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Abstrat

Population Geneti E�ets of Reent Admixture

by

Weiyi Mason Liang

Dotor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Admixture has played an important role in shaping geneti diversity in many human pop-

ulations. Quantifying these e�ets is important not only for answering historial questions,

but also for deteting seletion, mapping disease genes, and estimating reombination rates.

Many existing methods for estimating admixture times use spatial information from the

genomes of admixed individuals, suh as the distribution of admixture trat lengths or the

two-point ovariane funtion of their loal anestries. I �rst disuss some theoretial results

about the length distribution of admixture trats. I use simulations to show that, for reent

admixture events, no existing population geneti model approximates this length distribution

well. I introdue a new model, based on dyadi intervals, whih is aurate in this regime

more mathematially tratable. I then show how the distribution of admixture proportions

within a population, as estimated by programs suh as STRUCTURE, gives information

about the population's admixture history and relate the moments of this distribution to

the theory of multi-lous linkage disequilibria. Finally, I show how measures of three-lous

linkage disequilbria an be used to improve on the resolution of existing admixture history

inferene methods.
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Chapter 1

Introdution

Over the ourse of human history, trade, onquest, slavery, and migration have all led

to gene �ow between previously isolated soure populations and the reation of admixed

populations, suh as Afrian Amerians (Parra et al. 1998), Indians (Moorjani et al. 2013), or

Rapanui (Moreno-Mayar et al. 2014). Understanding these admixture histories is important,

not only for answering historial or anthropologial questions, but also from a biologial

perspetive, beause of the population geneti e�ets of admixture. Gene �ow from soure

populations into an admixed population is expeted to ause genome-wide orrelations whih

would otherwise not be present. Over the ourse of generations, this orrelation is then

broken down through reombination and drift in the admixture population. Aounting for

these orrelations, and their deay as a funtion of time, is a ruial step in answering many

biologial questions, e.g. mapping disease gene mapping, estimating reombination rates, or

inferring loal anestries.

The population geneti e�ets of admixture are losely related to the theory of juntions,

whih were �rst studied by (Fisher 1949). Juntions for an individual an be de�ned with

respet to a olletion of anestors of that individual, and are positions in that individual's

hromosome whih mark transitions in inheritane. For example, a juntion may mark the

base pair where an individual's hromosome transitions from being inherited by one grand-

parent to being inherited from another. Although juntions are passed down in a population

in the same manner as geneti markers, juntions are not physial, and their existene an

only be inferred. In analyzing admixture, we are interested in transitions in the loal anestry

i.e. the juntions with respet to soure populations instead of olletions of anestors. The

juntions are positions at whih the hromosome transitions from being inherited from one

soure population to being inherited from another. For example, a juntion in an Afrian

Amerian individual may demarate a setion of a hromosome that is inherited from an

Afrian anestor from a setion that is inherited from a European anestor.

A frequently used model of admixture is a one-pulse model (Gravel 2012) and (Moorjani

et al. 2011), in whih, after the founding generation, there is no additional gene �ow from any

of the soure populations into the admixed population. In the seond hapter, I analyze the

distribution of admixture trat lengths that arises from this model. Admixture trats are the
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ontiguous setions of genome desended from a single soure population, i.e. the segments

between onseutive juntions. This length distribution is ommonly approximated by an

exponential distribution. I show that the auray of this approximation depends on several

fators, inluding the age of the admixture event and the e�etive admixed population size.

For reent admixture events, no existing model is aurate, so I introdue a new model,

based on dyadi intervals, whih has the orret admixture trat length distribution for

reent admixture events.

A ommonly used tehnique in admixture analyses is estimating the admixture propor-

tions of samples via programs suh as STRUCTURE or ADMIXTURE. Admixture propor-

tions are the proportions of admixed individuals' hromosomes whih trae their anestry

bak to eah soure population. This an be thought of as an integral of the loal anestry

over eah individual's entire genome. In the third hapter, I show that the distribution of

these admixture proportions gives information about the population's admixture history.

The moments of this random distribution are related to the n-point orrelation funtions

of the loal anestry. I then show how to ompute the expetations of these orrelation

funtions in terms of the population's admixture history and additional population geneti

parameters.

Existing inferene methods for admixture histories are generally limited to a one-pulse

model, but the omplexities of many populations' admixture histories annot be adequately

aptured by suh a oarse model. In the �nal hapter, I show how existing methods for

estimating admixture histories an be improved by using a statisti based three-lous linkage

disequalibrium. These existing methods, based on two-lous linkage disequalibrium, are

limited to estimating the time for the most reent pulse of migration. I relate the linkage

disequalibrium reated by admixture to the two and three point ovariane funtions of the

loal anestry, whih were omputed in the preeding haper. With this, we an �t more

omplex admixture histories to the observed statistis. I show that the addition of a third

lous improves the resolution of the method, allowing it to estimate the timing of multiple

pulses of migration.
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Chapter 2

Admixture Trats Lengths

2.1 Introdution

There has been interest in analyzing population genomi data by using methods that

partition an admixed individual's genome into bloks originating from di�erent anestral

populations. An early version of the popular program Struture (Falush et al. 2003) aom-

plished this with a hidden Markov model (HMM), indexed along the genome, with hidden

states orresponding to the anestral population eah position was inherited from. The on-

tiguous bloks of the genome inherited from a population are alled �admixture/migrant

trats/segments", depending on the ontext. For onsisteny, we will use the term �admix-

ture trat". Admixture trats are unobservable, and their existene an only be inferred

from genomi data. The proess of doing so is alled �admixture deonvolution" or �anestry

painting", and has been used in a number of di�erent ontexts, suh as in admixture map-

ping for identifying human disease assoiated genes (Hoggart et al. 2003; Reih et al. 2005),

population geneti inferenes aimed at understanding human anestry (Bry et al. 2010;

Henn et al. 2012), or identifying regions a�eted by natural seletion (Tang et al. 2007).

The tehnique of using HMMs to partition an individual's genome into admixture trats

has been used in subsequent methods. Hoggart et al. (2003) and Smith et al. (2004) used

HMMs for inferring admixture trats with the purpose of admixture mapping and ontrolling

for population strati�ation, similar to the method of Falush et al. (2003). More reent

publiations have foused on admixture deonvolution for more general population geneti

purposes, suh as Tang et al. (2006) and Sundquist et al. (2008).

In HapMix (Prie et al. 2009), the HMM model of Li & Stephens (2003) for modeling

linkage disequilibrium is extended to inlude admixture between two populations. HapMix

uses a genotype-based state spae and so does not require phased data.

LAMP (Sankararaman et al. 2008; Pa³aniu et al. 2009; Baran et al. 2012) is similar

to HapMix, in that it also an be onsidered an extension of the Li and Stephens model.

However, the size of its state spae does not depend on the number of referene haplotypes,

whih allows it to run faster than HapMix.

PCAdmix (Bry et al. 2010; Brisbin et al. 2012; Henn et al. 2012) also uses an HMM to
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identify admixture trats, but replaes observed data with admixture sores inferred from

priniple omponent analyses (PCA). As in the ase of LAMP, it is appliable to multiple

populations. Brisbin et al. (2012) argue that the method performs better than LAMP in

simulations and has performane omparable to that of HapMix, whih is limited to two

populations.

There are also methods for estimating population geneti parameters of admixture events

from genomi data without �rst inferring admixture trats, suh as ROLLOFF (Moorjani

et al. 2011). Other more general methods for estimating population geneti parameters,

suh as ∂a∂i (Gutenkunst et al. 2009), an also be used to estimate time and the strength of

admixture events. Finally, there are a many pre-genomi methods for analyzing divergene

and gene-�ow exempli�ed by the IM methods developed in (Hey & Nielsen 2004; Hey 2010).

However, these methods do not diretly use the information ontained in the distribution of

admixture trat lengths.

As a result of these e�orts, there has been onsiderable interest in the relationship between

admixture trat lengths and the time of admixture (T ) and admixture fration (m), to be

de�ned mathematially later. Pool & Nielsen (2009) derived the admixture trat length

distribution under the assumptions that inbreeding is not signi�ant and that trats are so

rare that they are unlikely to reombine with eah other. Gravel (2012) relaxed this seond

assumption to model trats desended from multiple migrant anestors, but under simpli�ed

model of reprodution alled the Markovian Wright-Fisher (MWF).

The methods for anestry deonvolution disussed above use an HMM, assuming that

the spaing between reombination events is independent and exponentially distributed,

and that anestries of these reombination segments are independent. This is equivalent

to assuming that admixture trats have lengths whih are independent and exponentially

distributed. Population geneti models whih are designed to be Markov along the genome,

suh as the MWF, sequentially Markov oalesent (SMC) (MVean & Cardin 2005), or

SMC' (Marjoram & Wall 2006) models generate admixture trats with these properties.

Under the Wright-Fisher (WF) model with reombination, whih is not Markov along the

genome, we show that admixture trats lengths do not have an exponential distribution, and

furthermore, that these lengths an be highly orrelated. When T is small, these properties

are a result of inheritane from a small, �xed sample pedigree, and when T is large, they are

a result of inbreeding (in the sense of identity by desent due to geneti drift, as opposed

to non-random mating). This former ause was �rst disussed by Wakeley et al. (2012) in

examining the onvergene of the anestral reombination graph (Hudson 1983; Gri�ths &

Marjoram 1996) to the WF genealogial proess. Beause of this integration over pedigrees,

the anestral reombination graph diverges from the WF model when T is small, and, like

the Markov population geneti models, generates independent, exponential trat lengths.

Parallel to the literature on inferene methods for admixture deonvolution, there is a

well-developed literature on the segregation of trats in pedigrees. This starts with Fisher's

theory of juntions (Fisher 1949). A juntion is de�ned with respet to an anestral pop-

ulation, and is a point in the hromosome where, due to a rossover, the segments to the

left and right trae their desent bak to di�erent members of the anestral population. The
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distribution of the distanes between juntions is of prime interest in this body of theory and

is losely related to the distribution of admixture trat lengths. Fisher (1949) was interested

in determining the expeted number of juntions under di�erent models of inbreeding. Stam

(1980) extended Fisher's original results results by onsidering a randomly breeding popu-

lation of onstant size, and derived a number of di�erent results under the assumption of

independent and exponentially distributed trat lengths. Many studies have subsequently fo-

used on the amount of geneti material passed from an individual to its desendants, given a

known pedigree. Donnelly (1983) showed that the probability that an individual ontributes

no genes to a desendant T generations in the future is approximately exp(−TR/2T ), where
R is the reombination map length. Barton & Bengtsson (1986) looked at the inheritane

of bloks of loi under seletion in hybridizing populations. Other studies have subsequently

studied properties of the distribution of juntions and the distanes between between jun-

tions, for �xed pedigrees inluding (Guo 1994; Bikeböller & Thompson 1996a,b; Stefanov

2000; Ball & Stefanov 2005; Cannings 2003; Dimitropoulou & Cannings 2003; Walters &

Cannings 2005; Rodolphe et al. 2008).

Baird et al. (2003) also onsider the distribution of surviving trats among the desen-

dants of an individual. They model the number of desendants as a branhing proess and

the lengths of inherited material arried by all desendants as a branhing random walk.

Assuming omplete ross-over interferene (i.e., at most one reombination event per hro-

mosome), they derive the generating funtion for these lengths as a funtion of T and the

map length. They also derive expressions for the mean number of trats of a ertain length

under both the omplete ross-over interferene model and a Poisson proess of reombina-

tion. Baird et al. (2003) notie that their results an be used to understand the proess of

geneti fragments between introgressed speies, similar to the admixture problem onsidered

here. In partiular, they note that the standard deviations of both trat lengths and num-

ber of trats are omparable to their means, indiating a high degree of variability. These

results have been extended in other appliations, for example to derive the distribution of

reprodutive values (Barton & Etheridge 2011).

Chapman & Thompson (2002) derive general expressions for the mean and variane of

the number of juntions. Their results an be applied under di�erent demographi models

beause they show that these two moments depend only on the reombination map length

and the one and two-lous probabilities of identity-by-desent.

Beyond the fat that we fous on the e�et on an admixed population, these approahes

di�er from our work in two ways. First, we onsider the bakwards-in-time proess of the

anestry of a sample, instead of onsidering the forward-time proess desribing the desen-

dants of an individual. We also by onsider the merger of multiple fragments inherited from

the a group of individuals (migrants), instead of the ontributions from just one. The e�et

of suh mergers is partiularly important when the number of migrants is large.

As no models other than the full WF model are available for aurate analyses of trat

lengths for reent admixture times, we present a new model of genealogial struture that

an be used to analyze and approximate trat lengths distributions, and short-term pedigree

based-proesses more generally. This model assumes the sample has a full pedigree, and
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represents the genealogial history of a sample in terms of dyadi intervals. It is aurate

for time sales and population sizes in whih pedigree struture is important but inbreeding

is not.

2.2 Models

For simplity, we onsider a simple admixture senario in whih, T generations ago,

two soure populations ontributed to form a third, admixed, population. Founders of this

admixed population ome from the �migrant" population with probability m and from the

�non-migrant" population with probability 1 − m. Note that the labels on the two soure

populations are arbitrary.

Eah of the population-geneti models analyzed in this hapter model the reprodu-

tion and reombination in this moneious population of 2N hromosomes subsequent to

the admixture event. We assume that reombination events follow a Poisson proess with

rate 1 rossover/Morgan. This assumption of no rossover interferene is not biologially

aurate, but it is mathematially tratable. We will later argue that this assumption is

onservative with respet to the major onlusions of this hapter and show how our results

an be extended to inorporate some models of interferene.

Haploid Wright-Fisher with Reombination

This is the standard haploid version of the WF model with reombination onsidered

by Gravel (2012), Wakeley et al. (2012), and others. Eah hromosome is produed by

reombining two parents from the previous generation, hosen independently and uniformly

at random. We onsider this to be the more appropriate model for understanding trat

lengths distributions and ompare the following models to it.

