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Abstract
How can people learn to make better decisions and be-
come more far-sighted? To make the underlying learning
mechanisms more accessible to scientific inquiry, we develop
a computational method for measuring the time course of
experience-dependent changes in people’s planning strategies.
We validated our method on simulated and empirical data: on
simulated data its inferences were significantly more accurate
than simpler approaches, and when evaluated on human data
it correctly detected the plasticity-enhancing effect of perfor-
mance feedback. Having validated our method, we illustrate
how it can be used to gain new insights into the time course
and nature of cognitive plasticity. Future work will leverage
our method to i) reverse-engineer the learning mechanisms
enabling people to acquire complex cognitive skills such as
planning and problem-solving and ii) measure individual dif-
ferences in cognitive plasticity.
Keywords: cognitive plasticity; planning; decision-making;
process-tracing; statistical methods

Introduction
One of the most remarkable features of the human mind is
its ability to continuously improve itself. As helpless babies
develop into mature adults, their brains do not only acquire
impressive perceptual and sensory-motor skills and knowl-
edge about the world but they also learn to think, to make
better decisions, to learn, and to monitor and adaptively reg-
ulate themselves. These phenomena are collectively known
as cognitive plasticity. Just like the acquisition of perceptual
skills (Hubel & Wiesel, 1970), the acquisition of cognitive
skills requires specific experiences and practice (van Lehn,
1996; Ericsson, Krampe, & Tesch-Römer, 1993).

Despite initial research on how people acquire cognitive
skills (van Lehn, 1996; Shrager & Siegler, 1998; Krueger,
Lieder, & Griffiths, 2017), the underlying learning mecha-
nisms are still largely unknown. Reverse-engineering how
people learn how to think and how to decide is very chal-
lenging because we can neither observe people’s cognitive
strategies, nor how they change with experience – let alone
the underlying learning mechanisms. Instead, cognitive plas-
ticity has to be inferred from observable changes in behav-
ior. This is difficult because each observed behavior could
have been generated by many possible cognitive mechanisms.
This problem is pertinent to all areas of cognition. As a first
step towards a more general solution, we develop a computa-
tional method for measuring how people’s planning strategies

change depending on the person’s experience. Initial work
suggested that metacognitive reinforcement learning might
play an important role in how people come to plan farther
ahead (Krueger et al., 2017) and which strategies they use
(Lieder & Griffiths, 2017) but the postulated mechanisms
are difficult to investigate because cognitive plasticity has re-
mained unobservable.

Our approach combines a recently developed process-
tracing paradigm that renders people’s behavior highly diag-
nostic of their planning strategies with probabilistic models
of planning and learning that constrain the space of poten-
tial cognitive mechanisms and exploit temporal dependencies
among subsequent planning strategies. Critically, our mea-
surement model can be inverted to infer the sequence of peo-
ple’s planning strategies from the clicks they make in the pro-
cess tracing paradigm. Our computational method makes it
possible to observe how people’s planning strategies change
from each decision to the next. This sheds new light on the
time course and the nature of metacognitive learning. Future
work will reverse-engineer the learning mechanisms that gen-
erate the cognitive plasticity our approach is bringing to light.

The plan for this paper is as follows: we start by developing
a computational method for measuring experience-dependent
changes in people’s planning strategies. Next, we validate
it on synthetic data and human data. We then illustrate the
utility of our method by measuring the time course of how
people learn how to plan, characterizing the revealed learning
trajectories, and testing hypotheses about cognitive plasticity.
In closing, we discuss directions for future work.

