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Abstract

Computing the GW quasiparticle bandstructure and Bethe-Salpeter Equation (BSE) absorption

spectra for materials with spin-orbit coupling has commonly been done by treating GW corrections

and spin-orbit coupling as separate perturbations to density-functional theory. However, accurate

treatment of materials with strong spin-orbit coupling (such as many topological materials of recent

interest, and thermoelectrics) often requires a fully relativistic approach using spinor wavefunctions

in the Kohn-Sham equation and GW/BSE. Such calculations have only recently become available,

in particular for the BSE. We have implemented this approach in the plane-wave pseudopotential

GW/BSE code BerkeleyGW, which is highly parallelized and widely used in the electronic-structure

community. We present reference results for quasiparticle bandstructures and optical absorption

spectra of solids with different strengths of spin-orbit coupling, including Si, Ge, GaAs, GaSb,

CdSe, Au, and Bi2Se3. The calculated quasiparticle band gaps of these systems are found to

agree with experiment to within a few tens of meV. SOC splittings are found to be generally

in better agreement with experiment, including quasiparticle corrections to band energies. The

absorption spectrum of GaAs is not significantly impacted by the inclusion of spin-orbit coupling

due to its relatively small value (0.2 eV) in the Λ direction, while the absorption spectrum of GaSb

calculated with the fully-relativistic GW -BSE captures the large spin-orbit splitting of peaks in

the spectrum. For the prototypical topological insulator Bi2Se3, we find a drastic change in the

low-energy bandstructure compared to that of DFT, with the fully-relativistic treatment of the

GW approximation correctly capturing the parabolic nature of the valence and conduction bands

after including off-diagonal self-energy matrix elements. We present the detailed methodology,

approach to spatial symmetries for spinors, comparison against other codes, and performance

compared to spinless GW/BSE calculations and perturbative approaches to SOC. This work aims

to spur further development of spinor GW/BSE methodology in excited-state research software,

and enables more accurate and detailed exploration of electronic and optical properties of materials

containing elements with large atomic number.

a bbarker6@ucmerced.edu
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I. INTRODUCTION

Solid state physics and materials research is increasingly focusing its attention on ma-

terials containing heavy elements. Such materials have large spin-orbit coupling, often ex-

ceeding 1 eV for atoms from the fifth and sixth rows of the periodic table. These materials

are important as thermoelectrics[1–8] and also can be topological insulators [9–17] and Weyl

semi-metals [18–21], among other novel topological phases[22–24]. Hybrid organic metal

halide perovskite materials are also of great interest for photovoltaics, and contain heavy el-

ements such as Pb, I[25], and/or Bi[26], and spin-orbit effects like Rashba splitting can play

a role in their optical properties [27]. The standard approach to investigating the ground

state electronic structure of these materials is Density Functional Theory (DFT)[28, 29].

Despite its widespread use to compute bandstructures, it is important to note that the

Kohn-Sham eigenvalues of DFT do not have a rigorous physical meaning apart from the en-

ergy of the highest occupied molecular orbital, resulting in the well-known band gap problem

of DFT. To compute excited-state properties such as bandstructures and absorption spectra,

one must go beyond DFT and use many-body perturbation theory approaches, such as the

GW [30, 31] and GW -BSE methods[32].

For materials with weak spin-orbit coupling, quasiparticle bandstructures incorporating

spin-orbit coupling can be computed by separately calculating the additional contribution

to the energy eigenvalues from spin-orbit coupling via conventional perturbation theory, in

which the Hamiltonian is constructed using bands |nk〉0 that have been computed previously

while neglecting spin-orbit coupling[33, 34], by diagonalizing the Hamiltonian

Hn1,k,α;n2,k,β = 〈n1k|0 〈α|EQP
n1k, 0

δn1n2δαβ +HSOC
αβ |β〉 |n2k〉0 , (1)

with the subscript “0” denoting quantities that neglect spin, and |α〉 and |β〉 are spinor basis

states, | ↑〉 =
(

1, 0
)T

or | ↓〉 =
(

0, 1
)T

. This approach, “GW+SOC,” has been success-

fully used in ab initio calculations of diamond- and zinc-blende-structure semiconductors[35],

metals such as Au[36], and topological insulators Bi2Se3 [37] and Bi2Te3 [38], among other

systems. When the Kohn-Sham bandstructure neglecting spin-orbit coupling is qualita-

tively similar to the quasiparticle bandstructure that includes it, the GW+SOC approach

is generally sufficient. Despite the success of perturbation theory in computing the changes

of eigenvalues for materials with weak spin-orbit coupling, there is a clear need for a non-

perturbative first-principles treatment of materials with strong spin-orbit coupling. In par-
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ticular, some materials containing heavy elements, such as Bi2Se3[39] and β-HgS[40, 41],

have DFT bandstructures that change significantly when spin-orbit coupling is included. In

cases such as these, the perturbative GW+SOC approach is quantitatively or even quali-

tatively inaccurate. One should use a fully-relativistic treatment from the outset, starting

with the calculation of the two-component spinor Kohn-Sham states and then using these

states to calculate excited-state properties, such as the quasiparticle bandstructure and the

absorption spectrum. This first-principles method also allows for capturing the effect of the

renormalization of the spin-orbit coupling strength [42], along with improved band gaps.

Due to the doubled number of bands and doubled size of the wavefunctions compared

to spinless calculations, there is a significant increase in the already substantial computa-

tional expense of many-body perturbation theory calculations, not to mention a significant

increase in the complexity of the computer code. As a result, fully relativistic spinor cal-

culations with GW have only recently become available, and used in the literature. The

all-electron FLAPW code SPEX’s implementation [43] was later followed by pseudopotential

and PAW codes (WEST[44], Yambo[45], FHIaims [46], GPAW [47], and VASP[48]). There

are yet fewer spinor BSE codes available; to date, only Yambo [49] and BerkeleyGW have

the capability to solve the Bethe-Salpeter Equation with two-component spinor wavefunc-

tions. While plane-wave DFT codes have become highly comparable in recent years due to

increasing consensus on the best algorithms to use, and great efforts to determine the source

of any discrepancies [50], there is a significant variation in the approaches used in GW/BSE

codes, including not only basis sets and pseudopotentials, but also plasmon pole models,

frequency integration, interpolation schemes, handling of the dielectric matrix, acceleration

of sums over empty states, solution of Dyson’s equation, and other numerical tricks and

details. Such details are only sometimes spelled out comprehensively for a given code [51].

Benchmarking projects for GW codes – and especially for BSE – are still in their infancy. A

notable example is the GW100 project which studied a set of molecules with different codes,

each of which had its own distinct approaches to the GW problem.[52]

We have implemented the spinor GW/BSE approach in BerkeleyGW in order to provide

an independent implementation of this method for the general improvement of methodology

in this area. This work also allows calculations in BerkeleyGW which is a widely used and

well established code in the community, with extensive testing. BerkeleyGW also has partic-

ular advantages for GW/BSE with respect to massively parallel performance [53], Coulomb
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truncation and interpolation [51], and sampling schemes for reduced-dimensional systems

[54]. In this paper, we present the results of this long-running implementation effort [55],

with a detailed exposition of the formalism and in particular the handling of the effect of sym-

metries on spinors, which has not been explicitly addressed in previous literature on spinor

GW/BSE. We also make careful comparisons to other codes, with their somewhat different

technical details, to establish the level of agreement achieved among spinor GW calcula-

tions, and demonstrate the performance of spinor GW vs. “scalar-relativistic” (“SR”) GW

calculations, in which only relativistic mass and Darwin terms are included in the construc-

tion of pseudopotentials, with SOC then included perturabitvely. While we make several

direct comparisons for quasiparticle energy gaps and spin-orbit splittings for various conven-

tional test systems such as Group IV and III-V semiconductors with BerkeleyGW and other

two-component spinor GW codes, the best comparison that is available for two-component

spinor GW/BSE calculations for GaAs and GaSb is with Empirical Pseudopotential Method

calculations incorporating spin-orbit coupling perturbatively[56].

The ability to use two-component spinors in GW and GW/BSE scientific software al-

lows for the study of magnetic phenomena in materials, beyond the usual single-axis spin-

polarized calculations of self-energy corrections for majority and minority spin channels in

materials such as bulk Fe and NiO2[57–60]. While spin susceptibilities have been approx-

imated within the usual spin-polarized GW method[61–63], Ref. [64] derives results from

many-body perturbation theory for susceptibilities describing spin-spin and spin-charge in-

teractions. Spin susceptibilities[65] may then be used to calculate electron-magnon contri-

butions to quasiparticle energies, as in the recent work in Ref. [66]. Other codes do not

seem to have this functionality implemented. To assist in non-collinear or antiferromag-

netic calculations, magnetic symmetry groups have been exploited in the code Yambo to

reduce the necessary size of magnetic systems to the primitive chemical unit cell[67]. While

BerkeleyGW can treat magnetic systems within the supercell approach, the inclusion of spin

susceptibilities, as well as the use of magnetic symmetry groups, is an ongoing work. We

consider test systems with no magnetization in the present work.

This paper is structured as follows. In Section II, we review the theory of one-particle and

two-particle excited states within many-body perturbation theory in the GW approximation,

and how such calculations are performed in a plane-wave basis with wavefunctions that have

two spinor components, and we discuss the appropriate treatment of crystal symmetries
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with spinorial wavefunctions, via quaternions, in a plane-wave basis set. In Section IV,

we demonstrate the accuracy of our implementation in the BerkeleyGW software package

with calculations of the quasiparticle bandstructures and absorption spectra of materials

containing small, moderate, and large spin-orbit coupling strength, finding agreement within

10 meV for energy gaps compared to results from other codes – with the exception of Bi2Se3, a

difficult case needing a more sophisticated treatment. In Section V, we compare to available

results from other fully-relativistic GW codes [43–48, 68, 69]. In Section VI, we discuss

the additional expense of computations that use spinor wavefunctions. In Section VII, we

conclude and give an outlook for future development in spinor GW/BSE.

II. SPINOR WAVEFUNCTIONS IN MANY-BODY PERTURBATION THEORY

We begin by generalizing the GW/BSE formalism to spinors, following the non-spinor

approach used in BerkeleyGW [51]. The derivation of the basic framework of Hedin’s equa-

tions is presented in the Supplementary Materials [70], in a simpler form than the more

general derivation in Ref. [64]. The formalism starts with a mean-field solution (typi-

cally from Kohn-Sham DFT) from a non-collinear spin calculation[71], in which spin is

not a quantum number of the state (as in a spin-polarized or collinear calculation) but

rather another argument of the wavefunction alongside r. The Kohn-Sham wavefunction

φKS
nk (r) =

∑
α=↑,↓ φ

KS
nkα(r)|α〉, with |φKS

nk↑|2 + |φKS
nk↓|2 = 1, has the Kohn-Sham eigenvalue εKS

nk :∑
α,β

∫
dr
(
φKS
nkα(r)

)†
HKS
α,β φ

KS
nkβ(r) = εKS

nk . (2)

To construct the one-particle Green’s function in the frequency domain, we consider the

quasiparticle wavefunctions φnk and energies Enk, giving

Gαβ (r1, r2;ω) =
∑
nk

φnkα(r1)φ∗nkβ(r2)

ω − Enk − iη sgn(µ− Enk)
, (3)

where η is some small positive constant and µ is the chemical potential.

