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Abstract 

Completing the results of Green and Schwarz, we prove that 

the E8 x E8 and D16 supersymmetric theories are both anomaly­

free in 10 dimensi6n; and discuss their relatio·~ with the even 
·~· 

unimodular lattices. 

1 This work was supported by the Director, Office of Energy Research 
Office of High Energy and Nuclear Physics, Division of High Energy 
Physics of the US Departf!l_ent of Energy under Contract DE.-AC03-
76SF00098. 

2 Participating Guest at Lawrence Berkeley Laboratory. 

.'L-

-2-

INTRODUCTION 

Green and Schwarz [1] have recently established that in 

dimension 10, N = 1 supergravity coupled to a Yang-Miils 

supermultiplet is anomaly free if the gauge group is D16 = S0(32). It 

was remarked b"y the present author that E8 'x E8 is a second solution. 

This later solution was overlooked by Green and Schwarz in their 

original analysis· because it cannot be readily extended from 
. ! : - . 

supergravity to superstring. Indeed, a_string may car,.Y a Ia Chan Paton 

only an orthogonal or symplectic group [2]. 

The aim of this letter is to present the two solutions in a unified 

notation; to analyse the relation between the group D16 and E8 x E8 

and to propose a reformulation of string theory. 

Our analysis will bring together four seldom related subjects: 

a) In section 1 we discuss the cohomology of Lie groups in order 

to exhibit the 2 solutions.· 

b) In section 2, we define the root lattices and their 

generalization, the even unimodular lattices, which have been used 

over the last decades in arithmetic [3] and coding: theory [4]. They 

share with strings the critical dimensions 2, 10, 18, 26. They single out 

the same groups E8 x E8 and D16 [3]. and we note that they are 

constructed over the super-orthogonal groups and their Majorana 

Weyl spinors. 

c) In section 3, we recall the occurence in supergravity of a 

peculiar phenomenon nicknamed Cartan crystallization: when the 

dimension in which the theory is expressed is varied, the sum of the 
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dimension of the space plus the rank of the internal symmetry group is 

preserved [5,6). 

d) In Section 4, we describe the Frenkel Kac strings [7) . These 

dual models allow for a fusion of the three concepts that we have just 

described. 

- they may carry an arbitrary lie group. 

- they generalize to even unimodular lattices [8). 

- they naturally undergo Cartan crystallization .. We therefore 

suggest that a Frenkel Kac string based on the 26 dimensional even 

unimodular lattice E2511 generalizes the Venezziano model and yields, 

through Cartan crystallization, the 10 dimensional string with 

symmetry group. E8 x E
8 
or 0 16• 

We shall not discuss the supersymmetry of the string model but 

we stress again that the classification of the even unimodular lattices 

involves supersyminetry. 

1--..,_ .~ 
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1. THE ANOMALY CONDITION 

Green and Schwarz [1) have studied the anomalies of D = 10, N 

= 1 supergravity coupled to a Yang Mills supermultiplet. They 

embellish the usual model with an elegant generalization of the 

Chapline Manton [9) field strength for the 2-form B: 

H = dB - w3 - X11J3 ( 1.1) . . 

w3 amd 111 3 denote the Chern Simons 3-forms of the Lorentz and 

Yang-Mills gauge groups: 

dw3 = Tr(RR) 

d11J3 = Tr(FF) (1.2) 

Using the results of Alvarez Gaume and Witten[10), they have 

selected the acceptable gauge groups in 2 steps: 

a) The intrinsic Tr(R6) gravitational anomaly is absent if and only 

if the dimension of the group is496 ([10), eq.119 p.327) 

b) The pure gauge and the mixed anomalies can be removed if 

and only ih = 1130 and: 

Tr(F6) = 1/48 Tr(F2)Tr(F4) - 1/14400 Tr(F2)3 (1.3) 

Miraculously, 0 16 meets these requirements. Let us show that E
8 

x E8, which has dimension 496, is the unique alternative solution. 

............. 
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Let H;(G) denote the ith cohomology space of a real Lie group G. 

