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NETosis is a form of neutrophil cell death during which extracellular fibrillary structures
composed of cytosolic and granule proteins assembled on scaffolds of decondensed
chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally
contribute to host immune defense. Accumulating evidence implicates aberrant NET
production and/or reduced NET clearance, along with alterations of molecules involved in
NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens
released by NET are a source of autoantigens, which can contribute to the breakdown of
self-tolerance in lupus. Excessive NET can also promote the production of pro-
inflammatory cytokine interferon-a, elicit direct cytotoxic effect on various renal cells,
and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-
to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading
to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including
autoantibody production, inflammation, and tissue damage, at different stages of lupus
pathogenesis. Evidence suggests that treatments currently used in lupus may reduce
NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several
approaches are being experimented to therapeutically target pathways of NETosis. Future
studies should precisely delineate distinct roles of NETosis at different stages of lupus
pathogenesis in humans, which would offer a rational basis for NETosis-targeting
treatments in the clinic.

Keywords: NETosis, autoantigen, autoantibody, pathogenesis, systemic lupus erythematosus, self-tolerance,
nephritis, clinical implications
INTRODUCTION

Compromised tolerance to self-antigens is an early step in the development of systemic lupus
erythematosus (SLE) (1, 2). Among the diverse mechanisms that can mediate this process (1),
NETosis is believed to play a major role. NETosis was first reported as a specialized form of cell
death that occurs in neutrophils with neutrophil extracellular traps (NETs) released. This form of
org May 2022 | Volume 13 | Article 8952161
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NETosis is now termed suicidal NETosis (3). Recently, it has
been shown that NET formation can occur with preservation of
neutrophilic functions, including phagocytosis and chemotaxis.
This phenomenon is termed vital NETosis. Suicidal NETosis has
been extensively evaluated and is considered as the classical
NETosis, while research on vital NETosis is just unraveling (4).
Stimuli and environment appear to be the most important
determinants for neutrophils to undergo the suicidal NETosis
or vital NETosis pathway (5). In this article, we evaluate the
existing evidence on the role of NETosis in SLE (Supplementary
Figure S1). We will mainly focus on suicidal NETosis, as little is
known on the role of vital NETosis in SLE.

During the process of NETosis, NETs are released. NETs are
large, extracellular, and fibrillary structures, which are composed
of cytosolic and granule proteins that are assembled on a scaffold
of decondensed chromatin (6). NETs, which can neutralize and
kill bacteria, fungi, viruses and parasites, are the important first-
line in host immune defense (7). However, if dysregulated,
NETosis can contribute to the breakdown of self-tolerance and
consequently lead to autoimmunity. In this article, we review
pathways of NETosis and the role of NETs as a contributor to the
loss of normal immune tolerance in lupus. We present evidence
that supports excessive NET formation and reduced NET
degradation in lupus and discuss multiple mechanisms
whereby NET may contribute to lupus pathogenesis.
Furthermore, we discuss clinical implications of NETosis and
potential target of therapy by modulating NETosis in lupus.
FORMATION AND FUNCTION OF NETS

Stimuli, such as infections, drugs, ultraviolet light, and
hormones, trigger neutrophil activation through innate
immune receptors, which activates downstream intracellular
mediators that include protein kinase C/Raf-MEK-ERK, and
therefore lead to calcium influx and reactive oxygen species
(ROS) production (8, 9). ROS, produced by nicotinamide
adenine dinucleotide phosphate hydrogen (NADPH) oxidase
or mitochondria, activates myeloperoxidase (MPO), neutrophil
elastase and protein-arginine deaminase type 4 (PAD4) to
promote chromatin decondensation. Peptidylarginine
deiminase 4 (PAD4)-dependent citrullination of histones
induces decondensation of DNA resulting in a mixture of
DNA and bactericidal proteins, including myeloperoxidase
(MPO) and neutrophil elastase (NE), which are contained
originally in intracytoplasmic granules. The increased cytosolic
Ca++ can also act as a cofactor for PAD4, which is a nuclear
enzyme that promotes the citrullination of histone, to facilitates
the interaction with DNA (10), and lead to NETs formation.
Vital NETosis is also a complex of DNA, MPO and NE.
However, unlike suicidal NETosis, vital NETosis is ROS
independent (5). Notably, different stimuli utilize different
pathways to induce NET formation, as shown in Figures 1, 2
for pathways stimulated by phorbol 12-myristate 13-acetate
(PMA) and calcium ionophore A23187, respectively (8).
Patients with X-linked chronic granulomatous disease (CGD),
Frontiers in Immunology | www.frontiersin.org 2
who carry inactivating mutations of NADPH oxidase (NOX2),
exhibit a specific pathway of NET formation, which is
independent of NADPH oxidase (11) (Figure 3).

