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Summary

Interaction between solid particles and fluid is of fundamental interest to 
scientists and engineers in many different applications—cardiopulmonary 
flows, aircraft and automobile aerodynamics, and wind loading on buildings 
to name a few. In geomechanics, particle shape significantly affects both 
particle‐particle and particle‐fluid interaction. Herein, we present a 
generalized method for modeling the interaction of arbitrarily shaped 
polyhedral particles and particle assemblages with fluid using a coupled 
discrete element method (DEM) and lattice Boltzmann method (LBM) 
formulation. The coupling between DEM and LBM is achieved through a new 
algorithm based on a volume‐fraction approach to consider three‐
dimensional convex polyhedral particles moving through fluid. The algorithm 
establishes the interaction using linear programming and simplex integration
and is validated against experimental data. This approach to modeling the 
interaction between complex polyhedral particles and fluid is shown to be 
accurate for directly simulating hydrodynamic forces on the particles.

KEYWORDS: discrete element method, fluid-solid interaction, lattice 
Boltzmann method, linear programming, polyhedral particles, simplex 
integration

1 INTRODUCTION

Interaction between solid particles and fluid is of fundamental interest to 
scientists and engineers in many different applications—cardiopulmonary 
flows, aircraft and automobile aerodynamics, and wind loading on buildings 
to name a few. In geomechanics, fluid‐solid interaction factors into almost 
every type of analysis and it could be argued that the presence of water is 
the most important effect to capture correctly. Suspended particle transport, 
rock scour, soil liquefaction, and effective stress analyses are some of the 



most pertinent examples of fluid‐solid interaction that in most cases require 
dynamic analyses. For these types of dynamic analyses, the hydrodynamic 
forces and moments exerted on the solid particles need to be accounted for 
when integrating the equations of motion for the solid phase. Also, the effect 
of the solids in and moving through the fluid needs to be incorporated into 
the fluid solver. Simulations that capture this interaction can follow several 
approaches: a locally‐averaged interaction between the two phases,1-

5 computational homogenization,6-8 or direct simulation of hydrodynamic 
forces on the solid particles.9-13 In the locally‐averaged approach, the fluid‐
solid coupling is done by averaging the interactions over a representative 
volume, and all particles within a local region experience the same 
hydrodynamic forces. This makes the method less computationally 
expensive compared with direct simulation, since the number of solid 
particles is greater than the number of fluid cells. While appropriate in 
certain applications, it does not offer sufficient resolution when trying to 
establish the hydrodynamic interaction for individual particles. Direct 
simulation of the fluid‐solid interaction attempts to overcome this 
shortcoming by having a much higher density fluid mesh compared with the 
number of solid particles. This approach is able to capture the variation in 
hydrodynamic forces on individual particles, but it does come at a much 
higher computational cost. Computational homogenization bridges the gap 
between the locally‐averaged approach and direct simulation by considering 
the coupling directly only at certain locations in the solution within a 
representative volume.

When modeling the solid phase, the shape of the particles often plays an 
important role in its mechanical response. For example, the interlocking of 
irregularly shaped sand particles is known to give higher strengths compared
with more rounded particles, and the kinematic response of rock slopes is 
governed by the orientation of the rock blocks relative to slope geometry. 
Therefore, the numerical method used to model the solid phase must be 
capable of capturing the particle shapes and the discrete, particle‐to‐particle 
interactions. The discrete element method (DEM)14-16 and discontinuous 
deformation analysis (DDA)17, 18 have gained popularity within geomechanics 
to model the particulate nature of geomaterials. DDA parallels the finite 
element method (FEM) in that the blocks are described through a system of 
equations where each element is a distinct, isolated block. For dynamic 
analyses, the system of equations is generally solved implicitly though it is 
possible to integrate them explicitly. DEM, on the other hand, considers the 
motion of each particle individually using explicit time integration. The 
localized nature of DEM—in the event that there are no long‐range 
interaction forces—and its relatively straightforward extension to three 



dimensions makes it an attractive candidate for modeling particle 
assemblages and for coupling the solid phase model with a fluid solver.