The Betti numbers b; = dim (Hi) are given by the Poincare polynomial 

[ 11]: 

·dim G rankG 
P(G, E) = I: bt; = IT (1 + t'i) 

i = 0. '. j = 1 
(.1.4) 

The s are the degree of the Chern Simons forms w5 which 
J • J 

generate the exterior algebra H*(G). To each of them corresponds a 

generator Pmi of degree mi = 1/2 (si + 1) of the Weyl invariant 

polynomials over the adjoint representation: 

P m
1
(F) = d w,i (A, F) (1.5) 

Over a Lie group, A is the Cartan left invariant form, F vanishes 

and w(A, 0) is closed. Over a principal fiber bundle, by the Maurer 

Cartan BRS condition. A ~ A + cis the sum of the Yang Mills field and 

Faddeev Po'pov ghost fqrrn [12] F = F is horizontal and if 2mi excee_ds 

the dimension of the base manifold the Chern Simons form w(A + c, F) 

is closed and generates all solutions [13] of the Wess-Zumino equation 

[14]. therefore, all possible anomalies [15]. 

In the case of E8 [11]. the s read: (3, 15, 23, 27,35, 39, 47, 59) and 
J • 

one way verify that they add upto.248. Therefore in E8 the first 2 Weyl 

generators are Tr F and Tr F8 and w.e have,: 

Tr F4 = o (Tr F2)2 

Tr F6 = £ (Tr F2)3 .. (1.6) 
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To evaluate the coefficients o and £ it is sufficient to. choose a 

single generator in the algebra. Consider the 2 groups G, = SO (32) 

and G2 = E8 x E8 and their regular subalgebra H1 = SU (2): x SU(2) x 

50(28) and H2 = SU(2) x E7 x E8 respectively. 

With respect to SU(2), the adjoint representation splits in both 

cases as a triplet, 56 doublets and 381 singlets. The corresponding 

diagonal Cartan generator of SU(2) thus reads, up to a normalization: 

h = diag(2. o. - 2. ( 1, - 1 )56, oJst) ( 1. 7) 

where the superscript denote repetitions [4]. Substituting in equation 

(1.6), we read that in E8 x E8 o = 1/100 and£ = 1/7200 and the second 

condition (1.3) of Green and Schwarz is satisfied. 

There is no other solution. Any other group where Tr(F 6 ) 

factorizes is a Rroduct of [ 11] An n < 5, G2, F 4, E6, E7 and in every of 

these components there are too few SU(2) doubiets to, fulfill condition 

(1.3). 

2. Even unimodular lattices 

In this section, we shall recover D 16 and E8 x E8 as the common 

solution of a purely geometric arid a priori unrelated problem. 

In Minkowski space RP·q, consider p + q iinearly independent 

vectors ex,.· The set of all points with integral contravariant coordinates 

r = {x, x = m;cx,, m' E Z} is called a lattice. The dual'[16] or reciprocal. 

[ 17] lattice is the set of all poi'nts with integral covariant coordinates 

r* = {k, k, = k·<i, k,EZ}. 'If rcr*, the lattice is called integral. Further­

more, if the square length of all the base vectors Cl; is even, then all 

square distances are even and the lattice is called even. A root lattice, 

.,-c' 
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r(G), is associated to every Lie algebra G. It is generated by a system of 

simple roots and its geometry is specified by the Dynkin diagram of the 

Lie group, reading the number of links between pair of nodes modulo 

2. Therefore it is sufficient to consider the algebras of type A, D. E. The 

others are redundant, for example: 

r(G2) = r(A2), r(B2) = r(D2) (2.1) 

If the common square length of the roots is scaled to 2, the dual 

lattice r(G)* carries all finite dimensional representations of G and 

includes r(G). 

This construction can be applied to a basic classical superalgebra 

[18] with one modification. The Cartan space of a superalgebra is not 

Euclidean but Lorentzian and the nilpotent Fermi roots are on the light 

cone. 

