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Gas injection into a liquid cross-flow is examined for the case where the gas is injected 

beneath a horizontal flat surface. For moderate Froude numbers, the gas pocket that is 

formed will rise toward the flow boundary under the action of buoyancy, a condition that 

is conducive to the formation of gas layers for friction-drag reduction on the surface. At 

the location of gas injection, a plume whose geometry is related to the mass and 

momentum flux of the injected gas and liquid cross-flow is formed, and the influence of 

buoyancy is minimal. However, as the gas pocket convects downstream, buoyancy brings 

the gas back upward to the flow boundary, and leads to the bifurcation of the pocket into 

two distinct branches, forming a stable “V”-shape. Under some conditions, the flow 

between the two gas branches is almost entirely liquid, while for others there exists a 

bubbly flow or a continuous sheet of gas between the branches. The sweep angle and 

cross-sectional geometry of the gas branches are related to free-stream speed and 

boundary-layer thickness of the liquid cross-flow, the mass-injection rate of the gas, the 

diameter of the injection orifice, and the gas outlet mean velocity and gas-jet angle. Data 

for a range of experimental conditions are used to scale the flow and results are compared 

to numerical computations of the flow, and these data are used to illustrate the underlying 

flow processes responsible leading to the formation the stable and straight gas branches. 

A simple model based on the balance of forces around a stable gas branch is presented 

and used to scale the observed data, and we use the results of this analysis and the 

computations to discuss how the process of gas injection may interact with the formation 

of the stable gas pockets farther downstream. 

 

1. Introduction 

 The interaction of a jet in a cross-flow has received considerable attention, especially 

for the case when the jet and free-stream flows consist of fluids with the same or similar 

density and compressibility, and a recent review of this topic has been provided by 

Mahesh (2013). In the present study, we examine a particular flow that has received 

considerably less attention: the injection of a gas into a liquid cross-stream. Given the 

large difference between the density of the gas and liquid, the mechanisms for mass and 

momentum transport between the gas and the liquid may also differ considerably from 

flow with similar material phase with buoyancy playing an important factor. The 

motivation for this effort arose from the desire to create gas layers beneath the hulls of 
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marine vehicles to reduce the skin friction (Ceccio, 2010), and thus improve the vehicles’ 

energy economics (Mäkiharju et al. 2012). Air layer drag reduction (ALDR) has been 

successfully achieved by injection of gas beneath a hull via a slot injector (Sanders et al. 

2006, Elbing et al. 2008, Elbing et al. 2013). For the practical application of ALDR, it 

may be advantageous in terms of the hull mechanical structure and the marine 

engineering of the gas delivery to inject the gas from discrete orifices in the hull, rather 

than via a long slot. To that end, this study was conducted to examine how gas is 

distributed beneath a flat surface after it is injected from an orifice into a liquid cross-

flow. 

 Despite the canonical nature of this flow, few studies have been published regarding 

the injection of gas into a liquid cross-flow for cases where a gas pocket is formed at the 

injection location, rather than the immediate formation of bubbles at the injection orifice 

as discussed by Wace et al. (1987). Pignoux (1998) investigated a horizontal gas jet 

injected into a vertical liquid cross-flow, where the direction of gravity is aligned with the 

mean liquid flow direction. The injected gas jet was deflected by the incoming liquid 

flow and formed a distinct gas pocket, with a shape that is reminiscent of a Rankine half-

body formed by a source in a cross-flow, but having an ellipsoidal shape. The high void 

fraction gas pocket then transitioned into a multiphase recirculating region, which 

subsequently broke down into a bubbly flow that convected downstream from the cavity 

closure. Pignoux (1998) also measured the spatial evolution of the void fraction in the gas 

pocket and the resulting bubbly wake. Vigneau et al. (2001a) examined how changes in 

the upstream liquid boundary layer influence the topology of the gas pocket, showing 

little effect. And, Vigneau et al. (2001b) examined the interaction of multiple gas jets 

emitted from several orifices. Insel et al. (2010) reported on air injection through circular 

orifices beneath a model-scale ship hull, a flow that is closest to that of interest in the 

present study. Their observations revealed that the gas flow from a single injection port 

splits into two branches, described as “V”-shape. The gas spreading angles between two 

branches were measured and analyzed for different cross-flow speeds and air injection 

rates, and they also examined injection through multiple injection ports. However, no 

general scaling for the spreading angle (or topology in general) as a function of flow 

conditions has been formulated.  

 Figure 1 presents a schematic diagram of the basic cavity topology for gas injection 

into liquid cross-flow, when gravity is oriented such that buoyancy brings the gas toward 

the flat flow boundary, and hence buoyancy may play an important role in the evolution 

of the gas-pocket topology. Figure 2 presents typical images of the gas pocket. Near the 

gas injection port, we see the formation of a gas pocket that is similar to those observed 

by Pignoux (1998), where buoyancy acts parallel to the free-stream (and therefore has a 

much reduced influence on the cavity dynamics). However, as the gas beneath the surface 

convects downstream, we observe a two-branched pattern similar to that reported by Insel 

et al. (2010), except in the present study two distinct topological variations of the V-

shaped cavity are observed; one where the region between the branches contains 

practically no air (i.e. a Lambda, , type cavity) and one where the region is covered by a 

continuous air layer (i.e. Delta, , type cavity). 

 We should also note the similarity in appearance to other bifurcating jets (where jet 

and fluid are both either liquid or gas) forming as the jet divides into separate vortex 

streams in absence of surfaces (Reynolds et al. 2003), as the buoyant jet encounters a free 
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surface (Abdelwahed & Chu, 1978), or as the jet impinges on a solid surface (Choi et al. 

2015). While bifurcation in the former is not thought to be due to the same mechanism as 

that causing the bifurcation in the present study, it is less clear if the bifurcation 

mechanism in the latter two cases is analogous to the present flow under consideration 

here. 

 In the present study, we examine gas pockets as they are formed via gas injection 

from a single orifice into a liquid cross-flow. We combine experimental observations 

with computations to study the basic flow processes responsible for the formation of the 

V-shaped gas pocket, and attempt to show how the flow parameter such as the free-

stream speed, boundary layer profile, gas mass injection rate, size of the orifice and gas 

injection angle change the topology of the gas pocket. The organization this paper is as 

follows: in Section 2 we introduce the experimental setup, in Section 3 we discuss the 

numerical model, Section 4 discusses the cavity topology, Section 5 discusses how the 

computed results explain the topology and Section 6 presents a simplified scaling of the 

gas-pocket topology. 

 

2. Experimental Setup 

 The experiments were performed in the Physical Modeling Basin of the Marine 

Hydrodynamic Laboratory at the University of Michigan. The basin has 109.7 m carriage 

running length with 6.7 m width and 3.2 m depth. A manned carriage transports 

instruments and a towed model along the basin at speeds ranging from 0.1 ≤ 𝑈∞ ≤ 6.1 

ms-1. During testing, up to a 30 minute interval was taken between every run to ensure a 

calm water condition for the subsequent run. The water level was adjusted daily such that 

it was constant for all experiments. 

 Two barge models with flat bottoms, and producing nominally two-dimensional 

inflow boundary layers, were utilized. Gas-injections tubes with their ends flush with the 

flow boundary were inserted through the bottom of the barges in vertical orientation. The 

flow rate of the injected air, Qi, and free-stream speed 𝑈∞ were independently varied. 

Image-based measurements were recorded around the gas injection location using an 

imager viewing the gas pocket from below. A more detailed description of the models 

and setup is presented in Lee (2015). 

 

2.1 Towed test models 

 

 Two different barge models, Barge I and Barge II, were used as they had different 

boundary-layer thickness at the location of gas injection. Schematic diagrams of the two 

test models are shown in figure 3. Both models had a transparent bottom to enable real-

time observation of the gas injected underneath. The models were rigidly fixed with four 

struts to the carriage to prevent any motion relative to the carriage, and had a constant 81 

mm draft.  

 Barge I had overall dimensions of 4.3 m in length, 0.7 m in width, and 0.3 m in height. 

The span-wise uniform bow had a slope of 8.0°. Particles of 150 µm mean diameter were 

randomly scattered and affixed across the span of the model 1.0 m from the leading edge 

of the model on a 0.1 m wide strip to induce turbulent boundary layer transition upstream 

of the injection location. The resulting boundary layer profile was measured at the model 
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centerline at the gas injection location 0.4 m downstream of the beginning of the flat 

bottom.   

 Barge II had overall dimensions of 6.5 m in length, 1.5 m in width, and 0.3 m in 

height. In order to reduce air ingestion at higher speeds, the bow was modified and 

consisted of a submerged flat plate with an elliptic planform fixed to a surface-piercing 

wedge. Particles of 150 µm mean diameter were randomly scattered and affixed across 

the span of the model 1.3 m from the leading edge of the model on a 0.2 m wide strip to 

induce turbulent boundary layer transition ~0.5 m upstream of the injection location.  

 Unless stated otherwise for a specific figure, the coordinate system is chosen such 

that the origin is at the center of the injector, x-axis points downstream (towards stern) 

and y-axis is normal to the surface parallel to gravity vector (i.e. y increases with depth). 

 

2.2 The boundary layer upstream of gas injection 
 

 The boundary layer profiles for each barge model and flow speed were measured at 

the location of the air injection by traversing a pitot tube (Omega Engineering PBE-H-M) 

in the y-direction. The pitot was translated from 0 mm (flush with the bottom of the 

model surface) to 250 mm beneath the surface. The dynamic pressure at each height was 

measured using a 0-to-17 kPa differential-pressure transducer (Omega Engineering 

PX409-2.5DWU5V) with manufacturer specified accuracy of ±14 Pa. Boundary-layer 

profiles for both barge models are presented in figure 4, with 1 and 2 representing the 

boundary layer thickness for Barges I and II, respectively. The data suggest that the 

boundary layers are turbulent at the location of gas injection for all conditions discussed 

in this paper. 

