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Abstra
t

Population Geneti
 E�e
ts of Re
ent Admixture

by

Weiyi Mason Liang

Do
tor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Admixture has played an important role in shaping geneti
 diversity in many human pop-

ulations. Quantifying these e�e
ts is important not only for answering histori
al questions,

but also for dete
ting sele
tion, mapping disease genes, and estimating re
ombination rates.

Many existing methods for estimating admixture times use spatial information from the

genomes of admixed individuals, su
h as the distribution of admixture tra
t lengths or the

two-point 
ovarian
e fun
tion of their lo
al an
estries. I �rst dis
uss some theoreti
al results

about the length distribution of admixture tra
ts. I use simulations to show that, for re
ent

admixture events, no existing population geneti
 model approximates this length distribution

well. I introdu
e a new model, based on dyadi
 intervals, whi
h is a

urate in this regime

more mathemati
ally tra
table. I then show how the distribution of admixture proportions

within a population, as estimated by programs su
h as STRUCTURE, gives information

about the population's admixture history and relate the moments of this distribution to

the theory of multi-lo
us linkage disequilibria. Finally, I show how measures of three-lo
us

linkage disequilbria 
an be used to improve on the resolution of existing admixture history

inferen
e methods.
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Chapter 1

Introdu
tion

Over the 
ourse of human history, trade, 
onquest, slavery, and migration have all led

to gene �ow between previously isolated sour
e populations and the 
reation of admixed

populations, su
h as Afri
an Ameri
ans (Parra et al. 1998), Indians (Moorjani et al. 2013), or

Rapanui (Moreno-Mayar et al. 2014). Understanding these admixture histories is important,

not only for answering histori
al or anthropologi
al questions, but also from a biologi
al

perspe
tive, be
ause of the population geneti
 e�e
ts of admixture. Gene �ow from sour
e

populations into an admixed population is expe
ted to 
ause genome-wide 
orrelations whi
h

would otherwise not be present. Over the 
ourse of generations, this 
orrelation is then

broken down through re
ombination and drift in the admixture population. A

ounting for

these 
orrelations, and their de
ay as a fun
tion of time, is a 
ru
ial step in answering many

biologi
al questions, e.g. mapping disease gene mapping, estimating re
ombination rates, or

inferring lo
al an
estries.

The population geneti
 e�e
ts of admixture are 
losely related to the theory of jun
tions,

whi
h were �rst studied by (Fisher 1949). Jun
tions for an individual 
an be de�ned with

respe
t to a 
olle
tion of an
estors of that individual, and are positions in that individual's


hromosome whi
h mark transitions in inheritan
e. For example, a jun
tion may mark the

base pair where an individual's 
hromosome transitions from being inherited by one grand-

parent to being inherited from another. Although jun
tions are passed down in a population

in the same manner as geneti
 markers, jun
tions are not physi
al, and their existen
e 
an

only be inferred. In analyzing admixture, we are interested in transitions in the lo
al an
estry

i.e. the jun
tions with respe
t to sour
e populations instead of 
olle
tions of an
estors. The

jun
tions are positions at whi
h the 
hromosome transitions from being inherited from one

sour
e population to being inherited from another. For example, a jun
tion in an Afri
an

Ameri
an individual may demar
ate a se
tion of a 
hromosome that is inherited from an

Afri
an an
estor from a se
tion that is inherited from a European an
estor.

A frequently used model of admixture is a one-pulse model (Gravel 2012) and (Moorjani

et al. 2011), in whi
h, after the founding generation, there is no additional gene �ow from any

of the sour
e populations into the admixed population. In the se
ond 
hapter, I analyze the

distribution of admixture tra
t lengths that arises from this model. Admixture tra
ts are the
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ontiguous se
tions of genome des
ended from a single sour
e population, i.e. the segments

between 
onse
utive jun
tions. This length distribution is 
ommonly approximated by an

exponential distribution. I show that the a

ura
y of this approximation depends on several

fa
tors, in
luding the age of the admixture event and the e�e
tive admixed population size.

For re
ent admixture events, no existing model is a

urate, so I introdu
e a new model,

based on dyadi
 intervals, whi
h has the 
orre
t admixture tra
t length distribution for

re
ent admixture events.

A 
ommonly used te
hnique in admixture analyses is estimating the admixture propor-

tions of samples via programs su
h as STRUCTURE or ADMIXTURE. Admixture propor-

tions are the proportions of admixed individuals' 
hromosomes whi
h tra
e their an
estry

ba
k to ea
h sour
e population. This 
an be thought of as an integral of the lo
al an
estry

over ea
h individual's entire genome. In the third 
hapter, I show that the distribution of

these admixture proportions gives information about the population's admixture history.

The moments of this random distribution are related to the n-point 
orrelation fun
tions

of the lo
al an
estry. I then show how to 
ompute the expe
tations of these 
orrelation

fun
tions in terms of the population's admixture history and additional population geneti


parameters.

Existing inferen
e methods for admixture histories are generally limited to a one-pulse

model, but the 
omplexities of many populations' admixture histories 
annot be adequately


aptured by su
h a 
oarse model. In the �nal 
hapter, I show how existing methods for

estimating admixture histories 
an be improved by using a statisti
 based three-lo
us linkage

disequalibrium. These existing methods, based on two-lo
us linkage disequalibrium, are

limited to estimating the time for the most re
ent pulse of migration. I relate the linkage

disequalibrium 
reated by admixture to the two and three point 
ovarian
e fun
tions of the

lo
al an
estry, whi
h were 
omputed in the pre
eding 
haper. With this, we 
an �t more


omplex admixture histories to the observed statisti
s. I show that the addition of a third

lo
us improves the resolution of the method, allowing it to estimate the timing of multiple

pulses of migration.
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Chapter 2

Admixture Tra
ts Lengths

2.1 Introdu
tion

There has been interest in analyzing population genomi
 data by using methods that

partition an admixed individual's genome into blo
ks originating from di�erent an
estral

populations. An early version of the popular program Stru
ture (Falush et al. 2003) a

om-

plished this with a hidden Markov model (HMM), indexed along the genome, with hidden

states 
orresponding to the an
estral population ea
h position was inherited from. The 
on-

tiguous blo
ks of the genome inherited from a population are 
alled �admixture/migrant

tra
ts/segments", depending on the 
ontext. For 
onsisten
y, we will use the term �admix-

ture tra
t". Admixture tra
ts are unobservable, and their existen
e 
an only be inferred

from genomi
 data. The pro
ess of doing so is 
alled �admixture de
onvolution" or �an
estry

painting", and has been used in a number of di�erent 
ontexts, su
h as in admixture map-

ping for identifying human disease asso
iated genes (Hoggart et al. 2003; Rei
h et al. 2005),

population geneti
 inferen
es aimed at understanding human an
estry (Bry
 et al. 2010;

Henn et al. 2012), or identifying regions a�e
ted by natural sele
tion (Tang et al. 2007).

The te
hnique of using HMMs to partition an individual's genome into admixture tra
ts

has been used in subsequent methods. Hoggart et al. (2003) and Smith et al. (2004) used

HMMs for inferring admixture tra
ts with the purpose of admixture mapping and 
ontrolling

for population strati�
ation, similar to the method of Falush et al. (2003). More re
ent

publi
ations have fo
used on admixture de
onvolution for more general population geneti


purposes, su
h as Tang et al. (2006) and Sundquist et al. (2008).

In HapMix (Pri
e et al. 2009), the HMM model of Li & Stephens (2003) for modeling

linkage disequilibrium is extended to in
lude admixture between two populations. HapMix

uses a genotype-based state spa
e and so does not require phased data.

LAMP (Sankararaman et al. 2008; Pa³aniu
 et al. 2009; Baran et al. 2012) is similar

to HapMix, in that it also 
an be 
onsidered an extension of the Li and Stephens model.

However, the size of its state spa
e does not depend on the number of referen
e haplotypes,

whi
h allows it to run faster than HapMix.

PCAdmix (Bry
 et al. 2010; Brisbin et al. 2012; Henn et al. 2012) also uses an HMM to
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identify admixture tra
ts, but repla
es observed data with admixture s
ores inferred from

prin
iple 
omponent analyses (PCA). As in the 
ase of LAMP, it is appli
able to multiple

populations. Brisbin et al. (2012) argue that the method performs better than LAMP in

simulations and has performan
e 
omparable to that of HapMix, whi
h is limited to two

populations.

There are also methods for estimating population geneti
 parameters of admixture events

from genomi
 data without �rst inferring admixture tra
ts, su
h as ROLLOFF (Moorjani

et al. 2011). Other more general methods for estimating population geneti
 parameters,

su
h as ∂a∂i (Gutenkunst et al. 2009), 
an also be used to estimate time and the strength of

admixture events. Finally, there are a many pre-genomi
 methods for analyzing divergen
e

and gene-�ow exempli�ed by the IM methods developed in (Hey & Nielsen 2004; Hey 2010).

However, these methods do not dire
tly use the information 
ontained in the distribution of

admixture tra
t lengths.

As a result of these e�orts, there has been 
onsiderable interest in the relationship between

admixture tra
t lengths and the time of admixture (T ) and admixture fra
tion (m), to be

de�ned mathemati
ally later. Pool & Nielsen (2009) derived the admixture tra
t length

distribution under the assumptions that inbreeding is not signi�
ant and that tra
ts are so

rare that they are unlikely to re
ombine with ea
h other. Gravel (2012) relaxed this se
ond

assumption to model tra
ts des
ended from multiple migrant an
estors, but under simpli�ed

model of reprodu
tion 
alled the Markovian Wright-Fisher (MWF).

The methods for an
estry de
onvolution dis
ussed above use an HMM, assuming that

the spa
ing between re
ombination events is independent and exponentially distributed,

and that an
estries of these re
ombination segments are independent. This is equivalent

to assuming that admixture tra
ts have lengths whi
h are independent and exponentially

distributed. Population geneti
 models whi
h are designed to be Markov along the genome,

su
h as the MWF, sequentially Markov 
oales
ent (SMC) (M
Vean & Cardin 2005), or

SMC' (Marjoram & Wall 2006) models generate admixture tra
ts with these properties.

Under the Wright-Fisher (WF) model with re
ombination, whi
h is not Markov along the

genome, we show that admixture tra
ts lengths do not have an exponential distribution, and

furthermore, that these lengths 
an be highly 
orrelated. When T is small, these properties

are a result of inheritan
e from a small, �xed sample pedigree, and when T is large, they are

a result of inbreeding (in the sense of identity by des
ent due to geneti
 drift, as opposed

to non-random mating). This former 
ause was �rst dis
ussed by Wakeley et al. (2012) in

examining the 
onvergen
e of the an
estral re
ombination graph (Hudson 1983; Gri�ths &

Marjoram 1996) to the WF genealogi
al pro
ess. Be
ause of this integration over pedigrees,

the an
estral re
ombination graph diverges from the WF model when T is small, and, like

the Markov population geneti
 models, generates independent, exponential tra
t lengths.

Parallel to the literature on inferen
e methods for admixture de
onvolution, there is a

well-developed literature on the segregation of tra
ts in pedigrees. This starts with Fisher's

theory of jun
tions (Fisher 1949). A jun
tion is de�ned with respe
t to an an
estral pop-

ulation, and is a point in the 
hromosome where, due to a 
rossover, the segments to the

left and right tra
e their des
ent ba
k to di�erent members of the an
estral population. The
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distribution of the distan
es between jun
tions is of prime interest in this body of theory and

is 
losely related to the distribution of admixture tra
t lengths. Fisher (1949) was interested

in determining the expe
ted number of jun
tions under di�erent models of inbreeding. Stam

(1980) extended Fisher's original results results by 
onsidering a randomly breeding popu-

lation of 
onstant size, and derived a number of di�erent results under the assumption of

independent and exponentially distributed tra
t lengths. Many studies have subsequently fo-


used on the amount of geneti
 material passed from an individual to its des
endants, given a

known pedigree. Donnelly (1983) showed that the probability that an individual 
ontributes

no genes to a des
endant T generations in the future is approximately exp(−TR/2T ), where
R is the re
ombination map length. Barton & Bengtsson (1986) looked at the inheritan
e

of blo
ks of lo
i under sele
tion in hybridizing populations. Other studies have subsequently

studied properties of the distribution of jun
tions and the distan
es between between jun
-

tions, for �xed pedigrees in
luding (Guo 1994; Bi
keböller & Thompson 1996a,b; Stefanov

2000; Ball & Stefanov 2005; Cannings 2003; Dimitropoulou & Cannings 2003; Walters &

Cannings 2005; Rodolphe et al. 2008).

Baird et al. (2003) also 
onsider the distribution of surviving tra
ts among the des
en-

dants of an individual. They model the number of des
endants as a bran
hing pro
ess and

the lengths of inherited material 
arried by all des
endants as a bran
hing random walk.

Assuming 
omplete 
ross-over interferen
e (i.e., at most one re
ombination event per 
hro-

mosome), they derive the generating fun
tion for these lengths as a fun
tion of T and the

map length. They also derive expressions for the mean number of tra
ts of a 
ertain length

under both the 
omplete 
ross-over interferen
e model and a Poisson pro
ess of re
ombina-

tion. Baird et al. (2003) noti
e that their results 
an be used to understand the pro
ess of

geneti
 fragments between introgressed spe
ies, similar to the admixture problem 
onsidered

here. In parti
ular, they note that the standard deviations of both tra
t lengths and num-

ber of tra
ts are 
omparable to their means, indi
ating a high degree of variability. These

results have been extended in other appli
ations, for example to derive the distribution of

reprodu
tive values (Barton & Etheridge 2011).

Chapman & Thompson (2002) derive general expressions for the mean and varian
e of

the number of jun
tions. Their results 
an be applied under di�erent demographi
 models

be
ause they show that these two moments depend only on the re
ombination map length

and the one and two-lo
us probabilities of identity-by-des
ent.

Beyond the fa
t that we fo
us on the e�e
t on an admixed population, these approa
hes

di�er from our work in two ways. First, we 
onsider the ba
kwards-in-time pro
ess of the

an
estry of a sample, instead of 
onsidering the forward-time pro
ess des
ribing the des
en-

dants of an individual. We also by 
onsider the merger of multiple fragments inherited from

the a group of individuals (migrants), instead of the 
ontributions from just one. The e�e
t

of su
h mergers is parti
ularly important when the number of migrants is large.