Methods
Process-tracing using the Mouselab-MDP paradigm
Planning, like all cognitive processes, cannot be observed di-
rectly but has to be inferred from observable behavior. This
is generally an ill-posed problem. To address this chal-
lenge, researchers have developed process-tracing methods
that elicit and record behavioral signatures of latent cogni-
tive processes; for instance decision strategies can be traced
by recording the order in which people inspect the payoffs of
different gambles (Payne, Bettman, & Johnson, 1993). While
these behavioral signatures are still indirect measures of cog-
nitive processes, they do provide additional information about
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Figure 1: Illustration of the Mouselab-MDP paradigm. Re-
wards are revealed by clicking, prior to selecting a path with
the arrow keys. The distribution of rewards underlying each
node at a given step is shown on the right.

what the underlying cognitive strategy might be.
Here, we employ a process-tracing paradigm that exter-

nalizes people’s beliefs and planning operations as observ-
able states and actions (Callaway, Lieder, Krueger, & Grif-
fiths, 2017; Callaway et al., 2018). Inspired by the Mouselab
paradigm (Payne et al., 1993), the Mouselab-MDP paradigm
uses people’s mouse-clicking as a window into their planning.

The Mouselab-MDP paradigm illustrated in Figure 1
presents a series of route planning problems where each lo-
cation (the gray circles), harbors a gain or loss. These poten-
tial gains and losses are initially occluded, corresponding to a
highly uncertain belief state. The participant can reveal each
location’s reward by clicking on it and paying a fee. This is
similar to looking at a map to plan a road trip. Clicking on
a circle corresponds to thinking about a potential destination,
evaluating how enjoyable it would be to go there, and adjust-
ing one’s assessment of candidate routes accordingly.

Measurement model
To develop an efficient computational method for inferring
the temporal evolution of people’s planning strategies, we
make the simplifying assumption that the trial-by-trial se-
quence of peoples’ cognitive strategies (S1,S2, · · · ,S31) forms
a Markov chain whose hidden states emit the observed pro-
cess tracing data collect on each trial (d1, · · · ,d31). This
hidden Markov model requires additional methodological
assumptions about i) how cognitive strategies manifest in
process-tracing data, ii) the space of cognitive mechanisms
that can be learned, and iii) the nature and amount of cog-
nitive plasticity that might occur. The following paragraphs
detail our assumptions about each of these three components
in turn.

Observation model. To plan in the Mouselab-MDP
paradigm participants have to gather information by making
a sequence of clicks. Our observation model thus specifies
the probability of of observing a sequence of clicks dt on trial
t if the strategy was St (i.e., P(dt|St)).

To achieve this, we quantify each planning strategy’s
propensity to generate a click c (or stop collecting in-

formation) given the already observed rewards encoded
in belief state b by a weighted sum of 29 features
( f1(b,c), · · · , f29(b,c)). The features describe the click c rel-
ative to this information (e.g., by the value of the largest re-
ward that can be collected from the inspected location) and in
terms of the action it gathers information about (e.g., whether
it pertains to the first, second, or third step)1. The depth fea-
ture, for instance, describes each click by whether it looks 1,
2, or 3 steps into the future. The features and weights jointly
determine the strategy’s propensity to make click c in belief
state b according to

P(dt|St) =
|dt|

∏
i=1

exp
(

1
τ
·∑|w

(S)|
k=1 w(S)

k · f (S)k (ct,i,bt,i)

)
∑c∈Cbt

exp
(

1
τ
·∑|w

(S)|
k=1 w(S)

k · f (S)k (c,bt,i)
) , (1)

where dt,i is the ith click the participant made on trial t (or the
decision to stop clicking and take action), the decision tem-
perature τ was set to 0.5 to match the variability of people’s
click sequences, and w(S) is the weight vector of strategy S.

Space of cognitive mechanisms. We formulated a set of
38 strategies (S )1 to describe the process tracing data from
Lieder (2018). These strategies include the optimal goal-
setting strategy (Callaway et al., 2018) that starts by inspect-
ing the possible final destinations and search-based planning
algorithms such as breadth-first search, depth-first search, and
best-first search (Russell & Norvig, 2016). 76.7% of the click
sequences were the most likely instantiation of one of the
38 strategies. The clicks of the remaining 23.3% of the se-
quences were, at worst, second most likely under the best fit-
ting strategy. These strategies differ in how much information
they consider (ranging from none to all), which information
they focus on, and in the order in which they collect it.

