination therapy using NAC and 

corticosteroids significantly improved 28-day-survival, but there was no observed long-term 

survival benefit.141,142

5.1.4. Pentoxifylline—Pentoxifylline, an antioxidant with an anti-TNFα effect, has been 

examined in patients with severe AH. Similar to NAC, treatment of severe AH with 

pentoxifylline alone showed no significant long-term survival benefit compared with 

corticosteroids. Even when combined with corticosteroids, pentoxifylline did not produce 

significant survival improvement. Accordingly, pentoxifylline is no longer considered a 

viable treatment for severe AH.9
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5.1.5. Anti-TNFα antibodies—TNFα is one of the most critical inflammatory 

cytokines for ALD development. Anti-TNFα therapy such as infliximab, a chimeric 

monoclonal anti-TNFα antibody, is commonly used to treat arthritis and inflammatory 

bowel disease and could have therapeutic properties in ALD. Clinical studies showed that 

treatment of severe AH patients with anti-TNFα antibody improved disease severity and 

survival.143 Furthermore, a randomized controlled pilot study of infliximab plus 

corticosteroids reported improvements in AH severity at 28 days.144 However, this 

combination unexpectedly showed higher incidences of infection and mortality among 

patients with acute AH.145

5.1.6. Liver transplantation—Alcoholic cirrhosis is the second leading indication for 

liver transplantation, accounting for 25% of all procedures.146 Liver transplantation is still 

the best treatment option for patients with severe AH who do not respond to corticosteroids.
147 However, most AH patients cannot apply for liver transplantation because of ethical 

dilemmas, a high potential for alcohol relapse, and the 6-month-abstinence rule. Recent 

reports evaluated liver transplantation performed prior to completing the 6 months of 

abstinence. Early liver transplantation demonstrated a better long-term survival rate (1e3 

years) compared with matched AH patients who did not undergo transplantation and a 

similar survival rate to patients with alcoholic cirrhosis who underwent liver transplantation 

after 6 months of abstinence.147–149 Studies did not find differences in alcohol relapse in 

patients who completed or did not complete the 6 months of abstinence. These studies 

suggest that clinicians may need to reconsider the selection process for early liver 

transplantation in severe AH patients.

5.2. Emerging treatment options for ALD

5.2.1. IL-22—IL-22, an IL-10-family cytokine produced by immune cells (e.g., T helper 

(Th) 17, Th22 cells), has anti-inflammatory and regenerative properties. In animal models of 

ALD and ALD patients, IL-22 receptor expression is upregulated, but IL-22 expression is 

unchanged.150,151 In animal studies, recombinant IL-22 treatment ameliorated alcoholic 

liver steatosis, injury, and fibrosis by activating signal transducer and activator of 

transcription 3 (STAT3).150,151 By contrast, IL-22 has pro-inflammatory effects in patients 

with hepatitis B virus infections and may promote hepatocarcinogenesis.152,153 However, 

because IL-22 promotes liver regeneration in addition to its anti-inflammatory effect,153 

treatment with IL-22 could yield large benefits for severe AH patients. F-652, a recombinant 

fusion protein containing human IL-22 and human immunoglobulin G2-Fc, is currently 

being evaluated for use in human AH (ClinicalTrials.gov, NCT02655510).

5.2.2. IL-1 receptor antagonist—IL-1b is initially produced in a pro-form that is 

processed by the inflammasome complex, consisting of caspase-1, apoptosis-associated 

speck-like protein containing a caspase recruitment domain (ASC), and nucleotide binding 

and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3). The 

inflammasome converts it to the active form. IL-1β and inflammasome activation are crucial 

for ALD development.127 Anakinra is an IL-1 receptor antagonist that inhibits the binding of 

active IL-1β to the IL-1 receptor. Anakinra has been shown to have therapeutic effects in an 

animal model.127 Treatment of severe AH with anakinra is currently being examined in a 
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clinical trial. This trial is comparing supplementation with a combination of anakinra, 

pentoxifylline, and zinc in patients being treated with methylprednisolone or placebo 

(ClinicalTrials.gov, AH/NCT01809132).