As no models other than the full WF model are available for a

urate analyses of tra
t

lengths for re
ent admixture times, we present a new model of genealogi
al stru
ture that


an be used to analyze and approximate tra
t lengths distributions, and short-term pedigree

based-pro
esses more generally. This model assumes the sample has a full pedigree, and
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represents the genealogi
al history of a sample in terms of dyadi
 intervals. It is a

urate

for time s
ales and population sizes in whi
h pedigree stru
ture is important but inbreeding

is not.

2.2 Models

For simpli
ty, we 
onsider a simple admixture s
enario in whi
h, T generations ago,

two sour
e populations 
ontributed to form a third, admixed, population. Founders of this

admixed population 
ome from the �migrant" population with probability m and from the

�non-migrant" population with probability 1 − m. Note that the labels on the two sour
e

populations are arbitrary.

Ea
h of the population-geneti
 models analyzed in this 
hapter model the reprodu
-

tion and re
ombination in this mone
ious population of 2N 
hromosomes subsequent to

the admixture event. We assume that re
ombination events follow a Poisson pro
ess with

rate 1 
rossover/Morgan. This assumption of no 
rossover interferen
e is not biologi
ally

a

urate, but it is mathemati
ally tra
table. We will later argue that this assumption is


onservative with respe
t to the major 
on
lusions of this 
hapter and show how our results


an be extended to in
orporate some models of interferen
e.

Haploid Wright-Fisher with Re
ombination

This is the standard haploid version of the WF model with re
ombination 
onsidered

by Gravel (2012), Wakeley et al. (2012), and others. Ea
h 
hromosome is produ
ed by

re
ombining two parents from the previous generation, 
hosen independently and uniformly

at random. We 
onsider this to be the more appropriate model for understanding tra
t

lengths distributions and 
ompare the following models to it.

Markovian Wright-Fisher

Gravel (2012) introdu
ed this mathemati
ally tra
table approximation of the diploid

WF model. It assumes that 
hromosomes are formed from the re
ombination of all 2N

hromosomes from the previous generation, instead of just two. At ea
h re
ombination point

the o�spring 
opies from one of the 2N 
hromosomes from previous generation, uniformly

at random. Additionally, it assumes that 2N is large, so that ea
h 
rossing-over results in a

new parent 
ontributing geneti
 material. As its name implies, the MWF model is a Markov

pro
ess along the genome.

Coales
ent with Re
ombination

In the 
oales
ent limit (2N → ∞ with time measured in units 2N generations and

re
ombination distan
e in units of 
rossovers/4N), Gri�ths & Marjoram (1996) showed that

the genealogi
al pro
ess of a sample from the haploid WF model 
onverges in distribution
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to the an
estral re
ombination graph (ARG), whi
h 
an be 
onstru
ted as a Markov pro
ess

going ba
kwards in time. Wiuf & Hein (1999) presented a sequential 
onstru
tion of the

ARG along the genome. This sequential pro
ess is not Markov. Instead, the 
onditional

distribution of a marginal trees depends on all the trees that have appeared to the left of it.

The 
ase of admixture tra
ts is slightly di�erent than other uses of the 
oales
ent, be
ause

here we start with one lineage and stop the pro
ess at the �xed time, T/2N , instead of the

more 
ommon 
ase, where we start with more than one lineage and stop the pro
ess when

only one lineage is left.

Sequentially Markov Coales
ent

M
Vean & Cardin (2005) developed an approximation of the 
oales
ent in whi
h the

sequen
e of marginal trees form a Markov pro
ess along the sequen
e. In the sequentially

Markov 
oales
ent (SMC), the only allowed 
oales
en
e events are for lineages with overlap-

ping an
estral material. The model is otherwise identi
al to the 
oales
ent.

Majoram and Wall's SMC'

Marjoram & Wall (2006) presented a related model (SMC') whi
h loosens the restri
tions

of the SMC while retaining its Markov property. In addition to the 
oales
en
e events allowed

in the SMC, the SMC' further allows 
oales
en
e events for lineages with abutting an
estral

material. This extra possibility allows for ba
k-
oales
en
es in the an
estral re
ombination

graph, whi
h produ
es a signi�
ant improvement for this model's predi
tive powers when

these events are likely.

Perfe
t Binary Tree Model

As we will argue in the Results se
tion, none of the four previous models approximate

the tra
t length distribution well when T is small relative to 2N . We therefore introdu
e

the perfe
t binary tree model (PBT), so named be
ause it assumes that sample has 2T

distin
t great

T−2
grandparents, i.e., that the pedigree of the sample, up to generation T , is

a perfe
t binary tree with depth T . From simulations, we found that this approximation

produ
es a

urate results when 2T < N whi
h is the parameter spa
e for whi
h the 
oales
ent

approximation does not. For most biologi
al populations, this restri
ts T to a rather limited

set of parameter values, but often, this is a region of great interest. Some de�nitions and

properties of this pro
ess are dis
ussed in the following se
tion, whi
h 
an be skipped by the

less mathemati
ally interested reader.

Our goal is to 
hara
terize the sto
hasti
 pro
ess by whi
h segments of an
estral geneti


material are re
ombined to form the genome of a parti
ular person of interest (the proband).

We 
all this the an
estor 
opying pro
ess, whi
h represents the line of des
ent of the proband's

genome as a fun
tion of the genomi
 position. Label the parents of an individual as the `left'

and a `right' parent, respe
tively. The an
estry of an individual in a parti
ular position in
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the genome is then determined by the 
hoi
es of left and right parents ba
k in time on the

pedigree.

In investigating IBD probabilities, Donnelly (1983) 
onsidered this an
estry as a random

walk on a hyper
ube, with ea
h vertex 
orresponding to the set 
hoi
es of left or right parents

for every individual in the pedigree. For a perfe
t binary tree, the size of this state spa
e

is super-exponential in T , whi
h Donnelly (1983) was able to 
onsiderably redu
e by using

symmetries in the transition matrix. For the an
estry 
opying pro
ess, we 
annot use these

symmetries in the same way, and instead dire
tly integrate over hidden re
ombination events.

We instead represent this an
estry using dyadi
 intervals. At a position in the genome,

x, the an
estor 
opying pro
ess Nx takes a value from the half-open interval [0, 1). The

dyadi
 intervals Nx is 
ontained in 
orrespond to the an
estors this position was inherited

from. We de�ne dyadi
 intervals to be half-open intervals of the real line of the form Ij,k =
[k2−j, (k+1)2−j) for j, k ∈ Z, k < 2j. Dyadi
 intervals are isomorphi
 to the nodes of binary

trees in that every dyadi
 interval is the union of two unique disjoint dyadi
 intervals. We

use the following notation to denote the left and right halves of a dyadi
 interval Ij,k:

Iℓj,k = [k2−j, (2k + 1)2−j−1)

Irj,k = [(2k + 1)2−j−1, (k + 1)2−j).

We denote the length of a dyadi
 interval by |Ij,k| = 2−j
and de�ne the distan
e between

two dyadi
 intervals, d(I, J), to be the length of the shortest dyadi
 interval 
ontaining both.
For a dyadi
 interval I, we de�ne I ′ to be the dyadi
 interval with 2|I| = |I ′| su
h that I ⊂ I ′

and I∗ to be the set di�eren
e of I ′ and I.
We asso
iate an an
estor to ea
h dyadi
 interval in [0, 1): the proband to I0,0, the left

parent to I1,0, the right parent to I1,1, the left parent's left parent to I2,0, et
. The value of
the an
estor 
opying pro
ess at a parti
ular position represents the an
estors the proband

inherited that position from, e.g. if the an
estor 
opying pro
ess is less than

1
2
, then the

proband inherited that position from the left parent, or if is greater than or equal to

3
4
, then

the proband inherited that position from the right-most grandparent (and 
onsequently the

right parent). A realization of the an
estor 
opying pro
ess is given in Figure 2.1.

The de�ning property of the an
estor 
opying pro
ess is that its distribution does not


hange after a generation of re
ombination. The pro
ess of re
ombination between two

parental genomes 
an be des
ribed by a two-state Markov pro
ess, Rx, whi
h swit
hes be-

tween 0 and 1 at rate 1. If Nx and N ′
x are the independent an
estor 
opying pro
esses of the

two parent, whi
h are jointly independent of Rx, then

Nx
d

= 1
2
RxNx +

1
2
(1−Rx)(1 +N ′

x). (2.1)

This property makes it 
lear that 
onditional on Rx, the behavior of Nx in the range

[0, 1
2
) is independent of its behavior in [1

2
, 1). In fa
t, this property 
an be extended to any

mutually disjoint 
olle
tion of dyadi
 intervals:
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Figure 2.1 : A realization of the an
estor 
opying pro
ess. In this 
ase, the pro
ess stays

in the interval [0, 12 ), indi
ating that this length of 
hromosome was inherited entirely from the

proband's left parent. The pro
ess jumps between [0, 14) and [14 ,
1
2) three times, indi
ating that

ea
h left grandparent 
ontributed two blo
ks to the proband. The pedigree, up to the proband's

8 great-grandparents is shown on the right. Ea
h an
estor has been pla
ed in their 
orresponding

dyadi
 interval.

Theorem 2.2.1 For a dyadi
 interval A, the pro
esses Nx1{Nx ∈ A} and Nx1{Nx /∈ A}
are 
onditionally independent given 1{Nx ∈ A}.

An intuitive explanation for this theorem is that be
ause there is no inbreeding, an
estors

whi
h are not lineal des
endants will be unrelated, and hen
e independent. The mathemat-

i
al proof, as with all others in the 
hapter, is presented in the appendix at the end of the


hapter.

To 
hara
terize the an
estor 
opying pro
ess, we want to �nd the rate at whi
h Nx leaves

a dyadi
 interval I:

nI = lim
x↓0

1− PI(Nx ∈ I|N0)

x

and the transition rates between disjoint dyadi
 intervals I and J :

nI,J = lim
x↓0

PI(Nx ∈ J |N0)

x
,

where PI is the measure indu
ed by 
onditioning on N0 ∈ I and N0 = ({Nx : x ≤ 0}.

Theorem 2.2.2 The length over whi
h Nx remains in a dyadi
 interval is exponentially

distributed, with rate given by

nIj,k = j.
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Theorem 2.2.3 The transition rates between disjoint dyadi
 intervals is given by

nI,J =
∏

i∈P (I,J)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′)

with

TI = sup{x < 0 : Nx ∈ I}

and

P (I, J) = {i ∈ I : |i| < d(I, J), J ⊂ i}.

The rate at whi
hNx leaves dyadi
 intervals depends only on the length of the dyadi
 interval,

whi
h is in a

ord with the results of Baird et al. (2003), Pool & Nielsen (2009), and Gravel

(2012) regarding the exponential distribution of geneti
 distan
e between re
ombination

events. However, the pro
ess is not Markov, be
ause the transition rates depend on the the

values of Nx for x ≤ 0 and not just N0.

The MWF and SMC models assume that segments are inherited from distin
t an
estors,

but for the PBT model, multiple segments 
an be inherited from the same an
estor. The

probability of this event de
reases as T in
reases, 
on�rming the predi
tion given in (Baird

et al. 2003).

2.3 Simulations

As we explain in the results, when there is a single pulse of admixture, the Markov

models, (MWF, SMC, and SMC') produ
e admixture tra
ts whose lengths are independent

and exponentially distributed. For the other models, we �rst wrote Monte-Carlo simulations

whi
h assigned an an
estor to ea
h re
ombination segment. For the 
oales
ent model, we

used 
ode whi
h was essentially identi
al to the program ms (Hudson 2002), with two mod-

i�
ations: the ba
kwards pro
ess stops at the time of admixture, instead of when only one

lineage remains, and the simulation starts with just one lineage. The extant lineages at the

time of admixture are then tra
ed forward in time to �nd whi
h re
ombination segments

they 
ontribute.

For the PBT model, we used the transition rates from theorem 2.2.3 to e�
iently simulate

Nx on the dyadi
 intervals with size at least 2−T
in the following manner: The stationary

distribution of Nx is uniform on [0, 1), so we put N0 in a dyadi
 interval, I, with length

2T , 
hosen uniformly at random. The length for whi
h Nx remains in this interval has an

Exp(T) distribution. Note that nI,I∗ = nI,(I′)∗ = nI,(I′′)∗ = · · · = 1, and that I, I∗, (I ′)∗, . . .
form a partition of I0,0 so we �rst determine whi
h of these dyadi
 intervals Nx jumps to.

Conditional on this, we then re
ursively determine whi
h of the left and right dyadi
 intervals


ontains Nx, until we have narrowed Nx down to a dyadi
 interval of length 2−T
. As we

do this, we also update the values of the TI 's. One of the advantages of the dyadi
 interval
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representation is that it allows e�
ient simulations of pedigree stru
ture by simulating a

sto
hasti
 pro
ess on [0, 1) instead of representing full pedigrees for ea
h segment of the

genome as a linked list in the 
omputer memory.

The WF model is the same as the PBT model, with the ex
eption that inbreeding is

allowed. We still represent the pedigree as a perfe
t binary tree, with the 
aveat that some

of the nodes are taken to represent the same an
estor. For the simulation, this means that

some of the Ti's for di�erent dyadi
 intervals whi
h represent the same an
estor will in fa
t

be equal. Generating the entire pedigree is 
omputationally expensive for large T , so we only
extend the pedigree as is needed i.e., as Nx jumps to previously unvisited dyadi
 intervals.

After assigning an an
estor to ea
h re
ombination segment, we then independently label

ea
h an
estor as migrant or non-migrant, with probabilities m and 1 − m, respe
tively.

allowing us to demar
ate admixture tra
ts. For ea
h set of admixture parameters, we used a

simulated a segment of genome 30 times longer than the average tra
t length. To minimize

edge e�e
ts, we only examine the tra
ts from the middle third of this segment.

2.3.1 Models of multiple admixture pulses

The Markov models (MWF, SMC, and SMC') predi
t that admixture tra
ts resulting

from one pulse of admixture will have exponentially distributed lengths, while those resulting

from two (or more) pulses of admixture will have length distributions whi
h are the mixture of

two (or more) exponentials. On the other hand, the Wright-Fisher model produ
es admixture

tra
ts whi
h are non-exponential, even in the one-pulse s
enario. As a result, when analyzing

the data using a Markov model, it is possible to mistakenly 
on
lude that the observed tra
t

length distribution 
annot be explained by just one pulse of admixture, when in fa
t it 
an

be, but only by using the more 
omplex Wright-Fisher model.