Building on the observation model in Equation 1, we rep-
resent each strategy by a weight vector w = (w1, · · · ,w29) that
specifies the strategy’s preference for more vs. less planning,
considering immediate vs. long-term consequences, satisfic-
ing vs. maximizing, avoiding losses (cf. Huys et al., 2012),
and other desiderata. These weights span a high-dimensional
continuous space with many intermediate strategies and mix-
tures of strategies. Cognitive plasticity could be measured by
tracking how those weights change over time. But this would
be a very difficult ill-defined inference problem whose solu-
tion would depend on our somewhat arbitrary choice of fea-
tures. As a first approximation, our method therefore simpli-
fies the problem of measuring cognitive plasticity to inferring
a time-series of discrete strategies.

To understand what types of strategies people use, we
grouped our 38 strategies using hierarchical clustering. This
requires measuring the similarity between strategies. Since
the strategies are probabilistic, we defined the distance metric
∆(s1,s2) between strategy s1 and s2 as the Jensen-Shannon

1A detailed description of the features and strategies is available
at https://osf.io/y58d3/?view_only=fa2f89de3aa04d4d87af3d050bb1a64c
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divergence (Lin, 1991) between the distributions of click se-
quences and belief states induced by strategies s1 and s2 re-
spectively, that is

(2)∆(s1,s2) = JS [p(d|s1), p(d|s2)] ,

and approximate it using Monte-Carlo integration.
Applying Ward’s hierarchical clustering method (Ward Jr,

1963) to the resulting distances suggested 11 types of plan-
ning strategies: acting impulsively without any planning,
finding a goal and immediately moving towards it, inspect-
ing both immediate and final outcomes (but no intermediate
ones), overly frugal goal setting strategies, goal setting strate-
gies that plan towards potential goals even when it is waste-
ful, exhaustive backward planning strategies that inspect all
of the states, other far-sighted strategies that inspect all poten-
tial final states, forward-planning strategies similar to depth-
first search, forward-planning strategies similar to best-first
search, strategies similar to breadth-first search, and strate-
gies that focus on the course of action that has received the
most consideration so far.

Prior on strategy sequences. Inferring a strategy from a
single click sequence could be unreliable. Our method there-
fore exploits temporal dependencies between subsequent
strategies to smooth out its inferences. Transitions from one
strategy to the next can be grouped into three types: repeti-
tions, gradual changes, and abrupt changes. While most neu-
roscientific and reinforcement-learning perspectives empha-
size gradual learning (e.g., Hebb, 1949; Mercado III, 2008;
Lieder, Shenhav, Musslick, & Griffiths, 2018), others sug-
gest that animals change their strategy abruptly when they
detect a change in the environment (Gershman, Blei, & Niv,
2010). Symbolic models and stage theories of cognitive de-
velopment also assume abrupt changes (e.g., Piaget, 1971;
Shrager & Siegler, 1998), and it seems plausible that both
types of mechanisms might coexist. To accommodate these
different perspectives, we consider three prior distributions on
participants’ trial-by-trial sequence of cognitive strategies.

The gradual learning prior (mgradual in Equation 3) as-
sumes that strategies changes gradually, that is

(3)P(St+1 = s|St ,mgradual) =
exp(− 1

τ
· ∆(s,St))

∑s′∈S exp(− 1
τ
· ∆(s′,St))

,

where S is the set of strategies, |S | is the number of strate-
gies, and the temperature parameter τ was set to achieve a
50% chance of a strategy change. By contrast, the abrupt
changes prior (mabrupt in Equation 4) assumes that transitions
are either repetitions or jumps.

(4)
P(St+1 = s|St ,mabrupt) =

pstay · I(St+1 = St) + (1− pstay) ·
I(s 6= St)

|S |−1
,

Finally, the mixed prior (mmixed in Equation 5) assumes that
both types of changes coexist.