The function for NETs was first discovered in the context of
infection and later in autoimmunology. During infection, DNA in
NETs presents a rapid bactericidal activity by sequestering surface
bound cations, disrupting membrane integrity and lysing bacterial
cells (6, 12). Via post-apoptotic NETs, neutrophils around the
marginal zone (MZ) of the spleen, acting as B cell helpers, generate
an innate layer of antimicrobial immunoglobulin defense (13). In
autoimmune disease, such as SLE, DNA covariates with large
FIGURE 1 | Phorbol 12-myristate 13-acetate (PMA) induced NETs formation
in the suicidal NETosis.
FIGURE 2 | Calcium ionophore A23187 induced NETs formation in the
suicidal NETosis.
May 2022 | Volume 13 | Article 895216
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amounts of neutrophil proteins including LL37 (a cathelicidin
antimicrobial peptide) and high-mobility group box 1 (HMGB1),
to activate plasmacytoid DCs (pDCs). The SLE NETs activated
pDCs produce high levels of interferon (IFN)-a in a DNA- and
TLR9 (Toll-like receptor 9)–dependent manner. IFN-a, in turn,
activates neutrophils, resulting in more NETs formation through a
positive feedback cycle (14). SLE patients were found to develop
autoantibodies to both the self-DNA and antimicrobial peptides in
NETs, indicating that NETs could also serve as autoantigens to
trigger B cell activation (15).

Studies have shown that LL37 and HMGB1, which are
released during NETs formation, are autoantigens and are
playing important roles in immunity and inflammation (16).
They act as autoantigens, in combination with DNA. LL37-DNA
complexes derived from NETs can directly trigger polyclonal B
cell activation via TLR9, which can lead to increased antibody
(Ab) production (17). HMGB1–DNA complexes may also be
recognized by autoreactive B cells through B cell receptor–TLR7/
9 interaction, resulting in autoAb production (18). Preclinical
mouse models demonstrated that in vitromonocyte derived DCs
take up DNA particles from neutrophils undergoing NETosis.
Transfer of these DNA-loaded monocyte-derived DCs led to
production of antibodies against dsDNA, MPO, and proteinase-
3 (PR3) in mice. Autoantibody production was most significant
when mice were injected with DNA-loaded monocyte-derived
DCs that were exposed to NET-ting neutrophils. Thus, the
extruded DNA from NET can also be more immunogenic than
the whole apoptotic material (19, 20).

Besides the immunogenic effects, NET can also have a direct
cytotoxic effect on human epithelial and endothelial cells via the
externalization of histones. Incubation of epithelial and
endothelial cells with histone type-IIA (which includes all
types of histones) prevented cell growth, and provoked
cytotoxicity in a concentration-dependent manner. These data
Frontiers in Immunology | www.frontiersin.org 3
confirm the cytotoxic capability of histones in NETs on epithelial
and endothelial cells (21). Extracellular histones originating from
NETs have been shown to promote capillary necrosis and
podocyte loss, which can lead to proteinuria and crescent
formation in severe glomerulonephritis (22). Since endothelial
cells have a limited capacity to internalize NETs, the persistent
extracellular NETs can induce vascular leakage through the
degradation of intercellular junction protein VE-cadherin.
Taken together, NETs have specialized immune-protective
functions, but can also elicit autoimmunity and direct
cytotoxic effects on renal cells. The interplay between
neutrophils and other cell types is presented in Figure 4.
EXCESSIVE NET FORMATION AND
REDUCED NET DEGRADATION IN LUPUS

Animal Studies
Animal studies suggest several lines of evidence demonstrating
altered NET formation and degradation in SLE. Neutrophils
from lupus prone MRL/lpr mice present increased NETs
formation compared with controls (23). Importantly,
disrupting NETosis protected MRL/lpr and NZM mice against
lupus by inhibiting PAD that is required for citrullination in
NETs formation (23). PAD4 deficient (Padi4–/–) mice with FVB
genetic background, displayed decreased autoantibodies, type I
IFN responses, immune cell activation, vascular dysfunction, and
NETs immunogenicity (24). In the Fc gamma receptor 2b
deficient (Fcgr2b-/-) mouse model of lupus, renal ischemia
reperfusion injury promoted NETs in peripheral blood
neutrophils and kidneys, which was followed by glomerular
immunoglobulin (Ig) deposition and increased serum anti-
dsDNA Ab. NETs were detected in renal glomeruli using co-
staining of MPO, neutrophil elastase, and citrullinated histone
H3 for these mice (25) Together, these observations suggest an
increased level of NETs in lupus pathogenesis.