5.2.3. Targeting the gut microbiome—Intestinal dysbiosis and bacterial overgrowth 

are often seen with ALD and contribute to alcohol-induced liver damage.154 In mice, gut 

sterilization using orally administered non-absorbable antibiotics prevented alcohol-induced 

hepatic steatosis and injury and decreased serum endotoxin levels.80 Probiotics have been 

reported to ameliorate ALD in both animal and human studies.155–157 Treatment with 

prebiotic fructooligosaccharides or pectin prevented ALD development in mice.78,158 

Clinical trials testing the therapeutic effects of gut sterilization using a combination of 

vancomycin, gentamycin and meropenem (Clinical.gov, NCT03157388) and the effects of 

probiotics (Lactobacillus rhamnosus GG) for AH patients are currently underway 

(Clinical.gov, NCT01922895). Notably, fecal microbiota transplantation (FMT) from ALD-

resistant mice to ALD-sensitive mice improved ALD.78 FMT from healthy individuals to 

patients with ALD potentially could be a novel therapeutic approach. In ALD, levels of 

saturated long-chain FA (LCFA) were reduced in the intestine, and saturated LCFA 

metabolism is required for the growth of intestinal Lactobacillus.159 Dietary 

supplementation of saturated LCFA was shown to improve ALD and gut leakiness in mice, 

indicating that saturated LCFA could maintain intestinal homeostasis and prevent ALD 

development.159

5.2.4. Farnesoid X receptor (FXR) and FGF15/19—The FXR is a nuclear receptor 

that regulates bile-acid metabolism by inhibiting hepatic CYP7A1. CYP7A1 regulation 

occurs directly through FXR activity and indirectly through intestine-derived FGF15/19 

signaling. FXR signaling can also regulate lipid and glucose metabolism.160 In animal 

models and patients with NASH fibrosis, an FXR agonist improved hepatic steatosis, 

inflammation, and fibrosis.161,162 FXR signaling can suppress liver inflammation and 

cancer, improve intestinal barrier integrity, and promote liver regeneration.163 A clinical trial 

evaluating the effect of obeticholic acid, a semi-synthetic bile-acid FXR agonist, in patients 

with severe AH is underway (Clinical.gov, NCT0239219). In a trial evaluating the use of 

obeticholic acid for NASH fibrosis, the intervention produced side effects. Given this result, 

researchers hypothesized that an intestine-restricted approach might reduce unfavorable 

effects. The intestine-restricted FXR agonist fexaramine mitigated alcohol-induced liver 

injury without affecting the systemic bile-acid pool in mice.164 With respect to FGF19, over-

expression of the FGF19 variant M52 attenuated alcohol-induced liver injury in mice.164 

These findings suggest that targeting intestinal FXR or FGF15/19 could be safer approaches 

for treating ALD than targeting systemic FXR.

5.2.5. S-adenosyl methionine (SAMe)—Long-term ethanol consumption decreases 

hepatic levels of SAMe, a major methyl donor, and its synthesizing enzyme methionine 

adenosyltransferase (MAT) α1. This reduction affects DNA and histone methylation in 

hepatocytes.165 SAMe supplementation has antioxidative effects that maintain mitochondrial 

function and downregulate TNFα, which produces protective effects in ALD.166 This result 

suggests that long-term treatment with SAMe could improve long-term survival or extend 
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the timing for liver transplantation in patients with alcoholic liver cirrhosis.167 However, a 

previous randomized control study did not find SAMe treatment to be effective in patients 

with ALD.168 SAMe potentially could be safe agent that can be delivered orally, but more 

evidence demon-strating the benefit in ALD requires further investigations.157

6. Conclusions and future perspectives

Here, we have discussed the established molecular mechanisms and those currently 

emerging, such as EVs and the crosstalk between liver and adipose tissues, and reviewed 

potential targets, such as IL-22, IL-1, and FXR signaling, for effective therapies. To develop 

effective future therapies for ALD, a precise understanding of its molecular mechanisms is 

required, and translational research using human specimens will be crucial. Testing new 

therapies also requires the use of consistent animal models. Unfortunately, currently 

available animal models of ALD do not fully recapitulate all the features of ALD, including 