(5)
P(St+1 = s|St ,mmixed) =

pgradual · P(St+1 = s|St ,mgradual)

+ (1− pgradual) · P(St+1 = s|St ,mabrupt).

In each of these three cases, we model the probability of the
first strategy as a uniform distribution over the space of deci-
sion strategies (i.e., P(S1) =

1
|S | ).

Together with the observation model and the strategy space
described above each of these priors defines a generative
model of a participant’s process tracing data d; this model
has the following form:

P(d,S1, · · · ,ST ) =
1
|S |
·

T

∏
t=2

P(St |St−1,m) ·P(dt|St). (6)

The three measurement models differ in the identity of m ∈
{mgradual,mabrupt,mmixed}. Inverting these models gives rise to
a computational method for measuring an important aspect of
cognitive plasticity.

Inference on cognitive plasticity
The models above describe how changes in cognitive strate-
gies manifest in process-tracing data. To measure those cog-
nitive changes, we have to reason backwards from the pro-
cess tracing data d to the unobservable cognitive strategies
S1, · · · ,ST that generated it. To achieve this, we leverage the
Viterbi algorithm (Forney, 1973) to compute maximum a pos-
teriori (MAP) estimates of the hidden sequence of planning
strategies S1, · · · ,ST given the observed process tracing data
d, the measurement model m, and its parameters (pstay for
mabrupt and pgradual and pstay for mmixed). To estimate the model
parameters we perform grid search with a resolution of 0.02
over pstay ∈ [0,1] for mabrupt and (pstay, pgradual)∈ [0,1]× [0,1]
for mmixed.

Inferring the hidden sequence of cognitive strategies in this
way lets us see otherwise unobservable aspects of cognitive
plasticity through the lens of a computational microscope.

Validating the computational microscope
Validation on synthetic data
To validate our “computational microscope” for looking at
cognitive plasticity, we apply it to simulated process tracing
data. To avoid bias towards any one of the three measurement
models, we used each of them to generate a data set with
100 simulated participants completing 31 trials each. We then
combined the resulting three data sets into a single data set
from 300 simulated participants.

We then inverted the three measurement models on each
of the simulated trials (d) and compared the maximum a
posteriori estimate of each strategy sequence (Ŝ) against the
ground truth (S) in terms of the proportion of correctly in-
ferred strategies and the distance between the inferred strate-
gies and the ground truth. To measure the distance between
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two sequences of n planning strategies we define ∆(v,w) as
1
n ·∑

n
i=1 ∆(vi,wi). For better interpretability, the relative dis-

tance ∆rel(s1,s2) = ∆(s1,s2)/∆̄ normalizes ∆(s1,s2) by the aver-
age distance between any strategy and its closest neighbour.

As a baseline, we evaluated the computational method that
inverts the observation model in Equation 1 on each click
sequences independently. This simple approach was suf-
ficient to infer the correct strategy about 81% of the time
(95% confidence interval: [80.2%,81.8%]). The average dis-
tance from the inferred strategy to the true one was only
21% of the average distance from each strategy to its closest
neighbor (∆rel(ŝbaseline,s) = 0.215, 95% confidence interval:
[0.20,0.23]). This shows that the simulated click sequences
were highly diagnostic of the strategies that generated them.

We found that exploiting the temporal dependencies
among subsequent strategies by using either of the three mea-
surement models significantly improved the proportion of
correctly inferred strategies to 88.5%, 88.3%, and 88.5% for
mgradual, mabrupt, and mmixed respectively (all p < 0.0001) and
decreased the average distance between the inferred strate-
gies and the ground truth by more than 40% (∆rel(ŝgradual,s) =
0.124, ∆rel(ŝmixed,s) = 0.124, and ∆rel(ŝabrupt,s) = 0.127, all
p < 0.0001). The minor differences between the accuracies
and distances achieved with the three measurement models
were not statistically significant (χ2(2) = 0.36, p = 0.8373
and F(2,897) = 0.06, p = 0.942 respectively). These results
suggest that – under reasonable, theory-agnostic assumptions
about what cognitive plasticity might be like – our computa-
tional microscopes for looking at cognitive plasticity can be
expected to produce more accurate measurements than sim-
pler methods.

