

B–N, B–O, and B–CN Bond Formation via Palladium-Catalyzed Cross-Coupling of B-Bromo-Carboranes

Rafal M. Dziedzic,[†] Liban M. A. Saleh,[†] Jonathan C. Axtell,[†] Joshua L. Martin,[†] Simone L. Stevens,[†] A. Timothy Royappa,^{‡,§} Arnold L. Rheingold,[‡] and Alexander M. Spokoyny^{*,†}

[†]Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States

[‡]Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States

[§]Department of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, Florida 32514, United States

Supporting Information

ABSTRACT: Carboranes are boron-rich molecules that can be functionalized through metal-catalyzed crosscoupling. Here, for the first time, we report the use of bromo-carboranes in palladium-catalyzed cross-coupling for efficient B–N, B–O, and unprecedented B–CN bond formation. In many cases bromo-carboranes outperform the traditionally utilized iodo-carborane species. This marked difference in reactivity is leveraged to circumvent multistep functionalization by directly coupling small nucleophiles (-OH, -NH₂, and -CN) and multiple functional groups onto the boron-rich clusters.

I cosahedral carboranes are boron-rich molecular clusters that are often described as three-dimensional (3D) analogs to benzene.¹ Their unique delocalized 3D aromatic bonding, high stability, and potential for site-selective functionalization make them attractive building blocks for tunable pharmacophores, unique ligand scaffolds, and building blocks for materials applications.² Further development of these and other applications with carboranes requires efficient methods for cluster synthesis and functionalization, where ultimately each individual vertex can be specifically addressed.¹

Over the past 50 years, palladium-catalyzed cross-coupling has emerged as a powerful synthetic method for creating new molecules.³ In particular, the emergence of designer ligands (beyond PPh₃) for Pd-catalyzed cross-coupling dramatically expanded the scope of electrophile substrates beyond aryl iodides.^{4a} These new catalyst systems demonstrated a clear ability to cross-couple aryl-bromides and aryl-chlorides, thereby facilitating transformations of synthetically challenging substrates. Among existing ligand platforms, biaryl phosphine ligands significantly increased the efficacy of Pd-catalyzed C–C, C–N, and C–O bond formation.⁴

Despite these advances in catalyst design for aromatic substrates, effective methodologies for metal-catalyzed B-N, B-O and B-C cross-coupling in carboranes are lacking. In fact, only B-iodo-carboranes have been used in Pd-catalyzed crosscoupling thus far.⁵ Yet, analogy between carboranes and arenes provides a clear hypothesis that other B-functionalized electrophiles, beyond B-iodo-carboranes, may be competent cross-coupling partners. Here we report our discovery validating this hypothesis by demonstrating for the first time that B-bromo-carboranes can be efficient electrophiles for B–N, B–O, and B–CN bond formation in Pd-catalyzed cross-coupling. Furthermore, we show conditions where these B-bromo-carboranes are superior to the iodinated congeners enabling the synthesis of previously inaccessible B-substituted carboranes. This chemistry is furthermore attractive given the greater synthetic accessibility of B-bromo-carboranes compared to their iodo-based congeners (see SI).¹

Hawthorne and co-workers recently reported Pd-catalyzed amidation of 9-I-m-carborane (I-mCB) utilizing the biaryl phosphine ligand DavePhos (L1, Figure 1).^{5h} To test our hypothesis, we replaced I-mCB with the bromo-carborane congener, 9-Br-m-carborane (Br-mCB), as a substrate under the reported cross-coupling conditions. However, our initial attempts at cross-coupling trifluoroacetamide with Br-mCB proved unsuccessful. Rapid formation of Pd metal was observed without any consumption of Br-mCB. We postulated that the Pd(0) precursor (Pd_2dba_3 , dba = dibenzylideneacetone) was not efficiently forming the catalytically active species $[L1Pd^0]$. To resolve this issue, we employed a commercially available Pd(II) precatalyst (Figure 1B inset), which has been previously shown to dramatically improve catalytic activity across a large pool of aryl-based substrates and catalytic conditions. Importantly, this change tremendously improved the catalytic conversion of Br-mCB producing 1a in nearly quantitative conversion within 2 h (Figure 1A). This discovery demonstrates for the first time that one can efficiently activate a relatively inert B-Br bond in a carborane with electron-rich Pdbased species supported by a biaryl phosphine ligand (Figure 1B).