Usually, NETs are timely removed to preclude the
presentation of NET-associated self-Ag to immune cells.
However, NETs degradation can be impaired in lupus via
several mechanisms including dioxyribonuclease (Dnase)
inhibitors, anti-NETs Ab, and defective phagocytosis (20).
DNase has been shown to dissolve NETs in vitro (3). The
knockout of Dnase1 or of homologous Dnase1l3, both of which
are responsible for DNase activity in serum, induces an SLE-like
phenotype with autoAb and nephritis in otherwise normal
mouse backgrounds (26, 27), which can be partly rescued by
injecting an adenovirus encoding human DNASE1L3 (27).
Consistently, genetically lupus-prone MRL/lpr and NZB/W F1
mice carry hypomorphic variants of Dnase1l3 (28). Macrophages
have also been reported as important effector cells for NETs
clearance; and lupus-prone mice with defective macrophages had
increased anti-DNA Ab levels (29).

Human Studies
Animal studies have been extended to human specimens, which
suggests a possible role of NETs on SLE pathogenesis.
FIGURE 3 | NET formation in X-linked chronic granulomatous disease (CGD)
pathway, which is independent of NADPH oxidase.
May 2022 | Volume 13 | Article 895216
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Neutrophils from SLE patients exhibit an increased capability to
form NETs compared to those from healthy people (30). NETs,
which was visualized as web-like or granular structures co-
staining with MPO, histone H2A, and DAPI, were observed in
kidney biopsies from lupus patients (31). The locations of NETs
components in inflamed kidneys, where are demonstrated as
glomerular neutrophil infiltrates, were in the interstitium,
around fibrinoid necrosis, and along the interlobular arterial
wall in autoimmune small vessel vasculitis (32, 33).

Anti-dsDNA(+) SLE patients’ neutrophils were more prone
to suffer from NETosis in comparison with anti-dsDNA(−)
patients. Anti-dsDNA(+) patients displayed further altered
levels of inflammation mediators, NETs, and cardiovascular
risk. In vitro, Ig-dsDNA promoted NETosis on neutrophils,
modulated the expression of inflammation and thrombosis-
related molecules, and induced endothelial activation,
suggesting a possible link between anti-dsDNA antibodies, the
aberrant NETosis and increased cardiovascular risk in lupus
(34). In resonance with animal studies suggesting a role of PAD4
and NETs formation in lupus (23, 24), the rs1635564
polymorphism of PAD4 is linked to nephritis in patients with
SLE, further supporting the notion that PAD4 contributes to the
Frontiers in Immunology | www.frontiersin.org 4
pathogenesis of lupus nephritis (LN) (35). Notwithstanding, a
recent study showed that adding an NADPH inhibitor
(diphenyleneiodonium) or a PAD inhibitor (chloramidine) to
SLE patients’ sera did not affect NET formation, which suggests
that excessive NET formation in SLE may be independent of
NADPH and PAD4 at least under certain circumstances. This
study also suggested that the components of NETs were different
in different disease conditions. SLE induced NETs had
enrichment for oxidized mitochondrial DNA, whereas
antineutrophil cytoplasmic antibody (ANCA)–associated
vasculitis (AAV) induced NETs were enriched for citrullinated
histones. These observations imply that therapeutic targets of
NETs might be different for different diseases depending on the
components of NETs (36).