AH and alcoholic cirrhosis. Therefore, improved animal models are similarly crucial for the 

development of effective therapies. It has been several decades since the current therapeutic 

strategies for ALD have been developed. Although corticosteroids and liver transplantation 

continue to be the mainstay of therapy, new therapeutic approaches should be considered. 

Currently, an extracorporeal human-cell-based liver support system is being tested under a 

clinical trial for alcohol-induced liver decompensation and severe AH (Clinical.gov, 

NCT02612428). In this trial, improved survival was observed only in patients who had a 

MELD score <28 and were <46.9 years of age.169 Although additional prospective, 

randomized, controlled clinical studies in patients with lower MELD score and age are 

needed to evaluate the reproducibility of this observation, this approach could have a 

survival benefit for patients with decompensated ALD who cannot undergo liver 

transplantation and do not respond to corticosteroids. In the future, the combination of 

effective anti-inflammatory therapies and liver support systems could improve survival for 

high-mortality AH and alcoholic cirrhosis. If therapies to enhance liver regeneration could 

be added to this combination, the survival rate would increase further. There is also evidence 

for reconsidering the selection process for early transplantation in patients with severe AH 

because recent studies for of early liver transplantation showed excellent outcomes.147–149 

While there is still a long way to go to fully understand the mechanisms under-lying ALD, 

these promising results suggest that therapeutic advances are on the horizon.
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Fig. 1. The progression of ALD.
The spectrum of ALD ranges from steatosis to fibrosis, cirrhosis, and then hepatocellular 

carcinoma (HCC). Approximately 90% of heavy drinkers develop alcoholic steatosis. This 

stage is reversible when alcohol use ceases. Risk factors, such as gender, drinking pattern, 

obesity, viral hepatitis, and genetics, can contribute to ALD progression. About 20%–40% of 

patients with alcoholic steatosis will progress to alcoholic steatohepatitis, which is 

histologically characterized by the infiltration of inflammatory cells, especially neutrophils, 

the appearance of Mallory-Denk bodies, ballooning degeneration, and hepatocyte death in 

the liver parenchyma. Some of those patients will develop liver fibrosis and subsequently 

cirrhosis. Fibrosis begins at perivenular region (zone 3) and extends to the neighboring 

central or portal areas (bridging fibrosis). The surface of cirrhotic liver is irregular. Cirrhosis 

may further progress to HCC. AH, an acute-on-chronic condition of ALD, presents with 

clinical symptoms, such as jaundice, infection, and decompensation. AH can occur at any 

stage of ALD. Treatments for AH include abstinence and corticosteroids, but they are not 

always effective. However, liver transplantation can be a curative therapy. Abbreviations: 

ALD, alcoholic liver disease; HCV, hepatitis C virus; AH, alcoholic hepatitis; ALDH2, 

aldehyde dehydrogenase 2; PNPLA3, patatin-like phospholipase domain-containing protein 

3; TM6SF2, transmembrane 6 superfamily member 2; HSD17B13, hydroxysteroid 17-beta 

dehydrogenase 13.
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Fig. 2. Ethanol consumption increases hepatic steatosis.
In hepatocytes, ADH oxidizes ethanol to acetaldehyde and converts NAD+ to NADH. 