In terms of simulating the fluid phase, the most established methods in 
computational fluid dynamics (CFD), such as the FEM19 and finite volume 
method (FVM),20 are able to capture complex boundary shapes through 
irregular and unstructured grids and, in the case of FEM, are amenable to 
higher order methods. However, the mesh generation can be quite 
complicated and computationally intensive which can be prohibitive if there 
are solid particles moving through the fluid domain—generally necessitating 
remeshing at every time step. A comparatively newer method for CFD is the 
lattice Boltzmann method (LBM).21, 22 What makes LBM particularly attractive 
for modeling fluid‐solid interaction is the localized nature of the method and, 
more importantly, the relative ease with which complex shapes moving 
through the fluid domain can be accommodated. As a solid particle moves 
through the fluid domain, the state of the nodes that the solid interacts with 
is updated. On the basis of the status of the node, the presence of the solid 
is accounted for in the fluid solution and the effect of the fluid on the solid is 
also considered. The change in the status of each node is incorporated in the
computations locally.

For assemblages of arbitrarily shaped polyhedral particles or blocks, the 
individual behavior of solid particles is important for capturing its mechanical
response. In such cases, direct simulation of solid‐fluid interaction becomes 
necessary to accurately capture the system's behavior. The coupling process
between DEM and LBM when solids are allowed to move through the fluid 
mesh is comparatively simpler and less computationally expensive than 
other CFD methods. A significant body of work considering coupling between 
spherical particles—both single and clustered spheres—and sphero‐
polyhedral particles and fluid using DEM and LBM exists.11, 13, 23-30 However, 
some of these methods are either not capable of considering more complex 
polyhedral shapes or introduce approximations of the particle shape during 
the coupling process. Others implement bounce‐back–based coupling 
algorithms that are not exactly mass conserving or that require 
interpolations, which may be troublesome in dense particle assemblies with 
small pore sizes.31 To this end, a coupling algorithm was developed based on 
the volume‐fraction approach9 to consider three‐dimensional convex 
polyhedral particles moving through the fluid mesh where the solid particles 
are modeled using DEM and the fluid phase is modeled using LBM. The 
coupling process is implemented using the multi‐relaxation‐time (MRT) LBM 
which offers improved numerical stability and accuracy.32 Overlap between 
the solid DEM particles and fluid cells in the LBM is established through a 
constrained optimization problem. In the event of overlap, the volume‐



fraction of solid in a fluid cell is calculated analytically using simplex 
integration. The new coupling algorithm—which synthesizes MRT LBM, 
constrained optimization, and simplex integration—is validated against 
experimental data.

2 DISCRETE ELEMENT METHOD

The DEM is able to simulate the behavior of discontinuous systems 
composed of many particles by describing the motion of each individual 
particle and its interaction with its neighbors. The motion of the particle is 
described by Newton's second law, while the interaction of the particle with 
its neighbors is captured through explicitly considering particle‐particle 
forces based on a contact law. The two main phases in DEM computations 
are contact detection and contact interaction calculations. The contact 
detection phase establishes which particles are in contact, while the 
interaction calculations evaluate the forces and moments between the 
contacting particles.

2.1 Contact detection

The contact detection phase is the most computationally expensive portion 
of DEM simulations, accounting for approximately 80% of the total simulation
time.33 Two steps comprise contact detection: neighbor search and contact 
resolution. During the neighbor search, a particle's nearest neighbors—
particles that are close enough to possibly be in contact within a given time 
period or step—are identified. Neighbor search algorithms generally 
implement either tree‐based searching or spatial binning where tree‐based 
algorithms are O(Nln(N)) and spatial binning algorithms are O(N). 34 For this 
research, the CGRID spatial binning algorithm34 was used.