 

2.3 The gas injection system 

 

 The gas-injection system was designed to generate, regulate, and measure a stable air 

mass flow rate. A 1.2 kW air compressor was used to supply a 0.30 m3 reservoir 

maintained at 650 kPa. Airflow from the pressure reservoir was controlled by a pressure 

regulator that supplied the flow meters with 101 to 308 kPa air. Multiple Omega 

Engineering FMA 5400/5500 series gas mass flow controllers were used to maintain 

accurate measurement of the air mass flow rate over a wide range. The accuracy of the 

mass flow meters was ±3% of full scale (corresponding to at most ±10% of the reported 

value). Rotameters (Omega Engineering FL2003 and FL2001) were also used to confirm 

the measured flow rates with accuracies of ±5% of full scale.   

 Different gas-injection tubes were used to change both the diameter of the orifice, Di, 

and gas jet angle with respect to the free-stream flow, . Tubes were fabricated with fixed 

outer diameter, and various inner diameters. For Barge I, the orifice diameters were 6.0 

and 10.0 mm, and for Barge II, they were 4.9, 10.2, and 19.7 mm. For simplicity, we will 

denote the diameters with the nominal values of Di = 5 mm, 10 mm, and 20 mm. To 

enable the assumption of a fully developed pipe flow, the pipes had a straight lead-up 

section of at least 20 Di before the exit. Three-dimensional printing was used to fabricate 

angled injection tubes. For angled injectors, only the data from 5 mm inner diameter 

tubes are included. The injection angle, , was defined with respect to the bottom surface 

of the barge (see figure 1), and the injection angle varied from 22.5° ≤  ≤ 157.5°. To 
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calculate the average injected gas velocity, Ui, the measured mass flow rate of the air was 

converted to a volume flow rate at the static pressure at the fixed barge draft (81 mm). 

 

2.4 Video imaging systems 

 

 A stationary high-speed cinematography system (Phantom v710 camera in a custom 

watertight enclosure) was installed at the bottom of the basin, 3 m beneath the free 

surface to view the bottom of the model as it passed over at mid tank 49 m from the 

starting point of the carriage. Ten 100 W (8500 lm) LED lights were used to illuminate 

the barge as it passed through the camera’s field of view. High-speed videos were 

recorded with 1440 x 1080 pixel resolution at 200 Hz frame rate and 5 ms exposure time. 

 

2.4 Experimental test conditions 

 

 The independent parameters of the experiment consisted of the free-stream flow 

speed (i.e. the carriage speed), 𝑈∞, boundary layer thickness at the injection location,  

diameter of the gas injection orifice, Di, gas injection angle , and the volume flow rate 

of the gas (at draft pressure), Qi. The ranges of these parameters are presented in Table 1. 

The densities i = 1.2 kgm-3 and 𝜌∞=1000 kgm-3, and kinematic viscosities ν𝑖 = 1.5 x 10-5 

m2s-1 and ν∞ = 1.0 x 10-6 m2s-1 of the gas jet and the liquid water cross-flow are assumed 

to be constant throughout the experiments. The water and air temperatures were 20 ± 1o C. 

 

3. Numerical Model  

 The numerical simulations were performed using the open-source finite-volume 

Computational Fluid Dynamics (CFD) toolkit OpenFOAM 2.3 (www.openfoam.com) 

that consists of a set of numerical solvers and discretization schemes commonly used to 

solve partial differential equations that govern fluid flow. 

 

3.1 Description of the numerical method 

 

 The governing equations are the conservation of mass and momentum equations for 

an incompressible fluid with varying mechanical properties of density and viscosity. The 

numerical solver is based on a formulation of the incompressible Navier-Stokes equations 

for multiphase flow used by Scardovelli & Zaleski (1999). The volume-of-fluid (VOF) 

method of Hirt & Nichols (1981) is adopted here and surface tension is incorporated 

through the continuum surface force (CSF) approach of Brackbill et al. (1992). In all 

simulations, the surface tension coefficient is taken as S = 0.07 Nm-1. The gas-liquid 

interface is defined as the contour of 50% void fraction within the computational domain.  

 The discretized equations are solved on unstructured grids composed of hexahedra 

and prism elements. The spatial terms of the governing equations are discretized based on 

the generalized Gauss’ theorem and a combination of second-order linear and linear-

upwind schemes. The temporal terms are handled implicitly using the second-order 

backwards Euler scheme. The flow quantities are stored at the cell centers in a co-located 

arrangements and the system of equations is solved in a segregated manner through the 

PISO (Pressure Implicit with Splitting of Operators) algorithm. 
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3.2 Boundary conditions 

 

 The rectangular computational domain has overall dimensions of 1.20 m in length, 

1.00 m in width, and 0.20 m in height. The air injector is located at the origin that is on 

the centerline and 0.20 m downstream from the upstream inlet boundary. The cylindrical 

injector has a diameter of 10 mm and it is modeled with a no-slip wall that extends 0.02 

m above the no-slip flat bottom of the barge. The air injection rate is prescribed at the 

injector boundary and the water upstream inlet boundary is assigned the mean boundary 

layer profiles measured in the physical experiments. The downstream outlet boundary is 

prescribed a fixed pressure value and the lateral and bottom boundaries are modeled as 

slip walls. See figure 5 for a depiction the flow domain on the center plane and on the 

wall near the injector. The reported pressure is calculated relative to the value at the 

outlet boundary, which produces positive and negative values. 

 

3.3 Grid resolution and solution convergence 

 

The spatial and temporal discretization is selected based on a grid convergence study. 

The solution for 𝑈∞= 3.0 ms-1, Qi = 2.5 x 10-3 m3s-1,  = 51 mm, Di ~ 10 mm, and = 90o 

(Case A) is computed on a set of three geometrically similar grids. Each grid is uniform 

in the region where the air-water interface passes. Details of the grids are summarized in 

Table 2. A time-step size of 1.3 x10-6 s is used to ensure that the maximum Courant 

number remains below 1 for all simulations. All simulations completed were performed 

on the Stampede cluster that is a part of the XSEDE network (Towns et al., 2014). The 

time-averaged air-cavity profiles obtained using the three grids are compared in figure 5. 

The time-averaging is performed over a time window of 1 second, after 1 second of 

simulation time has passed.  In dimensionless time, t* = t𝑈∞/Di, the shortest averaging 

window was t* = 200. The lowest oscillation frequency in the flow is approximately t*~5, 

and hence the shortest averaging window contained a minimum of 40 oscillations. All 

three grids show a strong agreement especially in the proximity of the injector and near 

the reattachment region. The fine grid is used for all of the simulations and analysis 

presented in this paper. 

 

4. The Cavity Topology  

 When the gas jet discharges from the injection hole with diameter Di into the cross-

flow, the diameter of the jet increases to DE, and the gas forms a single pocket near the 

injector. The gas jet is deflected by the oncoming liquid flow, but it often undergoes a 

“puffing” behavior where the volume flux varies around a mean level with some fixed 

frequency. Farther downstream from the injection location, the gas pocket reaches a 

maximum thickness and begins to close on the model surface. As the gas pocket closes at 

the centerline, it cleaves into two distinct pockets of gas (“branches”). In many cases, the 

majority of the injected gas flows into the two branches, while in others some gas fills the 

region between the branches more or less continuously. Topologies of the resulting flow 

are broadly classified into three different types: Delta type (Δ) that have a bubbly flow or 

thin air layer between the branches, Lambda type (Λ) that have little to no interstitial air, 

and Transition type (T) which has air partially covering the region in between branches. 
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Figure 6 presents stitched image (combining multiple images recorded as the barge 

passes over the stationary camera) of the larger gas pocket topologies for both Delta type 

and Lambda type. 

 As the flow develops along the surface, the gas branches were stable until they either 

impinge on the edges of the barge model or broke down after loss of gas as a result of 

entrainment in the branch cavity closure. Three quantities (shown in figure 1b) were 

derived from images of the gas cavity: the sweep angle of the branches , the chord 

length of the branch C, and the equivalent diameter of the jet, 𝐷𝐸 . The sweep angle of the 

branch was measured from the plane perpendicular to the cross-flow direction to the edge 

of the branch. The reported chord length was based on the measurement of average 

branch thickness of a ~0.25m long section of the branch, measured at the thickest part off 

the branch. The procedure was discussed in detail by Lee (2015), where the uncertainty 

of the chord length measurement was estimated to be ±5mm. We should also note that in 

some instances the chord shrunk notably downstream due gas loss from the branch, and 

potentially due to other yet to be well characterized factors.  

 

4.1 The gas pocket formed near at the location of gas injection 

 

 The flow near the location of gas injection resembles that reported by Pignoux (1998), 

Vigneau et al. (2001a), and Vigneau et al. (2001b) for the injection of gas into a 

downward flowing vertical stream. They reported that the gas injected from the circular 

orifice on the surface of a flat wall (i.e. the wall of the test section) would form a gas 

pocket for a range of free-stream velocity, boundary-layer thickness, and mass-flux of gas.   

The shape of the gas pocket was analogous to that of a Rankine half-body, but with a 

nominal shape of a semi-ellipsoid.  The axis of the ellipsoid in the wall normal direction 

of the injected gas was typically larger than the axis in the cross-stream direction. The gas 

pocket, once formed, would grow in cross-sectional area with downstream distance until 

a critical cross-sectional area was reached. Then, the cavity would break down into a 

recirculating bubbly mixture, with bubbles being continually entrained in the cavity wake. 

These investigators measured the cavity gas-liquid interfacial profiles, cavity cross-

sectional area, and gas-pocket length for varying liquid flow speed, gas mass flow rate, 

orifice size, and boundary-layer thickness.  

 Despite its relative simplicity, this near-injector flow is particularly difficult to scale.  

It is helpful to draw a comparison to the liquid flow around an axisymmetric cavitator, as 

discussed by Franc & Michel (2005). Here, a solid object placed in the liquid flow leads 

to the creation of a low-pressure gas-filled cavity in its wake. The dimensions of the 

cavity are principally related to the drag coefficient and radius of the cavitator, and the 

cavitation number (i.e. the under-pressure of the cavity) defined as 𝜎 = (𝑃∞ − 𝑃𝐶)
1

2
𝜌𝑈∞

2⁄ . 