In practice, we find that the Kohn-Sham wavefunctions φKS
nk (with corresponding energy

eigenvalues εKS
nk ) are usually good approximations to the actual quasiparticle wavefunctions[31],

so we approximate the Green’s function as

Gαβ (r1, r2;ω) ≈
∑
nk

φKS
nkα(r1)φKS∗

nkβ(r2)

ω − Enk − iη sgn(µ− Enk)
. (4)
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We evaluate the quasiparticle energies with a one-shot “G0W0” procedure:

Enk = εnk +
∑
αβ

〈n,k, α|Σαβ (Enk)− V xcδαβ|n,k, β〉, (5)

with the Kohn-Sham orbitals being expressed in bra-ket notation. The electron-electron

self-energy is given by Σαβ = iGαβW [42, 64], where W is the screened Coulomb potential,

and V xc is the exchange-correlation potential. In this study, we consider only non-magnetic

materials, for which V xc has only spin-diagonal components. (A system with local magnetic

moments has the spin-dependent exchange-correlation potential V xcδαβ + ~σαβ · ~Bxc. See

Ref. [72] and references therein for the full treatment of the exchange-correlation functional

for magnetic systems, which needs to be considered when calculating quasiparticle energy

corrections including electron-magnon scattering terms in the self-energy[66].)

To determine W , we must first compute the polarizability P [31]:

WGG′(q, ω) = ε−1
GG′(q, ω)v(q + G′), (6)

εGG′(q, ω) = δGG′ − v(q + G)PGG′(q, ω). (7)

The polarizability matrix for real frequencies may be constructed from the Kohn-Sham

eigenfunctions and eigenvalues as[73–75]

PGG′(q, ω) =
1

Nk

occ∑
n

emp∑
n′

∑
k

M∗
nn′(k,q,G)Mnn′(k,q,G

′)[
1

εnk+q − εn′k − ω + iη
+

1

εnk+q − εn′k + ω + iη

]
,

with Nk being the number of k-points used to sample the Brillouin Zone, and q the mo-

mentum transfer. The matrix elements

Mnn′(k,q,G) =
∑
α

〈n,k + q, α|ei(q+G)·r|n′,k, α〉 (8)

may be computed for all G by multiplying the Fourier transforms of the wavefunctions, for a

spin component α common to both wavefunctions; computing the inverse Fourier transform

of this product[51, 76]; and then summing over spin index:

Mnn′(k,q, {G}) =
∑
α

FFT−1
(
φ∗nk+qα(r)φn′kα(r)

)
. (9)

Since the (non-magnetic[72]) polarizability has its physical origin from density fluctuations

arising from the spin-independent Coulomb interaction, the form of the polarizability is
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identical to the case in which spin-orbit is neglected, apart from the sums over the spin

index in the computation of the matrix elements in Eq. 9, the doubled number of both

valence and conduction bands within the summation over basis states, and any differences

in eigenfunctions and eigenvalues. In many cases, these differences are sufficiently small

such that one may calculate the polarizability using the Kohn-Sham eigenfunctions and

eigenvalues from a scalar-relativistic DFT calculation[42, 77]. However, in this work, we

use the Kohn-Sham eigenfunctions and eigenvalues from fully-relativistic DFT calculations

(“FR-DFT”).

We note that self-energy operator Σ = iGW inherits the spin-dependence from the

Green’s function[64], but the process of taking matrix elements reduces this spin-dependence

to computing traces over the spinor components of the wavefunctions. This is readily seen

by considering the matrix elements of Σ, which separate into two terms, with the screened-

exchange (“SX”) coming from the poles of G, and the Coulomb-hole (“COH”) coming from

the poles of W [31]. The matrix elements 〈n,k|ΣSX(ω)|n,k〉 and 〈n,k|ΣCOH(ω)|n,k〉 are

given by

∑
α,β

〈n,k, α|ΣSX
αβ(ω)|n,k, β〉 = −

occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n(k,−q,−G′)

× ε−1
GG′(q;ω − En′′k−q)v(q + G′), (10)

∑
α,β

〈n,k, α|ΣCOH
αβ (ω)|n,k, β〉 = −

∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n(k,−q,−G′)

× 1

π

∫
dω′

Im ε−1
G,G′(q, ω

′)

ω − εn′′k − ω′ + iη
. (11)

To simplify the calculation of matrix elements of ΣCOH, a generalized plasmon pole model

(GPP)[31, 78] may be used. In this case, only the static dielectric function needs to be

explicitly computed. The Hybertsen-Louie GPP[31] is justified through the use of a sum

rule that is derived from a double-commutator of a one-particle non-interacting Hamiltonian

(as in the RPA) with charge density operators, and is therefore independent of spin-orbit

coupling.

To calculate the optical absorption spectrum of a material, we may first try to evaluate

the imaginary part of the macroscopic dielectric function within the independent-particle

approximation. We may readily determine, using the usual expression[79, 80], the imaginary
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part of the dielectric function to be

ε2(ω) =
8π2e2

ω2

∑
vck

∣∣∣∣∣λ ·∑
αβ

〈v,k, α|vαβ|c,k, β〉

∣∣∣∣∣
2

δ (ω − (Eck − Evk)) ,

where λ is the direction of light polarization. The velocity operator v = i [H, r] now has

a spin-dependence inherited from the Hamiltonian. However, it can be transformed just as

in the spin-independent case (explained in Ref. [81], containing a few additional details or

corrections compared to Ref. [51]) into

〈v,k|v|c,k〉 = −i (Eck − Evk) 〈v,k|r|c,k〉 (12)

containing now a spin-independent dipole operator, and with an energy that cancels the ω−2

factor. We evaluate in practice:

ε2(ω) = 8π2e2
∑
vck

∣∣∣∣∣λ ·∑
α

〈v,k, α|r|c,k, α〉

∣∣∣∣∣
2

δ (ω − (Eck − Evk))

where the dipole matrix element is calculated via a q → 0 limit. The momentum operator

−i∇ can be used to approximate v to avoid needing a set of wavefunctions on a shifted

k-grid, but this is a worse approximation than in the spinless case, as the fully relativistic

Hamiltonian contains additional non-local terms, not only the spin-orbit coupling but also

both of the scalar relativistic terms [82].

More accurate calculations of the absorption spectrum require the inclusion of excitonic

effects, which require a treatment of the many-body physics of an optically excited electron

interacting with a hole. Since this interaction is Coulombic and therefore does not carry an

intrinsic dependence on spin, the derivation of the Hamiltonian for this interaction within

many-body perturbation theory, the Bethe-Salpeter Equation, can be expected to yield the

same Hamiltonian as for the spinless case, only with traces over the spin indices in the

matrix elements defined in Ref. [32].

Ref. [49] presents a derivation of the Bethe-Salpeter Equation with two-component spinor

wavefunctions, based on a treatment and notation for many-body perturbation theory from

Ref. 83. We, however, wish to present a derivation that employs the Schwinger approach

to many-body perturbation theory as in Ref. [84], in which a small perturbing electrostatic

potential Φ is introduced to arrive at the relation between the (interacting) electron-hole

propagator L and the functional derivative of the one-particle Green’s function with respect
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to this potential, following the work and notation conventions in Ref. 84. As in Ref. 49,

we only consider inclusion of electron-electron interactions, unlike Ref. [64] as we are not

computing GT or GWT contributions to the self-energy[66].

As an outline for our approach to the derivation of the BSE with two-component spinor

wavefunctions, we begin with a definition of the interacting electron-hole propagator L,

demonstrate its relation to a functional derivative of the one-particle Green’s function within

the Schwinger approach, and arrive at a Dyson series for L from this functional derivative,

which then allows us to identify the electron-hole interaction kernel, K. From the poles of

the inverted Dyson series, we arrive at the BSE, in a basis set of electronic transitions from

occupied bands to unoccupied bands, each composed of two-component spinors.

The electron-hole propagator L, is defined from the one-particle Green’s function G and

the two-particle Green’s function G(2), by

Lαβγζ(12′, 21′) ≡ Gαγ(12)Gβζ(2
′1′)−G(2)

αβγζ(12′, 21′). (13)

where 1 is an abbreviation for r1, t1, and the same for 1’, 2, and 2’. “1+” is an abbreviation for

r1, t1 + η, with η a small positive number. We can introduce the non-interacting propagator

as

L0
αβγζ(12′, 21′) = Gαζ(11′)Gβγ(2

′2), (14)

which simply describes a pair of non-interacting particles.

To arrive at a Dyson-like equation for L and to eliminate G(2), we introduce a spatially

non-local electrostatic perturbing potential Φ to generate the appropriate number of coor-

dinates for a four-point function such as L. This introduces the additional perturbing term

in the Hamiltonian, H
′
(t) =

∑
βζ

∫
d2d3 ψ̂†β(2+)Φ(23)δ(t− t2)δ(t− t3)δβζψ̂ζ(3), with ψ̂†β(2+)

and ψ̂ζ(3) fermionic field operators.

In the interaction picture, the perturbing term yields the time-development operator

Ŝ = exp

{
−i
(∫ +∞

−∞
dt H

′
(t)

)}
, (15)

allowing us to rewrite the (single-particle) Green’s function as

Gαγ(11′) = −i
〈ΨN

0 |T̂
[
Ŝψ̂α(1)ψ̂†γ(1

′)
]
|ΨN

0 〉

〈ΨN
0 |T̂

[
Ŝ
]
|ΨN

0 〉
, (16)
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where |ΨN
0 〉 is the N -particle ground-state wavefunction and T̂ is the time-ordering operator.

A variation in the perturbing potential, δΦ, will create a variation in the Green’s function

δGαγ(11′) = (−i)2
∑
β

∫
d23 δΦ(23)

〈ΨN
0 |T̂

[
Ŝψ̂†β(2+)ψ̂β(3)ψ̂α(1)ψ̂†γ(1

′)
]
|ΨN

0 〉

〈ΨN
0 |T̂

[
Ŝ
]
|ΨN

0 〉

− (−i)Gαγ(11′)
∑
β

∫
d23 δΨ(23)

〈ΨN
0 |T̂

[
Ŝψ̂†β(2+)ψ̂β(3)

]
|ΨN

0 〉

〈ΨN
0 |T̂

[
Ŝ
]
|ΨN

0 〉
. (17)

Recognizing that the first term on the right-hand side in Eq. 17 is a two-particle Green’s

function G(2), apart from the multiplication by the δΦ and the integration over its coordi-

nates, we have the variational derivative

δGαγ(11′)

δΦ(23)
=
∑
β

(
−G(2)

αβγβ(13, 1′2+) +Gαγ(11′)Gββ(32+)
)
. (18)

We note that in the context of non-collinear spins, this result was first derived in Ref. [64],

though now generalized to include non-local perturbations. (We note that time-reversal

symmetry-breaking magnetic perturbations can be included in the previous derivation; this

is done in Ref. [85].)