Markovian Wright-Fisher

Gravel (2012) introdued this mathematially tratable approximation of the diploid

WF model. It assumes that hromosomes are formed from the reombination of all 2N
hromosomes from the previous generation, instead of just two. At eah reombination point

the o�spring opies from one of the 2N hromosomes from previous generation, uniformly

at random. Additionally, it assumes that 2N is large, so that eah rossing-over results in a

new parent ontributing geneti material. As its name implies, the MWF model is a Markov

proess along the genome.

Coalesent with Reombination

In the oalesent limit (2N → ∞ with time measured in units 2N generations and

reombination distane in units of rossovers/4N), Gri�ths & Marjoram (1996) showed that

the genealogial proess of a sample from the haploid WF model onverges in distribution
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to the anestral reombination graph (ARG), whih an be onstruted as a Markov proess

going bakwards in time. Wiuf & Hein (1999) presented a sequential onstrution of the

ARG along the genome. This sequential proess is not Markov. Instead, the onditional

distribution of a marginal trees depends on all the trees that have appeared to the left of it.

The ase of admixture trats is slightly di�erent than other uses of the oalesent, beause

here we start with one lineage and stop the proess at the �xed time, T/2N , instead of the

more ommon ase, where we start with more than one lineage and stop the proess when

only one lineage is left.

Sequentially Markov Coalesent

MVean & Cardin (2005) developed an approximation of the oalesent in whih the

sequene of marginal trees form a Markov proess along the sequene. In the sequentially

Markov oalesent (SMC), the only allowed oalesene events are for lineages with overlap-

ping anestral material. The model is otherwise idential to the oalesent.

Majoram and Wall's SMC'

Marjoram & Wall (2006) presented a related model (SMC') whih loosens the restritions

of the SMC while retaining its Markov property. In addition to the oalesene events allowed

in the SMC, the SMC' further allows oalesene events for lineages with abutting anestral

material. This extra possibility allows for bak-oalesenes in the anestral reombination

graph, whih produes a signi�ant improvement for this model's preditive powers when

these events are likely.

Perfet Binary Tree Model

As we will argue in the Results setion, none of the four previous models approximate

the trat length distribution well when T is small relative to 2N . We therefore introdue

the perfet binary tree model (PBT), so named beause it assumes that sample has 2T

distint great

T−2
grandparents, i.e., that the pedigree of the sample, up to generation T , is

a perfet binary tree with depth T . From simulations, we found that this approximation

produes aurate results when 2T < N whih is the parameter spae for whih the oalesent

approximation does not. For most biologial populations, this restrits T to a rather limited

set of parameter values, but often, this is a region of great interest. Some de�nitions and

properties of this proess are disussed in the following setion, whih an be skipped by the

less mathematially interested reader.

Our goal is to haraterize the stohasti proess by whih segments of anestral geneti

material are reombined to form the genome of a partiular person of interest (the proband).

We all this the anestor opying proess, whih represents the line of desent of the proband's

genome as a funtion of the genomi position. Label the parents of an individual as the `left'

and a `right' parent, respetively. The anestry of an individual in a partiular position in
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the genome is then determined by the hoies of left and right parents bak in time on the

pedigree.

In investigating IBD probabilities, Donnelly (1983) onsidered this anestry as a random

walk on a hyperube, with eah vertex orresponding to the set hoies of left or right parents

for every individual in the pedigree. For a perfet binary tree, the size of this state spae

is super-exponential in T , whih Donnelly (1983) was able to onsiderably redue by using

symmetries in the transition matrix. For the anestry opying proess, we annot use these

symmetries in the same way, and instead diretly integrate over hidden reombination events.

We instead represent this anestry using dyadi intervals. At a position in the genome,

x, the anestor opying proess Nx takes a value from the half-open interval [0, 1). The

dyadi intervals Nx is ontained in orrespond to the anestors this position was inherited

from. We de�ne dyadi intervals to be half-open intervals of the real line of the form Ij,k =
[k2−j, (k+1)2−j) for j, k ∈ Z, k < 2j. Dyadi intervals are isomorphi to the nodes of binary

trees in that every dyadi interval is the union of two unique disjoint dyadi intervals. We

use the following notation to denote the left and right halves of a dyadi interval Ij,k:

Iℓj,k = [k2−j, (2k + 1)2−j−1)

Irj,k = [(2k + 1)2−j−1, (k + 1)2−j).

We denote the length of a dyadi interval by |Ij,k| = 2−j
and de�ne the distane between

two dyadi intervals, d(I, J), to be the length of the shortest dyadi interval ontaining both.
For a dyadi interval I, we de�ne I ′ to be the dyadi interval with 2|I| = |I ′| suh that I ⊂ I ′

and I∗ to be the set di�erene of I ′ and I.
We assoiate an anestor to eah dyadi interval in [0, 1): the proband to I0,0, the left

parent to I1,0, the right parent to I1,1, the left parent's left parent to I2,0, et. The value of
the anestor opying proess at a partiular position represents the anestors the proband

inherited that position from, e.g. if the anestor opying proess is less than

1
2
, then the

proband inherited that position from the left parent, or if is greater than or equal to

3
4
, then

the proband inherited that position from the right-most grandparent (and onsequently the

right parent). A realization of the anestor opying proess is given in Figure 2.1.

The de�ning property of the anestor opying proess is that its distribution does not

hange after a generation of reombination. The proess of reombination between two

parental genomes an be desribed by a two-state Markov proess, Rx, whih swithes be-

tween 0 and 1 at rate 1. If Nx and N ′
x are the independent anestor opying proesses of the

two parent, whih are jointly independent of Rx, then

Nx
d

= 1
2
RxNx +

1
2
(1−Rx)(1 +N ′

x). (2.1)

This property makes it lear that onditional on Rx, the behavior of Nx in the range

[0, 1
2
) is independent of its behavior in [1

2
, 1). In fat, this property an be extended to any

mutually disjoint olletion of dyadi intervals:
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Figure 2.1 : A realization of the anestor opying proess. In this ase, the proess stays

in the interval [0, 12 ), indiating that this length of hromosome was inherited entirely from the

proband's left parent. The proess jumps between [0, 14) and [14 ,
1
2) three times, indiating that

eah left grandparent ontributed two bloks to the proband. The pedigree, up to the proband's

8 great-grandparents is shown on the right. Eah anestor has been plaed in their orresponding

dyadi interval.

Theorem 2.2.1 For a dyadi interval A, the proesses Nx1{Nx ∈ A} and Nx1{Nx /∈ A}
are onditionally independent given 1{Nx ∈ A}.

An intuitive explanation for this theorem is that beause there is no inbreeding, anestors

whih are not lineal desendants will be unrelated, and hene independent. The mathemat-

ial proof, as with all others in the hapter, is presented in the appendix at the end of the

hapter.

To haraterize the anestor opying proess, we want to �nd the rate at whih Nx leaves

a dyadi interval I:

nI = lim
x↓0

1− PI(Nx ∈ I|N0)

x

and the transition rates between disjoint dyadi intervals I and J :

nI,J = lim
x↓0

PI(Nx ∈ J |N0)

x
,

where PI is the measure indued by onditioning on N0 ∈ I and N0 = ({Nx : x ≤ 0}.

Theorem 2.2.2 The length over whih Nx remains in a dyadi interval is exponentially

distributed, with rate given by

nIj,k = j.
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Theorem 2.2.3 The transition rates between disjoint dyadi intervals is given by

nI,J =
∏

i∈P (I,J)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′)

with

TI = sup{x < 0 : Nx ∈ I}

and

P (I, J) = {i ∈ I : |i| < d(I, J), J ⊂ i}.

The rate at whihNx leaves dyadi intervals depends only on the length of the dyadi interval,

whih is in aord with the results of Baird et al. (2003), Pool & Nielsen (2009), and Gravel

(2012) regarding the exponential distribution of geneti distane between reombination

events. However, the proess is not Markov, beause the transition rates depend on the the

values of Nx for x ≤ 0 and not just N0.

The MWF and SMC models assume that segments are inherited from distint anestors,

but for the PBT model, multiple segments an be inherited from the same anestor. The

probability of this event dereases as T inreases, on�rming the predition given in (Baird

et al. 2003).

2.3 Simulations

As we explain in the results, when there is a single pulse of admixture, the Markov

models, (MWF, SMC, and SMC') produe admixture trats whose lengths are independent

and exponentially distributed. For the other models, we �rst wrote Monte-Carlo simulations

whih assigned an anestor to eah reombination segment. For the oalesent model, we

used ode whih was essentially idential to the program ms (Hudson 2002), with two mod-

i�ations: the bakwards proess stops at the time of admixture, instead of when only one

lineage remains, and the simulation starts with just one lineage. The extant lineages at the

time of admixture are then traed forward in time to �nd whih reombination segments

they ontribute.

For the PBT model, we used the transition rates from theorem 2.2.3 to e�iently simulate

Nx on the dyadi intervals with size at least 2−T
in the following manner: The stationary

distribution of Nx is uniform on [0, 1), so we put N0 in a dyadi interval, I, with length

2T , hosen uniformly at random. The length for whih Nx remains in this interval has an

Exp(T) distribution. Note that nI,I∗ = nI,(I′)∗ = nI,(I′′)∗ = · · · = 1, and that I, I∗, (I ′)∗, . . .
form a partition of I0,0 so we �rst determine whih of these dyadi intervals Nx jumps to.

Conditional on this, we then reursively determine whih of the left and right dyadi intervals

ontains Nx, until we have narrowed Nx down to a dyadi interval of length 2−T
. As we

do this, we also update the values of the TI 's. One of the advantages of the dyadi interval
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representation is that it allows e�ient simulations of pedigree struture by simulating a

stohasti proess on [0, 1) instead of representing full pedigrees for eah segment of the

genome as a linked list in the omputer memory.

The WF model is the same as the PBT model, with the exeption that inbreeding is

allowed. We still represent the pedigree as a perfet binary tree, with the aveat that some

of the nodes are taken to represent the same anestor. For the simulation, this means that

some of the Ti's for di�erent dyadi intervals whih represent the same anestor will in fat

be equal. Generating the entire pedigree is omputationally expensive for large T , so we only
extend the pedigree as is needed i.e., as Nx jumps to previously unvisited dyadi intervals.

After assigning an anestor to eah reombination segment, we then independently label

eah anestor as migrant or non-migrant, with probabilities m and 1 − m, respetively.

allowing us to demarate admixture trats. For eah set of admixture parameters, we used a

simulated a segment of genome 30 times longer than the average trat length. To minimize

edge e�ets, we only examine the trats from the middle third of this segment.

2.3.1 Models of multiple admixture pulses

The Markov models (MWF, SMC, and SMC') predit that admixture trats resulting

from one pulse of admixture will have exponentially distributed lengths, while those resulting

from two (or more) pulses of admixture will have length distributions whih are the mixture of

two (or more) exponentials. On the other hand, the Wright-Fisher model produes admixture

trats whih are non-exponential, even in the one-pulse senario. As a result, when analyzing

the data using a Markov model, it is possible to mistakenly onlude that the observed trat

length distribution annot be explained by just one pulse of admixture, when in fat it an

be, but only by using the more omplex Wright-Fisher model.

We investigated the probability of this happening when using a likelihood ratio test to

distinguish between an exponential distribution vs. a mixture of two exponentials. To draw

from the null distribution, we simulated 104 admixture trats with exponentially distributed

lengths and found the maximum log-likelihood of these under a mixture model, with two

exponentials, i.e.

L(p, a, b|x) =
104∏

i=1

[
pae−axi + (1− p)be−bxi

]
,

where eah xi is the length of a admixture trat. This maximization was done by a

standard Expetation Maximization (EM) algorithm. The 100 initial random values p0, a0,
and b0 were repeatedly updated by �rst omputing the posterior probabilities:

ri,t =
ptate

−atxi

ptate−atxi + (1− pt)bte−btxi
,

and then the likelihood-maximizing posterior means:
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p̂t+1 =

∑104

i=1 ri,t
104

ât+1 =

∑104

i=1 ri,t
∑104

i=1 ri,txi

b̂t+1 =

∑104

i=1(1− ri,t)
∑104

i=1(1− ri,t)xi

.

The values were updated until the log-likelihood improvement was less than 10−3
. We

took the highest log-likelihood value resulting from these 100 optimizations to be the maxi-

mum log-likelihood under the mixture model for this sample.

2.3.2 Tests of a single admixture pulse

To test the null hypothesis of a single admixture event, we de�ne a likelihood ratio test

statisti, S, by subtrating the maximum log likelihood value under the full model with two

admixture events from that obtained for a model allowing only a single admixture event.

The asymptoti distribution for this test statisti is not known, beause some parameters

of the alternative hypothesis are not estimable under the null hypothesis. This implies

that the general asymptoti likelihood theory is not appliable. To obtain ritial values

for this test statisti we instead used parametri simulations under the null hypothesis and

assuming independent exponentially distributed trat lengths. We simulated 105 samples to

approximate the ritial values orresponding to signi�ane levels of p = 0.05 and p = 0.02
a range of values for T and for m = 0.1, 0.3, and 0.5. We then ompared this distribution of

log-likelihood ratios to log-likelihood ratios obtained in the same way for simulated datasets

of 104 trats generated under the Wright-Fisher model with a single admixture event.