The neighbor search determines which particles are “close enough” such 
that they need to be checked for possible contact in the contact resolution 
step. In contact resolution, the neighboring particles' bounding spheres are 
first checked for overlap. If they do, further contact resolution is required. If 
they do not, the particles are not in contact. In the case where further 
contact resolution is required, the contact detection problem is recast as a 
convex optimization.35 Only a brief overview of this approach is provided, as 
a full description is given in Boon et al.35

The polyhedral particle shape, as shown in Figure 1, is defined completely by
the N planes that bound it:

(1)

where ai represents the normal vector to the ith plane bounding the particle 
and di is the distance of that plane from some local origin. Contact between 



two polyhedral particles is then established by solving the following linear 
program:

(2)

where NA and NB are the number of planes of the two neighboring particles. 
The two particles are in contact if s<−ϵ where ϵ is a specified numerical 
tolerance. If the particles are in contact, the contact point is taken as the 
analytic center of the region of overlap between the two contacting particles.
The analytic center, shown in Figure 1, is calculated using the log‐barrier 
method with Newton's method. The contact point is used to calculate the 
contact normal and overlap and is assumed to be the location where the 
contact force is applied to the contacting particles.

Figure 1. Two colliding particles with analytic center taken as contact point. Arrows indicate the 
direction of normal vectors to particle faces (modified, based on Boon et al35)

2.2 Contact forces and moments

Once contact between two particles has been established, the next step is to
describe how they interact with each other—what are the forces and 
moments between the two particles. The contact normal and overlap 
calculated in the contact resolution phase serve as inputs to establish the 
interaction forces between the particles. In its basic formulation, DEM is 
modular in terms of how the contact forces are described and many different
formulations exist for calculating contact forces. In the simplest case, the 
contact between two particles is described as linear elastic in the contact 
normal direction and frictional, using Coulomb friction with cohesion, in the 
tangential direction.16 More involved contact models for spherical particles 
are based on elasticity theory36-38 while numerous models have been 
proposed for polyhedral rock rock blocks.39-43 Overall, the underlying 



implementation of the DEM formulation remains unchanged and the contact 
model takes the results from the contact resolution phase as inputs.

Once the forces and moments due to inter‐particle contacts have been 
calculated, the particle positions are updated. The equations of motion for an
individual particle are:

(3)

where   and   are the translational and rotational acceleration of 
particle i; Fi and Mi are the total force and moment acting on particle i; α is a 
damping constant that can be set independently for translation and 
rotation; mi and Ii are the mass and moment of inertia of particle i; and gi is 
the gravitational acceleration. The particle translational motion is integrated 
using a velocity Verlet finite difference approach,44 while the rotational 
motion is updated using a quaternion‐based fourth‐order Runga‐Kutta 
approach.45

3 LATTICE BOLTZMANN METHOD

The fluid phase is modeled using the LBM. LBM arrives at the solution for 
various problems in fluid dynamics by solving a discrete form of the 
Boltzmann equation—the so‐called lattice Boltzmann equation 21:

(4)

where ci is the discrete set of velocities which limits the continuous particle 
velocity to a carefully selected subset. In this research, the D3Q27 velocity 
set46 as shown in Figure 2 was implemented. The D3Q27 velocity set is more 
expensive in terms of computations and memory compared with other 
velocity sets such as the D3Q19 or D3Q15 velocity sets; however, the D3Q19
and D3Q15 velocity sets have been shown to produce unphysical secondary 
currents at high Reynolds numbers and violate Galilean invariance 47, 48 for 
certain flow configurations and boundary conditions. Given these limitations, 
the D3Q27 velocity set was selected for its robustness in a wider range of 
flow conditions. The discrete velocities and their accompanying weights for 
the D3Q27 velocity set are shown in Table 1.