To define the electron-hole interaction kernel K, we find the Dyson series for L, using
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Eqs. 13 and 18, and make use of the inverted Dyson series for G (G−1 = G(0)−1 − Σ):

∑
β

Lαβγβ(12′, 21′) =
δGαγ(12)

δΦ(1′2′)

= −
∑
ζι

∫
d34 Gαζ(13)

δG−1
ζι (34)

δΦ(1′2′)
Gιγ(42)

= −
∑
ζι

∫
d34 Gαζ(13)

δ(G
(0)−1
ζι (34)− Σζι(34))

δΦ(1′2′)
Gιγ(42)

=
∑
β

Gαβ(11′)Gβγ(2
′2) +

∑
ζι

∫
d34 Gαζ(13)

δΣζι(34)

δΦ(1′2′)
Gιγ(42)

=
∑
β

L
(0)
αβγβ(12′, 21′)

+
∑
ζιµν

∫
d3456 Gαζ(13)

δΣζι(34)

δGµν(65)

δGµν(65)

δΦ(1′2′)
Gιγ(42)

=
∑
β

L
(0)
αβγβ(12′, 21′)

+
∑
ζιµνβ

∫
d3456 Gαζ(13)

δΣζι(34)

δGµν(65)
Lµβνβ(62′, 51′)Gιγ(42)

=
∑
β

L
(0)
αβγβ(12′, 21′)

+
∑
ζιµνβ

∫
d3456 L

(0)
αιγζ(14, 23)

δΣζι(34)

δGµν(65)
Lµβνβ(62′, 51′) .

(19)

Having arrived at the Dyson series for L, we define the electron-hole interaction kernel

K to write the inverse Dyson equation as L−1
αβγβ(12′, 21′) = L

(0)−1
αβγβ (12′, 21′)−Kαβγβ(12′, 21′).
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The electron-hole interaction kernel K is determined from

Kζνιµ(35, 46) =
δΣζι(34)

δGµν(65)
=
δ (v(37)ρ(7)δ(34)δζι + iGζι(34)W (3+4))

δGµν(65)

= −iδ(34)δζιv(37)
δGρρ(77+)

δGµν(65)

+ iW (3+4)
δGζι(34)

δGµν(65)

= −iδ(34)δζιv(37)δ(67)δ(57+)δµρδνρ

+ iW (3+4)δ(36)δ(45)δζµδιν

= −iv(36)δ(34)δ(56+)δζιδµν

+ iW (3+4)δ(36)δ(45)δζµδιν . (20)

In the above, we make the approximation that
δ(Gζι(34)W (3+4))

δGµν(65)
≈ W (3+4)

δGζι(34)

δGµν(65)
, which

simplifies the kernel and is found to be adequate in practice[32].

We wish to solve for the poles of L−1, which requires us to decide on a basis for our

excited states. In the basis of Kohn-Sham wavefunctions, the two-particle excited-state

wavefunction [86] for state S is

ΨS
αβ(11′) =

∑
vck

ASvckφckα(1)φ∗vkβ(1′) +BS
vckφvkα(1)φ∗ckβ(1′). (21)

In the Tamm-Dancoff Approximation (TDA), we take BS = 0 and simplify the wavefunction:

Ψ
S,(TDA)
αβ (11′) =

∑
vck

ASvckφckα(1)φ∗vkβ(1′). (22)

The following uses exclusively the TDA to simplify the construction of the results; however

the process may be generalized to include the off-diagonal blocks of the BSE allowed by

non-zero BS.

In the orbital basis, then, we obtain the same results for the inverted Dyson equation as

in Ref. [32],

L
(0)−1
αβγβ (12′; 21′;ω) =

∑
vck

Mαβ
cvk(11′) (ω − Ecvk)Mβγ

cvk

∗
(2′2)−Mγβ

vck(22′) (ω + Ecvk)Mβα
vck

∗
(1′1)

L−1
αβγβ(12′, 21′;ω) =

∑
S

[
ΨS
αβ(11′)

(
ω − ΩS

)
ΨS
βγ

∗
(2′2))−ΨS

γβ(22′)
(
ω + ΩS

)
ΨS
βα

∗
(1′1)

]
,

(23)
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with Mαβ
vck(11′) = φckα(1)φ∗vkβ(1′) and Ecvk = Eck − Evk.

We solve the inverted Dyson equation, enforcing the solution ω = ΩS and using orthonor-

mality of the excited-state wavefunctions, to arrive at the Bethe-Salpeter Equation within

the Tamm-Dancoff Approximation:

(Eck − Evk)ASvck +
∑
v′c′k′

(
KX
vck,v′c′k′ +KD

vck,v′c′k′

)
ASv′c′k′ = ΩSASvck ,

for the excited state S, with energy ΩS and envelope function ASvck.

This is exactly the form of the eigenvalue equation from the BSE when neglecting spin-

orbit coupling, with the exception that we have twice as many valence and conduction

states.

The matrix elements of KX and KD are

KX
vck,v′c′k′ = −i

∑
α,β

∫
d12 ψ∗c′k′α(1)ψv′k′α(1)v(12)ψckβ(2)ψ∗vkβ(2),

KD
vck,v′c′k′ = i

∑
α,β

∫
d12 ψ∗c′k′α(1)ψckα(1)W (34)ψv′k′β(2)ψ∗vkβ(2). (24)

The spin-dependence of the kernel, and thus the BSE, reduces as expected to a trace over

the spin coordinates in the computation of the relevant generalized charge density matrix

element:

Mnn′(k,q,G) =
∑
α

〈n,k + q, α|ei(q+G)·r|n′,k, α〉. (25)

The absorption spectrum, including the interacting two-component spinor electron and

hole wavefunctions, is then computed from

ε2(ω) = 8π2e2
∑
S

∣∣∣∣∣∑
vck

ASvck λ ·
∑
α

〈k, α|r|c,k, α〉

∣∣∣∣∣
2

δ
(
ω − ΩS

)
,

using the excitonic version of Eq. 12 [81].

We also note that in the presence of spin-orbit coupling, spin is generally no longer a good

quantum number, so it is no longer possible to refactor the Bethe-Salpeter Hamiltonian into

spin-singlet and -triplet block-diagonal submatrices[32]. Further, the number of valence

and conduction bands both double, relative to spinless calculations. This makes explicit

diagonalization of the BSE Hamiltonian, which scales as N3
basis = (NvNc)

3, more expensive

by a factor of 64 for solids, as the basis has quadrupled. However, the time spent performing

14



this diagonalization and computation of the absorption spectra remains a relatively rapid

calculation, compared to calculation of the screened interaction and the self-energy (see Sec.

VI).

The above derivation holds even when the Tamm-Dancoff Approximation is not invoked,

since, again, the screened and bare Coulomb interactions do not depend on spin. Metals and

semi-metals, generally speaking, and sometimes other systems[87], have absorption spectra

calculated with the full BSE Hamiltonian, with the Tamm-Dancoff Approximation[88]. As

the BerkeleyGW routines for calculating unrestricted BSE use the matrix element calculation

routine that is compatible with spinor wavefunctions, this functionality in BerkeleyGW is

also compatible with spinor wavefunctions, though no such calculations are performed in

this work.

The most formidable computational challenge with the inclusion of two-component spinor

wavefunctions is the increase in the number of charge-density matrix elements (Eq. 9, which

must be calculated for the polarizability, self-energy, and BSE kernel). Compared to a

calculation performed on the same system without spin, the number of both valence and

conduction states double. Taking the ratio of the scaling of the charge-density matrix

element calculation with system size N [51], we find an increase in computation time by

(2N)2 2 log(2N)

N2 logN
= 8(1 + logN 2), (26)

where the additional factor of 2 in the numerator comes from having to compute the inverse-

FFT for each of the of two-component spinor wavefunctions. Since, at best, we are increasing

the cost of matrix element calculations by more than a factor of 8, we should make use

of symmetries of the Brillouin Zone to allow for converged calculations within reasonable

computational cost. (Detailed discussion about the performance of the major sections of the

BerkeleyGW code is included in Section VI.)

III. SPINOR WAVEFUNCTIONS AND SYMMETRIES

A. Symmetries, No spin

We first briefly review the use of symmetries for wavefunctions with plane-wave basis

functions in the absence of spin[51], as this is also necessary when using spinor wavefunc-

tions. We use the symmetries of the Brillouin Zone to store only the necessary wavefunction
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coefficients within the irreducible wedge. When computing the polarizability and self-energy,

we then unfold to “little group of the q-vector” except when computing off-diagonal matrix

elements of the self-energy[51].

We consider the action of a transformation R, a proper or improper rotation, fol-

lowed by a fractional translation τ on a Bloch wavefunction ψnk(r) = unk(r)eik·r =

eik·r
∑

G cnk(G)eiG·r[89]. A coordinate vector r is transformed as r′ = Rr + τ , and the

Bloch wavefunction is transformed according to

P{R|τ}ψnk(r) = ψnk(R−1r− R−1τ )

= unk(R−1r− R−1τ )eik·(R−1r−R−1τ)

= unk(R−1r− R−1τ )eiRk·(r−τ ). (27)

where we use the property that scalars formed in dot products are invariant under rotation

of both vectors. We drop the phase factor e−iRk·τ , as this is common among all bands at a

given k-point.

We expand the periodic part of the Bloch function in its plane-wave basis:

unk
(
R−1r− R−1τ

)
=
∑
G

cnk(G)eiG·(R−1r−R−1τ)

=
∑

R−1G

cnk(R−1G)e−iG·τeiG·r. (28)

Substituting in to the previous equation and reordering the summation over G-vectors,

P{R|τ}ψnk(r) = ũnRk(r)eiRk·r,

ũnRk(r) =
∑
G

c̃nRk(R−1G)e−iG·τeiG·r. (29)

(The use of the c̃ refers to the change in the function u when evaluated at r instead of

R−1r− R−1τ .)