Several lines of evidence indicate that the degradation of NETs
can be impaired in patients with SLE via genetic changes, autoAb,
complement, and macrophages. First, some patients with SLE
carry the null mutations and hypomorphic variants of the DNase
DNASE1L3. DNASE1L3 digests chromatin in microparticles
released from apoptotic cells. Accordingly, people with
null/hypomorphic variants of DNASE1L3 have elevated levels
of DNA in plasma, particularly in microparticles (27).
A

B

FIGURE 4 | Diverse mechanisms of NETs’ role in pathogenesis of lupus. (A) NET formation starts with the activation of neutrophils through triggering of stimuli,
which activate NADPH and mitochondria pathway. The latter promotes the citrullination of histone and facilitates their interaction with DNA. NETs are enriched in
oxidized mitochondrial DNA, LL37 and HMGB1. (B) The extruded DNA from NETs is highly immunogenic. It activates plasmacytoid dendritic cells via TLR9 signaling,
leading to the production of IFN-a. LL37-DNA complexes and DNA–HMGB1 complexes directly trigger polyclonal B cell activation via TLR9 or TLR7/9 and produce
autoAbs. Both IFN-a and immune complex activate neutrophils, lead to more NETs formation and a positive feedback cycle. NETs can also have a direct cytotoxic
effect on renal epithelial and endothelial cells via the externalization of histones, and therefore lead to epithelial-mesenchymal transition (EMT), endothelial-
mesenchymal transition (Endo-MT). Abs, antibodies; EMT, epithelial-mesenchymal transition; Endo-MT, endothelial-mesenchymal transition; HMGB1, high-mobility
group box 1; IFN, interferon; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; NET, neutrophil extracellular trap; PAD, peptidyl arginase deaminase;
ROS, reactive oxygen species; TLR, toll-like receptor.
May 2022 | Volume 13 | Article 895216
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The microparticles containing chromatin can drive ROS-
independent NETs release, with glomerular deposition of NETs in
actively SLE patients (37). Second, sera from some patients with
active SLE, but not from those in remission, exhibit decreased ability
to degrade NETs (38–40). The sera of these patients have high titers
of anti-DNA, anti-histone, and other Ab that bind to NETs and thus
protect NETs from degraded by DNase1 (38, 39). This agrees with
the observation that anti-DNA Ab protect DNA from DNase
fragmentation in vitro (3). Third, NETs activate the complement
system, and the deposited C1q interferes with NETs degradation.
IgG deposition on NETs also inhibited NETs degradation in tubules
and glomeruli in the kidney of SLE patients (38, 39). Finally, NETs
clearance by macrophages can be inhibited by ubiquitinated NETs
proteins in patients with SLE (41).
NET CAN PROMOTE LUPUS VIA
MULTIPLE MECHANISMS

Animal Studies
Animal studies suggest that NETs can promote lupus via at least
three different mechanisms, i.e., induction of specific
autoantibodies, promotion of type I IFN secretion and
induction of endothelial-to-mesenchymal transition (Endo-
MT) (Figure 4).

First, myeloid DCs take up DNA and cytoplasmic Ag from
NETotic neutrophils more efficiently than from neutrophils
undergoing apoptosis or necrosis (42). The in vivo transfer of
such NET-loaded myeloid DCs into naïve mice induced anti-
dsDNA Ab and complement deposition and inflammation in
kidneys. Consistent with a possible role of NETs in autoantibody
production, treatment with polydatin that blocks ROS-mediated
NET formation or with a JAK inhibitor tofacitinib that can target
NETs formation via JAK/STAT pathway reduces serum
autoantibodies levels and ameliorates lupus manifestations in
the pristane-induced and MRL/lpr models (43, 44).

Second, evidence suggests a role of NETs in promoting lupus
through increased type I IFN. For example, injection into mice of
oxidized mitochondrial DNA released upon NET formation
stimulates type I IFN signaling through a pathway dependent
on the DNA sensor STING. This study showed that inhibition of
mitochondrial ROS in vivo suppressed NETosis, type I IFN
responses and lupus in MRL/lpr mice (45). Another study
showed that lupus-prone MRL/lpr mice treated with
mitochondria-targeted antioxidant (MitoQ) had reduced NET
formation, decreased serum type I IFN, and reduced immune
complex formation in kidneys, despite no change in serum
autoantibody levels (46). The latter suggests that NETs may
directly influence lupus pathogenesis via increasing type I IFN,
and that this effect could be independent of NET’s effect on
autoantibodies. Consistently, modulating NETs affected the
expression of type I IFN-regulated genes in the MRL/lpr model
of lupus nephritis (23).