We investigated the probability of this happening when using a likelihood ratio test to

distinguish between an exponential distribution vs. a mixture of two exponentials. To draw

from the null distribution, we simulated 104 admixture tra
ts with exponentially distributed

lengths and found the maximum log-likelihood of these under a mixture model, with two

exponentials, i.e.

L(p, a, b|x) =
104∏

i=1

[
pae−axi + (1− p)be−bxi

]
,

where ea
h xi is the length of a admixture tra
t. This maximization was done by a

standard Expe
tation Maximization (EM) algorithm. The 100 initial random values p0, a0,
and b0 were repeatedly updated by �rst 
omputing the posterior probabilities:

ri,t =
ptate

−atxi

ptate−atxi + (1− pt)bte−btxi
,

and then the likelihood-maximizing posterior means:
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p̂t+1 =

∑104

i=1 ri,t
104

ât+1 =

∑104

i=1 ri,t
∑104

i=1 ri,txi

b̂t+1 =

∑104

i=1(1− ri,t)
∑104

i=1(1− ri,t)xi

.

The values were updated until the log-likelihood improvement was less than 10−3
. We

took the highest log-likelihood value resulting from these 100 optimizations to be the maxi-

mum log-likelihood under the mixture model for this sample.

2.3.2 Tests of a single admixture pulse

To test the null hypothesis of a single admixture event, we de�ne a likelihood ratio test

statisti
, S, by subtra
ting the maximum log likelihood value under the full model with two

admixture events from that obtained for a model allowing only a single admixture event.

The asymptoti
 distribution for this test statisti
 is not known, be
ause some parameters

of the alternative hypothesis are not estimable under the null hypothesis. This implies

that the general asymptoti
 likelihood theory is not appli
able. To obtain 
riti
al values

for this test statisti
 we instead used parametri
 simulations under the null hypothesis and

assuming independent exponentially distributed tra
t lengths. We simulated 105 samples to

approximate the 
riti
al values 
orresponding to signi�
an
e levels of p = 0.05 and p = 0.02
a range of values for T and for m = 0.1, 0.3, and 0.5. We then 
ompared this distribution of

log-likelihood ratios to log-likelihood ratios obtained in the same way for simulated datasets

of 104 tra
ts generated under the Wright-Fisher model with a single admixture event.

2.4 Simulation Results

The models predi
t that the sampled 
hromosome 
an be viewed as a mosai
 of re
ombi-

nation segments from 
hromosomes in generation T . The models agree in predi
ting that the

distan
e between re
ombination events, and hen
e the length of a re
ombination segment,

is exponentially distributed, with s
ale T−1
, but di�er in their predi
tions regarding how

re
ombination segments are inherited from an
estors from the admixing generation. In the

following, we use simulations to illuminate these di�eren
es.
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2.4.1 Admixture tra
ts lengths, neither iid nor exponentially dis-

tributed

Re
ombination fragments are exponentially distributed in the WF model. Under the

assumption that all an
estors are distin
t, theorem 2.2.2 shows that the distribution of the

length of fragments in whi
h an individual has any parti
ular an
estor T generations ago,

is also exponentially distributed, with s
ale T−1
. If admixture tra
ts are assumed to be so

rare that they are unlikely to re
ombine with ea
h other, then admixture tra
t lengths will

therefore also be exponentially distributed, and the pro
ess will be well-modeled using the

independen
e assumption of Pool & Nielsen (2009). However, admixture tra
ts are di�erent

from re
ombination segments, as multiple re
ombination segments 
an re
ombine to form a

single admixture tra
t. This was the situation 
onsidered by Gravel (2012). In general, if

the lengths of re
ombination tra
ts are independent and identi
ally distributed (iid) expo-

nential random variables, and ea
h segment is migrant independently and with probability

m, then the length distribution of admixture tra
ts would be found as a geometri
 mixture

of exponential random variables, and 
onsequently be exponentially distributed with s
ale

[T (1 − m)]−1
. However, the se
ond 
ondition is not true. There are two reasons for this.

First, as shown by theorem 2.2.3 the an
estry 
opying pro
ess is not Markov. An individual

has a �nite number of an
estors and re
ombination 
an bring together re
ombination frag-

ments inherited from the same an
estor. As a result, the lengths of migrants tra
ts will be


orrelated when T is small. Another fa
tor that 
ontributes to this 
orrelation is the varian
e

in the number of migrant an
estors an individual has. For instan
e, an individual with one

migrant grandparent will have admixture tra
ts whi
h tend to be shorter than those for an

individual with 3 migrant grandparents. The e�e
t of this is illustrated in Figure 1 for T = 5.
In addition, when T is large, the number of geneti
 an
estors will be signi�
antly smaller

than 2T . It might be useful to think of this e�e
t forward in time as an e�e
t of inbreeding, in

whi
h admixture tra
ts introdu
ed into the population are broken up by re
ombination but

also joined again by inbreeding. As a result, many fragments in the population segregating

after time T will likely be des
endants of a relatively few number of larger fragments. The

lo
ation of smaller fragments will therefore be 
orrelated in the genome, 
orresponding to the

lo
ation of the initial admixture fragments, and ba
k re
ombination has a higher probability

than under the iid assumption. This e�e
t is illustrated in Figure 1 for T = 2000.
Baird et al. (2003) also simulated and 
ommented on the 
lustering of tra
ts in the

genome. A single tra
t spanning a larger region may survive the �rst generations, and

then be broken up into smaller fragments in di�erent individuals in the same region of the

genome. Martin & Hospital (2011) also examined the problem of 
orrelated tra
t lengths,

but in the 
ontext of re
ombinant inbred lines, and similarly 
on
luded that tra
t lengths

are not independent.

As a 
onsequen
e of the 
orrelation in tra
ts lengths along the 
hromosome, admixture

tra
ts are not a

urately modeled as a geometri
 mixture of iid re
ombination fragments.

This e�e
t is illustrated in Figure 2.2. The strongest deviations o

ur when T is large, or

when the admixture proportion is large. The length distribution of admixture fragments
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when the admixture proportion is m, 
orresponds to the distribution of distan
es between

fragments when the admixture proportion equals 1 − m. In terms of HMM modeling, de-

viations from exponential distribution of either admixture fragments, or distan
es between

admixture fragments, will violate the model assumptions.

Related results have previously been obtained relating to the theory of jun
tions. Chap-

man & Thompson (2002) examined an assumption of independent Poisson distributed jun
-

tions among individuals, and independen
e of jun
tions within individuals. They noti
ed

that this assumption tends to underestimate the true varian
e when T/N > 1. Although

the assumptions in their study is di�erent from ours, in parti
ular we 
onsider des
ent from

multiple migrant individuals and the possibility of re
ombination between tra
ts from these

individuals, the 
on
lusion rea
hed by (Chapman & Thompson 2002) is essentially similar

to the one rea
hed here: tra
ts are not exponentially distributed when T is large relative to

N . Martin & Hospital (2011) examined this problem further in the 
ontext of re
ombinant

inbred lines and similarly 
on
luded that tra
t lengths are not exponential.

The interplay of the non-independen
e and non-exponentiality of the admixture tra
t

distribution 
an be illustrated by looking at the distribution of admixture proportions, the

proportion of a window whi
h is inherited from migrant an
estors. This is presented in

Figure 4, using a window size of 1 
M, in an admixture s
enario in whi
h the pattern of

admixture tra
ts is expe
ted to have �xed in the population. The PBT, MWF, and SMC

models do not a

ount for the e�e
t of inbreeding, so they predi
t that admixture tra
ts will

be
ome ever smaller as T be
omes larger. As a result, they predi
t degenerate admixture

proportions, i.e. an atom on m. Consequently, these models were not in
luded in �gure 2.3.

The 
oales
ent, SMC', and WF models do take inbreeding into a

ount, and 
onsequently

predi
t non-degenerate limiting distributions for the admixture proportion.

For both values of m, the distribution predi
ted by the WF and 
oales
ent models has a

larger varian
e than that predi
ted by SMC', while having the same mean. For small values

of m, this is be
ause admixture tra
ts are likely to be 
lustered, and have either zero or a

larger number of tra
ts than predi
ted by SMC'. For large values of m, this higher varian
e

is better explained by the fat tails of the admixture tra
t length distribution.

2.4.2 Coales
ent with Re
ombination

The 
oales
ent provides an approximation to the WF model that is in general ex
ellent,

but may be less so when 
onsidering the dynami
s shortly before the time of sampling

(Wakeley et al. 2012). In the present 
ontext this means that the 
oales
ent approximates the

WF model well when T is large, but not ne
essarily so for small values of T . The 
orrelation
that arises due to inbreeding is well-modeled by the ARG, but the 
orrelation due to a small

number of an
estors in the pedigree in the very re
ent an
estry is not. This is shown in

Figure 1. For small values of T , the 
oales
ent does not a

urately 
apture the 
orrelation

stru
ture. As a 
onsequen
e, the distribution of admixture tra
t lengths is not well-modeled

when T is small (Figure 2), parti
ularly for large migration fra
tions (m = 0.9). In an

admixed population, the distribution of tra
ts originating from the population 
ontributing
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Figure 2.2 : The 
orrelation of the lengths of 
onse
utive admixture tra
ts for the WF

with 2N = 1000 (red), PBT (green) and 
oales
ent (blue) models. In all 
ases the admixture

fra
tion is m = .95. Admixture tra
t lengths were transformed into the unit interval by their

empiri
al quantiles, so un
orrelated lengths would produ
e an entirely white square. The simulations

were run with a population size of 2N = 2000.
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Figure 2.3 : Distributions of the fra
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M windows that are parts of admixture
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N = 5×103 and T = 2×104. The distribution under the SMC' model is in green and the distribution

under the 
oales
ent and Wright-Fisher models is in blue. Note that the left graph is plotted on a

log s
ale.
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most of the geneti
 material are far from exponentially distributed. However, the e�e
t

rapidly diminishes as T in
reases.

2.4.3 Markovian Models

The MWF, SMC, and SMC' models all generate admixture tra
ts with exponentially

distributed lengths. In these models, admixture tra
ts follow a geometri
 mixture of iid

exponential random variables. In ea
h of these Markovian models, the an
estry of a re
om-

bination segment only depends on the an
estry of the re
ombination segment to its left. As

a result, the number of re
ombination segments that make up a admixture tra
t will be

a geometri
 random variable. The geometri
 mixture of iid exponential random variables

results in another exponential. Under the MWF model, ea
h re
ombination segment is inher-

ited from a distin
t an
estor in generation T . Ea
h of these an
estors is from the admixing

population with probability m, so admixture tra
ts lengths will be exponentially distributed

with s
ale [T (1−m)]−1
, as previously dis
ussed. In the SMC, the re
ombined lineage 
annot


oales
e ba
k to the 
urrent marginal tree, so as in the Markovian WF model, ea
h re
om-

bination segment will be des
ended from a distin
t an
estor and admixture tra
ts lengths

will again be exponentially distributed with s
ale [T (1−m)]−1
. In SMC', ba
k 
oales
en
es

to the 
urrent marginal tree are possible, and o

ur with probability 1 − 2N(1 − e−
T
2N )/T .

In this event, the re
ombination segment will be migrant if and only if the previous segment

was. Therefore, the probability that the segment on the right of a re
ombination point is

migrant, given that the segment on the left was, is

[

1−
2N

T

(

1− e−
T
2N

)]

+

[
2N

T

(

1− e−
T
2N

)]

m = 1−
2N

T
(1−m)

(

1− e−
T
2N

)

,

so admixture tra
t lengths will have an Exp[2N(1 −m)(1 − e−
T
2N )] distribution. When

2N ≫ T , this is the approximately the same distribution given by the other two models,

but for �xed 2N and as T → ∞, SMC' makes the more a

urate predi
tion that the average

tra
t length goes to the non-zero value of [2N(1−m)]−1
.

These models may fail to give a

urate predi
tions both for both small and large values of

T . These are two separate e�e
ts. When T is small they give ina

urate predi
tions for the

same reasons as the 
oales
ent. In parti
ular, they do not a

urately model the 
orrelation

due to a �xed number of an
estors in the pedigree and the possibility of ba
k-re
ombination.

For this reason, tra
ts length distributions do not �t well, espe
ially for large values of m.

For large values of T they fail be
ause they do not a

urately model the e�e
t of in-

breeding. The MWF model and the SMC give identi
al predi
tions (Figure 2.4). When

T is large, they underestimate the length of admixture tra
ts for small values of m. For

large values of m they underestimate the varian
e in tra
t length. In either 
ase, the �t of

tra
t length distribution to that expe
ted under the WF model, or the 
oales
ent, is poor.

In the 
oales
ent and WF models, nonadja
ent segments may be des
endants of the same

an
estor, an event whi
h o

urs with higher probability as T in
reases. The overall e�e
t of
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Figure 2.4 : Admixture tra
t length distributions for the MWF and SMC (both blue),

SMC' (green), 
oales
ent (red) models 
ompared to the distribution under the WF

model (thi
k bla
k). Note that the y-axis is shown on a logarithmi
 s
ale. The simulations

were run with a population size of 2N = 2 × 103. For T = 5, the former three models give

exponential distributions and do not mat
h the WF distribution. For T = 2000 the 
oales
ent and

WF distributions are the same.
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this is that the Markovian models are too likely to assign more distin
t an
estors to a given

length of 
hromosome, whi
h in
reases the probability that some se
tion was inherited from

a non-migrant an
estor. The error for the SMC' is less than that of the SMC and Markovian

Wright-Fisher model (Figure 2.4).

2.4.4 Perfe
t Binary Tree

In the Methods se
tion, we derived a genealogi
al model that 
an be used to study tra
t

length distributions when T is small. This pro
ess 
aptures the 
orrelation stru
ture and

admixture tra
t length distribution of the full WF model for small T (Figures 2.2 and 2.5),

something that the other approximative models explored here fail to do. However, the model

does not a

urately des
ribe the dynami
s when T is large, as it assumes that all an
estors

from generation T are distin
t. For T > log2N , this is not possible, and some an
estors

must ne
essarily be the same.

This is 
onsistent with the result of Baird et al. (2003), whi
h found that asymptoti
ally

for large T , the probability that an individual inherits multiple blo
ks from one an
estor

goes to zero. In this limit, where every re
ombination segment is inherited from a distin
t

an
estor, admixture tra
ts lengths will be idd exponential, as in the 
ase of the Markov

models.