This allows us to use the usual relation when using symmetries to unfold the Brillouin

Zone from an irreducible wedge:

cnk(G)→ c̃nRk(R−1G)e−iG·τ . (30)

1. Symmetries, with spinor wavefunctions

We now extend the above discussion for the case of spinor wavefunctions, where

ψnk(r) = unk↑(r)e
ik·rχ↑ + unk↓(r)e

ik·rχ↓. (31)
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and χα represents a spinor. The periodic functions unk↑ and unk↓ are spatial and thus

transform according to the above. However, the spinor itself rotates according to the rules

of transformation for elements of the group SU(2):

P{R|τ}ψnk(r) = ũnRk↑(r) exp (iRk · r) exp (i n̂ · ~σ θ/2)χ↑

+ ũnRk↓(r) exp (iRk · r) exp (−i n̂ · ~σ θ/2)χ↓ , (32)

where n̂ and θ are the unit-axis and angle (about the axis n̂) that recreates the rotational

action of the symmetry operation R. We readily arrive at the rule for transforming two-

component spinor Bloch functions:

P{R|τ}ψnk(r) =

cos
(
θ
2

)
− inz sin

(
θ
2

)
(−ny − inx) sin

(
θ
2

)
(−ny + inx) sin

(
θ
2

)
cos
(
θ
2

)
+ inz sin

(
θ
2

)
ũnRk↑(r)e

iRk·r

ũnRk↓(r)e
iRk·r

 , (33)

where ni is the i’th Cartesian component of n̂.

The task, then, is to determine n̂ and θ for each symmetry R used in unfolding the

Brillouin Zone.

2. Axis and Angle Extraction

The Euler axis/angle form of the matrix in the Cartesian basis that rotates a vector (in

R3) by some angle θ about a unit vector n̂ can be recreated by consideration of the generators

of the Lie group for SO(3). We simply restate the end result[90]:

R (n̂, θ) =


cos θ + n2

x (1− cos θ) −nz sin θ + nxny (1− cos θ) ny sin θ + nxnz (1− cos θ)

nz sin θ + nynx (1− cos θ) cos θ + n2
y (1− cos θ) −nx sin θ + nynz (1− cos θ)

−ny sin θ + nznx (1− cos θ) nx sin θ + nzny (1− cos θ) cos θ + n2
z (1− cos θ)

 .

(34)

A first attempt to extract the values of nx, ny, nz, and θ for any given rotation matrix

might make use of the following:

cos θ =
1

2
(Tr (R)− 1) ,

nk = εijk

(
− [R]ij + [R]ji

)
/2 sin θ, (35)

with εijk being the Levi-Civita tensor. However, the division by sin θ is singular for θ = 0±η

or θ = π ± η, where η is the machine precision for floating-point numbers. Further, if

Tr (R) = −1− 2η, the use of the inverse-cosine function to find θ is also subject to failure.
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More general extraction algorithms attempt to remove singularities by making use of a

reparameterization of the above rotation matrix in terms of a four-component quaternion.

A unit quaternion q, with transpose qT = (q1, q2, q3, q4), can be parameterized by n̂ and θ

from

qT = (n1 sin
θ

2
, n2 sin

θ

2
, n3 sin

θ

2
, cos

θ

2
). (36)

We now rewrite the rotation matrix above as[90]

R =


q2

1 − q2
2 − q2

3 + q2
4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q2q1 − q3q4) −q2
1 + q2 − q2

3 + q2
4 2 (q2q3 + q1q4)

2 (q3q1 + q2q4) 2 (q3q2 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (37)

We extract the parameters n̂ and θ by using Markley’s[91] modification to Shepperd’s

algorithm[92]. We first construct an auxiliary matrix X:

X =


1 + 2R11 − Tr (R) R21 + R12 R31 + R12 R23 − R32

R12 + R21 1 + 2R22 − Tr (R) R32 + R23 R31 − R13

R13 + R31 R23 + R32 1 + 2R33 − Tr (R) R12 − R21

R23 − R32 R31 − R13 R12 − R21 1 + Tr (R)


. (38)

Then we compute the norms of each column xi. We use the column with the largest norm

to compute the quaternion q, from

q = ±xi/
∣∣xi
∣∣ , (39)

by construction[91]. The positive and negative branches of solution come from the double-

cover of SO(3) by SU(2), the latter of which is parameterized by the four real quaternion

components qi instead of the usual two complex components for spin. While recently devel-

oped modifications to Shepperd’s algorithm allow for continuous quaternions through the use

of solutions from both the positive and negative branches[93], we arbitrarily choose to use

the positive branch, which is adequate for materials science applications, as this algorithm

produces errors that are bounded to the order of round-off error[91].

With a quaternion q that is now guaranteed to be non-singular, we evaluate the rotation

angle θ from

θ = 2 arctan

(
q2

1 + q2
2 + q2

3

q4

)
, (40)
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where arctan is a function with all real numbers as its domain, and evaluate the i’th com-

ponent of the axis of rotation ni from

ni =
qi√

q2
1 + q2

2 + q2
3

. (41)

The set of rotation matrices R for a crystalline system are usually stored in the basis

of lattice vectors in ab initio codes, as it allows these matrices (up to 48 in number) to be

written with nine integers. In this case, we must transform the rotation matrices in the

lattice basis, Rlat, to the rotation matrix in the Cartesian basis. If we form a matrix A out

of the three lattice vectors a1, a2, and a3 as

A =


a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

 , (42)

this transformation is

Rcart = ARlatA−1. (43)

If instead we decide to use the reciprocal lattice vectors b1, b2, b3 to construct the matrix

B in a fashion as in the above, we make use of the identity BTA = 2πI to write

Rcart =
(
BT
)−1

RlatBT. (44)

This latter choice is beneficial if the matrices A and B are in fact stored as their transposes,

as some codes do.

Finally, we note that in the presence of inversion symmetries, “improper rotations” S

must be considered. While often considered to be the composition of a rotation and a mirror

reflection about the plane perpendicular to the axis of the rotation, instead we can consider

the improper rotation S to be (in general, a different) rotation R followed by inversion N ,

S = NR[89]. However, if both spatial inversion and time-reversal operations commute with

the Hamiltonian under consideration, the (spinor) wavefunction is a simultaneous eigenstate

of both symmetries. Thus in the presence of only time-reversal symmetric terms in the

Hamiltonian, the wavefunctions are unaffected by inversion, apart from perhaps an overall

phase factor. We identify improper rotations by the identity det (S) = −1, and if detected,

use only the rotation part R of S to transform the spinor components of the wavefunction.
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IV. TEST SYSTEMS

We present results for seven different materials with a wide range of spin-orbit coupling

(SOC) strengths. The diamond and zincblende semiconductors Si, Ge, and GaAs are techno-

logically important materials with weak SOC. GaSb has a spin-orbit splitting of its valence

bands of similar magnitude as its band gap. CdSe has a wurtzite structure and a significant

SOC (429 meV[94], over 25 times larger than that of wurtzite GaN, 16.8 meV[95]). Au is a

prototypical metal with strong SOC. Finally, Bi2Se3 has a nontrivial topological nature due

to the band inversion induced by its strong SOC, and is a particularly challenging case to

explore which has been studied in much previous literature.

A. Computational Details

We compute mean-field wavefunctions and eigenvalues from Density Functional Theory[28,

29]. For the exchange-correlation energy, we employ the Perdew-Zunger parameterization

of the LDA[96]. We generate fully-relativistic pseudopotentials using the Optimized Norm-

Conserving Vanderbilt Pseudopotential (ONCVPSP) scheme[97] with parameters from the

Pseudo-Dojo pseudopotential database[98]. The pseudopotentials for Au, Bi, Cd, Ga, Ge,

and Sb contain the full shell of the semicore states (e.g., 5s25p65d10 for Bi) for accurate cal-

culation of the bare exchange[99]. All DFT calculations are carried out with the Quantum

ESPRESSO software package[100].

We first determine the equilibrium lattice constants and atom positions. Table I shows

that all relaxed lattice constants are in very good agreement with experimental measure-

ments. We instead use the experimental lattice parameters and atomic coordinates for

Bi2Se3 due to the sensitivity of its DFT bandstructure with respect to its geometry[101].

Next, the quasiparticle energies are computed with the one-shot “G0W0” approach, us-

ing the Hybertsen-Louie Generalized Plasmon Pole model[31, 78] for the inverse dielectric

matrix. For the case of bulk Au, we also calculated the quasiparticle band structure in

the Godby-Needs Plasmon Pole Model[102] and found differences of 50 meV or smaller in

the quasiparticle energies, in the range 6 eV above and below the Fermi energy. Table I

summarizes our parameters for the empty state summations, the k-point sampling, and the

plane-wave cutoffs for the dielectric matrices. We use the static remainder method to im-
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prove convergence with the number of empty states in the Coulomb-hole summation[103].

We verified that G0W0 evaluation of the self energy in the band-diagonal approximation

yields quantitatively accurate bandstructures for these test systems. Deviations from this

methodology in the computation of the bandstructure for Bi2Se3 are enumerated in Section

IV H.

The k-point sampling and number of bands used in constructing the GW -BSE Hamil-

tonian are summarized in Table II. All excited-state calculations are carried out with the

BerkeleyGW software package.

B. Si

Fig. 1 shows the bandstructure of Si calculated with fully-relativistic LDA (“FR-LDA”)

and fully-relativistic GW (“FR-GW”). We find the FR-LDA band gap to be 0.445 eV, with

the valence band maximum at the Γ-point and the conduction band minimum along the

Γ−X line. The FR-GW gap is 1.22 eV, with the valence band maximum and conduction

band minimum occuring at the same k-points as in FR-LDA. The measured band gap is

1.17 eV at low-temperature; correcting for the zero-point electron-phonon renormalization

(ZPR) yields a gap of 1.22[105] or 1.23 eV[106], in excellent agreement with our FR-GW

result. Table III shows that the calculated spin-orbit splittings from FR-LDA and FR-

GW are in excellent agreement with experiment, and calculation at the GW level has little

effect on these splittings. A comparison with a GW+SOC calculation[35] shows that the

perturbative treatment of spin-orbit coupling gives good agreement with FR-GW results for

interband gaps and spin-orbit splittings, within few 10 meV.

In the absence of spin-orbit coupling (scalar relativistic, “SR”), the band gaps increase

slightly to 0.46 eV in LDA and 1.23 eV in GW . The SR-GW direct gap at Γ is also slightly

larger at 3.26 eV, compared to 3.22 eV within FR-GW .
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TABLE I. The kinetic energy cutoffs Ecut, calculated lattice parameters, experimental lattice

parameters, Brillouin zone sampling, screened Coulomb cutoff εcut, and number of empty states

used in the sums for both the polarizability (“Chi”) and the Coulomb-hole (“COH”) term in the

self-energy. The pseudopotentials for Ge, Sb, Cd, and Au contain the full shell of the semicore

states (e.g., 4s24p64d10 for Sb)[99]. The experimental lattice parameters are from Ref. [95]. For

Si, Ge, GaP, GaAs, and GaSb, we use the same parameters as Ref. [35], and for Au, Ref. [104].

GaP results are discussed in Section V .

Ecut (Ry) arelaxed
0 (Å) aexp.