Third, as discussed above, NETs can have direct cytotoxic
effects on epithelial and endothelial cells via stimulation of pDCs.
Evidence shows that excessive NETs can induce Endo-MT in
Frontiers in Immunology | www.frontiersin.org 5
cultured endothelial cells by NET-associated elastase. The
correlation between the presence of NETs and Endo-MT in the
nephritic MRL/lpr mice further suggests a role of NET-triggered
Endo-MT in the pathogenesis of lupus (47). Notwithstanding,
neutrophil elastase may not always be required in the execution
of NETosis (48). Further studies are needed to decipher the role
of neutrophil elastase in NET-induced Endo-MT.

Human Studies
In resonance with a possible role of NETs as a source of
autoantigens, SLE NETs, compared to NETs from healthy
individuals, contain increased amounts of acetylated and
methylated histones; such post-translational modifications can
create lupus autoantigens, such as acetylation of histone H4 at
lysine 16 [reviewed in (30)]. Furthermore, NETs enriched in
many SLE autoAg (49) have been shown to induce autoAb that
lead to NETs-associated immune complexes (IC) formation (15),
which promotes more NETosis, thus perpetuating a feedback
cycle that results in excessive NETs formation in SLE patients
(50). For example, ribonucleoprotein (RNP) IC that are
prevalent in patients with SLE can induce NETosis (14). SLE
neutrophils exposed to RNP IC induce the release of oxidized
mitochondrial DNA, and NET enriched in oxidized
mitochondrial DNA drive IFN-a production, thus can
contribute to lupus disease (45, 51). NETs can also activate
other immune cells. For example, lupus NETs can stimulate IL-
1b and IL-18 secretion by LPS-primed macrophages from
healthy individuals [reviewed in (30)]. Once secreted, IL-18
induces NET formation. NETs from healthy donors and SLE
patients also increase calcium flux in macrophages from healthy
donors and SLE patients (41). Finally, consistent with the idea
that excessive NETs induce Endo-MT in murine lupus, the
presence of NETs in the glomeruli of kidneys from patients
with SLE is associated with the severity of proteinuria and
glomerular Endo-MT (47). NETs in SLE have also been shown
to promote vascular leakage, and induce endothelial cell
apoptosis [reviewed in (30)]. Taken together, animal and
human studies suggest that NETs may contribute to lupus
pathogenesis via different mechanisms at different stages of
disease, including early loss of self-tolerance, activation of
other immune cells, inflammatory cytokine production, and
endothelial damage.
NETOSIS MAY NOT ALWAYS BE
PATHOGENIC IN LUPUS:
ANIMAL STUDIES

Although ample evidence suggests a pathogenic role of NETosis
in lupus, a few animal studies suggest a no role or even a
protective role of NETosis in lupus. The activation of the
NADPH oxidase (Nox2) complex is required for NETs
formation (52). Consequently, MRL/lpr mice that were
rendered deficient in Nox2 had impaired NETs formation. Yet,
Nox2-deficient MRL/lpr mice, which could not form NETs, had
markedly exacerbated lupus disease. This suggests that NETosis
May 2022 | Volume 13 | Article 895216
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may not contribute to SLE in vivo, and rather that Nox2 acts to
inhibit disease pathogenesis in a way that is majorly NETs
independent (53).

In addition, genetic deletion of PAD4, a distal mediator of
NETs formation, also did not ameliorate loss of immune
tolerance, immune activation or nephritis in MRL/lpr mice
(54). In further support of this result, pharmacological
inhibition of PAD did not improve disease in the Fas/lpr
model of lupus, anti-glomerular basement membrane
antibody-induced model of proliferative nephritis, and human-
serum-transfer model of SLE (54). Compared to previous studies
showing the effect of pan-PAD chemical inhibitors in
ameliorating lupus in MRL/lpr mice (23) and of PAD4 and
PAD2 deficiency in preventing lupus in FVB mice (24), PAD4
deficiency in MRL/lpr mice and pan-PAD chemical inhibitors in
Fas/lpr did not improve lupus (54). The reasons for these
discrepancies are not yet clear and may be related to the use of
different mouse strains, the stage(s) of disease when the NET
manipulations were performed, or the impact of partial
inhibition versus complete inhibition of PAD activity. When it
comes to the upstream and downstream mediators of NETs
formation, both NOX2-deficient strain and PAD4-deficient
strain exhibited impaired induction of NET formation, yet had
elevated levels of antinuclear autoantibodies (ANAs) and
exacerbated glomerulonephritis in the pristane-induced model
of lupus. Corollary to this, treatment with Nox2-specific
activators induced NETs formation, yet ameliorated pristane-
induced lupus (55). Thus, while most studies thus far support the
widely accepted notion that NETosis contributes to the
pathogenesis of SLE, it is possible that NETs may have no role
or even paradoxical roles in some model systems, in some
patients, and in certain stages of disease.
CLINICAL IMPLICATIONS OF NET
IN LUPUS