2.4 Simulation Results

The models predit that the sampled hromosome an be viewed as a mosai of reombi-

nation segments from hromosomes in generation T . The models agree in prediting that the

distane between reombination events, and hene the length of a reombination segment,

is exponentially distributed, with sale T−1
, but di�er in their preditions regarding how

reombination segments are inherited from anestors from the admixing generation. In the

following, we use simulations to illuminate these di�erenes.
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2.4.1 Admixture trats lengths, neither iid nor exponentially dis-

tributed

Reombination fragments are exponentially distributed in the WF model. Under the

assumption that all anestors are distint, theorem 2.2.2 shows that the distribution of the

length of fragments in whih an individual has any partiular anestor T generations ago,

is also exponentially distributed, with sale T−1
. If admixture trats are assumed to be so

rare that they are unlikely to reombine with eah other, then admixture trat lengths will

therefore also be exponentially distributed, and the proess will be well-modeled using the

independene assumption of Pool & Nielsen (2009). However, admixture trats are di�erent

from reombination segments, as multiple reombination segments an reombine to form a

single admixture trat. This was the situation onsidered by Gravel (2012). In general, if

the lengths of reombination trats are independent and identially distributed (iid) expo-

nential random variables, and eah segment is migrant independently and with probability

m, then the length distribution of admixture trats would be found as a geometri mixture

of exponential random variables, and onsequently be exponentially distributed with sale

[T (1 − m)]−1
. However, the seond ondition is not true. There are two reasons for this.

First, as shown by theorem 2.2.3 the anestry opying proess is not Markov. An individual

has a �nite number of anestors and reombination an bring together reombination frag-

ments inherited from the same anestor. As a result, the lengths of migrants trats will be

orrelated when T is small. Another fator that ontributes to this orrelation is the variane

in the number of migrant anestors an individual has. For instane, an individual with one

migrant grandparent will have admixture trats whih tend to be shorter than those for an

individual with 3 migrant grandparents. The e�et of this is illustrated in Figure 1 for T = 5.
In addition, when T is large, the number of geneti anestors will be signi�antly smaller

than 2T . It might be useful to think of this e�et forward in time as an e�et of inbreeding, in

whih admixture trats introdued into the population are broken up by reombination but

also joined again by inbreeding. As a result, many fragments in the population segregating

after time T will likely be desendants of a relatively few number of larger fragments. The

loation of smaller fragments will therefore be orrelated in the genome, orresponding to the

loation of the initial admixture fragments, and bak reombination has a higher probability

than under the iid assumption. This e�et is illustrated in Figure 1 for T = 2000.
Baird et al. (2003) also simulated and ommented on the lustering of trats in the

genome. A single trat spanning a larger region may survive the �rst generations, and

then be broken up into smaller fragments in di�erent individuals in the same region of the

genome. Martin & Hospital (2011) also examined the problem of orrelated trat lengths,

but in the ontext of reombinant inbred lines, and similarly onluded that trat lengths

are not independent.

As a onsequene of the orrelation in trats lengths along the hromosome, admixture

trats are not aurately modeled as a geometri mixture of iid reombination fragments.

This e�et is illustrated in Figure 2.2. The strongest deviations our when T is large, or

when the admixture proportion is large. The length distribution of admixture fragments
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when the admixture proportion is m, orresponds to the distribution of distanes between

fragments when the admixture proportion equals 1 − m. In terms of HMM modeling, de-

viations from exponential distribution of either admixture fragments, or distanes between

admixture fragments, will violate the model assumptions.

Related results have previously been obtained relating to the theory of juntions. Chap-

man & Thompson (2002) examined an assumption of independent Poisson distributed jun-

tions among individuals, and independene of juntions within individuals. They notied

that this assumption tends to underestimate the true variane when T/N > 1. Although

the assumptions in their study is di�erent from ours, in partiular we onsider desent from

multiple migrant individuals and the possibility of reombination between trats from these

individuals, the onlusion reahed by (Chapman & Thompson 2002) is essentially similar

to the one reahed here: trats are not exponentially distributed when T is large relative to

N . Martin & Hospital (2011) examined this problem further in the ontext of reombinant

inbred lines and similarly onluded that trat lengths are not exponential.

The interplay of the non-independene and non-exponentiality of the admixture trat

distribution an be illustrated by looking at the distribution of admixture proportions, the

proportion of a window whih is inherited from migrant anestors. This is presented in

Figure 4, using a window size of 1 M, in an admixture senario in whih the pattern of

admixture trats is expeted to have �xed in the population. The PBT, MWF, and SMC

models do not aount for the e�et of inbreeding, so they predit that admixture trats will

beome ever smaller as T beomes larger. As a result, they predit degenerate admixture

proportions, i.e. an atom on m. Consequently, these models were not inluded in �gure 2.3.

The oalesent, SMC', and WF models do take inbreeding into aount, and onsequently

predit non-degenerate limiting distributions for the admixture proportion.

For both values of m, the distribution predited by the WF and oalesent models has a

larger variane than that predited by SMC', while having the same mean. For small values

of m, this is beause admixture trats are likely to be lustered, and have either zero or a

larger number of trats than predited by SMC'. For large values of m, this higher variane

is better explained by the fat tails of the admixture trat length distribution.

2.4.2 Coalesent with Reombination

The oalesent provides an approximation to the WF model that is in general exellent,

but may be less so when onsidering the dynamis shortly before the time of sampling

(Wakeley et al. 2012). In the present ontext this means that the oalesent approximates the

WF model well when T is large, but not neessarily so for small values of T . The orrelation
that arises due to inbreeding is well-modeled by the ARG, but the orrelation due to a small

number of anestors in the pedigree in the very reent anestry is not. This is shown in

Figure 1. For small values of T , the oalesent does not aurately apture the orrelation

struture. As a onsequene, the distribution of admixture trat lengths is not well-modeled

when T is small (Figure 2), partiularly for large migration frations (m = 0.9). In an

admixed population, the distribution of trats originating from the population ontributing
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Figure 2.2 : The orrelation of the lengths of onseutive admixture trats for the WF

with 2N = 1000 (red), PBT (green) and oalesent (blue) models. In all ases the admixture

fration is m = .95. Admixture trat lengths were transformed into the unit interval by their

empirial quantiles, so unorrelated lengths would produe an entirely white square. The simulations

were run with a population size of 2N = 2000.
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Figure 2.3 : Distributions of the fration of 1M windows that are parts of admixture

trats, for two values of m. Parameters for the two simulations were otherwise the same, with

N = 5×103 and T = 2×104. The distribution under the SMC' model is in green and the distribution

under the oalesent and Wright-Fisher models is in blue. Note that the left graph is plotted on a

log sale.
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most of the geneti material are far from exponentially distributed. However, the e�et

rapidly diminishes as T inreases.

2.4.3 Markovian Models

The MWF, SMC, and SMC' models all generate admixture trats with exponentially

distributed lengths. In these models, admixture trats follow a geometri mixture of iid

exponential random variables. In eah of these Markovian models, the anestry of a reom-

bination segment only depends on the anestry of the reombination segment to its left. As

a result, the number of reombination segments that make up a admixture trat will be

a geometri random variable. The geometri mixture of iid exponential random variables

results in another exponential. Under the MWF model, eah reombination segment is inher-

ited from a distint anestor in generation T . Eah of these anestors is from the admixing

population with probability m, so admixture trats lengths will be exponentially distributed

with sale [T (1−m)]−1
, as previously disussed. In the SMC, the reombined lineage annot

oalese bak to the urrent marginal tree, so as in the Markovian WF model, eah reom-

bination segment will be desended from a distint anestor and admixture trats lengths

will again be exponentially distributed with sale [T (1−m)]−1
. In SMC', bak oalesenes

to the urrent marginal tree are possible, and our with probability 1 − 2N(1 − e−
T
2N )/T .

In this event, the reombination segment will be migrant if and only if the previous segment

was. Therefore, the probability that the segment on the right of a reombination point is

migrant, given that the segment on the left was, is

[

1−
2N

T

(

1− e−
T
2N

)]

+

[
2N

T

(

1− e−
T
2N

)]

m = 1−
2N

T
(1−m)

(

1− e−
T
2N

)

,

so admixture trat lengths will have an Exp[2N(1 −m)(1 − e−
T
2N )] distribution. When

2N ≫ T , this is the approximately the same distribution given by the other two models,

but for �xed 2N and as T → ∞, SMC' makes the more aurate predition that the average

trat length goes to the non-zero value of [2N(1−m)]−1
.

These models may fail to give aurate preditions both for both small and large values of

T . These are two separate e�ets. When T is small they give inaurate preditions for the

same reasons as the oalesent. In partiular, they do not aurately model the orrelation

due to a �xed number of anestors in the pedigree and the possibility of bak-reombination.

For this reason, trats length distributions do not �t well, espeially for large values of m.

For large values of T they fail beause they do not aurately model the e�et of in-

breeding. The MWF model and the SMC give idential preditions (Figure 2.4). When

T is large, they underestimate the length of admixture trats for small values of m. For

large values of m they underestimate the variane in trat length. In either ase, the �t of

trat length distribution to that expeted under the WF model, or the oalesent, is poor.

In the oalesent and WF models, nonadjaent segments may be desendants of the same

anestor, an event whih ours with higher probability as T inreases. The overall e�et of
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Figure 2.4 : Admixture trat length distributions for the MWF and SMC (both blue),

SMC' (green), oalesent (red) models ompared to the distribution under the WF

model (thik blak). Note that the y-axis is shown on a logarithmi sale. The simulations

were run with a population size of 2N = 2 × 103. For T = 5, the former three models give

exponential distributions and do not math the WF distribution. For T = 2000 the oalesent and

WF distributions are the same.
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this is that the Markovian models are too likely to assign more distint anestors to a given

length of hromosome, whih inreases the probability that some setion was inherited from

a non-migrant anestor. The error for the SMC' is less than that of the SMC and Markovian

Wright-Fisher model (Figure 2.4).

2.4.4 Perfet Binary Tree

In the Methods setion, we derived a genealogial model that an be used to study trat

length distributions when T is small. This proess aptures the orrelation struture and

admixture trat length distribution of the full WF model for small T (Figures 2.2 and 2.5),

something that the other approximative models explored here fail to do. However, the model

does not aurately desribe the dynamis when T is large, as it assumes that all anestors

from generation T are distint. For T > log2N , this is not possible, and some anestors

must neessarily be the same.

This is onsistent with the result of Baird et al. (2003), whih found that asymptotially

for large T , the probability that an individual inherits multiple bloks from one anestor

goes to zero. In this limit, where every reombination segment is inherited from a distint

anestor, admixture trats lengths will be idd exponential, as in the ase of the Markov

models.

2.4.5 Admixture Trats as distanes between juntions

We further ompare our results with the results of Baird et al. (2003) to illustrate the

e�et of onsidering multiple anestors of an individual and the e�et of assumptions re-

garding rossover interferene. Baird et al. (2003) onsider the distribution of the lengths

of geneti material inherited from one individual, in a branhing-proess model with om-

plete interferene, i.e. assuming at most one reombination event on a hromosome eah

generation. The found that the density, in z, for this distribution is given by

(1− z)T−1
(
2T + T (T − 1)y−z

1−z

)

1 + yT
,

where y is the reombination probability and T is the number of generations. When m is

small, e.g. 0.01, most admixture trats will be inherited from just one migrant anestor. In

this senario, the Baird distribution is omparable to the admixture trat length distribution

(Figure 2.6).

When T = 5, the Baird distribution di�ers from the WF and PBT models beause it uses

a di�erent model of interferene. Under its assumption of omplete interferene, no trat an

span more than a map distane of y, whereas the other two models have no suh maximum.

In the bottom row, where T = 2000, both the Baird distribution and the PBT model fail to

aount for the bak-oalesene of di�erent fragments, and onsequently predit trats that

are shorter than under the WF model. However, there are no e�ets with regards to their

di�erent assumptions about reombination interferene. For T = 100, when the e�ets of
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Figure 2.5 : Admixture trat length distributions for the PBT model (green) and the

WF model (thik blak). The simulations were run with a population size of 2N = 2 × 103.

Note that the y-axis is shown on a logarithmi sale. For T = 5, the PBT model mathes the WF

model losely, while for T = 2000, it does not, and has an exponential distribution instead.
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Figure 2.6 : Trat length distributions for the Baird distribution (red), PBT model

(green) and the WF model (thik blak). The WF simulations were run with a population

size of 2N = 2 × 103. Note that the y-axis is shown on a logarithmi sale. When m is small and

at intermediate time sales, all three models agree.
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Figure 2.7 : Probability of erroneously inferring two pulses of admixture as a funtion

of T , when using a MWF or SMC' null model. The red, green, and blue lines orrespond to

m = 0.5, 0.3, and 0.1. The left plot is for a likelihood-ratio test with α = 0.05 and the right plot is

with α = 0.002.

bak-oalesene are negligible, all three models predit the same distribution, despite their

di�erent assumptions.

When m is not small, the Baird distribution �ts less well, whih is shown in the right

olumn. This is mainly beause eah admixture trat is now more likely to be omposed to

geneti material inherited from multiple migrant anestors.

2.4.6 Likelihood ratio test of the number of admixture pules

To determine the e�et of wrongly assuming iid exponential trat lengths for inferenes

for real data, we implemented a likelihood ratio test and tested the null hypothesis of one

admixture pulse, against the alternative of two admixture pulses, on data simulated under

the null hypothesis. The false positive rate, de�ned as a fration of these log-likelihood ratios

whih exeeded the ritial value (obtained using simulations), was plotted as a funtion of T ,
and is shown in Figure 2.7. Notie that there is a strong exess of false positives, partiularly

when T is large or small. The false positive rate is less for intermediate values. This is

explained by the observations from the previous setions, showing that the assumption of

iid exponential trat lengths is partiularly poor when T is very small (due to �nite number

of anestors in the pedigree) or larger than N (due to inbreeding).
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2.5 Disussion

We have found that under many senarios, the Wright-Fisher model produes admixture

trats whose lengths are not well approximated as independent, exponential random vari-

ables. There are two major e�ets that are important to distinguish: the e�et of a �nite

number of anestors in the pedigree for small values of T and the e�et of inbreeding for large

values of T . Both of these e�ets ause deviations from the idd exponential assumption.