Figure 2. D3Q27 velocity set showing discrete velocity ordering

Equation 4 describes particles f(xi,t) moving with velocity ci to a neighboring 
point located at x+cit. This is known as the streaming step. Additionally, the 
collision operator Ωi redistributes particles among the populations fi at each 
point—this redistribution of particles models particle collisions. This is known 
as the collision step. Together the streaming and collision steps are the 
fundamental concept of the lattice Boltzmann equation. The basic variable in
LBM, as shown in Equation 4, is the discrete‐velocity distribution 
function, fi(x,t). The distribution function represents the density of particles 
with velocity ci at time t and position x. The macroscopic fluid mass density 
and momentum are calculated through weighted sums in velocity space, 
known as moments, of fi:

(5)

The collision operator, Ωi, models inter‐particle collisions by redistributing 
particles among different populations fi at each point. The most common and
simple collision operator is the Bhatnagar‐Gross‐Krook (BGK) collision 
operator49:



(6)

This equation implies that all populations fi decay, or relax, to their 

equilibrium state   at the same rate τ. The discrete form of the equilibrium 

distribution function   is50:

(7)

where u and ρ are the fluid velocity and density; ci and wi are the discrete 
velocity and weight from the velocity set; and cs is the speed of sound. For 

the D3Q27 lattice,  . However, the simplicity of the BGK 
collision operator comes at a cost: reduced accuracy, particularly at large 
viscosities, and stability, particularly at small viscosities.31 To overcome 
these shortcomings, the multi‐relaxation‐time (MRT) collision operator32 is 
useful since each of the moments can be relaxed at different time scales to 
achieve better stability and accuracy. In order to do this, all 
populations fi must first be transformed to moment space, in which the 
collision step is performed, and then transformed back into population space,
where the streaming step is performed. The MRT form of the lattice 
Boltzmann equation is then:

(8)

where M is the transformation matrix that transforms the distribution 
functions from velocity space to moment space; and   is the diagonal 

collision matrix:  . The values along the diagonal of   are
relaxation parameters for the different moments.

The transformation matrix M based on the ordering of the D3Q27 lattice used
in this research was calculated using the orthogonal moment set from Geier 
et al.51 Appendix APPENDIX A1 gives the calculated values for M and M−1. The
relaxation parameters along the diagonal of   for the D3Q27 lattice were set 
to the optimized values proposed by Suga et al46:

(9)

where:

(10)



The macroscopic Navier‐Stokes behavior is recovered when the kinematic 
shear viscosity ν is related to the corresponding components of  :

(11)

The inclusion of body forces in LBM manifests itself as an additional source 
term, Si:

(12)

The forcing scheme proposed by Guo et al52 was implemented in this 
research. Following this scheme, the equilibrium and macroscopic fluid 
velocity are defined as:

(13)

where F is the force density; F=ρg in the case of a gravitational force. The 
forcing source term takes the following form:

(14)

where τ is the BGK relaxation time. The inclusion of relaxation parameters 
based on an MRT collision operator was performed based on Li et al.53

4 FLUID‐SOLID COUPLING

Describing the interaction between the fluid and solid phases requires the 
two separate models, DEM and LBM, to exchange information. The presence 
of solids in the fluid mesh has to be factored into the fluid response, while 
the hydrodynamic forces and moments acting on the solids need to be 
included in the equations of motion for the individual particles. The coupling 
process is achieved though the introduction of a special boundary condition 
based on the volume‐fraction of solid in fluid cells. This allows the polyhedral 
particles to move through the fluid mesh while still maintaining a similar 
form of the lattice Boltzmann equation.