0 (Å) k-grid εcut (Ry) Empty States

Si 120 5.48 5.47 8×8×8 20 800

Ge 120 5.63 5.66 8×8×8 25 600 Chi, 1000 COH

GaP 350 5.45 5.45 8×8×8 40 800 Chi, 1000 COH

GaAs 350 5.61 5.65 8×8×8 20 1002

GaSb 350 6.09 6.10 8×8×8 20 1002

CdSe 200 4.30 4.30 6×6×4 20 996

Au 72 4.08 4.08 8×8×8 50 2018

TABLE II. The values of the Brillouin Zone sampling of the fine grid, the number of valence and

conduction bands used as the basis for the BSE, and the Gaussian broadening of the delta function.

kfine grid Nv Nc Broadening (meV)

GaAs 12×12×12 6 8 150

GaSb 12×12×12 6 8 100

Au 12×12×12 6 4 150
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FIG. 1. The electronic bandstructure of Si. Fully-relativistic (“FR”) LDA and GW in dashed and

solid lines, respectively.
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TABLE III. The band gap and spin-orbit splitting for Si, computed at the FR-LDA and FR-GW

levels, compared to experiment. The fundamental band gap from experiment is reported with

Zero-Point Renormalization corrections.

FR-LDA FR-GW GW+SOC[35] Experiment

Eg (eV) 0.45 1.22 1.27 1.22 [105], 1.23 [106]

E(Γ6c)− E(Γ8v) (eV) 2.46 3.22 3.28 3.34 [107]

∆SOC(Γ, v) (eV) 0.05 0.05 0.05 0.044 [95]

∆SOC(Γ, c) (eV) 0.03 0.04 0.04 0.030 - 0.040 [95]

∆SOC(L, v) (eV) 0.03 0.03 0.03 0.030 [95]

∆SOC(L, c) (eV) 0.01 0.01 0.02 –

C. Ge

Fig. 2 shows the bandstructure of Ge from FR-LDA and FR-GW . DFT calculations

often find a negative band gap for Ge[99, 108–110]. With the use of the fully-relativistic

ONCVPSP pseudopotential with 3s23p63d10 semicore states, however, we find a small but

positive direct gap at the Γ-point of 0.15 eV (Table IV).

The FR-LDA indirect band gap is found to be 0.13 eV, with the valence band maxi-

mum at Γ and the conduction band minimum at L. Self-energy corrections at the FR-GW

level increase this gap to 0.743 eV. The experimental gap is 0.744 eV[95], increasing to

0.79 eV[106] when ZPR is taken into account, in good agreement with the FR-GW result.

Table IV shows the calculated spin-orbit splittings. The splittings in FR-GW are in better

agreement with experimental data compared to that in FR-LDA by a few meV. The per-

turbative treatment of SOC[35] has good agreement with the FR-GW results for spin-orbit

splittings. We attribute the underestimated band gaps from Ref. [35] from the use of a Ge

pseudopotential that freezes the n = 3 semicore states in the core, rather than to inherent

limitations of the perturbative approach.

The indirect band gap in the SR-GW approach is 0.842 eV, 0.1 eV larger than in FR-

GW . The direct gap at Γ in FR-GW is calculated to be 0.960 eV, smaller than the SR-GW

direct gap result of 1.05 eV. The discrepancies in both the indirect and direct gaps compared
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FIG. 2. The electronic bandstructure of Ge. Fully-relativistic (“FR”) LDA and GW in dashed

and solid lines, respectively.
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to FR-GW are due to the moderately strong SOC in Ge. While the change of these gaps

upon the inclusion of SOC can be calculated by the inclusion of SOC as a perturbation to

the quasiparticle Hamiltonian as in Ref. [35], another approach to a perturbative treatment

of SOC for standard Group IV or III-V semiconductors approximates the valence-band

maximum as purely atomic (cationic, for compound semiconductors) p states, which split due

to spin-orbit coupling as in a free atom, with p3/2 states shifting upward in energy by 1
3
∆SOC

and p1/2 downward by 2
3
∆SOC [111]. The FR-LDA value for the spin-orbit splitting of these

bands can be used to approximate ∆SOC, so then a GW gap can be quickly approximated

from using the SR-GW gap ESR−GW
g and the FR-LDA spin-orbit splitting ∆SOC

LDA(Γ, v):

EFR−GW
g ≈ ESR−GW

g − 1

3
∆SOC

LDA(Γ, v). (45)

This “atomic SOC perturbation” estimates a GW+SOC direct bandgap at Γ of 0.95 eV,

which agrees with the FR-GW value (0.960 eV) within 10 meV.

TABLE IV. The band gap and spin-orbit splittings for Ge, computed at the FR-LDA and FR-GW

levels, compared to experiment. Experimental data is from Ref. [95] unless otherwise specified.

FR-LDA FR-GW GW+SOC[35] Experiment

Eg (eV) 0.13 0.74 0.54 0.79

E(Γ7c)− E(Γ8v) (eV) 0.15 0.96 0.38 0.90

∆SOC(Γ, v) (eV) 0.31 0.30 0.32 0.297

∆SOC(Γ, c) (eV) 0.22 0.21 0.24 0.200

∆SOC(L, v) (eV) 0.19 0.19 0.20 0.228

∆SOC(L, c) (eV) 0.10 0.08 0.12 –
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D. GaAs
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FIG. 3. The electronic bandstructure of GaAs. Fully-relativistic (“FR”) LDA and GW in dashed

and solid lines, respectively.
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FIG. 4. The absorption spectra of GaAs, calculated at the SR-GW -BSE (blue) and FR-GW -BSE

(red) level.

Fig. 3 shows the bandstructure for GaAs calculated with FR-LDA and FR-GW . We find

an FR-LDA band gap of 0.55 eV and a FR-GW gap of 1.49 eV, compared to the 0 K gap

of 1.52 eV, from experiment[95]. (Correcting for ZPR, the experimental band gap increases

to 1.57 eV[112]). Table V shows the calculated spin-orbit splittings. We find that the FR-

GW splittings are in excellent agreement with experiment. The GW+SOC approach to

the quasiparticle energies finds a band gap of 1.51 eV[35], indicating that the perturbative
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approach is sufficient for GaAs. The “atomic SOC perturbation” approximation, based on

a SR-GW gap of 1.60 eV, estimates a GW+SOC gap of 1.49 eV.

Fig. 4 shows the absorption spectrum of GaAs from FR-GW -BSE and SR-GW -BSE.

Both methods yield similar spectra, apart from a small shift of 40 meV in the first peak

after absorption onset, E0 + ∆, and a difference in amplitude of the E1 absorption peak

at 3 eV. The shift in the E0 + ∆ peak is due to the smaller direct band gap within FR-

GW as compared to the SR-GW result. The E1 peak has been measured to be split into

a pair of peaks, E1 and E1 + ∆ due to SOC, but the splitting (200 meV) is on the order

of the resolution of the calculation (150 meV) with the given fine-grid k-point sampling of

12×12×12 and is thus obscured. The FR-GW -BSE absorption spectrum peak energies are

compared with the Empirical Pseudopotential Method (“EPM”) results[56] in Table VI in

which spin-orbit coupling is added as a perturbation to the interband transition energies

(“EPM+SOC”), with the high level of agreement for the E0 and E1 peaks indicating the

perturbative treatment of SOC is sufficient. The FR-GW -BSE for the E2 peak energy,

4.77 eV, agrees less well with experiment (5.133 eV [113]) than EPM+SOC (5.11 eV [56]).

TABLE V. The band gap and spin-orbit splitting for GaAs, computed at the FR-LDA and FR-GW

levels, compared to experiment. Experimental data is from Ref. [95] unless otherwise specified.

FR-LDA FR-GW GW+SOC[35] Experiment

Eg (eV) 0.55 1.49 1.31 1.57[112]

∆SOC(Γ, v) (eV) 0.32 0.34 0.35 0.340

∆SOC(Γ, c) (eV) 0.19 0.17 0.20 0.171

∆SOC(L, v) (eV) 0.20 0.21 0.22 0.22

∆SOC(L, c) (eV) 0.08 0.07 0.09 0.05
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TABLE VI. Absorption peak energies for GaAs in eV. The energy for the spin-orbit split E1 + ∆

peak is not resolved in the present calculation or in Ref. [113].

FR-GW -BSE EPM+SOC[56] Experiment[113]

E0 + ∆ 1.85 1.86 1.851

E1 3.03 3.03 3.041

E1 + ∆ – 3.25 –

E2 4.77 5.11 5.133
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FIG. 5. The electronic bandstructure of GaSb. Fully-relativistic (“FR”) LDA and GW in dashed

and solid lines, respectively.

29



1 2 3 4 5
Energy (eV)

0

5

10

15

20

25

30

2(
)

GaSb absorption spectrum

SR-GW RPA
SR-GW-BSE
FR-GW RPA
FR-GW-BSE 

FIG. 6. The absorption spectra of GaSb, calculated at the SR-GW -RPA (cyan), SR-GW -BSE

(blue), FR-GW -RPA (magenta), and FR-GW -BSE (red) levels. RPA spectra are included to

assess any renormalization of SOC by the electron-hole interaction.

Figure 5 shows the FR-LDA and FR-GW bandstructures. We compute an FR-LDA band

gap of 0.135 eV and a FR-GW direct gap of 0.82 eV, compared to the low temperature gap

of 0.82 eV from experiment[95]. Table VIII shows the calculated spin-orbit splittings, which

are in good agreement with experiment. However, at the FR-GW , as well as SR-GW , level,

we find the conduction band minimum to be located at the L point instead of the Γ-point,

despite experimental evidence of a direct band gap at the Γ-point in GaSb[95].

In the SR-LDA, the direct band gap at Γ is 0.36 eV, and in the SR-GW , 1.07 eV. As

in FR-GW , the fundamental band gap is predicted to be indirect in SR-GW , from Γ to L,

with a value of 1.02 eV. The direct gap is again well-approximated by applying the atomic

perturbation theory estimate, 0.82 eV, while a rigorous GW+SOC perturbative treatment

finds a direct band gap of 0.70 eV[35].

Figure 6 shows the absorption spectrum for GaSb calculated with the SR-GW -BSE and

FR-GW -BSE methods, as well as the non-interacting “RPA” method, in which the electron-

hole kernel in the Bethe-Salpeter Equation is disregarded. The RPA spectra are included

to assess any differences in the spin-orbit split peaks E1 and E1 + ∆ due to renormalization

of SOC from the electron-hole interaction.

The absorption spectrum of GaSb has significant differences when including SOC. First,

the absorption onset is shifted by 190 meV due to the large difference in the quasiparticle

band gap when including (0.82 eV) or neglecting SOC (1.07 eV). Also, we can clearly resolve
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TABLE VII. Absorption peak energies for GaSb, in eV. The E0 + ∆ does not appear in Ref. [56]

or Ref. [115].