2.4.5 Admixture Tra
ts as distan
es between jun
tions

We further 
ompare our results with the results of Baird et al. (2003) to illustrate the

e�e
t of 
onsidering multiple an
estors of an individual and the e�e
t of assumptions re-

garding 
rossover interferen
e. Baird et al. (2003) 
onsider the distribution of the lengths

of geneti
 material inherited from one individual, in a bran
hing-pro
ess model with 
om-

plete interferen
e, i.e. assuming at most one re
ombination event on a 
hromosome ea
h

generation. The found that the density, in z, for this distribution is given by

(1− z)T−1
(
2T + T (T − 1)y−z

1−z

)

1 + yT
,

where y is the re
ombination probability and T is the number of generations. When m is

small, e.g. 0.01, most admixture tra
ts will be inherited from just one migrant an
estor. In

this s
enario, the Baird distribution is 
omparable to the admixture tra
t length distribution

(Figure 2.6).

When T = 5, the Baird distribution di�ers from the WF and PBT models be
ause it uses

a di�erent model of interferen
e. Under its assumption of 
omplete interferen
e, no tra
t 
an

span more than a map distan
e of y, whereas the other two models have no su
h maximum.

In the bottom row, where T = 2000, both the Baird distribution and the PBT model fail to

a

ount for the ba
k-
oales
en
e of di�erent fragments, and 
onsequently predi
t tra
ts that

are shorter than under the WF model. However, there are no e�e
ts with regards to their

di�erent assumptions about re
ombination interferen
e. For T = 100, when the e�e
ts of
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Figure 2.5 : Admixture tra
t length distributions for the PBT model (green) and the

WF model (thi
k bla
k). The simulations were run with a population size of 2N = 2 × 103.

Note that the y-axis is shown on a logarithmi
 s
ale. For T = 5, the PBT model mat
hes the WF

model 
losely, while for T = 2000, it does not, and has an exponential distribution instead.



2.4. SIMULATION RESULTS 21

0 40 80 120 160 20010-4

10-3

10-2

10-1

100

101

T=
5

m=0.01

0 40 80 120 160 20010-4

10-3

10-2

10-1

100

101 m=0.20

0 2 4 6 8 10
10-1

100

101

102

T=
10

0

0 2 4 6 8 10
10-1

100

101

102

0.0 0.1 0.2 0.3 0.4 0.5
Genetic Distance (cM)

100

101

102

103

T=
20

00

0.0 0.1 0.2 0.3 0.4 0.5
Genetic Distance (cM)

100

101

102

103

Figure 2.6 : Tra
t length distributions for the Baird distribution (red), PBT model

(green) and the WF model (thi
k bla
k). The WF simulations were run with a population

size of 2N = 2 × 103. Note that the y-axis is shown on a logarithmi
 s
ale. When m is small and

at intermediate time s
ales, all three models agree.
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Figure 2.7 : Probability of erroneously inferring two pulses of admixture as a fun
tion

of T , when using a MWF or SMC' null model. The red, green, and blue lines 
orrespond to

m = 0.5, 0.3, and 0.1. The left plot is for a likelihood-ratio test with α = 0.05 and the right plot is

with α = 0.002.

ba
k-
oales
en
e are negligible, all three models predi
t the same distribution, despite their

di�erent assumptions.

When m is not small, the Baird distribution �ts less well, whi
h is shown in the right


olumn. This is mainly be
ause ea
h admixture tra
t is now more likely to be 
omposed to

geneti
 material inherited from multiple migrant an
estors.

2.4.6 Likelihood ratio test of the number of admixture pules

To determine the e�e
t of wrongly assuming iid exponential tra
t lengths for inferen
es

for real data, we implemented a likelihood ratio test and tested the null hypothesis of one

admixture pulse, against the alternative of two admixture pulses, on data simulated under

the null hypothesis. The false positive rate, de�ned as a fra
tion of these log-likelihood ratios

whi
h ex
eeded the 
riti
al value (obtained using simulations), was plotted as a fun
tion of T ,
and is shown in Figure 2.7. Noti
e that there is a strong ex
ess of false positives, parti
ularly

when T is large or small. The false positive rate is less for intermediate values. This is

explained by the observations from the previous se
tions, showing that the assumption of

iid exponential tra
t lengths is parti
ularly poor when T is very small (due to �nite number

of an
estors in the pedigree) or larger than N (due to inbreeding).
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2.5 Dis
ussion

We have found that under many s
enarios, the Wright-Fisher model produ
es admixture

tra
ts whose lengths are not well approximated as independent, exponential random vari-

ables. There are two major e�e
ts that are important to distinguish: the e�e
t of a �nite

number of an
estors in the pedigree for small values of T and the e�e
t of inbreeding for large

values of T . Both of these e�e
ts 
ause deviations from the idd exponential assumption.

When using an HMM for an
estry de
onvolution, the Markov model provides a prior on

tra
t lengths. If there if signal regarding lo
al an
estry in the data, then misspe
i�
ation

of this prior may not matter a great deal. However, for parametri
 population geneti
 data

analysis, i.e. estimating the number of timing of admixture events, it may be desirable

to 
onsider possible biases in
urred due to assumptions regarding exponential tra
t lengths.

One way to verify inferen
es of multiple admixture pulses would be to 
ompare the simulated

tra
t length distribution under the WF model to the data.

The magnitude and dire
tion of the estimation bias will depend on the model and the

values of m and T . For small values of T , Figure 2.4 shows that the Markov models underes-

timate the number of long tra
ts. Consequently, estimates of T based on the number these

longer tra
ts will be downwardly biased.

The biases 
an be avoided by using the Wright-Fisher, instead of a Markov, model to


onstru
t a prior for the lo
al an
estry distribution. However, there are no known 
omputa-

tionally e�
ient algorithms for integrating over this prior. However, e�
ient inferen
e under

the perfe
t binary tree model may be possible, be
ause of the 
onditional independen
e given

by equation 2.1. When T is small, this would be a good approximation to inferen
e under

the Wright-Fisher model. As the simulations show, when 20 < T ≪ 2N , all of the models

produ
e approximately the same tra
t length distributions, so in this region of the parameter

spa
e, there will be minimal bias from using a Markov model.

The deviations from a Markov model explored here, may also a�e
t methods that do

not dire
tly attempt to estimate admixture tra
t distributions. For example, ROLLOFF

(Moorjani et al. 2011) assumes that the probability that two sites a distan
e r apart are linked
after T generations, is given by exp(−rT ), and uses this to make a predi
tion about the value

of a 
orrelation 
oe�
ient. Under the PBT model, this probability is ((1 + exp(−2r))/2)T ,
and under the WF model, this probablity is (1−1/N)T ((1+exp(−2r))/2)T . For some values

of N , r, and T , these probabilities are approximately equal, but for others they are not. This

suggest that further analyses might be warranted on the statisti
al properties of methods

su
h as ROLLOFF (Moorjani et al. 2011).

Throughout this 
hapter, we have assumed that admixture o

urred in a single gener-

ation. This is a highly restri
tive and, in most 
ases, unrealisti
 assumption. In real data

analysis, the e�e
ts of su
h assumptions should be 
arefully 
onsidered. However, the basi



on
lusions regarding distributions of tra
t length as fun
tions of T are still valid. Our results


an be extended to more 
ompli
ated s
enarios of multiple admixture events, or 
ontinuous

gene-�ow, by integrating over admixture times as in (Pool & Nielsen 2009). For the PBT

model, 
ontinuous gene-�ow, as well as overlapping generations, results in pedigrees whi
h
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are still binary trees, but of uneven depth. Consequently, this same te
hnique will also allow

us to relax the assumption of non-overlapping generations.

In our mathemati
al analysis and simulations, we have assumed that re
ombination

events o

urs a

ording to a Poisson pro
ess and have ignored the possibility of 
rossover

interferen
e. For large values of T this approximation may be quite a

urate, but for small

values of T , 
rossover interferen
e 
ould potentially have a strong e�e
t on the results, as

illustrated in Figure 2.6. However, the transition rates of the an
estor 
opying pro
ess are

simple fun
tions of the mapping fun
tion indu
ed by the model of 
rossover interferen
e.

The binary tree pro
ess under other models of 
rossover interferen
e with known mapping

fun
tions, would typi
ally still be mathemati
ally tra
table. Future methods for an
estry

de
onvolution and parametri
 admixture inferen
e should seek to in
orporate su
h mapping

fun
tions in addition to the non-Markovian properties of the an
estry pro
ess whi
h has been

the main fo
us of topi
 of this 
hapter.

2.6 Appendix

Most of these proofs are by indu
tion on the length of the dyadi
 interval(s) in question.

Towards this end, we will 
ouple the two sides of equation 2.1 by introdu
ing independent

an
estry-
opying pro
esses Sx and Dx and letting

Nx ≡ 1
2
RxSx +

1
2
(1−Rx) (1 +Dx) . (2.2)

By equation 2.1, Nx is also an an
estry-
opying pro
ess.

Proof of theorem 2.2.1

The theorem is trivially true in the 
ase when this length is 1, i.e. A = I0,0.
Suppose the theorem holds for dyadi
 intervals with length greater than or equal to

2−j
and let A be a dyadi
 interval with size 2−j−1

. Without loss of generality, assume

that A ⊆ [0, 1
2
). Note that |2A| = 2−j

, so by the indu
tive hypothesis, Sx1{Sx ∈ 2A} is


onditionally independent of Sx1{Sx /∈ 2A} given 1{Sx ∈ 2A}. We will use notation

Sx1{Sx ∈ 2A} ⊥ Sx1{Sx /∈ 2A} | 1{Sx ∈ 2A}

to denote this. Sin
e Rx is independent of Sx, it follows that

Sx1{Rx = 1, Sx ∈ 2A} ⊥ Sx1{Rx = 1, Sx /∈ 2A} | 1{Rx = 1, Sx ∈ 2A}.

Finally, sin
e 1{Rx = 0} = 1{Rx = 1, Sx ∈ 2A} + 1{Rx = 1, Sx /∈ 2A} and Dx is

independent of everything in the above expression,

Sx1{Rx = 1, Sx ∈ 2A} ⊥ Sx1{Rx = 1, Sx /∈ 2A}+1{Rx = 0}(1+Dx) | 1{Rx = 1, Sx ∈ 2A}.

By the de�nition of Nx, Nx ∈ A ⇔ Rx = 1, Sx ∈ 2A, so the theorem holds for dyadi


intervals of length 2−j−1
, and 
onsequently all dyadi
 intervals.
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Proof of theorem 2.2.2

By equation 2.1, the rate at whi
h Nx leaves I1,0 or I1,1 is this same as the rate at whi
h

Rx to swit
hes from 1 to 0 or 0 to 1, respe
tively. This latter rate is equal to one, so the

theorem holds for j = 1.
Assume that the theorem holds for all dyadi
 intervals with length 2−j

. Let I be a dyadi

interval with length 2−j−1

. Note that N0 ⊂ σ(R0,S0,D0) and without loss of generality,

assume that I ⊂ [0, 1/2), so that

1
2
RxSx +

1
2
(1− Rx)(1 +Dx) ∈ I ⇔ Rx = 1, Sx ∈ 2I.

We 
an use the law of total probability to �nd that

nI = lim
x↓0

1− PI(Nx ∈ I|N0)

x

= lim
x↓0

1− E(P(Rx = 1, Sx ∈ 2I|R0 = 1, S0 ∈ 2I,R0,S0,D0)|N0)

x

= lim
x↓0

1− E(P(Rx = 1|R0 = 1)P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= lim
x↓0

1−
(
1
2
+ 1

2
e−2x

)
E(P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= lim
x↓0

1
2
− 1

2
e−2x

x
+ lim

x↓0

(
1

2
+

1

2
e−2x

)
1− E(P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= 1 + E

(

lim
x↓0

(
1

2
+

1

2
e−2x

)
1− P(Sx ∈ 2I|S0 ∈ 2I,S0)

x

∣
∣
∣
∣
N0

)

= 1 + j.

where the inter
hange of limits follows from the dominated 
onvergen
e theorem and the

indu
tive hypothesis that the limit n2I is equal to j.

Proof of theorem 2.2.3

We show this by indu
tion on the length of J . By equation 2.1, rate at whi
h Nx enters J
is the rate at whi
h Rx to swit
hes from 1 to 0 or 0 to 1, whi
h is 1. For |J | = 1

2
, P (I, J) = ∅,

so nI,J = 1 and the theorem holds.

To 
omplete the proof by indu
tion, we will need a lemma:

Lemma 2.6.1 For a dyadi
 interval I,

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) =
1

2
+

(

1{N0 ∈ I} −
1

2

)

exp(−2x).
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We will prove both 
laims by indu
tion on the length of the dyadi
 interval I. For I = [0, 1
2
),

by equation 2.1, the left-hand side redu
es to P(Rx = 1|R0), whi
h is equal to the right-hand

side. The 
ase of I = [1
2
, 1) is analogous, so the lemma is true for dyadi
 intervals of length

1
2
.

Assume that the lemma holds for dyadi
 intervals of length 2−j
and let I be a dyadi


interval with length 2−j−1
. Without loss of generality, assume that I ⊂ [0, 1

2
), so that by

equation 2.1,

Nx ∈ I ⇔ Rx = 1, Sx ∈ 2I.

Additionally, sin
e I ′ ⊆ [0, 1
2
), we also have that

Nx ∈ I ′ ⇔ Rx = 1, Sx ∈ 2I ′.

Therefore,

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) = P(Rx = 1, Sx ∈ 2I|N0, S0 ∈ 2I, R0 = 1, Sx ∈ 2I ′, Rx = 1)

= P(Sx ∈ 2I|N0, S0 ∈ 2I, Sx ∈ 2I ′, R0 = 1)

= E (P(Sx ∈ 2I|S0, S0 ∈ 2I, Sx ∈ 2I ′)|N0, R0 = 1) .

Sin
e 2I has length 2−j
and Sx has the same distribution as Nx, the indu
tive hypothesis

implies that

P(Sx ∈ 2I|S0, S0 ∈ 2I, Sx ∈ 2I ′) =
1

2
+

(

1{S0 ∈ 2I} −
1

2

)

exp(−2x).

Furthermore, sin
e we are 
onditioning on R0 = 1, {S0 ∈ 2I} = {N0 ∈ I} ∈ N0. As a

result, the 
onditional expe
tation evaluates to

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) =
1

2
+

(

1{N0 ∈ I} −
1

2

)

exp(−2x),

so the lemma will hold for dyadi
 intervals of length 2−j−1
, and 
onsequently, all dyadi


intervals with length less than 1. Assume that the rate at whi
h Nx transitions from any

dyadi
 interval to a disjoint dyadi
 intervals of length 2−j
is as the theorem states and let J

be a dyadi
 interval with length 2−j−1
. To ea
h dyadi
 interval I, we asso
iate the random

variable

TI = sup{x < 0 : Nx ∈ I}.