First introduced by Noble and Torczynski,9 the partially saturated method 
(which we refer to as the volume‐fraction approach to avoid confusion with 
partially saturated soil mechanics) accounts for the presence of complex 
shaped solids within the fluid mesh by considering the volumetric solid 
content of each of the lattice cells. As a particle moves through the fluid 
mesh, it may partially or completely cover fluid cells, as shown in Figure 3. 
The LBE with the BGK collision operator is modified to accommodate the 
solid phase by introducing an additional solid collision operator:



(15)

where ϵs is the volumetric solid fraction for each particle intersecting the 
fluid node and B(ϵs,τ) is a weighting function. B(ϵs,τ) ranges from 0 (pure 
fluid) to 1 (pure solid). When B(ϵs,τ)=0, the standard lattice Boltzmann 
equation is recovered, while of B(ϵs,τ)=1, only the solid collision operator 
participates in the collision step. The collision operator for solid nodes is:

(16)

where us is the velocity of the solid particle at time t+Δt at the fluid node. 

This form of   is based on the bounce‐back of the non‐equilibrium portion of 
the particle distributions.54 The weighting funciton is expressed as:

(17)

Figure 3. Polyhedral particle moving through fluid mesh. Background grid indicates lattice nodes which
are at the center of fluid cells. Fluid cells are pure fluid, interior solid cells are pure solid. Boundary 
fluid and boundary solid cells are some proportion of fluid and solid

The hydrodynamic force and torque acting on a particle moving through the 
fluid mesh is calculated as:

(18)

where xn are all the lattice nodes that are interacting with the particle 
and xCM is the location of the center of mass of the particle. The 



summation i runs over all directions of the particular lattice velocity set in 
use— 27 in the case of this research.

4.1 Volumetric solid fraction

The behavior of the fluid‐solid interaction in the case when a fluid cell is 
neither pure fluid or pure solid—boundary fluid or boundary solid cells as 
shown in Figure 3—is dictated by the weighting factor B. The value of the 
weighing function is influenced by the collision operator parameters and, to a
greater extent, the volumetric solid content of the cell. Therefore, it is 
important that the volumetric solid content be calculated as accurately and 
efficiently as possible. In terms of calculating the volumetric solid fraction, 
current coupling algorithms approximate the shape of the particles in terms 
of the shape of the region of overlap—Owen et al11 for spherical particles and
Galindo‐Torres13 for sphero‐polyhedra. For this research, a new method was 
developed to calculate the volumetric solid content analytically for convex 
polyhedra to determine the value of the weighting function. This new method
was applied using an MRT collision operator, though it can be used with the 
BGK or two‐relaxation‐time collision operators.

The first step in calculating the volumetric solid content is to determine 
whether the particle and fluid cell overlap, as shown in Figure 4. This is 
essentially the same problem as establishing contact between two 
polyhedral particles. Thus, for this phase of the calculations, the methods 
used in contact detection for DEM can also be applied to establish whether a 
particle intrudes on a fluid cell. Here, a linear programming approach 
analogous to that of Boon et al35 as shown in Equation 2 is used to establish 
overlap between the fluid cell and particle:

(19)

where Ns is the number of faces that define the particle and NF is the number
of faces that define the fluid cell—four faces for a square in two dimensions 
and size faces for a cube in three dimensions. The particle and fluid cell 
overlap if s<−ϵ where ϵ is a specified numerical tolerance. If the particle and
fluid cell do not overlap then the cell is pure fluid with a volumetric solid 
content of zero. However, if the particle and fluid cell do overlap, it is 
necessary to perform further computations to determine the volumetric solid
content.



Figure 4. Closeup of polyhedral particle overlapping fluid cell. The fluid cell is described by the normals
to the cell faces and their distance from the lattice node at the center of the cell. The hatched region is
where the particle and fluid cell overlap—this is the solid content of the fluid cell

The region of overlap between the particle and fluid cell shown for the two‐
dimensional case in Figure 4 comprises the solid content. This region is 
described by a subset of the faces that define the particle and fluid cell; with 
this subset it is possible to calculate the solid content. The minimal set of 
faces that describe this region of overlap is established by checking all faces 
of the particle and fluid cell for redundancy. A particular face nTx≤d from the 
set Ns+NF is checked for redundancy by solving the linear program:

(20)

[Correction added on 14 August 2019, after first online publication: 
equation 20 has been corrected.]