In this section, we will review potential links between current
treatments for lupus and NETosis, and discuss possible ways to
therapeutically target NETosis. The latter include targeting of
molecules such as NADPH oxidase, MPO, and PAD4 which are
involved in NETosis pathway to prevent or reduce NET
formation, accelerating the degradation of NET, deactivating
molecules that are downstream of NET, and secondarily
inhibiting NETosis (Figure 5).

Hydroxychloroquine and corticosteroids, which are
cornerstone of drug therapy in SLE, have been shown to
decrease NET formation in vitro (20). Since autoAb and
immune complexes can trigger NET formation, treatments that
reduce autoAb could reduce NET formation (20). For example,
treatment with a combination of rituximab and belimumab
reduced autoAb levels and NET formation in patients with
SLE (50).

Several approaches are being proposed to directly reduce the
formation of NET and/or enhance their degradation (20). These
approaches include targeting ROS with diphenyleneiodonium
Frontiers in Immunology | www.frontiersin.org 6
(56), targeting mitochondrial ROS with N-acetylcysteinine (57),
inhibiting PAD enzymes by Cl-amidine (23), enhancing
breakdown of NET with DNase1 (58), using DNASE1L3 to
increase DNA digestion in apoptotic microparticles (27), and
targeting histones with anti-citrullinated protein Ab (59). Some
of these approaches are being tested in lupus in preclinical
animal model and human studies. For example, lupus-prone
MRL/lpr and NZM mice treated with PAD inhibitors, namely
Cl-amidine and BB-Cl-amidine, had reduced NET formation
and were protected from lupus (23). NADPH oxidase inhibitors
can also suppress NET production. For example, bacterium
Lactobacillus fermentum CECT5716 (LC40) protected kidneys
in a mouse model of lupus by inhibiting NADPH oxidase activity
(60). In a recent study, a Syk inhibitor fostamatinib attenuated
NETs in neutrophils and reduced lupus characteristics (serum
creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- lupus
mice (25).

Studies have shown that SLE NETs decorated with
downstream molecules, including tissue factor and interleukin-
17A (IL-17A), promoted thrombin generation and the fibrotic
potential of cultured skin fibroblasts (61). In mouse model of
lupus, mice lacking IL-17 were protected from the development
of glomerulonephritis and had improved survival (62). This
suggests that inhibition of IL-17A or tissue factor expressed on
NET could be another potential therapeutic target.

In human SLE neutrophils, NETosis could be inhibited by
adding a therapeutic anti-citrullinated protein Ab; this Ab also
prevented NET-mediated organ damage in animal models of
FIGURE 5 | Potential approaches to target NET in lupus. To inhibit NETosis,
ROS could be reduced by diphenyleneiodonium, acetylcysteine, or
Lactobacillus fermentum, PAD4 could be targeted by CL-amidine, histone
citrullination could be interfered through anti-citrullinated protein Abs, and
NET degradation could be promoted by DNase. Additionally, NET-decorated
proteins, such as interleukin-17A and tissue factor, could be targeted
alternatively. Abs, antibodies; NADPH, nicotinamide adenine dinucleotide
phosphate hydrogen; DNase, deoxyribonuclease; NET, neutrophil extracellular
trap; PAD, peptidyl arginase deaminase; ROS, reactive oxygen species.
May 2022 | Volume 13 | Article 895216
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inflammation (59). JAK inhibitor tofacitinib, a drug approved to
treat inflammatory diseases, modulated NET formation and
ameliorated lupus in MRL/lpr mice (44), and is under clinical
investigation in SLE patients (NCT02535689). Using a peptide
inhibitor of complement C1, PA-dPEG24, to reduce NET
formation by human neutrophils (63) offers another potential
NETosis-based therapeutic approach.

In a recent study, 6-gingerol, the most abundant bioactive
compound of ginger root, attenuated NET release in response to
lupus- and APS-relevant stimuli, such as RNP ICs and aPL (APS
IgG), in human neutrophils in vitro. Administration of 6-
gingerol to mice reduces NET release in various models of
lupus and APS, while also improving disease-relevant
endpoints, such as autoantibody (anti-dsDNA and anti-b2GPI)
formation and large-vein thrombosis (64).