The resulting cavity is approximated by an ellipsoid far from the cavitator, and with 

decreasing cavitation number, the radius and length of the cavity increases. If non-

condensable gas is directly injected into the liquid, the gas itself serves as the cavitator; 

therefore, the static pressure of the gas exiting the orifice must exceed the stagnation 

pressure of the incoming flow. Figure 7 shows the instantaneous cavity profile and time-

traces of the normalized pressure at the injector from the CFD, and the gas exit pressure 

can indeed be seen to exceed the cavity pressure in the boundary layer at jet penetration 

depth  𝑝̅, where 
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𝑝̅ = 𝑃/
1

2
𝜌∞𝑈∞

2           (4.1) 

 

Note that the pressure is calculated relative to the value at the outlet boundary, and hence 

takes values that are positive and negative. The effective drag and size of the cavitator 

will depend on the extent to which the gas penetrates the flow for a given mass, velocity, 

and momentum flux of the injected gas, the injection angle, the free-stream liquid speed, 

and, to a lesser extent, the thickness of the boundary layer compared to the size of the 

orifice. The unsteadiness of the cavity exit pressure shown in the figure will also be 

discussed below. 

 If the cavity pressure remains below the free-stream pressure, the cavity will reach a 

maximum cross-section and then close. And, the maximum cross-sectional area of the 

cavity is proportional to the effective cavitator drag and cavity under-pressure (a 

consequence of streamwise momentum conservation). If the cavity pressure rises to the 

static pressure of the flow (i.e. cavitation number approaches zero), the cavity will not 

close (i.e. it will be a super-cavity). In the case of injected non-condensable gas, the mean 

streamwise gas velocity within the cavity will decrease as the cavity expands, and if the 

average streamwise velocity of the gas reaches the free-stream velocity before the cavity 

has reached its maximum cross-sectional area, the pocket breaks down into a bubbly 

mixture. Conversely, if the average gas velocity reaches the free-stream velocity at or 

after the location of maximum cavity cross sectional area, the gas pocket can persist.  

Therefore, it is the interaction of the relative gas volume flux and momentum flux of the 

gas jet that will determine the drag on the liquid at the point of injection, and the 

downstream position where the cavity might break down into a bubbly mixture. A scaling 

that captures this complex phenomenon has yet to be presented; however, Vigneau et al. 

(2001a) demonstrated that modest changes to the thickness of the liquid boundary layer 

did not have a significant influence on the behavior of the gas pocket, and Vigneau et al. 

(2001b) scaled the cross-sectional area of the gas pocket breakdown with the gas volume 

flux and the free-stream speed. 

 To illustrate the features of this flow, a computation was performed of gas injection 

into the liquid for conditions of zero buoyancy (i.e. without gravity) for 𝑈∞= 3.0 ms-1 and 

Di = 10 mm,  = 90.0°, and Qi = 5 x 10-3 m3s-1. Figure 8 shows the time-averaged flow 

field around the injector in the x-z and x-y planes. The location of the cavity interface, 

static pressure, and flow speed with velocity vectors are presented. The stagnation region 

around the orifice is clearly visualized, along with the turning of the gas jet by the liquid 

flow. The flow speed of the gas decreases until it reaches the average free-stream speed, 

and the cavity reaches a nearly constant cross-sectional area. This is a higher gas volume 

flux compared to those reported by Vigneau et al. (2001b), and thus the gas pocket 

persists for a longer distance from the injector.   

 The steady flow described above occurs when there is equilibrium between the static 

pressure of the gas jet near the orifice and the stagnation pressure of incoming liquid.  

Pignoux (1998) noted, however, that the gas would not necessarily exit steadily, but 

would undergo a periodic variation in the flow rate, resulting in a puffing effect. This was 

also observed in the present study in both experiments (figure 9a and 9b) and CFD 

(figure 7 and 9c). This phenomenon results from the pinch-off of the orifice by an 

encroaching liquid flow at the base of the jet. If balance between the liquid stagnation 
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pressure and the jet static pressure is perturbed, the liquid can move over the orifice, 

blocking the gas flow, and increasing the gas pressure upstream of the orifice. In turn, the 

buildup in gas pressure will eventually blow back the liquid, moving the stagnation 

region upstream of the orifice. Puffing results from the cyclic blockage and blowout of 

the gas at the orifice. The dynamics of the system depend on both the experimental flow 

conditions and the dynamics and control of the gas delivery system. Figure 7b presents a 

time-series of gas pressure at the orifice to illustrate the puffing phenomenon captured by 

the simulation, where a length of the inlet pipe is included in the simulated geometry 

allowing for the flow to interact with the connection at the orifice. Based on the CFD the 

Strouhal number ( St = 𝑓𝐷𝑖 𝑈∞⁄ ) of this puffing was found to be ~0.29. Albeit 

presumably due to a different physical mechanism, the gas-liquid interface with periodic 

structures due to the puffing has an appearance reminiscent to that seen on the interface 

of a cavitating jet in a cross-flow (Brandner et al. 2015). Figure 9 also reveals that 

effective jet diameter DE at the jet exit is much larger than the orifice diameter Di. Figure 

10 presents of plot of the DE as function of jet to cross-flow velocity ratio, and for all 

conditions DE  has uncertainty of ±3 mm. We also note that the orifice diameter does not 

necessarily scale the geometry of the jet, even near the location of injection. There is also 

a clear dependence on boundary layer thickness, as a thinner boundary layer will present 

higher average cross-stream flow momentum to the exiting gas stream, and the expected 

outcome is corroborated based on comparison of Case A1 vs. D results for which also the 

numerical results compare favorably to experimental data, as seen in Table 3. It is 

interesting to note that the data collapses, if the cross-flow velocity is scaled with the 

ratio of the turbulent boundary layer thicknesses.  

 

4.2 Formation of the gas-filled branches 

 

 Figure 11 shows the computation with buoyancy for the conditions otherwise similar 

to those shown in Figure 8 without buoyancy. The influence of buoyance leads to a 

significantly different topology of the gas pocket. The effect is evident within a few DE 

downstream of the orifice, as the liquid flowing around the cavity begins to move up 

toward the flow boundary, bisecting the gas pocket, and creating two flow branches. 

Without gravity, the gas pocket forms and develops into a long slender cavity with the 

shape of a semi-ellipsoid. However, as seen in more detail in Figure 11 (b), (d) and (f), 

with gravity acting normal to the flow direction, and hence buoyancy moving the gas 

toward the flow boundary, the gas pocket is bisected, forming the two stable branches 

(note: the pressure peak on surface at bifurcation location seen in Figure 11 (b)). This 

topology was observed experimentally for the wide range of flow conditions of the 

present study. At speeds ≥ 2 ms-1, the leading edges of the gas branches were usually well 

defined and straight. The chord length of the branches was also nominally constant, until 

entrainment of gas away from the branches led to their gradual diminution.    

 

4.3 Sweep angle of the gas branches 

 

 The sweep angle,  is the angle between the plane perpendicular to the cross-flow 

and leading edge of the branch. The angles of both branches were measured from 

multiple images. The uncertainty was estimated as ±1.5° and is principally attributed to 
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the fluctuations of the edge of the gas branch that is related to the puffing discussed 

previously. Figures 12 through 15 illustrate how the sweep angle,  changes with 

varying cross-flow speed 𝑈∞, jet volume flow rate Qi, injection orifice diameter, Di, and 

injection angle 𝛽. The sweep angle significantly varies with varying cross-flow speed, jet 

volume flow rate, and, to a lesser extent, the injection hole diameter and injection angle. 

Figure 16 presents plots of versus Qi for varying 𝑈∞  for the three nominal orifice 

diameters of 5, 10, and 20 mm, for  =90°. The sweep angle is primarily a function of 

the free-stream speed, with the angle increasing with increasing speed. Conversely, for a 

fixed value of 𝑈∞, the sweep angle decreases with increasing gas flow-rate, Qi.  

 Variation in the orifice size, Di, and injection angle, 𝛽, suggest that that the gas exit 

velocity and momentum in direction of the cross-flow has a secondary, but discernable, 

influence on the sweep angle. A higher exit velocity (i.e. smaller orifice for fixed volume 

flux) and higher injection angle (i.e. increased momentum against cross-flow) led to a 

smaller sweep angle for a given volume flux of gas. Figure 17 shows the effect of gas 

injection angle, and in the extreme case of 22.5o <  < 157.5o a nearly 6o difference is 

observed, which approximately the same as effect of changing the gas volume flow rate 

by a factor of five in 3 ms-1 liquid cross-flow. 

 

4.4 Chord length of the gas branches 

 

 The average chord of the gas branch, C, was measured along several span-wise 

segments across the thickness part of the branch, and the measurement uncertainty of ± 5 

mm is primarily due to fluctuations of the edge of the gas branches. Figures 12 through 

15 also illustrate the changes in C for varying cross-flow speed 𝑈∞, jet volume flow rate 

Qi, injection angle , and injection orifice diameter, Di. The chord length C is a strong 

function of the volume flow rate, Qi, the orifice diameter, Di, and the boundary layer 

thickness, . Figure 18 present plots of C versus Qi for varying 𝑈∞ for the three nominal 

orifice diameters of 5, 10, and 20 mm and for  = 90°. The dominant trends are 

increasing C with Qi. And Figure 19 illustrates the effect of , with a clear trend of 

increasing chord with increasing momentum of gas injection against cross-flow. Similar 

to what was observed for angle, , the chord length is not independent of  Di, and , but 

the dominant variables are again Qi and 𝑈∞. 

 

4.5 Topology of the gas pocket at low free-stream speed 

  

 Observation of the jet-and-branch topology show consistent trends except at the 

lowest cross-flow speed examined. Figure 20 compares the topologies for changing 

cross-flow speed ranging from 𝑈∞= 1 to 3 ms-1. At the lowest speed, the branches barely 

form and have irregular leading edge and chord length. But, as the speed increases, they 

become distinct, straight, and more uniform in chord. This phenomenon is related to the 

relative importance of surface tension in the flow and is discussed in Section 6.4. 

 

5. The Computed Flow Within and Around the Cavities 

 The flows for a subset of the experimentally observed conditions are computed, and 

their parameters are listed in Table 3. Also shown are the computed parameters DE, , C, 

and the maximum thickness of the gas branch, e, along with the experimentally observed 
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quantities for the similar conditions listed in parenthesis. Overall, the features of the 

experimentally observed flow are captured well by the computations, as evident from the 

comparison in figure 21. Figure 21(a) presents a comparison between an image of the 

observed flow along with the cavity outline from the computation demonstrating the very 

good match between the two. The stream-wise evolution of the cavity observed in the 

experiment is generally well captured by the computational prediction. The only 

significant difference is observed on the detailed appearance of the instantaneous cavity 

surface interface, with the computational interface being rougher than the experimentally 

observed interface. It is important to recall that the numerical simulations are performed 

on a grid with finite resolution, and the error due to the discretization may play a role in 

the small differences that are present between the experimental observations and the 

numerical predictions.   