FR-GW -BSE EPM+SOC[56] Experiment[115]

E0 + ∆ 1.19 – –

E1 2.18 2.22 2.184

E1 + ∆ 2.54 2.86 2.618

E2 4.06 4.37 4.286

the 2.3 eV peak splitting into the E1 and E1 + ∆ peaks with the inclusion of SOC. The E1

and E1 + ∆ peak placements at 2.18 eV and 2.54 eV agree well with the experimental[114]

spectrum peak placements of 2.18 eV and 2.62 eV, respectively, and the EPM+SOC peak

placements of 2.22 eV and 2.86 eV[56]. These results, as well as the energies of the E0

and E2 peaks, are included in Table VII. The absorption spectra computed within RPA are

qualitatively similar to that of the BSE, with the E1 and E1 + ∆ peak splitting agreeing

with that of the BSE under 10 meV, indicating no significant renormalization effects of SOC

from the electron-hole interaction.

TABLE VIII. The band gap and spin-orbit splittings for GaSb, computed at the FR-LDA and

FR-GW levels, compared to experiment. Experimental data is from Ref. [95].

FR-LDA FR-GW GW+SOC[35] Experiment

E(Γ6c)− E(Γ8v) (eV) 0.14 0.82 0.70 0.822

E(L6c)− E(Γ8v) (eV) 0.25 0.78 0.85 0.907

∆SOC(Γ, v) (eV) 0.74 0.73 0.73 0.756

∆SOC(Γ, c) (eV) 0.23 0.20 0.21 0.213

∆SOC(L, v) (eV) 0.42 0.42 0.42 0.430

∆SOC(L, c) (eV) 0.12 0.09 0.12 0.13
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FIG. 7. The electronic bandstructure of CdSe. Fully-relativistic (“FR”) LDA and GW in dashed

and solid lines, respectively.

Figure 7 shows the bandstructure of CdSe computed at the FR-LDA and FR-GW levels.

We compute the FR-LDA band gap of 0.58 eV and the FR-GW gap of 1.85 eV, compared to

the low temperature gap of 1.84 eV from experiment[94]. Since CdSe has a wurtzite lattice,

its symmetry properties are different from the diamond and zincblende materials. Namely,

the Γ1 band is lower in energy than the top of the valence band, Γ6, by the crystal-field

splitting ∆CF [79]. Table IX shows the spin-orbit and crystal field splittings, with FR-GW

showing excellent agreement with experiment and much improved compared to FR-DFT.

The SR-GW gap is larger due to the neglect of the large spin-orbit splitting, with a

value of 1.99 eV. The change in the band gap due to the inclusion of spin-orbit coupling is

well-approximated by atomic perturbation theory, though the spin-orbit splitting differs by

over 30 meV whether using LDA or GW (Table IX). The gap estimate is 1.86 eV, within

a few tens of meV of the FR-GW value, when using the FR-LDA value of the spin-orbit

splitting.
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TABLE IX. The band gap and spin-orbit splitting for CdSe, computed at the FR-LDA and FR-

GW levels, compared to experiment. The spin-orbit (SOC) and crystal field (CF) splitting refers

to the states at the top of the valence band at Γ. Experimental data is from Ref. [94].

FR-LDA FR-GW Experiment

Eg (eV) 0.58 1.85 1.84

∆SOC(Γ, v) (eV) 0.372 0.405 0.429

∆CF(Γ, v) (eV) 0.036 0.026 0.026
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FIG. 8. The electronic bandstructure of Au: (a) fully relativistic and (b) scalar relativistic, with

LDA and GW in dashed and solid lines, respectively.

The bandstructure of Au computed from FR-LDA and FR-GW is shown in Fig. 8a,

and from SR-LDA and SR-GW in Fig. 8b. The inclusion of spin-orbit coupling changes

the degeneracy of the occupied s-d hybridized states, especially visible at the Γ, W , and L

high-symmetry points in the bandstructure. The bandwidth for both valence and conduction

bands increase upon inclusion of the electronic self-energy. Table X shows that the quasipar-

ticle energies are generally improved with FR-GW compared to FR-LDA, especially near the

Fermi level. The FR-GW quasiparticle energies are in high agreement with a quasiparticle
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self-consistent GW calculation in which SOC is added perturbatively, from Ref. [36], indi-

cating that the perturbative treatment of SOC for the bandstructure is sufficient. The Fermi

level for FR-GW and SR-GW is recalculated using the the Blöchl tetrahedron method[116]

with the quasiparticle energies, from the cms-py Python library[117]. The quasiparticle

energies are largely similar whether using the Hybertsen-Louie or the Godby-Needs GPP

model, within an energy range of 6 eV above or below the Fermi level [70].

The interband absorption spectrum for Au is shown in Fig. 9, which shows a redshift in

the onset of absorption with the inclusion of spin-orbit coupling, and an additional absorption

peak at 1.6 eV, with the absorption spectra having minor qualitative changes when including

the electron-hole interaction (“BSE”) or not (“RPA”). While the optical properties of Au are

well-known to be impacted by relativistic effects[118], the inclusion of only scalar relativistic

effects is insufficient for a description of its absorption of visible light. The absorption

spectrum was calculated with a 12×12×12 k-point sampling, six valence bands, and four

conduction bands.

H. Bi2Se3

While the previous test systems confirm the sufficiency of treating SOC as a perturbation,

the GW+SOC approach for the bandstructure of Bi2Se3 has shown mixed results[37, 77].

The large spin-orbit splitting of the Bi 6p electrons inverts the positive and negative parity

p-like states (from the Bi 6p and Se 4p orbitals) near the band gap, creating a nontrivial value

of the Z2 topological index[39]. The “inverted” band gap is caused by the level-repulsion

of the inverted states at the Γ-point, mixing the character of the conduction and valence

states within a neighborhood of Γ[37]. The strength of this level repulsion depends on the

size of the band gap, which is underestimated in DFT. As a consequence, the bandstructure

computed from DFT and GW differ significantly when SOC is included, so the perturbative

treatment may be insufficient.

Due to the sensitivity of this system to the DFT functional and the atomic geometry[101],

in our study of the bulk band gap of Bi2Se3 as computed within FR-GW , we use the

experimental geometry[95]. For consistency with the majority of previous calculations in the

literature [37, 77, 127, 128], we use the LDA functional. We use a Brillouin zone sampling

of 8×8×8 for constructing the charge density as well as the dielectric function. We use
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TABLE X. The FR-LDA and FR-GW band energies in eV for Au relative to the Fermi energy,

as compared to QSGW+SOC and experiment. Bands at high-symmetry k-points are labelled

according to their double-group irreducible representation (see Ref. [36]).

FR-LDA FR-GW QSGW+SOC[36] Experiment

Γ+
6 -10.17 -10.22 -10.39 –

Γ+
8 -5.69 -6.05 -6.02 -5.09a, -6b, -6.01c

Γ+
7 -4.58 -4.89 -4.85 -4.45a, -4.6b, -4.68c

Γ+
8 -3.29 -3.67 -3.67 -3.55a, -3.65b, -3.71c

Γ−7 13.91 14.46 15.36 16c, 15.9d

Γ−6 17.26 17.81 17.97 18.8c

L+
6 -7.84 -8.11 -8.01 -7.8b

L+
4,5 -5.80 -6.21 -6.16 -6.23b, -6.2c

L+
6 -4.69 -5.08 -4.97 -4.88b, -5c

L+
6 -2.56 -2.87 -2.95 -3.2c

L+
4,5 -1.90 -2.19 -2.24 -2.3c, -2.5e

L−6 -1.32 -1.26 -1.63 -1e, -1f, -1.01g, -1.1h

L+
6 3.09 3.44 3.19 3.6e, 3.65f, 3.56g, 3.4h

a Ref. [119]
b Ref. [120]
c Ref. [121]
d Ref. [122]
e Ref. [123]
f Ref. [124]
g Ref. [125]
h Ref. [126]

a 160 Ry cutoff for the planewave basis for the wavefunctions and a 25 Ry cutoff for the

dielectric function. The polarizability (“Chi”) summation uses 1000 unoccupied bands, and

the Coulomb-hole (“COH”) summation uses 1254 bands. The quasiparticle energies are

estimated to be converged within about 30 meV [70].

We obtain the bandstructure in the neighborhood of the Γ-point by obtaining quasi-
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FIG. 9. The absorption spectra of Au due to interband transitions, calculated at the GW-BSE

level. Spin-orbit is included (neglected) in the red (blue) curve.

particle energies at the Γ-point and at particular points along the Γ-to-L and the Γ-to-Z

high-symmetry lines, shown in Fig. 10. Ordinarily, bandstructures are determined from

the set of quasiparticle energies computed on coarse, regularly spaced k-point grid and a

set of overlap coefficients computed for the bands on the coarse grid and DFT-computed

bands that densely sample high-symmetry lines in the Brillouin Zone[51]. This approach

does not work well, however, in cases such as Bi2Se3, especially near the Γ-point where the

DFT bandstructure and the quasiparticle bandstructure disagree significantly. Instead, we

directly compute quasiparticle energies along the Γ-to-L direction at 1
16
L, 1

8
L, 3

16
L, and 1

4
L,

and along the Γ-to-Z direction at 1
16
Z, 1

8
Z, 3

16
Z, 1

4
Z, 1

2
Z, and Z. The whole Γ-to-Z line is

represented as it is a much shorter path in the Brillouin zone than the Γ-to-L line. We then

plot spline-interpolated curves as estimates to the quasiparticle bandstructure. The LDA
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FIG. 10. The electronic bandstructure of Bi2Se3 along the (a) Γ to L and (b) Γ to Z directions,

including spin-orbit coupling, but only Hamiltonian matrix elements that are diagonal at the FR-

GW level: fully-relativistic (“FR”) LDA and GW in dashed green and solid red lines, respectively.
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FIG. 11. The electronic bandstructure of Bi2Se3 along the (a) Γ to L and (b) Γ to Z directions,

including spin-orbit coupling: the quasiparticle bandstructure computed from FR-GW with off-

diagonal entries in the Hamiltonian (solid black), and the quasiparticle bandstructure without

off-diagonals (solid, thinner red) and arbitrarily shifted downward by 0.05 eV for clarity.
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bandstructure interpolated in a similar fashion shows good agreement with the bandstruc-

ture calculated explicitly at each k-point [70]. The (band-diagonal) FR-GW bandstructure

along the Γ-to-Z line suggests that the band-diagonal approximation is not generally suffi-

cient, as is apparent from the appearance of small, spurious[77, 127, 129] bumps in both the

conduction and valence bands in a very narrow region about Γ (Fig. 10).

We find a direct bulk band gap of 0.38 eV in the band-diagonal approximation, which

is in good agreement with values obtained from angle-resolved photo-emission spectroscopy

(ARPES)[127] (0.332 eV) as well as scanning tunneling spectroscopy (STS)[130] (0.3 eV).

Optical measurements of the gap, however, report a smaller value of 0.2 eV[129] and also

confirm a direct band gap at Γ.