A recent report identified inositol-requiring enzyme 1a (IRE1a)
as a critical mediator of lupus-derived immune complex–mediated
NETosis in vitro (65). Importantly, pharmacological inhibition of
IRE1a using KIRA6 reduced mitochondrial ROS formation, NET
release (in both human neutrophils and a mouse model of lupus),
and autoantibody formation in multiple lupus mouse models. Thus,
inhibition of the IRE1a pathway could be an effective strategy for
neutralizing NETosis in lupus.

Quantifying NET formation through the course of lupus
disease may serve as a biomarker for disease activity, as
suggested by studies showing increased circulating NET in
patients with active SLE and reduced NET in SLE patients in
remission (39, 50). However, currently there is no gold standard
to measure NET formation (4, 66). The current strategies to
detect NETs including microscopy, ELISA, immunoblotting,
flow cytometry, and image-stream-based methods suffer from
drawbacks such as being subjective, error-prone, non-specific
and not being high throughput. This can be alleviated by new
imaging based high throughput methods. For example, a novel
Frontiers in Immunology | www.frontiersin.org 7
imaging flow cytometry approach for the measurement of NETs
both in vitro and in whole blood samples can provide an
unbiased, accurate and rapid quantification of NET formation
(67). Another study employed membrane-permeable and
impermeable DNA dyes in situ to stain NET-forming cells,
and used automated algorithm-driven single cell analysis of
change in nuclear morphology, nuclear area and intensities to
precisely detect NET-forming cells (68). Such high throughput
approaches may provide a good platform to evaluate NETs as a
surrogate marker of disease activity in the clinic and for the
discovery of potential inhibitors of NET formation.
SYNOPSIS

Taken together, observations in humans and animals with SLE
support the idea that excessive NETosis and reduced NET
degradation play a role in autoAb production, inflammation, and
tissue damage in lupus (Table 1). Impaired NETosis is believed to
mark an early step in lupus pathogenesis. The extruded nuclear Ag
released by NET serve as autoAg, and the failure to dismantle NET
plays a role in the breakdown of normal immune tolerance. The
persistent exposure of nuclear particles then activates immune cells,
which facilitate immune response against self-Ag. Excessive NET
can also induce Endo-MT in cultured endothelial cells, which
contributes to activated myofibroblasts and extracellular matrix
production. Thus, NETosis may play different pathogenic roles at
different stages of lupus. However, a few animal studies suggest that
NETosis may have no role at all or even a protective role in the
development of lupus in certain model systems. These potentially
dual, pathogenic versus protective roles, of NETs will need to be
precisely delineated at different stages of lupus disease before
NETosis-targeting treatments can be used in the clinic.
Nonetheless, preclinical discoveries on mechanisms of NET
TABLE 1 | Overview on the role of NETosis in the pathogenesis of lupus.

Evidence/Comments

Animal studies Increased NETosis in neutrophils from lupus mice (23);
Reduced NET degradation (20);
Hypomorphic variants of DNase gene in genetically lupus-prone mice (28).

Human data Increased NETosis in SLE patient neutrophils (30);
NETs visualized in lupus kidney biopsies (31);
Microparticles and RNP-IC induce NETosis (14);
Reduced ability to degrade NETs (38);
SLE linked to DNase gene variants (27).

Implications for pathogenesis Breakdown of self-tolerance, leading to autoAb production (42);
NETs promote Type 1 IFN production (44);
NETs can be directly cytotoxic to renal cells (21);
NETs can induce Endo-MT (47).

Clinical implications Therapeutic targets: agents to reduce the formation of NETs and/or enhance their degradation (20);
agents that can target molecules that decorate NETs (61);
inhibiting NETosis using antibodies (59)
Potential biomarker of lupus activity (67).

Knowledge gaps Human translation;
Data on distinct disease-specific forms of NETs;
Standard measurements for NETs using high throughput methods for clinic use.
DNase, deoxyribonuclease; Endo-MT, endothelial-mesenchymal transdifferentiation; IC, immune complexes; IFN, interferon; NET, neutrophil extracellular traps; RNP, ribonucleoprotein;
SLE, systemic lupus erythematosus.
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formation, together with clinical findings in lupus, will pave the way
for further investigations into targeting NET formation
therapeutically and as a biomarker.
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