 Figure 22 shows the computed topologies for all conditions listed in table 3, as well 

as comparisons to photos from experiments. We also see not only that the variation of 

sweep angle and chord is well captured by the CFD, but we can also observe the side 

profiles of the cavities. From the side profiles we see that the ‘hump’ height varies as the 

gas momentum compared to that of the cross-flow, and is influenced to a lesser extent by 

the boundary-layer thickness.  Also evident is that the magnitude of the pressure peak at 

bifurcation location varies approximately proportionally to hump height.  

 In the next sections, we use 𝑈∞  and  to scale length and velocity. The static 

pressures will be scaled either by eqn. (4.1) or by the following relationship 

  

𝑝 =
𝑃

𝑃∞+𝜌∞𝑔𝑦
− 1          (5.1) 

 

where P is the computed average static pressure, and y is the distance from the flow 

boundary (in direction along gravity vector). With this normalization, we can show how 

the gas pressure within the cavity varies with respect the static pressure in the fluid far 

from the injection location. Figure 23 illustrates the sections of the flows that will be 

presented. Section PX is the plane of symmetry parallel to the mean flow direction; 

Sections PY are the planes perpendicular to the surface and the mean flow direction; 

Section BX is the plane parallel to and centered on the gas branch; and Sections BY are 
planes normal the gas branch. 

 

5.1 The basic cavity flow  

 

Figures 24 present contours of the time-averaged (a) static pressure, p, and (b) the in-

plane velocity magnitude, |𝒖|/𝑈∞, on the PX plane for Cases A1 and D. Figure 24(c) is 

an instantaneous realization of the pressure field. When p < 0 at the gas-liquid interface, 

buoyancy will tend to move the gas back toward the plate. At the jet exit, the pressure at 

the gas-liquid interface is such that p >> 0 and matches the stagnation pressure of the 

incoming liquid flow. Along the interface of the cavity, p decreases and the initial gas 

pocket begins to close and form the branches. The influence of the gas volume flux can 

be seen through the change in the shape of the initial gas pocket. With the higher gas flux 

the hump is taller and the upward momentum of the liquid following the contour of the 

hump is sufficient to bifurcate the gas pocket, as also seen in figure 22. Recall that the 

branches form as the freestream liquid around the gas cavity returns to the flow boundary 
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along the plane on symmetry and bifurcates the gas pocket. This is illustrated in figures 

22 and 25(b and c) that show the surface pressures for the case A1 (also presented in 

figure 11). A high-pressure region is observed at the location of cavity bifurcation that 

results from the impingement of the liquid onto the wall boundary. Whether the region 

between the gas branches is filled with gas (delta type cavity) or liquid on the surface 

(lambda type) is of importance if the goal is to form an air layer evenly covering the 

surface. Figure 25 (c) also shows the large flow structures that form in front of the gas 

injection location, and persist far downstream. The vortex structures are visualized with 

the second invariant of the velocity-gradient tensor, commonly referred to as the Q-

criterion (Hunt et al 1988). These structures modify the boundary layer ‘seen’ by the 

branch from one with 𝑢 𝑈⁄ = (𝑦 𝛿⁄ )1 𝑛⁄  power-law shape best fitted with n ~ 8 to n ~ 5. 

This can explain how the manner in which the gas is introduced into the flow can affect 

the equilibrium sweep angle far downstream, and other detail discussed in section 6. 

Figure 25(a) also shows the mean velocity field, and in particular, the manner in which 

the turbulent mean profile that is applied on the inlet persists downstream until it is 

modified by the cavity.  

 Figure 26 presents a series PY planes illustrating the time-averaged in-plane velocity 

magnitude for the case A1. The planes start upstream of the injection location and move 

downstream toward the formation of the branches, at the location where the liquid 

impinges on the surface. Figure 27 presents the normalized pressure, p, to illustrate the 

influence of buoyancy on the development of the branches. Away from the gas injection 

site the cavity is at a constant pressure, far from the branches the pressure varies due to 

buoyancy as 𝜌∞𝑔𝑦. However, near the cavity the pressure is below 𝜌∞𝑔𝑦, as the flow 

accelerates locally. 

 

5.2 Flow around and within the stable gas branches 

 

 Once the two branches have been formed, they maintain a near equilibrium topology 

as they extend downstream from the cavity injection location with both a fixed gas sweep 

angle and chord length. Figure 28 presents the flow along the branch in the plane BX, and 

this shows that the flow along the center of the branch reaches equilibrium within ~5𝑥′/𝛿 

distance from the injection location. The flow over the branch is reminiscent of the flow 

over a long swept wing, and we can use the concepts of incompressible swept wing 

theory. Figure 29 presents the time-averaged static pressure, p, and flow speed and 

velocity vectors, for the case A1 at the location 𝑥′/𝛿 where the branch has reached a near 

equilibrium shape. The slices of figure 29 more clearly show there is only minimal 

variation in the branch shape until it is impinged on the exit of the computational domain. 

Experimentally, the variation along the branch was significant in cases where notable 

amounts of gas were entrained all along the closure of the branches. 

 

5.3 Influence of freestream speed and boundary layer thickness 

  

 The experimental observations suggested that the freestream speed and boundary 

layer thickness both significantly influence the topology of the gas branches, and this was 

explored computationally. Cases B and C were computed with 𝑈∞= 2 and 4 ms-1. Figure 

30 presents the (a) time-averaged static pressure, p, (b) the flow speed and velocity 
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vectors at the location 𝑥′/𝛿  where the branch has reached a near-equilibrium shape. 

Besides the obvious change in angle, the branches become significantly smaller in both 

chord, C, and height, e. Inspection of the average gas velocity along the branch shows 

good correlation with 𝑈∞sin (𝜑), as well as some dependence on e, and this notable 

observation is discussed further in section 6. 

 The effect of incoming boundary layer thickness was examined by computing Case E 

with 1/3 of Case A1. Figures 31 and 32 present the time-averaged static pressure, p, and 

the flow speed and velocity vectors for the case E, respectively. While the chord changed 

modestly, a significant difference in branch thickness is observed. We should also note 

the difference in pressure immediately upstream of both the injection and branches, as 

was seen most clearly in figure 22, and is likely due to change in stagnation pressure and 

relative strength of large structures (i.e. junction vortex) observed in figure 25. For these 

cases, we also find that the average gas velocity along the branch shows dependence on e, 

in addition to 𝑈∞sin (𝜑), as will be discussed in the next section. 

 

6. Scaling of the Gas Branch Topology 

 The sweep angle, chord length, and general gas branch topology were determined for 

a range of conditions in order to develop scaling relationships. We can define five non-

dimensional groups to scale both of the dependent variables  and C that are derived 

from the eight independent parameters, 𝑈∞, Qi, Di, , 𝜌∞, 𝜐∞ and g.  We assume that 

the gas is incompressible with a density much less than the liquid. The influence of 

surface tension is discussed separately in section 6.4. The five groups of independent 

parameters can be chosen as the Froude number based on the boundary layer thickness Fr 

= 𝑈∞/√𝑔𝛿, the Reynolds number based on the boundary layer thickness, Re = 𝑈∞𝛿/𝜐∞, 

the scaled gas volume flow rate Q*= 𝑄𝑖/𝑈∞𝛿2, the scaled gas injection velocity 𝑈∗ =
𝑈𝑖/𝑈∞ , and the angle of the gas injection . Note that 𝑈𝑖 = 𝑄𝑖/𝜋(𝐷𝑖/2)2 . The 

experimental ranges of these non-dimensional parameters are presented in Table 4. 

Henceforth, we will exclude the data collected for 𝑈∞< 2 ms-1 since these gas pockets 

that have less stable and regular gas branches, and we will first focus on scaling for the 

case of fixed gas injection angle o (i.e. wall-normal injection). We will attempt to 

scale sweep angle,  and normalized chord length, C/ with the four parameters Fr, Re, 

Q*, and U*. 

 

6.1 Power law scaling  

 

 Figure 33 presents cos𝜑  as a product of four non-dimensional groups raised to a 

exponents derived from nonlinear regression. The scaling successfully groups the data 

with the following equation: 

cos𝜑 ≅ 1.012 Re−0.037Fr−1.089𝑄∗0.267𝑈∗0.137     (6.1) 

 

A linear regression of this function has a correlation of 0.94. From (6.1) we see that the 

Froude number has the largest influence on the sweep angle, with the angle decreasing 

with increasing Fr. A similar regression is shown in Figure 34 for C/: 
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𝐶

𝛿
≅ 1.3 ∙ 10−4   Re0.84Fr−0.67𝑄∗0.57𝑈∗0.23      (6.2) 

 
Here, the scaling has a somewhat reduced correlation of 0.87. Based on the exponents 

found from regression, the cavity chord, C/, is strongly related to the rate of volume 

injection, as expected. However, the chord is also significantly influenced by the Froude 

number, injection velocity, and Reynolds number. Next, we will present a physical basis 

for these observed scaling. 