When using an HMM for anestry deonvolution, the Markov model provides a prior on

trat lengths. If there if signal regarding loal anestry in the data, then misspei�ation

of this prior may not matter a great deal. However, for parametri population geneti data

analysis, i.e. estimating the number of timing of admixture events, it may be desirable

to onsider possible biases inurred due to assumptions regarding exponential trat lengths.

One way to verify inferenes of multiple admixture pulses would be to ompare the simulated

trat length distribution under the WF model to the data.

The magnitude and diretion of the estimation bias will depend on the model and the

values of m and T . For small values of T , Figure 2.4 shows that the Markov models underes-

timate the number of long trats. Consequently, estimates of T based on the number these

longer trats will be downwardly biased.

The biases an be avoided by using the Wright-Fisher, instead of a Markov, model to

onstrut a prior for the loal anestry distribution. However, there are no known omputa-

tionally e�ient algorithms for integrating over this prior. However, e�ient inferene under

the perfet binary tree model may be possible, beause of the onditional independene given

by equation 2.1. When T is small, this would be a good approximation to inferene under

the Wright-Fisher model. As the simulations show, when 20 < T ≪ 2N , all of the models

produe approximately the same trat length distributions, so in this region of the parameter

spae, there will be minimal bias from using a Markov model.

The deviations from a Markov model explored here, may also a�et methods that do

not diretly attempt to estimate admixture trat distributions. For example, ROLLOFF

(Moorjani et al. 2011) assumes that the probability that two sites a distane r apart are linked
after T generations, is given by exp(−rT ), and uses this to make a predition about the value

of a orrelation oe�ient. Under the PBT model, this probability is ((1 + exp(−2r))/2)T ,
and under the WF model, this probablity is (1−1/N)T ((1+exp(−2r))/2)T . For some values

of N , r, and T , these probabilities are approximately equal, but for others they are not. This

suggest that further analyses might be warranted on the statistial properties of methods

suh as ROLLOFF (Moorjani et al. 2011).

Throughout this hapter, we have assumed that admixture ourred in a single gener-

ation. This is a highly restritive and, in most ases, unrealisti assumption. In real data

analysis, the e�ets of suh assumptions should be arefully onsidered. However, the basi

onlusions regarding distributions of trat length as funtions of T are still valid. Our results

an be extended to more ompliated senarios of multiple admixture events, or ontinuous

gene-�ow, by integrating over admixture times as in (Pool & Nielsen 2009). For the PBT

model, ontinuous gene-�ow, as well as overlapping generations, results in pedigrees whih
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are still binary trees, but of uneven depth. Consequently, this same tehnique will also allow

us to relax the assumption of non-overlapping generations.

In our mathematial analysis and simulations, we have assumed that reombination

events ours aording to a Poisson proess and have ignored the possibility of rossover

interferene. For large values of T this approximation may be quite aurate, but for small

values of T , rossover interferene ould potentially have a strong e�et on the results, as

illustrated in Figure 2.6. However, the transition rates of the anestor opying proess are

simple funtions of the mapping funtion indued by the model of rossover interferene.

The binary tree proess under other models of rossover interferene with known mapping

funtions, would typially still be mathematially tratable. Future methods for anestry

deonvolution and parametri admixture inferene should seek to inorporate suh mapping

funtions in addition to the non-Markovian properties of the anestry proess whih has been

the main fous of topi of this hapter.

2.6 Appendix

Most of these proofs are by indution on the length of the dyadi interval(s) in question.

Towards this end, we will ouple the two sides of equation 2.1 by introduing independent

anestry-opying proesses Sx and Dx and letting

Nx ≡ 1
2
RxSx +

1
2
(1−Rx) (1 +Dx) . (2.2)

By equation 2.1, Nx is also an anestry-opying proess.

Proof of theorem 2.2.1

The theorem is trivially true in the ase when this length is 1, i.e. A = I0,0.
Suppose the theorem holds for dyadi intervals with length greater than or equal to

2−j
and let A be a dyadi interval with size 2−j−1

. Without loss of generality, assume

that A ⊆ [0, 1
2
). Note that |2A| = 2−j

, so by the indutive hypothesis, Sx1{Sx ∈ 2A} is

onditionally independent of Sx1{Sx /∈ 2A} given 1{Sx ∈ 2A}. We will use notation

Sx1{Sx ∈ 2A} ⊥ Sx1{Sx /∈ 2A} | 1{Sx ∈ 2A}

to denote this. Sine Rx is independent of Sx, it follows that

Sx1{Rx = 1, Sx ∈ 2A} ⊥ Sx1{Rx = 1, Sx /∈ 2A} | 1{Rx = 1, Sx ∈ 2A}.

Finally, sine 1{Rx = 0} = 1{Rx = 1, Sx ∈ 2A} + 1{Rx = 1, Sx /∈ 2A} and Dx is

independent of everything in the above expression,

Sx1{Rx = 1, Sx ∈ 2A} ⊥ Sx1{Rx = 1, Sx /∈ 2A}+1{Rx = 0}(1+Dx) | 1{Rx = 1, Sx ∈ 2A}.

By the de�nition of Nx, Nx ∈ A ⇔ Rx = 1, Sx ∈ 2A, so the theorem holds for dyadi

intervals of length 2−j−1
, and onsequently all dyadi intervals.
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Proof of theorem 2.2.2

By equation 2.1, the rate at whih Nx leaves I1,0 or I1,1 is this same as the rate at whih

Rx to swithes from 1 to 0 or 0 to 1, respetively. This latter rate is equal to one, so the

theorem holds for j = 1.
Assume that the theorem holds for all dyadi intervals with length 2−j

. Let I be a dyadi
interval with length 2−j−1

. Note that N0 ⊂ σ(R0,S0,D0) and without loss of generality,

assume that I ⊂ [0, 1/2), so that

1
2
RxSx +

1
2
(1− Rx)(1 +Dx) ∈ I ⇔ Rx = 1, Sx ∈ 2I.

We an use the law of total probability to �nd that

nI = lim
x↓0

1− PI(Nx ∈ I|N0)

x

= lim
x↓0

1− E(P(Rx = 1, Sx ∈ 2I|R0 = 1, S0 ∈ 2I,R0,S0,D0)|N0)

x

= lim
x↓0

1− E(P(Rx = 1|R0 = 1)P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= lim
x↓0

1−
(
1
2
+ 1

2
e−2x

)
E(P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= lim
x↓0

1
2
− 1

2
e−2x

x
+ lim

x↓0

(
1

2
+

1

2
e−2x

)
1− E(P(Sx ∈ 2I|S0 ∈ 2I,S0)|N0)

x

= 1 + E

(

lim
x↓0

(
1

2
+

1

2
e−2x

)
1− P(Sx ∈ 2I|S0 ∈ 2I,S0)

x

∣
∣
∣
∣
N0

)

= 1 + j.

where the interhange of limits follows from the dominated onvergene theorem and the

indutive hypothesis that the limit n2I is equal to j.

Proof of theorem 2.2.3

We show this by indution on the length of J . By equation 2.1, rate at whih Nx enters J
is the rate at whih Rx to swithes from 1 to 0 or 0 to 1, whih is 1. For |J | = 1

2
, P (I, J) = ∅,

so nI,J = 1 and the theorem holds.

To omplete the proof by indution, we will need a lemma:

Lemma 2.6.1 For a dyadi interval I,

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) =
1

2
+

(

1{N0 ∈ I} −
1

2

)

exp(−2x).



2.6. APPENDIX 26

We will prove both laims by indution on the length of the dyadi interval I. For I = [0, 1
2
),

by equation 2.1, the left-hand side redues to P(Rx = 1|R0), whih is equal to the right-hand

side. The ase of I = [1
2
, 1) is analogous, so the lemma is true for dyadi intervals of length

1
2
.

Assume that the lemma holds for dyadi intervals of length 2−j
and let I be a dyadi

interval with length 2−j−1
. Without loss of generality, assume that I ⊂ [0, 1

2
), so that by

equation 2.1,

Nx ∈ I ⇔ Rx = 1, Sx ∈ 2I.

Additionally, sine I ′ ⊆ [0, 1
2
), we also have that

Nx ∈ I ′ ⇔ Rx = 1, Sx ∈ 2I ′.

Therefore,

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) = P(Rx = 1, Sx ∈ 2I|N0, S0 ∈ 2I, R0 = 1, Sx ∈ 2I ′, Rx = 1)

= P(Sx ∈ 2I|N0, S0 ∈ 2I, Sx ∈ 2I ′, R0 = 1)

= E (P(Sx ∈ 2I|S0, S0 ∈ 2I, Sx ∈ 2I ′)|N0, R0 = 1) .

Sine 2I has length 2−j
and Sx has the same distribution as Nx, the indutive hypothesis

implies that

P(Sx ∈ 2I|S0, S0 ∈ 2I, Sx ∈ 2I ′) =
1

2
+

(

1{S0 ∈ 2I} −
1

2

)

exp(−2x).

Furthermore, sine we are onditioning on R0 = 1, {S0 ∈ 2I} = {N0 ∈ I} ∈ N0. As a

result, the onditional expetation evaluates to

P(Nx ∈ I|N0, N0 ∈ I ′, Nx ∈ I ′) =
1

2
+

(

1{N0 ∈ I} −
1

2

)

exp(−2x),

so the lemma will hold for dyadi intervals of length 2−j−1
, and onsequently, all dyadi

intervals with length less than 1. Assume that the rate at whih Nx transitions from any

dyadi interval to a disjoint dyadi intervals of length 2−j
is as the theorem states and let J

be a dyadi interval with length 2−j−1
. To eah dyadi interval I, we assoiate the random

variable

TI = sup{x < 0 : Nx ∈ I}.

Note that max (TI , TI∗) = TI′ and NTI′
∈ I ⇔ TJ > TJ∗}, so by the lemma,
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P(Nx ∈ I|NTI′
, Nx ∈ I ′) =

1

2
+

(

1{NTI′
∈ I} −

1

2
)

)

exp(2(TI′ − x))

=
1

2
+

(

1{TJ > TJ∗} −
1

2
)

)

exp(2(TI′ − x)).

Additionally, for TI < x < 0, Nx /∈ I, so by theorem 2.2.1, the left-hand side also equals

P(Nx ∈ I|N0, Nx ∈ I ′). So for J , a dyadi interval of size 2−j−1
,

nI,J = lim
x↓0

PI(Nx ∈ J |N0)

x

= lim
x↓0

PI(Nx ∈ J |N0, Nx ∈ J ′)PI(Nx ∈ J ′|N0)

x

= lim
x↓0

P(Nx ∈ J |N0, Nx ∈ J ′) lim
x↓0

PI(Nx ∈ J ′|N0)

x

=

(
1

2
+

(
1

2
− 1{TJ > TJ∗}

)

exp(−2TJ ′)

)
∏

i∈P (I,J ′)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′)

=
∏

i∈P (I,J)

1

2
+

(

1{Ti > Ti∗} −
1

2

)

exp(−2Ti′).



28

Chapter 3

Admixture Proportion Moments

3.1 Introdution

It is ommon in population geneti analyses to onsider individuals as belonging fration-

ally to two or more disrete soure populations. The proportion of an individual's genome

that belongs to a population is alled that individual's `admixture fration' or `admixture

proportion'. Programs suh as Struture (Prithard et al. 2000), Eigenstrat (Prie et al.

2006), Frappe (Tang et al. 2005), or Admixture (Alexander et al. 2009) an jointly estimate

these admixture frations for multiple individuals in a sample, along with the orresponding

allele frequenies in eah of the soure populations. These admixture frations are often pre-

sented in a `struture plot,' an example of whih is shown in �gure 3.1. We will heneforth

refer to these methods as `struture analyses'.

This approah has proven highly useful for understanding geneti relationships in many

di�erent speies, e.g. humans (Rosenberg et al. 2002), ats (Menotti-Raymond et al. 2008),

or pandas (Zhang et al. 2007). Other analyses reonstrut admixture trats for eah genome

in the sample, by inferring the loal anestry of every position, or window, in eah sampled

genome (Tang et al. 2006; Maples et al. 2013). In this ontext, the admixture fration for a

genome is the fration of its total length that is inherited from a partiular soure population.

Although struture analyses are not tied to any partiular mehanisti model of popula-

tion history and demography, the admixture frations and admixture trats are ommonly

interpreted to be the result of past admixture events in whih modern populations were

formed by admixture (or introgression) between anestral soure populations. The distribu-

tion of admixture trat lengths has been related to spei� mehanisti models of admixture

(Falush et al. 2003; Tang et al. 2006; Pool & Nielsen 2009), and has been used to estimate

times of admixture (Gravel 2012). However, the admixture proportions themselves also on-

tain information regarding admixture times. Following an admixture event, the variane in

admixture proportions within a population will be high, but will thereafter derease, and

will eventually onverge to zero in the limit of large genomes. The variane in admixture

frations among individuals ontains substantial information about the time sine admixture

that an be used in addition to the trat length distribution. In some ases, this may be
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Figure 3.1 : Admixture frations for 49 Afrian Amerian individuals in the HapMap 3

data. Soure population allele frequenies were estimated using 113 Yoruban and 111 European

individuals.
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more robust than inferenes based on trat lengths, beause the length distribution of trats

is often di�ult to infer, and is often not modeled aurately by the hidden Markov model

(HMM) methods used to infer trat lengths (Liang & Nielsen 2014a). Even in ases where

trat lengths an be aurately inferred, studies aimed at estimating admixture times should

bene�t from using both variane in admixture proportions among individuals and overall

admixture trat lengths distributions.

Verdu & Rosenberg (2011) developed a method for omputing moments of admixture

proportions in a model in whih admixed population is formed as a mixture between mul-

tiple soure populations, allowing for arbitrary gene-�ow from the soure populations over

a number of generations (g). They establish reursions for the moments of the admixture

frations and use these equations to determine how the mean and the variane hanges

through time in partiular admixture senarios. These moments are expetations for single

individual's admixture fration and are averaged over the possibile genealogial histories of

the population. As a result, they an be di�ult to relate to data beause repliates from

multiple idential populations rarely are available. In this hapter, we onsider a di�erent

problem, the problem of alulating sample moments for admixture proportions obtained

from individuals in one population.