The even unimodular, or self dual, lattices are particularly 

interesting: they generalize the E Lie algebras, they are highly 

symmetric, very densely packed [4) and related to the sporadic finite 

groups [19). Their occurence in the present problem results from their 

relation with the Majorana Weyl condition and superalgebras: 

a) Even unimodular lattices [16] and Majorana Weyl fermions [20) exist 

in the same dimensions 8m + n, n. We are grateful to Yuval Ne•eman 

for this observation. 

b) The lattice Eam + nm• generated by the root lattice of the superalgebra 

Dam+ntn = OSp (16m + 2n/2n) augmented by its Majorana (self dual) 

Weyl (chiral) superspinor representation [21 I is even unimodular. 

~.-...... 
\ 

.:-f' 
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In fact, all even unimodular lattices in Minkowski space are of this 

super-E type [3). 

i) Euclidean space 

In dimensions 8, the unique even unimodular lattice is r a = r(Ea>· 

Also, Ea is the unique Lie algebra such that the fundamental 

representation is the adjoint. In dimension 16, there are 2 even 

unimodular lattices: r 16 = r(E16) and r a X r a· These two lattices have 

a remarkable property: although they are not isomorphic, they have 

the same number of nodes at any distance from the origin (same e 

function)[3] and we expect the equivalence of the S matrix of their 

respective string models. This is the promised relation between Ea x 

Ea and 0 16 which are precisely the maximal root diagrams of r a x r a 

and r 16. Remark, however, that r 16 has twice as many points as r(D16). 

In dimension 24 occurs an intriguing lattice discovered by Leech in 

1966 [22). Each mode has 196560 nearest neighbors, all sitting at 

square distance 4, but there are 23 inequivalent types of empty deep 

holes of square radius 2. Each of these holes corresponds to one of the 

other 23 even unimodular Niemeier lattices [16, 23) built around a 

particular Lie algebra of rank 24, for examples Dw 0 16 Ea. Ea 3• A
2

11 • 

Remarkedly, the Leech and the 23 Niemeier lattices have only 2 linearly 

independent e functions[3). 

In dimension 32, there are over 80 million even unimodular 

lattices [3) and the situ at• on seems out of control! 

ii) Minkowski space 

The situation is Minkowski space is simpler. The lattice Ean + 11,. 

denoted 11 8n+ 1.1 by Conway and Sloane [24), is the unique even 

unimodular lattice [3). This lattice can be explicitly constructed as 

.. ---
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follows. In an orthonormal frame, the "super" sum of the coordinates 

of its points (space minus time) is even and all coordinates, are either 

integral, generating the D sublattice, or half integral, corresponding to 

the su perspin representation [21]. 

The richness of the Euclidean case is recovered by projection. If W 

is a null vector, then Wl.fW is Euclidean even unimodular. By choosing 

W carefully, it is possible to project E2511 onto any of the 23 Niemeier, 

lattices or the Leech [24]. It is interesting to note that in the case of the 

root lattice of a Lie superalgebra w1.rw carries the weights of all W­

atypical representations of finite superdimension. 

iii) Superlattices. 

The Bose Fermi graduation of the Dmtn roots is given by the parity 

of the sum of the time coordinates. This graduation extends to the 

spin representation only if n is even. We are grateful to Neil Marcus for 

discussing this point. In such a case, one may speak of a superlattice. 

The first example is E1012 whose existence was conjectured by Julia in 

connection with D = 11 supergravity [25]. 

~:___ 
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4. Cartan crystallization 

Let us now address a completely different question: dimensional 

reduction in supergravity. Morel and I [5] and Julia [6). have observed 

that the Bose and Fermi degrees of freedom of maximal (N = 8) 

supergravity can be inbedded in the adjoint representation of E8<8> in 

every dimension, from 3 to 11, in which the theory can be written. 