    

6.2 A simplified model of the flow around the gas branch  

  

 A simplified model of the flow around a single gas branch can help illuminate the 

basic flow processes that lead to the formation of such a straight and stationary gas 

pockets. We expect that the drag of the long gas pocket is proportional to its height, e, the 

boundary layer thickness, , flow static pressure, 𝑃∞, and the pressure of the gas within 

the cavity, PC. If we consider the component of the drag force perpendicular to the 

leading edge of the gas branch, D, the net force is given by 

 𝐷~
1

2
𝐶𝐷𝑒  𝜌∞ (𝑈∞cos𝜑 (

𝑒

𝛿
)

1

𝑛
)

2

− (𝑃𝑐– 𝑃∞)𝑒     (6.3) 

 

where CD is a drag coefficient and 𝑈∞𝑐𝑜𝑠𝜑 is the magnitude of the velocity component 

perpendicular the leading edge scaled by the depth the cavity penetrates the boundary 

layer, e/, and where 1/n is the exponent of the boundary layer profile power law. If we 

assume that the drag coefficient is a weakly decreasing function of the Reynolds number 

based on the cavity thickness, then 

𝐶𝐷 = 𝐶𝐷𝑂 (𝑒𝑈∞cos𝜑 (
𝑒

𝛿
)

1

𝑛
/𝜈∞)

−𝑚

       (6.4) 

 

where m > 0 is a constant. A cavitator is formed by the leading edge of the gas pocket, 

but it is not fixed to the surface. Therefore, in order to have a stationary gas pocket in the 

lab frame of reference, the net drag force on the gas pocket must be zero. Setting D = 0 in 

(6.3) yields the force equilibrium condition: 

 

0 =
1

2
𝐶𝐷𝜌∞ (𝑈∞cos𝜑 (

𝑒

𝛿
)

1

𝑛
)

2

− (𝑃𝑐– 𝑃∞)      (6.5) 

 

The average cavity pressure, 𝑃𝐶, will be related to the cavity height, volume rate of the 

injected air and the rate of gas entrainment at the local cavity closure and the terminus of 

the branch at the farthest downstream extent of the gas pocket. Without direct 

measurements of the pocket pressure, a relationship for PC must be prescribed. We will 

therefore assume that PC in the gas branch is on the same order of, but less than, the 
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hydrostatic pressure in the surrounding liquid at a depth of the branch maximum 

thickness, e: 

 

𝑃𝐶 = 𝑃∞ + 𝐾1𝜌∞𝑔𝑒  where  0 < 𝐾1 <1      (6.6) 

 

 Finally, we need a relationship between the gas branch height, e, and the volume flow 

rate of gas, Qi. We can develop such a relationship if we assume that a fraction K2 of the 

injected air flows through branches 𝑄𝑏𝑟𝑎𝑛𝑐ℎ = 𝑄𝑖 2𝐾2⁄ , where K2 would be unity for a 

Lambda with no gas leakage between the branches. We can also assume that profile of 

the branch approximates a half ellipsoid such that branch chord 

 

 𝑐(𝑦) = 𝐶√1 − (𝑦 𝑒⁄ )2         (6.7) 

 

And, finally, we will assume that the gas flow speed within the branch is equivalent to the 

branch-normal speed of the liquid at same location from the plate surface, y, such that 

 

𝑢𝑏𝑟𝑎𝑛𝑐ℎ(𝑦) = 𝑈∞ sin 𝜑 (𝑦 𝛿⁄ )1/𝑛       (6.8) 

 

The, the expression for the gas flux in the branch becomes: 

 
𝑄𝑖

2
= 𝐾2 ∫ 𝑈∞ sin 𝜑 (𝑦 𝛿⁄ )1/𝑛𝐶√1 − (𝑦 𝑒⁄ )2 𝑑𝑦

𝑒

0
      (6.9) 

 

For Re(1/n) > -1 this yields  

 

𝑒 = 𝛿 [
2

√𝜋𝐾2𝑆(𝑛)

𝛿𝑄∗

𝐶 sin 𝜑
]

𝑛

𝑛+1
    (6.10) 

 

Where 𝑆(𝑛) = Γ(
𝑛+1

2𝑛
) Γ(

4𝑛+1

2𝑛
)⁄ . (Note: for the branch thickness, e¸ and angle, , found 

from the CFD the average gas velocity in the branch based on equation (6.9) with K2=1 

vs. CFD match well, yielding 2.08 vs. 2.08 and 2.53 vs. 2.51 m/s, for cases A1 and E, 

respectively.)  

 Equations (6.4), (6.5), (6.6), and (6.10), can now be combined to develop a 

relationship between the Re, Fr, Q*, and : 

 

Re−𝑚 Fr2 cos2−𝑚𝜑 𝑄∗𝑟 (
𝐶

𝛿
sin𝜑)

−𝑟

=
2𝐾1

𝐶𝐷𝑂
[

√𝜋𝐾2

2
𝑆(𝑛)]

𝑟

     (6.11) 

 

where  

 

𝑟 =
(2−𝑛)−𝑚(1+𝑛)

𝑛+1
         (6.12) 

 

This scaling does not include the one additional parameter associated with the wall-

normal injection process, the gas injection velocity 𝑈∗. It is therefore instructive to plot 

the scaling suggested by equation (6.11) as a function of 𝑈∗ = 𝑈𝑖/𝑈∞. This is shown in 

figure 35, where the function 
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Re−𝑚̂ Fr2 cos2−𝑚̂𝜑 𝑄∗𝑟̂ (
𝐶

𝛿
sin𝜑)

−𝑟̂

          (6.13) 

 

is plotted versus 𝑈∗. The data has the best linear fit for regression constants 𝑚̂ =0.40 and 

𝑟̂ =-0.79 with a correlation of 0.48. Note that a positive value of 𝑚̂ suggests that the drag 

coefficient of the cavity would be decreasing with increasing Reynolds number, as we 

would expect. From (6.12) we would also get n = 3.9, which can be compared to the 

experimentally observed value of n ~7. The decreased n would physically translate to a 

more gradual rate of velocity gradient in front of the branches. Indeed, from the CFD, as 

discussed in conjunction with figure 25, we observed the large junction vortex type flow 

structures that modified the flow seen by the branch, and in the CFD we observed these 

to drop n from ~8 to ~5, which would seem to support the idea that n seen by the 

branches in the experiment may have well been ~4.   

 It is important to note, however, that the scaling does not lead to a constant value as a 

function of 𝑈∗ , which we would expect if the force balance around the branch is 

independent of the gas injection process except for the gas volume flux. However, we see 

an approximately linear dependence on the relative injection velocity such that with 

increasing 𝑈∗ the magnitude of equation (6.13) increases.  

 To explore this further, we introduce the influence of the gas injection velocity into 

the scaling as 

 

Re−𝑚̂ Fr2 cos2−𝑚̂𝜑 𝑄∗𝑟̂ (
𝐶

𝛿
sin𝜑)

−𝑟̂

𝑈∗𝑞̂          (6.14) 

 

The regression for this function is shown in figure 36 as a function of U* with 𝑚̂ = 0.73, 

𝑟̂ = -0.82 and 𝑞̂ = 0.79. These data show better grouping, and again the positive value of 

𝑚̂ suggests that the drag coefficient of the cavity would be decrease with increasing 

Reynolds number, as we would expect. This new scaling also suggests that the details of 

the gas injection process influence the equilibrium topology of the gas branch. We would 

therefore expect that the gas injection angle would also play a role. To explore this, the 

U* is scaled by sin  

Re−𝑚̂ Fr2 cos2−𝑚̂𝜑 𝑄∗𝑟̂ (
𝐶

𝛿
sin𝜑)

−𝑟̂

(𝑈∗sin𝛽)𝑞̂           (6.15) 

 

𝑈∗  is shown in figure 37 as a function of (6.15) including the data for cases where 

  ≠ 90o. These data for   = 90o follow the trend as well, but there remains some 

noticeable scatter for the  ≠ 90o data, that indicates the simple scaling does not fully 

capture how the methods of gas injection (modifying both the hump height and large 

junction vortex type flow structures) effects the overall flow, leading to a different 

equilibrium for the branches. 

 The physical model discussed above presents the trends observed in the scaled data 

(Section 6.1). The scaling from equation (6.13) can be combined with that of equation 

(6.2) to create the scaling if we assume (sin𝜑)−𝑝 ≈ 1. Recall that this scaling does not 

include the influence of U*, but it will be introduced into this scaling solely through its 

factor in the open regression. Combining equations 6.2 and 6.13, the model scaling based 

on the drag balance around the branch yields  
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cos𝜑 ~ Re−0.16Fr−0.92𝑄∗0.21𝑈∗0.51         (6.16)  

 

This can be compared with original open regression for the sweep angle 

cos𝜑 ~Re−0.037Fr−1.1𝑄∗0.27𝑈∗0.14       (6.1) 

 

The exponents for Fr and Q* are similar, with the Froude number being the dominant 

parameter. The scaling based on the model over-predicts the influence of Re and U*. 

And, the scaling would suggest a power law profile of n ~ 4 (equation 6.12) for the 

boundary layer (i.e. a more gradual boundary layer profile). Re and U* are still 

significant and necessary parameter for both relations. 

 The question, therefore, is how the process of injection could be coupled to the drag 

balance around the branch flow far downstream from the injection location. One 

possibility already discussed is that the gas injection process could cause diversion of the 

gas from the branches (when delta topology is achieved) thus leading to only a fraction of 

the gas flowing through each branch with the remainder flowing between the branches. A 

second possibility is that the injection process can lead to a change in the liquid flow 

upstream of the gas pockets. Examination of the computed flow upstream of the branches 

indicates that presence of a junction vortex, visualized in figure 25, that formed at the 

stagnation region around the jet. The vortex flow parallel to and upstream of the gas 

branches and, as such, can modify the momentum balance described in equation (6.5), 

modifying the effective drag coefficient with increasing vortex strength. Then, the drag 

coefficient would be a function of not only the Reynolds number but also the strength of 

the junction vortex. The vortex strength would, in turn relate to a U* and .  Note that the 

quantity 𝜌∞𝑔𝑒 ≈102 Pa, therefore only a small modification of the pressure upstream of 

the branch may be sufficient to modify the drag balance.    

 We conducted an additional experiment to examine how the formation of a 

potentially stronger junction vortex would affect the formation of the gas branches, if all 

other parameters are kept constant. To do this, we extended a portion of the outlet tube to 

create a solid boundary upstream of the injection location, as shown in figure 38. During 

the experiment, the presence of the barrier led to a stagnation flow ahead of the gas 

injection, and a path for the gas to extend farther into the free-stream before reattaching 

to the surface to form the gas pocket. Examination of the resulting flows showed that, for 

fixed Fr, Q* and U*, the presence of the barrier led to a decrease of the sweep angle 

(increase in cos) and increased tendency towards lambda type gas pocket topology. This 

is consistent with the hypothesis that the formation of a stronger junction vortex would 

lead to a reduction of the drag coefficient of the branch and a resulting decrease in the 

equilibrium sweep angle, and with taller hump promoting lambda topology. 