Note that max (TI , TI∗) = TI′ and NTI′
∈ I ⇔ TJ > TJ∗}, so by the lemma,
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P(Nx ∈ I|NTI′
, Nx ∈ I ′) =

1

2
+

(

1{NTI′
∈ I} −

1

2
)

)

exp(2(TI′ − x))

=
1

2
+

(

1{TJ > TJ∗} −
1

2
)

)

exp(2(TI′ − x)).

Additionally, for TI < x < 0, Nx /∈ I, so by theorem 2.2.1, the left-hand side also equals

P(Nx ∈ I|N0, Nx ∈ I ′). So for J , a dyadi
 interval of size 2−j−1
,

nI,J = lim
x↓0

PI(Nx ∈ J |N0)

x

= lim
x↓0

PI(Nx ∈ J |N0, Nx ∈ J ′)PI(Nx ∈ J ′|N0)

x

= lim
x↓0

P(Nx ∈ J |N0, Nx ∈ J ′) lim
x↓0

PI(Nx ∈ J ′|N0)

x

=

(
1

2
+

(
1

2
− 1{TJ > TJ∗}

)

exp(−2TJ ′)

)
∏

i∈P (I,J ′)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′)

=
∏

i∈P (I,J)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′).
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Chapter 3

Admixture Proportion Moments

3.1 Introdu
tion

It is 
ommon in population geneti
 analyses to 
onsider individuals as belonging fra
tion-

ally to two or more dis
rete sour
e populations. The proportion of an individual's genome

that belongs to a population is 
alled that individual's `admixture fra
tion' or `admixture

proportion'. Programs su
h as Stru
ture (Prit
hard et al. 2000), Eigenstrat (Pri
e et al.

2006), Frappe (Tang et al. 2005), or Admixture (Alexander et al. 2009) 
an jointly estimate

these admixture fra
tions for multiple individuals in a sample, along with the 
orresponding

allele frequen
ies in ea
h of the sour
e populations. These admixture fra
tions are often pre-

sented in a `stru
ture plot,' an example of whi
h is shown in �gure 3.1. We will hen
eforth

refer to these methods as `stru
ture analyses'.

This approa
h has proven highly useful for understanding geneti
 relationships in many

di�erent spe
ies, e.g. humans (Rosenberg et al. 2002), 
ats (Menotti-Raymond et al. 2008),

or pandas (Zhang et al. 2007). Other analyses re
onstru
t admixture tra
ts for ea
h genome

in the sample, by inferring the lo
al an
estry of every position, or window, in ea
h sampled

genome (Tang et al. 2006; Maples et al. 2013). In this 
ontext, the admixture fra
tion for a

genome is the fra
tion of its total length that is inherited from a parti
ular sour
e population.

Although stru
ture analyses are not tied to any parti
ular me
hanisti
 model of popula-

tion history and demography, the admixture fra
tions and admixture tra
ts are 
ommonly

interpreted to be the result of past admixture events in whi
h modern populations were

formed by admixture (or introgression) between an
estral sour
e populations. The distribu-

tion of admixture tra
t lengths has been related to spe
i�
 me
hanisti
 models of admixture

(Falush et al. 2003; Tang et al. 2006; Pool & Nielsen 2009), and has been used to estimate

times of admixture (Gravel 2012). However, the admixture proportions themselves also 
on-

tain information regarding admixture times. Following an admixture event, the varian
e in

admixture proportions within a population will be high, but will thereafter de
rease, and

will eventually 
onverge to zero in the limit of large genomes. The varian
e in admixture

fra
tions among individuals 
ontains substantial information about the time sin
e admixture

that 
an be used in addition to the tra
t length distribution. In some 
ases, this may be
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Figure 3.1 : Admixture fra
tions for 49 Afri
an Ameri
an individuals in the HapMap 3

data. Sour
e population allele frequen
ies were estimated using 113 Yoruban and 111 European

individuals.
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more robust than inferen
es based on tra
t lengths, be
ause the length distribution of tra
ts

is often di�
ult to infer, and is often not modeled a

urately by the hidden Markov model

(HMM) methods used to infer tra
t lengths (Liang & Nielsen 2014a). Even in 
ases where

tra
t lengths 
an be a

urately inferred, studies aimed at estimating admixture times should

bene�t from using both varian
e in admixture proportions among individuals and overall

admixture tra
t lengths distributions.

Verdu & Rosenberg (2011) developed a method for 
omputing moments of admixture

proportions in a model in whi
h admixed population is formed as a mixture between mul-

tiple sour
e populations, allowing for arbitrary gene-�ow from the sour
e populations over

a number of generations (g). They establish re
ursions for the moments of the admixture

fra
tions and use these equations to determine how the mean and the varian
e 
hanges

through time in parti
ular admixture s
enarios. These moments are expe
tations for single

individual's admixture fra
tion and are averaged over the possibile genealogi
al histories of

the population. As a result, they 
an be di�
ult to relate to data be
ause repli
ates from

multiple identi
al populations rarely are available. In this 
hapter, we 
onsider a di�erent

problem, the problem of 
al
ulating sample moments for admixture proportions obtained

from individuals in one population.

We extend the model model in Verdu & Rosenberg (2011) to in
orporate the e�e
ts of

re
ombination and geneti
 drift by adding a a random union of zygotes 
omponent. Re
om-

bination is important be
ause even if one half of a 
hromosome's an
estors are from the �rst

sour
e population, it is unlikely that exa
tly one half of that 
hromosome's geneti
 material

is inherited from that population. Geneti
 drift is important be
ause the individuals in a

sample might share an
estors and, therefore, have more similar admixture fra
tions than

expe
ted by 
han
e in a model without drift. The results developed in this 
hapter should

be dire
tly appli
able for quantifying the results of a stru
ture analysis.

3.2 General Me
hanisti
 Model

We start by 
onsidering admixture fra
tions in haploid genomes. These haploid admix-

ture fra
tions 
an later be paired up to 
reate diploid admixture fra
tions. The admixture

fra
tion of a (haploid) genome Hi, is the proportion of Hi that is inherited from a parti
ular

sour
e population. For notational simpli
ity, we only 
onsider gene-�ow only from one pop-

ulation into another. We will later dis
uss how to extend this model to multiple admixing

sour
e populations. We use the same me
hanisti
 admixture model of Verdu & Rosenberg

(2011), and will use its notation where possible. Finally, we use the random union of zy-

gotes model, with a diploid population size of N (2N 
hromosomes), for geneti
 drift and

re
ombination, and assume a sample size of n 
hromosomes from a single population.

In this model, a hybrid population of N diploid individuals forms in generation 1 from

two previously isolated sour
e populations. In this �rst generation, individuals in the hybrid

population are from the �rst sour
e population with probability s0 or from the se
ond sour
e

population with probability 1− s0. In generation g+1, ea
h 
hromosome is, independently,
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from the �rst sour
e population with introgression probability sg, or from the hybrid popu-

lation with probability 1 − sg. Chromosomes inherited from the hybrid population are the

produ
t of the re
ombination of the two 
hromosomes of one individual (zygote), 
hosen uni-

formly at random. Finally, these 2N 
hromosomes are paired up to form the N individuals

in generation g + 1.
Finally, we let the sto
hasti
 pro
ess A(ℓ) represent the lo
al an
estry along a 
hromosome

as a fun
tion of ℓ, the physi
al position:

A(ℓ) =

{
0 : ℓ is des
ended from �rst sour
e population

1 : ℓ is des
ended from se
ond sour
e population

.

The fra
tion of the 
hromosome des
ended from the se
ond sour
e population is given by

H =
1

L

∫ L

0

A(ℓ)dℓ,

where L is the total length of the 
hromosome.

Assume that g generations after the start of admixture we have randomly sampled n

hromosomes from the hybrid population and determined their 
orresponding admixture

fra
tions, H1(g), H2(g), . . . , Hn(g). We are interested in the joint distribution of these n random

variables. When n = 1 and as L → ∞, this is the admixture fra
tion 
onsidered by Verdu

& Rosenberg (2011).

Be
ause the n 
hromosomes have possibly overlapping geneologies, the admixture fra
-

tions are not independent. However, the joint distribution of the admixture fra
tions does

not depend on their ordering, so they are ex
hangeable. As a result, they 
an be viewed as

being identi
ally and independently (iid) drawn from a random distribution G. This random
distribution 
an be interpreted as a fun
tion of the random genealogy of the entire hybrid

population up to g generations in the past. When g is small, the genealogies of the n samples

will be unlikely to di�er from n non-overlapping binary trees, so G will be approximately


onstant. If g is large however, these genealogies are likely to overlap, and this will no longer

be true.

Verdu & Rosenberg (2011) fo
us on moments of H1(g), in parti
ular on the mean and

varian
e. However, be
ause the admixture fra
tions are not independent, even as n → ∞,

the sample mean and sample varian
e will 
onverge to the mean and varian
e of G, whi
h
are random quantities. For example,

E(H1(g)) 6= E(H1(g)|M) = lim
n→∞

1

n

n∑

i=1

Hi(g)

var

(
H1(g)

)
6= var(H1(g)|M) = lim

n→∞

1

n− 1

n∑

i=1

(

Hi(g) −
1

n

n∑

j=0

Hj(g)

)2

,

and similarly for higher-order moments. The moments of the admixture fa
tions have

two 
omponents: randomness from sampling the population genealogy, and randomness
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from the sampling of 
hromosomes. The expressions to left a

ount for both, while the

expressions to the right only a

ount for the latter. Varian
es among individuals within one

population 
orrespond to var(H1(g)|G), while varian
es over repli
ate populations 
orrespond
to var(H1(g)). This latter value will be larger than the expe
ted sample varian
e 
al
ulated

from multiple individuals sampled from the same population, and will rarely be useful for

inferen
e purposes.

In the following se
tions, we will show how the 
onstants on the left-hand side, as well

as expe
tations of the random variables on the right-hand side, 
an be derived for me
ha-

nisti
 models of introgression. By 
omparing these expe
tations to the observed admixture

parameters from a sample, we will be able to 
onstru
t a method of moments estimator for

the parameters of the model.

Let k1 be the sample mean:

k1 ≡
1

n

n∑

i=1

Hi(g).

We 
an express its expe
tation in terms of the 1-point 
orrelation fun
tion of A:

E(k1) = E(H1(g))

=
1

L

∫ L

0

P{A1(g)(ℓ) = 1}dℓ

= P{A1(g)(0) = 1}.

Similarly, let k2 be the unbiased estimator of the sample varian
e:

k2 ≡
1

n− 1

n∑

i=1

(
Hi(g) − k1

)2
.

Its expe
tation is given by

E(k2) =
1

n− 1

n∑

i=1

E(H2
i,g)−

1

n(n− 1)

n∑

i,j=1

E(Hi,gHj,g)

= E(H2
1,g)− E(H1,gH2,g).

These expe
tations 
an be written in terms of two-point 
orrelation fun
tions of A:
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E(H2
1(g)) =

1

L2
E

(∫ L

0

A1(g)(ℓ)dℓ

∫ L

0

A1(g)(ℓ)dℓ

)

=
1

L2

∫ L

0

∫ L

0

E
(
A1(g)(ℓ)A1(g)(ℓ

′)
)
dℓdℓ′

=
1

L2

∫ L

0

∫ L

0

P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}
dℓdℓ′.

Similarly,

E(H1(g)H2(g)) =
1

L2

∫ L

0

∫ L

0

P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}
dℓdℓ′.

Writing these two 
orrelation fun
tions as

v2(g) =

(
P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}

P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}

)

,

we �nd that

E(k2) =
1

L2

∫ L

0

∫ L

0

(
1 −1

)
v2(g)dℓdℓ

′. (3.1)

In general, the ith k-statisti
 is an unbiased estimator of the ith 
umulant of G, and its

expe
tation 
an be written as an integral over [0, L]i of a linear 
ombinations of i-point

orrelation fun
tions. For example,

E(k3) =
1

L3

∫ L

0

∫ L

0

∫ L

0

(
1 −1 −1 −1 2

)
v3(g)dℓdℓ

′dℓ′′

E(k4) =
1

L4

∫

[0,L]4

(

1 −1
︸︷︷︸

4 times

−1
︸︷︷︸

3 times

2
︸︷︷︸

6 times

6
)

v4(g)dℓdℓ
′dℓ′′dℓ′′′

. . .

Remarkably, the linear 
ombinations required to 
ompute the expe
tations of the k-
statisti
s 
orrespond exa
tly to the higher-order disequilibria as de�ned by Bennett (1952).

Furthermore, if instead the we 
hoose to 
ompute the expe
tations of the h-statisti
s, whi
h
estimate the 
entral moments, the linear 
ombinations would 
orrespond to the higher-order

disequilibria as de�ned by Slatkin (1972).

We next �nd the re
urren
e relations these 
orrelation fun
tions satisfy and solve them

in the some spe
ial 
ases. In parti
ular we will 
onsider the 
ase of a single admixture event

g generations ago and the 
ase of 
onstant gene-�ow starting g generations ago.
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3.2.1 A Single Admixture Event

We start with a simple 
ase, where introgression only o

urs in the founding generation,

i.e. sg = 0 for g > 0. Using the random union of zygotes model, we 
an 
ompute v2(g) in

terms of the probabilities from the previous generation:

If two sites at ℓ and ℓ′ are on the same 
hromosome in generation g + 1, then they

were inherited from one 
hromosome from generation g with probability [ℓℓ′] and from two


hromosomes from generation g with probability [ℓ|ℓ′]. If they are on di�erent 
hromosomes,

then the probability that they are des
ended from one 
hromosome in generation g is 1
2N

[ℓℓ′]
and the probability that they are des
ended from two 
hromosomes is

1
2N

[ℓ|ℓ′] +
(
1− 1

2N

)
In

matrix notation,

v2(g+1) = (L2U2)v2(g) = (L2U2)
g
v2(0), ,

where the the re
ombination and drift matri
es are given by

L2 =

(
1 0
1
2N

1− 1
2N

)

U2 =

(
[ℓℓ′] [ℓ|ℓ′]
0 1

)

.