Which measurement model is most suitable depends on
whether the measured changes are mostly gradual, mostly
abrupt, or a combination of both. This may vary across tasks
and participants. We therefore invert all three measurement
models on each participant’s data and select the most appro-
priate measurement model for each participant according to
the Akaike Information Criterion (Akaike, 1974). We then
interpret the inferences obtained from inverting the selected
model as the measurement of our computational microscope.

Validation on empirical data
To validate our computational microscope on empirical data,
we applied it to the Mouselab-MDP process-tracing data from
Experiments 1–3 by Lieder (2018) where 176 participants
solved 31 different 3-step planning problems of the form
shown in Figure 1. Concretely, we asked if our computational
microscope can detect the effect of an experimental manip-
ulation expected to promote cognitive plasticity, namely the
feedback participants in the second condition of Experiment 1
received on the (sub)optimality of their chosen actions. This
performance feedback stated whether the chosen move was
sub-optimal and included a delay penalty whose duration was
proportional to the difference between the expected returns of
the optimal move versus the chose one.

Our computational microscope successfully detected the

Figure 2: Feedback accelerates cognitive plasticity. This fig-
ure shows that feedback increased the amount of cognitive
plasticity at the beginning of learning.

effect of this manipulation. As shown in Figure 2, the in-
ferred learning-induced changes were significantly larger in
the feedback condition than in the control condition in the
first 15 trials and in trials 21–25 (p ≤ 0.012 for each 5-trial
bin) and nearly significant in trials 15–20 (p = 0.08) and tri-
als 25–30 (p = 0.06). Furthermore, Figure 2 also shows that
cognitive plasticity slowed down over time as participants
adapted to experiment’s stationary decision environment.

Next, we performed χ2-tests with the Sidak correction for
multiple comparisons to compare the frequencies of all pos-
sible strategy transitions (i.e., P(St+1|St)) between the ex-
perimental condition with action feedback versus the con-
trol condition. We found that action feedback selectively in-
creased the probability of eight performance-increasing tran-
sitions from a strategy with a lower average performance (St )
to a strategy with a higher average performance (St+1) and
significantly decreased the probability of five performance-
decreasing transitions and five strategy repetitions (St+1 =
St ). By contrast, the feedback decreased the frequency of only
one performance-increasing strategy-transition and increased
the frequency of only two performance-decreasing strategy
transitions.

Our method’s ability to detect the plasticity-enhancing ef-
fects of feedback suggests that its inferences provide a valid
measure of cognitive plasticity.

Shedding light on cognitive plasticity
Having validated our computational microscope on both sim-
ulated and empirical data, we now leverage it to measure how
people learn how to plan by applying it to the process trac-
ing data from the control conditions of Experiment 1 and the
training phases of the control conditions of Experiments 2
and 3 from Lieder (2018). In the following, we illustrate
how our computational microscope can be used to i) mea-
sure how people’s propensity to use different cognitive strate-
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Figure 3: Time course of strategy usage frequencies of the
five most common strategies.

gies evolves over time, ii) test theories of cognitive develop-
ment and cognitive plasticity, and iii) characterize people’s
metacognitive learning trajectories.

Temporal evolution of strategy frequencies. As shown
in Figure 3, we found that the most common initial strat-
egy was to act impulsively without any planning (No Plan-
ning). The prevalence of this strategy decreased gradually
over time from about 34% on average across the first five tri-
als to about 25% on average across the last five trials (χ2(1) =
7.95, p = 0.0048).2. Conversely, the frequency of the near-
optimal Goal Setting strategy increased from about 4% to
30% (χ2(1) = 148.85, p < 0.0001). The frequencies of the
two maladaptive strategies that decide based on immediate
rewards (Myopic Satisficing and Myopic Impulsive) dropped
from about 11% and 4% respectively to about 5% (χ2(1) =
11.74, p = 0.0006) and 0.6% (χ2(1) = 11.62, p = 0.0006) re-
spectively, whereas the frequency of the strategy One Final
Outcome that prioritizes long-term consequences increased
from about 1% to about 6% (χ2(1) = 20.22, p < 0.0001).
Jointly these strategies accounted for about 53%–72% of our
participants’ planning across the different trials of our exper-
iment.