We extend the model model in Verdu & Rosenberg (2011) to inorporate the e�ets of

reombination and geneti drift by adding a a random union of zygotes omponent. Reom-

bination is important beause even if one half of a hromosome's anestors are from the �rst

soure population, it is unlikely that exatly one half of that hromosome's geneti material

is inherited from that population. Geneti drift is important beause the individuals in a

sample might share anestors and, therefore, have more similar admixture frations than

expeted by hane in a model without drift. The results developed in this hapter should

be diretly appliable for quantifying the results of a struture analysis.

3.2 General Mehanisti Model

We start by onsidering admixture frations in haploid genomes. These haploid admix-

ture frations an later be paired up to reate diploid admixture frations. The admixture

fration of a (haploid) genome Hi, is the proportion of Hi that is inherited from a partiular

soure population. For notational simpliity, we only onsider gene-�ow only from one pop-

ulation into another. We will later disuss how to extend this model to multiple admixing

soure populations. We use the same mehanisti admixture model of Verdu & Rosenberg

(2011), and will use its notation where possible. Finally, we use the random union of zy-

gotes model, with a diploid population size of N (2N hromosomes), for geneti drift and

reombination, and assume a sample size of n hromosomes from a single population.

In this model, a hybrid population of N diploid individuals forms in generation 1 from

two previously isolated soure populations. In this �rst generation, individuals in the hybrid

population are from the �rst soure population with probability s0 or from the seond soure

population with probability 1− s0. In generation g+1, eah hromosome is, independently,
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from the �rst soure population with introgression probability sg, or from the hybrid popu-

lation with probability 1 − sg. Chromosomes inherited from the hybrid population are the

produt of the reombination of the two hromosomes of one individual (zygote), hosen uni-

formly at random. Finally, these 2N hromosomes are paired up to form the N individuals

in generation g + 1.
Finally, we let the stohasti proess A(ℓ) represent the loal anestry along a hromosome

as a funtion of ℓ, the physial position:

A(ℓ) =

{
0 : ℓ is desended from �rst soure population

1 : ℓ is desended from seond soure population

.

The fration of the hromosome desended from the seond soure population is given by

H =
1

L

∫ L

0

A(ℓ)dℓ,

where L is the total length of the hromosome.

Assume that g generations after the start of admixture we have randomly sampled n
hromosomes from the hybrid population and determined their orresponding admixture

frations, H1(g), H2(g), . . . , Hn(g). We are interested in the joint distribution of these n random

variables. When n = 1 and as L → ∞, this is the admixture fration onsidered by Verdu

& Rosenberg (2011).

Beause the n hromosomes have possibly overlapping geneologies, the admixture fra-

tions are not independent. However, the joint distribution of the admixture frations does

not depend on their ordering, so they are exhangeable. As a result, they an be viewed as

being identially and independently (iid) drawn from a random distribution G. This random
distribution an be interpreted as a funtion of the random genealogy of the entire hybrid

population up to g generations in the past. When g is small, the genealogies of the n samples

will be unlikely to di�er from n non-overlapping binary trees, so G will be approximately

onstant. If g is large however, these genealogies are likely to overlap, and this will no longer

be true.

Verdu & Rosenberg (2011) fous on moments of H1(g), in partiular on the mean and

variane. However, beause the admixture frations are not independent, even as n → ∞,

the sample mean and sample variane will onverge to the mean and variane of G, whih
are random quantities. For example,

E(H1(g)) 6= E(H1(g)|M) = lim
n→∞

1

n

n∑

i=1

Hi(g)

var

(
H1(g)

)
6= var(H1(g)|M) = lim

n→∞

1

n− 1

n∑

i=1

(

Hi(g) −
1

n

n∑

j=0

Hj(g)

)2

,

and similarly for higher-order moments. The moments of the admixture fations have

two omponents: randomness from sampling the population genealogy, and randomness
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from the sampling of hromosomes. The expressions to left aount for both, while the

expressions to the right only aount for the latter. Varianes among individuals within one

population orrespond to var(H1(g)|G), while varianes over repliate populations orrespond
to var(H1(g)). This latter value will be larger than the expeted sample variane alulated

from multiple individuals sampled from the same population, and will rarely be useful for

inferene purposes.

In the following setions, we will show how the onstants on the left-hand side, as well

as expetations of the random variables on the right-hand side, an be derived for meha-

nisti models of introgression. By omparing these expetations to the observed admixture

parameters from a sample, we will be able to onstrut a method of moments estimator for

the parameters of the model.

Let k1 be the sample mean:

k1 ≡
1

n

n∑

i=1

Hi(g).

We an express its expetation in terms of the 1-point orrelation funtion of A:

E(k1) = E(H1(g))

=
1

L

∫ L

0

P{A1(g)(ℓ) = 1}dℓ

= P{A1(g)(0) = 1}.

Similarly, let k2 be the unbiased estimator of the sample variane:

k2 ≡
1

n− 1

n∑

i=1

(
Hi(g) − k1

)2
.

Its expetation is given by

E(k2) =
1

n− 1

n∑

i=1

E(H2
i,g)−

1

n(n− 1)

n∑

i,j=1

E(Hi,gHj,g)

= E(H2
1,g)− E(H1,gH2,g).

These expetations an be written in terms of two-point orrelation funtions of A:
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E(H2
1(g)) =

1

L2
E

(∫ L

0

A1(g)(ℓ)dℓ

∫ L

0

A1(g)(ℓ)dℓ

)

=
1

L2

∫ L

0

∫ L

0

E
(
A1(g)(ℓ)A1(g)(ℓ

′)
)
dℓdℓ′

=
1

L2

∫ L

0

∫ L

0

P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}
dℓdℓ′.

Similarly,

E(H1(g)H2(g)) =
1

L2

∫ L

0

∫ L

0

P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}
dℓdℓ′.

Writing these two orrelation funtions as

v2(g) =

(
P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}

P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}

)

,

we �nd that

E(k2) =
1

L2

∫ L

0

∫ L

0

(
1 −1

)
v2(g)dℓdℓ

′. (3.1)

In general, the ith k-statisti is an unbiased estimator of the ith umulant of G, and its

expetation an be written as an integral over [0, L]i of a linear ombinations of i-point
orrelation funtions. For example,

E(k3) =
1

L3

∫ L

0

∫ L

0

∫ L

0

(
1 −1 −1 −1 2

)
v3(g)dℓdℓ

′dℓ′′

E(k4) =
1

L4

∫

[0,L]4

(

1 −1
︸︷︷︸

4 times

−1
︸︷︷︸

3 times

2
︸︷︷︸

6 times

6
)

v4(g)dℓdℓ
′dℓ′′dℓ′′′

. . .

Remarkably, the linear ombinations required to ompute the expetations of the k-
statistis orrespond exatly to the higher-order disequilibria as de�ned by Bennett (1952).

Furthermore, if instead the we hoose to ompute the expetations of the h-statistis, whih
estimate the entral moments, the linear ombinations would orrespond to the higher-order

disequilibria as de�ned by Slatkin (1972).

We next �nd the reurrene relations these orrelation funtions satisfy and solve them

in the some speial ases. In partiular we will onsider the ase of a single admixture event

g generations ago and the ase of onstant gene-�ow starting g generations ago.
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3.2.1 A Single Admixture Event

We start with a simple ase, where introgression only ours in the founding generation,

i.e. sg = 0 for g > 0. Using the random union of zygotes model, we an ompute v2(g) in

terms of the probabilities from the previous generation:

If two sites at ℓ and ℓ′ are on the same hromosome in generation g + 1, then they

were inherited from one hromosome from generation g with probability [ℓℓ′] and from two

hromosomes from generation g with probability [ℓ|ℓ′]. If they are on di�erent hromosomes,

then the probability that they are desended from one hromosome in generation g is 1
2N

[ℓℓ′]
and the probability that they are desended from two hromosomes is

1
2N

[ℓ|ℓ′] +
(
1− 1

2N

)
In

matrix notation,

v2(g+1) = (L2U2)v2(g) = (L2U2)
g
v2(0), ,

where the the reombination and drift matries are given by

L2 =

(
1 0
1
2N

1− 1
2N

)

U2 =

(
[ℓℓ′] [ℓ|ℓ′]
0 1

)

.

This is the the same matrix equation (Wright 1933 and Hill and Robertson 1966) derived

for the deay of two-lous linkage disequilibrium. The `alleles' we onsider are the loal

anestry at ℓ and ℓ′. To the extent possible, our notation will follow (Hill 1974), whose

results for measures of multi-lous linkage disequilibria we use. The matries L2 and U2

share (1 − 1) as a left-eigenvetor, with orresponding eigenvalues 1 − 1
2N

and [ℓℓ′]. As a

result,

E(k2) =
1

L2

∫ L

0

∫ L

0

(
1 −1

)
· (L2U2)

g
v2(0)dℓdℓ

′

=
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0

[ℓℓ′]gdℓdℓ′. (3.2)

For a model using the Haldane map funtion, [ℓ|ℓ′] = 1−exp(−2|ℓ−ℓ′|)
2

, this equation beomes

E(k2) =
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0

(
1 + exp(−2|ℓ− ℓ′|)

2

)g

dℓdℓ′

=
2

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

(L− ℓ)

(
1 + exp(−2ℓ)

2

)g

dℓdℓ′,
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Figure 3.2 : The expeted sample variane given by equation 3.1 plotted on a logarithmi

sale, for a three di�erent map funtions. We used a map distane of L = 1 Morgan and N =

104. The Haldane map funtion (1/2−e−2x/2) is in red, the Kosambi map funtion (tanh(2x)/2) is

in yellow, and the omplete interene map funtion (x) is in blue. For all values of g, the expetations

are ordered in the same order as the map funtions, but the di�erene between the three disappears

by g = 100.

while for a model of omplete rossover inteferene on a hromosome of length 1 Morgan,

we an get a losed form solution:

E(k2) =

(

1−
1

2N

)g
(
s0 − s20

)
∫ 1

0

∫ 1

0

(1− |ℓ− ℓ′|)g dℓdℓ′

=

(

1−
1

2N

)g
(
s0 − s20

) 2

2 + g
.

For prediting the expeted sample variane, the di�erene between these two models

is not large, as shown in �gure 3.2. For the simulations and inferene in this hapter, we

will ignore rossover interferene, and use the Haldane map funtion. However, none of the

mathematial results of this hapter will require this assumption.

For omputing higher-order orrelation funtions, we �nd a similar equation

vi(g) = (LiUi)
g
vi(0). (3.3)

Bennett's oe�ients for higher-order linkage are left-eigenvetors of the reombination
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matrix Ui. For i = 3, it is also a left-eigenvetor of the drift matrix, so we immediately get

that

E(k3) =
s0(1− s0)(2− s0)

L3

(

1−
1

2N

)T (

1−
2

2N

)T ∫

[0,L]3
[ℓℓ′ℓ′′]Gdℓdℓ′dℓ′′.

For i ≥ 4, this is no longer true, but the results of (Hill 1974) an be used to ompute vi(g)
without having to exponentiate the entire drift and reombination matries. For example,

for k4, the drift and reombination matries are 15 × 15, but using the tehnique in (Hill

1974), we only need to exponentiate a 4× 4 matrix to ompute E(k4).

3.2.2 Varying Migration

If sg > 0 for s ≥ 1, we obtain a modi�ed version of Equation 3.3:

vi(g) = LiDi(g)Uivi(g−1), (3.4)

where the diagonal matrix Di(g) has entries giving the probabilities the set of hromo-

somes, p, in a orrelation funtion are all from the hybrid population in the previous gener-

ation:

dp,p(g) = (1− sg)
|p|.

Note that if s(g) is �xed, then equation (3.4) is linear, and an be solved using a Laplae

transform.

3.3 Inferene of Admixture Times

The equations in the previous setion an be used to develop a method of moments-

estimators for admixture parameters by numerially solving the admixture parameters in

terms of the expetations for the k-statistis. Substituting in the observed values for the

k-statistis gives estimates for the admixture parameter(s).

However, with real data, we only have estimates of the admixture frations, so some

of the variability seen in the distribution of admixture frations will be due to estimation

variability. To aount for this, we assume that the estimations errors are additive and iid :

Ĥi(g) = Hi(g) + ǫi.

Beause umulants are additive,

E(kn) = E
(
κn(Hi(g) + ǫi|G)

)

= E
(
κn(Hi(g)|G)

)
+ κn(ǫi).
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The expetations we have omputed are just the term of this sum. To orret for the

variability in the estimates, we need to subtrat o� the seond term. We use a blok bootstrap

to estimate these e�ets.

One additional ompliation arises in dealing with genotyping data. We have assumed

that we have the anestry frations for eah haplotype in the sample, but with genotyping

data, we instead have their pairwise means: (H1(g) + H2(g))/2 . . . . This is results in a

derease in the expetations of the k-statitis. Conditional on the random distribution G,
H1(g), H2(g), . . . are iid drawn from G. Cumulants are additive, so we use the law of total

expetation to �nd that

κi

(
H1(g) +H2(g)

2

)

= E

(

κi

(
H1(g) +H2(g)

2

∣
∣
∣
∣
G

))

= E

(

κi

(
H1(g)

2

∣
∣
∣
∣
G

)

+ κi

(
H2(g)

2

∣
∣
∣
∣
G

))

= 2−i+1
E
(
κi

(
H1(g)

∣
∣G
))

= 2−i+1κi

(
H1(g)

)
.

3.3.1 Comparison to Verdu and Rosenberg

The reursion equations given by Verdu & Rosenberg (2011) are di�erent from the ones

we have derived. This is partly beause we have aounted for the e�ets of geneti drift

and reombination, but also beause we are omputing the moments of slightly di�erent

quantities.