This example demonstrates the potential competence of **Br**-**mCB** toward cross-coupling (Figure 1B), which does not have any literature precedent. This advance was also appealing given that **Br-mCB** can be synthesized in a fraction of the time (1 h) that is required for the synthesis of **I-mCB** (1 day). We therefore investigated the scope of Pd-catalyzed cross-coupling

Received:
 May 28, 2016

 Published:
 July 6, 2016

Figure 1. (A) General amidation conditions (inset, GC-MS yield of 1a from **Br-mCB** and **I-mCB** using different palladium precursors). (B) Proposed catalytic cycle employing biaryl phosphine ligands (step i, oxidative addition; step ii, transmetalation; step iii, reductive elimination).

of **Br-mCB** with other nucleophiles utilizing biaryl-ligand containing precatalysts.

To further probe the scope of B–N bond formation using Br-mCB, we evaluated several conditions and substrates for Pdcatalyzed amination. Using morpholine as a substrate (2a, Figure 2), we evaluated the cross-coupling efficiency of three precatalysts featuring L1, SPhos (L2), and XPhos (L3) ligands (see SI). For this transformation, L2 afforded complete consumption of Br-mCB and a high amount of B-N coupling product 2a as determined by GC-MS analysis. Evaluation of various bases indicated the superior performance of K^tBuO for forming 2a. Importantly, Br-mCB showed superior crosscoupling efficiency compared to I-mCB for the formation of 2a (Figure 2A). Using these optimized conditions, cross-coupling of Br-mCB proceeds with primary, secondary, aromatic, and heterocyclic amines in nearly quantitative conversion affording the corresponding B-N compounds (2b-2e, Figure 2B and SI).

In general, cross-coupling using unprotected nitrogen-rich heterocyclic substrates is known to be challenging.^{6c} Amination of halocarboranes has only been shown on the 2-I-*p*-carborane, which is a significantly more reactive substrate than **Br-mCB**.⁷ The cross-coupling methodology we developed addresses this issue for the first time in the context of *m*-carborane chemistry since, to the best of our knowledge, **2e** represents the first product resulting from the direct cross-coupling of an unprotected five-membered heterocycle with a B-halo-*m*-carborane.

The versatility of **Br-mCB** as a cross-coupling partner can be further seen from its efficient reaction with challenging nucleophiles. For example, **Br-mCB** cross-couples with ammonia producing 2c (Figure 2B), whereas previously 2ccould only be prepared by lengthy hydrolysis of 1a.^{Sh}

Figure 2. (A) General amination and alkoxylation conditions (inset, GC-MS yield of 2a obtained from Br-mCB and I-mCB). (B) Amination scope using Br-mCB and X-ray crystal structure confirming B–N bond formation. (C) Alkoxylation scope using Br-mCB and X-ray crystal structure confirming B–O bond formation (ellipsoids at 50% probability and H atoms omitted for clarity). GC-MS yields, and isolated yields in parentheses. $*K^{T}BuO$ used as a base except for: 2e, anhydrous K₃PO₄; 2f, 1 M aqueous K₃PO₄; 2g, NaOCH₃.

Importantly, our method represents the first example of a direct cross-coupling leading to 2c and is enabled by the previously unrecognized reactivity of **Br-mCB** when using biaryl phosphine supported Pd-based catalysts.

During the course of our amination studies, we observed B–OH coupling with **Br-mCB** (2f, see SI) when nonanhydrous bases were used. This is remarkable, given that the only example of a Pd-catalyzed carborane B–O bond formation was reported on 2-I-*p*-carborane. Importantly, the I-mCB congener was previously deemed too unreactive.^{8a}

Based on these observations, we developed a new crosscoupling protocol enabling the direct coupling of water, methanol, trifluoroethanol, and 3,5-dimethylphenol with BrmCB (2f-2i, Figure 2C).

This constitutes the first reported Pd-catalyzed crosscoupling leading to a B–O bond formation with *m*-carborane substrates. Significantly, a control reaction where **I-mCB** was used as a substrate led to a significantly lower conversion to 2i (Figure 2A). This Pd-catalyzed route is also superior to the exisiting method for forming related B–O compounds utilizing carborane B-halonium salts.^{8b} Additionally, 2f can be readily converted to 2g by deprotonation with NaH and followed by treatment with MeI, demonstrating the added synthetic utility of 2f.