Testing hypotheses about the nature of cognitive plastic-
ity. Prominent theories of cognitive development disagree
about whether it proceeds in discrete stages (Piaget, 1971)
with abrupt transitions or continuous gradual change (Siegler,
1996). Inspired by these theories, we asked to which extent
learning how to plan in the Mouselab-MDP paradigm pro-

2All χ2-tests in this paragraph compare the average frequency in
the first five trials against the average frequency in the last five trials.

ceeds through gradual changes versus abrupt transitions. Our
computational microscope suggested that cognitive plasticity
includes both gradual and abrupt strategy changes. We ob-
served that the data from 63.0%± 4.9% of our participants
was best captured by the abrupt model, while the data from
29.8%± 4.6% of the participants were best captured by the
gradual model, and the data from 7.2%±2.6% were best cap-
tured by the mixed model. A more fine-grained analysis of
the individual inferred transitions revealed that the majority
of strategy changes was gradual (i.e., 59.1%, χ2(1) = 56.8,
p < 0.0001) but there was also a non-negligible percentage
of abrupt changes (i.e., 40.9%). In total those different types
of strategy changes constituted 22.8% of all transitions; that
is 77.2% of the inferred transitions were strategy repetitions.

Siegler’s overlapping waves theory (Siegler, 1996) asserts
that multiple cognitive strategies are being used in parallel
at each time during cognitive development. It further as-
serts that the relative frequencies of these strategies shift to-
wards increasingly more adaptive strategies and that there are
intermediary strategies whose frequency waxes and vanes.
Under the strong assumption that the underlying plasticity
mechanisms are the same as those that drive learning in
the Mouselab-MDP paradigm, we predicted that the same
patterns should also occur in the participants’ strategy se-
quences. To test the first prediction, we performed χ2-
tests on the strategies’ frequencies in all bins of 5 consec-
utive trials. In support of the hypothesis that multiple dif-
ferent strategies are used at each point in time throughout
the learning process we found that on average 2.16 strate-
gies were each used by significantly more than 5% of our
participants in any given trial of the experiment (95% confi-
dence interval: [2.02,2.30]). Consistent with the prediction
that high-performing strategies become more prevalent over
time whereas low-performing strategies become less preva-
lent over time we found a significant rank correlation be-
tween each strategies’ average performance and the change in
their frequency from the first trial to the last trial (Spearman’s
ρ(37) = 0.39, p = 0.0154). On the population level, we did
not find any evidence for intermediary strategies whose aver-
age frequency across participants initially increases and later
decreases again. That is, there was no strategy whose fre-
quency was higher in the middle two time bins than in both
the first two time bins and the last two time bins. Yet, overall
the measurements we obtained with our computational micro-
scope suggest that learning in the Mouselab-MDP paradigm
is better described by the overlapping waves theory than by
stage theories of cognitive development.