In �gure 3.3, we have shown the admixture frations for �ve repliate populations 5, 50,

and 500 generations after an admixture pulse. The variane that (Verdu & Rosenberg 2011)

ompute variane over all the repliate populations, while the variane we have omputed

in this hapter is the expetation of the variane within a single population. When g is

small, these similar, but when g is large, the variane within a population goes to zero, but

the variane aross the repliate populations does not. This e�et is shown in Figure 3.4.

Initially, both quantities deline exponentially in g, but after 2g > nLg, the variane we

predit begins to deline linearly instead. This is beause variane is inversely proportional

to the number of geneti anestors of the sample. When g is small, the number of geneti

anestors is approximately 2g. However, the approximate number of reombination events

in the sample is approximately bounded by nLg, so when this quantity is smaller than 2g,
it provides a better approximation for the number of geneti anestors. In this regime, the

variane will deline linearly in g.
It is also possible to ompute the variane over all population repliates under our model,

whih allows a diret omparison to Verdu & Rosenberg (2011). In the ase of one pulse of

admixture, we an now solve equations 3.1 for P {A1,g(ℓ) = 1, A1,g(ℓ
′) = 1} to get
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Figure 3.3 : The admixture frations of �ve repliate populations (eah olumn) 5, 50,

and 500 generations after an admixture pulse. As the admixture event grows more anient,

the variability within a repliate population dereases, but some variability is still maintained aross

the populations.
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Figure 3.4 : The variane predited by Verdu & Rosenberg (2011) and equation 3.5,

plotted on a logarithmi sale. The variane we predit (red) is always larger, but the two a

very similar when g is small.

var(H1(g)) = E(H2
1,g)− s20

=
1

L2

∫ L

0

∫ L

0

P {A1,g(ℓ) = 1, A1,g(ℓ
′) = 1} dℓdℓ′ − s20

=
1

L2

(
s0 − s20

)
∫ L

0

∫ L

0

1− (1− [ℓℓ′])
1− [ℓℓ′]g

(
1− 1

2N

)g

1− [ℓℓ′]
(
1− 1

2N

) dℓdℓ. (3.5)

This variane and the expetation of the seond k-statisti have the same limit asN → ∞,

but for �nite N , the variane is larger. This is beause

var(H1(g)) = var

[
E(H1(g)|G)

]
+ E

[
var(H1(g)|G)

]
= var[k1] + E[k2].

The �rst variane is small when N is large, but is always non-negative. The di�erene

between this equation and equation 3.1 only beomes signi�ant on a oalesent time sale. In

the absene of geneti drift, the admixture frations are approximately independent, beuase

the samples do not share anestors.
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Observed Bootstrap Correted

k1 0.777 −2.22× 10−15
0.777

k2 9.00× 10−3 2.59× 10−4 8.75× 10−3

k3 2.98× 10−4 1.60× 10−5 2.82× 10−4

k4 −3.99× 10−5 −1.41× 10−6 −3.85× 10−5

Table 3.1 : k-statistis for ASW admixture frations from HapMap 3 projet.

3.3.2 Appliation to Afrian Amerian Data

We applied this method to a subset of the ASW, CEU, and YRI data from the HapMap

3 projet (3 Consortium et al. 2010). After exluding hildren from trios, there were the

genotypes for 49 ASW, 113 YRI, and 112 CEU individuals. We estimated the admixture

frations using the supervised learning mode of Admixture, with the CEU and YRI indi-

viduals assigned to separate lusters. The sampling distribution of the admixture frations

was estimated using the blok bootstrap with 104 repliates and 2678 bloks, giving a blok

size of approximately 10 CM. The admixture frations for the 49 ASW samples are shown

in Figure 3.1 and the observed k-statistis are given in table 3.1.

We assumed a 3-parameter model of onstant admixture. For gstart ≤ g ≤ gstop, sg =
s with sg = 0 elsewhere. By mathing the blok-bootstrap orreted k2 and k3 to the

preditions of equation 3.1, we obtained a point estimates of

ŝ = 0.0277

ĝstart = 2

ĝstop = 11.

We obtained on�dene intervals, shown in Figure 3.5, by simulation. For eah ell in

the grid, we simulated 103 repliates under the orresponding gstart and gstop, with s =

1−k
1/(gstop−gstart+1)
1 . For eah repliate, we omputed the k2, k3, and k4 statistis. A ell was

then inluded in the on�dene interval if and only if the orreted k2, k3, and k4 statistis
from the HapMap data fall inside a entered interval ontaining 98.7% of the probability

mass of the simulated distribution. This mass was hosen so that under the Bonferroni

orretion for three tests, there is at least a 95% hane of inluding the true parameter

values in the on�dene region.

The point estimates for gstart and gstop orrespond to the values for whih the observed

k-statistis are losest to their simulated medians.

3.4 Disussion

We have extended the mehanisti model of Verdu & Rosenberg (2011) to aount for

reombination and geneti drift. Doing so allows us to apply the preditions of this model
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Figure 3.5 : 95% on�dene region for a model with onstant admixture from gener-

ations gstart to gstop. The point estimate of gstart = 11 and gstop = 2 generations ago is olored

green.
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to data. This mehanisti model allows for a large number of parameters. For the purposes

of inferene, it seems that imposing onstraints, i.e. a small number of pulses or onstant

admixture, will be needed to narrow the searh spae.

In this hapter, we have assumed that admixture only omes from one soure population,

this need not be the ase. To aount for admixture from multiple soure populations,

equation 3.1 must be modi�ed to aount for the probability that haplotypes trae their

desent to multiple soure populations. Algorithmially, this is feasible, but the notation is

umbersome. The resulting equations are given in the appendix, along with the equations

for omputing expetations of higher-order k-statistis.
Appliations of the method to Afrian-Amerian HapMap data provides estimates of the

time sine admixture between people of Europe and and Afrian desent in Ameria. Notie

that the on�dene set for the admixture parameters does not inlude values of gstop = 0.
We interpret this as evidene that admixture rates have delined the last few generations.

The point estimate of time gene-�ow stopped is gstop = 2. This probably re�ets a more

gradual redution in gene-�ow within the last 5 generations or so, rather than a disrete stop

in gene-�ow 2 generations ago. The disreteness is enfored by the model. Also notie that

admixture before 15 generations ago an be rejeted. With a generation time of 25-30 years,

this orresponds to 325-400 years, and is in good aordane with the historial reord. The

point estimate of the time of �rst admixture is 11 generations, or approx. 275-330 years ago.

Struture analyses have beome one of the most ommonly applied tools in population

genomi analyses. The theory developed in this hapter allows users of struture analyses to

interpret their data in the ontext of a model of admixture between populations, and should

�nd use in many studies aimed at understanding the history of populations.

3.5 Appendix

These are the matries for omputing E(k3). The matries for omputing E(k4) are 15×15
and not given here, but an be found in (Hill 1974).
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v3(g) =









P{A1(g)(ℓ) = A1(g)(ℓ
′) = A1(g)(ℓ

′′) = 1}
P{A1(g)(ℓ) = A1(g)(ℓ

′) = A2(g)(ℓ
′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A2(g)(ℓ

′′) = 1}
P{A1(g)(ℓ) = A2(g)(ℓ

′) = A1(g)(ℓ
′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A3(g)(ℓ

′′) = 1}









U3 =









[ℓℓ′ℓ′′] [ℓℓ′|ℓ′′] [ℓ|ℓ′ℓ′′] [ℓℓ′′|ℓ′] 0
0 [ℓℓ′] 0 0 [ℓ|ℓ′]
0 0 [ℓ′ℓ′′] 0 [ℓ|ℓ′′]
0 0 0 [ℓℓ′′] [ℓ′|ℓ′′]
0 0 0 0 1









L3 =
1

4N2









4N2 0 0 0 0
2N 2N − 1 0 0 0
2N 0 2N − 1 0 0
2N 0 0 2N − 1 0
1 2N − 1 2N − 1 2N − 1 (2N − 1)(2N − 2)









D3(g) =









1− sg 0 0 0 0
0 (1− sg)

2 0 0 0
0 0 (1− sg)

2 0 0
0 0 0 (1− sg)

2 0
0 0 0 0 (1− sg)

3









When there is migration from both soure populations, the reursion relations for the

i-point orrelation funtions will depend on i−1-point, i−2-point, . . . orrelations funtions
as well. As as example, onsider the ase of v2(g). Let the introgression probability from the

seond soure population be given by tg. The reursion equation for v2(g) now also depends

on v1(g).

v2(g+1) = L2

(
1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(
tg

t2g + 2tgP{A1(g)(ℓ) = 1}

)

= L2

(
1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(
tg

t2g + 2tgv1(g)

)

.

Similarly, the reursion equation for v3(g) depends on v2(g) and v1(g).
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Chapter 4

Weighted Three-Lous Linkage

Disequilibrium

4.1 Introdution

There are many methods for inferring the presene of admixture, e.g. with f -statistis
Reih et al. (2009) or by estimating admixture proportions with programs suh as Struture

Prithard et al. (2000) or Admixture Alexander et al. (2009). However, there has been less

researh on estimating admixture times, possibly beause suh methods require data whih

was unavailable until the advent of high-throughput next generation sequening. Some of

these methods use the inferred loal anestry of sequenes to onstrut admixture trat

length distributions. Over time, reombination is expeted to derease the average lengths

of admixture trats. This was trat length distribution �rst worked out in the ontext of

juntions Fisher (1949) and later extended to randomly mating populations by Stam (1980).

Baird et al. (2003) �rst disussed the lengths of trats desended from a single anestor.

These results informed later analyses of admixture trat length distribution, suh as Pool &

Nielsen (2009), Gravel (2012), and Liang & Nielsen (2014a). Gravel (2012) also implemented

the software program TRACTS, whih estimates admixture histories by �tting the trat

length distribution, obtained by loal anestry inferene, to a exponential approximation.

Another approah, whih we will follow in this hapter, is based on the deay of anes-

tral linkage disequilibrium (LD). In a well-mixed, genetially isolated human populations,

linkage disequilibrium deays to zero on a sale of tenths of entiMorgans. However, when

an admixed population is founded, it begins with large of amount of linkage disequilibrium,

whih is a result of the allele frequeny di�erenes between the soure populations. This

ours even if the LD in the soure populations themselves is negliable. The linkage dise-

quilibrium in the admixed population then �utuates in the generations after its founding,

dereasing as a result of drift and reombination, or inreasing beuase of additional waves

of mgiration. From the LD present in a modern day admixed population, it is possible to

make inferenes about the population's admixture history. This tehnique was �rst in the

program ROLLOFF Moorjani et al. (2011) and was later extended by ALDER Loh et al.
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(2013).

These two methods use the fat that if an admixed population takes in no additional

migrants after the founding generation, the LD present in the population is expeted to

deay exponentially as a funtion of distane. The rate onstant of this exponential deay is

proportional to the age of the founding admixture pulse and so an be used as an estimator.

ROLLOFF and ALDER are well suited for inferring the time of the admixture event when

the population's admixture history an be approximated as a single pulse. However, it an be

important to estimate parameters for admixture histories involving multiple pulses, suh as

estimating the date of Native Amerian admixture in Rapa Nui Moreno-Mayar et al. (2014)

or determining migration patterns in the Amerias Gravel et al. (2013). In these instanes

the expeted deay of LD will beome a mixture of exponentials. ROLLOFF and ALDER

have limited resolution, as they an usually only infer the date of the most reent migration

wave Moorjani et al. (2011), or rejet the hypothesis of a single pulse admixture Loh et al.

(2013).

ROLLOFF and ALDER use the information ontained in pairs of sites by looking at

the two-lous linkage disequilibrium between them. We use the information in triples of

sites by onsidering three-lous LD. There are two ways of measuring the linkage between

n loi. Two-lous linkage disequilibrium dereases geometrially eah generation as a result

of reombination. Bennett (1952) de�nes n-lous linkage in a way that this property is

maintained. Another property of two-lous LD is that it is equal to the ovariane in the

allele frequenies between the two sites. Slatkin (1972) de�nes n-lous LD analogously. For

two and three loi, these two de�nitions oinide, but for four or more loi, they do not.

In this hapter, we will use Bennett and Slatkin's de�nition of three-lous LD to look at

the deay of weighted LD for three sites as a funtion of the geneti distane between them.

We derive an equation that desribes the deay of three-lous LD under an admixture history

with multiple waves of migration. We then ompare the results of oalesent simulations to

this equation, and develop some guidelines for when admixture histories more omplex than

a single pulse an be resolved. Finally, we ompute the our method for the Columbian and

Mexian samples in the 1000 Genomes data set, using the Yoruba samples as a referene.

Fitting a two-pulse model to data, we estimate admixture histories for the two populations

whih are qualitatively onsistent with the results reported in Gravel et al. (2013).

4.2 Model

We use the same random union of gametes admixture model as in Liang & Nielsen

(2014b), whih is itself an extension of the mehanisti admixture model formulated by

Verdu & Rosenberg (2011). In this model, two (or more) soure populations ontribute mi-

grants to form an admixed population onsisting of 2N haploid individuals. Eah generation

in the admixed population is formed through the reombination of randomly seleted indi-

viduals from the previous generation, with some individuals potentially replaed by migrants

from the soure populations. For simpliity, we onsider a model with only two soure pop-



4.3. LINKAGE DISEQUILIBRIUM AND LOCAL ANCESTRY 46

ulations. Furthermore, the �rst soure population only ontributes migrants in the founding

generation, T . The seond soure population ontributes migrants in the founding genera-

tion and possibly in one or more generations thereafter. In generation i, for i = T − 1, . . . , 0
(before the present), a fration mi of the admixed population is replaed by individuals from

the seond soure population.