Journal of the American Chemical Society

The versatility of **Br-mCB** cross-coupling with small nucleophiles led us to investigate B–CN bond formation. Cyanide is known to be a difficult cross-coupling partner in metal catalysis due to its propensity toward binding to catalytically active species, resulting in their deactivation.⁹ Recently several groups reported efficient protocols for cyanation of aromatic substrates using K₄[Fe(CN)₆] as a mild cyanide source.^{9b,d} Pd-catalyzed cyanation of **Br-mCB** using K₄[Fe(CN)₆] with an L3-based precatalyst led to the formation of 9-CN-*m*-carborane in a nearly quantitive conversion (**3a**, Figure 3A). This example represents the first

Figure 3. (A) Cyanation protocol; GC-MS yield of 3a obtained from **Br-mCB** and **I-mCB** (isolated yield in parentheses). (B) X-ray crystal structure, ¹¹B and ¹³C{¹H} NMR spectra of 3a (ellipsoids at 50% probability and H atoms omitted for clarity).

direct cyanation of a halogenated derivative of dicarba-*closo*dodecaborane. Importantly, cross-coupling activity of the ImCB species under these conditions is dramatically diminished compared to Br-mCB (Figure 3A).

The ability to append multiple functional groups is crucial to developing carboranes for new and existing materials.^{2,10,11} While polyfunctionalization of arene-based electrophiles via cross-coupling is well-established, similar methods for carboranes are rare.^{5,10} Our methodology can be applied toward disubstitution cross-coupling chemistry. Specifically, 9,10-Br₂-*m*-carborane (**4a**) can be functionalized with two bulky 3,5-dimethylphenolate substituents (**4c**, Figure 4). Interestingly, under B–OH cross-coupling conditions (*vide supra*), **4a** undergoes exclusive monosubstitution to produce **4d**.

In addition, given the pronounced orthogonal reactivity of B–Br versus B–I bonds in cross-coupling, our methodology can be used to heterofunctionalize mixed halo-carborane substrates. We leveraged the selectivity of $PdCl_2(PPh_3)_2$ for B–I bond functionalization to produce 9-Br-10-Et-*m*-carborane (4e) from 9-Br-10-I-*m*-carborane (4b, Figure 4 and SI).

Selective Pd-catalyzed cross-coupling of the B–Br moiety in 4e with L2-containing precatalyst yields the heterofunctionalized 9-O- $(3,5-Me_2C_6H_3)$ -10-Et-*m*-carborane (4f). This transformation represents the first metal-catalyzed B-heterofunctionalization of dicarba-*closo*-dodecaborane via cross-coupling demonstrating that B-Br-carboranes offer an additional pathway for multifunctionalization. These experiments also suggest that our methodology is amenable to sterically encumbered carborane-based electrophiles.

Ortho-carboranes are the most challenging substrates in cross-coupling methodologies, since these species undergo

Figure 4. Difunctionalization conditions and X-ray crystal structure confirming B–O bond formation. X-ray crystal structure (ellipsoids at 50% probability and H atoms omitted for clarity); see SI for detailed conditions. GC-MS yields, and isolated yields in parentheses.

facile deboronation in the presence of nucleophiles.¹² Our conditions are sufficiently mild and enable the cross-coupling of 3-Br-*o*-carborane (**Br-oCB**, see SI for details) with amine and alcohol substrates that are not strongly nucleophilic (5a-5b, Figure 5). Using 3-Br-*o*-carborane in this case is preferred, given its higher conversion efficiency and ease of preparation compared to the 3-I-*o*-carborane analogue.

Figure 5. Alkoxylation and amination of *ortho*-carboranes using **BroCB** (ellipsoids at 50% probability and H atoms omitted for clarity). GC-MS yields, and isolated yields in parentheses.

In summary, we discovered that B-bromo-m-carboranes undergo efficient Pd-catalyzed B-N, B-O, and B-CN crosscoupling enabled by precatalysts featuring electron-rich biaryl phosphine ligands. The higher reactivity of Br-mCB likely stems from faster transmetalation (Figure 1B, step II) due to a weaker Pd-Br bond compared to Pd-I congener. This is consistent with previously observed trends in palladiumcatalyzed transformations using aryl halide electrophiles and Pd-based catalysts supported by bulky electron-rich phosphine ligands.^{13,14} The use of B-bromo-carboranes allows direct access to previously unknown B-functionalizations of these clusters. In addition, judicious use of Pd-catalyst systems with either iodo- or bromo-functionalized carborane was used to access unprecedented heterofunctionalized species. This approach is also amenable to o-carborane, which is the most challenging carborane substrate. Notably, this cross-coupling chemistry is complementary to the recently developed efforts in directed B-H functionalization strategies¹⁵ and, if successfully combined, may provide unprecedented densely functionalized carborane species.¹⁶ Further expansion of this methodology to other cross-coupling chemistry¹⁷ along with a full mechanistic investigation¹⁸ is currently underway in our laboratory.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b05505.