Learning trajectories. To identify the most common learn-
ing trajectories, we categorized each inferred strategy as be-
longing to one of the 11 types of strategies described ear-
lier. We then extracted the order in which different strategy
types appeared in the inferred sequences. Using this analy-
sis, we found that there were almost as many unique learn-
ing trajectories as there were learners: The 110 participants
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who changed their strategy at least once displayed 94 unique
learning trajectories; that is 85.4% of the learning trajectories
were unique and the remaining trajectories were exhibited by
only 2–4 learners each. Zooming in on the 49 participants
who learned the near-optimal goal setting strategy, we found
that they reached the near-optimal goal setting strategy via 38
unique learning trajectories. Consistent with the overlapping
waves theory, we found that 84.2% of these learning trajec-
tories included at least one intermediary strategy between the
initial strategy and the final strategy. Most importantly, our
analysis revealed three dominant gateways to optimal plan-
ning: 35% of the penultimate strategies inspected all poten-
tial final states – whereas the optimal strategy stops searching
for better final states once it encounters the best possible out-
come – and sometimes planned backwards from undesirable
states; 27% of the penultimate strategies inspected the poten-
tial final states in a manner akin to the optimal strategy but
additionally and wastefully inspected paths towards undesir-
able final outcomes, and 21% of the penultimate strategies
inspected both immediate and final outcomes while ignor-
ing the intermediate states. This suggests that participants
discovered the optimal goal setting strategy via intermedi-
ate strategies that perform gratuitous planning. Furthermore,
we found that about 42% of participants who succeeded to
learn a near-optimal goal setting strategy started with strate-
gies that inspect both immediate and final outcomes without
looking at intermediate ones. In addition to the 110 par-
ticipants who changed their initial strategy, 66 participants
(37.5%) never changed their strategy. The majority of those
participants always acted impulsively without any planning
(21% of all participants). Consistent with the interpretation
that those participants were less engaged in the experiment
and had not paid close attention to the instructions, we found
that they performed substantially worse on the four attention
check questions at the end of the experiment than participants
who had demonstrated learning (1.7 errors vs. 0.8 errors on
average; t(111) = −5.80, p < .0001). In addition, 9% of all
participants always inspected immediate and final outcomes
while ignoring intermediate rewards, 4% always focused ex-
clusively on final outcomes, and 3.5% used other types of
strategies.

Discussion
We have successfully validated our method on both synthetic
and human data. The results suggest that our computational
microscope can measure cognitive plasticity in terms of the
temporal evolution of people’s cognitive strategies.

Our findings suggest that this method has great potential
for helping cognitive scientists uncover the mechanisms of
cognitive plasticity and how they are impacted by the learn-
ing environment, individual differences, time pressure, moti-
vation, and interventions – including feedback, instructions,
and reflection prompts.

We are optimistic that computational microscopes will be-
come useful tools for reverse-engineering the learning mech-

anisms that enable people to acquire complex cognitive skills
and shape the way we think and decide. To make this possi-
ble, we will extend the proposed measurement model to con-
tinuous strategy spaces, a wider range of tasks and strategies,
and learning at the timescale of individual cognitive opera-
tions. In addition, future work will also leverage our com-
putational microscope to elucidate individual differences in
cognitive plasticity within and across psychiatric conditions
and different age groups.

The tentative conclusions we obtained with our first proto-
type of a computational microscope for measuring cognitive
plasticity should be taken with a grain of salt because more
psychologically plausible distance metrics and more realistic
strategy representations could lead to different conclusions
about the nature of cognitive plasticity. In this first step, we
determined the similarity between strategies based on their
behavior. But two strategies that look very different could
result from similar mechanisms. Future work will identify a
low-dimensional continuous strategy space by decomposing
each strategy into its Pavlovian, habitual, and model-based
components (van der Meer, Kurth-Nelson, & Redish, 2012).
This more realistic representation will allows us to measure
the similarity between strategies by comparing the underlying
neurocomputational mechanisms. In addition, we will seek
to validate the robustness of our computational microscope
by measuring its performance on data generated from more
realistic models of cognitive plasticity (e.g., Krueger et al.,
2017; Lieder et al., 2018).

The approach developed in this paper makes it possible
to more directly observe the previously hidden phenomenon
of cognitive plasticity in many of its facets – ranging from
skill acquisition, learning to think differently, reflective learn-
ing, cognitive decline, self-improvement, changes in cogni-
tive dispositions, and the onset, progression, and recovery
from psychiatric symptoms and mental disorders. This will
make it easier to reverse-engineer people’s ability to discover
and continuously refine their own algorithms.
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