 

6.3 Stability of the gas branch 

 

 With a relationship developed between the sweep angle and the drag force on the gas 

branch, we can examine if our simplified model predicts a stable, straight gas branch.  
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Given the force balance of equation (6.3), we can take the derivative of the drag force 𝐷 

with 𝜑 around the point of force equilibrium: 

 

(
𝜕2𝐷

𝜕𝜑2
)

𝐷=0
∝ 2 sin2 𝜑 − 2 cos2 𝜑 + ⋯      (6.17) 

 

Since 45 o < 𝜑 < 90o, the sign of (𝜕2𝐷/𝜕𝜑2)𝐷=0 is always greater than zero, implying 

that a restoring force exists that resists perturbation of the branch. Hence, when there is a 

positive perturbation of the sweep angle, a net negative drag force occurs, and this results 

in the branch returning to its equilibrium position. Similarly, if the sweep angle is 

reduced, the drag on the branch increases, and it is pushed back.  Thus, the simplified 

model confirms that the gas branch, once formed, will change in sweep angle until the 

equilibrium position is achieved and will resist perturbation. 

 

6.4 Consideration of surface tension 

 

 The previous discussion has illustrated how the flow around the gas branches is 

dominated by inertia and buoyancy. However, cases with lower cross-flow speed (𝑈∞ ≤
 1 ms-1) do not exhibit gas branches with strongly defined and straight leading edges. In 

these cases, the surface tension at the air-liquid interface may be a consideration. If we 

balance the dynamic pressure and pressure due to surface tension at cross section of the 

branch, we find that: 

 

1

2
𝜌∞ (𝑈∞cos𝜑 (

𝜅

𝛿
)

1/𝑛

)
2

~
𝑆

𝜅
         (6.18) 

 

where S = 0.072 Nm-1 is surface tension of water-air interface and  is the curvature at 

the leading edge of the branch. Modifying this equation to define the Weber number, We, 

we find the following relation: 

 

𝜌∞𝑈∞
2𝜅

𝑆
= We ~ 2cos−2𝜑 (

𝜅

𝛿
)

−2/𝑛

        (6.19) 

 

The leading edge curvature is on the order of / ~ 10-1. At speeds where 𝑈∞ > 3 ms-1, 

the sweep angle varied between, 75o < 𝜑 < 88 o making 0.12 < 𝑐𝑜𝑠2𝜑 < 0.3 and therefore 

increasing the range of Weber numbers to 50 < We < 3200. But, at the lowest flow speed 

of 𝑈∞ = 1 ms-1, the sweep angle varied between, 55o < 𝜑 < 70 o, making 0.12 < 𝑐𝑜𝑠2𝜑 < 

0.33. Then, the range of Weber numbers is reduced to 12 < We < 33. This scaling 

therefore suggests that at the lowest speeds, we are approaching the conditions were the 

We ≈ O(1), and surface tension can no longer be neglected. 

 
6.5 Transition from Delta to Lambda topology 

 

 The data presented in Figure 39 show the transition from one topology type to another 

is sensitive to the boundary layer, the liquid cross-flow velocity, the momentum of the 

gas normal to the flow, and the volume flux of gas. For sufficiently high Fr, increasing 
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Q* or setting 90o increases the degree to which the gas jet penetrates the free-stream 

flow, and we would expect that this would increase the likelihood that distinct gas 

branches (i.e. a lambda topology) would form as the liquid flow impinges back on the 

plate surface. Hence, the delta-lambda transition, is likely to depend on the initial 

mechanism that bifurcates the cavity and sets the angle and chord length. Indeed, if the 

gas hump height is modified by changing the gas injection angle, , or is rendered quasi-

independent of the gas injection flow rate by placing a solid obstacle upstream of the 

orifice, the delta-to-lambda transition conditions shift to different values of Fr and Q*. 

 

7. Conclusions 

 The flow of a gas jet beneath a flat surface and into a liquid cross-stream was 

examined both experimentally and computationally. Unlike flow configurations where 

body forces can be neglected, the gas jet is strongly influenced by the presence of 

buoyancy and is driven toward the plate surface as it convects away from the injection 

location. Then, the gas pocket is cleaved into two gas pockets that form straight branches 

at a particular sweep angle relative to the incoming flow. Examination of the data 

indicates that the dominant parameter of the flow is the Froude number based on the 

thickness of the incoming boundary layer and the non-dimensional volume flow rate of 

the injected gas. The gas branches are nominally straight and stable, as they represent an 

equilibrium state balancing drag force on them due to the convection of the boundary 

layer over the gas pocket against the force on the interface due to the gas pressure within 

the branch. Because the branches are immersed in the boundary layer, the boundary layer 

thickness is an important parameter. Increase in the free-stream speed leads to an increase 

in the sweep angle of the branches, as the fraction of the stagnation pressure required to 

balance the cavity pressure decreased. The volume flux of the injected gas changes the 

chord length and height of the branches and hence, secondarily, the equilibrium sweep 

angle. 

 These observations of the cavity topology can be related to the balance of drag around 

the stable gas branch. This, in turn, is related to the impinging speed of the boundary 

layer flow, the cross-sectional area of the branch and the gas pressure within it. The 

cavity pressure is on the order of the local buoyancy-induced static pressure at the 

deepest extent of the pocket, and the geometric cross-section of the branch is strongly 

related the overall gas volume flux moving through the branch at a component of the 

boundary-layer speed. In order for a stable branch to form, there must be a balance of the 

drag forces on the cavity. And, to achieve this, the branch must rest at a particular sweep 

angle such that it intercepts the necessary parallel and tangential component of the 

incoming flow velocity to produce equilibrium. However, the process of gas injection can 

modify both the amount of gas that ultimately flows though the branches as well as the 

local liquid flow that impinges around the leading edge of the gas branches. Therefore, 

the scaling of branch sweep angle and chord length is dependent on both the free-stream 

parameters Fr and Re, the rate of gas injection, Q*, and the process of gas injection 

related to both U*, and . 

 The method of gas injection (e.g. injection angle and orifice size) had the strongest 

influence on the cavity topology. However, scaling the near-injector gas pocket was 

problematic. With increasing flow speed, the relative effect of buoyancy will be reduced, 

and we would expect to see the flow evolve to that described by Pignoux (1998), Vigneau 
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et al. (2001a), and Vigneau et al. (2001b) for the injection of gas into a downward 

flowing vertical stream. Hence, we consider the Froude numbers range of the present 

study to be moderate. However, in the present orientation and in the presence of gravity, 

even with increased flow speed with sufficient distance from the injector, buoyancy will 

ultimately flatten and potentially bisect the gas cavity, if it had not already been broken 

up by turbulent action at the cavity interface. 
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(b) 

 

Figure 1: (a) a schematic diagram showing the side view of the flow near the point of gas 

injection, with the gas volume flow-rate at draft pressure, Qi, the orifice diameter, Di, the 

angle of injection, , and the free-stream speed is 𝑈∞; (b) a plan view of the basic cavity 

topology for gas injection into a liquid cross-stream when gravity is oriented such that 

buoyancy brings the gas toward the flat flow boundary showing the cavity sweep-angle, φ, 

the average chord length of the gas branch, C, and equivalent diameter of the jet DE; 

Delta (Δ) type topologies have gas filled in between branches (area with cross hatching) 

and Lambda (Λ) types have little to no gas between the branches.   
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                       (a)                                                                (b) 

 

Figure 2: The flow topology viewed from below; (a) the gas pocket with the Delta 

topology (i.e. gas layer between the branches) (Di ≅ 5 mm, β =112.5o, 𝑈∞= 3.0 ms-1, Qi = 

2.5x10-3 m3s-1,  = 51 mm), and (b) the Lambda topology (i.e. little to no gas between the 

branches) (Di ≅ 10 mm, β = 90o, 𝑈∞= 4.0 ms-1, Qi = 6.7x10-3 m3s-1,  = 53 mm). The flow 

direction is from bottom up. 
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Figure 3: Sketches of (a) Barge I and (b) Barge II. All dimensions are in meters.  
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Figure 4: The boundary layer profiles measured at the location of gas injection for Barge 

I (grey symbols) and Barge II (black symbols); for Barge I, 15.8 ≤ 𝛿1 ≤ 19.1 mm over a 

speed range of 1 ≤ 𝑈∞ ≤ 2 ms-1; for Barge II, 50.7 ≤ 𝛿2 ≤ 57.4 mm over a speed range 

of 1 ≤ 𝑈∞ ≤ 5 ms-1. The solid line shows a 1/7th power-law. 
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(a) 

 
(b) 

 

Figure 5: Time-averaged air-cavity profiles computed on three different grid 

resolutions for 𝑈∞= 3.0 ms-1, Qi = 5.0x10-3 m3s-1,    = 51 mm, Di =10 mm, and β = 90o 

(Case A) (a) center plane, and (b) plate. 
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(a)       (b) 

 

Figure 6:  A stitched image of Barge II with (a) a Delta type gas pocket (Di ~ 20 mm, β = 

90o, 𝑈∞= 2.0 ms-1, Qi = 4.3x10-3 m3s-1,  = 53 mm) and of (b) a Lambda type gas pocket 

(Di  ≅ 10 mm, β = 90o, 𝑈∞= 4.0 ms-1, Qi = 6.7x10-3 m3s-1,  = 53 mm). 
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(a) 

 

 
(b) 

 

Figure 7: (a) instantaneous cavity profile and (b) time history of the normalized gas 

pressure 𝑝̅ at the injector exit from the computation (Case A1). In reviewing (a) we 

should note that the gas exit pressure exceeds the static pressure in the boundary layer at 

jet penetration depth y/ ≅ -0.4, and the pressure fluctuations shown in (b) exhibits a 

frequency of St = 0.29. 
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(a) 

 
(b) 

 
(c) 

 

Figure 8: The computed time-averaged cavity flow without the effect of gravity (case A2); 

𝑈∞= 3.0 ms-1 and 𝐷𝑖 = 10 mm, 𝛽 = 90.0°, and 𝑄𝑖= 5.0x10-3 m3s-1;  = 51 mm; the static 

pressure on the flow boundary (a) and center-plane (b); the normalized velocity 

magnitude on the center plane (c) with non-scaled velocity vectors indicating direction 

The white line denotes the time-averaged cavity interface location. 
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(a)                                  (b)                                          (c) 

 