Acetaldehyde entering the mitochondria is converted to acetate and NADH by ALDH 

through the reduction of NAD+. Ethanol is also degraded by CYP2E1 through the 

conversion of NADPH to NADP+. CYP2E1 upregulates ROS production, leading to 

mitochondria damage, ER stress, DNA damage and the production of protein adducts, 

resulting in apoptosis. Ethanol reduces AMPK levels, which increases ACC1 activity, 

decreases PPARa levels, and increases mTORC1 activity. Increased mTORC1 further 

increases SREBP-1c activity and decreases autophagy. These signaling pathways lead to 

increased fatty acid synthesis, decreased fatty acid b oxidation, and lipophagy as well as the 

induction of steatosis. Ethanol also impairs VLDL secretion by inhibiting MTP. Ethanol 

promotes lipolysis in adipose tissues, resulting in FFA flux to the liver. Excessive intake of 

dietary fat also promotes alcohol-induced steatosis. Abbreviations: ADH, alcohol 

dehydrogenase; ALDH, aldehyde dehydrogenase; NAD+, nicotinamide adenine 

dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; NADPH, reduced 

nicotinamide adenine dinucleotide phosphate; NADP+, nicotinamide adenine dinucleotide 

phosphate; CYP2E1, cytochrome P450 2E1; ROS, reactive oxygen species; ER, 

endoplasmic reticulum; AMPK, adenosine monophosphate-activated protein kinase; ACC1, 

acetyl-Co A carboxylase 1; PPAR, peroxisome proliferator-activated receptor; mTORC1, 

mammalian target of rapamycin complex 1; SREBP-1c, sterol regulatory element-binding 

protein-1c; VLDL, very-low-density lipoproteins; MTP, microsomal triglyceride transfer 

protein; FFA, free fatty acid; PGC, peroxisome proliferator-activated receptor gamma 

coactivator; SIRT1, sirtuin 1; TFEB, transcription factor EB; DNA, deoxyribonucleic acid.

Ohashi et al. Page 25

Liver Res. Author manuscript; available in PMC 2019 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Gut-adipose tissue-liver network in ALD.
Excessive alcohol consumption can affect the composition of intestinal microbiota and 

increase intestinal permeability by disrupting intestinal epithelial barrier functions. Intestine-

derived PAMPs, such as LPS, translocates to the liver via portal veins. In the liver, 

translocated LPS binds TLR4 to stimulate neutrophils. Kupffer cells and HSCs produce ROS 

and pro-inflammatory cytokines, such as TNFα, IL-1, and chemokines, leading to 

hepatocyte damage and liver inflammation. Chronic LPS stimulation facilitates liver fibrosis 

by causing Kupffer cells and HSCs to downregulate MMPs and produce extracellular 

matrix, including collagen. Ethanol and acetaldehyde can damage hepatocytes, leading to 

release of DAMPs, such as HMGB1, and EVs that contain mitochondrial DNA. Ethanol can 

promote lipogenesis and inhibit lipid degradation by suppressing β-oxidation and autophagy. 

Hepatic FXR and intestinal FXR that induces FGF15/19 production regulate bile acid and 

lipid homeostasis in the liver. Ethanol induces lipolysis and adipokine production in adipose 

tissues. Fatty acids released from adipocytes promote hepatic steatosis. Adipose-tissue-

derived free fatty acids also activate Toll-like receptor 4 (TLR4) signaling. Abbreviations: 

PAMPs, pathogen-associated molecular patterns; LPS, lipopolysaccharide; HSCs, hepatic 

stellate cells; MMPs, matrix metalloproteinases; DAMPs, damaged-associated molecular 

patterns; EVs, extracellular vesicles; FGF, fibroblast growth factor; FXR, farnesoid X 

receptor; HMGB1, high mobility group box 1; IL, interleukin; miRNA, microRNA; mtDNA, 

mitochondrial DNA; FFA, free fatty acid; ROS, reactive oxygen species; TGF, transforming 
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growth factor; TLR, toll-like receptor; TNF, tumor necrosis factor; DNA, deoxyribonucleic 

acid.
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