This is the the same matrix equation (Wright 1933 and Hill and Robertson 1966) derived

for the de
ay of two-lo
us linkage disequilibrium. The `alleles' we 
onsider are the lo
al

an
estry at ℓ and ℓ′. To the extent possible, our notation will follow (Hill 1974), whose

results for measures of multi-lo
us linkage disequilibria we use. The matri
es L2 and U2

share (1 − 1) as a left-eigenve
tor, with 
orresponding eigenvalues 1 − 1
2N

and [ℓℓ′]. As a

result,

E(k2) =
1

L2

∫ L

0

∫ L

0

(
1 −1

)
· (L2U2)

g
v2(0)dℓdℓ

′

=
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0

[ℓℓ′]gdℓdℓ′. (3.2)

For a model using the Haldane map fun
tion, [ℓ|ℓ′] = 1−exp(−2|ℓ−ℓ′|)
2

, this equation be
omes

E(k2) =
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0

(
1 + exp(−2|ℓ− ℓ′|)

2

)g

dℓdℓ′

=
2

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

(L− ℓ)

(
1 + exp(−2ℓ)

2

)g

dℓdℓ′,
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Figure 3.2 : The expe
ted sample varian
e given by equation 3.1 plotted on a logarithmi


s
ale, for a three di�erent map fun
tions. We used a map distan
e of L = 1 Morgan and N =

104. The Haldane map fun
tion (1/2−e−2x/2) is in red, the Kosambi map fun
tion (tanh(2x)/2) is

in yellow, and the 
omplete interen
e map fun
tion (x) is in blue. For all values of g, the expe
tations

are ordered in the same order as the map fun
tions, but the di�eren
e between the three disappears

by g = 100.

while for a model of 
omplete 
rossover inteferen
e on a 
hromosome of length 1 Morgan,

we 
an get a 
losed form solution:

E(k2) =

(

1−
1

2N

)g
(
s0 − s20

)
∫ 1

0

∫ 1

0

(1− |ℓ− ℓ′|)g dℓdℓ′

=

(

1−
1

2N

)g
(
s0 − s20

) 2

2 + g
.

For predi
ting the expe
ted sample varian
e, the di�eren
e between these two models

is not large, as shown in �gure 3.2. For the simulations and inferen
e in this 
hapter, we

will ignore 
rossover interferen
e, and use the Haldane map fun
tion. However, none of the

mathemati
al results of this 
hapter will require this assumption.

For 
omputing higher-order 
orrelation fun
tions, we �nd a similar equation

vi(g) = (LiUi)
g
vi(0). (3.3)

Bennett's 
oe�
ients for higher-order linkage are left-eigenve
tors of the re
ombination
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matrix Ui. For i = 3, it is also a left-eigenve
tor of the drift matrix, so we immediately get

that

E(k3) =
s0(1− s0)(2− s0)

L3

(

1−
1

2N

)T (

1−
2

2N

)T ∫

[0,L]3
[ℓℓ′ℓ′′]Gdℓdℓ′dℓ′′.

For i ≥ 4, this is no longer true, but the results of (Hill 1974) 
an be used to 
ompute vi(g)
without having to exponentiate the entire drift and re
ombination matri
es. For example,

for k4, the drift and re
ombination matri
es are 15 × 15, but using the te
hnique in (Hill

1974), we only need to exponentiate a 4× 4 matrix to 
ompute E(k4).

3.2.2 Varying Migration

If sg > 0 for s ≥ 1, we obtain a modi�ed version of Equation 3.3:

vi(g) = LiDi(g)Uivi(g−1), (3.4)

where the diagonal matrix Di(g) has entries giving the probabilities the set of 
hromo-

somes, p, in a 
orrelation fun
tion are all from the hybrid population in the previous gener-

ation:

dp,p(g) = (1− sg)
|p|.

Note that if s(g) is �xed, then equation (3.4) is linear, and 
an be solved using a Lapla
e

transform.

3.3 Inferen
e of Admixture Times

The equations in the previous se
tion 
an be used to develop a method of moments-

estimators for admixture parameters by numeri
ally solving the admixture parameters in

terms of the expe
tations for the k-statisti
s. Substituting in the observed values for the

k-statisti
s gives estimates for the admixture parameter(s).

However, with real data, we only have estimates of the admixture fra
tions, so some

of the variability seen in the distribution of admixture fra
tions will be due to estimation

variability. To a

ount for this, we assume that the estimations errors are additive and iid :

Ĥi(g) = Hi(g) + ǫi.

Be
ause 
umulants are additive,

E(kn) = E
(
κn(Hi(g) + ǫi|G)

)

= E
(
κn(Hi(g)|G)

)
+ κn(ǫi).
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The expe
tations we have 
omputed are just the term of this sum. To 
orre
t for the

variability in the estimates, we need to subtra
t o� the se
ond term. We use a blo
k bootstrap

to estimate these e�e
ts.

One additional 
ompli
ation arises in dealing with genotyping data. We have assumed

that we have the an
estry fra
tions for ea
h haplotype in the sample, but with genotyping

data, we instead have their pairwise means: (H1(g) + H2(g))/2 . . . . This is results in a

de
rease in the expe
tations of the k-statiti
s. Conditional on the random distribution G,
H1(g), H2(g), . . . are iid drawn from G. Cumulants are additive, so we use the law of total

expe
tation to �nd that

κi

(
H1(g) +H2(g)

2

)

= E

(

κi

(
H1(g) +H2(g)

2

∣
∣
∣
∣
G

))

= E

(

κi

(
H1(g)

2

∣
∣
∣
∣
G

)

+ κi

(
H2(g)

2

∣
∣
∣
∣
G

))

= 2−i+1
E
(
κi

(
H1(g)

∣
∣G
))

= 2−i+1κi

(
H1(g)

)
.

3.3.1 Comparison to Verdu and Rosenberg

The re
ursion equations given by Verdu & Rosenberg (2011) are di�erent from the ones

we have derived. This is partly be
ause we have a

ounted for the e�e
ts of geneti
 drift

and re
ombination, but also be
ause we are 
omputing the moments of slightly di�erent

quantities.

In �gure 3.3, we have shown the admixture fra
tions for �ve repli
ate populations 5, 50,

and 500 generations after an admixture pulse. The varian
e that (Verdu & Rosenberg 2011)


ompute varian
e over all the repli
ate populations, while the varian
e we have 
omputed

in this 
hapter is the expe
tation of the varian
e within a single population. When g is

small, these similar, but when g is large, the varian
e within a population goes to zero, but

the varian
e a
ross the repli
ate populations does not. This e�e
t is shown in Figure 3.4.

Initially, both quantities de
line exponentially in g, but after 2g > nLg, the varian
e we

predi
t begins to de
line linearly instead. This is be
ause varian
e is inversely proportional

to the number of geneti
 an
estors of the sample. When g is small, the number of geneti


an
estors is approximately 2g. However, the approximate number of re
ombination events

in the sample is approximately bounded by nLg, so when this quantity is smaller than 2g,
it provides a better approximation for the number of geneti
 an
estors. In this regime, the

varian
e will de
line linearly in g.
It is also possible to 
ompute the varian
e over all population repli
ates under our model,

whi
h allows a dire
t 
omparison to Verdu & Rosenberg (2011). In the 
ase of one pulse of

admixture, we 
an now solve equations 3.1 for P {A1,g(ℓ) = 1, A1,g(ℓ
′) = 1} to get
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g=
5

g=
50

g=
50
0

Figure 3.3 : The admixture fra
tions of �ve repli
ate populations (ea
h 
olumn) 5, 50,

and 500 generations after an admixture pulse. As the admixture event grows more an
ient,

the variability within a repli
ate population de
reases, but some variability is still maintained a
ross

the populations.
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0.001
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Variance

Figure 3.4 : The varian
e predi
ted by Verdu & Rosenberg (2011) and equation 3.5,

plotted on a logarithmi
 s
ale. The varian
e we predi
t (red) is always larger, but the two a

very similar when g is small.

var(H1(g)) = E(H2
1,g)− s20

=
1

L2

∫ L

0

∫ L

0

P {A1,g(ℓ) = 1, A1,g(ℓ
′) = 1} dℓdℓ′ − s20

=
1

L2

(
s0 − s20

)
∫ L

0

∫ L

0

1− (1− [ℓℓ′])
1− [ℓℓ′]g

(
1− 1

2N

)g

1− [ℓℓ′]
(
1− 1

2N

) dℓdℓ. (3.5)

This varian
e and the expe
tation of the se
ond k-statisti
 have the same limit asN → ∞,

but for �nite N , the varian
e is larger. This is be
ause

var(H1(g)) = var

[
E(H1(g)|G)

]
+ E

[
var(H1(g)|G)

]
= var[k1] + E[k2].

The �rst varian
e is small when N is large, but is always non-negative. The di�eren
e

between this equation and equation 3.1 only be
omes signi�
ant on a 
oales
ent time s
ale. In

the absen
e of geneti
 drift, the admixture fra
tions are approximately independent, be
uase

the samples do not share an
estors.
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Observed Bootstrap Corre
ted

k1 0.777 −2.22× 10−15
0.777

k2 9.00× 10−3 2.59× 10−4 8.75× 10−3

k3 2.98× 10−4 1.60× 10−5 2.82× 10−4

k4 −3.99× 10−5 −1.41× 10−6 −3.85× 10−5

Table 3.1 : k-statisti
s for ASW admixture fra
tions from HapMap 3 proje
t.

3.3.2 Appli
ation to Afri
an Ameri
an Data

We applied this method to a subset of the ASW, CEU, and YRI data from the HapMap

3 proje
t (3 Consortium et al. 2010). After ex
luding 
hildren from trios, there were the

genotypes for 49 ASW, 113 YRI, and 112 CEU individuals. We estimated the admixture

fra
tions using the supervised learning mode of Admixture, with the CEU and YRI indi-

viduals assigned to separate 
lusters. The sampling distribution of the admixture fra
tions

was estimated using the blo
k bootstrap with 104 repli
ates and 2678 blo
ks, giving a blo
k

size of approximately 10 CM. The admixture fra
tions for the 49 ASW samples are shown

in Figure 3.1 and the observed k-statisti
s are given in table 3.1.

We assumed a 3-parameter model of 
onstant admixture. For gstart ≤ g ≤ gstop, sg =
s with sg = 0 elsewhere. By mat
hing the blo
k-bootstrap 
orre
ted k2 and k3 to the

predi
tions of equation 3.1, we obtained a point estimates of

ŝ = 0.0277

ĝstart = 2

ĝstop = 11.

We obtained 
on�den
e intervals, shown in Figure 3.5, by simulation. For ea
h 
ell in

the grid, we simulated 103 repli
ates under the 
orresponding gstart and gstop, with s =

1−k
1/(gstop−gstart+1)
1 . For ea
h repli
ate, we 
omputed the k2, k3, and k4 statisti
s. A 
ell was

then in
luded in the 
on�den
e interval if and only if the 
orre
ted k2, k3, and k4 statisti
s
from the HapMap data fall inside a 
entered interval 
ontaining 98.7% of the probability

mass of the simulated distribution. This mass was 
hosen so that under the Bonferroni


orre
tion for three tests, there is at least a 95% 
han
e of in
luding the true parameter

values in the 
on�den
e region.

The point estimates for gstart and gstop 
orrespond to the values for whi
h the observed

k-statisti
s are 
losest to their simulated medians.

3.4 Dis
ussion

We have extended the me
hanisti
 model of Verdu & Rosenberg (2011) to a

ount for

re
ombination and geneti
 drift. Doing so allows us to apply the predi
tions of this model
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Figure 3.5 : 95% 
on�den
e region for a model with 
onstant admixture from gener-

ations gstart to gstop. The point estimate of gstart = 11 and gstop = 2 generations ago is 
olored

green.
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to data. This me
hanisti
 model allows for a large number of parameters. For the purposes

of inferen
e, it seems that imposing 
onstraints, i.e. a small number of pulses or 
onstant

admixture, will be needed to narrow the sear
h spa
e.

In this 
hapter, we have assumed that admixture only 
omes from one sour
e population,

this need not be the 
ase. To a

ount for admixture from multiple sour
e populations,

equation 3.1 must be modi�ed to a

ount for the probability that haplotypes tra
e their

des
ent to multiple sour
e populations. Algorithmi
ally, this is feasible, but the notation is


umbersome. The resulting equations are given in the appendix, along with the equations

for 
omputing expe
tations of higher-order k-statisti
s.
Appli
ations of the method to Afri
an-Ameri
an HapMap data provides estimates of the

time sin
e admixture between people of Europe and and Afri
an des
ent in Ameri
a. Noti
e

that the 
on�den
e set for the admixture parameters does not in
lude values of gstop = 0.
We interpret this as eviden
e that admixture rates have de
lined the last few generations.

The point estimate of time gene-�ow stopped is gstop = 2. This probably re�e
ts a more

gradual redu
tion in gene-�ow within the last 5 generations or so, rather than a dis
rete stop

in gene-�ow 2 generations ago. The dis
reteness is enfor
ed by the model. Also noti
e that

admixture before 15 generations ago 
an be reje
ted. With a generation time of 25-30 years,

this 
orresponds to 325-400 years, and is in good a

ordan
e with the histori
al re
ord. The

point estimate of the time of �rst admixture is 11 generations, or approx. 275-330 years ago.

Stru
ture analyses have be
ome one of the most 
ommonly applied tools in population

genomi
 analyses. The theory developed in this 
hapter allows users of stru
ture analyses to

interpret their data in the 
ontext of a model of admixture between populations, and should

�nd use in many studies aimed at understanding the history of populations.

3.5 Appendix

These are the matri
es for 
omputing E(k3). The matri
es for 
omputing E(k4) are 15×15
and not given here, but 
an be found in (Hill 1974).
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v3(g) =









P{A1(g)(ℓ) = A1(g)(ℓ
′) = A1(g)(ℓ

′′) = 1}
P{A1(g)(ℓ) = A1(g)(ℓ

′) = A2(g)(ℓ
′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A2(g)(ℓ

′′) = 1}
P{A1(g)(ℓ) = A2(g)(ℓ

′) = A1(g)(ℓ
′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A3(g)(ℓ

′′) = 1}









U3 =









[ℓℓ′ℓ′′] [ℓℓ′|ℓ′′] [ℓ|ℓ′ℓ′′] [ℓℓ′′|ℓ′] 0
0 [ℓℓ′] 0 0 [ℓ|ℓ′]
0 0 [ℓ′ℓ′′] 0 [ℓ|ℓ′′]
0 0 0 [ℓℓ′′] [ℓ′|ℓ′′]
0 0 0 0 1









L3 =
1

4N2









4N2 0 0 0 0
2N 2N − 1 0 0 0
2N 0 2N − 1 0 0
2N 0 0 2N − 1 0
1 2N − 1 2N − 1 2N − 1 (2N − 1)(2N − 2)









D3(g) =









1− sg 0 0 0 0
0 (1− sg)

2 0 0 0
0 0 (1− sg)

2 0 0
0 0 0 (1− sg)

2 0
0 0 0 0 (1− sg)

3









When there is migration from both sour
e populations, the re
ursion relations for the

i-point 
orrelation fun
tions will depend on i−1-point, i−2-point, . . . 
orrelations fun
tions
as well. As as example, 
onsider the 
ase of v2(g). Let the introgression probability from the

se
ond sour
e population be given by tg. The re
ursion equation for v2(g) now also depends

on v1(g).

v2(g+1) = L2

(
1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(
tg

t2g + 2tgP{A1(g)(ℓ) = 1}

)

= L2

(
1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(
tg

t2g + 2tgv1(g)

)

.