The face is not redundant if  . This approach is similar to the 
removal of redundant faces during fractured rock mass generation as 
described in Boon et al55; however, other methods can be used for removing 
redundant faces56, 57 as they are simply linear constraints.

With this minimal set, it is now possible to calculate the volumetric solid 
fraction in the fluid cell. The volume of the region bounded by the this 
minimal set is calculated using simplex integration58:



(21)

Equation 21 describes the summation of the volumes of tetrahedra Si—a 
tetrahedron is a three‐dimensional simplex—that together form the three‐
dimensional particle. This assumes that the vertices P1,…,Pn describing each 
of the faces of the particle are oriented counter‐clockwise relative to the 
outward normal of the face. All vertices are specified relative to a local 
origin P0, in this case set to the location of the center of the fluid cell in 
question.

After, the volume of the region of overlap is calculated, the volumetric solid 
content is given by ϵs=Voverlap/Vcell where the volume of the cell is the volume 
of a cube with side length Δx. For the D3Q27 MRT collision operator used in 
this research, the weighting function is then given by:

(22)

5 COUPLING ALGORITHM VALIDATION

The new fluid‐solid coupling algorithm was implemented in C++. All of the 
individual pieces of functionality in the code were unit tested. Beyond simple
unit tests, the coupling algorithm was tested for physical correctness by 
comparing numerical results with several different correlations based on 
physical experiments.

5.1 Comparison with experimental data

The numerically calculated drag coefficient CD was compared with 
regressions on experimental results.59-61 These results incorporate both 
shape of the particle and the Reynolds number. The value of CD was 
computed for Reynolds numbers of 0.3, 30, 90, and 240 for a cube in uniform
flow. The upstream face of the cube was oriented perpendicular to flow. The 
Reynolds number is given by:



(23)

where u is the velocity of the undisturbed fluid and ν is the kinematic 
viscosity. The characteristic dimension of the the cube d is defined as the 
diameter of the volume‐equivalent sphere. The drag coefficient is defined as:

(24)

where FD is the force component in the direction of flow, ρ is the fluid 
density, and Aproj is the projected frontal area of the volume‐equivalent 
sphere (Aproj=π(d/2)2).

As shown in Figure 5, the calculated drag coefficient from the numerical 
analyses matches all three experimental correlations well over the tested 
range of Reynolds numbers. The three solid lines are the curves of regressed
experimental data and the red squares are the numerical results.

Figure 5. Comparison of numerically calculated drag coefficient CD for a cube in uniform flow with 
regressed experimental data.59-61 The upstream face of the cube is oriented perpendicular to flow

5.2 Cube rotated in uniform flow

Next, the orientation of the cube relative to the flow field was changed to 
check whether the coupling algorithm is able to capture the change in drag 



coefficient due to the change in projected area of the cube relative to the 
direction of fluid flow. The upstream boundary was set to a constant velocity 
(u=⟨1.0,0.0,0.0⟩ m/s), while the downstream boundary was a non‐reflecting 
characteristic boundary. All other boundaries were periodic. The cube was 
rotated around an axis perpendicular to the flow field and simulations were 
run at rotation angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90° at Reynolds 
numbers 0.3, 30, 90, and 240, respectively. Figure 6 shows the three‐
dimensional mesh for the case where the cube was rotated 15°. Figure 7A 
shows a section through this three‐dimensional domain in the near‐vicinity of
the particle to illustrate the mesh density and Figure 7B shows the node 
status for the coupling process. Red nodes are fluid, pink nodes are solid, 
dark blue nodes are boundary fluid, and light blue nodes are boundary solid. 
The mesh spacing was 0.035 m in all directions giving a mesh with 
5 088 448 nodes. The model time was 6.0 seconds with a time step of 
0.0005 seconds. This simulation took approximately 15.7 minutes to 
complete on a machine with two Intel Xeon E5‐2630 v2 (2.3 GHz) CPUs with 
12 cores each (24 cores total) and 20GB of memory.