These nine realizations, including chiral and nonchiral D = 10, 

correspond to the 9 splittings of Ea<s> associated with the removal of a 

root of the extended Dynkin diagram. The regular subalgebra 

exhibited in this way is of the form H0 = SR.(D-2) X Ko<o>• or 50(8,8) in 

the particular nonchiral D = 10 case, and one interpret SR.(D-2)/SO(D-2) 

as the graviton and K0 <D> quotiented by its maximal compact subgroup 

as the scalar sector. The remaining tensors and vectors span the non 

compact generators of ·E 8<8,fH0 and the Fermions are obtained by 

conjugation. Replacing E8<8> by 0 8<8> yields "N = 4" supergravity[26]. 

This observation, difficult to interpret in field theory and not 

explained by the Kaluza-Kiein formalism, shows that in supergravity 

the dimension of space can be transmuted into the rank of the internal 

symmetry group. This gives a strong significance to the fact that the 

rank of the only anomaly free symmetry groups of the superstring 16, 

added to its critical dimension 10, yields the critical dimension 26 of the 

Veneziano model. 

We called this phenomenon Cartan crystallization [5] because the 

easiest visualization is to consider a discrete approximation of space 

time where the distances between points are given by the dynamical 

metric field and fluctuate. This lattice is a liquid. If d directions 

crystalize into a root lattice, one recovers a lower dimensional gravity 
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with internal symmetry, a sort of discrete principal fiber bundle. In the 

reciprocal space, d continuous directions of space are transfered into 

the maximal torus of the internal group [25] . We shall see how to 

implement this construction in the next section. 

0 /'( 
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5. Frenkel Kac string 

In their work cin representations of affine Lie algebras, Frenkel 

and Kac [7) have constructed Vertex operators, analogous to those of 

the Veneziano model [27], which satisfy the duality condition. The 

particularity of their scheme is that the impulsion carried by the vertex 

is quantized, and takes value on the root lattice of the Lie algebra. In 

string language, the transverse excitations occur in a Cartan space and 

the Weyl group plays the role of the discretized transverse Lorentz 

group. 

The construction holds for an arbitrary Lie group, i.e. E8 x E8, and 

has been extended by Goddard and Olive [8] to even unimodular 

lattices. Moreover, starting from a lattice or rank d + n and 

dequantizing d dimensions, one obtains a string in d-space carrying in 

a nontrivial way a rank n internal symmetry group. The spectrum ofthe 

model is very different from Chan Paton. Here, the Regge trajectories 

relate the square mass to the sum of the squared spin and isospin and 

arbitrarily large representations of the internal symmetry group occur 

among massive states. 

• ... 7""- .. 
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5. Conclusion 

:; 

Consider a lattice approximation E25,1 to the Minkowski space 

time in dimension 25 + 1. The space transverse to a light cone lattice 

vector is an even unimodular lattice (Section 2). Splitting this lattice 

into two, sectors Ad x A26·d' one obtains a string in d-dimension with 

internal Frenkal Kac symmet~y of rank 26-d (Section 3-4). The splitting 

is consistent only if it chooses 2 regular sublattices .. Jf we require that 

Ad it self be unimodular, this singlularizes a naked string in d = 26, ad 

= 18 model with E8 internal symmetry, two d = 10 model, with E8 x E8 

or D16 symmetry an(j 24 models in d = 2 corresponding to the Leech or 

any Niemeier lattice. We expect that.the kno.wn string theor_ies can aU 

be reconstructed in this way, including a new d = 18 model.. The 

relation between the Veneziano model and the Leech lattice had 

already been evoked [8, 25) but. the concept .of Cartan crystallization 

and the observation that the only acc~pta~le symmetry group of the d 

= 10 superstring correspond to the rank 1~ even unimodular lattices 

bridges for the first time the dimensional gap separating the different· 

dual models [27). anq on~. may hope to explain dynamically the 

emergence of supersymmetry. 

In dimension 4, the model should be quite different, but by 

looking for a rank 2 root sublattice of a Neimeier lattice [16) we expect 
. .,_ . . ' ; . . . 

that the Veneziano model, properly reduced to dimension 4, should 

exhibit as internal symmet~y group a real form of the grouP: SU(3) 1 \ 

eleven copies of SU(3)! 

·- .. 
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