Figure 9: A close-up images of the gas jet showing the effective Diameter, DE, and the 

puffing pattern observed during the present experiments: Di  ≅ 10 mm, , = 90o,  ≅ 52 

mm; (a) 𝑈∞= 2.5 ms-1, Qi = 6.7x10-3 m3s-1; (b) 𝑈∞= 3.0 ms-1, Qi = 5.0x10-3 m3s-1; and 

computation: (c) 𝑈∞= 3.0 ms-1, Qi = 5.0x10-3 m3s-1 
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Figure 10:  The effective jet exit diameter, DE, as a function of velocity ratio. The 

different symbols denote various free-stream speeds, as indicated by the legend. The size 

of symbol indicates the orifice size, with largest corresponding to 𝐷𝑖 = 20 mm, mid-size 

to 𝐷𝑖 = 10 mm, and smallest to 𝐷𝑖 = 5 mm. Empty markers represent data from Barge 

model I, with 1, and filled markers data from Barge model II, 2. 
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(a)                                                                     (b) 

  
(c)                                                                    (d) 

 

    
(e)                                                                     (f) 

 

Figure 11: The computed time-averaged cavity flow with the effect of gravity (case A1); 

𝑈∞=3.0 ms-1 and 𝐷𝑖 = 10 mm, 𝛽 = 90.0°, and 𝑄𝑖= 5.0x10-3 m3s-1;  = 51 mm; (a) static 

pressure and (b) normalized pressure 𝑝̅ on the flow boundary, and (c) static pressure on 

the x-y center-plane, and (d) velocity magnitude with non-scaled velocity vectors 

indicating direction. The velocity magnitude with non-scaled velocity vectors indicating 

direction on y-z plane at x/ = 1 (e) and x/ = 8 (f). The white line denoted the time-

averaged cavity interface location.  
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(a)     (b)     (c) 

 

Figure 12: Images illustrating the change in sweep angle, φ, and chord length, C, with 

varying flow speed, 𝑈∞, with fixed Di  ≅ 5 mm,  = 90o, and Qi = 2.0x10-3 m3s-1, for 𝑈∞= 

2.0 ms-1 (a), 3.0 ms-1 (b), and 4.0 ms-1 (c);  ≅ 52 mm. The resulting sweep angles and 

chord lengths are (a) φ =74.2° and C = 64 mm, (b) φ =79.9°and C = 60 mm, (c) φ = 84.6° 

and C = 38 mm. 
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(a)     (b)     (c) 

 
 

Figure 13: Images illustrating the change in sweep angle, φ, and chord length, C, with 

varying volume flow-rate, Qi, with fixed Di  ≅ 10 mm,  = 90o, and 𝑈∞= 2.0 ms-1,  ≅ 52 

mm, for Qi = 1.7x10-3 m3s-1 (a), 3.3x10-3 m3s-1 (b), and 6.5x10-3 m3s-1(c). The resulting 

sweep angles and chord lengths are (a) φ =76.7° and C = 44 mm; (b) φ =72.2°and C = 86 

mm; (c) φ = 68.8° and C = 142 mm. 
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(a)     (b)     (c) 

 

Figure 14: Images illustrating the change in sweep angle, φ, and chord length, C, with 

varying injection hole diameter Di with fixed 𝑈∞= 3 ms-1,  = 51mm,  = 90.0°, and Qi = 

2.5x10-3 m3s-1, for Di = 5 mm (a), 10 mm (b), and 20 mm (c). The resulting sweep angles 

and chord lengths are (a) φ = 79.7 ° and C = 90 mm; (b) φ = 81.8 °and C = 66 mm; (c) φ 

= 82.4 ° and C = 40 mm. 
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(a)     (b)     (c) 

 

Figure 15: Images illustrating the change in sweep angle, φ, and chord length, C, with 

varying injection angle, , with fixed Di  ≅ 5 mm, 𝑈∞= 3.0 ms-1,  = 53 mm, and Qi = 

2.5x10-3 m3s-1 for  = 157.5° (a), 90.0° (b), 22.5° (c). The resulting sweep angles and 

chord lengths are (b) φ =76.0° and C = 113 mm; (b) φ =79.7° and C = 90 mm; (c) φ = 

81.2° and C = 63 mm.  
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(b) 

 
(c) 

 

Figure 16: Sweep angle, φ, versus volume flow-rate, Qi, for varying flow speeds, 𝛽 = 90o: 

Di ≅ 5 mm (a), ≅ 10 mm (b), and ≅ 20 mm (c). Markers are such that 𝑈∞= 1.0 ms-1 (○), 

2.0 ms-1 (▷), 3.0 ms-1 (◁), 4.0 ms-1 (◇), and 5.0 ms-1 (□). Filled markers represent data from 

Barge model I, with 1, and empty markers data from Barge model II, 2. 
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Figure 17: Sweep angle, φ, versus injection angle, , for 𝑈∞= 3.0 ms-1, Qi = 2.5x10-3 m3s-

1 and for Di = 5 mm. The open symbols signify Lambda, grey Transitional and black 

filled a Delta-topology. Note: for the particular example data shown, Lambda-topology 

(open symbols) was not observed. 
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(a) 

 
(b) 

 
(c) 

 

Figure 18: Chord length, C, versus volume flow-rate, Qi, for varying flow speeds, = 

90o: Di ≅ 5 mm (a), ≅ 10 mm (b), and ≅ 20 mm (c). Symbols are same as in Figure 16. 
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Figure 19: Chord length, C, versus injection angle, , for 𝑈∞= 3.0 ms-1, Qi = 2.5x10-3 

m3s-1 and for Di = 5 mm. The open symbols signify Lambda, grey Transitional and black 

filled a Delta-topology. Note: for the particular example data shown, Lambda-topology 

(open symbols) was not observed. 
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Figure 20: The topologies of the gas jet for low and higher speed cross-flow; the speed 

varies from 𝑈∞= 1.0, 1.5, 2.0, and 3.0 ms-1 (a – d) and 51 mm < < 57 mm the other 

conditions are fixed at Di ~ 10 mm, Qi = 1.7x10-3 m3s-1, and  = 90.0°.  
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                                    (a)         (b)        (c) 

 

Figure 21:  (a) A comparison of the instantaneous computed and observed plan view of 

the cavity topology for Case A1 (see Table 3). Comparison of the time-averaged 

computed cavity topologies (solid black lines) and the approximate experimental cavity 

topologies (solid red lines) for Case A1 (b) and D (c).  
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Figure 22: Profile and plan views of the computed cavity topologies and contours of the 

normalized pressure 𝑝̅ on the flow boundary for cases listed in Table 3. Comparison 

figure from experiment include, if available. All the plan views show approximately a 46 

by 68 cm region. 
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Figure 23: Illustration of the branch-aligned coordinate system. Section PX is the plane of 

symmetry parallel to the mean flow direction; Sections PY are the planes perpendicular 

to the surface and the mean flow direction; Section BX is the plane parallel to and 

centered on the gas branch; and Sections BY are planes normal the gas branch. 
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(c) 

 

A1                      D 

 

 

Figures 24: The time-averaged (a) static pressure, p, and (b) the velocity magnitude, 

|𝒖|/𝑈∞, on the PX plane for cases A1 (Qi = 5.0x10-3 m3s-1) and D (Qi = 1.7x10-3 m3s-1); (c) 

is an instantaneous realization of the pressure field 𝑝̅. The solid line indicates the gas-

liquid interface defined for 50% void fraction. 
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(b) 

 

 
(c) 

 

Figure 25: Case A1 (a) velocity magnitude, |𝒖|/𝑈∞, on the centerplane, and the cavity 

(defined as 50% time-averaged void fraction) are shown as the dark gray iso-surface (b) 

The time-averaged normalized pressure,  𝑝̅, on the top boundary and the cavity, (c) The 

time-averaged normalized pressure,  𝑝̅, on the top boundary, and an iso-surface of the    

Q-criterion (Q = 10) illustrating the junction vortex formed in front of the gas branches. 
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a) x/ 𝛿 = 1   

 x/ 𝛿 = 3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 26: A series PY planes presenting the time-averaged in-plane velocity magnitude, 

for the case A1. The solid line indicates the gas-liquid interface defined for 50% void 

fraction. The cases are for 𝑥/𝛿 = 1, 3, 8, 10.  
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Figure 27: The static pressure, p, on a series of planes PY planes for case A1. The solid 

line indicates the gas-liquid interface defined for 50% void fraction. The cases are for 

𝑥/𝛿 = 1, 3, 8, 10. 
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(a) 

 
(b) 

 

Figure 28:  The (a) static pressure, p, and (b) the in-plane velocity magnitude, |𝒖|/𝑈∞, for 

the flow along on gas branch on the plane BX for the case A1. The solid white line 

indicates the gas-liquid interface as 50% time-averaged void fraction. 
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(a) 

 

 

 
(b) 

 

 

Figure 29:  The (a) static pressure, p, and (b) the in-plane velocity magnitude, for the 

flow in the plane BY for the case A1. The solid line indicates the gas-liquid interface 

defined for 50% void fraction. The planes are at 𝑥′/𝛿 = 9, 10, 12, 14 
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Case B 𝑥′/𝛿 = 8        

                                                     

 
 

Case C  𝑥′/𝛿 = 8        

                                                                                            

 
 

Case C  𝑥′/𝛿 = 12        

                                                                                            

 
(a)                                                                       (b) 

 

Figures 30: The (a) static pressure, p, (b) flow speed and velocity vectors for the cases B 

and C. Case B is for 𝑈∞= 2 ms-1 and 𝑥′/𝛿 = 8, and Case C is for 𝑈∞= 4 ms-1 and 𝑥′/𝛿 = 8 

or 12. The solid line indicates the gas-liquid interface defined for 50% void fraction. 
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𝑥′/𝛿A1 = 1                                                   𝑥′/𝛿A1 = 3 

 
 

 

𝑥′/𝛿A1 = 8                                                   𝑥′/𝛿A1 = 10 

 
(a) 

 

 

𝑥′/𝛿E = 1                                                   𝑥′/𝛿E = 3 

 
 

 

𝑥′/𝛿E = 8                                                   𝑥′/𝛿E = 10 

 
(b) 

 

Figures 31: The time-averaged static pressure, p case E at (a) 𝑥′/𝛿A1 = 1, 3, 8, 10, and (b) 

𝑥′/𝛿E = 1, 3 ,8, 10, respectively. The boundary layer for Case E is 1/3 that of Case A1. 