Figure 6. Cube embedded in three‐dimensional fluid mesh



Figure 7. Sections through three‐dimensional domain showing mesh density in the vicinity of the cube. 
A, Cube embedded in fluid mesh. Cube is rotated 15° around axis perpendicular to flow direction. Cube
side length is 1 m and mesh spacing is 0.035 m. B, Status of fluid nodes for coupling process. Red 
nodes are fluid, pink nodes are solid, dark blue nodes are boundary fluid, and light blue nodes are 
boundary solid

Figure 8 shows the calculated values of CD for the tested rotation angles θ. 
The calculated values for the drag coefficient are mirrored around 45° as is 
expected since the cube is isometric. The maximum projected cross‐
sectional area is obtained when the cube is rotated 45° relative to the flow 
direction, giving the highest drag coefficient. Any rotation away from this 
orientation leads to a lower projected cross‐sectional area and hence a lower
drag coefficient with the lowest values at 0° and 90°. The coupling algorithm 
is able to capture this behavior. Additionally, CD is more sensitive for higher 
Reynolds numbers which is consistent with observed behavior. Figure 9A 
shows the resulting velocity field for the case where the cube was rotated 
15° relative to flow at Re=240. The velocity magnitude is shown in m/s. 
Figure 9B shows this same cube with velocity vectors colored based on 
pressure.



Figure 8. Drag coefficient CD for cubes fixed in uniform flow as a function of rotation of cube relative to 
flow direction at Reynolds number = 0.3, 30, 90, and 240



Figure 9. Cube rotated 15° relative to flow direction. The upstream boundary has constant 
velocity u=⟨1.0,0.0,0.0⟩ m/s while the downstream boundary is a non‐reflecting characteristic 
boundary. All remaining boundaries are periodic. A, Velocity field magnitude with included legend 
given in units of m/s. B, Velocity field vectors scaled based on magnitude. Arrows are colored based on
pressure where included legend is in Pascals

5.3 Uplift forces on hydraulic structures

Hydraulic uplift forces at the cracks and joints on slabs in hydraulic 
structures can pose a major risk to their safe and reliable operation. Offsets 
in the joints or cracks can cause the hydraulic pressures to be transmitted 
underneath the slabs causing uplift or erosion of the foundation 
materials.62 The stagnation pressure and flow patterns associated with offset 
joints were simulated using the coupled DEM‐LBM model to illustrate its 
potential use for this class of problems. For these simulations, a 1/8‐inch joint
with 1/8‐inch offset between slabs was modeled, similar to the physical and 
numerical experiments performed by Frizell.62 Figure 10 shows the 
boundaries for the simulations. The two slabs are separated in the center of 
the domain by the joint where the offset between the two slabs can be 
clearly seen. The left boundary is the upstream side where fluid enters the 
domain at a constant velocity and flows toward the right side of the domain 
where flow is forced upward by the offset joint.



Figure 10. Two slabs offset by 1/8 inch separated by 1/8 inch joint

Two different cases were evaluated to show how the flow characteristics 
change depending on whether the joint is open—water can flow underneath 
the slabs—or sealed. The resulting pressure and velocity fields with 
associated stream tracers are shown for the open joint case in Figure 11 and 
for the sealed joint case in Figure 12. The location of the stagnation pressure
and general flow characteristics agree well with the results presented in 
Frizell.62



Figure 11. Simulation results for 1/8‐inch offset slabs with 1/8‐inch open joint where water is able to 
flow through the joint. A, Pressure field in and around the joint, B, velocity field magnitude, and C, 
velocity field tracers



Figure 12. Simulation results for 1/8‐inch offset slabs with 1/8‐inch closed joint. A, Pressure field in and 
around the joint, B, velocity field magnitude, and C, velocity field tracers