Full procedures and other characterization data (PDF) Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*spokoyny@chem.ucla.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the Department of Chemistry and Biochemistry at UCLA for start-up funds and the NSF for partial support (CHE-1048804). We thank Dr. Gregory Khitrov and Elamar Hakim Moully for help with mass spectrometry. A.M.S. thanks 3M for a Non-Tenured Faculty Award.

REFERENCES

(1) (a) Grimes, R. N. Carboranes, 2nd ed.; Elsevier: Oxford, 2011.
(b) Spokoyny, A. M. Pure Appl. Chem. 2013, 85, 903.

(2) Selected examples: (a) Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701. (b) McArthur, S. G.; Geng, L.; Guo, J.; Lavallo, V. Inorg. Chem. Front. 2015, 2, 1101. (c) Böhling, L.; Brockhinke, A.; Kahlert, J.; Weber, L.; Harder, R. A.; Yufit, D. S.; Howard, J. A. K.; MacBride, J. A. H.; Fox, M. A. Eur. J. Inorg. Chem. 2016, 2016, 403. (d) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131. (e) Farha, O. K.; Spokoyny, A. S.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 12680. (f) Thomas, J. C.; Boldog, I.; Auluck, H. S.; Bereciartua, P. J.; Dušek, M.; Macháček, J.; Bastl, Z.; Weiss, P. S.; Baše, T. Chem. Mater. 2015, 27, 5425. (g) Yao, Z.-J.; Zhang, Y.-Y.; Jin, G.-X. J. Organomet. Chem. 2015, 798, 274. (h) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188. (i) Julius, R. L.; Farha, O. K.; Chiang, J.; Perry, L. J.; Hawthorne, M. F. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 4808. (j) Endo, Y.; Iijima, T.; Yamakoshi, Y.; Fukasawa, H.; Miyaura, C.; Inada, M.; Kubo, A.; Itai, A. Chem. Biol. 2001, 8, 341. (k) Kirlikovali, K. O.; Axtell, J. C.; Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. Chem. Sci. 2016. (1) Lugo, C. A.; Moore, C.; Rheingold, A.; Lavallo, V. Inorg. Chem. 2015, 54, 2094. (m) Shi, C.; Sun, H.; Tang, X.; Lv, W.; Yan, H.; Zhao, Q.; Wang, J.; Huang, W. Angew. Chem. 2013, 125, 13676. (n) Lee, Y.-H.; Park, J.; Lee, J.; Lee, S. U.; Lee, M. H. J. Am. Chem. Soc. 2015, 137, 8018. (o) Zhang, X.; Dai, H.; Yan, H.; Zou, W.; Cremer, D. J. Am. Chem. Soc. 2016, 138, 4334. (p) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet-Ladeira; Mique, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 14654. (q) Eleazer, B. J.; Smith, M. D.; Peryshkov, D. V. Organometallics 2016, 35, 106.

(3) de Meijere, A.; Diederich, F. Metal-catalyzed Cross-coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, 2008.

(4) (a) Jacobsen, E. N. Adv. Synth. Catal. 2015, 357, 2173. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.

(5) (a) Zakharkin, L. I.; Kovredov, A. I.; Ol'Shevskaya, V. A.;
Shaugumbekova, Zh. S. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1980, 1691.
(b) Zakharkin, L. I.; Kovredov, A. I.; Ol'Shevskaya, V. A.;
Shaugumbekova, Zh. S. *J. Organomet. Chem.* 1982, 226, 217. (c) Li,