To improve the quasiparticle bandstructure, we investigate the effect of including band-

off-diagonals in the calculation of the self-energy matrix elements:

Enk = Eig (εlkδlm + 〈l,k, α|Σαβ (Epk)− V xcδαβ|m,k, β〉) , (46)

where “Eig” denotes the eigenvalues of the matrix constructed from the self-energy in the

Kohn-Sham orbital basis, the band n is a member of the set of bands spanned by all choices

for the indices l and m, and the energy Epk at which the self-energy operator is evaluated

is chosen from either the row (Elk) or column (Emk), as the difference in eigenvalues from

this choice and an explicitly-constructed Hermitian matrix for the self-energy correction,

1

2
(〈l,k, α|Σαβ (Elk)− V xcδαβ|m,k, β〉+ 〈l,k, α|Σαβ (Emk)− V xcδαβ|m,k, β〉), (47)

as used for quasiparticle self-consistent GW[131], is found to be under 1 meV.

We find that the choice of the four valence bands and two conduction bands near the

Fermi energy is sufficient to correct the deficiencies in the bandstructure when using the

LDA eigenfunctions as the quasiparticle wavefunctions [70]. The bandstructure computed

in this fashion is shown in Fig. 11. The band gap computed at first iteration is 0.33 eV,

though we rigidly shift the gap to match that of the diagonal approximation, 0.38 eV, which

is justified in the discussion after Eq. 50. The necessity of calculating a matrix for the

self-energy can be seen by noting that the strength of the level repulsion – and therefore

the character of the wavefunctions – depends on the band gap value[37]. When changing

the gap, as in a GW calculation, the wavefunctions in the region where the character is

inverted necessarily change along with the extent of the region in the bandstructure with
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inverted orbital character. The use of the LDA basis, then, is not adequate for an accurate

bandstructure in this region.

In the usual band-diagonal approximation to the self-energy operator two energies are

calculated [51]. First, the self-energy operator is evaluated at the mean-field eigenvalues,

giving the first of these energies:

E0
nk = εDFT

nk + 〈nk|Σ(εDFT
nk )− V xc|nk〉. (48)

Σ is evaluated (within default settings in BerkeleyGW) at εDFT
nk and εDFT

nk +1 eV, from which

the derivative dΣnk
dE

and the renormalization factor

Znk =
1

1− dΣnk
dE

(49)

are computed. The quasiparticle energy EQP
nk can then be determined from Newton’s

Method, and written as

EQP
nk = ZnkE

0
nk + (1− Znk)εDFT

nk . (50)

However, in band-offdiagonal calculations, the renormalization factors Z cannot be com-

puted in this way and thus the Newton’s Method approach to determining the quasiparticle

energy cannot be performed. The self-energy operator is a function of energy, and a solution

to Dyson’s equation is found when this input energy is the same as the eigenvalue of the

Hamiltonian in Eq. 46. Initially, the Kohn-Sham energy eigenvalues are used as input for

the self-energy, and the basis set is taken to be the Kohn-Sham bands. After diagonal-

ization, a new set of energy eigenvalues and bands (expressed as a linear combination of

the Kohn-Sham bands) are used to construct a new Hamiltonian, which is then diagonal-

ized. This process is repeated until the energy eigenvalues do not substantially change from

one iteration step to another – only at that final iteration are the energy eigenvalues the

quasiparticle energies.

After a first diagonalization of the Hamiltonian constructed with Kohn-Sham energies

and bands, the difference between valence band maximum and conduction band minimum

at the Γ-point is 0.33 eV. This energy, though, is analogous to the E0
nk energies in Eq. 48.

However, since all off-diagonal terms for the self-energy at the Γ-point for Bi2Se3 are found

to be zero within numerical precision, the self-consistently calculated quasiparticle energies

must match exactly at the Γ-point. We use this fact to rigidly shift the conduction band from

the off-diagonal calculation to match the quasiparticle band gap computed when neglecting
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off-diagonal components, 0.38 eV: EQP
ck ≈ Eoff-diag

ck + (EQP, diag
c,k=Γ − Eoff-diag

c,k=Γ ). This is expected

to be acceptable when the off-diagonal matrix elements of the self-energy for the states

away from the Γ-point are sufficiently weakly sensitive to corrections to the Kohn-Sham

eigenvalues.

As seen in Fig. 11 the conduction and valence bands are now unambiguously parabolic

after updating the basis set, so we can readily compute the effective masses. We calculate

an effective mass of 0.19 me for the holes and 0.14 me for the electrons, averaging over the

directions plotted. This compares favorably with the experimentally determined effective

masses, from magneto-optics, of 0.14 me for both the electrons and holes [129]. We note

that our determination of effective masses agrees despite the discrepancy in the value of the

band gap.

To investigate the sensitivity of the bandgap to the treatment of dynamics in the self-

energy operator, we also calculate the band gap at the Γ-point through the use of the full-

frequency treatment of the dielectric function, via the contour deformation method[132] and

a low rank approximation[133–135]. We used 15 imaginary frequencies, 200 eigenvectors in a

reduced basis scheme, corresponding to roughly 10 percent of the full spectrum, a frequency

spacing of 0.25 Ry, with frequencies calculated out to 10 Ry. We found a slightly larger gap

than in the Hybertsen-Louie GPP, with a value of 0.41 eV. In conventional semiconductors,

redistribution of the weight of the screening from a single frequency typically results in a

lower gap; the increase of the gap for Bi2Se3 relative to the GPP result is understood as

a consequence of the inverted nature of the bandstructure. The small change in the value

indicates that the use of a GPP model for the dynamics in the self-energy is sufficiently

accurate for quasiparticle energies.

We can compare our FR-GW calculations of the bandstructure to aGW+SOC calculation[37]

performed with BerkeleyGW. The band gap in GW+SOC is found to be direct at Γ, with a

value of 0.33 eV, with parabolic valence and conduction bands. (See Table XII for compu-

tational details.) In all FR-GW cases, the quasiparticle bandgap is found to be in a range

between 0.38 eV to 0.41 eV, depending on the treatment of the frequency-dependence of

the self-energy operator, and an update to the quasiparticle basis set is required to recover

parabolic bands for the valence band maximum and conduction band minimum. Unlike

the perturbative GW+SOC approach, FR-GW more readily allows for a quasiparticle

self-consistent approach to arrive at a quasiparticle basis set in which the dependence on
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qualitatively inaccurate starting-point mean-field bands is removed.

V. COMPARISON WITH OTHER IMPLEMENTATIONS

Other excited-state GW codes have implemented compatibility with spinor wavefunc-

tions, including pseudopotential plane-wave codes WEST[44] and Yambo[45], pseudopoten-

tial PAW codes VASP[48] and GPAW[47], and all-electron codes FHI-AIMS[46], Questaal[69],

TURBOMOLE[68], and SPEX[42, 43]. At present, only Yambo[45, 49] and BerkeleyGW

have BSE with spinor wavefunctions implemented. We compare our present results with

these other implementations, as a first attempt at benchmarking spinorial GW and GW -

BSE calculations in the spirit of the GW100 set[52] and the community effort to examine

reproducibility of G0W0 calculations in solids[136]. For the standard semiconductors Si,

GaP (parameters in Table I), and GaAs, we find good agreement (in Table XI) with the

computed spin-orbit splitting at the valence band maximum as computed in Ref.[44], de-

spite that work’s use of different pseudopotentials from the SG15 database[137] with PBE

exchange-correlation functionals[138]. The differences between the present calculations and

that of WEST for GaAs are larger than that of Si and GaP due to the considerable under-

estimation of the direct band gap for GaAs at the SR-GW level computed in Ref. [44] using

pseudopotentials from the SG15 database (0.62 eV), compared to that from the Pseudo-

Dojo database (1.26 eV), a discrepancy not present in their results for Si and GaP. Also

apparent in Table XI is agreement in the shifts of the band gaps upon inclusion of spin-orbit

coupling to tens of meV. Results were not found in the literature for FR-GW/BSE calcu-

lations of these materials as a comparison. Yambo’s spin-orbit implementation paper [67]

shows results on 2D transition-metal dichalcogenides only, and YAMBO results for GaSb

are available only as an unconverged tutorial example[139].

Several results have been reported in the literature for the bulk quasiparticle bandgap

for Bi2Se3, from both GW+SOC and FR-GW approaches. The GW implementation in

Yambo[45, 67], a plane-wave pseudopotential excited-state code that computes the polariz-

ability and self-energy with sums over empty states, is most directly comparable to Berke-

leyGW, and we find good agreement for our computed FR-GW results for the band gap

in the diagonal approximation: 0.36 eV from Ref. [140], and 0.38 eV, present work. The

quasiparticle bandstructure in Ref. [140] suggests a direct gap at Γ, though the resolu-
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TABLE XI. The spin-orbit splitting at the valence band maximum and the change of band gap

upon inclusion of spin-orbit coupling for Si and GaAs, in comparison to results computed in the

code WEST[44].

∆SOC(Γ, v) (eV) EFR
g − ESR

g (eV) Eg (eV)

FR-LDA FR-GW DFT GW FR-GW

Si, present 0.047 0.049 -0.016 -0.016 1.22

Si, Ref. [44] 0.048 0.049 -0.016 -0.017 1.36

GaP, present 0.089 0.086 -0.027 -0.024 2.57

GaP, Ref. [44] 0.083 0.092 -0.028 -0.031 1.91

GaAs, present 0.320 0.340 -0.098 -0.109 1.49

GaAs, Ref. [44] 0.328 0.344 -0.136 -0.123 0.13
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tion is not fine enough to determine if the bands have a parabolic dispersion. The present

calculation of the band gap differs only by 20 meV from a prior calculation using Berke-

leyGW employing the “GW+SOC” approach[37], in which spin-orbit coupling was added

perturbatively after evaluating quasiparticle energies that neglected spin. The bandstruc-

ture reported in Ref. [128] uses pseudopotentials without semicore Bi orbitals, with both

Gaussian orbital and plane-wave basis sets in separate calculations. This bandstructure is

computed with a non-uniform sampling of the Brillouin Zone for evaluation of self-energy

matrix elements, up to 78×78×1 near the zone-center, featuring a direct gap of 0.20 eV and

valence band maximum at the Γ-point with a flattened parabolic shape. FR-GW FLAPW

calculations[77, 127] using the SPEX[42, 43] code show a sensitivity to the band gap to cal-

culation parameters at both the DFT and GW levels. Changing the number of local orbitals

from 1[127] to 2[77], lmax for GW from 4[127] to 5[77], planewave cutoff for GW from 3.5

bohr−1[127] to 2.9 bohr−1[77], and number of empty states from 300[77] to 500[127] changes

the band gap from 0.34 eV to 0.20 eV. By contrast, a perturbative GW+SOC calculation[77]

with FLAPW found a vanishing band gap, and the bands appeared to become linear, un-

expected for the bulk material. To conclude, different descriptions of the wavefunctions for

Bi2Se3 can give bandgaps of that vary from about 0.2 to 0.35 eV, with gaps in this range

justified by experiments[127, 129, 130]. Further study regarding self-consistent updates to

the quasiparticle wavefunctions within the planewave pseudopotential FR-GW approach can

elucidate the features of the bands near the Fermi energy responsible for this sensitivity, and

more clarity on the disagreement from ARPES[127] and transmissivity measurements[129]

is needed. A comparison between these Bi2Se3 calculations is presented in Table XII.