5.4 Sedimentation of multiple polygonal particles

The ultimate objective is to model the interaction between multiple 
polyhedral particles and fluid. As shown in Figure 13, four polyhedral 



particles initially packed tightly together are allowed to free fall through fluid 
under gravitational loading. Figure 14 shows the velocity profile in the fluid 
as the blocks sink and come to rest on the lower rigid boundary. As 
mentioned previously, accurately capturing the shape of the particles in the 
analyses is essential for predicting the correct kinematic response. If the 
fluid mesh is too coarse, the particle shape will not be represented with 
sufficient resolution in the fluid solution. This can lead to erroneous results 
because the fluid forces are based on a misrepresentation of the actual 
particle shape.

Figure 13. Four polyhedral blocks initially at rest inside fluid



Figure 14. Sections through fluid as four polyhedral blocks sediment through it. A, Velocity profile 
around blocks as they accelerate because of gravity and B, blocks impacting lower boundary

While these analyses highlight the capability of the algorithm, they also 
illustrate a potential computational issue: the mesh spacing requirements 
are significantly different for densely packed particles compared with 
particles dispersed in fluid. Table 2 shows the mesh spacing, number of 
nodes, and computational times required for four different analyses. The 
computational bottleneck in these simulations is the fluid‐solid coupling 
computations and it can be seen that the computation time significantly 
increases as the number of fluid nodes is increased. In order to accurately 
resolve the multiscale nature of the interactions when multiple particles are 
densely packed, the mesh size needs to be quite fine compared with when 
particles are further apart and not in contact. Here, global mesh refinement 
has been applied; however, the fine mesh size required in the vicinity of 
particle boundaries is not required in other parts of the domain and thus is 
not an efficient use of computational resources. To address this 
computational issue, adaptive meshing and multigrid methods are required 
which are currently being investigated.



6 CONCLUSIONS

A new coupling algorithm was developed to model the interaction between 
fluid and solid polyhedral particles where the particles are allowed to move 
through the fluid. The fluid phase was modeled using LBM while the solid 
particles were modeled using DEM. The coupling algorithm is based on a 
volume‐fraction approach9 where fluid‐solid interaction is established 
through constrained optimization and simplex integration. The algorithm 
proceeds by first establishing whether the particle and fluid cell overlap—
essentially a contact detection problem as encountered in DEM—through a 
linear programming approach.35 In the case where the particle and fluid cell 
do overlap, the minimal set of constraints that describe the volume of the 
region of overlap is established. With this minimal set, the volumetric solid 
fraction is then calculated analytically using simplex integration.58 The 
coupling algorithm was validated against experimental data.

The new coupling algorithm allows accurate evaluation of the fluid forces 
exerted on polyhedral particles. In particular, it can be used to consider 
sedimentation and particle transport where the polyhedral shape of particles 
influences the interaction between particles as well as the hydrodynamic 
loading. Additionally, the ability to capture the kinematic response of 
fractured rock based on particle shape, while also considering hydrodynamic 
loading, allows for analyses of many problems in geological engineering. The
computational demands of these multiscale analyses where there is a large 
scale disparity between particle size and the pore space between the 
particles requires adaptive meshing and a parallel implementation of both 
DEM and LBM. As such, our current research is focusing on implementing the
new algorithm in parallel with adaptive meshing in order to allow for analysis
of more complex problems using high performance computing.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation 
(NSF) grant CMMI‐1363354 and the Edward G. Cahill and John R. Cahill 
Endowed Chair funds.

APPENDIX A1: TRANSFORMATION MATRICES FOR MRT LBM

M used in the multi‐relaxation‐time collision operator described in 
Section 3 is calculated from Geier et al,51 with the discrete velocities ci listed 



in Table 1, as shown in Figure 2, for the D3Q27 velocity set. The resulting 
tranformation matrix is calculated as:

and its inverse is calculated as:
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