The solid line indicates the gas-liquid interface defined for 50% void fraction. 
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𝑥′/𝛿A1 = 1                                                   𝑥′/𝛿A1 = 3 

 
 

 

𝑥′/𝛿A1 = 8                                                   𝑥′/𝛿A1 = 10 

 
(a) 

 

 

𝑥′/𝛿E = 1                                                   𝑥′/𝛿E = 3 

 
 

 

𝑥′/𝛿E = 8                                                   𝑥′/𝛿E = 10 

 
(b) 

 

Figure 32: The time-averaged flow speed and velocity vectors for case E at (a) 𝑥′/𝛿A1 = 

1, 3, 8, 10, and (b) 𝑥′/𝛿E = 1, 3 ,8, 10, respectively. The boundary layer for Case E is 1/3 

that of Case A1. The solid line indicates the gas-liquid interface defined for 50% void 

fraction. 
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Figure 33:  A plot of cos𝜑 versus a power-law employing the Froude number, Fr =

𝑈∞/√𝑔𝛿, the Reynolds number, Re = 𝑈∞𝛿/𝜈∞, the scaled gas injection flowrate,  𝑄∗ =

𝑄𝑖/𝑈∞𝛿2, and the injection speed ratio, 𝑈∗ = 𝑈𝑖/𝑈∞ , for 𝑈∞ ≥ 2 ms-1 and wall-normal 

injection ( = 90o);  the markers represent Delta (△), Transition (◇), and Lambda (▽) 

cavities; Filled markers represent data from Barge model I, with 1, and empty markers 

represent data from Barge model II, 2; and the size of the marker represents the orifice 

size, e.g. (△) Di ~ 5 mm, (△) Di ~ 10 mm, (△) Di ~ 20 mm. 
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Figure 34:  A plot of C/ versus a power law employing the Froude number, Fr =

𝑈∞/√𝑔𝛿, the Reynolds number, Re = 𝑈∞𝛿/𝜈∞, the scaled gas injection flowrate,  𝑄∗ =

𝑄𝑖/𝑈∞𝛿2, and the injection speed ratio, 𝑈∗ = 𝑈𝑖/𝑈∞ , for 𝑈∞ ≥ 2 ms-1 and wall-normal 

injection ( = 90o);  the markers represent Delta (△), Transition (◇), and Lambda (▽) 

cavities; Filled markers represent data from Barge model I, with 1, and empty markers 

represent data from Barge model II, 2; and the size of the marker represents the orifice 

size, e.g. (△) Di ~ 5 mm, (△) Di ~ 10 mm, (△) Di ~ 20 mm. 
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Figure 35:  A plot of Re−𝑚̂ Fr2 cos2−𝑚̂𝜑 𝑄∗𝑝(sin𝜑)−𝑝̂ versus 𝑈∗ for 𝑈∞ ≥ 2 ms-1 and 

wall-normal injection ( = 90o);  and the data shows the best linear fit for 𝑚̂ = 0.40 and 

𝑝̂ = -0.79 with a linear correlation is 0.48; the markers represent Delta (△), Transition (◇), 

and Lambda (▽) cavities; Filled markers represent data from Barge model I, with 1, and 

empty markers represent data from Barge model II, 2; and the size of the marker 

represents the orifice size, e.g. (△) Di ~ 5 mm, (△) Di ~ 10 mm, (△) Di ~ 20 mm. 
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Figure 36:  A plot of Re−𝑚̂ Fr2 cos2−𝑚̂𝜑 𝑄∗𝑝 (
𝐶

𝛿
sin𝜑)

−𝑝

𝑈∗𝑞̂  versus 𝑈∗ for 𝑈∞ ≥ 2 ms-1 

and wall-normal injection ( = 90o) for 𝑚̂ = 0.73, 𝑝̂ = -0.82, and 𝑞̂ = 0.79; the markers 

represent Delta (△), Transition (◇), and Lambda (▽) cavities; Filled markers represent data 

from Barge model I, with 1, and empty markers represent data from Barge model II, 2; 

and the size of the marker represents the orifice size, e.g. (△) Di ~ 5 mm, (△) Di ~ 10 mm, (

△) Di ~ 20 mm. 
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(a) 

 
 

(b) 

 

Figure 37:  Same as figure 36 with additional data for angles injection. a) All hole 

diameters (angles ≠ 90o included only when Di = 5mm) and b) only Di = 5mm. For wall-

normal injection ( = 90o, grey filled symbols), downstream injection ( < 90o, black 

filled symbols), and upstream injection ( > 90o, empty symbols); the markers represent 

Delta (△), Transition (◇), and Lambda (▽) cavities; the size of the marker represents the 

orifice size, e.g. (△) Di ~ 5 mm, (△) Di ~ 10 mm, (△) Di ~ 20 mm.  
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      (a)         (b)        (c) 

 

Figure 38:  The modified orifice for wall-normal injection that includes a solid barrier 

(the half of a pipe extending beyond the pipe with larger outer diameter) upstream of the 

gas port (a); images of the cavity with Di ~10 mm with 𝑈∞= 2.0 ms-1, Qi = 2.1x10-3 m3s-1, 

and  ≅ 19 mm for (b) the cavity topology resulting from injection with the plain orifice, 

and (c) the cavity topology resulting from placement of the barrier upstream on the 

injection port.  
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(a) (b)  

 

  
(c)                                      (d)  

 

 
(e)                                      (f)  

 

Figure 39: A map of the cavity topology boundaries as a function of Q* versus Fr for = 

90o and for Di = 5 mm (a), 10 mm (b), and 20 mm (c) with  ≅ 52 mm. Topology map for 

Q* versus with Di = 5 mm and Fr = 4.2. Topology map Q* versus Fr for = 90o and for 

Di = 6 mm (e), and 10 mm (f) with  ≅ 17 mm. The open symbols signify Lambda, grey 

Transitional and black filled a Delta-topology. 
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Parameter Range Uncertainty Note 

𝑈∞ 1.0 ms-1 < 𝑈∞< 5.0 ms-1 ±0.4% 
The cross-flow equal to 

the carriage speed. 

𝛿 
15.8 mm ≤ 𝛿1 ≤ 19.1 mm 

50.7 mm ≤ 𝛿2 ≤ 57.4 mm 

𝛿1 ±1.0 mm 

𝛿2 ±2.8 mm 

Boundary layer 

thicknesses on Barge I 

and Barge II. 

𝐷𝑖 

Barge I: 6.0 mm and 10.0 mm 

Barge II: 4.9 mm, 10.2 mm, 

19.7 mm 
±0.1 mm 

Nominal inner 

diameters are taken to 

be 5, 10, and 20 mm. 

𝛽 

𝐷𝑖 = 5.0°;  = 22.5°, 45.0°, 

67.5°, 90.0°, 112.5°, 135.0°, 

and 157.5° 

±2° 

When 𝛽 ≠90, Di is the 

diameter of the pipe 

leading to the orifice. 

𝑄𝑖 1.0 x10-4≤ 𝑄𝑖 ≤1.2 x10-2 m3s-1 <±10% of 

reading 

Volume flow rate at 

draft pressure. 

𝑃∞ 102.1 kPa ±0.1 kPa 
Static pressure draft 

pressure. 

 

Table 1: Ranges and uncertainties of the parameters examined during the present study. 
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Mesh Cells Cell Size 

Fine 11,836,364 2.0 mm 

Medium 6,669,560 2.4 mm 

Coarse 3,786,834 2.9 mm 

 

Table 2: Parameters of the grid refinement study.  
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Case 

 

𝑈∞ 

(ms-1) 

 

Qi 

(m3s-1) 


(mm)

φ 

(degrees)
C

(mm) 

e 

(mm) 
St Type Note 

A0 3 5.0 x10-3 51 75.0 ±0.5  18.9    

Coar

se 

Grid 

A1 3 5.0 x10-3 
51 

(51.3) 

76.5 ±0.5 

(77.5±1.5) 

97 

(115±10) 
19.4 

 

() 
 

A2 3 5.0 x10-3
 51 N/A N/A 51 0.30  

No 

Grav

ity 

B 2 5.0 x10-3 
51 

(52.8) 

72.5 ±0.5 

(70.4±1.5) 

124 

(124±5) 
18.1 

 

() 
 

C 4 5.0 x10-3 
51 

(53) 

83.0 ±0.5 

(84.9±1.5) 

84 

(66±5) 
15.8 

 

() 
 

D 3 1.7 x10-3 
51 

(51.3) 

82.0 ±0.5 

(84.7±1.5) 

87 

(N/A) 
8.2 

 

() 

Low

er 

Gas 

Flux 

E 3 5.0 x10-3 17 80.5 ±0.5 79 17.0    1/3 

 

Table 3: Conditions for the computed flows with the resulting sweep angle, chord length, 

and flow topology. The experimentally observed values are given below in parenthesis, 

along with the computed and observed cavity type (, , T). For all these cases, Di ~ 10 

mm and  = 90o. 
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Parameter Range Note 

Fr 1.3 < Fr < 7.2 

 

Fr =
𝑈∞

√𝑔𝛿
 

 

Q* 6.7 x 10-2 < Q* < 1.4 x 101 

 

Q* =
𝑄𝑖

𝑈∞𝛿
2 

 

 
𝐷𝑖

𝛿
 

 

7 x 10-2 < 
𝐷𝑖

𝛿
 < 7 x 10-1   

𝛽 22.5 <  𝛽 < 157.5 degreed  

 
𝜌𝑖

𝜌∞
 

 

1.2 x 10-3 
𝜌𝑖 = 1.2 kg m-3  

𝜌∞ = 1000 kg m-3 

𝛱 1.0 x 10-3 <  < 6.1 x 103 

 

𝛱 =
𝜌𝑖𝑈𝑖

2

𝜌∞𝑈∞
2 

 

Re𝐷𝑖
 3.6 x 103 < Re𝐷𝑖

 < 1.0 x 105 

 

Re𝐷𝑖
=

𝑈𝑖𝐷𝑖

𝜈𝑖
 

 

Re𝛿 1.5 x 104 < Re𝛿< 2.9 x 105 

 

Re𝛿 =
𝑈∞𝛿

𝜈∞
 

 

 

Table 4: Ranges of non-dimensional parameters of the present study. 
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