Similarly, the re
ursion equation for v3(g) depends on v2(g) and v1(g).
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Chapter 4

Weighted Three-Lo
us Linkage

Disequilibrium

4.1 Introdu
tion

There are many methods for inferring the presen
e of admixture, e.g. with f -statisti
s
Rei
h et al. (2009) or by estimating admixture proportions with programs su
h as Stru
ture

Prit
hard et al. (2000) or Admixture Alexander et al. (2009). However, there has been less

resear
h on estimating admixture times, possibly be
ause su
h methods require data whi
h

was unavailable until the advent of high-throughput next generation sequen
ing. Some of

these methods use the inferred lo
al an
estry of sequen
es to 
onstru
t admixture tra
t

length distributions. Over time, re
ombination is expe
ted to de
rease the average lengths

of admixture tra
ts. This was tra
t length distribution �rst worked out in the 
ontext of

jun
tions Fisher (1949) and later extended to randomly mating populations by Stam (1980).

Baird et al. (2003) �rst dis
ussed the lengths of tra
ts des
ended from a single an
estor.

These results informed later analyses of admixture tra
t length distribution, su
h as Pool &

Nielsen (2009), Gravel (2012), and Liang & Nielsen (2014a). Gravel (2012) also implemented

the software program TRACTS, whi
h estimates admixture histories by �tting the tra
t

length distribution, obtained by lo
al an
estry inferen
e, to a exponential approximation.

Another approa
h, whi
h we will follow in this 
hapter, is based on the de
ay of an
es-

tral linkage disequilibrium (LD). In a well-mixed, geneti
ally isolated human populations,

linkage disequilibrium de
ays to zero on a s
ale of tenths of 
entiMorgans. However, when

an admixed population is founded, it begins with large of amount of linkage disequilibrium,

whi
h is a result of the allele frequen
y di�eren
es between the sour
e populations. This

o

urs even if the LD in the sour
e populations themselves is negliable. The linkage dise-

quilibrium in the admixed population then �u
tuates in the generations after its founding,

de
reasing as a result of drift and re
ombination, or in
reasing be
uase of additional waves

of mgiration. From the LD present in a modern day admixed population, it is possible to

make inferen
es about the population's admixture history. This te
hnique was �rst in the

program ROLLOFF Moorjani et al. (2011) and was later extended by ALDER Loh et al.
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(2013).

These two methods use the fa
t that if an admixed population takes in no additional

migrants after the founding generation, the LD present in the population is expe
ted to

de
ay exponentially as a fun
tion of distan
e. The rate 
onstant of this exponential de
ay is

proportional to the age of the founding admixture pulse and so 
an be used as an estimator.

ROLLOFF and ALDER are well suited for inferring the time of the admixture event when

the population's admixture history 
an be approximated as a single pulse. However, it 
an be

important to estimate parameters for admixture histories involving multiple pulses, su
h as

estimating the date of Native Ameri
an admixture in Rapa Nui Moreno-Mayar et al. (2014)

or determining migration patterns in the Ameri
as Gravel et al. (2013). In these instan
es

the expe
ted de
ay of LD will be
ome a mixture of exponentials. ROLLOFF and ALDER

have limited resolution, as they 
an usually only infer the date of the most re
ent migration

wave Moorjani et al. (2011), or reje
t the hypothesis of a single pulse admixture Loh et al.

(2013).

ROLLOFF and ALDER use the information 
ontained in pairs of sites by looking at

the two-lo
us linkage disequilibrium between them. We use the information in triples of

sites by 
onsidering three-lo
us LD. There are two ways of measuring the linkage between

n lo
i. Two-lo
us linkage disequilibrium de
reases geometri
ally ea
h generation as a result

of re
ombination. Bennett (1952) de�nes n-lo
us linkage in a way that this property is

maintained. Another property of two-lo
us LD is that it is equal to the 
ovarian
e in the

allele frequen
ies between the two sites. Slatkin (1972) de�nes n-lo
us LD analogously. For

two and three lo
i, these two de�nitions 
oin
ide, but for four or more lo
i, they do not.

In this 
hapter, we will use Bennett and Slatkin's de�nition of three-lo
us LD to look at

the de
ay of weighted LD for three sites as a fun
tion of the geneti
 distan
e between them.

We derive an equation that des
ribes the de
ay of three-lo
us LD under an admixture history

with multiple waves of migration. We then 
ompare the results of 
oales
ent simulations to

this equation, and develop some guidelines for when admixture histories more 
omplex than

a single pulse 
an be resolved. Finally, we 
ompute the our method for the Columbian and

Mexi
an samples in the 1000 Genomes data set, using the Yoruba samples as a referen
e.

Fitting a two-pulse model to data, we estimate admixture histories for the two populations

whi
h are qualitatively 
onsistent with the results reported in Gravel et al. (2013).

4.2 Model

We use the same random union of gametes admixture model as in Liang & Nielsen

(2014b), whi
h is itself an extension of the me
hanisti
 admixture model formulated by

Verdu & Rosenberg (2011). In this model, two (or more) sour
e populations 
ontribute mi-

grants to form an admixed population 
onsisting of 2N haploid individuals. Ea
h generation

in the admixed population is formed through the re
ombination of randomly sele
ted indi-

viduals from the previous generation, with some individuals potentially repla
ed by migrants

from the sour
e populations. For simpli
ity, we 
onsider a model with only two sour
e pop-
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ulations. Furthermore, the �rst sour
e population only 
ontributes migrants in the founding

generation, T . The se
ond sour
e population 
ontributes migrants in the founding genera-

tion and possibly in one or more generations thereafter. In generation i, for i = T − 1, . . . , 0
(before the present), a fra
tion mi of the admixed population is repla
ed by individuals from

the se
ond sour
e population.

4.3 Linkage Disequilibrium and Lo
al An
estry

ROLLOFF and ALDER use the standard two-lo
us measure of LD between a SNP at

positions x and another SNP at position y, whi
h is a geneti
 distan
e d to the right,

D2(d) = 
ov(Hx, Hy), (4.1)

where Hx and Hy represent the haplotype or genotypes of an admixed 
hromosome at posi-

tions x and y. In the 
ase of haplotype data, Hi,x = 1 if the ith sample is 
arying the derived

allele at the SNP at position x, or is 0 otherwise. Alternatively, for genotype data, Hi,x take

on values from {0, 1/2, 1} depending on the number of 
opies of the derived allele the ith

sample is 
arrying at the SNP position x. We 
onsider an additional site at position z, whi
h
is lo
ated a further geneti
 distan
e d′ to the right of y. The three-lo
i LD, as de�ned by as

de�ned by Bennett (1952) and Slatkin (1972), is given by

D3(d, d
′) = 
ov(Hx, Hy, Hz) = E[(Hx − EHx)(Hy − EHy)(Hz − EHz)]. (4.2)

The LD in an admixed population depends on the geneti
 di�erentiation between the sour
e

populations and and its admixture history. Let Ax represent the lo
al an
estry at position

x, with Ax = 1 if x is inherited from an an
estor in the �rst sour
e population, and Ax = 0
if x is inherited from the se
ond sour
e population. We 
an 
ompute the expe
tation of

D3 in terms of the three-point 
ovarian
e fun
tion of Ax and so seperate out the e�e
ts of

allele frequen
ies and lo
al an
estry. We make the assumption that the alleles in the sour
e

populations are independent, so that


ov (Hx, Hy, Hz) = 
ov (E[Hx|Ax],E[Hy|Ay],E[Hz|Az]) .

The ba
kground LD in unadmixed human populations de
ays to zero on a s
ale of tenths of


entiMorgans, so this approximation is appropriate when d and d′ are both larger than 0.5


M. The 
onditional expe
tations above are the allele frequen
ies at ea
h site in the admixed

population, 
onditional on the lo
al an
estry. These are given by E[Hx|Ax] = Fx+δAx, where

Fx is the allele frequen
y of lo
us x in the �rst sour
e population and δx is the di�eren
e of

the allele frequen
ies of lo
us x in the two sour
e populations. Equation 4.2 be
omes

D3(d, d
′) = 
ov (fx + δxAx, fy + δyAy, fz + δzAz)

= δxδyδz
ov(Ax, Ay, Az). (4.3)

A similar argument shows that D2(d) is proportional to the two-point 
ovarian
e fun
tion

of the lo
al an
estry.



4.3. LINKAGE DISEQUILIBRIUM AND LOCAL ANCESTRY 47

4.3.1 Lo
al An
estry Covarian
e Fun
tions

If we take geneti
 drift into a

ount, the three-point 
ovarian
e fun
tion is random. To


ompute its expe
tation, we multiply out the 
ovarian
e in equation 4.2 to get

E[
ov(Ax, Ay, Az)] = E[AxAyAz]− E[AxAy]E[Az ]− E[AxAz]E[Ay]− E[AyAz]E[Ax] + 2E[Ax]E[Ay]E[Az ].

Ea
h one of these expe
tations on the right-hand side is the probability that one or more

sites is inherited from an an
estor from �rst sour
e population. We organize these produ
ts

of probabilities in a 
olumn ve
tor:

v3 =









P{Ax = Ay = Az = 1}
P{Ay = Az = 0}P{Ax = 0}
P{Ax = Az = 0}P{Ay = 0}
P{Ax = Ay = 0}P{Az = 0}
P{Ax = 0}P{Ay = 0}P{Az = 0}









,

so that 
ov(Ax, Ay, Az) = (1,−1,−1,−1, 2)v3. There is one entry in v3 for ea
h of the

�ve ways in whi
h the three markers at positions x, y, and z 
an arranged on one or more


hromosomes. In the founding generation T , this 
olumn ve
tor is given by v3(T ) = (1 −
mT , (1−mT )

2, (1−mT )
2, (1−mT )

2, (1−mT )
3)′. The probabilities for subsequent generations


an be found by left-multiplying drift, re
ombination, and migration matri
es:

v3(i) = DiLUv3(i−1),

The matri
s Di, L, and U a

ount for the e�e
ts of migration, drift, and re
ombination,

respe
tively. The migration matrix is a diagonal matrix given by

Di = diag(1−mi, (1−mi)
2, (1−mi)

2, (1−mi)
2, (1−mi)

3).

Its entries are the probabilities that one, two, or three 
hromosomes in the admixed popula-

tion will not be repla
ed by 
hromosomes from the se
ond sour
e population in generation

i. The lower triangular drift matrix

L =
1

4N2









4N2 0 0 0 0
2N 2N − 1 0 0 0
2N 0 2N − 1 0 0
2N 0 0 2N − 1 0
1 2N − 1 2N − 1 2N − 1 (2N − 1)(2N − 2)









gives the standard Wright-Fisher drift transition probabilities between the states as a fun
-

tion of the population size 2N . Finally, the upper triangular re
ombination matrix is deter-

mined by the re
ombination rates between the three sites:

U =









e−d−d′ (1− e−d)ed
′

(1− e−d)(1− e−d′) e−d(1− e−d′) 0
0 e−d′ 0 0 1− e−d′

0 0 1− e−d − e−d′ + 2e−d−d′ 0 e−d + e−d′ − 2e−d−d′

0 0 0 e−d 1− e−d

0 0 0 0 1








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The 
ovarian
e fun
tion is then given by

E[
ov(Ax, Ay, Az)] = (1,−1,−1,−1, 2)

(
T−1∏

i=0

DiLU

)

v3(0). (4.4)

We 
an obain an analogous equation for 
ov(Ax, Ay), involving the migration, drift, and

re
ombination matri
es for two lo
i:

E[
ov(Ax, Ay)] = (1,−1)

(
T−1∏

i=0

DiLU

)

v2(0).

In some 
ases, equation 4.4 simpli�es further. In a one-pulse migration model, in whi
h

mT = M and is there after 0, the Di's be
ome identity matri
es, and we get the 
losed from

expression

E[
ov(Ax, Ay, Az)] = M(1 −M)(1− 2M)

(

1−
1

2N

)T (

1−
2

2N

)T

e−T (d+d′).

This is be
ause (1,−1,−1,−1, 2) is a left eigenve
tor of both L and U, with 
orresponding

eigenve
tors (1−1/2N)(1−2/2N) and exp(−d−d′). Note that when M = 0, the 
ovarian
e
fun
tion will be identi
ally 0. Another 
ase is a two pulse model in whi
h we ingore the

e�e
ts of geneti
 drift. In this model, admixture only o

urs T and T2 generations before

the present, so that mT = M1, mT ′ = M2, and all other mi's are 0. Making the substitution

T1 = T − T2, the right hand side of equation 4.4 be
omes

(1−M1)(1−M2)e
−T2(d+d′)

[

M2(1−M1)
2 − 2M2

2 (1−M1)
2 +M1(1− 2M1)e

−T1(d+d′)

−M1M2(1−M1)

(

e−M1d + e−M1d′ +
(

1− e−d − e−d′ + 2e−d−d′
)T1

)]

. (4.5)

The 
orresponding expression for the two-point 
ovarian
e fun
tion is given by

(1−M1)(1−M2)e
−T2d

(
M2 −M1M2 +M1e

−T1d
)
, (4.6)

whi
h is a mixture of two exponentials. The relative 
omplexity of equation 4.5 is a
tually

a feature, as it makes dete
ting the presen
e of the se
ond pulse of admixture easier.

4.4 Weighted Linkage Disequilibrium

As Loh et al. (2013) noted, we 
annot use the LD in the admixed population dire
tly,

be
ause the allele frequen
y di�eren
es in the sour
e populations 
an be of either sign.