VI. PERFORMANCE

We give a comparison in the performance of BerkeleyGW for the representative case of

GaAs with and without spinor wavefunctions. We see in Table XIII that the calculation

of the wavefunctions for the self-energy matrix elements (“DFT Coarse”) takes four times

longer, in accordance with expectation from having to double the number of bands and

double the size of each band, for the spin-up and spin-down components. The calculation

of the wavefunctions for the basis of the BSE Hamiltonian (“DFT Fine”) is more rapid,

since the bottleneck in generating these wavefunctions is the number of k-points and not
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TABLE XII. Comparison between present FR-GW and other excited-state calculations from the

literature for the bulk band gap for Bi2Se3. PW = plane wave, PSP = pseudopotential, GPP =

generalized plasmon pole, GN = Godby-Needs plasmon pole, CD = contour-deformation.

Structure SOC Basis XC Grid, Grid, No. Empty Frequency Band

Treatment Set Functional Polarization Self-energy States Dependence Gap (eV)

present expt. FR-GW PW PSP LDA 8×8×8 8×8×8 1254 GPP 0.38

Ref. [37] expt. GW+SOC PW PSP LDA 6×6×6 6×6×6 ∼500 GPP 0.36

Ref. [140] relaxed FR-GW PW PSP PBE 6×6×6 6×6×6 3000 GN 0.36

Ref. [127] expt. FR-GW FLAPW LDA 4×4×4 4×4×4 300 CD 0.34

Ref. [77] expt. FR-GW FLAPW LDA 4×4×4 4×4×4 500 CD 0.20

Ref. [77] expt. GW+SOC FLAPW LDA 4×4×4 4×4×4 500 CD 0.01

Ref. [128] expt. FR-GW PW/Gaussian PSP LDA 8×8×8 Non-uniforma 234 GN 0.20

a 10×10×1 to 78×78×1
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the number of bands. Calculation of the dielectric matrix (“Epsilon”) sees an increase in

cost of only 2.5, far less than the increase in cost of generating the matrix elements alone,

because the matrix inversion step is a significant fraction of runtime, and it is unaffected

by spinors since the size of the dielectric matrix is the same when including or disregarding

spin. The calculation of quasiparticle energies (“Sigma”), however, is closer to the expected

increase in cost, at a factor of 4.1. The costs of constructing the BSE kernel (“Kernel”)

and solving the eigenvectors and eigenvalues (“Absorption”) have the largest increases, at

6.4 and 15.0, respectively. The Kernel code requires the calculation of three sets of matrix

elements, an increase in cost partially offset by time spent on the better-scaling routines

such as I/O. We discuss the Absorption code performance in more detail below.

The Absorption code has four main routines: I/O, interpolation of the quasiparticle

energies, interpolation of the kernel matrix elements, and diagonalization. We see the per-

formance of each when disregarding spin and when using spinor wavefunctions in Table XIV.

The I/O necessarily has an increase in cost of a factor of 4, from the increase in the size of

the wavefunction files. Similarly, the interpolation of the quasiparticle energies takes nearly

4 times longer, for the same reason. The interpolation of the kernel matrix elements in-

creases cost by a factor of 10.1, less than an estimated increase of 16, since the interpolation

coefficients have been calculated in the previous step, and the multiplication with the kernel

matrix elements is performed as an optimized matrix-matrix multiplication with the Level

3 BLAS call ZGEMM[51]. The diagonalization sees an increased cost by a factor of 56.8,

close to the expected factor of 64.

VII. CONCLUSION

Our implementation of spinor GW/BSE in the BerkeleyGW excited-state software enables

computation of the quasiparticle energies and absorption spectra for materials with large

SOC. The use of DFT one-particle wavefunctions with two spinor components necessarily

increases the cost of calculation, found in practice to be at best about three times more

expensive than when neglecting SOC, and with the calculations necessary for calculating

the optical absorption within the GW -BSE being much more expensive due to the increase

in basis set size. The careful use of symmetry however can significantly reduce the cost in

some systems.
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TABLE XIII. Comparison of performance of BerkeleyGW on GaAs, when disregarding spin and

when using spinor wavefunctions.

Step No. CPUs CPU Hours (no spin) CPU Hours (spinor) Ratio

DFT Coarse 1024 162 650 4.0

DFT Fine 1728 173 490 2.8

Epsilon 864 864 2160 2.5

Sigma 864 2760 11232 4.1

Kernel 600 560 3600 6.4

Absorption 600 48 720 15.0

TABLE XIV. Comparison of performance of Absorption executable in BerkeleyGW when disre-

garding spin and when using spinor wavefunctions, as seen in calculations of GaAs.

Step Wall time, no spin (s) Wall time, spinor (s) Ratio

I/O 138 560 4.0

Interp. WFN 57 240 4.2

Interp. Kernel 27 274 10.1

Diag. 53 3013 56.8
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We demonstrated our implementation on the test systems Si, Ge, GaAs, GaSb, CdSe, and

Au, which were readily calculated in the band-diagonal, one-shot G0W0 method. The band

gaps, spin-orbit splittings, and energy eigenvalues were shown to be highly accurate across

this range of different spin-orbit coupling strengths. The band gaps were also shown to be

well-approximated when introducing SOC as a perturbation to the valence band maxima

computed while neglecting spin. The topological insulator material Bi2Se3, however, needed

some correction to the LDA basis for the quasiparticle states. While a fairly accurate band

gap of 0.38 eV was computed within band-diagonal G0W0, the bandstructure shows small

but unphysical features in a small neighborhood about the Γ-point. We demonstrated that

correcting the LDA basis states by diagonalizing the G0W0 Hamiltonian was able to remove

this unphysical feature, and provide effective masses in good agreement with experiment.

We additionally performed fully-relativistic Bethe Salpeter Equation calculations of the

absorption spectra for GaAs and GaSb. We show that the absorption spectrum for GaAs is

similar within both the SR-GW -BSE and FR-GW -BSE. For GaSb we are able to resolve the

spin-orbit split E1 and E1+∆ peaks, with their placement within tens of meV of experiment.

The perturbative treatment of spin-orbit coupling for electronic structure, GW+SOC,

shows high agreement with the more costly non-perturbative FR-GW approach for many

test systems. Such systems, even with nominally strong spin-orbit coupling as in GaSb

and Au, have fully-relativistic DFT bandstructures that have high qualitative agreement

with that from FR-GW . However, for materials such as Bi2Se3 that possess both a nar-

row bandgap and strong spin-orbit coupling, the significant qualitative differences between

the fully-relativistic DFT bandstructures and FR-GW motivate the use of the FR-GW ap-

proach. GW+SOC approaches for Bi2Se3 have shown conflicting qualitative descriptions of

the bulk bandgap[37, 77], while the FR-GW approaches[77, 127, 128, 140] have been con-

sistent, within about 0.1 eV. Further, the use of FR-GW allows for updating the quasipar-

ticle wavefunctions, which then gives good quantitative agreement with the experimentally

measured effective masses for electrons (0.14 me, experiment[129] and computed and holes

(0.14 me, experiment[129] and 0.19 me, computed) for Bi2Se3. The use of FR-GW -BSE for

the test systems of GaAs and GaSb considered presently gives no significant advantage[56]

over the perturbative approach[141], and results on monolayer transition metal dichalco-

genides in the literature also show agreement to a few 10 meV between the non-perturbative

and perturbative inclusion of SOC in the GW -BSE excitonic binding energies [49]. However,

47



it is reasonable to think that in materials where SOC gives a qualitative difference in band-

structure, like Bi2Se3, there may be stronger effects in BSE not captured by a perturbative

treatment.

The availability of spinor GW/BSE calculations in BerkeleyGW opens the way to in-

creased use of fully relativistic quasiparticle and excitonic absorption calculations in the

electronic structure community, enabling more accurate and detailed exploration of topo-

logical materials which have garnered great recent research interest, as well as in thermo-

electric and photovoltaic materials. BerkeleyGW has particular strengths for large and

reduced-dimensional systems, such as a defect in a 2D topological material[142]. Further

developments include the use of magnetic group symmetries to facilitate the computation

of non-collinear magnetic systems without the requirement of large supercells[67], and the

calculation of non-collinear spin-susceptibilities[66], as well as more benchmarking FR-GW -

BSE for materials with large spin-orbit coupling and large exciton binding energies. We find

good agreement with other existing GW implementations, and believe that further detailed

comparison can help to improve implementations of this methodology and ensure accuracy.

This implementation of spinor GW/BSE in BerkeleyGW was publicly released in BGW

version 3.0, and a tutorial example for performing GW/BSE calculations is available at URL

https://workshop.berkeleygw.org/tutorial-workshop-resources/about.
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Iversen, S. Blügel, P. Hofmann, and E. V. Chulkov, Evidence for a direct band gap in the

topological insulator Bi2Se3 from theory and experiment, Phys. Rev. B 87, 121111(R) (2013).
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C. Brüne, and L. W. Molenkamp, Magneto-Optics of Massive Dirac Fermions in Bulk Bi2Se3,

Phys. Rev. Lett. 114, 186401 (2015).

[130] S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E. V. Chulkov, K. Miyamoto,

M. Nakatake, T. Okuda, Y. Ueda, K. Shimada, H. Namatame, M. Taniguchi, and A. Kimura,

Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2Se3, Phys.

Rev. Lett. 107, 056803 (2011).

58

https://doi.org/10.1103/PhysRevB.22.581
https://doi.org/10.1103/PhysRevB.34.3577
https://doi.org/10.1103/PhysRevB.26.5391
https://doi.org/http://dx.doi.org/10.1016/0038-1098(74)91395-7
https://doi.org/http://dx.doi.org/10.1016/0038-1098(74)91395-7
https://doi.org/10.1103/PhysRevB.12.4146
https://doi.org/http://dx.doi.org/10.1016/0038-1098(76)91421-6
https://doi.org/http://dx.doi.org/10.1016/0038-1098(84)90057-7
https://doi.org/10.1103/PhysRevB.87.121111
https://doi.org/10.1103/PhysRevLett.114.186401
https://doi.org/10.1103/PhysRevLett.107.056803
https://doi.org/10.1103/PhysRevLett.107.056803


[131] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Quasiparticle self-consistent G W method:

A basis for the independent-particle approximation, Physical Review B 76, 165106 (2007).
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