J.; Logan, C. F.; Jones, M., Jr. Inorg. Chem. 1991, 30, 4866. (d) Zheng,
Z.; Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. Inorg.
Chem. 1995, 34, 2095. (e) Jiang, W.; Knobler, C. B.; Curtis, C. E.;
Mortimer, M. D.; Hawthorne, M. F. Inorg. Chem. 1995, 34, 3491.
(f) Viñas, C.; Barberà, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.;
Rosair, G. M. Inorg. Chem. 2001, 40, 6555. (g) Mukhin, S. N.;
Kabytaev, K. Z.; Zhigareva, G. G.; Glukhov, I. V.; Starikova, Z. A.;
Bregadze, V. I.; Beletskaya, I. P. Organometallics 2008, 27, 5937.
(h) Sevryugina, Y.; Julius, R. L.; Hawthrone, M. F. Inorg. Chem. 2010,
49, 10627. (i) Olid, D.; Núñez, R.; Viñas, C.; Teixidor, F. Chem. Soc.
Rev. 2013, 42, 3318. (j) Qui, Z. Tetrahedron Lett. 2015, 56, 963.
(k) Kracke, G. N.; VanGordon, M. R.; Sevryugina, Y. V.; Kueffer, P. J.;
Kabytaev, K.; Jalisatgi, S. S.; Hawthorne, M. F. ChemMedChem 2015, 10, 62.

(6) (a) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686. (b) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916. (c) Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 12877.

(7) Beletskaya, I. P.; Bregadze, V. I.; Kabytaev, K. Z.; Zhigareva, G. G.; Petrovskii, P. V.; Glukhov, I. V.; Starikova, Z. A. *Organometallics* **2007**, *26*, 2340.

(8) (a) Kabytaev, K. Z.; Mukhin, S. N.; Glukhov, I. V.; Starikova, Z. A.; Bregadze, V. I.; Beletskaya, I. P. *Organometallics* 2009, 28, 4758.
(b) Grushin, V. V. Acc. Chem. Res. 1992, 25, 529.

(9) (a) Sundermeier, M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem. - Eur. J. 2003, 9, 1828. (b) Schareina, T.; Zapf, A.; Beller, M. J. Organomet. Chem. 2004, 689, 4576. (c) Erhardt, S.; Grushin, V. V.; Kilpatrick, A. H.; Macgregor, S. A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2008, 130, 4828. (d) Senecal, T. D.; Shu, W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 10035.

(10) (a) Puga, A. V.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. Chem. Commun. 2011, 47, 2252. (b) Kabytaev, K. Z.; Everett, T. A.; Safronov, A. V.; Sevryugina, Y. V.; Jalisatgi, S. S.; Hawthorne, M. F. Eur. J. Inorg. Chem. 2013, 2013, 2488.

(11) (a) Konieczka, S. Z.; Himmelspach, A.; Hailmann, M.; Finze, M. *Eur. J. Inorg. Chem.* 2013, 2013, 134. (b) Wright, J. H., Il; Kefalidis, C. E.; Tham, F. S.; Maron, L.; Lavallo, V. *Inorg. Chem.* 2013, 52, 6223.
(c) Zhao, D.; Zhang, J.; Xie, Z. *Angew. Chem., Int. Ed.* 2014, 53, 8488.
(12) Fox, M. A.; Wade, K. J. Organomet. Chem. 1999, 573, 279.

(13) (a) Salvi, L.; Davis, N. R.; Ali, S. Z.; Buchwald, S. L. Org. Lett. **2012**, 14, 170. (b) Friis, S. D.; Skrydstrup, T.; Buchwald, S. L. Org. Lett. **2014**, 16, 4296.

(14) (a) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 1533.
(b) Sheppard, T. D. Org. Biomol. Chem. 2009, 7, 1043.

(15) (a) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.

(b) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502-3505.

(c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. 2015, 127, 10769.

(d) Quan, Y.; Xie, Z. Angew. Chem. 2016, 128, 1317. (e) Wang, Z.; Ye,

H.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.

(16) Molinos, E.; Brayshaw, S. K.; Kociok-Köhn, G.; Weller, A. S. Organometallics 2007, 26, 2370.

(17) (a) Kabytaev, K. Z.; Safronov, A. V.; Sevryugina, Y. V.; Barnes, C. L.; Jalisatgi, S. S.; Hawthorne, M. F. *Inorg. Chem.* 2015, 54, 4143.
(b) Kabytaev, K. Z.; Everett, T. A.; Safronov, A. V.; Sevryugina, Y. V.; Jalisatgi, S. S.; Hawthorne, M. F. *Eur. J. Inorg. Chem.* 2013, 2013, 2488.
(c) Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. *Organometallics* 2012, 31, 8478.

(18) Saleh, L. M. A.; Dziedzic, R. M.; Khan, S. I.; Spokoyny, A. M. Chem. - Eur. J. 2016, 22, 8466.