However, if we 
ompute expe
tation of the produ
t of the LD with the produ
t of the allele

frequen
y di�eren
es, using equation 4.3 we obtain

E [δxδyδzD3(d, d
′)] = E[δ2xδ

2
yδ

2
z ]E[
ov(Ax, Ay, Az)],
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be
ause the lo
al an
estry in the admixed sample is independent of the allele frequen
ies

in the admixed population. This expe
tation of the weighted LD is non-zero, and 
an be

estimated by aggregating over triples of SNPs whi
h are seperated by distan
es of approx-

imately d and d′. The LD term 
an be estimated from the admixed population, while the

δ's 
an be estimated from referen
e populations whi
h are 
losely related to the two sour
e

populations.

We arrange the data from the admixed samples in an n × Sn matrix H, where n is the

number of admixed haplotypes/genotypes, and Sn is the number of segregating sites in the

sample. For ease of notation, we assume that the positions are given in units whi
h make

the unit interval equal to the desired bin resolution.

For a given d and d′ the set of SNP triples we use in the estimator for the weighted LD is

S[d, d′] = {x, y, z : d ≤ x− y < d+ 1 and d′ ≤ y − z < d′ + 1} .

Let wx be the di�eren
e in the empiri
al allele frequen
es in two referen
e populations and

let fx be empiri
al allele frequen
y in the admixed population. An unbiased estimator of the

weighted LD is

â[d, d′] =
1

|S[d, d′]|

∑

x,y,z∈S[d,d′]

n
∑n

i=1wawbwc(Hi,x − fx)(Hi,y − fy)(Hi,z − fz)

(n− 1)(n− 2)
.

4.5 Algorithm

Dire
tly 
omputing â[d, d′] over the set d, d′ ∈ {0, 1, . . . , P}2 would be 
ubi
 in the number
of segregating sites, but as is the 
ase with ALDER, we 
an use using a fast Fourier transform

(FFT) to approximate â, giving an algorithm whose run-time is instead linear in the number

of segregating sites. We �rst rearrange â to get

â[d, d′] =
n

(n− 1)(n− 2)

∑n
i=1

∑

x,y,z∈S[d,d′] δxδyδz(Hi,x − fx)(Hi,y − fy)(Hi,z − fz)
∑

x,y,z∈S[d,d′] 1
,

and de�ne sequen
es bi[d] and c[d] by binning the data and then doubling the length by

padding with P zeros,

bi[d] =

{ ∑

x:d≤⌊x⌋<d+1 δx(Hi,x − fx) : 0 ≤ d < P

0 : P ≤ d < 2P

c[d] =

{
|{x : d ≤ ⌊x⌋ < d+ 1}| : 0 ≤ d < P
0 : P ≤ d < 2P

We 
an approximate |S[d, d′]| and the n sums in the numberator of â[d, d′] in terms of


onvolutions of these sequen
es:

|S[d, d′]| ≈
P∑

w=0

c[w]c[w + d]c[w + d+ d′]



4.6. SIMULATIONS 50

∑

x,y,z∈S[d,d′]

δxδyδz(Hi,x − fx)(Hi,y − fy)(Hi,z − fz) ≈
P∑

w=0

bi[w]bi[w + d]bi[w + d+ d′].

These 
onvolutions 
an be e�
iently 
omputed with an FFT, sin
e under a two-dimensional

dis
rete Fourier transform,

P∑

w=0

bi[w]bi[w + d]bi[w + d+ d′] ↔ Bi[j]B̄i[k]Bi[k − j],

where Bi is the (one-dimensional) dis
rete Fourier transform of b, and Bi[−j] is the jth to last
most element of Bi. Summing over i and taking the inverse dis
rete Fourier transform, we


an approximate the dis
rete Fourier transform of numerator of â. We use the same method

applied to c to approximate the denominator of â. Be
ause the number of bins is generally
mu
h less than the number of segregating sites, the rate-limiting step of this algorithm is

the binning step to form c and the bi's, whi
h is O(Sn), rather than the FFTs, whi
h are

O(P 2 log(P )).
When using only the admixed population itself as a referen
e population, the method

des
ribed above will be biased if the same samples are used to estimate both the linkage

disequilibria and the weights. We 
annot e�
iently 
ompute a polya
he statisti
s like Loh

et al. (2013). At the 
ost of some power, we instead adopt the approa
h of Pi
krell &

Prit
hard (2012) and separate the admixed population into two equal-sized groups. We then

use one group to estimate the weights, and the other group to estimate linkage disequilibrium,

and vi
e versa. This gives gives two unbiased estimates for the numerator of â, whi
h we

then average.

4.5.1 Fitting the Two-Pulse Model

We �t equation 4.6 to the estimates of the weighted LD using non-linear least squares,

with two modi�
ations. We added a proportionality 
onstant to a

ount for the expe
ted

square allele frequen
y di�eren
e between the sour
e populations. We also subtra
ted out

an a�ne term in the weighted LD whi
h is due to population substru
ture (Loh et al. 2013).

We estimated this by 
omputing the three-way 
ovarian
e between triples of 
hromosomes.

We use the ja
kknife to obtain 
on�den
e intervals for the resulting estimates by leaving out

ea
h 
hromosome in turn and re�tting on the data for the remaining 
hromosomes.

4.6 Simulations

We used the program ma
s Chen et al. (2009) to generate two sour
e populations whi
h

diverged 4000 generations ago and a 
oales
ent simulation to generate an admixed population

from the two sour
e populations a

ording to two-pulse and 
onstant admixture models. We

sampled 50 diploid individuals from the admixed and two sour
e populations, ea
h 
onsisting

of 20 
hromosomes of length 1 Morgan. The e�e
tion population size was 2N = 1000 for
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the admixed population and two sour
e populations. Using a two pulse model, we varied

the migration probabilities and timings for ea
h pulse to examine the a

ura
y of equation

4.6. We also simulated data for a model with a 
onstant rate of admixture ea
h generation,

and 
ompared this to the predi
tions made by equation 4.4.

4.7 Data Set

We 
omputed the weighted LD for the Mexi
an and Columbian populations in the �rst

phase of the 1000 Genomes data set. These 
onsisted of 66 individuals from Los Angeles

and 60 individuals from Medellin, respe
tively. We used the 88 Yoruba samples as the one

referen
e population. We 
omputed the weighted LD on the genotypes to avoid e�e
ts of

phasing errors.

4.8 Dis
ussion

4.8.1 Simulations

We �nd there is a generally a 
lose mat
h between our equations and the simulated

data under both under two pulse admixture s
enarios (�gures 4.1 and 4.2) and 
onstant

admixture s
enarios (�gure 4.3). The ex
eption is when the total admixture proportion

M2 +M1(1−M2) is 
lose to 0.5. As the total admixture proportion in
reases above 0.5, the


ontours for equation 4.2 �ip from being 
on
ave down to 
on
ave up. This transition 
an

be seen by 
omparing the upper left side of �gre 4.2 to its lower right. At this threshold,

the 
ontours of the estimated weighted LD depend on the a
tual admixture fra
tions of the

samples, whi
h may di�er from the expe
tation as a result of geneti
 drift. This mismat
h

between theory and simulations is most evident in �gure 4.2, for m1 = 0.1, m2 = 0.4 and

m1 = 0.2, m2 = 0.4.
When there is 
ontinous admixture s
enario, the shape of the weighted LD surfa
e de-

pends on both the duration and total amount of admixture. When the duration is short,

the weighted LD surfa
es are indistinguishable from teh weighted LD surfa
es produ
ed by

one pulse of migration. As the duration in
reases, the 
ontours of teh weighted LD surfa
e

be
ome more 
urved. The 
ontours are 
onv
ave up when the total proportion is greater

than 50% and 
on
ave down when it is less. When the total proportion is exa
tly 50%, the

amplitude of the weighted LD surfa
e is mu
h smaller than the smapling error.

For two pulse models, the e�e
ts of the se
ond pulse of migration only be
ome evident

when temporal spa
ing between the pulses is large enough (T1 > T2). Otherwise, the result-
ing weighted LD surfa
e 
annot be distingiushed from the weighted LD surfa
e produ
ed by

one pulse of admixture. As in the 
ase of 
ontinuous admxiture the 
on
avity of the surfa
e


ontours is determined by the total admixture proportion.

These qualitative about the similarity between one pulse and two puls admixture s
enarios

are borne out by simulations of the estimation error, shown in �gure 4.4. When the spa
ing
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T1
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40
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Figure 4.1 : Predi
ted weighted LD surfa
es from simulations and theory for varying

admixture times. The heat maps are from simulations and the 
ontours are plotted from equation

4.2. The two admixture probabilities were �xed at m1 = m2 = .2 and the the times of the two

admixture pulses, T1 and T2, were varied. Ea
h square 
overs the range 0.5 
M < d, d′ < 20 
M.

When time of the more re
ent pulse is greater than half of that of the more an
ient pulse, i.e.

2T1 > T1 + T2, the 
ontours of the resulting weighted LD surfa
e are straight, making it di�
ult to

distinguish from the weighted LD surfa
e produ
ed by a one-pulse admixture s
enario.
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Figure 4.2 : Predi
ted weighted LD surfa
es from simulations and theory. The heat maps

are from simulations and the 
ontours are plotted from equation 4.2. The two admixture times were

�xed at 2 and 12 generaations ago (T1 = 10 and T2 = 2) while the admixture probabilities were

varied. Ea
h square 
overs the range 0.5 
M < d, d′ < 20 
M. As the total admixture proportion

m2 +m1(1−m2) in
reases above 0.5, the 
on
avity of the 
ontours �ips. Weighted LD surfa
es for

m1 > 0.5 or m2 > 0.5 are not shown, but are qualitatively similar to the surfa
es on the lower and

rightmost sides.
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Figure 4.3 : Weighted LD surfa
es produ
ed by 
onstant admixture. The heatmaps are

from simulations and the 
ontours are from equation XX. In all six plots, admixture stopped 5

generations before the present. Ea
h square 
overs the range 0.5 
M < d, d′ < 20 
M. We varied

the time of the beginning of the admixture and the total admixture probability. The admixture

probability for ea
h generation was 
onstant, and 
hosen so that the total admixture proportion

was either 0.3 or 0.7. When the admixture is spread over 5 generations (the leftmost 
olumn), the

resulting weighted LD surfa
e is similiar to a one-pulse weighted LD surfa
e. For longer durations,

the weighted LD surfa
es are similar to those produ
ed by two pulses of admixture.
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Figure 4.4 : A

ura
y of estimates of T1 as a fun
tion of other parameters. Nine admixture

s
enarios, T1 ∈ {5, 10, 20} and T2 ∈ {2, 5, 10}, were simulated 100 times ea
h. The admixture

probabalities were �xed at M1 = 0.3 and M2 = 0.2. The 
olored bars give the medians of estimates

for ea
h of these nine 
ases, the boxes delimit the interquartile range, and the whiskers extend out

to 1.5 times the interquartile range. As the time between the two pulses of admixture in
reases,

the error in the estimates de
reases. Consistent with the simulations shown in �gure 4.1, there is

limited power to estimate the time of the more an
ient admixture pulse when T2 > T1.
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Figure 4.5 : Weighted LD surfa
e for Mexi
an samples with Yoruba as referen
e. The

model with the best �t is two pulses from the non-Yoruba sour
e population at T1+T2 = 12.3±3.3

and T2 = 9.9 ± 2.7 generations ago. The ja
kknife 
on�den
e intervals for the times of these two

pulses overlap.

between the two pulses is small relative to their age, the median of the estimates of the

timing of the se
ond pulse is 
lose to the true value, but the interquartile range is large.

Moreover, the best �t often lies on a boundary of the parameter spa
e whi
h is equivalent to

a one pulse admixture model. When the spa
ing between the pulses is larger, the estimates

for the timing of the older pulse before more pre
ise.

4.8.2 1000 Genomes

Gravel et al. (2013) have previously analyzed the 1000 Genomes data that we 
omputed

weighted LD surfa
es for. For the Mexi
an samples, they found a small but 
onsistent

amount of Afri
an an
estry, whi
h appeared in the population 15 generations ago, with


ontinuing 
ontributions from European and Native Ameri
an populations sin
e that date,

but no Afri
an migration. In �tting a two-pulse model to the Mexi
an weighted LD surfa
e

(�gure 4.5), we estimated that the two pulses o

ured 12.3±3.3 and 9.9±2.7 generations ago.
These 
on�den
e intervals overlap, and so we 
annot reje
t a one-pulse admixture history.

This is not quite 
onsistent with the 
onstant migration model that Gravel et al. (2013)

found, but as we have seen from simulations, it is hard to distinguish a 
onstant migration

model from a one-pulse model when the duration of the migration is short.
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Figure 4.6 : Weighted LD surfa
e for Columbian samples with Yoruba as referen
e The

two-pulse model that �ts best is two pulses of non-Yoruba admixture at T1 + T2 = 11.8 ± 1.2 and

T2 = 2.64 ± 0.08 generations ago. The ja
kknife 
on�den
e intervals for the times of these two

pulses do not overlap. The amplitude of this weighted LD surfa
e is approximately ten times larger

than that of the Mexi
an samples. This a result of larger proportion of Yoruba an
estry in the

Columbian samples.
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The weighted LD surfa
e for the Columbian samples is shown in �gure 4.6. From this,

we estimated two pulses of non-Yoruba migration at 11.8± 1.2 and 2.64± 0.08 generations

before the present. Gravel et al. (2013) also inferred two pulses of admixture, 
orresponding

to 3 and 9 generations ago. The weighted LD surfa
e of the Columbian samples has 
ontours

whi
h are strongly 
on
ave up, in 
onstrast to those of the Mexi
an samples.

4.8.3 Comparison to Existing Methods

Compared to existing weighted LD methods, our our method uses more information

in the data be
ause it 
ompares triples of SNPs instead of pairs. This gives our method

the ability to infer admixture histories more 
omplex than a one-pulse model. However,

this 
omes at the pri
e of greater estimation varian
es. ALDER and ROLLOFF 
an make

estimates from just tens of samples, while our method requires hundreds of samples. Part

of this di�eren
e 
an be attributed to the fa
t that ALDER and ROLLOFF make inferen
es

over a smaller 
lass of models, but the main reason arises from the fa
t that the existing two

models are estimating se
ond moments of the data, while we are estimating third moments.

The varian
e of these estimates are both inversely proportional to the sample size, but the


onstants for estimating third moments are larger. As data be
omes more readily avaliable,

this disadvantage should disappear.
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