4.3 Linkage Disequilibrium and Loal Anestry

ROLLOFF and ALDER use the standard two-lous measure of LD between a SNP at

positions x and another SNP at position y, whih is a geneti distane d to the right,

D2(d) = ov(Hx, Hy), (4.1)

where Hx and Hy represent the haplotype or genotypes of an admixed hromosome at posi-

tions x and y. In the ase of haplotype data, Hi,x = 1 if the ith sample is arying the derived

allele at the SNP at position x, or is 0 otherwise. Alternatively, for genotype data, Hi,x take

on values from {0, 1/2, 1} depending on the number of opies of the derived allele the ith

sample is arrying at the SNP position x. We onsider an additional site at position z, whih
is loated a further geneti distane d′ to the right of y. The three-loi LD, as de�ned by as

de�ned by Bennett (1952) and Slatkin (1972), is given by

D3(d, d
′) = ov(Hx, Hy, Hz) = E[(Hx − EHx)(Hy − EHy)(Hz − EHz)]. (4.2)

The LD in an admixed population depends on the geneti di�erentiation between the soure

populations and and its admixture history. Let Ax represent the loal anestry at position

x, with Ax = 1 if x is inherited from an anestor in the �rst soure population, and Ax = 0
if x is inherited from the seond soure population. We an ompute the expetation of

D3 in terms of the three-point ovariane funtion of Ax and so seperate out the e�ets of

allele frequenies and loal anestry. We make the assumption that the alleles in the soure

populations are independent, so that

ov (Hx, Hy, Hz) = ov (E[Hx|Ax],E[Hy|Ay],E[Hz|Az]) .

The bakground LD in unadmixed human populations deays to zero on a sale of tenths of

entiMorgans, so this approximation is appropriate when d and d′ are both larger than 0.5

M. The onditional expetations above are the allele frequenies at eah site in the admixed

population, onditional on the loal anestry. These are given by E[Hx|Ax] = Fx+δAx, where

Fx is the allele frequeny of lous x in the �rst soure population and δx is the di�erene of

the allele frequenies of lous x in the two soure populations. Equation 4.2 beomes

D3(d, d
′) = ov (fx + δxAx, fy + δyAy, fz + δzAz)

= δxδyδzov(Ax, Ay, Az). (4.3)

A similar argument shows that D2(d) is proportional to the two-point ovariane funtion

of the loal anestry.
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4.3.1 Loal Anestry Covariane Funtions

If we take geneti drift into aount, the three-point ovariane funtion is random. To

ompute its expetation, we multiply out the ovariane in equation 4.2 to get

E[ov(Ax, Ay, Az)] = E[AxAyAz]− E[AxAy]E[Az ]− E[AxAz]E[Ay]− E[AyAz]E[Ax] + 2E[Ax]E[Ay]E[Az ].

Eah one of these expetations on the right-hand side is the probability that one or more

sites is inherited from an anestor from �rst soure population. We organize these produts

of probabilities in a olumn vetor:

v3 =









P{Ax = Ay = Az = 1}
P{Ay = Az = 0}P{Ax = 0}
P{Ax = Az = 0}P{Ay = 0}
P{Ax = Ay = 0}P{Az = 0}
P{Ax = 0}P{Ay = 0}P{Az = 0}









,

so that ov(Ax, Ay, Az) = (1,−1,−1,−1, 2)v3. There is one entry in v3 for eah of the

�ve ways in whih the three markers at positions x, y, and z an arranged on one or more

hromosomes. In the founding generation T , this olumn vetor is given by v3(T ) = (1 −
mT , (1−mT )

2, (1−mT )
2, (1−mT )

2, (1−mT )
3)′. The probabilities for subsequent generations

an be found by left-multiplying drift, reombination, and migration matries:

v3(i) = DiLUv3(i−1),

The matris Di, L, and U aount for the e�ets of migration, drift, and reombination,

respetively. The migration matrix is a diagonal matrix given by

Di = diag(1−mi, (1−mi)
2, (1−mi)

2, (1−mi)
2, (1−mi)

3).

Its entries are the probabilities that one, two, or three hromosomes in the admixed popula-

tion will not be replaed by hromosomes from the seond soure population in generation

i. The lower triangular drift matrix

L =
1

4N2









4N2 0 0 0 0
2N 2N − 1 0 0 0
2N 0 2N − 1 0 0
2N 0 0 2N − 1 0
1 2N − 1 2N − 1 2N − 1 (2N − 1)(2N − 2)









gives the standard Wright-Fisher drift transition probabilities between the states as a fun-

tion of the population size 2N . Finally, the upper triangular reombination matrix is deter-

mined by the reombination rates between the three sites:

U =









e−d−d′ (1− e−d)ed
′

(1− e−d)(1− e−d′) e−d(1− e−d′) 0
0 e−d′ 0 0 1− e−d′

0 0 1− e−d − e−d′ + 2e−d−d′ 0 e−d + e−d′ − 2e−d−d′

0 0 0 e−d 1− e−d

0 0 0 0 1
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The ovariane funtion is then given by

E[ov(Ax, Ay, Az)] = (1,−1,−1,−1, 2)

(
T−1∏

i=0

DiLU

)

v3(0). (4.4)

We an obain an analogous equation for ov(Ax, Ay), involving the migration, drift, and

reombination matries for two loi:

E[ov(Ax, Ay)] = (1,−1)

(
T−1∏

i=0

DiLU

)

v2(0).

In some ases, equation 4.4 simpli�es further. In a one-pulse migration model, in whih

mT = M and is there after 0, the Di's beome identity matries, and we get the losed from

expression

E[ov(Ax, Ay, Az)] = M(1 −M)(1− 2M)

(

1−
1

2N

)T (

1−
2

2N

)T

e−T (d+d′).

This is beause (1,−1,−1,−1, 2) is a left eigenvetor of both L and U, with orresponding

eigenvetors (1−1/2N)(1−2/2N) and exp(−d−d′). Note that when M = 0, the ovariane
funtion will be identially 0. Another ase is a two pulse model in whih we ingore the

e�ets of geneti drift. In this model, admixture only ours T and T2 generations before

the present, so that mT = M1, mT ′ = M2, and all other mi's are 0. Making the substitution

T1 = T − T2, the right hand side of equation 4.4 beomes

(1−M1)(1−M2)e
−T2(d+d′)

[

M2(1−M1)
2 − 2M2

2 (1−M1)
2 +M1(1− 2M1)e

−T1(d+d′)

−M1M2(1−M1)

(

e−M1d + e−M1d′ +
(

1− e−d − e−d′ + 2e−d−d′
)T1

)]

. (4.5)

The orresponding expression for the two-point ovariane funtion is given by

(1−M1)(1−M2)e
−T2d

(
M2 −M1M2 +M1e

−T1d
)
, (4.6)

whih is a mixture of two exponentials. The relative omplexity of equation 4.5 is atually

a feature, as it makes deteting the presene of the seond pulse of admixture easier.

4.4 Weighted Linkage Disequilibrium

As Loh et al. (2013) noted, we annot use the LD in the admixed population diretly,

beause the allele frequeny di�erenes in the soure populations an be of either sign.

However, if we ompute expetation of the produt of the LD with the produt of the allele

frequeny di�erenes, using equation 4.3 we obtain

E [δxδyδzD3(d, d
′)] = E[δ2xδ

2
yδ

2
z ]E[ov(Ax, Ay, Az)],
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beause the loal anestry in the admixed sample is independent of the allele frequenies

in the admixed population. This expetation of the weighted LD is non-zero, and an be

estimated by aggregating over triples of SNPs whih are seperated by distanes of approx-

imately d and d′. The LD term an be estimated from the admixed population, while the

δ's an be estimated from referene populations whih are losely related to the two soure

populations.

We arrange the data from the admixed samples in an n × Sn matrix H, where n is the

number of admixed haplotypes/genotypes, and Sn is the number of segregating sites in the

sample. For ease of notation, we assume that the positions are given in units whih make

the unit interval equal to the desired bin resolution.

For a given d and d′ the set of SNP triples we use in the estimator for the weighted LD is

S[d, d′] = {x, y, z : d ≤ x− y < d+ 1 and d′ ≤ y − z < d′ + 1} .

Let wx be the di�erene in the empirial allele frequenes in two referene populations and

let fx be empirial allele frequeny in the admixed population. An unbiased estimator of the

weighted LD is

â[d, d′] =
1

|S[d, d′]|

∑

x,y,z∈S[d,d′]

n
∑n

i=1wawbwc(Hi,x − fx)(Hi,y − fy)(Hi,z − fz)

(n− 1)(n− 2)
.

4.5 Algorithm

Diretly omputing â[d, d′] over the set d, d′ ∈ {0, 1, . . . , P}2 would be ubi in the number
of segregating sites, but as is the ase with ALDER, we an use using a fast Fourier transform

(FFT) to approximate â, giving an algorithm whose run-time is instead linear in the number

of segregating sites. We �rst rearrange â to get

â[d, d′] =
n

(n− 1)(n− 2)

∑n
i=1

∑

x,y,z∈S[d,d′] δxδyδz(Hi,x − fx)(Hi,y − fy)(Hi,z − fz)
∑

x,y,z∈S[d,d′] 1
,

and de�ne sequenes bi[d] and c[d] by binning the data and then doubling the length by

padding with P zeros,

bi[d] =

{ ∑

x:d≤⌊x⌋<d+1 δx(Hi,x − fx) : 0 ≤ d < P

0 : P ≤ d < 2P

c[d] =

{
|{x : d ≤ ⌊x⌋ < d+ 1}| : 0 ≤ d < P
0 : P ≤ d < 2P

We an approximate |S[d, d′]| and the n sums in the numberator of â[d, d′] in terms of

onvolutions of these sequenes:

|S[d, d′]| ≈
P∑

w=0

c[w]c[w + d]c[w + d+ d′]



4.6. SIMULATIONS 50

∑

x,y,z∈S[d,d′]

δxδyδz(Hi,x − fx)(Hi,y − fy)(Hi,z − fz) ≈
P∑

w=0

bi[w]bi[w + d]bi[w + d+ d′].

These onvolutions an be e�iently omputed with an FFT, sine under a two-dimensional

disrete Fourier transform,

P∑

w=0

bi[w]bi[w + d]bi[w + d+ d′] ↔ Bi[j]B̄i[k]Bi[k − j],

where Bi is the (one-dimensional) disrete Fourier transform of b, and Bi[−j] is the jth to last
most element of Bi. Summing over i and taking the inverse disrete Fourier transform, we

an approximate the disrete Fourier transform of numerator of â. We use the same method

applied to c to approximate the denominator of â. Beause the number of bins is generally
muh less than the number of segregating sites, the rate-limiting step of this algorithm is

the binning step to form c and the bi's, whih is O(Sn), rather than the FFTs, whih are

O(P 2 log(P )).
When using only the admixed population itself as a referene population, the method

desribed above will be biased if the same samples are used to estimate both the linkage

disequilibria and the weights. We annot e�iently ompute a polyahe statistis like Loh

et al. (2013). At the ost of some power, we instead adopt the approah of Pikrell &

Prithard (2012) and separate the admixed population into two equal-sized groups. We then

use one group to estimate the weights, and the other group to estimate linkage disequilibrium,

and vie versa. This gives gives two unbiased estimates for the numerator of â, whih we

then average.

4.5.1 Fitting the Two-Pulse Model

We �t equation 4.6 to the estimates of the weighted LD using non-linear least squares,

with two modi�ations. We added a proportionality onstant to aount for the expeted

square allele frequeny di�erene between the soure populations. We also subtrated out

an a�ne term in the weighted LD whih is due to population substruture (Loh et al. 2013).

We estimated this by omputing the three-way ovariane between triples of hromosomes.

We use the jakknife to obtain on�dene intervals for the resulting estimates by leaving out

eah hromosome in turn and re�tting on the data for the remaining hromosomes.

4.6 Simulations

We used the program mas Chen et al. (2009) to generate two soure populations whih

diverged 4000 generations ago and a oalesent simulation to generate an admixed population

from the two soure populations aording to two-pulse and onstant admixture models. We

sampled 50 diploid individuals from the admixed and two soure populations, eah onsisting

of 20 hromosomes of length 1 Morgan. The e�etion population size was 2N = 1000 for



4.7. DATA SET 51

the admixed population and two soure populations. Using a two pulse model, we varied

the migration probabilities and timings for eah pulse to examine the auray of equation

4.6. We also simulated data for a model with a onstant rate of admixture eah generation,

and ompared this to the preditions made by equation 4.4.

4.7 Data Set

We omputed the weighted LD for the Mexian and Columbian populations in the �rst

phase of the 1000 Genomes data set. These onsisted of 66 individuals from Los Angeles

and 60 individuals from Medellin, respetively. We used the 88 Yoruba samples as the one

referene population. We omputed the weighted LD on the genotypes to avoid e�ets of

phasing errors.

4.8 Disussion

4.8.1 Simulations

We �nd there is a generally a lose math between our equations and the simulated

data under both under two pulse admixture senarios (�gures 4.1 and 4.2) and onstant

admixture senarios (�gure 4.3). The exeption is when the total admixture proportion

M2 +M1(1−M2) is lose to 0.5. As the total admixture proportion inreases above 0.5, the

ontours for equation 4.2 �ip from being onave down to onave up. This transition an

be seen by omparing the upper left side of �gre 4.2 to its lower right. At this threshold,

the ontours of the estimated weighted LD depend on the atual admixture frations of the

samples, whih may di�er from the expetation as a result of geneti drift. This mismath

between theory and simulations is most evident in �gure 4.2, for m1 = 0.1, m2 = 0.4 and

m1 = 0.2, m2 = 0.4.
When there is ontinous admixture senario, the shape of the weighted LD surfae de-

pends on both the duration and total amount of admixture. When the duration is short,

the weighted LD surfaes are indistinguishable from teh weighted LD surfaes produed by

one pulse of migration. As the duration inreases, the ontours of teh weighted LD surfae

beome more urved. The ontours are onvave up when the total proportion is greater

than 50% and onave down when it is less. When the total proportion is exatly 50%, the

amplitude of the weighted LD surfae is muh smaller than the smapling error.

For two pulse models, the e�ets of the seond pulse of migration only beome evident

when temporal spaing between the pulses is large enough (T1 > T2). Otherwise, the result-
ing weighted LD surfae annot be distingiushed from the weighted LD surfae produed by

one pulse of admixture. As in the ase of ontinuous admxiture the onavity of the surfae

ontours is determined by the total admixture proportion.

These qualitative about the similarity between one pulse and two puls admixture senarios

are borne out by simulations of the estimation error, shown in �gure 4.4. When the spaing
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Figure 4.1 : Predited weighted LD surfaes from simulations and theory for varying

admixture times. The heat maps are from simulations and the ontours are plotted from equation

4.2. The two admixture probabilities were �xed at m1 = m2 = .2 and the the times of the two

admixture pulses, T1 and T2, were varied. Eah square overs the range 0.5 M < d, d′ < 20 M.

When time of the more reent pulse is greater than half of that of the more anient pulse, i.e.

2T1 > T1 + T2, the ontours of the resulting weighted LD surfae are straight, making it di�ult to

distinguish from the weighted LD surfae produed by a one-pulse admixture senario.
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Figure 4.2 : Predited weighted LD surfaes from simulations and theory. The heat maps

are from simulations and the ontours are plotted from equation 4.2. The two admixture times were

�xed at 2 and 12 generaations ago (T1 = 10 and T2 = 2) while the admixture probabilities were

varied. Eah square overs the range 0.5 M < d, d′ < 20 M. As the total admixture proportion

m2 +m1(1−m2) inreases above 0.5, the onavity of the ontours �ips. Weighted LD surfaes for

m1 > 0.5 or m2 > 0.5 are not shown, but are qualitatively similar to the surfaes on the lower and

rightmost sides.
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Figure 4.3 : Weighted LD surfaes produed by onstant admixture. The heatmaps are

from simulations and the ontours are from equation XX. In all six plots, admixture stopped 5

generations before the present. Eah square overs the range 0.5 M < d, d′ < 20 M. We varied

the time of the beginning of the admixture and the total admixture probability. The admixture

probability for eah generation was onstant, and hosen so that the total admixture proportion

was either 0.3 or 0.7. When the admixture is spread over 5 generations (the leftmost olumn), the

resulting weighted LD surfae is similiar to a one-pulse weighted LD surfae. For longer durations,

the weighted LD surfaes are similar to those produed by two pulses of admixture.
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Figure 4.4 : Auray of estimates of T1 as a funtion of other parameters. Nine admixture

senarios, T1 ∈ {5, 10, 20} and T2 ∈ {2, 5, 10}, were simulated 100 times eah. The admixture

probabalities were �xed at M1 = 0.3 and M2 = 0.2. The olored bars give the medians of estimates

for eah of these nine ases, the boxes delimit the interquartile range, and the whiskers extend out

to 1.5 times the interquartile range. As the time between the two pulses of admixture inreases,

the error in the estimates dereases. Consistent with the simulations shown in �gure 4.1, there is

limited power to estimate the time of the more anient admixture pulse when T2 > T1.
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Figure 4.5 : Weighted LD surfae for Mexian samples with Yoruba as referene. The

model with the best �t is two pulses from the non-Yoruba soure population at T1+T2 = 12.3±3.3

and T2 = 9.9 ± 2.7 generations ago. The jakknife on�dene intervals for the times of these two

pulses overlap.

between the two pulses is small relative to their age, the median of the estimates of the

timing of the seond pulse is lose to the true value, but the interquartile range is large.

Moreover, the best �t often lies on a boundary of the parameter spae whih is equivalent to

a one pulse admixture model. When the spaing between the pulses is larger, the estimates

for the timing of the older pulse before more preise.

4.8.2 1000 Genomes

Gravel et al. (2013) have previously analyzed the 1000 Genomes data that we omputed

weighted LD surfaes for. For the Mexian samples, they found a small but onsistent

amount of Afrian anestry, whih appeared in the population 15 generations ago, with

ontinuing ontributions from European and Native Amerian populations sine that date,

but no Afrian migration. In �tting a two-pulse model to the Mexian weighted LD surfae

(�gure 4.5), we estimated that the two pulses oured 12.3±3.3 and 9.9±2.7 generations ago.
These on�dene intervals overlap, and so we annot rejet a one-pulse admixture history.

This is not quite onsistent with the onstant migration model that Gravel et al. (2013)

found, but as we have seen from simulations, it is hard to distinguish a onstant migration

model from a one-pulse model when the duration of the migration is short.
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Figure 4.6 : Weighted LD surfae for Columbian samples with Yoruba as referene The

two-pulse model that �ts best is two pulses of non-Yoruba admixture at T1 + T2 = 11.8 ± 1.2 and

T2 = 2.64 ± 0.08 generations ago. The jakknife on�dene intervals for the times of these two

pulses do not overlap. The amplitude of this weighted LD surfae is approximately ten times larger

than that of the Mexian samples. This a result of larger proportion of Yoruba anestry in the

Columbian samples.
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The weighted LD surfae for the Columbian samples is shown in �gure 4.6. From this,

we estimated two pulses of non-Yoruba migration at 11.8± 1.2 and 2.64± 0.08 generations

before the present. Gravel et al. (2013) also inferred two pulses of admixture, orresponding

to 3 and 9 generations ago. The weighted LD surfae of the Columbian samples has ontours

whih are strongly onave up, in onstrast to those of the Mexian samples.

4.8.3 Comparison to Existing Methods

Compared to existing weighted LD methods, our our method uses more information

in the data beause it ompares triples of SNPs instead of pairs. This gives our method

the ability to infer admixture histories more omplex than a one-pulse model. However,

this omes at the prie of greater estimation varianes. ALDER and ROLLOFF an make

estimates from just tens of samples, while our method requires hundreds of samples. Part

of this di�erene an be attributed to the fat that ALDER and ROLLOFF make inferenes

over a smaller lass of models, but the main reason arises from the fat that the existing two

models are estimating seond moments of the data, while we are estimating third moments.

The variane of these estimates are both inversely proportional to the sample size, but the

onstants for estimating third moments are larger. As data beomes more readily avaliable,

this disadvantage should disappear.



59

Bibliography

3 Consortium, I. H., et al. 2010, Nature, 467, 52

Alexander, D. H., Novembre, J., & Lange, K. 2009, Genome Researh, 19, 1655

Baird, S. J., Barton, N. H., & Etheridge, A. M. 2003, Theoretial Population Biology, 64,

451

Ball, F., & Stefanov, V. T. 2005, Mathematial Biosienes, 196, 215

Baran, Y., Pasaniu, B., Sankararaman, S., et al. 2012, Bioinformatis, 28, 1359

Barton, N. H., & Bengtsson, B. O. 1986, Heredity, 57, 357

Barton, N. H., & Etheridge, A. M. 2011, Genetis, 188, 953

Bennett, J. 1952, Annals of Eugenis, 17, 311

Bikeböller, H., & Thompson, E. A. 1996a, Theoretial Population Biology, 50, 66

�. 1996b, Genetis, 143, 1043

Brisbin, A., Bry, K., Byrnes, J., et al. 2012, Human Biology, 84, 343

Bry, K., Auton, A., Nelson, M. R., et al. 2010, Proeedings of the National Aademy of

Sienes, 107, 786

Cannings, C. 2003, Human heredity, 56, 126

Chapman, N. H., & Thompson, E. A. 2002, Genetis, 162, 449

Chen, G. K., Marjoram, P., & Wall, J. D. 2009, Genome researh, 19, 136

Dimitropoulou, P., & Cannings, C. 2003, Bioinformatis, 19, 790

Donnelly, K. P. 1983, Theoretial Population Biology, 23, 34

Falush, D., Stephens, M., & Prithard, J. K. 2003, Genetis, 164, 1567

Fisher, R. A. 1949, The Theory of Inbreeding (Edinburgh, Sotland: Oliver and Boyd)

Gravel, S. 2012, Genetis, 191, 607

Gravel, S., Zakharia, F., Moreno-Estrada, A., et al. 2013, PLoS genetis, 9, e1004023

Gri�ths, R. C., & Marjoram, P. 1996, Journal of Computational Biology, 3, 479

Guo, S.-W. 1994, Amerian Journal of Human Genetis, 54, 1104

Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. 2009, PLoS

Genetis, 5, e1000695

Henn, B. M., Botigué, L. R., Gravel, S., et al. 2012, PLoS Genetis, 8, e1002397

Hey, J. 2010, Moleular biology and evolution, 27, 905

Hey, J., & Nielsen, R. 2004, Genetis, 167, 747

Hill, W. G. 1974, Theoretial Population Biology, 5, 366

Hoggart, C. J., Parra, E. J., Shriver, M. D., et al. 2003, The Amerian Journal of Human



BIBLIOGRAPHY 60

Genetis, 72, 1492

Hudson, R. R. 1983, Theoretial Population Biology, 23, 183

�. 2002, Bioinformatis, 18, 337

Li, N., & Stephens, M. 2003, Genetis, 165, 2213

Liang, M., & Nielsen, R. 2014a, Genetis, genetis

�. 2014b, bioRxiv, 008078

Loh, P.-R., Lipson, M., Patterson, N., et al. 2013, Genetis, 193, 1233

Maples, B. K., Gravel, S., Kenny, E. E., & Bustamante, C. D. 2013, The Amerian Journal

of Human Genetis, 93, 278

Marjoram, P., & Wall, J. 2006, BMC Genetis, 7, 16

Martin, O. C., & Hospital, F. 2011, Genetis, 189, 645

MVean, G. A., & Cardin, N. J. 2005, Philosophial Transations of the Royal Soiety B:

Biologial Sienes, 360, 1387

Menotti-Raymond, M., David, V. A., P�ueger, S. M., et al. 2008, Genomis, 91, 1

Moorjani, P., Patterson, N., Hirshhorn, J. N., et al. 2011, PLoS genetis, 7, e1001373

Moorjani, P., Thangaraj, K., Patterson, N., et al. 2013, The Amerian Journal of Human

Genetis, 93, 422

Moreno-Mayar, J. V., Rasmussen, S., Seguin-Orlando, A., et al. 2014, Current Biology

Pa³aniu, B., Sankararaman, S., Kimmel, G., & Halperin, E. 2009, Bioinformatis, 25, i213

Parra, E. J., Marini, A., Akey, J., et al. 1998, The Amerian Journal of Human Genetis,

63, 1839

Pikrell, J. K., & Prithard, J. K. 2012, PLoS genetis, 8, e1002967

Pool, J. E., & Nielsen, R. 2009, Genetis, 181, 711

Prie, A. L., Patterson, N. J., Plenge, R. M., et al. 2006, Nature Genetis, 38, 904

Prie, A. L., Tandon, A., Patterson, N., et al. 2009, PLoS Genetis, 5, e1000519

Prithard, J. K., Stephens, M., & Donnelly, P. 2000, Genetis, 155, 945

Reih, D., Thangaraj, K., Patterson, N., Prie, A. L., & Singh, L. 2009, Nature, 461, 489

Reih, D., Patterson, N., De Jager, P. L., et al. 2005, Nature Genetis, 37, 1113

Rodolphe, F., Martin, J., & Della-Chiesa, E. 2008, Theoretial Population Biology, 73, 289

Rosenberg, N. A., Prithard, J. K., Weber, J. L., et al. 2002, Siene, 298, 2381

Sankararaman, S., Kimmel, G., Halperin, E., & Jordan, M. I. 2008, Genome Researh, 18,

668

Slatkin, M. 1972, Genetis, 72, 157

Smith, M. W., Patterson, N., Lautenberger, J. A., et al. 2004, The Amerian Journal of

Human Genetis, 74, 1001

Stam, P. 1980, Genetis Researh, 35, 131

Stefanov, V. T. 2000, Genetis, 156, 1403

Sundquist, A., Fratkin, E., Do, C. B., & Batzoglou, S. 2008, Genome Researh, 18, 676

Tang, H., Choudhry, S., Mei, R., et al. 2007, The Amerian Journal of Human Genetis, 81,

626

Tang, H., Coram, M., Wang, P., Zhu, X., & Rish, N. 2006, The Amerian Journal of Human

Genetis, 79, 1



BIBLIOGRAPHY 61

Tang, H., Peng, J., Wang, P., & Rish, N. J. 2005, Geneti epidemiology, 28, 289

Verdu, P., & Rosenberg, N. A. 2011, Genetis, 189, 1413

Wakeley, J., King, L., Low, B. S., & Ramahandran, S. 2012, Genetis, 190, 1433

Walters, K., & Cannings, C. 2005, Theoretial Population Biology, 68, 55

Wiuf, C., & Hein, J. 1999, Theoretial Population Biology, 55, 248

Zhang, B., Li, M., Zhang, Z., et al. 2007, Moleular biology and evolution, 24, 1801


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Admixture Tracts Lengths
	Introduction
	Models
	Simulations
	Models of multiple admixture pulses
	Tests of a single admixture pulse

	Simulation Results
	Admixture tracts lengths, neither iid nor exponentially distributed
	Coalescent with Recombination
	Markovian Models
	Perfect Binary Tree
	Admixture Tracts as distances between junctions
	Likelihood ratio test of the number of admixture pules

	Discussion
	Appendix

	Admixture Proportion Moments
	Introduction
	General Mechanistic Model
	A Single Admixture Event
	Varying Migration

	Inference of Admixture Times
	Comparison to Verdu and Rosenberg
	Application to African American Data

	Discussion
	Appendix

	Weighted Three-Locus Linkage Disequilibrium
	Introduction
	Model
	Linkage Disequilibrium and Local Ancestry
	Local Ancestry Covariance Functions

	Weighted Linkage Disequilibrium
	Algorithm
	Fitting the Two-Pulse Model

	Simulations
	Data Set
	Discussion
	Simulations
	1000 Genomes
	Comparison to Existing Methods


	Bibliography



